--- /srv/rebuilderd/tmp/rebuilderduFOIeD/inputs/macaulay2-common_1.25.11+ds-2_all.deb +++ /srv/rebuilderd/tmp/rebuilderduFOIeD/out/macaulay2-common_1.25.11+ds-2_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-12-14 14:09:53.000000 debian-binary │ --rw-r--r-- 0 0 0 540512 2025-12-14 14:09:53.000000 control.tar.xz │ --rw-r--r-- 0 0 0 31297916 2025-12-14 14:09:53.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 540524 2025-12-14 14:09:53.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 31296964 2025-12-14 14:09:53.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: macaulay2-common │ │ │ Source: macaulay2 │ │ │ Version: 1.25.11+ds-2 │ │ │ Architecture: all │ │ │ Maintainer: Debian Math Team │ │ │ -Installed-Size: 305306 │ │ │ +Installed-Size: 305291 │ │ │ Depends: fonts-katex (>= 0.16.10+~cs6.1.0), libjs-bootsidemenu (>= 1.0.0), libjs-bootstrap5 (>= 5.3.8+dfsg), libjs-d3 (>= 3.5.17), libjs-jquery (>= 3.7.1+dfsg+~3.5.33), libjs-katex (>= 0.16.10+~cs6.1.0), libjs-nouislider (>= 15.8.1+ds), libjs-three (>= 111+dfsg1), node-clipboard (>= 2.0.11+ds+~cs9.6.11), node-fortawesome-fontawesome-free (>= 6.7.2+ds1) │ │ │ Section: math │ │ │ Priority: optional │ │ │ Multi-Arch: foreign │ │ │ Homepage: http://macaulay2.com │ │ │ Description: Software system for algebraic geometry research (common files) │ │ │ Macaulay 2 is a software system for algebraic geometry research, written by │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -3353,25 +3353,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 47016 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/A1BrouwerDegrees/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/A1BrouwerDegrees/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 41444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1026 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/___A__Infinity.out │ │ │ --rw-r--r-- 0 root (0) root (0) 918 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 916 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_a__Infinity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 56403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_burke__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_display__Blocks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3016 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_extract__Blocks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1740 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_golod__Betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_is__Golod__A__Inf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/example-output/_picture.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 7249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_a__Infinity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 67508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_burke__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_display__Blocks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_extract__Blocks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9306 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_golod__Betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_has__Minimal__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AInfinity/html/_is__Golod__A__Inf.html │ │ │ @@ -3465,25 +3465,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjointIdeal/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_expected__Dimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 558 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_linear__System__On__Rational__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_rational__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_slow__Adjunction__Calculation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2944 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_special__Families__Of__Sommese__Vande__Ven.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 23 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 9249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_expected__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_linear__System__On__Rational__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9580 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_rational__Surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_slow__Adjunction__Calculation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12483 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_special__Families__Of__Sommese__Vande__Ven.html │ │ │ @@ -3723,18 +3723,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 76682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2909 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BeginningMacaulay2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 29 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Benchmark/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 289851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/BernsteinSato/example-output/ │ │ │ @@ -4315,22 +4315,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Browse/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 19549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 4572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4571 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_elementary.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_evans__Griffith.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/example-output/_is__Syzygy.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 14041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14040 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_bruns__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_elementary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_evans__Griffith.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/_is__Syzygy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4075 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Bruns/html/toc.html │ │ │ @@ -4433,15 +4433,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_is__Quasi__Isomorphism_lp..._cm__Length__Limit_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_koszul__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 694 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_nonzero__Max.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_prepend__Zero__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_remove__Zero__Trailing__Terms.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution_lp__Chain__Complex_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_scarf__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_substitute_lp__Chain__Complex_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_taylor__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_trivial__Homological__Truncation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/ │ │ │ @@ -4464,15 +4464,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_koszul__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Max.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_nonzero__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_prepend__Zero__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_remove__Zero__Trailing__Terms.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9135 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_scarf__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_substitute_lp__Chain__Complex_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_taylor__Resolution_lp..._cm__Length__Limit_eq_gt..._rp.html │ │ │ @@ -4501,49 +4501,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ChainComplexOperations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 4377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4376 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Toric__Variety__Valid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chern.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Class__In__Toric__Chow__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2017 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2014 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out │ │ │ -rw-r--r-- 0 root (0) root (0) 342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out │ │ │ --rw-r--r-- 0 root (0) root (0) 759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ --rw-r--r-- 0 root (0) root (0) 624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 666 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Multi__Proj__Coord__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Output.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3327 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1666 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Toric__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_is__Multi__Homogeneous.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/_probabilistic_spalgorithm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 55 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 23694 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Toric__Variety__Valid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chern.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6409 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7339 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Class__In__Toric__Chow__Ring.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6013 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Multi__Proj__Coord__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16398 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16710 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Toric__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4910 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_bertini__Check.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_configuring_sp__Bertini.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CharacteristicClasses/html/_is__Multi__Homogeneous.html │ │ │ @@ -4558,15 +4558,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Chordal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Element_sp_pc_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/___Ring__Map_sp__Chordal__Net.out │ │ │ -rw-r--r-- 0 root (0) root (0) 178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_adjacent__Minors__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Elim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1196 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1633 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Tria.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal_spnetworks_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_chromatic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_codim__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_components_lp__Chordal__Net_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 414 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_constraint__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 726 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/example-output/_digraph_lp__Chordal__Net_rp.out │ │ │ @@ -4599,15 +4599,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3907 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Get__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Element_sp_pc_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/___Ring__Map_sp__Chordal__Net.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5071 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_adjacent__Minors__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Elim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Tria.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10852 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chordal_spnetworks_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_chromatic__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_codim__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_components_lp__Chordal__Net_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_constraint__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7695 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Chordal/html/_digraph_lp__Chordal__Net_rp.html │ │ │ @@ -4800,23 +4800,23 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 36467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CodingTheory/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 13418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 13261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1045 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/_cohom__Calg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 982 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/example-output/_cohom__Calg_lp__Normal__Toric__Variety_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/___Silent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/_cohom__Calg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/_cohom__Calg_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5794 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3603 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CohomCalg/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 107816 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CoincidentRootLoci/example-output/___Coincident__Root__Locus_sp_st_sp__Coincident__Root__Locus.out │ │ │ @@ -4899,15 +4899,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 231378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__G__G__L.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___B__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Complete__Intersection__Resolutions.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash__Total.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Ext__Module__Data.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2102 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Shamash.out │ │ │ -rw-r--r-- 0 root (0) root (0) 761 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Tate__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_complexity.out │ │ │ @@ -4931,24 +4931,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_make__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_matrix__Factorization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_new__Ext.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_odd__Ext__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_regularity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_splittings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ --rw-r--r-- 0 root (0) root (0) 451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 450 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___A__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4935 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Augmentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__G__G__L.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9094 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___B__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Check.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash__Total.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10327 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Ext__Module__Data.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Hom__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Layered.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Lift.html │ │ │ @@ -4993,18 +4993,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_module__As__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_new__Ext.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_odd__Ext__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_psi__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_regularity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_splittings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_stable__Hom.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_tensor__With__Components.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_to__Array.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6365 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 56031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 706402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Complexes/example-output/ │ │ │ @@ -5340,29 +5340,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 21320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConformalBlocks/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 36623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 36624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Gauss_sq_sphypergeometric_spfunction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_base__Fraction__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_connection__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_gauge__Transform.out │ │ │ -rw-r--r-- 0 root (0) root (0) 299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Epsilon__Factorized.out │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_is__Integrable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/_standard__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 56 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 46479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 46480 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Gauss_sq_sphypergeometric_spfunction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_base__Fraction__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_connection__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ConnectionMatrices/html/_gauge__Transform.html │ │ │ @@ -5584,136 +5584,136 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 38506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/CpMackeyFunctors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 239171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Codim__Bs__Inv.out │ │ │ --rw-r--r-- 0 root (0) root (0) 19788 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ --rw-r--r-- 0 root (0) root (0) 526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 19785 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 527 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_eq_eq_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_sp__Rational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp_vb_vb_sp__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 42548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7616 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 42547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_coefficients_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 33238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_describe_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_exceptional__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_flatten_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 492 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_graph_lp__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 46183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 46184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Isomorphism_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Morphism.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_map_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 18539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1461 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 18541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_quadro__Quadric__Cremona__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5782 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Polynomial__Ring_cm__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6396 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2775 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_segre.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6868 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out │ │ │ --rw-r--r-- 0 root (0) root (0) 23421 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 23418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_super_lp__Rational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/example-output/_to__Map.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Blow__Up__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Certify.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Codim__Bs__Inv.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Dominant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Num__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4917 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_eq_eq_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_sp__Rational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_us_st.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11362 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp_vb_vb_sp__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 51962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17697 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16996 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 51961 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4930 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficient__Ring_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_coefficients_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degree_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_describe_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_entries_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_exceptional__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_flatten_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_force__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_graph_lp__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__String_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6127 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_image_lp__Rational__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20053 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6457 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Inverse__Map_lp__Rational__Map_cm__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Isomorphism_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6602 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_is__Morphism.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_map_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_matrix_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14752 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_quadro__Quadric__Cremona__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Polynomial__Ring_cm__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_segre.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_source_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13797 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8762 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_substitute_lp__Rational__Map_cm__Polynomial__Ring_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_super_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_target_lp__Rational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6971 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12995 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/_to__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 66135 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 66132 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37101 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cremona/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6101 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Cyclotomic/example-output/_cyclotomic__Field.out │ │ │ @@ -5733,47 +5733,47 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 184137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 8593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___D__G__Algebra_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1861 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_us__Z__Z_sp__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_acyclic__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_adjoin__Variables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_deviations__To__Poincare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_dg__Algebra__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_dg__Algebra__Mult__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_display__Block__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_expand__Geom__Series.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_find__Trivial__Massey__Operation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_free__D__G__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Basis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Boundary__Preimage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_get__Generators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3937 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3934 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1991 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1992 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Acyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Golod__Homomorphism.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homogeneous_lp__D__G__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_is__Homology__Algebra__Trivial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_kill__Cycles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1082 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_koszul__Complex__D__G__A.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1958 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_koszul__Complex__D__G__A_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5930 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_lift__To__D__G__Map.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out │ │ │ --rw-r--r-- 0 root (0) root (0) 993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1830 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 992 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 774 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_max__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_natural.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_set__Diff.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_to__Complex_lp__D__G__Algebra_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra.out │ │ │ @@ -5787,27 +5787,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 16114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___D__G__Algebra_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___End__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Gen__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_us__Z__Z_sp__D__G__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Rel__Degree__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___Start__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4822 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___T__M__O__Limit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_acyclic__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_adjoin__Variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_block__Diff.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7683 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations__To__Poincare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8919 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_deviations_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_dg__Algebra__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_dg__Algebra__Mult__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_diff_lp__D__G__Algebra_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_display__Block__Diff.html │ │ │ @@ -5821,20 +5821,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Basis_lp__Z__Z_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Boundary__Preimage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Deg__N__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_get__Generators_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13257 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Rel__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Acyclic_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism_lp..._cm__Gen__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Golod__Homomorphism_lp..._cm__T__M__O__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_is__Homogeneous_lp__D__G__Algebra_rp.html │ │ │ @@ -5843,16 +5843,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_kill__Cycles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_kill__Cycles_lp..._cm__End__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_kill__Cycles_lp..._cm__Start__Degree_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_koszul__Complex__D__G__A.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_koszul__Complex__D__G__A_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_koszul__Complex__D__G__A_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_lift__To__D__G__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_max__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_natural.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_net_lp__D__G__Algebra__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4476 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_net_lp__D__G__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_set__Diff.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_source_lp__D__G__Algebra__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4484 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/DGAlgebras/html/_target_lp__D__G__Algebra__Map_rp.html │ │ │ @@ -6242,36 +6242,36 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 41804 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EdgeIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7766 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 794 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/example-output/_zero__Dim__Solve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/_zero__Dim__Solve.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4942 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3069 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EigenSolver/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 14843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 892 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9076 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9078 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7360 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Elimination/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 98399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EliminationMatrices/example-output/ │ │ │ @@ -6459,35 +6459,35 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6990 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EngineTests/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 10834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_multiple__Cover.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2170 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 48 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5203 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_multiple__Cover.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EnumerationCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Equivariant__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/___Priority__Queue.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Monomial__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_build__E__Ring_lp__Ring_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 222 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_delete__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 348 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_exponent__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_inc__Orbit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_insert_lp__Priority__Queue_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_length_lp__Priority__Queue_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_merge__P__Q.out │ │ │ -rw-r--r-- 0 root (0) root (0) 161 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_min_lp__Priority__Queue_rp.out │ │ │ @@ -6502,15 +6502,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4953 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Shift.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3844 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/___Symmetrize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9077 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Monomial__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_build__E__Ring_lp__Ring_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5895 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_delete__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9002 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_exponent__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7150 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_inc__Orbit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_insert_lp__Priority__Queue_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_length_lp__Priority__Queue_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_merge__P__Q.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/EquivariantGB/html/_min_lp__Priority__Queue_rp.html │ │ │ @@ -6751,52 +6751,52 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10138 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FGLM/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FGLM/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2981 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FGLM/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 142955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 29586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 29588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Point__Options.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 14276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1054 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out │ │ │ -rw-r--r-- 0 root (0) root (0) 337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Good__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 246 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Random__Submatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Largest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_choose__Submatrix__Smallest__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_get__Submatrix__Of__Rank.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1788 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Rank__At__Least.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out │ │ │ --rw-r--r-- 0 root (0) root (0) 25047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 25041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/example-output/_reorder__Polynomial__Ring.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Det__Strategy.html │ │ │ --rw-r--r-- 0 root (0) root (0) 50410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 50412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Max__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Min__Dimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Modulus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Point__Options.html │ │ │ --rw-r--r-- 0 root (0) root (0) 27489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 27487 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Good__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Random__Submatrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Largest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_choose__Submatrix__Smallest__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_get__Submatrix__Of__Rank.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Dim__At__Most.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_is__Rank__At__Least_lp..._cm__Threads_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10205 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ --rw-r--r-- 0 root (0) root (0) 43514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 43508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/_reorder__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FastMinors/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 25936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FiniteFittingIdeals/dump/rawdocumentation.dump │ │ │ @@ -7036,16 +7036,16 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 105269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Frobenius__Thresholds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/___Guess__Strategy.out │ │ │ -rw-r--r-- 0 root (0) root (0) 866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_compare__F__P__T.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__Jumping__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 552 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__F__P__T.out │ │ │ -rw-r--r-- 0 root (0) root (0) 828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_is__Simple__Normal__Crossing.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 12 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Bounds.html │ │ │ @@ -7056,16 +7056,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4963 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Global__Frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10580 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Guess__Strategy.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Return__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4769 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Standard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/___Use__Special__Algorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_compare__F__P__T.html │ │ │ --rw-r--r-- 0 root (0) root (0) 26000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24542 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24538 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13295 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__Jumping__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__F__P__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_is__Simple__Normal__Crossing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19600 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20028 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7092 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/FunctionFieldDesingularization/ │ │ │ @@ -7117,15 +7117,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 339 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 170 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_moment__Graph_lp__G__K__M__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_normal__Toric__Variety_lp__G__K__M__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8064 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pullback_lp__Equivariant__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_pushforward.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_set__Indicator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_trivial__K__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_underlying__Graph_lp__Moment__Graph_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/ │ │ │ @@ -7168,15 +7168,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7893 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Flag__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_make__K__Class_lp__G__K__M__Variety_cm__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_map_lp__G__K__M__Variety_cm__G__K__M__Variety_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_cm__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_moment__Graph_lp__G__K__M__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_normal__Toric__Variety_lp__G__K__M__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pullback_lp__Equivariant__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_pushforward.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6964 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_set__Indicator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_trivial__K__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/_underlying__Graph_lp__Moment__Graph_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26820 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GKMVarieties/html/index.html │ │ │ @@ -8244,32 +8244,32 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/___Groebner__Strata.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Constraints.out │ │ │ -rw-r--r-- 0 root (0) root (0) 598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_find__Weight__Vector.out │ │ │ -rw-r--r-- 0 root (0) root (0) 30368 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Family.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2709 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_groebner__Stratum.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_linear__Part.out │ │ │ --rw-r--r-- 0 root (0) root (0) 13267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ --rw-r--r-- 0 root (0) root (0) 14736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 13044 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 15158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_smaller__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 960 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_standard__Monomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_tail__Monomials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___All__Standard.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/___Minimalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Constraints.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_find__Weight__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 42133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Family.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_groebner__Stratum.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_linear__Part.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23971 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_smaller__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_standard__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/_tail__Monomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerStrata/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/GroebnerWalk/ │ │ │ @@ -8293,28 +8293,28 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 18704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_eq_eq_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/___Point_sp_st_sp__Point.out │ │ │ -rw-r--r-- 0 root (0) root (0) 585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 934 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_ideal__Of__Projective__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/example-output/_point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5014 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_eq_eq_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/___Point_sp_st_sp__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__Ideal_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_ideal__Of__Projective__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/_point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Hadamard/html/index.html │ │ │ @@ -8417,61 +8417,61 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 50644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 920 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Appell__F1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/___Canonical_sp__Series_sp__Tutorial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Expts__Mult.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4893 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_diff__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_distraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_euler__Operators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_gkz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_is__Torus__Fixed.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_put__Weyl__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2252 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_toric__Ideal__Partials.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Appell__F1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Canonical_sp__Series_sp__Tutorial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/___Wto__T.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_create__Theta__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Expts__Mult.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11149 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_diff__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_distraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7705 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_euler__Operators.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_gkz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_indicial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_is__Torus__Fixed.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_nilsson__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_put__Weyl__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6396 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_toric__Ideal__Partials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/_truncated__Canonical__Series.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HolonomicSystems/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 21857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/___Homotopy__Lie__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_ad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_allgens.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8129 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket__Matrix.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_ad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_allgens.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13226 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 233569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/HyperplaneArrangements/dump/rawdocumentation.dump │ │ │ @@ -8644,17 +8644,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Frac__P_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ic__P__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_idealizer.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 28098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2396 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_is__Normal_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_make__S2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_ring__From__Fractions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_test__Huneke__Question.out │ │ │ @@ -8679,17 +8679,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ic__P__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8990 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Index_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6571 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_idealizer_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Keep_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Limit_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 57383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 57372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Variable_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14718 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12734 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_is__Normal_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_make__S2_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/IntegralClosure/html/_ring__From__Fractions.html │ │ │ @@ -8715,19 +8715,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 677 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 555 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_generators_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_group__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hilbert__Series_lp__Ring__Of__Invariants_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hironaka__Decomposition.out │ │ │ --rw-r--r-- 0 root (0) root (0) 9646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 9645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariant__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Diagonal__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Finite__Group__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp__Linearly__Reductive__Action_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Abelian.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/example-output/_is__Invariant.out │ │ │ @@ -8771,22 +8771,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6507 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_generators_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_group__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6898 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hilbert__Series_lp__Ring__Of__Invariants_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hironaka__Decomposition.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23420 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariant__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6139 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Subring__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8197 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Coefficient__Ring_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13243 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Diagonal__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Finite__Group__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11099 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp__Linearly__Reductive__Action_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Abelian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvariantRing/html/_is__Invariant.html │ │ │ @@ -8873,21 +8873,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/InvolutiveBases/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_check__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 531 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_check__Degrees_lp..._cm__Strict_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 53645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 53647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/example-output/_isomorphism.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9558 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_check__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6908 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_check__Degrees_lp..._cm__Strict_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 66341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 66343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/_isomorphism.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7777 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Isomorphism/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/JSON/dump/rawdocumentation.dump │ │ │ @@ -8933,15 +8933,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 78221 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2643 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp4.out │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___J__J.out │ │ │ --rw-r--r-- 0 root (0) root (0) 5995 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 5996 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1511 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets__Radical.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Affine__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Graph_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2492 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/example-output/_jets_lp__Z__Z_cm__Quotient__Ring_rp.out │ │ │ @@ -8954,15 +8954,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 70 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 9118 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17870 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Example_sp4.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___J__J.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Saturate.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5102 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4619 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Info.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Max__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/_jets__Projection.html │ │ │ @@ -8983,21 +8983,21 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Jets/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_all__Gradings.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_canonical__Homotopies.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ --rw-r--r-- 0 root (0) root (0) 269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_correspondence__Scroll.out │ │ │ -rw-r--r-- 0 root (0) root (0) 804 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_cox__Matrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_homotopy__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_irrelevant__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_product__Of__Projective__Spaces.out │ │ │ @@ -9010,22 +9010,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 3037 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_schreyer__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/example-output/_small__Diagonal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Fine__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/___Scrolls.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_all__Gradings.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Carpet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_canonical__Homotopies.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10622 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_correspondence__Scroll.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_cox__Matrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_gorenstein__Double.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_hankel__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/K3Carpets/html/_homotopy__Ranks.html │ │ │ @@ -9198,15 +9198,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 70564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/___Working_spwith_splattice_sppolytopes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_adjoint__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_ambient__Halfspaces.out │ │ │ --rw-r--r-- 0 root (0) root (0) 596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 684 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_cayley.out │ │ │ -rw-r--r-- 0 root (0) root (0) 85 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_codegree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_degree__Of__Jet__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_epsilon__Bounds.out │ │ │ -rw-r--r-- 0 root (0) root (0) 304 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gauss__Image.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_gaussk__Fiber.out │ │ │ @@ -9223,15 +9223,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_toric__Div.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_torus__Embedding.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/___Working_spwith_splattice_sppolytopes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5659 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_adjoint__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5749 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_ambient__Halfspaces.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7710 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_cayley.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_codegree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6907 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_degree__Of__Jet__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_epsilon__Bounds.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6764 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gauss__Image.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/LatticePolytopes/html/_gaussk__Fiber.html │ │ │ @@ -9711,15 +9711,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Expression.out │ │ │ -rw-r--r-- 0 root (0) root (0) 788 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Matrix_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ext^__Z__Z_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Flat__Monoid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function__Closure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_at_at_sp__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Function_sp_us_sp__Thing.out │ │ │ --rw-r--r-- 0 root (0) root (0) 414 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__F.out │ │ │ -rw-r--r-- 0 root (0) root (0) 194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Rev__Lex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Gamma.out │ │ │ -rw-r--r-- 0 root (0) root (0) 230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Assign__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Global__Release__Hook.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Grassmannian.out │ │ │ @@ -9820,15 +9820,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring__Family_sp_us_st.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring__Map_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp^_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Ring_sp_sl_sp__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D.out │ │ │ --rw-r--r-- 0 root (0) root (0) 349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 348 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5127 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Schreyer_sporders.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1024 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Schubert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Self__Initializing__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 205 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set_sp-_sp__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Set_sp_sh_qu_sp__Thing.out │ │ │ @@ -9965,38 +9965,38 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apply_lp__Z__Z_cm__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_apropos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 180 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ascii.out │ │ │ -rw-r--r-- 0 root (0) root (0) 112 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_asinh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_assigning_spvalues.out │ │ │ --rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atan2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_atanh.out │ │ │ -rw-r--r-- 0 root (0) root (0) 624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_augmented_spassignment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_autoload.out │ │ │ -rw-r--r-- 0 root (0) root (0) 137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Filename.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Name.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_base__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2978 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_sparithmetic_spof_spmatrices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_spconstruction_cm_spsource_spand_sptarget_spof_spa_spring_spmap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1118 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basic_springs_spof_spnumbers.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_basis.out │ │ │ --rw-r--r-- 0 root (0) root (0) 133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_betti.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_betti_lp__Betti__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_between.out │ │ │ -rw-r--r-- 0 root (0) root (0) 332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_binomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_block__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_borel_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 725 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_break.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ --rw-r--r-- 0 root (0) root (0) 591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_capture.out │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_ceiling_lp__Number_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_center__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Base.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_char.out │ │ │ -rw-r--r-- 0 root (0) root (0) 196 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_characters.out │ │ │ @@ -10020,15 +10020,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_column__Swap.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_columnate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_combine.out │ │ │ -rw-r--r-- 0 root (0) root (0) 198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_command__Interpreter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 149 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comments.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_common__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_commonest.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 225 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_comodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compact__Matrix__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compare__Exchange.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compose.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2477 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compositions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_compress.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ @@ -10115,15 +10115,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eagon__Northcott.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvalues.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eigenvectors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_eint.out │ │ │ -rw-r--r-- 0 root (0) root (0) 103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elements.out │ │ │ --rw-r--r-- 0 root (0) root (0) 21211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 782 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3683 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 487 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries.out │ │ │ -rw-r--r-- 0 root (0) root (0) 185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_entries_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_equality_spand_spcontainment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erf.out │ │ │ -rw-r--r-- 0 root (0) root (0) 114 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_erfc.out │ │ │ @@ -10264,15 +10264,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_induced__Map_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1035 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inheritance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inputting_spa_spmatrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_insert.out │ │ │ -rw-r--r-- 0 root (0) root (0) 686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spassignment_spmethods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_installing_spaugmented_spassignment_spmethods.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ -rw-r--r-- 0 root (0) root (0) 316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integers_spmodulo_spa_spprime.out │ │ │ -rw-r--r-- 0 root (0) root (0) 315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_integrate.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1162 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Ideal_cm__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersect_lp__Set_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_intersection_spof_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_inverse__Erf.out │ │ │ @@ -10404,18 +10404,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 769 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 125 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Ring_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_matrix_lp__Vector_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max.out │ │ │ --rw-r--r-- 0 root (0) root (0) 82 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 83 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ -rw-r--r-- 0 root (0) root (0) 83 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Exponent.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Position.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_merge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method.out │ │ │ -rw-r--r-- 0 root (0) root (0) 970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_method__Options_lp__Function_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods_spfor_spnormal_spforms_spand_spremainder.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_min__Exponent.out │ │ │ @@ -10501,16 +10501,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_override.out │ │ │ -rw-r--r-- 0 root (0) root (0) 681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pack.out │ │ │ -rw-r--r-- 0 root (0) root (0) 144 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_package.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packages.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_packing_spmonomials_spfor_spefficiency.out │ │ │ -rw-r--r-- 0 root (0) root (0) 131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pad.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pairs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ --rw-r--r-- 0 root (0) root (0) 8669 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parsing_spprecedence_cm_spin_spdetail.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_partitions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_pdim_lp__Module_rp.out │ │ │ @@ -10655,15 +10655,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_show__User__Structure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 175 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sign.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_simple_sp__Groebner_spbasis_spcomputations_spover_spvarious_springs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sin.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_singular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_size2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_smith__Normal__Form_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_some__Terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort__Columns.out │ │ │ -rw-r--r-- 0 root (0) root (0) 495 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_sort_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 278 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_source_lp__Ring__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_specifying_sptypical_spvalues.out │ │ │ @@ -10729,15 +10729,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_terms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tests.out │ │ │ -rw-r--r-- 0 root (0) root (0) 214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_tex__Math.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_the_spdebugger.out │ │ │ -rw-r--r-- 0 root (0) root (0) 235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_thread__Local.out │ │ │ -rw-r--r-- 0 root (0) root (0) 134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_throw.out │ │ │ --rw-r--r-- 0 root (0) root (0) 142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 143 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ -rw-r--r-- 0 root (0) root (0) 186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 141 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Absolute__Path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__C__C.out │ │ │ -rw-r--r-- 0 root (0) root (0) 428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__External__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Field_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 94 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_to__Lower.out │ │ │ @@ -10778,15 +10778,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_value_lp__Symbol_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 201 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_values.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_variables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 770 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Monoid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vars_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_vector.out │ │ │ --rw-r--r-- 0 root (0) root (0) 12155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 12161 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1121 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_viewing_spthe_spsymbols_spdefined_spso_spfar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_weight__Range.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spa_spclass_spis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_what_spis_spa_sp__Groebner_spbasis_qu.out │ │ │ -rw-r--r-- 0 root (0) root (0) 754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_while.out │ │ │ -rw-r--r-- 0 root (0) root (0) 133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_width_lp__Net_rp.out │ │ │ @@ -10954,15 +10954,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Body.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function__Closure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4006 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_at_at_sp__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Function_sp_us_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__B__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__C_spgarbage_spcollector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__F.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__N__U_sp__M__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Rev__Lex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7031 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Galois__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Gamma.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___General__Ordered__Monoid.html │ │ │ @@ -11204,15 +11204,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Ring_sp__Monoid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Ring_sp_sl_sp__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Row__Expression.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Run__Directory.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Run__Examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12161 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__P__A__C__E.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5396 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__Y__N__O__P__S__I__S.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Schreyer_sporders.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Schubert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Schur_springs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6419 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Scripted__Functor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___See__Also.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Self__Initializing__Type.html │ │ │ @@ -11515,15 +11515,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_argument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ascii.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_asinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6112 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assert.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_assigning_spvalues.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_associative_spalgebras.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atan2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4872 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_atanh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_augmented_spassignment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_autoload.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4113 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_backtrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Filename.html │ │ │ @@ -11531,26 +11531,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_base__Rings.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_sparithmetic_spof_spmatrices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_spconstruction_cm_spsource_spand_sptarget_spof_spa_spring_spmap.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basic_springs_spof_spnumbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_basis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_begin__Documentation.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_betti.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9767 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_betti_lp__Betti__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_between.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binary_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_binomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5698 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_block__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_borel_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7894 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_break.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7156 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_capture.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cdd_pl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_ceiling_lp__Number_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4735 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_center__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Base.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -11625,15 +11625,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combinatorics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_combine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Interpreter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_command__Line.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comments.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_common__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commonest.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9305 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_commutative_spalgebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5835 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_comodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compact__Matrix__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_compare__Exchange.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_complete.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_components.html │ │ │ @@ -11770,15 +11770,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eigenvectors_lp..._cm__Hermitian_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_eint.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elementary_sparithmetic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elements.html │ │ │ --rw-r--r-- 0 root (0) root (0) 30241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 30237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6506 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6025 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_endl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3725 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_engine__Debug__Level.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5845 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_entries_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_environment.html │ │ │ @@ -12014,15 +12014,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_install__Package.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installed__Packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spaugmented_spassignment_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_installing_spmethods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instance.html │ │ │ --rw-r--r-- 0 root (0) root (0) 5438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integers_spmodulo_spa_spprime.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_integrate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_interpreter__Depth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Ideal_cm__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__R__Ri_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_intersect_lp__Set_cm__Set_rp.html │ │ │ @@ -12206,18 +12206,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5744 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Ring_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_matrix_lp__Vector_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3987 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Exponent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Position.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6091 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_merge__Pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_method__Options_lp__Function_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods_spfor_spnormal_spforms_spand_spremainder.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4898 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_midpoint.html │ │ │ @@ -12355,16 +12355,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10924 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages.html │ │ │ -rw-r--r-- 0 root (0) root (0) 81466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packages_spprovided_spwith_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_packing_spmonomials_spfor_spefficiency.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pad.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4194 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pager.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11431 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_pairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6587 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel__Apply.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parsing_spprecedence_cm_spin_spdetail.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_partitions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_path.html │ │ │ @@ -12574,15 +12574,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sin.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sinh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4086 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_size2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sleep.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_smith__Normal__Form_lp__Matrix_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 19363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 19366 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8028 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_some__Terms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9127 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort__Columns_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Degree__Order_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_sort_lp..._cm__Monomial__Order_eq_gt..._rp.html │ │ │ @@ -12681,15 +12681,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_tex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5441 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_tex__Math.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spdebugger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3979 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spengine_spof_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_the_spinterpreter_spof_sp__Macaulay2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_thread__Local.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_throw.html │ │ │ --rw-r--r-- 0 root (0) root (0) 4988 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 4989 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_times.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__Absolute__Path.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__C__C.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__External__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__Field_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7589 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_to__List.html │ │ │ @@ -12752,15 +12752,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_values.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_variables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Monoid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vars_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10449 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17082 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_view__Help.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_viewing_spthe_spsymbols_spdefined_spso_spfar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4355 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wait.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_wedge__Product_lp__Z__Z_cm__Z__Z_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_weight__Range.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spa_spclass_spis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_what_spis_spa_sp__Groebner_spbasis_qu.html │ │ │ @@ -13306,15 +13306,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension.out │ │ │ -rw-r--r-- 0 root (0) root (0) 640 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_f__Vector_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 4033 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_flats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_fundamental__Circuit.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Cycles.out │ │ │ --rw-r--r-- 0 root (0) root (0) 703 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ -rw-r--r-- 0 root (0) root (0) 838 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 516 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Separation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1225 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ground__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_hyperplanes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5177 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 801 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_ideal_lp__Matroid_rp.out │ │ │ @@ -13331,30 +13331,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 149 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Non__Crossing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Positively__Orientable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Positively__Oriented.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Quotient.out │ │ │ -rw-r--r-- 0 root (0) root (0) 601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Simple_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_is__Well__Defined_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_iso__Types.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_lattice__Of__Flats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 812 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_linear__Subclass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_linear__Subclass_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_loops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_matroid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_matroid_lp..._cm__Entry__Mode_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_max__Weight__Basis.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1562 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 862 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut.out │ │ │ -rw-r--r-- 0 root (0) root (0) 636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_nonbases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_parallel__Connection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_positive__Orientation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1019 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_projective__Geometry.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1060 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_cm__Set_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_rank_lp__Matroid_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 502 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relabel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_relaxation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_restriction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_search__Representation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/example-output/_series__Connection.out │ │ │ @@ -13405,15 +13405,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8510 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7918 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_extension_lp..._cm__Entry__Mode_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_f__Vector_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12377 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_flats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9073 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_fundamental__Circuit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Cycles.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7295 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Representation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7477 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_get__Separation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ground__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_hyperplanes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_ideal__Orlik__Solomon__Algebra.html │ │ │ @@ -13431,30 +13431,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5622 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Non__Crossing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Positively__Orientable.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5904 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Positively__Oriented.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Quotient.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Simple_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8632 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_is__Well__Defined_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_iso__Types.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6927 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_lattice__Of__Flats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_linear__Subclass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8112 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_linear__Subclass_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_loops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8092 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_matroid_lp..._cm__Entry__Mode_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7471 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_max__Weight__Basis.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10007 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_modular__Cut_lp..._cm__Check__Well__Defined_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5632 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_nonbases.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6680 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_parallel__Connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_positive__Orientation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_projective__Geometry.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_cm__Set_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_rank_lp__Matroid_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relabel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_relaxation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_restriction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7209 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_save__Matroid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Matroids/html/_search__Representation.html │ │ │ @@ -13485,29 +13485,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 2953 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MergeTeX/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out │ │ │ -rw-r--r-- 0 root (0) root (0) 303 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_is__Prime_lp__Ideal_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal__Primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_minimal_spprimes_spof_span_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out │ │ │ --rw-r--r-- 0 root (0) root (0) 870 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 871 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical_spof_span_spideal.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 46 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 5845 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 5844 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_is__Prime_lp__Ideal_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_minimal_spprimes_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11292 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8578 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical_spof_span_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MinimalPrimes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 15700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Miura/dump/rawdocumentation.dump │ │ │ @@ -13543,58 +13543,58 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31134 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope.out │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 535 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_m__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 896 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_mixed__Multiplicity.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2839 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 612 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 229 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_sec__Milnor__Numbers.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 648 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 30 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_hom__Ideal__Polytope_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_m__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_mixed__Multiplicity.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8870 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal_lp..._cm__Variable__Base__Name_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_sec__Milnor__Numbers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MixedMultiplicity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_cm__Ring__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2987 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 53 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7877 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_cm__Ring__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11921 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11920 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3567 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/_xi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ModuleDeformations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 133490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/___Monodromy__Solver__Options.out │ │ │ -rw-r--r-- 0 root (0) root (0) 333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 243 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_complete__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_compute__Mixed__Volume.out │ │ │ -rw-r--r-- 0 root (0) root (0) 407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_create__Seed__Pair.out │ │ │ --rw-r--r-- 0 root (0) root (0) 942 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 331 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Augment.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_flower__Graph__Init.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9570 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out │ │ │ -rw-r--r-- 0 root (0) root (0) 427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_cm__Abstract__Point_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Solve_lp__System_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__E.out │ │ │ -rw-r--r-- 0 root (0) root (0) 442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_potential__Lower__Bound.out │ │ │ @@ -13609,15 +13609,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/___Point__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4552 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_append__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4697 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_complete__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_compute__Mixed__Volume.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_create__Seed__Pair.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7624 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Augment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_flower__Graph__Init.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_get__Track__Time.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6199 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_homotopy__Graph.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_indices_lp__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_is__Member_lp__Abstract__Point_cm__Point__Array_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MonodromySolver/html/_length_lp__Point__Array_rp.html │ │ │ @@ -13855,28 +13855,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 19109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedBGG/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 41382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 719 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_compute__Component.out │ │ │ -rw-r--r-- 0 root (0) root (0) 723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_interpolate__Component.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_max__Grading.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_trim__Basis__In__Degree.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5318 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Coefficient__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Previous__Gens.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Return__Target__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Use__Interpolation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/___Use__Matroid.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6602 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_compute__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_interpolate__Component.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8008 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_max__Grading.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_trim__Basis__In__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13133 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/master.html │ │ │ @@ -13884,27 +13884,27 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35822 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/___N__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 656 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_gr__Gr.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_hilbert__Sequence.out │ │ │ --rw-r--r-- 0 root (0) root (0) 413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 414 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 596 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_multiplicity__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_print__Hilbert__Sequence.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 47 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/___N__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_gr__Gr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_hilbert__Sequence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6040 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5705 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_multiplicity__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6921 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_print__Hilbert__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplicitySequence/html/master.html │ │ │ @@ -13958,31 +13958,31 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5192 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiplierIdealsDim2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 379736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp!.out │ │ │ --rw-r--r-- 0 root (0) root (0) 20227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 20228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1106 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5148 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___G__G_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp^_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_bs_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_bs_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 507 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 663 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multiprojective__Variety_sp_st_st_sp__Ring.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_st_st_sp__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_sp__Multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 763 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multiprojective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 744 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp_vb_vb_sp__Multirational__Map.out │ │ │ @@ -14001,49 +14001,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_coefficient__Ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3115 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cone__Of__Lines.out │ │ │ -rw-r--r-- 0 root (0) root (0) 350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_conormal__Variety_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_cycle__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_decompose_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1006 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 428 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degrees_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 722 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dim_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 482 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_dual_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 809 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_entries_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_euler_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2030 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_factor_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_fiber__Product.out │ │ │ -rw-r--r-- 0 root (0) root (0) 673 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ideal_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1016 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 801 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1018 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 931 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 753 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 678 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Well__Defined_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 790 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linear__Span.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1087 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_parametrize_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_permute_lp__Multiprojective__Variety_cm__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projection__Maps.out │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projection__Maps_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projections.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projective__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projective__Variety_lp__List_cm__List_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 343 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projective__Variety_lp__List_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1055 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_projective__Variety_lp__Multidimensional__Matrix_rp.out │ │ │ @@ -14051,15 +14051,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_random_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_ring_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_schubert__Cycle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_sectional__Genus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multiprojective__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1050 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shape_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_shortcuts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 512 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_singular__Locus_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_super_lp__Multirational__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 352 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_support_lp__Multiprojective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_tangent__Cone_lp__Embedded__Projective__Variety_cm__Embedded__Projective__Variety_rp.out │ │ │ @@ -14073,15 +14073,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 631 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋂.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_⋃.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 641 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 50 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 14090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8119 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp!.html │ │ │ --rw-r--r-- 0 root (0) root (0) 29042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 29043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6724 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_pl_pl_sp__Embedded__Projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Fano_lp__Z__Z_cm__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___G__G_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6539 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Grassmannian__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9178 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Hom_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24980 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety.html │ │ │ @@ -14091,16 +14091,16 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6383 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_eq_eq_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pc_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_pl_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multiprojective__Variety_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_eq_eq_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_eq_eq_gt_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_lt_lt_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_sp__Multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8946 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_st_st_sp__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multiprojective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp_vb_sp__Multirational__Map.html │ │ │ @@ -14124,49 +14124,49 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_coefficient__Ring_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9636 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cone__Of__Lines.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6858 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_conormal__Variety_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7109 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_cycle__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_decompose_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8299 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degrees_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dim_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6476 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_dual_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_entries_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_euler_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_factor_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9165 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_fiber__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7344 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_force__Image_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_hilbert__Polynomial_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ideal_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8018 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7819 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8020 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7820 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7121 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Member_lp__Multirational__Map_cm__R__A__T_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Subset_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Well__Defined_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linear__Span.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7618 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multirational__Map_lp__Multirational__Map_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10280 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_parametrize_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_permute_lp__Multiprojective__Variety_cm__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7759 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6600 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projection__Maps.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projection__Maps_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7626 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projections.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projective__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13407 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projective__Variety_lp..._cm__Minimal__Generators_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projective__Variety_lp__List_cm__List_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_projective__Variety_lp__List_cm__Ring_rp.html │ │ │ @@ -14176,15 +14176,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__List_cm__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_rational__Map_lp__Multiprojective__Variety_cm__Tally_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_ring_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6808 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_schubert__Cycle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_sectional__Genus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6085 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre__Embedding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multiprojective__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7309 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5885 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shape_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9083 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_shortcuts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5740 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_singular__Locus_lp__Multiprojective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5549 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_source_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_super_lp__Multirational__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_support_lp__Multiprojective__Variety_rp.html │ │ │ @@ -14560,26 +14560,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 28886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NCAlgebra/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 139526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_add__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_build__Graph__Filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 165 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_count__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_filter__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Bipartite__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph6__To__Sparse6.out │ │ │ --rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 289 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 280 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_relabel__Graph.out │ │ │ @@ -14589,26 +14589,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_string__To__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 245 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/example-output/_string__To__Graph.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 18 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5988 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8522 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8521 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_add__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6991 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14195 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_build__Graph__Filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6502 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8943 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7139 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/_relabel__Graph.html │ │ │ @@ -14622,48 +14622,48 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Nauty/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 131317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.out │ │ │ -rw-r--r-- 0 root (0) root (0) 493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_add__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_build__Graph__Filter.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 124 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ --rw-r--r-- 0 root (0) root (0) 497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__To__String.out │ │ │ -rw-r--r-- 0 root (0) root (0) 217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_is__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_neighborhood__Complements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_new__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_only__Planar.out │ │ │ -rw-r--r-- 0 root (0) root (0) 322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Bipartite.out │ │ │ -rw-r--r-- 0 root (0) root (0) 381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_relabel__Graph.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_remove__Edges.out │ │ │ -rw-r--r-- 0 root (0) root (0) 232 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_remove__Isomorphs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 203 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_string__To__Graph.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6195 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Comparison_spof_sp__Graph6_spand_sp__Sparse6_spformats.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Checking_spfor_spisomorphic_spgraphs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_add__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7633 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_build__Graph__Filter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7800 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_count__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_filter__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9132 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Bipartite__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9062 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph6__To__Sparse6.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7732 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__To__String.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_is__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_neighborhood__Complements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6390 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_new__Edges.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_only__Planar.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Bipartite.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NautyGraphs/html/_relabel__Graph.html │ │ │ @@ -14691,15 +14691,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 179468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 431 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Dependent__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 791 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op.out │ │ │ -rw-r--r-- 0 root (0) root (0) 553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Diff__Op_sp__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_amult.out │ │ │ -rw-r--r-- 0 root (0) root (0) 931 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_coordinate__Change__Ops.out │ │ │ -rw-r--r-- 0 root (0) root (0) 354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_diff__Op_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_differential__Primary__Decomposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_eliminating__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/_evaluate_lp__Diff__Op_cm__Abstract__Point_rp.out │ │ │ @@ -14732,15 +14732,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 75 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Dependent__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7316 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Diff__Op_sp__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5026 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Sampler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7406 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Hybrid_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Macaulay__Matrix_dq.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Tolerance_sp_lp__Noetherian__Operators_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_amult.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_colon.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_coordinate__Change__Ops.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4120 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NoetherianOperators/html/_diff__Op_lp__Matrix_rp.html │ │ │ @@ -14829,15 +14829,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3915 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NonminimalComplexes/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 608995 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 3509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3512 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1905 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 908 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1922 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Array.out │ │ │ -rw-r--r-- 0 root (0) root (0) 708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Normal__Toric__Variety_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___O__O_sp__Toric__Divisor.out │ │ │ @@ -14901,15 +14901,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1271 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_lattice__Points_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1229 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Simplicial_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_make__Smooth_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 912 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_matrix_lp__Toric__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_max_lp__Normal__Toric__Variety_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_nef__Generators_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1002 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__List_cm__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1964 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1599 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.out │ │ │ @@ -14939,15 +14939,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vector_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_vertices_lp__Toric__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1650 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weighted__Projective__Space_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 452 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Normal__Toric__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 985 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_weil__Divisor__Group_lp__Toric__Map_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 68 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 12847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12850 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___H__H^__Z__Z_lp__Normal__Toric__Variety_cm__Coherent__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp^_st_st_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_st_st_sp__Normal__Toric__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13026 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Array.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8752 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Normal__Toric__Variety_sp_us_sp__Z__Z.html │ │ │ @@ -15016,15 +15016,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Simplicial_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13649 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_make__Smooth_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_making_spnormal_sptoric_spvarieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11442 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_map_lp__Normal__Toric__Variety_cm__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11093 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_matrix_lp__Toric__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_max_lp__Normal__Toric__Variety_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_nef__Generators_lp__Normal__Toric__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__List_cm__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13553 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_orbits_lp__Normal__Toric__Variety_cm__Z__Z_rp.html │ │ │ @@ -15337,40 +15337,40 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40489 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalCertification/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Numerical__Interpolation__Table.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1473 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Pseudo__Witness__Set.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 443 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_is__On__Image.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ -rw-r--r-- 0 root (0) root (0) 240 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Degree.out │ │ │ --rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ -rw-r--r-- 0 root (0) root (0) 712 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Nullity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Source__Sample.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1201 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_pseudo__Witness__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 594 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 43 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 7153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Max__Threads.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8844 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Numerical__Interpolation__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Pseudo__Witness__Set.html │ │ │ --rw-r--r-- 0 root (0) root (0) 11363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11361 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_is__On__Image.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Degree_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8015 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Nullity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Source__Sample.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_pseudo__Witness__Set_lp..._cm__Software_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34695 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalImplicitization/html/index.html │ │ │ @@ -15452,15 +15452,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 25053 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16568 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 146314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_all__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 321 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery.out │ │ │ -rw-r--r-- 0 root (0) root (0) 306 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 162 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_apery__Set.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Criterion.out │ │ │ -rw-r--r-- 0 root (0) root (0) 617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_buchweitz__Semigroups.out │ │ │ @@ -15479,32 +15479,32 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_genus_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2107 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_get__Flat__Family.out │ │ │ -rw-r--r-- 0 root (0) root (0) 547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__A__Random__Fiber__Smooth.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Gap__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 291 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Symmetric.out │ │ │ --rw-r--r-- 0 root (0) root (0) 206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_known__Example.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_kunz__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3293 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_make__Unfolding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 169 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mingens_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_mu.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1464 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_semigroup__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_socle.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_sums.out │ │ │ -rw-r--r-- 0 root (0) root (0) 73 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_weight.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11640 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_all__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5855 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6365 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_apery__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Criterion.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_buchweitz__Semigroups.html │ │ │ @@ -15523,22 +15523,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_genus_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11754 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_get__Flat__Family.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__A__Random__Fiber__Smooth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Gap__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7739 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6547 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Symmetric.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_known__Example.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6940 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_kunz__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12477 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_make__Unfolding.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mingens_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6222 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_mu.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5267 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6544 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8892 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_semigroup__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6322 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_socle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_sums.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6660 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_weight.html │ │ │ @@ -15553,27 +15553,27 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Degree__Shifts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 395 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Module__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Number_sp_st_sp__Vector__In__Width.out │ │ │ --rw-r--r-- 0 root (0) root (0) 498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 496 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1049 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Ring__Element_sp_st_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 446 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 998 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp-_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Vector__In__Width_sp_pl_sp__Vector__In__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_degree_lp__Vector__In__Width_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1074 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 919 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 986 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 917 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Basis__Elements.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 167 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Width.out │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1124 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_install__Generators__In__Width.out │ │ │ @@ -15585,24 +15585,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Zero_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 548 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Coefficient_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Monomial_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 665 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_lead__Term_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 750 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Free__O__I__Module.out │ │ │ -rw-r--r-- 0 root (0) root (0) 445 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_make__Polynomial__O__I__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 368 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 312 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Module__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 397 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 220 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Polynomial__O__I__Algebra_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 792 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 709 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Orbit.out │ │ │ --rw-r--r-- 0 root (0) root (0) 472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 474 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1812 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ -rw-r--r-- 0 root (0) root (0) 509 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_restricted__Ranks.out │ │ │ -rw-r--r-- 0 root (0) root (0) 655 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_terms_lp__Vector__In__Width_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 184 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Free__O__I__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 145 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_to__String_lp__Polynomial__O__I__Algebra_rp.out │ │ │ @@ -15618,32 +15618,32 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8418 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7821 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5764 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5706 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Module__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Number_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Monomial__Order.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Polynomial__O__I__Algebra_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6918 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Ring__Element_sp_st_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3860 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Down__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Down.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Row__Up__Col__Up.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Variable__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp-_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Vector__In__Width_sp_pl_sp__Vector__In__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_degree_lp__Vector__In__Width_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6677 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6718 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6270 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6675 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Basis__Elements.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5213 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5815 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Width.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_install__Generators__In__Width.html │ │ │ @@ -15655,24 +15655,24 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6350 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6045 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Zero_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Coefficient_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Monomial_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_lead__Term_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Free__O__I__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_make__Polynomial__O__I__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Module__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Polynomial__O__I__Algebra_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5767 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Orbit.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8521 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_restricted__Ranks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_terms_lp__Vector__In__Width_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5333 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Free__O__I__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_to__String_lp__Polynomial__O__I__Algebra_rp.html │ │ │ @@ -15708,15 +15708,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Ring_sp^_sp__Betti__Tally.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 755 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp__Graded__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 358 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 832 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_chain__Complex_lp__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_complete_lp__Chain__Complex_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_cone_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_dd.out │ │ │ -rw-r--r-- 0 root (0) root (0) 536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_dual_lp__Chain__Complex__Map_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_extend_lp__Chain__Complex_cm__Chain__Complex_cm__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_extracting_spinformation_spfrom_spchain_spcomplexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_free_spresolutions_spof_spmodules.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_graded__Module__Map.out │ │ │ @@ -15790,15 +15790,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Graded__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5865 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6228 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_chain__Complex_lp__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_complete_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4290 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_complete_lp__Graded__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_components_lp__Chain__Complex_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7475 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_cone_lp__Chain__Complex__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5785 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dual_lp__Chain__Complex__Map_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_dual_lp__Chain__Complex_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_extend_lp__Chain__Complex_cm__Chain__Complex_cm__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_extracting_spinformation_spfrom_spchain_spcomplexes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OldChainComplexes/html/_free_spresolutions_spof_spmodules.html │ │ │ @@ -16254,22 +16254,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6360 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4999 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3143 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/OpenMath/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 17045 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2543 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2540 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5401 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.out │ │ │ -rw-r--r-- 0 root (0) root (0) 997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 16187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___Oscillators.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1682 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_all__Unique__Principal__Minors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10260 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_find__Real__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Angles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 429 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2330 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_identify__Stability.out │ │ │ -rw-r--r-- 0 root (0) root (0) 459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_is__Stable__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 10664 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Jacobian.out │ │ │ @@ -16277,22 +16277,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 625 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 23259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_osc__System.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_standard__Sols.out │ │ │ -rw-r--r-- 0 root (0) root (0) 236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/example-output/_vertex__Spanning__Polynomial.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 33 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 25404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.1_co_spunique_spgraph_spon_sp8_spvertices_spwith_spexotic_spsolutions_spand_spno_spinduced_spcycle_spof_splength_spat_spleast_sp5.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7736 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7644 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.3_co_spexamples_spof_spgluing_sptwo_spcycles_spalong_span_spedge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.4_co_sp__The_spsquare_spwithin_spa_spsquare.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Generation_spof_spall_sp__S__C__T_sp_lpsimple_cm_spconnected_cm_sp2-connected_rp_spgraphs_spon_spsmall_spnumbers_spof_spvertices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___Harrington-__Schenck-__Stillman.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_all__Unique__Principal__Minors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19710 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_find__Real__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6864 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Angles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6738 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_identify__Stability.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_is__Stable__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20003 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Oscillators/html/_osc__Jacobian.html │ │ │ @@ -16524,15 +16524,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 12104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Parsing/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 136324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2842 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2840 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ -rw-r--r-- 0 root (0) root (0) 456 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Array_sp_us_sp__N__C__Polynomial__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 863 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Axis__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___C__Mon__Tensor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Path__Signatures.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___Polynomial_sppaths_spof_spdegree_spm.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11000 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/___The_spuniversal_spvariety_spand_sptoric_spcoordinates.out │ │ │ @@ -16558,15 +16558,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 204 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_tensor__Parametrization.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__Format.out │ │ │ -rw-r--r-- 0 root (0) root (0) 215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/example-output/_word__String.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 11402 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 11400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7073 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Array_sp_us_sp__N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Axis__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___C__Mon__Tensor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3941 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Computing_sp__Path_sp__Varieties.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7451 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Polynomial__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___N__C__Ring__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15444 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/PathSignatures/html/___Path.html │ │ │ @@ -17404,15 +17404,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 2469 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Example_co_sp__Hibi_spideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 358 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Example_co_sp__Intersection_splattices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Example_co_sp__L__C__M-lattices.out │ │ │ -rw-r--r-- 0 root (0) root (0) 283 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Poset.out │ │ │ -rw-r--r-- 0 root (0) root (0) 131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Poset_sp_us_sp__List.out │ │ │ -rw-r--r-- 0 root (0) root (0) 123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Poset_sp_us_sp__Z__Z.out │ │ │ -rw-r--r-- 0 root (0) root (0) 150 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Poset_sp_us_st.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2466 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_adjoin__Max.out │ │ │ -rw-r--r-- 0 root (0) root (0) 306 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_adjoin__Min.out │ │ │ -rw-r--r-- 0 root (0) root (0) 668 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_all__Relations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_antichains.out │ │ │ -rw-r--r-- 0 root (0) root (0) 320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_are__Isomorphic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 157 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_atoms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/example-output/_boolean__Lattice.out │ │ │ @@ -17531,15 +17531,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9486 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Example_co_sp__Hibi_spideals.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7037 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Example_co_sp__Intersection_splattices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Example_co_sp__L__C__M-lattices.html │ │ │ -rw-r--r-- 0 root (0) root (0) 38795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Poset.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Poset_sp_us_sp__List.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5830 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Poset_sp_us_sp__Z__Z.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5493 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Poset_sp_us_st.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8666 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_adjoin__Max.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6073 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_adjoin__Min.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_all__Relations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6851 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_antichains.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7024 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_are__Isomorphic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5632 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_atoms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Posets/html/_augment__Poset.html │ │ │ @@ -18142,15 +18142,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1962 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2633 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Example_sp__Type_sp[300c].out │ │ │ -rw-r--r-- 0 root (0) root (0) 2039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9657 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 13630 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3258 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Half_spcanonical_spdegree_sp20.out │ │ │ --rw-r--r-- 0 root (0) root (0) 28147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 21833 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Noether-__Lefschetz_spexamples.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Pfaffians_spon_spquadrics.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Singularities_spof_splifting_spof_sptype_sp[300b].out │ │ │ -rw-r--r-- 0 root (0) root (0) 4091 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1645 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Type_sp[331]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.out │ │ │ @@ -18184,15 +18184,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9061 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 9848 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Example_sp__Type_sp[300c].html │ │ │ -rw-r--r-- 0 root (0) root (0) 6828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spall_sppossible_spbetti_sptables_spfor_spquadratic_spcomponent_spof_spinverse_spsystem_spfor_spquartics_spin_sp4_spvariables.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp16_spbetti_sptables_sppossible_spfor_spquartic_spforms_spin_sp4_spvariables_cm_spand_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sp__Betti_spstratum_spof_spa_spgiven_spquartic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Finding_spthe_sppossible_spbetti_sptables_spfor_sppoints_spin_sp__P^3_spwith_spgiven_spgeometry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Half_spcanonical_spdegree_sp20.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53795 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 47481 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Noether-__Lefschetz_spexamples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4123 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Normalize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Pfaffians_spon_spquadrics.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8586 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Singularities_spof_splifting_spof_sptype_sp[300b].html │ │ │ -rw-r--r-- 0 root (0) root (0) 14692 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[000]_cm_sp__C__Y_spof_spdegree_sp20.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12230 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[210]_cm_sp__C__Y_spof_spdegree_sp18_spvia_splinkage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9284 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Type_sp[310]_cm_sp__C__Y_spof_spdegree_sp17_spvia_splinkage.html │ │ │ @@ -18311,18 +18311,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 40654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7199 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RInterface/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 417 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 6065 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6066 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3193 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 27181 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomComplexes/example-output/ │ │ │ @@ -18378,42 +18378,42 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 13233 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_canonical__Curve__Genus14.out │ │ │ -rw-r--r-- 0 root (0) root (0) 279 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_curve__Genus14__Degree18in__P6.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2925 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Canonical__Curve__Genus8with8__Points.out │ │ │ --rw-r--r-- 0 root (0) root (0) 485 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 484 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus8__Degree14in__P6.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 32 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_canonical__Curve__Genus14.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5485 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_curve__Genus14__Degree18in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Canonical__Curve__Genus8with8__Points.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus8__Degree14in__P6.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 85866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Finding_sp__Extreme_sp__Examples.out │ │ │ --rw-r--r-- 0 root (0) root (0) 447 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 448 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 481 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__Chain__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_ideal__From__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 188 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_is__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Addition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 894 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 564 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Edge__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 479 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Elements__From__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 461 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 287 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 281 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 421 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 359 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Pure__Binomial__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 733 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shellable__Ideal__Chain.out │ │ │ -rw-r--r-- 0 root (0) root (0) 752 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Shelling.out │ │ │ -rw-r--r-- 0 root (0) root (0) 426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Sparse__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out │ │ │ @@ -18430,28 +18430,28 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_is__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7774 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Addition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7793 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Elements__From__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Ideal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7113 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Pure__Binomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7426 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shellable__Ideal__Chain.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9696 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Shelling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Sparse__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Toric__Edge__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_reg__Seq.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5742 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/_square__Free_lp__Z__Z_cm__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25639 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8052 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 151393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 319 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomMonomialIdeals/example-output/___C__M__Stats.out │ │ │ @@ -18580,15 +18580,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 96387 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Max__Coordinates__To__Replace.out │ │ │ -rw-r--r-- 0 root (0) root (0) 268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Point__Check__Attempts.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/___Replacement.out │ │ │ -rw-r--r-- 0 root (0) root (0) 292 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1455 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_find__A__Non__Zero__Minor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_generic__Projection.out │ │ │ -rw-r--r-- 0 root (0) root (0) 841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_get__Random__Linear__Forms.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_projection__To__Hypersurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 805 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Coordinate__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/ │ │ │ @@ -18598,15 +18598,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Dimension__Function.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6001 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Extend__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Max__Coordinates__To__Replace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Num__Threads__To__Use.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6021 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Point__Check__Attempts.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9659 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/___Replacement.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13399 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10917 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_find__A__Non__Zero__Minor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7899 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_generic__Projection_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_get__Random__Linear__Forms.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10723 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_projection__To__Hypersurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9036 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Coordinate__Change.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12424 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ @@ -18705,26 +18705,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1462 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/___Rational__Points2.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_base__Change.out │ │ │ -rw-r--r-- 0 root (0) root (0) 491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_charpoly.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_ext__Field.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_global__Height.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_hermite__Normal__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 361 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_integers.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4103 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1244 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_zeros.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5780 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/___Projective__Point.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_base__Change.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_charpoly.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_ext__Field.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_global__Height.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_hermite__Normal__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_integers.html │ │ │ --rw-r--r-- 0 root (0) root (0) 21131 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 21130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7798 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/_zeros.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4519 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RationalPoints2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 93198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReactionNetworks/dump/rawdocumentation.dump │ │ │ @@ -18868,56 +18868,56 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 22964 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RealRoots/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RealRoots/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7608 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RealRoots/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 204897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 8423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 8422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Rees__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_analytic__Spread.out │ │ │ -rw-r--r-- 0 root (0) root (0) 367 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_distinguished.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_intersect__In__P.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Linear__Type.out │ │ │ -rw-r--r-- 0 root (0) root (0) 551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_is__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_jacobian__Dual.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1022 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 317 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 972 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_reduction__Number.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3969 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 417 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber.out │ │ │ -rw-r--r-- 0 root (0) root (0) 933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_special__Fiber__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1090 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_symmetric__Kernel_lp..._cm__Variable_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6573 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_versal__Embedding.out │ │ │ -rw-r--r-- 0 root (0) root (0) 311 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_which__Gm.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 588 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 13 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/.Headline │ │ │ --rw-r--r-- 0 root (0) root (0) 24242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24241 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5889 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Trim.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10111 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_analytic__Spread.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8171 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_associated__Graded__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11041 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_distinguished.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12238 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10691 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11208 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_intersect__In__P_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Linear__Type.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10239 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_is__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_jacobian__Dual.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11906 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Basis__Element__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5982 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_minimal__Reduction_lp..._cm__Tries_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8674 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8843 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_reduction__Number.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17580 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11084 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Degree__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13957 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Minimal__Generators_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9565 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Pair__Limit_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15730 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_special__Fiber__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5952 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReesAlgebra/html/_symmetric__Algebra__Ideal.html │ │ │ @@ -18960,19 +18960,19 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 19824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReflexivePolytopesDB/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9978 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReflexivePolytopesDB/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5542 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ReflexivePolytopesDB/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 6654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 3690 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3689 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 53 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/___C__M.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12047 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12046 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6638 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4864 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Regularity/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RelativeCanonicalResolution/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RelativeCanonicalResolution/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 36804 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RelativeCanonicalResolution/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RelativeCanonicalResolution/example-output/ │ │ │ @@ -19088,80 +19088,80 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 114689 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1231 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/___Grass.out │ │ │ -rw-r--r-- 0 root (0) root (0) 454 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Discriminant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2692 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_affine__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 2422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6583 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ --rw-r--r-- 0 root (0) root (0) 17439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2423 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 17437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_conormal__Variety.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4384 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4381 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1757 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7159 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_dualize.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2051 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_generic__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ --rw-r--r-- 0 root (0) root (0) 7137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 122873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 7135 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 122874 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5789 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1268 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/example-output/_veronese.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 41 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Affine__Chart__Proj.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5166 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Assume__Ordinary.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4966 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Duality.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9160 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6511 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Grass_lp..._cm__Variable_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/___Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6413 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8671 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_affine__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10651 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14347 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ --rw-r--r-- 0 root (0) root (0) 25098 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 25096 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11621 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_conormal__Variety_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12075 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12072 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9234 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13158 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_dualize.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14856 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14857 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_generic__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12389 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8219 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ --rw-r--r-- 0 root (0) root (0) 10010 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14373 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 130499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 10009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 130500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7768 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/_veronese.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19593 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20713 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Resultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 37681 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6282 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6285 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 61 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 5266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Keep__Statistics__Command.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5527 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/___Pre__Run__Script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5029 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Child.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_is__External__M2__Parent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ --rw-r--r-- 0 root (0) root (0) 23865 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 23868 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5662 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2__Return__Answer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2_lp..._cm__Keep__Files_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/_suggestions_spfor_spusing_sp__Run__External__M2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9683 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7490 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/RunExternalM2/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCMAlgebras/ │ │ │ @@ -19203,15 +19203,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8415 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6794 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3956 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SCSCP/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 101515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2516 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2515 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out │ │ │ -rw-r--r-- 0 root (0) root (0) 525 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_arithmetic_spwith_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 830 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_compressing_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 623 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_creating_spgates.out │ │ │ -rw-r--r-- 0 root (0) root (0) 142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_declare__Variable.out │ │ │ -rw-r--r-- 0 root (0) root (0) 635 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_differentiating_spcircuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluate_lp__S__L__Program_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 524 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/example-output/_evaluating_spgates.out │ │ │ @@ -19246,15 +19246,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Compiled__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__Interpreted__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4854 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_make__S__L__Program.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_measuring_spthe_spsize_spof_spcircuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6033 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_undeclare__Variable.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_value__Hash__Table.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8773 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/_working_spwith_spgate_spmatrices.html │ │ │ --rw-r--r-- 0 root (0) root (0) 36826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 36825 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLPexpressions/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42778 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 3218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SLnEquivariantMatrices/example-output/_sl2__Equivariant__Constant__Rank__Matrix.out │ │ │ @@ -19494,29 +19494,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 44888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complexes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 3437 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out │ │ │ -rw-r--r-- 0 root (0) root (0) 5542 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_are__Pseudo__Inverses.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2088 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6984 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_laplacians.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_numeric__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out │ │ │ -rw-r--r-- 0 root (0) root (0) 9254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_pseudo__Inverse.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 84 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 3737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Laplacian.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___Projection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13012 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_are__Pseudo__Inverses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_check__S__V__D__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10080 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14701 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_laplacians.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3882 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_new__Chain__Complex__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_numeric__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_pseudo__Inverse.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3961 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/_pseudo__Inverse1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28647 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SVDComplexes/html/index.html │ │ │ @@ -19539,24 +19539,24 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 52965 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 859 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_annihilator.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_ideal_spquotients_spand_spsaturation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_is__Supported__In__Zero__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1834 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1836 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2582 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp__Module_cm__Module_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/example-output/_saturate.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 69 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_annihilator.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6560 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_ideal_spquotients_spand_spsaturation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_is__Supported__In__Zero__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7263 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_module_spquotients_cm_spsaturation_cm_spand_spannihilator.html │ │ │ --rw-r--r-- 0 root (0) root (0) 17354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 17356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp__Module_cm__Module_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11944 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12655 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/_saturate_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13853 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11866 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4273 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Saturation/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/ │ │ │ @@ -19590,15 +19590,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1688 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Generation_spof_spformulas.out │ │ │ -rw-r--r-- 0 root (0) root (0) 902 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Grassmannian_spof_splines_spin_sp__P3.out │ │ │ -rw-r--r-- 0 root (0) root (0) 639 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Hilbert_sppolynomial_spand_sp__Todd_spclass_spof_spprojective_sp3-space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Lines_spon_spa_spquintic_spthreefold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 511 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__Riemann-__Roch_spformulas.out │ │ │ -rw-r--r-- 0 root (0) root (0) 569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Example_spfrom_sp__Schubert_co_sp__The_spnumber_spof_spelliptic_spcubics_spon_spa_spsextic_sp4-fold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 247 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Hom_lp__Abstract__Sheaf_cm__Abstract__Sheaf_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1584 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___O__O_sp_us_sp__Abstract__Variety.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___O__O_sp_us_sp__Ring__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 913 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Quotient__Bundles.out │ │ │ -rw-r--r-- 0 root (0) root (0) 869 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spon_spa_spcurve.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1741 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spon_spa_spsurface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 7382 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Riemann-__Roch_spwithout_spdenominators.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/example-output/___Ring_sp_us_sp__Chern__Class__Variable.out │ │ │ @@ -19710,15 +19710,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Examples_spfrom_sp__Schubert_cm_sptranslated.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8983 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Flag__Bundle.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6370 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Hom_lp__Abstract__Sheaf_cm__Abstract__Sheaf_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Ideas_spfor_spfuture_spdevelopment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Incidence__Correspondence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4163 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Intersection__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4202 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Isotropic.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8062 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8061 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4976 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___O__O_sp_us_sp__Abstract__Variety.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6353 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___O__O_sp_us_sp__Ring__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Pull__Back.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6529 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Quotient__Bundles.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5154 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spon_spa_spcurve.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7875 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spon_spa_spsurface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Schubert2/html/___Riemann-__Roch_spwithout_spdenominators.html │ │ │ @@ -19997,29 +19997,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 435 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Multi__Hom.out │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Chow__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_make__Product__Ring.out │ │ │ -rw-r--r-- 0 root (0) root (0) 453 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 881 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 932 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_projective__Degrees.out │ │ │ -rw-r--r-- 0 root (0) root (0) 876 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre.out │ │ │ --rw-r--r-- 0 root (0) root (0) 719 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 720 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 97 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 7697 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_chow__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8412 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_contained__In__Singular__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9833 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_intersection__Product.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Multi__Hom.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Chow__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_make__Product__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9107 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_projective__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8878 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13748 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6810 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SegreClasses/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 44566 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SemidefiniteProgramming/example-output/ │ │ │ @@ -20348,15 +20348,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_get__Facet__Bases.out │ │ │ -rw-r--r-- 0 root (0) root (0) 967 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graph__From__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 575 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_graphic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_grassmann__Section__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reconstruct__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1436 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_reduced__Slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Ideal.out │ │ │ --rw-r--r-- 0 root (0) root (0) 617 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 619 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1011 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_set__Ones__Forest.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6891 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Circuits.out │ │ │ -rw-r--r-- 0 root (0) root (0) 852 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Gale__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 802 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__From__Plucker.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1105 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_slack__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 15577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_specific__Slack__Matrix.out │ │ │ @@ -20404,15 +20404,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Coefficient__Ring_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Flag__Indices_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7248 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_reduced__Slack__Matrix_lp..._cm__Vars_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6100 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Saturate_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Ideal_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8305 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8307 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7939 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_set__Ones__Forest.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15037 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Circuits_lp..._cm__Tolerance_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8218 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Gale__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__From__Plucker_lp..._cm__Object_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11211 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SlackIdeals/html/_slack__Ideal.html │ │ │ @@ -20541,18 +20541,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 646 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Multidimensional__Matrix_sp_us_sp__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 597 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Ring__Element_sp_st_sp__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 478 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Discriminant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 930 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/___Sparse__Resultant_sp__Thing.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_char_lp__Sparse__Resultant_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1025 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1023 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 929 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 928 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1361 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dim_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 494 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_entries_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 561 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 394 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Discriminant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 471 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_exponents_lp__Sparse__Resultant_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2043 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_flattening.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1250 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Laurent__Polynomials.out │ │ │ @@ -20566,15 +20566,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 634 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_random__Multidimensional__Matrix.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2126 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_rank_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1772 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_reverse__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_ring_lp__Multidimensional__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 457 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2104 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sort__Shape.out │ │ │ -rw-r--r-- 0 root (0) root (0) 12400 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ --rw-r--r-- 0 root (0) root (0) 55253 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 55251 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ -rw-r--r-- 0 root (0) root (0) 911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 35 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 10142 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6947 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp-_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6345 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Multidimensional__Matrix_sp_eq_eq_sp__Multidimensional__Matrix.html │ │ │ @@ -20584,18 +20584,18 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6195 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Ring__Element_sp_st_sp__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5997 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Discriminant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5468 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6526 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/___Sparse__Resultant_sp__Thing.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5198 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_char_lp__Sparse__Resultant_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6903 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6901 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8190 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8266 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8707 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8265 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8704 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6122 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_dim_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5711 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_entries_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7003 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Discriminant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_exponents_lp__Sparse__Resultant_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_flattening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7760 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Laurent__Polynomials.html │ │ │ @@ -20609,15 +20609,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6579 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_random__Multidimensional__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8294 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_rank_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7610 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_reverse__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5628 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_ring_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5589 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7887 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sort__Shape.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ --rw-r--r-- 0 root (0) root (0) 65534 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 65532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7079 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/_sylvester__Matrix_lp__Multidimensional__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20968 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11034 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SparseResultants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 178042 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/dump/rawdocumentation.dump │ │ │ @@ -20644,15 +20644,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 210 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_cycle__Decomposition_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 252 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_entries_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_first__Row__Descent_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 505 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_garnir__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 557 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 787 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_generate__Permutation__Group_lp__List_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 3116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 3117 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 11027 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomials.out │ │ │ -rw-r--r-- 0 root (0) root (0) 325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_hook__Length__Formula_lp__Partition_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 538 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 338 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_index__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_list__To__Tableau_lp__List_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_matrix__Representation.out │ │ │ @@ -20664,15 +20664,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_permute__Polynomial.out │ │ │ -rw-r--r-- 0 root (0) root (0) 297 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 274 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_reading__Word_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1936 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out │ │ │ -rw-r--r-- 0 root (0) root (0) 410 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Permutation__Tableaux_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_row__Stabilizer_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 563 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 45652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 45653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1508 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_size_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 603 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_sort__Columns__Tableau_lp__Young__Tableau_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Module__Element.out │ │ │ -rw-r--r-- 0 root (0) root (0) 873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2337 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/example-output/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.out │ │ │ @@ -20708,15 +20708,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_cycle__Decomposition_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5828 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_elementary__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_entries_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_first__Row__Descent_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8083 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_garnir__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6758 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generalized__Vandermonde__Matrix_lp__List_cm__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_generate__Permutation__Group_lp__List_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 13550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13551 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomials.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_hook__Length__Formula_lp__Partition_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7235 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Monomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6024 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_index__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_inner__Product_lp__Z__Z_cm__Mutable__Matrix_cm__Mutable__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5269 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_list__To__Tableau_lp__List_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8110 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_matrix__Representation.html │ │ │ @@ -20728,15 +20728,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 8676 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_permute__Polynomial.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_power__Sum__Symmetric__Polynomials_lp__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5592 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_reading__Word_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11063 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6097 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Permutation__Tableaux_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5783 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_row__Stabilizer_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7427 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_schur__Polynomial_lp__List_cm__Partition_cm__Polynomial__Ring_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 53545 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 53546 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_semistandard__Tableaux_lp__Partition_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5183 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_size_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6503 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Specht__Module__Element_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5609 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_sort__Columns__Tableau_lp__Young__Tableau_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7433 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Module__Element.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7369 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomial_lp__Young__Tableau_cm__Polynomial__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8731 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpechtModule/html/_specht__Polynomials_lp__Partition_cm__Polynomial__Ring_rp.html │ │ │ @@ -20760,31 +20760,31 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 914 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/___G__Mtables.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_ambient__Fivefold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1005 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 614 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_beauville__Map.out │ │ │ -rw-r--r-- 0 root (0) root (0) 351 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_clean_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1173 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1172 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1555 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 286 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 672 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 599 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_from__Ordinary__To__Gushel.out │ │ │ -rw-r--r-- 0 root (0) root (0) 153 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible.out │ │ │ -rw-r--r-- 0 root (0) root (0) 164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_is__Admissible__G__M.out │ │ │ -rw-r--r-- 0 root (0) root (0) 716 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_map_lp__Congruence__Of__Curves_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1356 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_mirror__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_normal__Sheaf.out │ │ │ --rw-r--r-- 0 root (0) root (0) 814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 813 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 786 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 973 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 653 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 652 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1972 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize_lp__Hodge__Special__Fourfold_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 6386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 6385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 324 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 393 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1499 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1520 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out │ │ │ -rw-r--r-- 0 root (0) root (0) 762 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 469 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 530 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold_lp__String_cm__Ring_rp.out │ │ │ @@ -20812,34 +20812,34 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4945 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10359 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6841 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_beauville__Map.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5897 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_check_lp__Z__Z_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_clean_lp__Hodge__Special__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6192 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8687 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 9569 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 9574 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6745 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6642 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5909 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_from__Ordinary__To__Gushel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5585 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5729 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Admissible__G__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5440 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_is__Member_lp__Embedded__Projective__Variety_cm__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Congruence__Of__Curves_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5686 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_map_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9405 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_mirror__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6394 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_normal__Sheaf.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8483 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8482 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7955 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8182 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8186 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8185 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8747 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize_lp__Hodge__Special__Fourfold_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15460 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15459 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6948 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7039 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold_lp__String_cm__Ring_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6591 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Fourfold_lp__String_cm__Z__Z_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12074 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11528 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Array_cm__Array_cm__String_cm__Thing_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7954 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold_lp__Embedded__Projective__Variety_rp.html │ │ │ @@ -21787,25 +21787,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_compatible__Ideals.out │ │ │ -rw-r--r-- 0 root (0) root (0) 378 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_decompose__Fraction.out │ │ │ -rw-r--r-- 0 root (0) root (0) 606 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_descend__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_floor__Log.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1009 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1518 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 227 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Preimage.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1329 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1117 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Trace__On__Canonical__Module.out │ │ │ --rw-r--r-- 0 root (0) root (0) 487 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 488 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1820 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out │ │ │ -rw-r--r-- 0 root (0) root (0) 637 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Pure.out │ │ │ -rw-r--r-- 0 root (0) root (0) 517 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Rational.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1492 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1491 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out │ │ │ -rw-r--r-- 0 root (0) root (0) 187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_multiplicative__Order.out │ │ │ -rw-r--r-- 0 root (0) root (0) 416 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_parameter__Test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Element.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1514 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2756 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Module.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 590 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 40 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Ascent__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4385 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__C__M.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5130 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/___Assume__Domain.html │ │ │ @@ -21838,25 +21838,25 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9151 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_compatible__Ideals.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7168 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_decompose__Fraction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9334 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_descend__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5225 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_floor__Log.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10611 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12408 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5237 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Preimage.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16746 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16745 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8554 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Trace__On__Canonical__Module.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8215 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ --rw-r--r-- 0 root (0) root (0) 15811 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8216 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 15807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10346 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Pure.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9661 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Rational.html │ │ │ --rw-r--r-- 0 root (0) root (0) 16392 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 16391 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5824 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_multiplicative__Order.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7890 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_parameter__Test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Element.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14994 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 14993 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17708 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Module.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37577 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12484 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TestIdeals/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 136721 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Text/dump/rawdocumentation.dump │ │ │ @@ -22056,30 +22056,30 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 37607 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 27702 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11513 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThinSincereQuivers/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 24388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 1472 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1467 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 6776 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Threaded__G__B.out │ │ │ --rw-r--r-- 0 root (0) root (0) 615 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 938 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1256 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4068 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 572 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1147 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1143 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2349 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ -rw-r--r-- 0 root (0) root (0) 328 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb_lp..._cm__Verbose_eq_gt..._rp.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 605 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Certification │ │ │ -rw-r--r-- 0 root (0) root (0) 77 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 6425 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Lineage__Table.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7059 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6670 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 6880 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7259 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ --rw-r--r-- 0 root (0) root (0) 14771 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7054 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 6627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7089 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 13052 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7430 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb_lp..._cm__Verbose_eq_gt..._rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21626 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6806 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4627 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ThreadedGB/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 66598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Topcom/dump/rawdocumentation.dump │ │ │ @@ -22186,25 +22186,25 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20320 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 944 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Class.out │ │ │ -rw-r--r-- 0 root (0) root (0) 567 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_cm__Volumes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_dual__Deg__Codim.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1032 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_polar__Degrees.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 86 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4388 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Force__Amat.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4214 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4206 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/___Text__Output.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8847 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Class.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7510 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_cm__Volumes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7471 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_dual__Deg__Codim.html │ │ │ --rw-r--r-- 0 root (0) root (0) 8817 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 8818 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8849 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/_polar__Degrees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9974 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7189 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricInvariants/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 38537 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/ToricTopology/dump/rawdocumentation.dump │ │ │ @@ -22373,17 +22373,17 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 17380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11888 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7217 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/TriangularSets/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 31886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/ │ │ │ --rw-r--r-- 0 root (0) root (0) 2276 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 2275 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 18048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_all__Triangulations_lp__Matrix_rp.out │ │ │ --rw-r--r-- 0 root (0) root (0) 75224 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 75242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ -rw-r--r-- 0 root (0) root (0) 714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_is__Regular__Triangulation.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1654 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/example-output/_triangulation.out │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 42 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/.Headline │ │ │ -rw-r--r-- 0 root (0) root (0) 4460 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Cone__Index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7308 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/___Triangulation.html │ │ │ @@ -22391,29 +22391,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 30386 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_all__Triangulations_lp__Matrix_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_bistellar__Flip.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3884 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3827 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Subdivision.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3823 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_delaunay__Weights.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3867 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_fine__Star__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3781 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_flips.html │ │ │ --rw-r--r-- 0 root (0) root (0) 86004 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 86022 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3911 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_gkz__Vector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3873 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Fine.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9223 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Regular__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3883 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_is__Star.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3814 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Chirotope.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_naive__Is__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3807 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_neighbors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Fine__Star__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3970 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Fine__Triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4144 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_regular__Triangulation__Weights.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9719 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_triangulation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3727 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_vectors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3837 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/_volume__Vector.html │ │ │ --rw-r--r-- 0 root (0) root (0) 24700 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 24699 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10341 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/master.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6323 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triangulations/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triplets/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triplets/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 49146 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triplets/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triplets/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 191 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/Triplets/example-output/___Betti1_lp__Triplet_rp.out │ │ │ @@ -23373,15 +23373,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 620 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ceiling_lp__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clean__Support.out │ │ │ -rw-r--r-- 0 root (0) root (0) 470 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_clear__Cache.out │ │ │ -rw-r--r-- 0 root (0) root (0) 254 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 335 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_coefficients_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 1714 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 1715 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_embed__As__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 500 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_find__Element__Of__Degree.out │ │ │ -rw-r--r-- 0 root (0) root (0) 532 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_gbs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 831 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Linear__Diophantine__Solution.out │ │ │ -rw-r--r-- 0 root (0) root (0) 501 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Count.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_get__Prime__Divisors.out │ │ │ -rw-r--r-- 0 root (0) root (0) 336 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ideal__Power.out │ │ │ @@ -23405,15 +23405,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 441 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Zero__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 667 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_map__To__Projective__Space.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_non__Cartier__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 780 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_positive__Part.out │ │ │ -rw-r--r-- 0 root (0) root (0) 604 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_primes.out │ │ │ -rw-r--r-- 0 root (0) root (0) 765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 846 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ramification__Divisor.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4354 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4352 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1095 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out │ │ │ -rw-r--r-- 0 root (0) root (0) 249 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ring_lp__Basic__Divisor_rp.out │ │ │ -rw-r--r-- 0 root (0) root (0) 375 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Q__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 458 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__R__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 576 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__Weil__Divisor.out │ │ │ -rw-r--r-- 0 root (0) root (0) 357 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_torsion__Submodule.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_trim_lp__Basic__Divisor_rp.out │ │ │ @@ -23444,15 +23444,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6439 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ceiling_lp__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5314 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clean__Support.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6048 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_clear__Cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6403 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Basic__List_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6550 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficient_lp__Ideal_cm__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8179 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_coefficients_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 12301 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 12302 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13200 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_embed__As__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7595 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_find__Element__Of__Degree.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7315 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_gbs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8371 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Linear__Diophantine__Solution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7242 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Count.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5737 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_get__Prime__Divisors.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6340 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ideal__Power.html │ │ │ @@ -23477,15 +23477,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5959 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Zero__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8128 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_map__To__Projective__Space.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8342 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_non__Cartier__Locus.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6689 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_positive__Part.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7155 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9116 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10363 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ramification__Divisor.html │ │ │ --rw-r--r-- 0 root (0) root (0) 20374 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 20372 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9556 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5137 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_ring_lp__Basic__Divisor_rp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6136 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Q__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6886 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__R__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7207 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__Weil__Divisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6826 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_torsion__Submodule.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6176 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeilDivisors/html/_trim_lp__Basic__Divisor_rp.html │ │ │ @@ -23502,15 +23502,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 365 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Dsingular__Locus.out │ │ │ -rw-r--r-- 0 root (0) root (0) 380 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Dtransposition.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2187 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/___Fourier.out │ │ │ -rw-r--r-- 0 root (0) root (0) 404 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_characteristic__Ideal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 300 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_create__Dpairs.out │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_extract__Diffs__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_extract__Vars__Algebra.out │ │ │ --rw-r--r-- 0 root (0) root (0) 728 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 751 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out │ │ │ -rw-r--r-- 0 root (0) root (0) 643 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra1.out │ │ │ -rw-r--r-- 0 root (0) root (0) 743 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_gbw.out │ │ │ -rw-r--r-- 0 root (0) root (0) 326 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_holonomic__Rank.out │ │ │ -rw-r--r-- 0 root (0) root (0) 536 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_inw.out │ │ │ -rw-r--r-- 0 root (0) root (0) 296 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_is__Holonomic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 559 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_make__Cyclic.out │ │ │ -rw-r--r-- 0 root (0) root (0) 288 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_make__Weyl__Algebra.out │ │ │ @@ -23523,15 +23523,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 6533 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Dtransposition.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9800 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Fourier.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3717 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/___Stop__After.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7379 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_characteristic__Ideal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_create__Dpairs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5977 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_extract__Diffs__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5933 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_extract__Vars__Algebra.html │ │ │ --rw-r--r-- 0 root (0) root (0) 7463 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 7486 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8784 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_gbw.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7152 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_holonomic__Rank.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8438 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_inw.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6325 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_is__Holonomic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6246 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_make__Cyclic.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7465 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylAlgebras/html/_make__Weyl__Algebra.html │ │ │ @@ -23815,15 +23815,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 36900 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WeylGroups/html/toc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/dump/ │ │ │ -rw-r--r-- 0 root (0) root (0) 62174 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/dump/rawdocumentation.dump │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/ │ │ │ -rw-r--r-- 0 root (0) root (0) 658 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_conormal.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1236 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_euler__Obs__Matrix.out │ │ │ --rw-r--r-- 0 root (0) root (0) 4498 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ +-rw-r--r-- 0 root (0) root (0) 4497 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1164 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify__Pol.out │ │ │ -rw-r--r-- 0 root (0) root (0) 785 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_min__Coarsen__W__S.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1601 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_mult__C__C.out │ │ │ -rw-r--r-- 0 root (0) root (0) 364 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_polar__Sequence.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_polar__Vars.out │ │ │ -rw-r--r-- 0 root (0) root (0) 2765 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_whitney__Stratify.out │ │ │ -rw-r--r-- 0 root (0) root (0) 1951 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_whitney__Stratify__Pol.out │ │ │ @@ -23832,15 +23832,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 4081 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/___Assoc__Primes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3961 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/___Strats__To__Find.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5948 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_conormal.html │ │ │ -rw-r--r-- 0 root (0) root (0) 4057 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_conormal__Ring.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3475 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_coord__Proj.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12058 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_euler__Obs__Matrix.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3923 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_is__Proper.html │ │ │ --rw-r--r-- 0 root (0) root (0) 18950 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ +-rw-r--r-- 0 root (0) root (0) 18949 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11422 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify__Pol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7541 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_min__Coarsen__W__S.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12376 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_mult__C__C.html │ │ │ -rw-r--r-- 0 root (0) root (0) 3803 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_non__Proper__Set.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7598 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_polar__Sequence.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8523 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_polar__Vars.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13434 2025-12-14 14:09:53.000000 ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_whitney__Stratify.html │ │ │ @@ -24020,307 +24020,307 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/ │ │ │ -rw-r--r-- 0 root (0) root (0) 17286 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 106822 2025-12-14 14:09:53.000000 ./usr/share/doc/macaulay2-common/copyright │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/doc-base/ │ │ │ -rw-r--r-- 0 root (0) root (0) 577 2025-12-14 14:09:53.000000 ./usr/share/doc-base/macaulay2-common.macaulay2 │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/info/ │ │ │ -rw-r--r-- 0 root (0) root (0) 35711 2025-12-14 14:09:53.000000 ./usr/share/info/A1BrouwerDegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14024 2025-12-14 14:09:53.000000 ./usr/share/info/AInfinity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14021 2025-12-14 14:09:53.000000 ./usr/share/info/AInfinity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10523 2025-12-14 14:09:53.000000 ./usr/share/info/AbstractSimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1491 2025-12-14 14:09:53.000000 ./usr/share/info/AbstractToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7475 2025-12-14 14:09:53.000000 ./usr/share/info/AdjointIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8787 2025-12-14 14:09:53.000000 ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23074 2025-12-14 14:09:53.000000 ./usr/share/info/AlgebraicSplines.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8654 2025-12-14 14:09:53.000000 ./usr/share/info/AllMarkovBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3058 2025-12-14 14:09:53.000000 ./usr/share/info/AnalyzeSheafOnP1.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38028 2025-12-14 14:09:53.000000 ./usr/share/info/AssociativeAlgebras.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13736 2025-12-14 14:09:53.000000 ./usr/share/info/BGG.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13734 2025-12-14 14:09:53.000000 ./usr/share/info/BGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1733 2025-12-14 14:09:53.000000 ./usr/share/info/BIBasis.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16540 2025-12-14 14:09:53.000000 ./usr/share/info/BeginningMacaulay2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1535 2025-12-14 14:09:53.000000 ./usr/share/info/Benchmark.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1548 2025-12-14 14:09:53.000000 ./usr/share/info/Benchmark.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 47150 2025-12-14 14:09:53.000000 ./usr/share/info/BernsteinSato.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21318 2025-12-14 14:09:53.000000 ./usr/share/info/Bertini.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31909 2025-12-14 14:09:53.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31906 2025-12-14 14:09:53.000000 ./usr/share/info/BettiCharacters.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3389 2025-12-14 14:09:53.000000 ./usr/share/info/BinomialEdgeIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10984 2025-12-14 14:09:53.000000 ./usr/share/info/Binomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20100 2025-12-14 14:09:53.000000 ./usr/share/info/BoijSoederberg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 16450 2025-12-14 14:09:53.000000 ./usr/share/info/Book3264Examples.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1822 2025-12-14 14:09:53.000000 ./usr/share/info/BooleanGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6969 2025-12-14 14:09:53.000000 ./usr/share/info/Brackets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1070 2025-12-14 14:09:53.000000 ./usr/share/info/Browse.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6545 2025-12-14 14:09:53.000000 ./usr/share/info/Bruns.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20052 2025-12-14 14:09:53.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15811 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6544 2025-12-14 14:09:53.000000 ./usr/share/info/Bruns.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20038 2025-12-14 14:09:53.000000 ./usr/share/info/CellularResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15810 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexExtras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4454 2025-12-14 14:09:53.000000 ./usr/share/info/ChainComplexOperations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26075 2025-12-14 14:09:53.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22860 2025-12-14 14:09:53.000000 ./usr/share/info/Chordal.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26069 2025-12-14 14:09:53.000000 ./usr/share/info/CharacteristicClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22847 2025-12-14 14:09:53.000000 ./usr/share/info/Chordal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3710 2025-12-14 14:09:53.000000 ./usr/share/info/Classic.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 40809 2025-12-14 14:09:53.000000 ./usr/share/info/CodingTheory.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5339 2025-12-14 14:09:53.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5341 2025-12-14 14:09:53.000000 ./usr/share/info/CohomCalg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24922 2025-12-14 14:09:53.000000 ./usr/share/info/CoincidentRootLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 59630 2025-12-14 14:09:53.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 59637 2025-12-14 14:09:53.000000 ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 224577 2025-12-14 14:09:53.000000 ./usr/share/info/Complexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12241 2025-12-14 14:09:53.000000 ./usr/share/info/ConformalBlocks.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13363 2025-12-14 14:09:53.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13364 2025-12-14 14:09:53.000000 ./usr/share/info/ConnectionMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7163 2025-12-14 14:09:53.000000 ./usr/share/info/ConvexInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1758 2025-12-14 14:09:53.000000 ./usr/share/info/ConwayPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8622 2025-12-14 14:09:53.000000 ./usr/share/info/CorrespondenceScrolls.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7453 2025-12-14 14:09:53.000000 ./usr/share/info/CotangentSchubert.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30015 2025-12-14 14:09:53.000000 ./usr/share/info/CpMackeyFunctors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 96513 2025-12-14 14:09:53.000000 ./usr/share/info/Cremona.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 96505 2025-12-14 14:09:53.000000 ./usr/share/info/Cremona.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1982 2025-12-14 14:09:53.000000 ./usr/share/info/Cyclotomic.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49514 2025-12-14 14:09:53.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49524 2025-12-14 14:09:53.000000 ./usr/share/info/DGAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4886 2025-12-14 14:09:53.000000 ./usr/share/info/DecomposableSparseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6087 2025-12-14 14:09:53.000000 ./usr/share/info/Depth.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18058 2025-12-14 14:09:53.000000 ./usr/share/info/DeterminantalRepresentations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19221 2025-12-14 14:09:53.000000 ./usr/share/info/DiffAlg.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3483 2025-12-14 14:09:53.000000 ./usr/share/info/Dmodules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15778 2025-12-14 14:09:53.000000 ./usr/share/info/EagonResolution.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45559 2025-12-14 14:09:53.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2729 2025-12-14 14:09:53.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4476 2025-12-14 14:09:53.000000 ./usr/share/info/Elimination.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45555 2025-12-14 14:09:53.000000 ./usr/share/info/EdgeIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2730 2025-12-14 14:09:53.000000 ./usr/share/info/EigenSolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4468 2025-12-14 14:09:53.000000 ./usr/share/info/Elimination.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21219 2025-12-14 14:09:53.000000 ./usr/share/info/EliminationMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6856 2025-12-14 14:09:53.000000 ./usr/share/info/EllipticCurves.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1690 2025-12-14 14:09:53.000000 ./usr/share/info/EllipticIntegrals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2459 2025-12-14 14:09:53.000000 ./usr/share/info/EngineTests.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2905 2025-12-14 14:09:53.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9714 2025-12-14 14:09:53.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2909 2025-12-14 14:09:53.000000 ./usr/share/info/EnumerationCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9712 2025-12-14 14:09:53.000000 ./usr/share/info/EquivariantGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20248 2025-12-14 14:09:53.000000 ./usr/share/info/ExampleSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19433 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorExtensions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5180 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10413 2025-12-14 14:09:53.000000 ./usr/share/info/ExteriorModules.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2581 2025-12-14 14:09:53.000000 ./usr/share/info/FGLM.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31687 2025-12-14 14:09:53.000000 ./usr/share/info/FastMinors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 5212 2025-12-14 14:09:53.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 5214 2025-12-14 14:09:53.000000 ./usr/share/info/FiniteFittingIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1042 2025-12-14 14:09:53.000000 ./usr/share/info/FirstPackage.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22607 2025-12-14 14:09:53.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22613 2025-12-14 14:09:53.000000 ./usr/share/info/ForeignFunctions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7402 2025-12-14 14:09:53.000000 ./usr/share/info/FormalGroupLaws.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7409 2025-12-14 14:09:53.000000 ./usr/share/info/FourTiTwo.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7512 2025-12-14 14:09:53.000000 ./usr/share/info/FourierMotzkin.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17491 2025-12-14 14:09:53.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17495 2025-12-14 14:09:53.000000 ./usr/share/info/FrobeniusThresholds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1996 2025-12-14 14:09:53.000000 ./usr/share/info/FunctionFieldDesingularization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 36098 2025-12-14 14:09:53.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 36096 2025-12-14 14:09:53.000000 ./usr/share/info/GKMVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 23589 2025-12-14 14:09:53.000000 ./usr/share/info/GameTheory.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2807 2025-12-14 14:09:53.000000 ./usr/share/info/GenericInitialIdeal.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15375 2025-12-14 14:09:53.000000 ./usr/share/info/GeometricDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 86371 2025-12-14 14:09:53.000000 ./usr/share/info/GradedLieAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 38442 2025-12-14 14:09:53.000000 ./usr/share/info/GraphicalModels.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22801 2025-12-14 14:09:53.000000 ./usr/share/info/GraphicalModelsMLE.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14394 2025-12-14 14:09:53.000000 ./usr/share/info/Graphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 51497 2025-12-14 14:09:53.000000 ./usr/share/info/Graphs.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22270 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 51498 2025-12-14 14:09:53.000000 ./usr/share/info/Graphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22296 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerStrata.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4698 2025-12-14 14:09:53.000000 ./usr/share/info/GroebnerWalk.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4457 2025-12-14 14:09:53.000000 ./usr/share/info/Hadamard.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4462 2025-12-14 14:09:53.000000 ./usr/share/info/Hadamard.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4172 2025-12-14 14:09:53.000000 ./usr/share/info/HigherCIOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 24610 2025-12-14 14:09:53.000000 ./usr/share/info/HighestWeights.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5216 2025-12-14 14:09:53.000000 ./usr/share/info/HodgeIntegrals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 12520 2025-12-14 14:09:53.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6448 2025-12-14 14:09:53.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 41842 2025-12-14 14:09:53.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 12522 2025-12-14 14:09:53.000000 ./usr/share/info/HolonomicSystems.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6459 2025-12-14 14:09:53.000000 ./usr/share/info/HomotopyLieAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 41838 2025-12-14 14:09:53.000000 ./usr/share/info/HyperplaneArrangements.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9253 2025-12-14 14:09:53.000000 ./usr/share/info/IncidenceCorrespondenceCohomology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6098 2025-12-14 14:09:53.000000 ./usr/share/info/IntegerProgramming.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 26723 2025-12-14 14:09:53.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 39446 2025-12-14 14:09:53.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 26735 2025-12-14 14:09:53.000000 ./usr/share/info/IntegralClosure.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 39451 2025-12-14 14:09:53.000000 ./usr/share/info/InvariantRing.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12011 2025-12-14 14:09:53.000000 ./usr/share/info/InverseSystems.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9404 2025-12-14 14:09:53.000000 ./usr/share/info/InvolutiveBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9332 2025-12-14 14:09:53.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3412 2025-12-14 14:09:53.000000 ./usr/share/info/JSON.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9333 2025-12-14 14:09:53.000000 ./usr/share/info/Isomorphism.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3413 2025-12-14 14:09:53.000000 ./usr/share/info/JSON.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5117 2025-12-14 14:09:53.000000 ./usr/share/info/JSONRPC.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20226 2025-12-14 14:09:53.000000 ./usr/share/info/Jets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 24273 2025-12-14 14:09:53.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 24280 2025-12-14 14:09:53.000000 ./usr/share/info/K3Carpets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7185 2025-12-14 14:09:53.000000 ./usr/share/info/K3Surfaces.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4847 2025-12-14 14:09:53.000000 ./usr/share/info/Kronecker.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19956 2025-12-14 14:09:53.000000 ./usr/share/info/KustinMiller.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10629 2025-12-14 14:09:53.000000 ./usr/share/info/LLLBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10306 2025-12-14 14:09:53.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10627 2025-12-14 14:09:53.000000 ./usr/share/info/LLLBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10307 2025-12-14 14:09:53.000000 ./usr/share/info/LatticePolytopes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11907 2025-12-14 14:09:53.000000 ./usr/share/info/LexIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 53836 2025-12-14 14:09:53.000000 ./usr/share/info/LieAlgebraRepresentations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 11223 2025-12-14 14:09:53.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 11222 2025-12-14 14:09:53.000000 ./usr/share/info/LinearTruncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11459 2025-12-14 14:09:53.000000 ./usr/share/info/LocalRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14642 2025-12-14 14:09:53.000000 ./usr/share/info/M0nbar.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8789 2025-12-14 14:09:53.000000 ./usr/share/info/MCMApproximations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1043149 2025-12-14 14:09:53.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1043205 2025-12-14 14:09:53.000000 ./usr/share/info/Macaulay2Doc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4315 2025-12-14 14:09:53.000000 ./usr/share/info/MapleInterface.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6009 2025-12-14 14:09:53.000000 ./usr/share/info/Markov.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29534 2025-12-14 14:09:53.000000 ./usr/share/info/MatchingFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 164075 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixFactorizations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37754 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 66777 2025-12-14 14:09:53.000000 ./usr/share/info/Matroids.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37760 2025-12-14 14:09:53.000000 ./usr/share/info/MatrixSchubert.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 66775 2025-12-14 14:09:53.000000 ./usr/share/info/Matroids.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1333 2025-12-14 14:09:53.000000 ./usr/share/info/MergeTeX.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7089 2025-12-14 14:09:53.000000 ./usr/share/info/MinimalPrimes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3783 2025-12-14 14:09:53.000000 ./usr/share/info/Miura.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7711 2025-12-14 14:09:53.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 6283 2025-12-14 14:09:53.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14938 2025-12-14 14:09:53.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7710 2025-12-14 14:09:53.000000 ./usr/share/info/MixedMultiplicity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 6284 2025-12-14 14:09:53.000000 ./usr/share/info/ModuleDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14930 2025-12-14 14:09:53.000000 ./usr/share/info/MonodromySolver.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20463 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12699 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialIntegerPrograms.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5726 2025-12-14 14:09:53.000000 ./usr/share/info/MonomialOrbits.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10028 2025-12-14 14:09:53.000000 ./usr/share/info/Msolve.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10020 2025-12-14 14:09:53.000000 ./usr/share/info/Msolve.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10408 2025-12-14 14:09:53.000000 ./usr/share/info/MultiGradedRationalMap.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10201 2025-12-14 14:09:53.000000 ./usr/share/info/MultigradedBGG.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6937 2025-12-14 14:09:53.000000 ./usr/share/info/MultigradedImplicitization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7283 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplicitySequence.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7533 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplierIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4208 2025-12-14 14:09:53.000000 ./usr/share/info/MultiplierIdealsDim2.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 71943 2025-12-14 14:09:53.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 71957 2025-12-14 14:09:53.000000 ./usr/share/info/MultiprojectiveVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 21458 2025-12-14 14:09:53.000000 ./usr/share/info/NAGtypes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 85834 2025-12-14 14:09:53.000000 ./usr/share/info/NCAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15870 2025-12-14 14:09:53.000000 ./usr/share/info/Nauty.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14732 2025-12-14 14:09:53.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15882 2025-12-14 14:09:53.000000 ./usr/share/info/Nauty.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14726 2025-12-14 14:09:53.000000 ./usr/share/info/NautyGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4096 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherNormalization.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 35152 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 35154 2025-12-14 14:09:53.000000 ./usr/share/info/NoetherianOperators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9643 2025-12-14 14:09:53.000000 ./usr/share/info/NonPrincipalTestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2547 2025-12-14 14:09:53.000000 ./usr/share/info/NonminimalComplexes.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 111293 2025-12-14 14:09:53.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 111300 2025-12-14 14:09:53.000000 ./usr/share/info/NormalToricVarieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31263 2025-12-14 14:09:53.000000 ./usr/share/info/Normaliz.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3131 2025-12-14 14:09:53.000000 ./usr/share/info/NumericSolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 34508 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalAlgebraicGeometry.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13639 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalCertification.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 17847 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 17845 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalImplicitization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3201 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalLinearAlgebra.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31583 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 28580 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 20315 2025-12-14 14:09:53.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45744 2025-12-14 14:09:53.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31584 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSchubertCalculus.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 28578 2025-12-14 14:09:53.000000 ./usr/share/info/NumericalSemigroups.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 20280 2025-12-14 14:09:53.000000 ./usr/share/info/OIGroebnerBases.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45767 2025-12-14 14:09:53.000000 ./usr/share/info/OldChainComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 67774 2025-12-14 14:09:53.000000 ./usr/share/info/OldPolyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31097 2025-12-14 14:09:53.000000 ./usr/share/info/OldToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2108 2025-12-14 14:09:53.000000 ./usr/share/info/OnlineLookup.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1528 2025-12-14 14:09:53.000000 ./usr/share/info/OpenMath.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27582 2025-12-14 14:09:53.000000 ./usr/share/info/Oscillators.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27570 2025-12-14 14:09:53.000000 ./usr/share/info/Oscillators.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 27241 2025-12-14 14:09:53.000000 ./usr/share/info/PHCpack.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2517 2025-12-14 14:09:53.000000 ./usr/share/info/PackageCitations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1714 2025-12-14 14:09:53.000000 ./usr/share/info/PackageTemplate.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9367 2025-12-14 14:09:53.000000 ./usr/share/info/Parametrization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6942 2025-12-14 14:09:53.000000 ./usr/share/info/Parsing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31856 2025-12-14 14:09:53.000000 ./usr/share/info/PathSignatures.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 29654 2025-12-14 14:09:53.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31854 2025-12-14 14:09:53.000000 ./usr/share/info/PathSignatures.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 29653 2025-12-14 14:09:53.000000 ./usr/share/info/PencilsOfQuadrics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4752 2025-12-14 14:09:53.000000 ./usr/share/info/Permanents.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18991 2025-12-14 14:09:53.000000 ./usr/share/info/Permutations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19599 2025-12-14 14:09:53.000000 ./usr/share/info/PhylogeneticTrees.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 28264 2025-12-14 14:09:53.000000 ./usr/share/info/PieriMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12263 2025-12-14 14:09:53.000000 ./usr/share/info/PlaneCurveLinearSeries.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10005 2025-12-14 14:09:53.000000 ./usr/share/info/Points.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10004 2025-12-14 14:09:53.000000 ./usr/share/info/Points.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 71585 2025-12-14 14:09:53.000000 ./usr/share/info/Polyhedra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1814 2025-12-14 14:09:53.000000 ./usr/share/info/Polymake.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 18578 2025-12-14 14:09:53.000000 ./usr/share/info/PolyominoIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 54561 2025-12-14 14:09:53.000000 ./usr/share/info/Posets.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 54569 2025-12-14 14:09:53.000000 ./usr/share/info/Posets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9934 2025-12-14 14:09:53.000000 ./usr/share/info/PositivityToricBundles.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 15309 2025-12-14 14:09:53.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 15310 2025-12-14 14:09:53.000000 ./usr/share/info/PrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-12-14 14:09:53.000000 ./usr/share/info/Probability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9056 2025-12-14 14:09:53.000000 ./usr/share/info/PruneComplex.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2874 2025-12-14 14:09:53.000000 ./usr/share/info/PseudomonomialPrimaryDecomposition.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2268 2025-12-14 14:09:53.000000 ./usr/share/info/Pullback.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5379 2025-12-14 14:09:53.000000 ./usr/share/info/PushForward.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37347 2025-12-14 14:09:53.000000 ./usr/share/info/Python.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37350 2025-12-14 14:09:53.000000 ./usr/share/info/Python.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9376 2025-12-14 14:09:53.000000 ./usr/share/info/QthPower.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6105 2025-12-14 14:09:53.000000 ./usr/share/info/QuadraticIdealExamplesByRoos.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6748 2025-12-14 14:09:53.000000 ./usr/share/info/Quasidegrees.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 56981 2025-12-14 14:09:53.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 56310 2025-12-14 14:09:53.000000 ./usr/share/info/QuaternaryQuartics.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13524 2025-12-14 14:09:53.000000 ./usr/share/info/QuillenSuslin.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13459 2025-12-14 14:09:53.000000 ./usr/share/info/RInterface.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1475 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8360 2025-12-14 14:09:53.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1476 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCanonicalCurves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8358 2025-12-14 14:09:53.000000 ./usr/share/info/RandomComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 856 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4054 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 3722 2025-12-14 14:09:53.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14846 2025-12-14 14:09:53.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4056 2025-12-14 14:09:53.000000 ./usr/share/info/RandomCurvesOverVerySmallFiniteFields.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 3721 2025-12-14 14:09:53.000000 ./usr/share/info/RandomGenus14Curves.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14850 2025-12-14 14:09:53.000000 ./usr/share/info/RandomIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 30361 2025-12-14 14:09:53.000000 ./usr/share/info/RandomMonomialIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3585 2025-12-14 14:09:53.000000 ./usr/share/info/RandomObjects.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4030 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPlaneCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14979 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14978 2025-12-14 14:09:53.000000 ./usr/share/info/RandomPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7297 2025-12-14 14:09:53.000000 ./usr/share/info/RandomSpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 18617 2025-12-14 14:09:53.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 18616 2025-12-14 14:09:53.000000 ./usr/share/info/RationalMaps.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1703 2025-12-14 14:09:53.000000 ./usr/share/info/RationalPoints.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10729 2025-12-14 14:09:53.000000 ./usr/share/info/RationalPoints2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 20540 2025-12-14 14:09:53.000000 ./usr/share/info/ReactionNetworks.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10300 2025-12-14 14:09:53.000000 ./usr/share/info/RealRoots.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37259 2025-12-14 14:09:53.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37254 2025-12-14 14:09:53.000000 ./usr/share/info/ReesAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12568 2025-12-14 14:09:53.000000 ./usr/share/info/ReflexivePolytopesDB.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 2745 2025-12-14 14:09:53.000000 ./usr/share/info/Regularity.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 2744 2025-12-14 14:09:53.000000 ./usr/share/info/Regularity.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6359 2025-12-14 14:09:53.000000 ./usr/share/info/RelativeCanonicalResolution.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6017 2025-12-14 14:09:53.000000 ./usr/share/info/ResLengthThree.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7488 2025-12-14 14:09:53.000000 ./usr/share/info/ResidualIntersections.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4695 2025-12-14 14:09:53.000000 ./usr/share/info/ResolutionsOfStanleyReisnerRings.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 45665 2025-12-14 14:09:53.000000 ./usr/share/info/Resultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 45667 2025-12-14 14:09:53.000000 ./usr/share/info/Resultants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8804 2025-12-14 14:09:53.000000 ./usr/share/info/RunExternalM2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 3583 2025-12-14 14:09:53.000000 ./usr/share/info/SCMAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4074 2025-12-14 14:09:53.000000 ./usr/share/info/SCSCP.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13740 2025-12-14 14:09:53.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13738 2025-12-14 14:09:53.000000 ./usr/share/info/SLPexpressions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8229 2025-12-14 14:09:53.000000 ./usr/share/info/SLnEquivariantMatrices.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51962 2025-12-14 14:09:53.000000 ./usr/share/info/SRdeformations.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 22395 2025-12-14 14:09:53.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 22392 2025-12-14 14:09:53.000000 ./usr/share/info/SVDComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2644 2025-12-14 14:09:53.000000 ./usr/share/info/SagbiGbDetection.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 9146 2025-12-14 14:09:53.000000 ./usr/share/info/Saturation.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 64567 2025-12-14 14:09:53.000000 ./usr/share/info/Schubert2.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 9149 2025-12-14 14:09:53.000000 ./usr/share/info/Saturation.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 64571 2025-12-14 14:09:53.000000 ./usr/share/info/Schubert2.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5128 2025-12-14 14:09:53.000000 ./usr/share/info/SchurComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4868 2025-12-14 14:09:53.000000 ./usr/share/info/SchurFunctors.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 25155 2025-12-14 14:09:53.000000 ./usr/share/info/SchurRings.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7965 2025-12-14 14:09:53.000000 ./usr/share/info/SchurVeronese.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2654 2025-12-14 14:09:53.000000 ./usr/share/info/SectionRing.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 7701 2025-12-14 14:09:53.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 7700 2025-12-14 14:09:53.000000 ./usr/share/info/SegreClasses.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7469 2025-12-14 14:09:53.000000 ./usr/share/info/SemidefiniteProgramming.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8348 2025-12-14 14:09:53.000000 ./usr/share/info/Seminormalization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2626 2025-12-14 14:09:53.000000 ./usr/share/info/Serialization.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8316 2025-12-14 14:09:53.000000 ./usr/share/info/SimpleDoc.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 76323 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7232 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialDecomposability.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2966 2025-12-14 14:09:53.000000 ./usr/share/info/SimplicialPosets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37164 2025-12-14 14:09:53.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37170 2025-12-14 14:09:53.000000 ./usr/share/info/SlackIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13525 2025-12-14 14:09:53.000000 ./usr/share/info/SpaceCurves.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 27513 2025-12-14 14:09:53.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 37572 2025-12-14 14:09:53.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 32636 2025-12-14 14:09:53.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 27508 2025-12-14 14:09:53.000000 ./usr/share/info/SparseResultants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 37569 2025-12-14 14:09:53.000000 ./usr/share/info/SpechtModule.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 32634 2025-12-14 14:09:53.000000 ./usr/share/info/SpecialFanoFourfolds.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 291857 2025-12-14 14:09:53.000000 ./usr/share/info/SpectralSequences.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12684 2025-12-14 14:09:53.000000 ./usr/share/info/StatGraphs.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2631 2025-12-14 14:09:53.000000 ./usr/share/info/StatePolytope.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7815 2025-12-14 14:09:53.000000 ./usr/share/info/StronglyStableIdeals.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 1897 2025-12-14 14:09:53.000000 ./usr/share/info/Style.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 1895 2025-12-14 14:09:53.000000 ./usr/share/info/Style.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 29769 2025-12-14 14:09:53.000000 ./usr/share/info/SubalgebraBases.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15726 2025-12-14 14:09:53.000000 ./usr/share/info/SumsOfSquares.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5366 2025-12-14 14:09:53.000000 ./usr/share/info/SuperLinearAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2753 2025-12-14 14:09:53.000000 ./usr/share/info/SwitchingFields.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14148 2025-12-14 14:09:53.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14146 2025-12-14 14:09:53.000000 ./usr/share/info/SymbolicPowers.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2157 2025-12-14 14:09:53.000000 ./usr/share/info/SymmetricPolynomials.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 14151 2025-12-14 14:09:53.000000 ./usr/share/info/TSpreadIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 17554 2025-12-14 14:09:53.000000 ./usr/share/info/Tableaux.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 1559 2025-12-14 14:09:53.000000 ./usr/share/info/TangentCone.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 47112 2025-12-14 14:09:53.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 47116 2025-12-14 14:09:53.000000 ./usr/share/info/TateOnProducts.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22604 2025-12-14 14:09:53.000000 ./usr/share/info/TensorComplexes.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 2389 2025-12-14 14:09:53.000000 ./usr/share/info/TerraciniLoci.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 31171 2025-12-14 14:09:53.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 31190 2025-12-14 14:09:53.000000 ./usr/share/info/TestIdeals.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 15054 2025-12-14 14:09:53.000000 ./usr/share/info/Text.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 22883 2025-12-14 14:09:53.000000 ./usr/share/info/ThinSincereQuivers.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 8461 2025-12-14 14:09:53.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 8204 2025-12-14 14:09:53.000000 ./usr/share/info/ThreadedGB.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 13901 2025-12-14 14:09:53.000000 ./usr/share/info/Topcom.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7599 2025-12-14 14:09:53.000000 ./usr/share/info/TorAlgebra.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7449 2025-12-14 14:09:53.000000 ./usr/share/info/ToricHigherDirectImages.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 4015 2025-12-14 14:09:53.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 4016 2025-12-14 14:09:53.000000 ./usr/share/info/ToricInvariants.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 6581 2025-12-14 14:09:53.000000 ./usr/share/info/ToricTopology.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 31435 2025-12-14 14:09:53.000000 ./usr/share/info/ToricVectorBundles.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9584 2025-12-14 14:09:53.000000 ./usr/share/info/TriangularSets.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 13681 2025-12-14 14:09:53.000000 ./usr/share/info/Triangulations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 13680 2025-12-14 14:09:53.000000 ./usr/share/info/Triangulations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 7188 2025-12-14 14:09:53.000000 ./usr/share/info/Triplets.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 11010 2025-12-14 14:09:53.000000 ./usr/share/info/Tropical.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10698 2025-12-14 14:09:53.000000 ./usr/share/info/TropicalToric.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 5772 2025-12-14 14:09:53.000000 ./usr/share/info/Truncations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8693 2025-12-14 14:09:53.000000 ./usr/share/info/Units.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 4687 2025-12-14 14:09:53.000000 ./usr/share/info/VNumber.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8877 2025-12-14 14:09:53.000000 ./usr/share/info/Valuations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 44204 2025-12-14 14:09:53.000000 ./usr/share/info/Varieties.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 19378 2025-12-14 14:09:53.000000 ./usr/share/info/VectorFields.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 51845 2025-12-14 14:09:53.000000 ./usr/share/info/VectorGraphics.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 41369 2025-12-14 14:09:53.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 41370 2025-12-14 14:09:53.000000 ./usr/share/info/VersalDeformations.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 12693 2025-12-14 14:09:53.000000 ./usr/share/info/VirtualResolutions.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 10443 2025-12-14 14:09:53.000000 ./usr/share/info/Visualize.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 38082 2025-12-14 14:09:53.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 10700 2025-12-14 14:09:53.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 38098 2025-12-14 14:09:53.000000 ./usr/share/info/WeilDivisors.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 10702 2025-12-14 14:09:53.000000 ./usr/share/info/WeylAlgebras.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 33226 2025-12-14 14:09:53.000000 ./usr/share/info/WeylGroups.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 14777 2025-12-14 14:09:53.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 14775 2025-12-14 14:09:53.000000 ./usr/share/info/WhitneyStratifications.info.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 8865 2025-12-14 14:09:53.000000 ./usr/share/info/XML.info.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 49484 2025-12-14 14:09:53.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 49481 2025-12-14 14:09:53.000000 ./usr/share/info/gfanInterface.info.gz │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/lintian/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/lintian/overrides/ │ │ │ -rw-r--r-- 0 root (0) root (0) 11489 2025-12-14 14:09:53.000000 ./usr/share/lintian/overrides/macaulay2-common │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/auto-render.min.js -> ../../../../javascript/katex/contrib/auto-render.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/copy-tex.min.js -> ../../../../javascript/katex/contrib/copy-tex.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/contrib/render-a11y-string.min.js -> ../../../../javascript/katex/contrib/render-a11y-string.js │ │ │ lrwxrwxrwx 0 root (0) root (0) 0 2025-12-14 14:09:53.000000 ./usr/share/Macaulay2/Style/katex/fonts/KaTeX_AMS-Regular.ttf -> ../../../../fonts/truetype/katex/KaTeX_AMS-Regular.ttf │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/example-output/___Check.out │ │ │ @@ -10,25 +10,25 @@ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ - -- 1.71138s elapsed │ │ │ + -- 1.5172s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o3 : Complex │ │ │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ - -- 2.15695s elapsed │ │ │ + -- 1.7848s elapsed │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AInfinity/html/___Check.html │ │ │ @@ -90,28 +90,28 @@ │ │ │ 1 │ │ │ o2 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i3 : elapsedTime burkeResolution(M, 7, Check => false)
│ │ │ - -- 1.71138s elapsed
│ │ │ + -- 1.5172s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o3 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o3 : Complex
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i4 : elapsedTime burkeResolution(M, 7, Check => true)
│ │ │ - -- 2.15695s elapsed
│ │ │ + -- 1.7848s elapsed
│ │ │  
│ │ │        1      3      9      27      81      243      729      2187
│ │ │  o4 = R  <-- R  <-- R  <-- R   <-- R   <-- R    <-- R    <-- R
│ │ │                                                               
│ │ │       0      1      2      3       4       5        6        7
│ │ │  
│ │ │  o4 : Complex
│ │ │ ├── html2text {} │ │ │ │ @@ -23,24 +23,24 @@ │ │ │ │ i2 : M = coker vars R │ │ │ │ │ │ │ │ o2 = cokernel | a b c | │ │ │ │ │ │ │ │ 1 │ │ │ │ o2 : R-module, quotient of R │ │ │ │ i3 : elapsedTime burkeResolution(M, 7, Check => false) │ │ │ │ - -- 1.71138s elapsed │ │ │ │ + -- 1.5172s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o3 : Complex │ │ │ │ i4 : elapsedTime burkeResolution(M, 7, Check => true) │ │ │ │ - -- 2.15695s elapsed │ │ │ │ + -- 1.7848s elapsed │ │ │ │ │ │ │ │ 1 3 9 27 81 243 729 2187 │ │ │ │ o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ o4 : Complex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjoint__Matrix.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ o8 : BettiTally │ │ │ │ │ │ i9 : c=codim I │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ i10 : elapsedTime fI=res I │ │ │ - -- .0228791s elapsed │ │ │ + -- .030915s elapsed │ │ │ │ │ │ 1 14 33 28 8 │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_adjunction__Process.out │ │ │ @@ -87,30 +87,30 @@ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : phi=map(P2,Pn,H); │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ i15 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .670263s elapsed │ │ │ + -- .583559s elapsed │ │ │ │ │ │ 0 1 │ │ │ o15 = total: 1 11 │ │ │ 0: 1 . │ │ │ 1: . 3 │ │ │ 2: . 8 │ │ │ │ │ │ o15 : BettiTally │ │ │ │ │ │ i16 : I'== I │ │ │ │ │ │ o16 = true │ │ │ │ │ │ i17 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 5.77797s elapsed │ │ │ + -- 5.57033s elapsed │ │ │ │ │ │ i18 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o18 = Tally{(1, 1, total: 1 2) => 5} │ │ │ 0: 1 2 │ │ │ 0 1 │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/example-output/_parametrization.out │ │ │ @@ -79,40 +79,40 @@ │ │ │ 1: . . │ │ │ 2: . . │ │ │ 3: . 8 │ │ │ │ │ │ o13 : BettiTally │ │ │ │ │ │ i14 : elapsedTime sub(I,H) │ │ │ - -- .0136638s elapsed │ │ │ + -- .0147241s elapsed │ │ │ │ │ │ o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) │ │ │ │ │ │ o14 : Ideal of P2 │ │ │ │ │ │ i15 : phi=map(P2,Pn,H); │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ i16 : elapsedTime betti(I'=trim ker phi) │ │ │ - -- .0563731s elapsed │ │ │ + -- .0686235s elapsed │ │ │ │ │ │ 0 1 │ │ │ o16 = total: 1 12 │ │ │ 0: 1 . │ │ │ 1: . 12 │ │ │ │ │ │ o16 : BettiTally │ │ │ │ │ │ i17 : I'== I │ │ │ │ │ │ o17 = true │ │ │ │ │ │ i18 : elapsedTime basePts=primaryDecomposition ideal H; │ │ │ - -- 1.83465s elapsed │ │ │ + -- 1.65508s elapsed │ │ │ │ │ │ i19 : tally apply(basePts,c->(dim c, degree c, betti c)) │ │ │ │ │ │ 0 1 │ │ │ o19 = Tally{(0, 34, total: 1 15) => 1} │ │ │ 0: 1 . │ │ │ 1: . . │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjoint__Matrix.html │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ │ │ o9 = 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i10 : elapsedTime fI=res I
│ │ │ - -- .0228791s elapsed
│ │ │ + -- .030915s elapsed
│ │ │  
│ │ │          1       14       33       28       8
│ │ │  o10 = Pn  <-- Pn   <-- Pn   <-- Pn   <-- Pn  <-- 0
│ │ │                                                    
│ │ │        0       1        2        3        4       5
│ │ │  
│ │ │  o10 : ChainComplex
│ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2: . 12 │ │ │ │ │ │ │ │ o8 : BettiTally │ │ │ │ i9 : c=codim I │ │ │ │ │ │ │ │ o9 = 4 │ │ │ │ i10 : elapsedTime fI=res I │ │ │ │ - -- .0228791s elapsed │ │ │ │ + -- .030915s elapsed │ │ │ │ │ │ │ │ 1 14 33 28 8 │ │ │ │ o10 = Pn <-- Pn <-- Pn <-- Pn <-- Pn <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o10 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_adjunction__Process.html │ │ │ @@ -217,15 +217,15 @@ │ │ │ │ │ │ o14 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .670263s elapsed
│ │ │ + -- .583559s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o15 = total: 1 11
│ │ │            0: 1  .
│ │ │            1: .  3
│ │ │            2: .  8
│ │ │  
│ │ │ @@ -238,15 +238,15 @@
│ │ │  
│ │ │  o16 = true
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 5.77797s elapsed
│ │ │ + -- 5.57033s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                            0 1
│ │ │ ├── html2text {}
│ │ │ │ @@ -110,28 +110,28 @@
│ │ │ │            6: . 7
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o14 : RingMap P2 <-- Pn
│ │ │ │  i15 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .670263s elapsed
│ │ │ │ + -- .583559s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o15 = total: 1 11
│ │ │ │            0: 1  .
│ │ │ │            1: .  3
│ │ │ │            2: .  8
│ │ │ │  
│ │ │ │  o15 : BettiTally
│ │ │ │  i16 : I'== I
│ │ │ │  
│ │ │ │  o16 = true
│ │ │ │  i17 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 5.77797s elapsed
│ │ │ │ + -- 5.57033s elapsed
│ │ │ │  i18 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                            0 1
│ │ │ │  o18 = Tally{(1, 1, total: 1 2) => 5}
│ │ │ │                         0: 1 2
│ │ │ │                            0 1
│ │ │ │              (1, 3, total: 1 3) => 8
│ │ ├── ./usr/share/doc/Macaulay2/AdjunctionForSurfaces/html/_parametrization.html
│ │ │ @@ -193,15 +193,15 @@
│ │ │  
│ │ │  o13 : BettiTally
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : elapsedTime sub(I,H)
│ │ │ - -- .0136638s elapsed
│ │ │ + -- .0147241s elapsed
│ │ │  
│ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │  
│ │ │  o14 : Ideal of P2
│ │ │ │ │ │ │ │ │ │ │ │ @@ -210,15 +210,15 @@ │ │ │ │ │ │ o15 : RingMap P2 <-- Pn │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ - -- .0563731s elapsed
│ │ │ + -- .0686235s elapsed
│ │ │  
│ │ │               0  1
│ │ │  o16 = total: 1 12
│ │ │            0: 1  .
│ │ │            1: . 12
│ │ │  
│ │ │  o16 : BettiTally
│ │ │ @@ -230,15 +230,15 @@ │ │ │ │ │ │ o17 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ - -- 1.83465s elapsed
│ │ │ + -- 1.65508s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │  
│ │ │                             0  1
│ │ │ ├── html2text {}
│ │ │ │ @@ -82,36 +82,36 @@
│ │ │ │            0: 1 .
│ │ │ │            1: . .
│ │ │ │            2: . .
│ │ │ │            3: . 8
│ │ │ │  
│ │ │ │  o13 : BettiTally
│ │ │ │  i14 : elapsedTime sub(I,H)
│ │ │ │ - -- .0136638s elapsed
│ │ │ │ + -- .0147241s elapsed
│ │ │ │  
│ │ │ │  o14 = ideal (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
│ │ │ │  
│ │ │ │  o14 : Ideal of P2
│ │ │ │  i15 : phi=map(P2,Pn,H);
│ │ │ │  
│ │ │ │  o15 : RingMap P2 <-- Pn
│ │ │ │  i16 : elapsedTime betti(I'=trim ker phi)
│ │ │ │ - -- .0563731s elapsed
│ │ │ │ + -- .0686235s elapsed
│ │ │ │  
│ │ │ │               0  1
│ │ │ │  o16 = total: 1 12
│ │ │ │            0: 1  .
│ │ │ │            1: . 12
│ │ │ │  
│ │ │ │  o16 : BettiTally
│ │ │ │  i17 : I'== I
│ │ │ │  
│ │ │ │  o17 = true
│ │ │ │  i18 : elapsedTime basePts=primaryDecomposition ideal H;
│ │ │ │ - -- 1.83465s elapsed
│ │ │ │ + -- 1.65508s elapsed
│ │ │ │  i19 : tally apply(basePts,c->(dim c, degree c, betti c))
│ │ │ │  
│ │ │ │                             0  1
│ │ │ │  o19 = Tally{(0, 34, total: 1 15) => 1}
│ │ │ │                          0: 1  .
│ │ │ │                          1: .  .
│ │ │ │                          2: .  .
│ │ ├── ./usr/share/doc/Macaulay2/BGG/example-output/_pure__Resolution.out
│ │ │ @@ -114,26 +114,26 @@
│ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │  
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │  
│ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ + -- used 0.560535s (cpu); 0.454712s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │  o14 : BettiTally
│ │ │  
│ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ + -- used 0.587028s (cpu); 0.484857s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/BGG/html/_pure__Resolution.html
│ │ │ @@ -253,15 +253,15 @@
│ │ │                4      4
│ │ │  o13 : Matrix A  <-- A
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ + -- used 0.560535s (cpu); 0.454712s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o14 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │  
│ │ │ @@ -272,15 +272,15 @@
│ │ │          
│ │ │

With the form pureResolution(p,q,D) we can directly create the situation of pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables of characteristic p, created by the script. For a given number of variables in A this runs much faster than taking a random matrix M.

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -192,26 +192,26 @@ │ │ │ │ o18 : ActionOnComplex │ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ │ - -- .852762s elapsed │ │ │ │ + -- .839315s elapsed │ │ │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o20 : Character │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ │ - -- 34.344s elapsed │ │ │ │ + -- 27.1288s elapsed │ │ │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ i30 : M = Is2 / I2; │ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ │ - -- 14.2617s elapsed │ │ │ │ + -- 12.529s elapsed │ │ │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ │ │ o32 : Character │ │ │ │ i33 : b/T │ │ ├── ./usr/share/doc/Macaulay2/Bruns/example-output/_bruns.out │ │ │ @@ -230,15 +230,15 @@ │ │ │ 0: 1 . . . . │ │ │ 1: . 4 2 . . │ │ │ 2: . 1 6 5 1 │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ i23 : time j=bruns F.dd_3; │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc) │ │ │ + -- used 0.33925s (cpu); 0.252181s (thread); 0s (gc) │ │ │ │ │ │ o23 : Ideal of S │ │ │ │ │ │ i24 : betti res j │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o24 = total: 1 3 6 5 1 │ │ ├── ./usr/share/doc/Macaulay2/Bruns/html/_bruns.html │ │ │ @@ -380,15 +380,15 @@ │ │ │ │ │ │ o22 : BettiTally │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ + -- used 0.587028s (cpu); 0.484857s (thread); 0s (gc)
│ │ │  
│ │ │               0 1 2
│ │ │  o15 = total: 3 6 3
│ │ │            0: 3 . .
│ │ │            1: . 6 .
│ │ │            2: . . 3
│ │ │ ├── html2text {}
│ │ │ │ @@ -161,30 +161,30 @@
│ │ │ │        | -30a-29b -29a-24b -47a-39b 38a+2b   |
│ │ │ │        | 19a+19b  -38a-16b -18a-13b 16a+22b  |
│ │ │ │        | -10a-29b 39a+21b  -43a-15b 45a-34b  |
│ │ │ │  
│ │ │ │                4      4
│ │ │ │  o13 : Matrix A  <-- A
│ │ │ │  i14 : time betti (F = pureResolution(M,{0,2,4}))
│ │ │ │ - -- used 0.440925s (cpu); 0.367004s (thread); 0s (gc)
│ │ │ │ + -- used 0.560535s (cpu); 0.454712s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o14 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ │ │  
│ │ │ │  o14 : BettiTally
│ │ │ │  With the form pureResolution(p,q,D) we can directly create the situation of
│ │ │ │  pureResolution(M,D) where M is generic product(m_i+1) x #D-1+sum(m_i) matrix of
│ │ │ │  linear forms defined over a ring with product(m_i+1) * #D-1+sum(m_i) variables
│ │ │ │  of characteristic p, created by the script. For a given number of variables in
│ │ │ │  A this runs much faster than taking a random matrix M.
│ │ │ │  i15 : time betti (F = pureResolution(11,4,{0,2,4}))
│ │ │ │ - -- used 0.477334s (cpu); 0.400537s (thread); 0s (gc)
│ │ │ │ + -- used 0.587028s (cpu); 0.484857s (thread); 0s (gc)
│ │ │ │  
│ │ │ │               0 1 2
│ │ │ │  o15 = total: 3 6 3
│ │ │ │            0: 3 . .
│ │ │ │            1: . 6 .
│ │ │ │            2: . . 3
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/example-output/_run__Benchmarks.out
│ │ │ @@ -1,10 +1,10 @@
│ │ │  -- -*- M2-comint -*- hash: 1330545576567
│ │ │  
│ │ │  i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025
│ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.249  
│ │ │ +-- beginning computation Wed Jan  7 12:26:50 UTC 2026
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .175224 seconds
│ │ │  
│ │ │  i2 :
│ │ ├── ./usr/share/doc/Macaulay2/Benchmark/html/_run__Benchmarks.html
│ │ │ @@ -75,19 +75,19 @@
│ │ │          
│ │ │

The tests available are:
"deg2generic" -- gb of a generic ideal of codimension 2 and degree 2
"gb4by4comm" -- gb of the ideal of generic commuting 4 by 4 matrices over ZZ/101
"gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables
"gbB148" -- gb of Bayesian graph ideal #148
"res39" -- res of a generic 3 by 9 matrix over ZZ/101
"resG25" -- res of the coordinate ring of Grassmannian(2,5)
"yang-gb1" -- an example of Yang-Hui He arising in string theory
"yang-subring" -- an example of Yang-Hui He

│ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │
i1 : runBenchmarks "res39"
│ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025
│ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ --- AMD EPYC 7702P 64-Core Processor  AuthenticAMD  cpu MHz 1996.249  
│ │ │ +-- beginning computation Wed Jan  7 12:26:50 UTC 2026
│ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
│ │ │ +-- Intel Xeon Processor (Skylake, IBRS)  GenuineIntel  cpu MHz 2099.998  
│ │ │  -- Macaulay2 1.25.11, compiled with gcc 15.2.0
│ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds
│ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .175224 seconds │ │ │
│ │ │ │ │ │
│ │ │
│ │ │

For the programmer

│ │ │ ├── html2text {} │ │ │ │ @@ -23,18 +23,18 @@ │ │ │ │ "gb3445" -- gb of an ideal with elements of degree 3,4,4,5 in 8 variables │ │ │ │ "gbB148" -- gb of Bayesian graph ideal #148 │ │ │ │ "res39" -- res of a generic 3 by 9 matrix over ZZ/101 │ │ │ │ "resG25" -- res of the coordinate ring of Grassmannian(2,5) │ │ │ │ "yang-gb1" -- an example of Yang-Hui He arising in string theory │ │ │ │ "yang-subring" -- an example of Yang-Hui He │ │ │ │ i1 : runBenchmarks "res39" │ │ │ │ --- beginning computation Sun Dec 14 15:31:42 UTC 2025 │ │ │ │ --- Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 │ │ │ │ -(2025-11-05) x86_64 GNU/Linux │ │ │ │ --- AMD EPYC 7702P 64-Core Processor AuthenticAMD cpu MHz 1996.249 │ │ │ │ +-- beginning computation Wed Jan 7 12:26:50 UTC 2026 │ │ │ │ +-- Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ +-- Intel Xeon Processor (Skylake, IBRS) GenuineIntel cpu MHz 2099.998 │ │ │ │ -- Macaulay2 1.25.11, compiled with gcc 15.2.0 │ │ │ │ --- res39: res of a generic 3 by 9 matrix over ZZ/101: .153215 seconds │ │ │ │ +-- res39: res of a generic 3 by 9 matrix over ZZ/101: .175224 seconds │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_u_n_B_e_n_c_h_m_a_r_k_s is a _c_o_m_m_a_n_d. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Benchmark.m2:297:0. │ │ ├── ./usr/share/doc/Macaulay2/Bertini/dump/rawdocumentation.dump │ │ │ @@ -515,15 +515,15 @@ │ │ │ Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbUNvbXBsZXgifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57fX0sU1BBTntUTzJ7bmV3 │ │ │ IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pVXNlckhvbW90b3B5LFJhbmRvbVJlYWxdLCJiZXJ0 │ │ │ aW5pVXNlckhvbW90b3B5KC4uLixSYW5kb21SZWFsPT4uLi4pIiwiQmVydGluaSJ9LCJSYW5kb21S │ │ │ ZWFsIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZhbHVlICIsInt9 │ │ │ In0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHsiVG9wRGlyZWN0 │ │ │ b3J5IiwiVG9wRGlyZWN0b3J5IiwiQmVydGluaSJ9LCJUb3BEaXJlY3RvcnkifSxUVHsiID0+ICJ9 │ │ │ -LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTI4NzA2LTAv │ │ │ +LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiXCIvdG1wL00yLTQwOTEzLTAv │ │ │ MFwiIn0sIiwgIixTUEFOeyJPcHRpb24gdG8gY2hhbmdlIGRpcmVjdG9yeSBmb3IgZmlsZSBzdG9y │ │ │ YWdlLiJ9fSxTUEFOe1RPMntuZXcgRG9jdW1lbnRUYWcgZnJvbSB7W2JlcnRpbmlVc2VySG9tb3Rv │ │ │ cHksVmVyYm9zZV0sImJlcnRpbmlVc2VySG9tb3RvcHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0 │ │ │ aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQg │ │ │ dmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwg │ │ │ b3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFnID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsi │ │ │ YmVydGluaVVzZXJIb21vdG9weSIsImJlcnRpbmlVc2VySG9tb3RvcHkiLCJCZXJ0aW5pIn0sIEtl │ │ │ @@ -1100,15 +1100,15 @@ │ │ │ ZXJ0aW5pUGFyYW1ldGVySG9tb3RvcHkoLi4uLFJhbmRvbVJlYWw9Pi4uLikiLCJCZXJ0aW5pIn0s │ │ │ IlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFs │ │ │ dWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGljaCBkZXNpZ25hdGVzIHN5bWJvbHMv │ │ │ c3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0byBiZSBhIHJhbmRvbSByZWFsIG51 │ │ │ bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BBTntUTzJ7bmV3IERvY3VtZW50VGFn │ │ │ IGZyb20geyJUb3BEaXJlY3RvcnkiLCJUb3BEaXJlY3RvcnkiLCJCZXJ0aW5pIn0sIlRvcERpcmVj │ │ │ dG9yeSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIsICIsU1BBTnsiZGVmYXVsdCB2YWx1ZSAiLCJc │ │ │ -Ii90bXAvTTItMjg3MDYtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ +Ii90bXAvTTItNDA5MTMtMC8wXCIifSwiLCAiLFNQQU57Ik9wdGlvbiB0byBjaGFuZ2UgZGlyZWN0 │ │ │ b3J5IGZvciBmaWxlIHN0b3JhZ2UuIn19LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVBhcmFtZXRlckhvbW90b3B5LFZlcmJvc2VdLCJiZXJ0aW5pUGFyYW1ldGVySG9tb3Rv │ │ │ cHkoLi4uLFZlcmJvc2U9Pi4uLikiLCJCZXJ0aW5pIn0sIlZlcmJvc2UifSxUVHsiID0+ICJ9LFRU │ │ │ eyIuLi4ifSwiLCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwiZmFsc2UifSwiLCAiLFNQQU57Ik9w │ │ │ dGlvbiB0byBzaWxlbmNlIGFkZGl0aW9uYWwgb3V0cHV0In19fSwgc3ltYm9sIERvY3VtZW50VGFn │ │ │ ID0+IG5ldyBEb2N1bWVudFRhZyBmcm9tIHsiYmVydGluaVBhcmFtZXRlckhvbW90b3B5IiwiYmVy │ │ │ dGluaVBhcmFtZXRlckhvbW90b3B5IiwiQmVydGluaSJ9LCBLZXkgPT4gYmVydGluaVBhcmFtZXRl │ │ │ @@ -2449,15 +2449,15 @@ │ │ │ YWw9Pi4uLikiLCJCZXJ0aW5pIn0sIlJhbmRvbVJlYWwifSxUVHsiID0+ICJ9LFRUeyIuLi4ifSwi │ │ │ LCAiLFNQQU57ImRlZmF1bHQgdmFsdWUgIiwie30ifSwiLCAiLFNQQU57ImFuIG9wdGlvbiB3aGlj │ │ │ aCBkZXNpZ25hdGVzIHN5bWJvbHMvc3RyaW5ncy92YXJpYWJsZXMgdGhhdCB3aWxsIGJlIHNldCB0 │ │ │ byBiZSBhIHJhbmRvbSByZWFsIG51bWJlciBvciByYW5kb20gY29tcGxleCBudW1iZXIifX0sU1BB │ │ │ TntUTzJ7bmV3IERvY3VtZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFRvcERpcmVj │ │ │ dG9yeV0sImJlcnRpbmlaZXJvRGltU29sdmUoLi4uLFRvcERpcmVjdG9yeT0+Li4uKSIsIkJlcnRp │ │ │ bmkifSwiVG9wRGlyZWN0b3J5In0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZh │ │ │ -dWx0IHZhbHVlICIsIlwiL3RtcC9NMi0yODcwNi0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ +dWx0IHZhbHVlICIsIlwiL3RtcC9NMi00MDkxMy0wLzBcIiJ9LCIsICIsU1BBTnsiT3B0aW9uIHRv │ │ │ IGNoYW5nZSBkaXJlY3RvcnkgZm9yIGZpbGUgc3RvcmFnZS4ifX0sU1BBTntUTzJ7bmV3IERvY3Vt │ │ │ ZW50VGFnIGZyb20ge1tiZXJ0aW5pWmVyb0RpbVNvbHZlLFVzZVJlZ2VuZXJhdGlvbl0sImJlcnRp │ │ │ bmlaZXJvRGltU29sdmUoLi4uLFVzZVJlZ2VuZXJhdGlvbj0+Li4uKSIsIkJlcnRpbmkifSwiVXNl │ │ │ UmVnZW5lcmF0aW9uIn0sVFR7IiA9PiAifSxUVHsiLi4uIn0sIiwgIixTUEFOeyJkZWZhdWx0IHZh │ │ │ bHVlICIsIi0xIn0sIiwgIixTUEFOe319LFNQQU57VE8ye25ldyBEb2N1bWVudFRhZyBmcm9tIHtb │ │ │ YmVydGluaVplcm9EaW1Tb2x2ZSxWZXJib3NlXSwiYmVydGluaVplcm9EaW1Tb2x2ZSguLi4sVmVy │ │ │ Ym9zZT0+Li4uKSIsIkJlcnRpbmkifSwiVmVyYm9zZSJ9LFRUeyIgPT4gIn0sVFR7Ii4uLiJ9LCIs │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Parameter__Homotopy.html │ │ │ @@ -72,15 +72,15 @@ │ │ │
  • HomVariableGroup => ..., default value {}, an option to group variables and use multihomogeneous homotopies
  • │ │ │
  • M2Precision (missing documentation) │ │ │ => ..., default value 53,
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40913-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list whose entries are lists of solutions for each target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40913-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list whose entries are lists of solutions for each │ │ │ │ target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__User__Homotopy.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ => ..., default value 53, │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex (missing documentation) │ │ │ => ..., default value {},
  • │ │ │
  • RandomReal (missing documentation) │ │ │ => ..., default value {},
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40913-0/0", Option to change directory for file storage.
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S0, a list, a list of solutions to the target system
    • │ │ │
    │ │ │
  • │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ value {}, │ │ │ │ o HomVariableGroup (missing documentation) => ..., default value {}, │ │ │ │ o M2Precision (missing documentation) => ..., default value 53, │ │ │ │ o OutputStyle (missing documentation) => ..., default value │ │ │ │ "OutPoints", │ │ │ │ o RandomComplex (missing documentation) => ..., default value {}, │ │ │ │ o RandomReal (missing documentation) => ..., default value {}, │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40913-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S0, a _l_i_s_t, a list of solutions to the target system │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method calls Bertini to track a user-defined homotopy. The user needs to │ │ ├── ./usr/share/doc/Macaulay2/Bertini/html/_bertini__Zero__Dim__Solve.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ => ..., default value "main_data", │ │ │
  • NameSolutionsFile (missing documentation) │ │ │ => ..., default value "raw_solutions",
  • │ │ │
  • OutputStyle (missing documentation) │ │ │ => ..., default value "OutPoints",
  • │ │ │
  • RandomComplex => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │
  • RandomReal => ..., default value {}, an option which designates symbols/strings/variables that will be set to be a random real number or random complex number
  • │ │ │ -
  • TopDirectory => ..., default value "/tmp/M2-28706-0/0", Option to change directory for file storage.
  • │ │ │ +
  • TopDirectory => ..., default value "/tmp/M2-40913-0/0", Option to change directory for file storage.
  • │ │ │
  • UseRegeneration (missing documentation) │ │ │ => ..., default value -1,
  • │ │ │
  • Verbose => ..., default value false, Option to silence additional output
  • │ │ │ │ │ │ │ │ │
  • Outputs:
      │ │ │
    • S, a list, a list of points that are contained in the variety of F
    • │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ "OutPoints", │ │ │ │ o _R_a_n_d_o_m_C_o_m_p_l_e_x => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ o _R_a_n_d_o_m_R_e_a_l => ..., default value {}, an option which designates │ │ │ │ symbols/strings/variables that will be set to be a random real │ │ │ │ number or random complex number │ │ │ │ - o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-28706-0/0", Option to │ │ │ │ + o _T_o_p_D_i_r_e_c_t_o_r_y => ..., default value "/tmp/M2-40913-0/0", Option to │ │ │ │ change directory for file storage. │ │ │ │ o UseRegeneration (missing documentation) => ..., default value -1, │ │ │ │ o _V_e_r_b_o_s_e => ..., default value false, Option to silence additional │ │ │ │ output │ │ │ │ * Outputs: │ │ │ │ o S, a _l_i_s_t, a list of points that are contained in the variety of F │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp1.out │ │ │ @@ -76,15 +76,15 @@ │ │ │ i8 : A = action(RI,S7) │ │ │ │ │ │ o8 = Complex with 15 actors │ │ │ │ │ │ o8 : ActionOnComplex │ │ │ │ │ │ i9 : elapsedTime c = character A │ │ │ - -- .559135s elapsed │ │ │ + -- .437094s elapsed │ │ │ │ │ │ o9 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 | │ │ │ (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 | │ │ │ (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp2.out │ │ │ @@ -100,15 +100,15 @@ │ │ │ i6 : A=action(RI,S6) │ │ │ │ │ │ o6 = Complex with 11 actors │ │ │ │ │ │ o6 : ActionOnComplex │ │ │ │ │ │ i7 : elapsedTime c=character A │ │ │ - -- .474916s elapsed │ │ │ + -- .498653s elapsed │ │ │ │ │ │ o7 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 | │ │ │ (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 | │ │ │ (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 | │ │ │ (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 | │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/example-output/___Betti__Characters_sp__Example_sp3.out │ │ │ @@ -187,27 +187,27 @@ │ │ │ i19 : A2 = action(RI2,G,Sub=>false) │ │ │ │ │ │ o19 = Complex with 6 actors │ │ │ │ │ │ o19 : ActionOnComplex │ │ │ │ │ │ i20 : elapsedTime a1 = character A1 │ │ │ - -- .852762s elapsed │ │ │ + -- .839315s elapsed │ │ │ │ │ │ o20 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {11}) => | 1 1 1 1 1 1 | │ │ │ (2, {13}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o20 : Character │ │ │ │ │ │ i21 : elapsedTime a2 = character A2 │ │ │ - -- 34.344s elapsed │ │ │ + -- 27.1288s elapsed │ │ │ │ │ │ o21 = Character over R │ │ │ │ │ │ (0, {0}) => | 1 1 1 1 1 1 | │ │ │ (1, {16}) => | 6 2 0 0 -1 -1 | │ │ │ (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 | │ │ │ @@ -297,15 +297,15 @@ │ │ │ i31 : B = action(M,G,Sub=>false) │ │ │ │ │ │ o31 = Module with 6 actors │ │ │ │ │ │ o31 : ActionOnGradedModule │ │ │ │ │ │ i32 : elapsedTime b = character(B,21) │ │ │ - -- 14.2617s elapsed │ │ │ + -- 12.529s elapsed │ │ │ │ │ │ o32 = Character over R │ │ │ │ │ │ (0, {21}) => | 1 1 1 1 1 1 | │ │ │ │ │ │ o32 : Character │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp1.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o8 : ActionOnComplex
  • │ │ │
    │ │ │
    i9 : elapsedTime c = character A
    │ │ │ - -- .559135s elapsed
    │ │ │ + -- .437094s elapsed
    │ │ │  
    │ │ │  o9 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │  o7 : List
    │ │ │ │  i8 : A = action(RI,S7)
    │ │ │ │  
    │ │ │ │  o8 = Complex with 15 actors
    │ │ │ │  
    │ │ │ │  o8 : ActionOnComplex
    │ │ │ │  i9 : elapsedTime c = character A
    │ │ │ │ - -- .559135s elapsed
    │ │ │ │ + -- .437094s elapsed
    │ │ │ │  
    │ │ │ │  o9 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {2}) => | 0 -1 1 -1 0 0 0 -1 2 0 2 2 2 6 14 |
    │ │ │ │       (2, {3}) => | 0 1 0 0 -1 1 -1 -1 -1 -1 -1 1 -1 5 35 |
    │ │ │ │       (3, {4}) => | 0 -1 0 0 1 1 1 -1 -1 1 -1 -1 -1 -5 35 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp2.html
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o6 : ActionOnComplex
    │ │ │
    │ │ │
    i7 : elapsedTime c=character A
    │ │ │ - -- .474916s elapsed
    │ │ │ + -- .498653s elapsed
    │ │ │  
    │ │ │  o7 = Character over R
    │ │ │        
    │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -113,15 +113,15 @@
    │ │ │ │  o5 : List
    │ │ │ │  i6 : A=action(RI,S6)
    │ │ │ │  
    │ │ │ │  o6 = Complex with 11 actors
    │ │ │ │  
    │ │ │ │  o6 : ActionOnComplex
    │ │ │ │  i7 : elapsedTime c=character A
    │ │ │ │ - -- .474916s elapsed
    │ │ │ │ + -- .498653s elapsed
    │ │ │ │  
    │ │ │ │  o7 = Character over R
    │ │ │ │  
    │ │ │ │       (0, {0}) => | 1 1 1 1 1 1 1 1 1 1 1 |
    │ │ │ │       (1, {5}) => | 0 1 0 2 0 1 3 0 2 4 6 |
    │ │ │ │       (1, {7}) => | 0 0 0 0 0 1 3 0 4 16 60 |
    │ │ │ │       (1, {9}) => | 0 0 0 0 2 2 2 0 4 8 20 |
    │ │ ├── ./usr/share/doc/Macaulay2/BettiCharacters/html/___Betti__Characters_sp__Example_sp3.html
    │ │ │ @@ -310,30 +310,30 @@
    │ │ │  
    │ │ │  o19 : ActionOnComplex
    │ │ │
    │ │ │
    i20 : elapsedTime a1 = character A1
    │ │ │ - -- .852762s elapsed
    │ │ │ + -- .839315s elapsed
    │ │ │  
    │ │ │  o20 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {8}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {11}) => | 1 1 1 1 1 1 |
    │ │ │        (2, {13}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o20 : Character
    │ │ │
    │ │ │
    i21 : elapsedTime a2 = character A2
    │ │ │ - -- 34.344s elapsed
    │ │ │ + -- 27.1288s elapsed
    │ │ │  
    │ │ │  o21 = Character over R
    │ │ │         
    │ │ │        (0, {0}) => | 1 1 1 1 1 1 |
    │ │ │        (1, {16}) => | 6 2 0 0 -1 -1 |
    │ │ │        (2, {19}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │        (2, {21}) => | 3 -1 0 1 a4+a2+a -a4-a2-a-1 |
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  
    │ │ │  o31 : ActionOnGradedModule
    │ │ │
    │ │ │
    i32 : elapsedTime b = character(B,21)
    │ │ │ - -- 14.2617s elapsed
    │ │ │ + -- 12.529s elapsed
    │ │ │  
    │ │ │  o32 = Character over R
    │ │ │         
    │ │ │        (0, {21}) => | 1 1 1 1 1 1 |
    │ │ │  
    │ │ │  o32 : Character
    │ │ │
    │ │ │
    i23 : time j=bruns F.dd_3;
    │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc)
    │ │ │ + -- used 0.33925s (cpu); 0.252181s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of S
    │ │ │
    │ │ │
    i24 : betti res j
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -230,15 +230,15 @@
    │ │ │ │  o22 = total: 1 5 8 5 1
    │ │ │ │            0: 1 . . . .
    │ │ │ │            1: . 4 2 . .
    │ │ │ │            2: . 1 6 5 1
    │ │ │ │  
    │ │ │ │  o22 : BettiTally
    │ │ │ │  i23 : time j=bruns F.dd_3;
    │ │ │ │ - -- used 0.354218s (cpu); 0.289007s (thread); 0s (gc)
    │ │ │ │ + -- used 0.33925s (cpu); 0.252181s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 : Ideal of S
    │ │ │ │  i24 : betti res j
    │ │ │ │  
    │ │ │ │               0 1 2 3 4
    │ │ │ │  o24 = total: 1 3 6 5 1
    │ │ │ │            0: 1 . . . .
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.out
    │ │ │ @@ -24,15 +24,15 @@
    │ │ │  
    │ │ │  o7 : CellComplex
    │ │ │  
    │ │ │  i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5    3 3   5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4
    │ │ │ -               1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y }
    │ │ │ +                      5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3
    │ │ │ +               1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y }
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/example-output/_hull__Complex.out
    │ │ │ @@ -19,16 +19,16 @@
    │ │ │                             
    │ │ │       -1     0      1      2
    │ │ │  
    │ │ │  o4 : Complex
    │ │ │  
    │ │ │  i5 : cells(1,H)/cellLabel
    │ │ │  
    │ │ │ -       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ -o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │ +       4 4    5 3    5 4   3 5    4 5   2        2
    │ │ │ +o5 = {x y z, x y z, x y , x y z, x y , x y*z, x*y z}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : cells(2,H)/cellLabel
    │ │ │  
    │ │ │         5 4    4 5
    │ │ │  o6 = {x y z, x y z}
    │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_cell__Complex_lp__Ring_cm__Simplicial__Complex_rp.html
    │ │ │ @@ -129,16 +129,16 @@
    │ │ │            
    │ │ │
    i8 : applyValues(cells C, l -> apply(l,cellLabel))
    │ │ │  
    │ │ │                        5   4    3 2   2 3     4   5
    │ │ │  o8 = HashTable{0 => {x , x y, x y , x y , x*y , x }                                       }
    │ │ │ -                      5    3 3   5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4
    │ │ │ -               1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , x y , x y }
    │ │ │ +                      5 2   2 4   5 3   5 4   5    5 2   5 3   5 4   4 2   4 4   5    3 3
    │ │ │ +               1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , x y, x y }
    │ │ │                        5 2   5 4   5 3   5 4   5 2   5 4   5 3   5 4
    │ │ │                 2 => {x y , x y , x y , x y , x y , x y , x y , x y }
    │ │ │  
    │ │ │  o8 : HashTable
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,18 +41,18 @@ │ │ │ │ │ │ │ │ o7 : CellComplex │ │ │ │ i8 : applyValues(cells C, l -> apply(l,cellLabel)) │ │ │ │ │ │ │ │ 5 4 3 2 2 3 4 5 │ │ │ │ o8 = HashTable{0 => {x , x y, x y , x y , x*y , x } │ │ │ │ } │ │ │ │ - 5 3 3 5 2 2 4 5 3 5 4 5 5 2 5 3 5 4 │ │ │ │ -4 2 4 4 │ │ │ │ - 1 => {x y, x y , x y , x y , x y , x y , x y, x y , x y , x y , │ │ │ │ -x y , x y } │ │ │ │ + 5 2 2 4 5 3 5 4 5 5 2 5 3 5 4 4 2 4 4 │ │ │ │ +5 3 3 │ │ │ │ + 1 => {x y , x y , x y , x y , x y, x y , x y , x y , x y , x y , │ │ │ │ +x y, x y } │ │ │ │ 5 2 5 4 5 3 5 4 5 2 5 4 5 3 5 4 │ │ │ │ 2 => {x y , x y , x y , x y , x y , x y , x y , x y } │ │ │ │ │ │ │ │ o8 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_e_l_l_C_o_m_p_l_e_x -- create a cell complex │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/CellularResolutions/html/_hull__Complex.html │ │ │ @@ -109,16 +109,16 @@ │ │ │ o4 : Complex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : cells(1,H)/cellLabel
    │ │ │  
    │ │ │ -       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ -o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │ +       4 4    5 3    5 4   3 5    4 5   2        2
    │ │ │ +o5 = {x y z, x y z, x y , x y z, x y , x y*z, x*y z}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : cells(2,H)/cellLabel
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,16 +39,16 @@
    │ │ │ │  o4 = S  <-- S  <-- S  <-- S
    │ │ │ │  
    │ │ │ │       -1     0      1      2
    │ │ │ │  
    │ │ │ │  o4 : Complex
    │ │ │ │  i5 : cells(1,H)/cellLabel
    │ │ │ │  
    │ │ │ │ -       5 3    5 4   3 5    4 5   2        2    4 4
    │ │ │ │ -o5 = {x y z, x y , x y z, x y , x y*z, x*y z, x y z}
    │ │ │ │ +       4 4    5 3    5 4   3 5    4 5   2        2
    │ │ │ │ +o5 = {x y z, x y z, x y , x y z, x y , x y*z, x*y z}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : cells(2,H)/cellLabel
    │ │ │ │  
    │ │ │ │         5 4    4 5
    │ │ │ │  o6 = {x y z, x y z}
    │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_minimize_lp__Chain__Complex_rp.out
    │ │ │ @@ -63,15 +63,15 @@
    │ │ │  o11 : ChainComplex
    │ │ │  
    │ │ │  i12 : isMinimalChainComplex E
    │ │ │  
    │ │ │  o12 = false
    │ │ │  
    │ │ │  i13 : time m = minimize (E[1]);
    │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc)
    │ │ │ + -- used 0.380932s (cpu); 0.292675s (thread); 0s (gc)
    │ │ │  
    │ │ │  i14 : isQuasiIsomorphism m
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : E[1] == source m
    │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/example-output/_resolution__Of__Chain__Complex.out
    │ │ │ @@ -27,18 +27,18 @@
    │ │ │  i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5);
    │ │ │  
    │ │ │  i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │  
    │ │ │  i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │  
    │ │ │  i8 : time m = resolutionOfChainComplex C;
    │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc)
    │ │ │ + -- used 0.110715s (cpu); 0.110716s (thread); 0s (gc)
    │ │ │  
    │ │ │  i9 : time n = cartanEilenbergResolution C;
    │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc)
    │ │ │ + -- used 0.281453s (cpu); 0.192379s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : betti source m
    │ │ │  
    │ │ │               0  1  2   3   4   5   6   7
    │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │            1: .  .  1   3   3   .   .   .
    │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_minimize_lp__Chain__Complex_rp.html
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │          
    │ │ │

    Now we minimize the result. The free summand we added to the end maps to zero, and thus is part of the minimization.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -301,15 +301,15 @@ │ │ │ │ │ │ o21 : A │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -160,15 +160,15 @@ │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o14 = ideal (x x - x x x , x x ) │ │ │ │ 0 3 1 2 4 2 5 │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time csmK=CSM(A,K) │ │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc) │ │ │ │ + -- used 1.42925s (cpu); 0.510427s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o15 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o15 : A │ │ │ │ i16 : csmKHash= CSM(A,K,Output=>HashForm) │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o21 = 9h h + 9h h + 9h h + 3h + 7h h + 3h + 3h + 2h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 1 2 │ │ │ │ │ │ │ │ o21 : A │ │ │ │ i22 : time CSM(A,K,m) │ │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc) │ │ │ │ + -- used 0.105777s (cpu); 0.0841649s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o22 = 7h h + 5h h + 4h h + h + 3h h + h │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o22 : A │ │ │ │ In the case where the ambient space is a toric variety which is not a product │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Check__Smooth.html │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o2 : NormalToricVariety │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i13 : time m = minimize (E[1]);
    │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc)
    │ │ │ + -- used 0.380932s (cpu); 0.292675s (thread); 0s (gc) │ │ │
    │ │ │
    i14 : isQuasiIsomorphism m
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ o11 : ChainComplex │ │ │ │ i12 : isMinimalChainComplex E │ │ │ │ │ │ │ │ o12 = false │ │ │ │ Now we minimize the result. The free summand we added to the end maps to zero, │ │ │ │ and thus is part of the minimization. │ │ │ │ i13 : time m = minimize (E[1]); │ │ │ │ - -- used 0.297722s (cpu); 0.239584s (thread); 0s (gc) │ │ │ │ + -- used 0.380932s (cpu); 0.292675s (thread); 0s (gc) │ │ │ │ i14 : isQuasiIsomorphism m │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : E[1] == source m │ │ │ │ │ │ │ │ o15 = true │ │ │ │ i16 : E' = target m │ │ ├── ./usr/share/doc/Macaulay2/ChainComplexExtras/html/_resolution__Of__Chain__Complex.html │ │ │ @@ -129,21 +129,21 @@ │ │ │
    │ │ │
    i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │
    │ │ │
    i8 : time m = resolutionOfChainComplex C;
    │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc)
    │ │ │ + -- used 0.110715s (cpu); 0.110716s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : time n = cartanEilenbergResolution C;
    │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc)
    │ │ │ + -- used 0.281453s (cpu); 0.192379s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : betti source m
    │ │ │  
    │ │ │               0  1  2   3   4   5   6   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,17 +49,17 @@
    │ │ │ │  
    │ │ │ │  o4 : RingMap R <-- S
    │ │ │ │  i5 : C = res(R^1/(ideal vars R))**(R^1/(ideal vars R)^5);
    │ │ │ │  i6 : mods = for i from 0 to max C list pushForward(f, C_i);
    │ │ │ │  i7 : C = chainComplex for i from min C+1 to max C list map(mods_(i-
    │ │ │ │  1),mods_i,substitute(matrix C.dd_i,S));
    │ │ │ │  i8 : time m = resolutionOfChainComplex C;
    │ │ │ │ - -- used 0.0968336s (cpu); 0.0968327s (thread); 0s (gc)
    │ │ │ │ + -- used 0.110715s (cpu); 0.110716s (thread); 0s (gc)
    │ │ │ │  i9 : time n = cartanEilenbergResolution C;
    │ │ │ │ - -- used 0.226002s (cpu); 0.156796s (thread); 0s (gc)
    │ │ │ │ + -- used 0.281453s (cpu); 0.192379s (thread); 0s (gc)
    │ │ │ │  i10 : betti source m
    │ │ │ │  
    │ │ │ │               0  1  2   3   4   5   6   7
    │ │ │ │  o10 = total: 1 19 80 181 312 484 447 156
    │ │ │ │            0: 1  3  3   1   .   .   .   .
    │ │ │ │            1: .  .  1   3   3   .   .   .
    │ │ │ │            2: .  1  3   3   2   .   .   .
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___C__S__M.out
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │                2              2
    │ │ │  o14 = ideal (x x  - x x x , x x )
    │ │ │                0 3    1 2 4   2 5
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc)
    │ │ │ + -- used 1.42925s (cpu); 0.510427s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │  
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │          2 2     2         2     2             2
    │ │ │  o21 = 9h h  + 9h h  + 9h h  + 3h  + 7h h  + 3h  + 3h  + 2h
    │ │ │          1 2     1 2     1 2     1     1 2     2     1     2
    │ │ │  
    │ │ │  o21 : A
    │ │ │  
    │ │ │  i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc)
    │ │ │ + -- used 0.105777s (cpu); 0.0841649s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Check__Smooth.out
    │ │ │ @@ -9,28 +9,28 @@
    │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │  
    │ │ │  o2 = U
    │ │ │  
    │ │ │  o2 : NormalToricVariety
    │ │ │  
    │ │ │  i3 : time CSM U
    │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ + -- used 0.288745s (cpu); 0.184081s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │  o3 : -----------------------------------------------------------------------------------------------
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │  
    │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ + -- used 0.475736s (cpu); 0.375863s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Comp__Method.out
    │ │ │ @@ -18,29 +18,29 @@
    │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │  
    │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ + -- used 0.93162s (cpu); 0.390155s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o5 : ------
    │ │ │          6
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ + -- used 2.46817s (cpu); 2.19007s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -53,29 +53,29 @@
    │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │  
    │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │  
    │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ + -- used 0.321391s (cpu); 0.233657s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │  o10 : ------
    │ │ │           4
    │ │ │          h
    │ │ │           1
    │ │ │  
    │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ + -- used 0.102983s (cpu); 0.102862s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler.out
    │ │ │ @@ -21,20 +21,20 @@
    │ │ │               2                                                        2
    │ │ │       - 14254x  - 11226x x  + 2653x x  + 12365x x  - 10226x x  - 12696x )
    │ │ │               3         0 4        1 4         2 4         3 4         4
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc)
    │ │ │ + -- used 0.104201s (cpu); 0.0514337s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │  
    │ │ │  i5 : time Euler I
    │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc)
    │ │ │ + -- used 0.359599s (cpu); 0.201281s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │  
    │ │ │  i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │  
    │ │ │  i7 : A=ring EulerIHash#"CSM"
    │ │ │  
    │ │ │ @@ -62,20 +62,20 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x )
    │ │ │          0 3
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc)
    │ │ │ + -- used 0.197439s (cpu); 0.103033s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │  
    │ │ │  i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc)
    │ │ │ + -- used 0.283546s (cpu); 0.118035s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : R=MultiProjCoordRing({2,2})
    │ │ │  
    │ │ │  o12 = R
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Euler__Affine.out
    │ │ │ @@ -13,12 +13,12 @@
    │ │ │              2    2    2
    │ │ │  o3 = ideal(x  + x  + x  - 1)
    │ │ │              1    2    3
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time EulerAffine I
    │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc)
    │ │ │ + -- used 0.0851631s (cpu); 0.0688623s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Inds__Of__Smooth.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ + -- used 6.54387s (cpu); 1.57433s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │  o3 : ----------
    │ │ │          3   3
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ + -- used 7.09559s (cpu); 1.57436s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Input__Is__Smooth.out
    │ │ │ @@ -3,43 +3,43 @@
    │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ + -- used 1.09918s (cpu); 0.534845s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ + -- used 0.0864587s (cpu); 0.0478865s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o4 : ------
    │ │ │          5
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i5 : time Chern I
    │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ + -- used 0.0621425s (cpu); 0.0418672s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/example-output/___Method.out
    │ │ │ @@ -7,29 +7,29 @@
    │ │ │  o1 : PolynomialRing
    │ │ │  
    │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : time CSM I
    │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ + -- used 4.08327s (cpu); 1.37892s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │  o3 : ------
    │ │ │          7
    │ │ │         h
    │ │ │          1
    │ │ │  
    │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ + -- used 0.863456s (cpu); 0.327363s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___C__S__M.html
    │ │ │ @@ -234,15 +234,15 @@
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │
    │ │ │
    i15 : time csmK=CSM(A,K)
    │ │ │ - -- used 0.984576s (cpu); 0.463326s (thread); 0s (gc)
    │ │ │ + -- used 1.42925s (cpu); 0.510427s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o15 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o15 : A
    │ │ │
    │ │ │
    i22 : time CSM(A,K,m)
    │ │ │ - -- used 0.111403s (cpu); 0.0580925s (thread); 0s (gc)
    │ │ │ + -- used 0.105777s (cpu); 0.0841649s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2    2            2
    │ │ │  o22 = 7h h  + 5h h  + 4h h  + h  + 3h h  + h
    │ │ │          1 2     1 2     1 2    1     1 2    2
    │ │ │  
    │ │ │  o22 : A
    │ │ │
    │ │ │
    i3 : time CSM U
    │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ + -- used 0.288745s (cpu); 0.184081s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x )
    │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5     0    6     0    7
    │ │ │
    │ │ │
    i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ + -- used 0.475736s (cpu); 0.375863s (thread); 0s (gc)
    │ │ │  
    │ │ │         7      6      5      4      3      2
    │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │         7      7      7      7      7      7     7
    │ │ │  
    │ │ │                                                  ZZ[x ..x ]
    │ │ │                                                      0   7
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,30 +16,30 @@
    │ │ │ │  o1 : Package
    │ │ │ │  i2 : U = toricProjectiveSpace 7
    │ │ │ │  
    │ │ │ │  o2 = U
    │ │ │ │  
    │ │ │ │  o2 : NormalToricVariety
    │ │ │ │  i3 : time CSM U
    │ │ │ │ - -- used 0.246174s (cpu); 0.164624s (thread); 0s (gc)
    │ │ │ │ + -- used 0.288745s (cpu); 0.184081s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o3 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ │ │  o3 : --------------------------------------------------------------------------
    │ │ │ │  ---------------------
    │ │ │ │       (x x x x x x x x , - x  + x , - x  + x , - x  + x , - x  + x , - x  + x ,
    │ │ │ │  - x  + x , - x  + x )
    │ │ │ │         0 1 2 3 4 5 6 7     0    1     0    2     0    3     0    4     0    5
    │ │ │ │  0    6     0    7
    │ │ │ │  i4 : time CSM(U,CheckSmooth=>false)
    │ │ │ │ - -- used 0.374312s (cpu); 0.295125s (thread); 0s (gc)
    │ │ │ │ + -- used 0.475736s (cpu); 0.375863s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         7      6      5      4      3      2
    │ │ │ │  o4 = 8x  + 28x  + 56x  + 70x  + 56x  + 28x  + 8x  + 1
    │ │ │ │         7      7      7      7      7      7     7
    │ │ │ │  
    │ │ │ │                                                  ZZ[x ..x ]
    │ │ │ │                                                      0   7
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Comp__Method.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ + -- used 0.93162s (cpu); 0.390155s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │         1      1      1      1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ + -- used 2.46817s (cpu); 2.19007s (thread); 0s (gc)
    │ │ │  
    │ │ │         5      4      3      2
    │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          6
    │ │ │ @@ -142,15 +142,15 @@
    │ │ │  
    │ │ │  o9 : Ideal of S
    │ │ │
    │ │ │
    i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ + -- used 0.321391s (cpu); 0.233657s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o10 = 3h  + 5h
    │ │ │          1     1
    │ │ │  
    │ │ │        ZZ[h ]
    │ │ │            1
    │ │ │ @@ -159,15 +159,15 @@
    │ │ │          h
    │ │ │           1
    │ │ │
    │ │ │
    i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ + -- used 0.102983s (cpu); 0.102862s (thread); 0s (gc)
    │ │ │  
    │ │ │          3     2
    │ │ │  o11 = 3H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │           4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,28 +32,28 @@
    │ │ │ │  using the regenerative cascade implemented in Bertini. This is done by choosing
    │ │ │ │  the option bertini, provided Bertini is _i_n_s_t_a_l_l_e_d_ _a_n_d_ _c_o_n_f_i_g_u_r_e_d.
    │ │ │ │  i3 : R=ZZ/32749[v_0..v_5];
    │ │ │ │  i4 : I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time CSM(I,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.629302s (cpu); 0.301613s (thread); 0s (gc)
    │ │ │ │ + -- used 0.93162s (cpu); 0.390155s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o5 = 6h  + 14h  + 14h  + 10h
    │ │ │ │         1      1      1      1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o5 : ------
    │ │ │ │          6
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i6 : time CSM(I,CompMethod=>PnResidual)
    │ │ │ │ - -- used 2.13127s (cpu); 1.82455s (thread); 0s (gc)
    │ │ │ │ + -- used 2.46817s (cpu); 2.19007s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         5      4      3      2
    │ │ │ │  o6 = 6H  + 14H  + 14H  + 10H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          6
    │ │ │ │ @@ -62,28 +62,28 @@
    │ │ │ │  
    │ │ │ │  o7 = 2
    │ │ │ │  i8 : S=QQ[s_0..s_3];
    │ │ │ │  i9 : K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
    │ │ │ │  
    │ │ │ │  o9 : Ideal of S
    │ │ │ │  i10 : time CSM(K,CompMethod=>ProjectiveDegree)
    │ │ │ │ - -- used 0.279106s (cpu); 0.195272s (thread); 0s (gc)
    │ │ │ │ + -- used 0.321391s (cpu); 0.233657s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o10 = 3h  + 5h
    │ │ │ │          1     1
    │ │ │ │  
    │ │ │ │        ZZ[h ]
    │ │ │ │            1
    │ │ │ │  o10 : ------
    │ │ │ │           4
    │ │ │ │          h
    │ │ │ │           1
    │ │ │ │  i11 : time CSM(K,CompMethod=>PnResidual)
    │ │ │ │ - -- used 0.0825143s (cpu); 0.0825209s (thread); 0s (gc)
    │ │ │ │ + -- used 0.102983s (cpu); 0.102862s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          3     2
    │ │ │ │  o11 = 3H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │           4
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler.html
    │ │ │ @@ -125,23 +125,23 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time Euler(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc)
    │ │ │ + -- used 0.104201s (cpu); 0.0514337s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : time Euler I
    │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc)
    │ │ │ + -- used 0.359599s (cpu); 0.201281s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    i6 : EulerIHash=Euler(I,Output=>HashForm);
    │ │ │ @@ -189,23 +189,23 @@ │ │ │
    │ │ │

    Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Euler(J,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc)
    │ │ │ + -- used 0.197439s (cpu); 0.103033s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 2
    │ │ │
    │ │ │
    i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
    │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc)
    │ │ │ + -- used 0.283546s (cpu); 0.118035s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │
    │ │ │
    │ │ │

    Now consider an example in \PP^2 \times \PP^2.

    │ │ │ ├── html2text {} │ │ │ │ @@ -74,19 +74,19 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 │ │ │ │ - 14254x - 11226x x + 2653x x + 12365x x - 10226x x - 12696x ) │ │ │ │ 3 0 4 1 4 2 4 3 4 4 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time Euler(I,InputIsSmooth=>true) │ │ │ │ - -- used 0.0576959s (cpu); 0.0354928s (thread); 0s (gc) │ │ │ │ + -- used 0.104201s (cpu); 0.0514337s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : time Euler I │ │ │ │ - -- used 0.254114s (cpu); 0.146833s (thread); 0s (gc) │ │ │ │ + -- used 0.359599s (cpu); 0.201281s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ i6 : EulerIHash=Euler(I,Output=>HashForm); │ │ │ │ i7 : A=ring EulerIHash#"CSM" │ │ │ │ │ │ │ │ o7 = A │ │ │ │ │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ o9 : Ideal of R │ │ │ │ Note that the ideal J above is a complete intersection, thus we may change the │ │ │ │ method option which may speed computation in some cases. We may also note that │ │ │ │ the ideal generated by the first 2 generators of I defines a smooth scheme and │ │ │ │ input this information into the method. This may also improve computation │ │ │ │ speed. │ │ │ │ i10 : time Euler(J,Method=>DirectCompleteInt) │ │ │ │ - -- used 0.182967s (cpu); 0.0690199s (thread); 0s (gc) │ │ │ │ + -- used 0.197439s (cpu); 0.103033s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 2 │ │ │ │ i11 : time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1}) │ │ │ │ - -- used 0.190575s (cpu); 0.0845693s (thread); 0s (gc) │ │ │ │ + -- used 0.283546s (cpu); 0.118035s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ Now consider an example in \PP^2 \times \PP^2. │ │ │ │ i12 : R=MultiProjCoordRing({2,2}) │ │ │ │ │ │ │ │ o12 = R │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Euler__Affine.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o3 : Ideal of R │ │ │
    │ │ │
    i4 : time EulerAffine I
    │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc)
    │ │ │ + -- used 0.0851631s (cpu); 0.0688623s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    │ │ │

    Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under probabilistic algorithm.

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o3 = ideal(x + x + x - 1) │ │ │ │ 1 2 3 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : time EulerAffine I │ │ │ │ - -- used 0.0874131s (cpu); 0.0492159s (thread); 0s (gc) │ │ │ │ + -- used 0.0851631s (cpu); 0.0688623s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ Observe that the algorithm is a probabilistic algorithm and may give a wrong │ │ │ │ answer with a small but nonzero probability. Read more under _p_r_o_b_a_b_i_l_i_s_t_i_c │ │ │ │ _a_l_g_o_r_i_t_h_m. │ │ │ │ ********** WWaayyss ttoo uussee EEuulleerrAAffffiinnee:: ********** │ │ │ │ * EulerAffine(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Inds__Of__Smooth.html │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ + -- used 6.54387s (cpu); 1.57433s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │        (h , h )
    │ │ │          1   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ + -- used 7.09559s (cpu); 1.57436s (thread); 0s (gc)
    │ │ │  
    │ │ │         2 2     2         2
    │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │         1 2     1 2     1 2
    │ │ │  
    │ │ │       ZZ[h ..h ]
    │ │ │           1   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,28 +16,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM(I,Method=>DirectCompletInt)
    │ │ │ │ - -- used 2.58397s (cpu); 1.12003s (thread); 0s (gc)
    │ │ │ │ + -- used 6.54387s (cpu); 1.57433s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o3 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ │ │  o3 : ----------
    │ │ │ │          3   3
    │ │ │ │        (h , h )
    │ │ │ │          1   2
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
    │ │ │ │ - -- used 2.73505s (cpu); 1.2427s (thread); 0s (gc)
    │ │ │ │ + -- used 7.09559s (cpu); 1.57436s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2 2     2         2
    │ │ │ │  o4 = 2h h  + 2h h  + 5h h
    │ │ │ │         1 2     1 2     1 2
    │ │ │ │  
    │ │ │ │       ZZ[h ..h ]
    │ │ │ │           1   2
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Input__Is__Smooth.html
    │ │ │ @@ -66,15 +66,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time CSM I
    │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ + -- used 1.09918s (cpu); 0.534845s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o3 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ + -- used 0.0864587s (cpu); 0.0478865s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o4 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │          
    │ │ │

    Note that one could, equivalently, use the command Chern instead in this case.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time Chern I
    │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ + -- used 0.0621425s (cpu); 0.0418672s (thread); 0s (gc)
    │ │ │  
    │ │ │         3
    │ │ │  o5 = 4h
    │ │ │         1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -9,42 +9,42 @@
    │ │ │ │  input ideal is known to define a smooth subscheme setting this option to true
    │ │ │ │  will speed up computations (it is set to false by default).
    │ │ │ │  i1 : R = ZZ/32749[x_0..x_4];
    │ │ │ │  i2 : I=ideal(random(2,R),random(2,R),random(1,R));
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 0.852243s (cpu); 0.438332s (thread); 0s (gc)
    │ │ │ │ + -- used 1.09918s (cpu); 0.534845s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o3 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,InputIsSmooth=>true)
    │ │ │ │ - -- used 0.0911228s (cpu); 0.0316495s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0864587s (cpu); 0.0478865s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o4 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o4 : ------
    │ │ │ │          5
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  Note that one could, equivalently, use the command _C_h_e_r_n instead in this case.
    │ │ │ │  i5 : time Chern I
    │ │ │ │ - -- used 0.0751141s (cpu); 0.0309694s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0621425s (cpu); 0.0418672s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         3
    │ │ │ │  o5 = 4h
    │ │ │ │         1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/CharacteristicClasses/html/___Method.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : time CSM I
    │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ + -- used 4.08327s (cpu); 1.37892s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ @@ -87,15 +87,15 @@
    │ │ │         h
    │ │ │          1
    │ │ │
    │ │ │
    i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ + -- used 0.863456s (cpu); 0.327363s (thread); 0s (gc)
    │ │ │  
    │ │ │          5      4     3
    │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │          1      1     1
    │ │ │  
    │ │ │       ZZ[h ]
    │ │ │           1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,28 +18,28 @@
    │ │ │ │  o1 = R
    │ │ │ │  
    │ │ │ │  o1 : PolynomialRing
    │ │ │ │  i2 : I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time CSM I
    │ │ │ │ - -- used 1.71002s (cpu); 0.984712s (thread); 0s (gc)
    │ │ │ │ + -- used 4.08327s (cpu); 1.37892s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o3 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ │ │  o3 : ------
    │ │ │ │          7
    │ │ │ │         h
    │ │ │ │          1
    │ │ │ │  i4 : time CSM(I,Method=>DirectCompleteInt)
    │ │ │ │ - -- used 0.438602s (cpu); 0.209232s (thread); 0s (gc)
    │ │ │ │ + -- used 0.863456s (cpu); 0.327363s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          5      4     3
    │ │ │ │  o4 = 12h  + 10h  + 6h
    │ │ │ │          1      1     1
    │ │ │ │  
    │ │ │ │       ZZ[h ]
    │ │ │ │           1
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/example-output/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.out
    │ │ │ @@ -16,32 +16,32 @@
    │ │ │  
    │ │ │  o2 : Digraph
    │ │ │  
    │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │  
    │ │ │  i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │  
    │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │  
    │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │  
    │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Chordal/html/_chordal__Net_lp__Hash__Table_cm__Hash__Table_cm__Elim__Tree_cm__Digraph_rp.html
    │ │ │ @@ -102,18 +102,18 @@
    │ │ │                
    i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │
    │ │ │
    i4 : tree = elimTree G
    │ │ │  
    │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ +o4 = ElimTree{a => c}
    │ │ │                b => c
    │ │ │                c => d
    │ │ │ -              d => null
    │ │ │ +              d => b
    │ │ │  
    │ │ │  o4 : ElimTree
    │ │ │
    │ │ │
    i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ @@ -128,18 +128,18 @@
    │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │
    │ │ │
    i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │  
    │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ -                 b => {b,  , b}
    │ │ │ -                 a => {a,  }
    │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │                   c => { , c}
    │ │ │ +                 d => { , d}
    │ │ │ +                 b => {b,  , b}
    │ │ │  
    │ │ │  o7 : ChordalNet
    │ │ │
    │ │ │
    
    │ │ │        
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -32,32 +32,32 @@
    │ │ │ │               d0 => {}
    │ │ │ │               d1 => {}
    │ │ │ │  
    │ │ │ │  o2 : Digraph
    │ │ │ │  i3 : G = chordalGraph digraph hashTable{a=>{b,c},b=>{c},c=>{d},d=>{}};
    │ │ │ │  i4 : tree = elimTree G
    │ │ │ │  
    │ │ │ │ -o4 = ElimTree{a => b   }
    │ │ │ │ +o4 = ElimTree{a => c}
    │ │ │ │                b => c
    │ │ │ │                c => d
    │ │ │ │ -              d => null
    │ │ │ │ +              d => b
    │ │ │ │  
    │ │ │ │  o4 : ElimTree
    │ │ │ │  i5 : rnk = hashTable{"a0"=>a, "a1"=>a, "b0"=>b, "b1"=>b, "b2"=>b,
    │ │ │ │                       "c0"=>c, "d0"=>d, "c1"=>c, "d1"=>d};
    │ │ │ │  i6 : eqs = hashTable{"a0" => ({a},{}), "a1" => ({},{}),
    │ │ │ │                       "b0" => ({b},{}), "b1" => ({},{}), "b2" => ({b},{}),
    │ │ │ │                       "c0" => ({c},{}), "c1" => ({},{}),
    │ │ │ │                       "d0" => ({},{}), "d1" => ({d},{}) };
    │ │ │ │  i7 : chordalNet(eqs,rnk,tree,DG)
    │ │ │ │  
    │ │ │ │ -o7 = ChordalNet{ d => { , d}    }
    │ │ │ │ -                 b => {b,  , b}
    │ │ │ │ -                 a => {a,  }
    │ │ │ │ +o7 = ChordalNet{ a => {a,  }    }
    │ │ │ │                   c => { , c}
    │ │ │ │ +                 d => { , d}
    │ │ │ │ +                 b => {b,  , b}
    │ │ │ │  
    │ │ │ │  o7 : ChordalNet
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _d_i_s_p_l_a_y_N_e_t -- displays a chordal network using Graphivz
    │ │ │ │      * _d_i_g_r_a_p_h_(_C_h_o_r_d_a_l_N_e_t_) -- digraph associated to a chordal network
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _c_h_o_r_d_a_l_N_e_t_(_H_a_s_h_T_a_b_l_e_,_H_a_s_h_T_a_b_l_e_,_E_l_i_m_T_r_e_e_,_D_i_g_r_a_p_h_) -- construct chordal
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/example-output/___Cohom__Calg.out
    │ │ │ @@ -184,15 +184,15 @@
    │ │ │        {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, -1, -1}}
    │ │ │  
    │ │ │  o19 : List
    │ │ │  
    │ │ │  i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.67408s elapsed
    │ │ │ + -- 3.33257s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -265,45 +265,45 @@
    │ │ │  i22 : degree(X_3 + X_7 + X_8)
    │ │ │  
    │ │ │  o22 = {0, 0, 1, 2, 0, -1}
    │ │ │  
    │ │ │  o22 : List
    │ │ │  
    │ │ │  i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .302915s elapsed
    │ │ │ + -- .531464s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │  
    │ │ │  i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.9792s elapsed
    │ │ │ + -- 10.2716s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │  
    │ │ │  i25 : assert(cohomvec1 == cohomvec2)
    │ │ │  
    │ │ │  i26 : degree(X_3 + X_7 - X_8)
    │ │ │  
    │ │ │  o26 = {0, 0, 1, 2, -2, -1}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .342126s elapsed
    │ │ │ + -- .5629s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .517346s elapsed
    │ │ │ - -- .517373s elapsed
    │ │ │ + -- .46318s elapsed
    │ │ │ + -- .463211s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │  
    │ │ │  i29 : assert(cohomvec1 == cohomvec2)
    │ │ ├── ./usr/share/doc/Macaulay2/CohomCalg/html/index.html
    │ │ │ @@ -309,15 +309,15 @@
    │ │ │  
    │ │ │  o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : elapsedTime hvecs = cohomCalg(X, D2)
    │ │ │ - -- 2.67408s elapsed
    │ │ │ + -- 3.33257s elapsed
    │ │ │  
    │ │ │  o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │        0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -399,25 +399,25 @@
    │ │ │  
    │ │ │  o22 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8)
    │ │ │ - -- .302915s elapsed
    │ │ │ + -- .531464s elapsed
    │ │ │  
    │ │ │  o23 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o23 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,0,-1))
    │ │ │ - -- 10.9792s elapsed
    │ │ │ + -- 10.2716s elapsed
    │ │ │  
    │ │ │  o24 = {1, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o24 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -433,26 +433,26 @@ │ │ │ │ │ │ o26 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8)
    │ │ │ - -- .342126s elapsed
    │ │ │ + -- .5629s elapsed
    │ │ │  
    │ │ │  o27 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o27 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j(X, OO_X(0,0,1,2,-2,-1))
    │ │ │ - -- .517346s elapsed
    │ │ │ - -- .517373s elapsed
    │ │ │ + -- .46318s elapsed
    │ │ │ + -- .463211s elapsed
    │ │ │  
    │ │ │  o28 = {0, 0, 0, 0, 0}
    │ │ │  
    │ │ │  o28 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -182,15 +182,15 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, -1, 0, 0, 0, -1}, {0, 0, -1, 0, 0, -1}, {0, 0, 0, -1, 0, -1}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, -1, -1}} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : elapsedTime hvecs = cohomCalg(X, D2) │ │ │ │ - -- 2.67408s elapsed │ │ │ │ + -- 3.33257s elapsed │ │ │ │ │ │ │ │ o20 = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -262,42 +262,42 @@ │ │ │ │ {2, 2, 3, 1, -4, -6} => {{0, 1, 0, 0, 0}, {{1, 1x1*x2}}} │ │ │ │ i22 : degree(X_3 + X_7 + X_8) │ │ │ │ │ │ │ │ o22 = {0, 0, 1, 2, 0, -1} │ │ │ │ │ │ │ │ o22 : List │ │ │ │ i23 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 + X_8) │ │ │ │ - -- .302915s elapsed │ │ │ │ + -- .531464s elapsed │ │ │ │ │ │ │ │ o23 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : elapsedTime cohomvec2 = for j from 0 to dim X list rank HH^j(X, OO_X │ │ │ │ (0,0,1,2,0,-1)) │ │ │ │ - -- 10.9792s elapsed │ │ │ │ + -- 10.2716s elapsed │ │ │ │ │ │ │ │ o24 = {1, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o24 : List │ │ │ │ i25 : assert(cohomvec1 == cohomvec2) │ │ │ │ i26 : degree(X_3 + X_7 - X_8) │ │ │ │ │ │ │ │ o26 = {0, 0, 1, 2, -2, -1} │ │ │ │ │ │ │ │ o26 : List │ │ │ │ i27 : elapsedTime cohomvec1 = cohomCalg(X_3 + X_7 - X_8) │ │ │ │ - -- .342126s elapsed │ │ │ │ + -- .5629s elapsed │ │ │ │ │ │ │ │ o27 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : elapsedTime cohomvec2 = elapsedTime for j from 0 to dim X list rank HH^j │ │ │ │ (X, OO_X(0,0,1,2,-2,-1)) │ │ │ │ - -- .517346s elapsed │ │ │ │ - -- .517373s elapsed │ │ │ │ + -- .46318s elapsed │ │ │ │ + -- .463211s elapsed │ │ │ │ │ │ │ │ o28 = {0, 0, 0, 0, 0} │ │ │ │ │ │ │ │ o28 : List │ │ │ │ i29 : assert(cohomvec1 == cohomvec2) │ │ │ │ _c_o_h_o_m_C_a_l_g computes cohomology vectors by calling CohomCalg. It also stashes │ │ │ │ it's results in the toric variety's cache table, so computations need not be │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/___Eisenbud__Shamash.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : len = 10 │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc) │ │ │ + -- used 8.49326s (cpu); 6.42483s (thread); 0s (gc) │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S \28 / S \36 / S \44 / S \52 / S \60 / S \68 / S \76 │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |--------| │ │ │ | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | | 2 3 | │ │ │ |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| |(x , x )| │ │ │ \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / \ 0 1 / │ │ │ │ │ │ @@ -140,37 +140,37 @@ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc) │ │ │ + -- used 0.284269s (cpu); 0.185904s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o20 : Complex │ │ │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc) │ │ │ + -- used 1.30926s (cpu); 1.01458s (thread); 0s (gc) │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ o21 : Complex │ │ │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc) │ │ │ + -- used 1.28157s (cpu); 0.966654s (thread); 0s (gc) │ │ │ │ │ │ 1 6 18 38 66 │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_sum__Two__Monomials.out │ │ │ @@ -2,21 +2,21 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc) │ │ │ + -- used 0.576534s (cpu); 0.451409s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc) │ │ │ + -- used 0.30923s (cpu); 0.169573s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc) │ │ │ + -- used 3.505e-06s (cpu); 2.743e-06s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/example-output/_two__Monomials.out │ │ │ @@ -2,23 +2,23 @@ │ │ │ │ │ │ i1 : setRandomSeed 0 │ │ │ -- setting random seed to 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : twoMonomials(2,3) │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc) │ │ │ + -- used 1.28068s (cpu); 0.802488s (thread); 0s (gc) │ │ │ 2 │ │ │ Tally{{{1, 1}} => 2 } │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc) │ │ │ + -- used 0.653202s (cpu); 0.438906s (thread); 0s (gc) │ │ │ 3 │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc) │ │ │ + -- used 0.301374s (cpu); 0.160576s (thread); 0s (gc) │ │ │ 4 │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/___Eisenbud__Shamash.html │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o6 = 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time G = EisenbudShamash(ff,F,len)
    │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc)
    │ │ │ + -- used 8.49326s (cpu); 6.42483s (thread); 0s (gc)
    │ │ │  
    │ │ │       /    S   \1     /    S   \5     /    S   \12     /    S   \20     /    S   \28     /    S   \36     /    S   \44     /    S   \52     /    S   \60     /    S   \68     /    S   \76
    │ │ │  o7 = |--------|  <-- |--------|  <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|   <-- |--------|
    │ │ │       |  2   3 |      |  2   3 |      |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |       |  2   3 |
    │ │ │       |(x , x )|      |(x , x )|      |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|       |(x , x )|
    │ │ │       \  0   1 /      \  0   1 /      \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /       \  0   1 /
    │ │ │                                                                                                                                                                                
    │ │ │ @@ -295,28 +295,28 @@
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : FF = time Shamash(R1,F,4)
    │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc)
    │ │ │ + -- used 0.284269s (cpu); 0.185904s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o20 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        0       1       2        3        4
    │ │ │  
    │ │ │  o20 : Complex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : GG = time EisenbudShamash(ff,F,4)
    │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc)
    │ │ │ + -- used 1.30926s (cpu); 1.01458s (thread); 0s (gc)
    │ │ │  
    │ │ │        / R\1     / R\6     / R\18     / R\38     / R\66
    │ │ │  o21 = |--|  <-- |--|  <-- |--|   <-- |--|   <-- |--|
    │ │ │        | 3|      | 3|      | 3|       | 3|       | 3|
    │ │ │        \c /      \c /      \c /       \c /       \c /
    │ │ │                                                   
    │ │ │        0         1         2          3          4
    │ │ │ @@ -328,15 +328,15 @@
    │ │ │          
    │ │ │

    The function also deals correctly with complexes F where min F is not 0:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i22 : GG = time EisenbudShamash(R1,F[2],4)
    │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc)
    │ │ │ + -- used 1.28157s (cpu); 0.966654s (thread); 0s (gc)
    │ │ │  
    │ │ │          1       6       18       38       66
    │ │ │  o22 = R1  <-- R1  <-- R1   <-- R1   <-- R1
    │ │ │                                           
    │ │ │        -2      -1      0        1        2
    │ │ │  
    │ │ │  o22 : Complex
    │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ o5 = R │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : len = 10 │ │ │ │ │ │ │ │ o6 = 10 │ │ │ │ i7 : time G = EisenbudShamash(ff,F,len) │ │ │ │ - -- used 6.66292s (cpu); 4.89797s (thread); 0s (gc) │ │ │ │ + -- used 8.49326s (cpu); 6.42483s (thread); 0s (gc) │ │ │ │ │ │ │ │ / S \1 / S \5 / S \12 / S \20 / S │ │ │ │ \28 / S \36 / S \44 / S \52 / S \60 / │ │ │ │ S \68 / S \76 │ │ │ │ o7 = |--------| <-- |--------| <-- |--------| <-- |--------| <-- |------- │ │ │ │ -| <-- |--------| <-- |--------| <-- |--------| <-- |--------| <-- |- │ │ │ │ -------| <-- |--------| │ │ │ │ @@ -165,36 +165,36 @@ │ │ │ │ o18 : Matrix R <-- R │ │ │ │ i19 : R1 = R/ideal ff │ │ │ │ │ │ │ │ o19 = R1 │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : FF = time Shamash(R1,F,4) │ │ │ │ - -- used 0.169356s (cpu); 0.0960445s (thread); 0s (gc) │ │ │ │ + -- used 0.284269s (cpu); 0.185904s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o20 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o20 : Complex │ │ │ │ i21 : GG = time EisenbudShamash(ff,F,4) │ │ │ │ - -- used 0.937459s (cpu); 0.720912s (thread); 0s (gc) │ │ │ │ + -- used 1.30926s (cpu); 1.01458s (thread); 0s (gc) │ │ │ │ │ │ │ │ / R\1 / R\6 / R\18 / R\38 / R\66 │ │ │ │ o21 = |--| <-- |--| <-- |--| <-- |--| <-- |--| │ │ │ │ | 3| | 3| | 3| | 3| | 3| │ │ │ │ \c / \c / \c / \c / \c / │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o21 : Complex │ │ │ │ The function also deals correctly with complexes F where min F is not 0: │ │ │ │ i22 : GG = time EisenbudShamash(R1,F[2],4) │ │ │ │ - -- used 0.93026s (cpu); 0.702132s (thread); 0s (gc) │ │ │ │ + -- used 1.28157s (cpu); 0.966654s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 6 18 38 66 │ │ │ │ o22 = R1 <-- R1 <-- R1 <-- R1 <-- R1 │ │ │ │ │ │ │ │ -2 -1 0 1 2 │ │ │ │ │ │ │ │ o22 : Complex │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_sum__Two__Monomials.html │ │ │ @@ -79,23 +79,23 @@ │ │ │ │ │ │ o1 = 0 │ │ │
    │ │ │
    i2 : sumTwoMonomials(2,3)
    │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc)
    │ │ │ + -- used 0.576534s (cpu); 0.451409s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{2, 2}, {1, 2}} => 3}
    │ │ │  
    │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc)
    │ │ │ + -- used 0.30923s (cpu); 0.169573s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │  
    │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.505e-06s (cpu); 2.743e-06s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{}
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,23 +18,23 @@ │ │ │ │ appropriate syzygy M of M0 = R/(m1+m2) where m1 and m2 are monomials of the │ │ │ │ same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : sumTwoMonomials(2,3) │ │ │ │ - -- used 0.370239s (cpu); 0.319739s (thread); 0s (gc) │ │ │ │ + -- used 0.576534s (cpu); 0.451409s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 3} │ │ │ │ │ │ │ │ - -- used 0.210104s (cpu); 0.138159s (thread); 0s (gc) │ │ │ │ + -- used 0.30923s (cpu); 0.169573s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ │ │ │ │ - -- used 3.697e-06s (cpu); 3.326e-06s (thread); 0s (gc) │ │ │ │ + -- used 3.505e-06s (cpu); 2.743e-06s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ssuummTTwwooMMoonnoommiiaallss:: ********** │ │ │ │ * sumTwoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/CompleteIntersectionResolutions/html/_two__Monomials.html │ │ │ @@ -83,25 +83,25 @@ │ │ │ │ │ │ o1 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : twoMonomials(2,3)
    │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc)
    │ │ │ + -- used 1.28068s (cpu); 0.802488s (thread); 0s (gc)
    │ │ │  2
    │ │ │  Tally{{{1, 1}} => 2        }
    │ │ │        {{2, 2}, {1, 2}} => 4
    │ │ │  
    │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc)
    │ │ │ + -- used 0.653202s (cpu); 0.438906s (thread); 0s (gc)
    │ │ │  3
    │ │ │  Tally{{{2, 2}, {1, 2}} => 2}
    │ │ │        {{3, 3}, {2, 3}} => 1
    │ │ │  
    │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc)
    │ │ │ + -- used 0.301374s (cpu); 0.160576s (thread); 0s (gc)
    │ │ │  4
    │ │ │  Tally{{{2, 2}, {1, 2}} => 1}
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,25 +20,25 @@ │ │ │ │ that is, for an appropriate syzygy M of M0 = R/(m1, m2) where m1 and m2 are │ │ │ │ monomials of the same degree. │ │ │ │ i1 : setRandomSeed 0 │ │ │ │ -- setting random seed to 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ i2 : twoMonomials(2,3) │ │ │ │ - -- used 0.802517s (cpu); 0.585358s (thread); 0s (gc) │ │ │ │ + -- used 1.28068s (cpu); 0.802488s (thread); 0s (gc) │ │ │ │ 2 │ │ │ │ Tally{{{1, 1}} => 2 } │ │ │ │ {{2, 2}, {1, 2}} => 4 │ │ │ │ │ │ │ │ - -- used 0.401303s (cpu); 0.335055s (thread); 0s (gc) │ │ │ │ + -- used 0.653202s (cpu); 0.438906s (thread); 0s (gc) │ │ │ │ 3 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 2} │ │ │ │ {{3, 3}, {2, 3}} => 1 │ │ │ │ │ │ │ │ - -- used 0.202221s (cpu); 0.138045s (thread); 0s (gc) │ │ │ │ + -- used 0.301374s (cpu); 0.160576s (thread); 0s (gc) │ │ │ │ 4 │ │ │ │ Tally{{{2, 2}, {1, 2}} => 1} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_w_o_M_o_n_o_m_i_a_l_s -- tally the sequences of BRanks for certain examples │ │ │ │ ********** WWaayyss ttoo uussee ttwwooMMoonnoommiiaallss:: ********** │ │ │ │ * twoMonomials(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ConformalBlocks/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=22 │ │ │ Y2Fub25pY2FsRGl2aXNvck0wbmJhcg== │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.out │ │ │ @@ -27,18 +27,18 @@ │ │ │ - ϵ*z*dy + 2ϵ - ϵ, x*dx + y*dy + z*dz - 2ϵ) │ │ │ │ │ │ o7 : Ideal of D │ │ │ │ │ │ i8 : assert(holonomicRank I == 4) │ │ │ │ │ │ i9 : elapsedTime A = connectionMatrices I; │ │ │ - -- 2.81078s elapsed │ │ │ + -- 2.60629s elapsed │ │ │ │ │ │ i10 : elapsedTime assert isIntegrable A │ │ │ - -- 5.94013s elapsed │ │ │ + -- 4.47441s elapsed │ │ │ │ │ │ i11 : netList A │ │ │ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o11 = || 2ϵ/x -y/x -z/x 0 | | │ │ │ || (4x2y2ϵ^2+4xy2zϵ^2-2x2z2ϵ^2-2y2z2ϵ^2-4xz3ϵ^2+x3zϵ-3xy2zϵ+2xz3ϵ)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (2x3y2ϵ-2x2y3ϵ+2x3yzϵ-2xy3zϵ-x3z2ϵ+x2yz2ϵ-xy2z2ϵ+y3z2ϵ-2x3yz+2xy3z)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-2x2y2zϵ-x3z2ϵ-3xy2z2ϵ+x2z3ϵ+y2z3ϵ+4xz4ϵ+2xy2z2-2xz4)/(2x4y2+2x3y3+x4yz+2x3y2z+x2y3z-x4z2-x3yz2-x2y2z2-xy3z2-x3z3-2x2yz3-xy2z3) (-xyz+xz2+yz2-z3)/(2x2y+2xy2-x2z-2xyz-y2z) | | │ │ │ || (-2xyz2ϵ^2-2y2z2ϵ^2-4yz3ϵ^2+2x2y2ϵ+x2yzϵ+xy2zϵ+2y2z2ϵ+2yz3ϵ)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (x2yz2ϵ+2xy2z2ϵ+y3z2ϵ+2xyz3ϵ+2y2z3ϵ-2x2y3-x2y2z-xy3z-x2yz2-y3z2-xyz3-y2z3)/(2x3y2z+x3yz2+x2y2z2-x3z3-xy2z3-x2z4-xyz4) (2x2y2ϵ+x2yzϵ+xy2zϵ-2x2z2ϵ+xyz2ϵ+y2z2ϵ-2xz3ϵ+2yz3ϵ-2x2y2-x2yz-xy2z+x2z2-y2z2+xz3-yz3)/(2x3y2+x3yz+x2y2z-x3z2-xy2z2-x2z3-xyz3) (-yz+z2)/(2xy-xz-yz) | | │ │ │ @@ -56,24 +56,24 @@ │ │ │ +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i12 : F = baseFractionField D; │ │ │ │ │ │ i13 : B = {1_D,dx,dy,dx*dy}; │ │ │ │ │ │ i14 : elapsedTime g = gaugeMatrix(I, B); │ │ │ - -- .73523s elapsed │ │ │ + -- .538947s elapsed │ │ │ │ │ │ 4 4 │ │ │ o14 : Matrix F <-- F │ │ │ │ │ │ i15 : elapsedTime A1 = gaugeTransform(g, A); │ │ │ - -- 1.57042s elapsed │ │ │ + -- 1.21076s elapsed │ │ │ │ │ │ i16 : elapsedTime assert isIntegrable A1 │ │ │ - -- .808615s elapsed │ │ │ + -- .955087s elapsed │ │ │ │ │ │ i17 : netList A1 │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o17 = || 0 1 0 0 | | │ │ │ || (-2ϵ^2+ϵ)/(x2-z2) (3xϵ+zϵ-2x)/(x2-z2) (yϵ+zϵ)/(x2-z2) (-y-z)/(x-z) | | │ │ │ || 0 0 0 1 | | │ │ │ @@ -96,18 +96,18 @@ │ │ │ {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)}, │ │ │ {0, 0, 0, -(x+y)*(x+z)*(y+z)}}); │ │ │ │ │ │ 4 4 │ │ │ o18 : Matrix F <-- F │ │ │ │ │ │ i19 : elapsedTime A2 = gaugeTransform(changeEps, A1); │ │ │ - -- .496173s elapsed │ │ │ + -- .388146s elapsed │ │ │ │ │ │ i20 : elapsedTime assert isIntegrable A2 │ │ │ - -- .830479s elapsed │ │ │ + -- .712828s elapsed │ │ │ │ │ │ i21 : netList A2 │ │ │ │ │ │ +-------------------------------------------------------------------------------------------+ │ │ │ o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0 0 | | │ │ │ || 0 ϵ/(x-z) 0 ϵ/(x+y) | | │ │ │ || 0 0 ϵ/(x+z) (-yϵ+zϵ)/(x2+xy+xz+yz) | | │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/example-output/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.out │ │ │ @@ -16,18 +16,18 @@ │ │ │ │ │ │ 2 │ │ │ o6 = {1, dx, dy, dy } │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime A = connectionMatrices I; │ │ │ - -- .267226s elapsed │ │ │ + -- .219553s elapsed │ │ │ │ │ │ i8 : elapsedTime assert isIntegrable A │ │ │ - -- .203883s elapsed │ │ │ + -- .181528s elapsed │ │ │ │ │ │ i9 : netList A │ │ │ │ │ │ +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o9 = || 0 1 0 0 || │ │ │ || 0 -1/x 1/x y/x || │ │ │ || -1/2xy -1/y (-x-3y+1)/2xy (-x-y+1)/2x || │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Cosmological_spcorrelator_spfor_spthe_sp2-site_spchain.html │ │ │ @@ -118,21 +118,21 @@ │ │ │
    │ │ │

    Then, we compute the system in connection form and verify that it meets the integrability conditions.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ 2 2 │ │ │ │ - a*c + e - b*c + f │ │ │ │ ----------*v, x + ----------*v) │ │ │ │ d*e - a*f d*e - a*f │ │ │ │ │ │ │ │ o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i6 : time phi^** q │ │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc) │ │ │ │ + -- used 0.184367s (cpu); 0.184366s (thread); 0s (gc) │ │ │ │ │ │ │ │ e d c b a │ │ │ │ o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v) │ │ │ │ f f f f f │ │ │ │ │ │ │ │ o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v] │ │ │ │ i7 : oo == p │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Segre__Class.html │ │ │ @@ -134,59 +134,59 @@ │ │ │ x x - 2x x x x + x x - 2x x x x - 2x x x x + 4x x x x + x x + 4x x x x - 2x x x x - 2x x x x - 2x x x x + x x │ │ │ 3 4 2 3 4 5 2 5 1 3 4 6 1 2 5 6 0 3 5 6 1 6 1 2 4 7 0 3 4 7 0 2 5 7 0 1 6 7 0 7 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- 2.81078s elapsed
    │ │ │ + -- 2.60629s elapsed │ │ │
    │ │ │
    i10 : elapsedTime assert isIntegrable A
    │ │ │ - -- 5.94013s elapsed
    │ │ │ + -- 4.47441s elapsed │ │ │
    │ │ │
    i11 : netList A
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │              
    │ │ │
    i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │
    │ │ │
    i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ - -- .73523s elapsed
    │ │ │ + -- .538947s elapsed
    │ │ │  
    │ │ │                4      4
    │ │ │  o14 : Matrix F  <-- F
    │ │ │
    │ │ │
    i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ - -- 1.57042s elapsed
    │ │ │ + -- 1.21076s elapsed │ │ │
    │ │ │
    i16 : elapsedTime assert isIntegrable A1
    │ │ │ - -- .808615s elapsed
    │ │ │ + -- .955087s elapsed │ │ │
    │ │ │
    i17 : netList A1
    │ │ │  
    │ │ │        +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ @@ -227,21 +227,21 @@
    │ │ │                4      4
    │ │ │  o18 : Matrix F  <-- F
    │ │ │
    │ │ │
    i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ - -- .496173s elapsed
    │ │ │ + -- .388146s elapsed │ │ │
    │ │ │
    i20 : elapsedTime assert isIntegrable A2
    │ │ │ - -- .830479s elapsed
    │ │ │ + -- .712828s elapsed │ │ │
    │ │ │
    i21 : netList A2
    │ │ │  
    │ │ │        +-------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,17 +41,17 @@
    │ │ │ │  
    │ │ │ │  o7 : Ideal of D
    │ │ │ │  First, we check that the system has finite holonomic rank using _h_o_l_o_n_o_m_i_c_R_a_n_k.
    │ │ │ │  i8 : assert(holonomicRank I == 4)
    │ │ │ │  Then, we compute the system in connection form and verify that it meets the
    │ │ │ │  integrability conditions.
    │ │ │ │  i9 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- 2.81078s elapsed
    │ │ │ │ + -- 2.60629s elapsed
    │ │ │ │  i10 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- 5.94013s elapsed
    │ │ │ │ + -- 4.47441s elapsed
    │ │ │ │  i11 : netList A
    │ │ │ │  
    │ │ │ │        +----------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │  -----------------------------------------------------------------------------------------------------------------
    │ │ │ │ @@ -227,22 +227,22 @@
    │ │ │ │  -----------------------------------------------------------------------------------+
    │ │ │ │  Next, we use _g_a_u_g_e_ _m_a_t_r_i_x for changing base to a base given by suitable set of
    │ │ │ │  standard monomials, and compute the _g_a_u_g_e_ _t_r_a_n_s_f_o_r_m with respect to this gauge
    │ │ │ │  matrix.
    │ │ │ │  i12 : F = baseFractionField D;
    │ │ │ │  i13 : B = {1_D,dx,dy,dx*dy};
    │ │ │ │  i14 : elapsedTime g = gaugeMatrix(I, B);
    │ │ │ │ - -- .73523s elapsed
    │ │ │ │ + -- .538947s elapsed
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o14 : Matrix F  <-- F
    │ │ │ │  i15 : elapsedTime A1 = gaugeTransform(g, A);
    │ │ │ │ - -- 1.57042s elapsed
    │ │ │ │ + -- 1.21076s elapsed
    │ │ │ │  i16 : elapsedTime assert isIntegrable A1
    │ │ │ │ - -- .808615s elapsed
    │ │ │ │ + -- .955087s elapsed
    │ │ │ │  i17 : netList A1
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  --------------------------------------------------------------------------+
    │ │ │ │  o17 = || 0                            1                      0
    │ │ │ │  0                                                      |
    │ │ │ │ @@ -300,17 +300,17 @@
    │ │ │ │                {0, ϵ*(x^2-z^2), 0, ϵ*(x+y)*(x+z)},
    │ │ │ │                {0, 0, ϵ*(y^2-z^2), ϵ*(x+y)*(y+z)},
    │ │ │ │                {0, 0, 0, -(x+y)*(x+z)*(y+z)}});
    │ │ │ │  
    │ │ │ │                4      4
    │ │ │ │  o18 : Matrix F  <-- F
    │ │ │ │  i19 : elapsedTime A2 = gaugeTransform(changeEps, A1);
    │ │ │ │ - -- .496173s elapsed
    │ │ │ │ + -- .388146s elapsed
    │ │ │ │  i20 : elapsedTime assert isIntegrable A2
    │ │ │ │ - -- .830479s elapsed
    │ │ │ │ + -- .712828s elapsed
    │ │ │ │  i21 : netList A2
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------+
    │ │ │ │  o21 = || ϵ/(x+z) 2zϵ/(x2-z2) 0       0                      |
    │ │ │ │  |
    │ │ │ │        || 0       ϵ/(x-z)     0       ϵ/(x+y)                |
    │ │ ├── ./usr/share/doc/Macaulay2/ConnectionMatrices/html/___Massless_spone-loop_sptriangle_sp__Feynman_spdiagram.html
    │ │ │ @@ -100,21 +100,21 @@
    │ │ │          
    │ │ │

    Finally, we can compute the connection matrices.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : elapsedTime A = connectionMatrices I;
    │ │ │ - -- .267226s elapsed
    │ │ │ + -- .219553s elapsed │ │ │
    │ │ │
    i8 : elapsedTime assert isIntegrable A
    │ │ │ - -- .203883s elapsed
    │ │ │ + -- .181528s elapsed │ │ │
    │ │ │
    i9 : netList A
    │ │ │  
    │ │ │       +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,17 +20,17 @@
    │ │ │ │  
    │ │ │ │                     2
    │ │ │ │  o6 = {1, dx, dy, dy }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  Finally, we can compute the connection matrices.
    │ │ │ │  i7 : elapsedTime A = connectionMatrices I;
    │ │ │ │ - -- .267226s elapsed
    │ │ │ │ + -- .219553s elapsed
    │ │ │ │  i8 : elapsedTime assert isIntegrable A
    │ │ │ │ - -- .203883s elapsed
    │ │ │ │ + -- .181528s elapsed
    │ │ │ │  i9 : netList A
    │ │ │ │  
    │ │ │ │       +-------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │  -----------------+
    │ │ │ │  o9 = || 0                                                       1
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Chern__Schwartz__Mac__Pherson.out
    │ │ │ @@ -13,27 +13,27 @@
    │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │  
    │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ + -- used 2.54343s (cpu); 1.34304s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │  
    │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ + -- used 1.53812s (cpu); 1.05304s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -62,27 +62,27 @@
    │ │ │          0,2 1,3    0,1 2,3
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i9 : time ChernClass G
    │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ + -- used 0.39165s (cpu); 0.214069s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │  
    │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ + -- used 0.154793s (cpu); 0.0449216s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Cremona.out
    │ │ │ @@ -1,56 +1,56 @@
    │ │ │  -- -*- M2-comint -*- hash: 10433409267944421825
    │ │ │  
    │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │  
    │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ + -- used 0.00651371s (cpu); 0.00651227s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │  
    │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ + -- used 0.187395s (cpu); 0.0938856s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │  
    │ │ │  i4 : time degreeMap phi
    │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ + -- used 0.0586502s (cpu); 0.0586499s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ + -- used 0.744311s (cpu); 0.55853s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ + -- used 0.103903s (cpu); 0.103704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ + -- used 0.00294027s (cpu); 0.00294735s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -59,15 +59,15 @@
    │ │ │                                                                             ------[x ..x ]
    │ │ │                 ZZ                                                          300007  0   9
    │ │ │  o7 : RingMap ------[t ..t ] <-- ----------------------------------------------------------------------------------------------------
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ + -- used 0.447739s (cpu); 0.447744s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -76,32 +76,32 @@
    │ │ │                                                          ------[x ..x ]
    │ │ │                                                          300007  0   9                                                   ZZ
    │ │ │  o8 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[t ..t ]
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ + -- used 0.0113264s (cpu); 0.0113318s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time degreeMap psi
    │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ + -- used 0.563595s (cpu); 0.294308s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │  
    │ │ │  i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ + -- used 6.43014s (cpu); 5.97295s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ + -- used 0.00250238s (cpu); 0.00250843s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │  
    │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ + -- used 0.198282s (cpu); 0.100168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -217,15 +217,15 @@
    │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │                        }
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i14 : time phi^(-1)
    │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ + -- used 0.493489s (cpu); 0.493164s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -275,71 +275,71 @@
    │ │ │                         x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x
    │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │                        }
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │  
    │ │ │  i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ + -- used 0.472144s (cpu); 0.366608s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : time degrees phi
    │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ + -- used 0.0875272s (cpu); 0.0251346s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │  
    │ │ │  i17 : time describe phi
    │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ + -- used 0.00421075s (cpu); 0.00422119s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ + -- used 0.011936s (cpu); 0.0119473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │        number of minimal representatives: 1
    │ │ │        dimension base locus: 4
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │  
    │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ + -- used 0.0120656s (cpu); 0.0120784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i21 : time degrees f
    │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ + -- used 1.19811s (cpu); 1.02906s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │  
    │ │ │  i22 : time degree f
    │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.7684e-05s (cpu); 1.7206e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │  
    │ │ │  i23 : time describe f
    │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ + -- used 0.00172246s (cpu); 0.00172799s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Euler__Characteristic.out
    │ │ │ @@ -3,18 +3,18 @@
    │ │ │  i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │  
    │ │ │  i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc)
    │ │ │ + -- used 0.358491s (cpu); 0.192059s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc)
    │ │ │ + -- used 0.0303717s (cpu); 0.0172716s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp!.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │  
    │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i4 : time phi! ;
    │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ + -- used 0.118638s (cpu); 0.0709907s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │  
    │ │ │  i5 : describe phi
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^5
    │ │ │ @@ -37,15 +37,15 @@
    │ │ │  
    │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^4
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │  
    │ │ │  i9 : time phi! ;
    │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ + -- used 0.0580553s (cpu); 0.044975s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i10 : describe phi
    │ │ │  
    │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │        source variety: PP^4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Rational__Map_sp^_st_st_sp__Ideal.out
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │       - a*c + e         - b*c + f
    │ │ │       ----------*v, x + ----------*v)
    │ │ │        d*e - a*f         d*e - a*f
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │  
    │ │ │  i6 : time phi^** q
    │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc)
    │ │ │ + -- used 0.184367s (cpu); 0.184366s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/___Segre__Class.out
    │ │ │ @@ -47,50 +47,50 @@
    │ │ │                                                                            P7
    │ │ │  o3 : Ideal of -------------------------------------------------------------------------------------------------------------------------
    │ │ │                 2 2                2 2                                        2 2                                                    2 2
    │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1 6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │  
    │ │ │  i4 : time SegreClass X
    │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ + -- used 0.827915s (cpu); 0.549293s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ + -- used 0.67955s (cpu); 0.379962s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ + -- used 0.0508406s (cpu); 0.026628s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │  
    │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ + -- used 0.152985s (cpu); 0.124011s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -98,22 +98,22 @@
    │ │ │  
    │ │ │  i8 : o4 == o6 and o5 == o7
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9 =   ZZ
    │ │ │ - ------[x ..x ]
    │ │ │ - 100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │  
    │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ + -- used 0.280103s (cpu); 0.120852s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -122,15 +122,15 @@
    │ │ │                                                           ------[y ..y ]
    │ │ │                                                           100003  0   9                                                   ZZ
    │ │ │  o10 : RingMap ---------------------------------------------------------------------------------------------------- <-- ------[x ..x ]
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i11 : time SegreClass phi
    │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ + -- used 0.227822s (cpu); 0.227831s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -150,27 +150,27 @@
    │ │ │                                                            100003  0   9
    │ │ │  o12 : Ideal of ----------------------------------------------------------------------------------------------------
    │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │  
    │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ + -- used 0.450925s (cpu); 0.310725s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │  
    │ │ │  i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ + -- used 1.99007s (cpu); 1.0831s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_abstract__Rational__Map.out
    │ │ │ @@ -17,32 +17,32 @@
    │ │ │  
    │ │ │  o3 = QQ[u ..u ]
    │ │ │           0   5
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ + -- used 0.000493397s (cpu); 0.000485585s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │  
    │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ + -- used 0.414107s (cpu); 0.242631s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : time rationalMap psi
    │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ + -- used 0.604915s (cpu); 0.504893s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -113,48 +113,48 @@
    │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │  
    │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ + -- used 0.18261s (cpu); 0.0872618s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ + -- used 5.3433s (cpu); 2.46689s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │  
    │ │ │  i16 : time T2 = T * T
    │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.8546e-05s (cpu); 2.671e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │        defining forms: given by a function
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │  
    │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ + -- used 7.99029s (cpu); 3.92144s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │  
    │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │  
    │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │  i20 : T q
    │ │ │  
    │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │  
    │ │ │  o20 : List
    │ │ │  
    │ │ │  i21 : time f = rationalMap T
    │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ + -- used 6.20953s (cpu); 3.31023s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_approximate__Inverse__Map.out
    │ │ │ @@ -54,15 +54,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ + -- used 0.319869s (cpu); 0.243932s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │  
    │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ + -- used 0.326886s (cpu); 0.246914s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i6 : assert(psi == psi')
    │ │ │  
    │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-3*x_6*x_7+2*x_0*x_8+11*x_1*x_8-37*x_3*x_8-23*x_4*x_8-33*x_6*x_8+8*x_0*x_9+10*x_1*x_9-25*x_2*x_9-9*x_3*x_9+3*x_4*x_9+24*x_5*x_9-27*x_6*x_9-5*x_0*x_10+28*x_1*x_10+37*x_2*x_10+9*x_4*x_10+27*x_6*x_10-25*x_0*x_11+9*x_2*x_11+27*x_4*x_11-27*x_5*x_11,x_2^2+17*x_2*x_3-14*x_3^2-13*x_2*x_4+34*x_3*x_4+44*x_0*x_5-30*x_2*x_5+27*x_3*x_5+31*x_2*x_6-36*x_3*x_6-x_0*x_7+13*x_1*x_7+8*x_3*x_7+9*x_5*x_7+46*x_6*x_7+41*x_0*x_8-7*x_1*x_8-34*x_3*x_8-9*x_4*x_8-46*x_6*x_8-17*x_0*x_9+32*x_1*x_9-8*x_2*x_9-35*x_3*x_9-46*x_4*x_9+26*x_5*x_9+17*x_6*x_9+15*x_0*x_10+35*x_1*x_10+34*x_2*x_10+20*x_4*x_10+14*x_0*x_11+36*x_1*x_11+35*x_2*x_11-17*x_4*x_11,x_1*x_2-40*x_2*x_3+28*x_3^2-x_0*x_4+5*x_2*x_4-16*x_3*x_4+5*x_0*x_5-36*x_2*x_5+37*x_3*x_5+48*x_2*x_6-5*x_1*x_7-5*x_3*x_7+x_5*x_7+20*x_6*x_7+10*x_0*x_8+34*x_1*x_8+41*x_3*x_8-x_4*x_8+x_6*x_8+40*x_0*x_9-32*x_1*x_9+5*x_2*x_9-11*x_3*x_9-20*x_4*x_9+45*x_5*x_9-14*x_6*x_9-25*x_0*x_10+45*x_1*x_10-41*x_2*x_10-46*x_4*x_10+8*x_6*x_10-28*x_0*x_11+11*x_2*x_11+14*x_4*x_11-8*x_5*x_11),{t_4^2+t_0*t_5+t_1*t_5+35*t_2*t_5+10*t_3*t_5+25*t_4*t_5-5*t_5^2-14*t_0*t_6-14*t_1*t_6-5*t_2*t_6-13*t_4*t_6+37*t_5*t_6+22*t_6^2-31*t_3*t_7+26*t_4*t_7+12*t_5*t_7-45*t_6*t_7-46*t_3*t_8+37*t_4*t_8+28*t_5*t_8+33*t_6*t_8,t_3*t_4+4*t_0*t_5+39*t_1*t_5-40*t_2*t_5+40*t_3*t_5+26*t_4*t_5-20*t_5^2+41*t_0*t_6+36*t_1*t_6-22*t_2*t_6+36*t_4*t_6-30*t_5*t_6-13*t_6^2-25*t_3*t_7+5*t_4*t_7-35*t_5*t_7+10*t_6*t_7+11*t_3*t_8+46*t_4*t_8+29*t_5*t_8+28*t_6*t_8,t_2*t_4-5*t_0*t_5-40*t_1*t_5+12*t_2*t_5+47*t_3*t_5+37*t_4*t_5+25*t_5^2-27*t_0*t_6-22*t_1*t_6+27*t_2*t_6-23*t_4*t_6+5*t_5*t_6-13*t_6^2-39*t_3*t_7-29*t_4*t_7+9*t_5*t_7+39*t_6*t_7+36*t_3*t_8+13*t_4*t_8+26*t_5*t_8+37*t_6*t_8,t_0*t_4-t_0*t_5-8*t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+15*t_0*t_6+15*t_1*t_6+5*t_2*t_6+15*t_4*t_6-38*t_5*t_6-22*t_6^2+31*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_2*t_3-t_0*t_5-t_1*t_5-35*t_2*t_5-10*t_3*t_5-33*t_4*t_5+5*t_5^2+14*t_0*t_6+14*t_1*t_6+5*t_2*t_6+14*t_4*t_6-31*t_5*t_6-24*t_6^2+32*t_3*t_7-25*t_4*t_7-19*t_5*t_7+47*t_6*t_7+46*t_3*t_8-36*t_4*t_8-35*t_5*t_8-31*t_6*t_8,t_1*t_3-7*t_1*t_5+t_1*t_6+t_4*t_6-7*t_5*t_6+2*t_6^2-t_3*t_7,t_0*t_3-46*t_0*t_5-39*t_1*t_5-43*t_2*t_5-41*t_3*t_5-26*t_4*t_5-28*t_5^2-35*t_0*t_6-36*t_1*t_6+20*t_2*t_6-36*t_4*t_6+9*t_5*t_6+15*t_6^2+26*t_3*t_7-5*t_4*t_7+35*t_5*t_7-10*t_6*t_7-10*t_3*t_8-46*t_4*t_8+47*t_5*t_8-25*t_6*t_8,t_2^2-46*t_1*t_4-33*t_0*t_5-45*t_1*t_5-39*t_2*t_5-39*t_3*t_5-46*t_4*t_5-29*t_5^2-48*t_0*t_6-38*t_1*t_6-30*t_2*t_6+19*t_4*t_6-44*t_5*t_6-47*t_6^2-36*t_0*t_7-46*t_1*t_7+t_2*t_7-44*t_3*t_7+48*t_4*t_7-14*t_5*t_7+4*t_6*t_7-36*t_0*t_8-46*t_1*t_8+47*t_2*t_8-34*t_3*t_8-24*t_4*t_8-12*t_5*t_8-47*t_6*t_8+47*t_7*t_8,t_1*t_2+6*t_1*t_5+5*t_0*t_6-2*t_1*t_6-t_4*t_6-t_5*t_6+5*t_0*t_7+t_1*t_7-2*t_2*t_7-7*t_5*t_7+2*t_6*t_7-2*t_1*t_8+3*t_7*t_8,t_0*t_2+t_1*t_4+5*t_0*t_5+32*t_1*t_5-20*t_2*t_5-47*t_3*t_5-37*t_4*t_5-25*t_5^2+19*t_0*t_6+22*t_1*t_6-25*t_2*t_6+25*t_4*t_6-5*t_5*t_6+13*t_6^2+5*t_0*t_7+t_1*t_7+39*t_3*t_7+28*t_4*t_7-9*t_5*t_7-39*t_6*t_7+4*t_0*t_8+t_1*t_8-36*t_3*t_8-14*t_4*t_8-26*t_5*t_8-37*t_6*t_8,t_0*t_1-39*t_1*t_4+40*t_1*t_5-37*t_0*t_6-39*t_1*t_6+19*t_4*t_6-39*t_5*t_6-38*t_0*t_7+39*t_1*t_7+19*t_2*t_7+18*t_5*t_7-19*t_6*t_7+19*t_1*t_8+20*t_7*t_8,t_0^2+12*t_1*t_4+20*t_0*t_5+27*t_1*t_5-8*t_2*t_5+37*t_3*t_5+28*t_4*t_5+30*t_5^2-46*t_0*t_6+24*t_1*t_6-40*t_2*t_6+25*t_4*t_6+16*t_5*t_6-35*t_6^2+29*t_0*t_7+12*t_1*t_7-35*t_2*t_7-8*t_3*t_7-18*t_4*t_7+42*t_5*t_7-12*t_6*t_7-6*t_0*t_8+12*t_1*t_8-15*t_3*t_8+9*t_4*t_8+20*t_5*t_8-30*t_6*t_8+4*t_7*t_8})
    │ │ │  
    │ │ │ @@ -192,15 +192,15 @@
    │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │  
    │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ + -- used 2.228s (cpu); 1.88917s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -258,15 +258,15 @@
    │ │ │  
    │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ + -- used 3.23525s (cpu); 2.80126s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_degree__Map.out
    │ │ │ @@ -9,27 +9,27 @@
    │ │ │                                   2                  2                             2                                       2                                                2                                                           2                                                                       2                                                                              2                                                                                            2         2                 2                             2                                       2                                              2                                                           2                                                                   2                                                                               2                                                                                          2        2                   2                            2                                      2                                                  2                                                          2                                                                      2                                                                               2                                                                                            2        2                   2                             2                                      2                                                 2                                                          2                                                                    2                                                                               2                                                                                          2         2                2                          2                                      2                                                 2                                                           2                                                                       2                                                                            2                                                                                          2        2                  2                         2                                       2                                                2                                                           2                                                                      2                                                                               2                                                                                        2       2                  2                             2                                    2                                                2                                                          2                                                                    2                                                                               2                                                                                       2       2                 2                           2                                      2                                                 2                                                            2                                                                       2                                                                                2                                                                                           2        2                   2                             2                                       2                                                  2                                                            2                                                                   2                                                                            2                                                                                          2      2                 2                            2                                       2                                                2                                                         2                                                                        2                                                                               2                                                                                          2     2                   2                             2                                      2                                                   2                                                          2                                                                     2                                                                               2                                                                                          2         2                2                            2                                       2                                                 2                                                           2                                                                      2                                                                                  2                                                                                              2      2                  2                            2                                    2                                                2                                                            2                                                                    2                                                                                2                                                                                          2       2                  2                            2                                    2                                                   2                                                        2                                                                         2                                                                               2                                                                                           2       2                  2                             2                                       2                                                 2                                                          2                                                                       2                                                                               2                                                                                       2
    │ │ │  o4 = map (ringP8, ringP14, {- 95x  + 181x x  + 1028x  - 1384x x  - 1455x x  + 559x  - 502x x  + 1264x x  - 162x x  + 1209x  - 180x x  - 504x x  - 1168x x  - 676x x  + 501x  + 73x x  + 1263x x  + 1035x x  + 844x x  + 1593x x  + 785x  + 982x x  - 412x x  + 1335x x  + 1136x x  + 826x x  + 1078x x  + 1158x  + 335x x  - 982x x  - 1479x x  - 15x x  + 1363x x  + 1397x x  - 575x x  - 71x  + 1255x x  - 1138x x  - 1590x x  + 604x x  + 1182x x  - 63x x  - 1382x x  - 1255x x  - 613x , - 1444x  + 575x x  + 767x  - 1495x x  + 1631x x  - 217x  - 294x x  - 1511x x  - 504x x  - 1284x  - 1459x x  + 152x x  + 141x x  - 10x x  - 95x  + 1056x x  + 654x x  + 1397x x  - 930x x  + 578x x  - 696x  + 759x x  + 733x x  + 505x x  - 609x x  + 526x x  - 659x x  + 846x  + 1253x x  - 1519x x  + 635x x  + 576x x  + 54x x  - 1261x x  - 822x x  - 257x  - 986x x  + 356x x  - 1488x x  - 1561x x  - 850x x  - 85x x  - 1350x x  - 783x x  - 1335x , - 871x  + 1006x x  - 1399x  - 1636x x  - 699x x  - 769x  - 307x x  - 1645x x  - 502x x  - 719x  + 1405x x  + 870x x  - 1133x x  + 425x x  - 1203x  - 1601x x  + 117x x  - 382x x  + 318x x  - 117x x  - 560x  + 1135x x  + 1468x x  + 869x x  - 943x x  - 335x x  - 1218x x  + 201x  - 11x x  + 540x x  - 710x x  - 489x x  + 1605x x  + 1663x x  - 423x x  + 1246x  + 97x x  - 644x x  + 1655x x  + 1219x x  + 1476x x  + 1355x x  + 1594x x  + 893x x  + 1150x , - 143x  + 1240x x  - 1042x  + 1649x x  + 1024x x  + 794x  + 1442x x  - 1263x x  + 537x x  - 82x  - 734x x  - 1569x x  - 798x x  - 366x x  + 1289x  - 569x x  - 254x x  + 237x x  - 1234x x  - 807x x  + 264x  - 202x x  - 616x x  + 44x x  + 1465x x  + 685x x  + 1630x x  - 406x  - 123x x  - 4x x  + 1583x x  + 1235x x  + 162x x  + 1034x x  - 1035x x  + 737x  + 660x x  + 1459x x  - 359x x  - 1291x x  + 1638x x  - 325x x  - 631x x  + 73x x  - 1471x , - 1340x  + 31x x  - 994x  - 880x x  - 89x x  + 574x  + 760x x  - 1054x x  + 772x x  - 239x  - 443x x  + 1240x x  + 637x x  - 1423x x  + 320x  - 1363x x  - 1139x x  - 158x x  - 325x x  - 1578x x  + 32x  + 695x x  + 305x x  + 1012x x  + 1492x x  + 1290x x  + 1579x x  - 342x  - 83x x  - 104x x  + 998x x  - 92x x  + 1554x x  + 201x x  - 237x x  + 160x  - 228x x  - 543x x  - 1147x x  - 376x x  + 1313x x  + 603x x  + 106x x  - 1361x x  + 699x , - 228x  - 1510x x  + 277x  - 4x x  - 22x x  - 1526x  + 234x x  + 969x x  + 1253x x  - 1426x  - 1474x x  + 947x x  + 194x x  - 316x x  - 988x  - 1211x x  + 1087x x  + 536x x  - 491x x  + 870x x  - 659x  + 1490x x  - 469x x  + 1190x x  + 807x x  + 650x x  + 448x x  - 1353x  - 218x x  + 759x x  - 253x x  + 830x x  - 1080x x  - 143x x  - 1313x x  - 374x  - 180x x  + 741x x  + 742x x  - 1254x x  + 458x x  - 345x x  + 597x x  + 1567x x  - 31x , 1120x  + 709x x  - 1538x  - 1048x x  - 162x x  - 1518x  - 73x x  + 380x x  + 533x x  - 286x  + 1374x x  - 74x x  - 22x x  + 1535x x  - 1071x  - 839x x  - 560x x  + 928x x  + 335x x  - 1008x x  + 810x  - 448x x  - 357x x  - 107x x  + 40x x  + 784x x  - 1423x x  + 1276x  + 147x x  + 443x x  - 598x x  - 1077x x  - 1214x x  + 322x x  - 1408x x  + 72x  - 63x x  - 1513x x  - 791x x  + 11x x  + 77x x  + 836x x  - 1100x x  + 1637x x  - 788x , 1331x  + 318x x  - 704x  + 51x x  + 275x x  + 1149x  + 1526x x  + 768x x  + 414x x  - 782x  - 262x x  + 686x x  - 380x x  + 1377x x  + 1077x  + 1650x x  - 1129x x  - 508x x  + 846x x  + 1513x x  + 460x  - 1626x x  - 1024x x  + 862x x  + 1352x x  - 188x x  - 1382x x  - 650x  + 55x x  - 326x x  + 1037x x  + 705x x  - 667x x  + 1483x x  + 1661x x  - 1652x  - 1052x x  - 692x x  - 542x x  + 162x x  + 582x x  - 1369x x  + 934x x  + 1392x x  + 1227x , - 346x  + 1408x x  - 1225x  - 1536x x  - 1028x x  - 985x  - 210x x  - 1312x x  + 915x x  + 1633x  - 202x x  - 1636x x  - 1653x x  - 480x x  - 1260x  - 813x x  - 1623x x  - 1429x x  + 1094x x  - 747x x  + 955x  + 898x x  - 795x x  - 35x x  - 566x x  + 1631x x  - 324x x  + 926x  - 132x x  - 9x x  - 1290x x  - 543x x  + 902x x  + 735x x  - 342x x  - 400x  + 900x x  - 463x x  + 694x x  - 1262x x  - 1449x x  - 448x x  - 1402x x  - 731x x  - 996x , 301x  + 166x x  - 955x  - 739x x  - 1199x x  - 319x  + 1047x x  - 532x x  + 902x x  + 1195x  - 663x x  + 1215x x  - 534x x  - 332x x  - 973x  + 772x x  - 308x x  + 315x x  - 454x x  - 483x x  - 239x  - 1313x x  - 419x x  - 1340x x  - 1388x x  - 1340x x  - 1665x x  - 333x  - 465x x  - 1084x x  + 676x x  - 1612x x  - 288x x  + 11x x  - 1170x x  - 189x  + 498x x  - 889x x  + 693x x  + 1460x x  - 473x x  - 414x x  - 122x x  - 1659x x  - 1421x , 14x  - 1049x x  + 1506x  + 1235x x  + 642x x  - 1034x  + 460x x  + 150x x  + 760x x  - 1246x  - 1407x x  + 1570x x  + 1403x x  - 1610x x  - 431x  + 574x x  + 893x x  - 657x x  + 417x x  + 1362x x  + 224x  + 268x x  + 1097x x  + 1132x x  + 148x x  + 1331x x  - 77x x  - 756x  + 228x x  + 136x x  - 1484x x  - 1478x x  - 13x x  + 1620x x  - 701x x  - 769x  - 760x x  - 492x x  - 1077x x  - 1249x x  - 834x x  - 395x x  - 1358x x  - 988x x  + 113x , - 1634x  - 13x x  + 805x  - 21x x  - 1655x x  + 1479x  - 1510x x  - 646x x  + 225x x  - 1411x  + 1227x x  - 1108x x  + 1291x x  - 59x x  - 142x  + 586x x  - 676x x  + 655x x  - 1476x x  + 453x x  - 1076x  - 1152x x  + 1373x x  - 1191x x  - 416x x  + 699x x  + 317x x  + 825x  - 1560x x  - 488x x  - 1035x x  - 1561x x  - 644x x  - 1178x x  - 1320x x  + 158x  + 889x x  + 1444x x  - 1486x x  - 1211x x  + 1269x x  - 1228x x  + 568x x  + 1591x x  + 1207x , 105x  - 538x x  - 1222x  - 277x x  + 716x x  - 1067x  - 428x x  + 154x x  - 469x x  + 77x  + 538x x  - 179x x  + 921x x  - 223x x  + 1093x  - 262x x  + 1299x x  + 631x x  + 1486x x  - 1280x x  - 121x  - 50x x  - 978x x  - 694x x  - 531x x  + 505x x  + 1412x x  - 1061x  + 1202x x  + 448x x  - 187x x  + 1276x x  - 121x x  + 1361x x  + 697x x  + 682x  + 1592x x  + 705x x  - 227x x  - 7x x  - 1423x x  - 1446x x  - 1578x x  + 1511x x  + 917x , 1270x  - 391x x  - 1116x  - 287x x  + 653x x  + 1643x  + 1623x x  + 514x x  - 14x x  - 90x  + 1232x x  - 1434x x  + 1296x x  + 1522x x  + 136x  - 623x x  - 607x x  + 18x x  + 896x x  - 29x x  + 1059x  - 1053x x  + 1643x x  + 1652x x  - 1190x x  - 1073x x  + 1470x x  - 944x  - 93x x  - 187x x  - 994x x  - 1415x x  - 229x x  - 796x x  + 1642x x  + 1600x  - 344x x  + 905x x  + 1032x x  - 538x x  - 891x x  + 1243x x  + 1290x x  + 490x x  - 1148x , 1613x  + 175x x  - 1346x  - 1000x x  - 1217x x  - 729x  - 1296x x  + 1456x x  + 745x x  + 539x  + 525x x  - 811x x  + 753x x  + 1362x x  + 1629x  - 840x x  + 513x x  + 429x x  + 842x x  + 1414x x  - 308x  + 1415x x  - 1461x x  - 1135x x  + 701x x  + 766x x  + 785x x  + 1503x  + 147x x  + 929x x  - 1220x x  - 853x x  + 493x x  + 226x x  + 1416x x  + 280x  - 7x x  + 1632x x  + 520x x  + 1259x x  + 157x x  + 1596x x  + 655x x  - 42x x  - 586x })
    │ │ │                                   0       0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4       1 4        2 4       3 4       4      0 5        1 5        2 5       3 5        4 5       5       0 6       1 6        2 6        3 6       4 6        5 6        6       0 7       1 7        2 7      3 7        4 7        5 7       6 7      7        0 8        1 8        2 8       3 8        4 8      5 8        6 8        7 8       8         0       0 1       1        0 2        1 2       2       0 3        1 3       2 3        3        0 4       1 4       2 4      3 4      4        0 5       1 5        2 5       3 5       4 5       5       0 6       1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8      5 8        6 8       7 8        8        0        0 1        1        0 2       1 2       2       0 3        1 3       2 3       3        0 4       1 4        2 4       3 4        4        0 5       1 5       2 5       3 5       4 5       5        0 6        1 6       2 6       3 6       4 6        5 6       6      0 7       1 7       2 7       3 7        4 7        5 7       6 7        7      0 8       1 8        2 8        3 8        4 8        5 8        6 8       7 8        8        0        0 1        1        0 2        1 2       2        0 3        1 3       2 3      3       0 4        1 4       2 4       3 4        4       0 5       1 5       2 5        3 5       4 5       5       0 6       1 6      2 6        3 6       4 6        5 6       6       0 7     1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8       2 8        3 8        4 8       5 8       6 8      7 8        8         0      0 1       1       0 2      1 2       2       0 3        1 3       2 3       3       0 4        1 4       2 4        3 4       4        0 5        1 5       2 5       3 5        4 5      5       0 6       1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7      3 7        4 7       5 7       6 7       7       0 8       1 8        2 8       3 8        4 8       5 8       6 8        7 8       8        0        0 1       1     0 2      1 2        2       0 3       1 3        2 3        3        0 4       1 4       2 4       3 4       4        0 5        1 5       2 5       3 5       4 5       5        0 6       1 6        2 6       3 6       4 6       5 6        6       0 7       1 7       2 7       3 7        4 7       5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8      8       0       0 1        1        0 2       1 2        2      0 3       1 3       2 3       3        0 4      1 4      2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5       0 6       1 6       2 6      3 6       4 6        5 6        6       0 7       1 7       2 7        3 7        4 7       5 7        6 7      7      0 8        1 8       2 8      3 8      4 8       5 8        6 8        7 8       8       0       0 1       1      0 2       1 2        2        0 3       1 3       2 3       3       0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5        4 5       5        0 6        1 6       2 6        3 6       4 6        5 6       6      0 7       1 7        2 7       3 7       4 7        5 7        6 7        7        0 8       1 8       2 8       3 8       4 8        5 8       6 8        7 8        8        0        0 1        1        0 2        1 2       2       0 3        1 3       2 3        3       0 4        1 4        2 4       3 4        4       0 5        1 5        2 5        3 5       4 5       5       0 6       1 6      2 6       3 6        4 6       5 6       6       0 7     1 7        2 7       3 7       4 7       5 7       6 7       7       0 8       1 8       2 8        3 8        4 8       5 8        6 8       7 8       8      0       0 1       1       0 2        1 2       2        0 3       1 3       2 3        3       0 4        1 4       2 4       3 4       4       0 5       1 5       2 5       3 5       4 5       5        0 6       1 6        2 6        3 6        4 6        5 6       6       0 7        1 7       2 7        3 7       4 7      5 7        6 7       7       0 8       1 8       2 8        3 8       4 8       5 8       6 8        7 8        8     0        0 1        1        0 2       1 2        2       0 3       1 3       2 3        3        0 4        1 4        2 4        3 4       4       0 5       1 5       2 5       3 5        4 5       5       0 6        1 6        2 6       3 6        4 6      5 6       6       0 7       1 7        2 7        3 7      4 7        5 7       6 7       7       0 8       1 8        2 8        3 8       4 8       5 8        6 8       7 8       8         0      0 1       1      0 2        1 2        2        0 3       1 3       2 3        3        0 4        1 4        2 4      3 4       4       0 5       1 5       2 5        3 5       4 5        5        0 6        1 6        2 6       3 6       4 6       5 6       6        0 7       1 7        2 7        3 7       4 7        5 7        6 7       7       0 8        1 8        2 8        3 8        4 8        5 8       6 8        7 8        8      0       0 1        1       0 2       1 2        2       0 3       1 3       2 3      3       0 4       1 4       2 4       3 4        4       0 5        1 5       2 5        3 5        4 5       5      0 6       1 6       2 6       3 6       4 6        5 6        6        0 7       1 7       2 7        3 7       4 7        5 7       6 7       7        0 8       1 8       2 8     3 8        4 8        5 8        6 8        7 8       8       0       0 1        1       0 2       1 2        2        0 3       1 3      2 3      3        0 4        1 4        2 4        3 4       4       0 5       1 5      2 5       3 5      4 5        5        0 6        1 6        2 6        3 6        4 6        5 6       6      0 7       1 7       2 7        3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8       4 8        5 8        6 8       7 8        8       0       0 1        1        0 2        1 2       2        0 3        1 3       2 3       3       0 4       1 4       2 4        3 4        4       0 5       1 5       2 5       3 5        4 5       5        0 6        1 6        2 6       3 6       4 6       5 6        6       0 7       1 7        2 7       3 7       4 7       5 7        6 7       7     0 8        1 8       2 8        3 8       4 8        5 8       6 8      7 8       8
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │  
    │ │ │  i5 : time degreeMap phi
    │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc)
    │ │ │ + -- used 0.0537572s (cpu); 0.0537559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │       -- of dimension 5 (so that the composition phi':P^8--->P^8 must have degree equal to deg(G(1,5))=14)
    │ │ │       phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14))
    │ │ │  
    │ │ │                                   2                  2                           2                                      2                                                 2                                                           2                                                                   2                                                                              2                                                                                          2        2                  2                              2                                       2                                                2                                                             2                                                                  2                                                                              2                                                                                            2        2                  2                             2                                       2                                                2                                                           2                                                                      2                                                                              2                                                                                         2         2                 2                            2                                       2                                                  2                                                             2                                                                    2                                                                                2                                                                                             2       2                   2                            2                                     2                                                2                                                          2                                                                  2                                                                                   2                                                                                            2        2                2                           2                                      2                                                  2                                                            2                                                                      2                                                                                 2                                                                                          2   2                   2                           2                                     2                                                  2                                                           2                                                                    2                                                                              2                                                                                         2      2                  2                           2                                      2                                                  2                                                             2                                                                       2                                                                              2                                                                                          2         2                  2                            2                                     2                                                 2                                                              2                                                                    2                                                                               2                                                                                        2
    │ │ │  o6 = map (ringP8, ringP8, {- 780x  - 506x x  + 1537x  - 132x x  - 928x x  + 386x  - 102x x  + 422x x  + 725x x  - 1073x  - 905x x  - 830x x  + 1500x x  + 276x x  + 1533x  - 653x x  + 1558x x  + 939x x  - 1432x x  + 462x x  - 329x  - 92x x  + 661x x  - 1298x x  - 684x x  + 70x x  - 715x x  + 1093x  + 581x x  + 329x x  + 454x x  - 911x x  - 84x x  - 1452x x  - 809x x  + 1202x  + 1353x x  + 1503x x  + 482x x  + 893x x  - 643x x  + 598x x  + 110x x  + 1064x x  - 472x , - 522x  - 583x x  + 1339x  + 1535x x  - 1317x x  + 1113x  - 169x x  + 1440x x  - 1657x x  + 721x  + 40x x  - 1576x x  - 367x x  + 257x x  - 1454x  + 1612x x  + 1529x x  - 1068x x  + 560x x  - 1441x x  + 608x  - 92x x  - 1006x x  + 285x x  + 102x x  - 397x x  + 66x x  - 643x  - 38x x  + 1380x x  + 1069x x  - 426x x  + 1147x x  + 982x x  + 10x x  - 662x  + 16x x  + 1561x x  + 1597x x  + 512x x  + 1288x x  - 1253x x  + 1317x x  + 1481x x  - 354x , - 640x  - 1551x x  + 469x  + 1482x x  - 1593x x  - 986x  + 471x x  + 612x x  + 1228x x  + 1156x  - 731x x  + 1503x x  - 628x x  + 674x x  - 799x  + 1137x x  + 844x x  + 589x x  - 666x x  + 829x x  - 1024x  - 170x x  + 450x x  + 1497x x  + 1204x x  - 907x x  + 1621x x  - 417x  + 1297x x  + 1444x x  + 4x x  + 398x x  + 996x x  - 1031x x  + 239x x  + 303x  + 1215x x  - 83x x  + 1571x x  - 1543x x  - 925x x  - 694x x  + 151x x  - 520x x  + 880x , - 1210x  - 222x x  + 185x  + 245x x  + 1059x x  - 322x  + 238x x  + 962x x  + 1260x x  - 1581x  + 50x x  + 1352x x  - 1465x x  + 1555x x  + 1333x  + 1362x x  + 1365x x  + 1168x x  - 1401x x  + 149x x  - 652x  + 1378x x  - 557x x  - 112x x  + 26x x  + 315x x  + 111x x  + 1592x  - 283x x  - 1454x x  + 907x x  + 212x x  + 400x x  + 1049x x  - 882x x  - 1429x  - 183x x  + 1571x x  - 1286x x  - 1179x x  + 1319x x  + 240x x  - 1100x x  + 1500x x  - 348x , 1051x  - 1325x x  + 1354x  - 346x x  - 1532x x  - 466x  + 163x x  - 659x x  - 291x x  + 966x  + 789x x  + 393x x  + 403x x  - 1199x x  - 570x  - 93x x  - 492x x  - 418x x  + 713x x  - 1323x x  - 1384x  - 830x x  - 54x x  - 306x x  + 709x x  + 421x x  - 954x x  - 299x  + 1053x x  - 1080x x  + 686x x  + 170x x  - 1272x x  - 1661x x  + 1235x x  + 1553x  - 1454x x  - 1411x x  - 1195x x  - 962x x  + 737x x  - 390x x  + 957x x  + 1538x x  + 1234x , - 509x  + 9x x  - 1563x  - 710x x  - 642x x  + 541x  + 220x x  - 1214x x  - 16x x  + 1008x  - 1088x x  + 755x x  - 886x x  - 1433x x  + 1154x  + 1627x x  - 1547x x  - 951x x  + 866x x  + 163x x  - 1142x  - 668x x  + 1361x x  + 1324x x  - 490x x  + 282x x  - 1133x x  - 612x  + 805x x  - 126x x  + 1296x x  - 973x x  + 1271x x  - 1646x x  + 844x x  + 1073x  - 1452x x  - 1112x x  - 141x x  + 176x x  - 1579x x  - 78x x  + 848x x  - 1365x x  + 711x , x  + 1543x x  - 1076x  + 493x x  - 526x x  + 868x  - 582x x  - 996x x  + 206x x  - 419x  + 1258x x  - 391x x  + 1002x x  - 1539x x  + 931x  - 1504x x  + 810x x  + 324x x  + 1356x x  + 313x x  + 772x  + 299x x  + 1186x x  + 718x x  + 407x x  - 64x x  - 828x x  - 1393x  + 94x x  - 290x x  - 766x x  + 950x x  - 640x x  + 265x x  - 1640x x  - 1403x  - 126x x  + 891x x  - 1519x x  - 927x x  - 1335x x  - 1448x x  - x x  - 1103x x  - 1152x , 821x  + 558x x  - 1174x  - 168x x  + 986x x  + 790x  + 549x x  + 817x x  + 1396x x  + 695x  + 1211x x  + 878x x  - 1061x x  - 1244x x  - 880x  + 1409x x  - 567x x  + 1240x x  + 1126x x  - 1262x x  + 490x  + 1553x x  + 1276x x  + 805x x  + 576x x  - 1076x x  + 1617x x  - 495x  - 750x x  - 277x x  + 544x x  + 1479x x  - 784x x  - 64x x  - 1203x x  + 405x  + 1013x x  + 604x x  + 1301x x  + 1003x x  + 235x x  + 696x x  + 939x x  - 714x x  - 879x , - 1452x  + 727x x  - 1159x  + 449x x  - 1169x x  + 732x  + 575x x  - 600x x  + 924x x  - 837x  + 1298x x  - 860x x  + 1010x x  + 774x x  + 319x  + 1087x x  - 1120x x  + 1439x x  + 1175x x  - 1648x x  + 985x  - 1317x x  - 878x x  + 399x x  - 1339x x  + 70x x  - 463x x  + 470x  - 628x x  - 907x x  + 748x x  + 98x x  + 1150x x  + 1140x x  + 1308x x  + 621x  + 369x x  - 991x x  - 1186x x  + 61x x  - 907x x  - 681x x  - 1528x x  + 717x x  + 854x })
    │ │ │                                   0       0 1        1       0 2       1 2       2       0 3       1 3       2 3        3       0 4       1 4        2 4       3 4        4       0 5        1 5       2 5        3 5       4 5       5      0 6       1 6        2 6       3 6      4 6       5 6        6       0 7       1 7       2 7       3 7      4 7        5 7       6 7        7        0 8        1 8       2 8       3 8       4 8       5 8       6 8        7 8       8        0       0 1        1        0 2        1 2        2       0 3        1 3        2 3       3      0 4        1 4       2 4       3 4        4        0 5        1 5        2 5       3 5        4 5       5      0 6        1 6       2 6       3 6       4 6      5 6       6      0 7        1 7        2 7       3 7        4 7       5 7      6 7       7      0 8        1 8        2 8       3 8        4 8        5 8        6 8        7 8       8        0        0 1       1        0 2        1 2       2       0 3       1 3        2 3        3       0 4        1 4       2 4       3 4       4        0 5       1 5       2 5       3 5       4 5        5       0 6       1 6        2 6        3 6       4 6        5 6       6        0 7        1 7     2 7       3 7       4 7        5 7       6 7       7        0 8      1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1       1       0 2        1 2       2       0 3       1 3        2 3        3      0 4        1 4        2 4        3 4        4        0 5        1 5        2 5        3 5       4 5       5        0 6       1 6       2 6      3 6       4 6       5 6        6       0 7        1 7       2 7       3 7       4 7        5 7       6 7        7       0 8        1 8        2 8        3 8        4 8       5 8        6 8        7 8       8       0        0 1        1       0 2        1 2       2       0 3       1 3       2 3       3       0 4       1 4       2 4        3 4       4      0 5       1 5       2 5       3 5        4 5        5       0 6      1 6       2 6       3 6       4 6       5 6       6        0 7        1 7       2 7       3 7        4 7        5 7        6 7        7        0 8        1 8        2 8       3 8       4 8       5 8       6 8        7 8        8        0     0 1        1       0 2       1 2       2       0 3        1 3      2 3        3        0 4       1 4       2 4        3 4        4        0 5        1 5       2 5       3 5       4 5        5       0 6        1 6        2 6       3 6       4 6        5 6       6       0 7       1 7        2 7       3 7        4 7        5 7       6 7        7        0 8        1 8       2 8       3 8        4 8      5 8       6 8        7 8       8   0        0 1        1       0 2       1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5       2 5        3 5       4 5       5       0 6        1 6       2 6       3 6      4 6       5 6        6      0 7       1 7       2 7       3 7       4 7       5 7        6 7        7       0 8       1 8        2 8       3 8        4 8        5 8    6 8        7 8        8      0       0 1        1       0 2       1 2       2       0 3       1 3        2 3       3        0 4       1 4        2 4        3 4       4        0 5       1 5        2 5        3 5        4 5       5        0 6        1 6       2 6       3 6        4 6        5 6       6       0 7       1 7       2 7        3 7       4 7      5 7        6 7       7        0 8       1 8        2 8        3 8       4 8       5 8       6 8       7 8       8         0       0 1        1       0 2        1 2       2       0 3       1 3       2 3       3        0 4       1 4        2 4       3 4       4        0 5        1 5        2 5        3 5        4 5       5        0 6       1 6       2 6        3 6      4 6       5 6       6       0 7       1 7       2 7      3 7        4 7        5 7        6 7       7       0 8       1 8        2 8      3 8       4 8       5 8        6 8       7 8       8
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │  
    │ │ │  i7 : time degreeMap phi'
    │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc)
    │ │ │ + -- used 1.56205s (cpu); 0.862278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_force__Image.out
    │ │ │ @@ -5,14 +5,14 @@
    │ │ │  o2 : Ideal of P6
    │ │ │  
    │ │ │  i3 : Phi = rationalMap(X,Dominant=>2);
    │ │ │  
    │ │ │  o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc)
    │ │ │ + -- used 0.00081254s (cpu); 0.000804349s (thread); 0s (gc)
    │ │ │  
    │ │ │  i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_graph.out
    │ │ │ @@ -35,15 +35,15 @@
    │ │ │                        - x  + x x
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc)
    │ │ │ + -- used 0.0922538s (cpu); 0.0295831s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │                                    ZZ                                 ZZ
    │ │ │       source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by
    │ │ │                                  190181  0   1   2   3   4          190181  0   1   2   3   4   5
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  i8 : projectiveDegrees p2
    │ │ │  
    │ │ │  o8 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : time g = graph p2;
    │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc)
    │ │ │ + -- used 0.0977423s (cpu); 0.0447804s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │  
    │ │ │  i11 : g_1;
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_ideal_lp__Rational__Map_rp.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │                        x  - x x
    │ │ │                         1    0 3
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │  
    │ │ │  i3 : time ideal phi
    │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ + -- used 0.00502322s (cpu); 0.00502123s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │                        y
    │ │ │                         4
    │ │ │                       }
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │  
    │ │ │  i6 : time ideal phi'
    │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ + -- used 0.114269s (cpu); 0.114268s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse__Map.out
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │                        w w  - w w  + w w
    │ │ │                         2 4    1 5    0 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │  
    │ │ │  i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc)
    │ │ │ + -- used 0.20957s (cpu); 0.116482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  o4 = map (QQ[w ..w  ], QQ[w ..w  ], {w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   - w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   + w  w   - w w  , w w   - w w   + w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w  w   - w  w   - w  w   + w  w   - w w  , w  w   - w  w   - w  w   + w  w   - w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   - w w   + w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   + w w   + w w   - w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   - w w   + w w  , w w   - w w   - w w   + w w   - w w  , w w   - w w   - w w   + w w   - w w  , w w  - w w  - w w  + w w  - w w })
    │ │ │                0   26       0   26     21 22    20 23    15 24    10 25    0 26   19 22    18 23    16 24    11 25    1 26   19 20    18 21    17 24    12 25    2 26   15 19    16 21    17 23    13 25    3 26   10 19    11 21    12 23    13 24    4 26   0 19    1 21    2 23    3 24    4 25   15 18    16 20    17 22    14 25    5 26   10 18    11 20    12 22    14 24    6 26   0 18    1 20    2 22    5 24    6 25   12 16    11 17    13 18    14 19    7 26   2 16    1 17    3 18    5 19    7 25   12 15    10 17    13 20    14 21    8 26   11 15    10 16    13 22    14 23    9 26   2 15    0 17    3 20    5 21    8 25   1 15    0 16    3 22    5 23    9 25   5 13    3 14    7 15    8 16    9 17   5 12    2 14    6 17    8 18    7 20   3 12    2 13    4 17    8 19    7 21   5 11    1 14    6 16    9 18    7 22   3 11    1 13    4 16    9 19    7 23   2 11    1 12    4 18    6 19    7 24   7 10    8 11    9 12    6 13    4 14   5 10    0 14    6 15    9 20    8 22   3 10    0 13    4 15    9 21    8 23   2 10    0 12    4 20    6 21    8 24   1 10    0 11    4 22    6 23    9 24   4 5    3 6    0 7    1 8    2 9
    │ │ │  
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │  
    │ │ │  i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc)
    │ │ │ + -- used 0.471849s (cpu); 0.249085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_inverse_lp__Rational__Map_rp.out
    │ │ │ @@ -28,15 +28,15 @@
    │ │ │                        - -------x  + ---------x x  + ------------x x  - ----------x x  - -----x  - -----------x x  + -------------x x x  + -------------x x x  - --------x x  - ----------x x  + -------------x x x  - ----------x x  - -----------x x  + ----------x x  + ------x  + -----------x x  + ----------x x x  - -----------x x x  - -------x x  + -------------x x x  + ------------x x x x  - -----------x x x  + -----------x x x  - ------------x x x  + ----------x x  - -----------x x  - ------------x x x  - ---------x x  - ------------x x x  - -----------x x x  + -----------x x  - ----------x x  + -------x x  + --------x x  + ------x  + ---------x x  - ------------x x x  - -------------x x x  - ----------x x  + --------------x x x  + -------------x x x x  - ------------x x x  + -------------x x x  + ------------x x x  + ----------x x  + -----------x x x  - -------------x x x x  - ----------x x x  + --------------x x x x  - -------------x x x x  + -------------x x x  - ------------x x x  + ---------x x x  - ------------x x x  + ---------x x  - ---------x x  - -----------x x x  - ----------x x  + -----------x x x  + -----------x x x  + ----------x x  - -----------x x x  - -----------x x x  - ------------x x x  - ----------x x  + ---------x x  - ------x x  - --------x x  - ----------x x  - -----x
    │ │ │                           290304 0    3888000  0 1    2939328000  0 1    163296000 0 1   20250 1    228614400  0 2    41150592000  0 1 2    41150592000  0 1 2    3888000 1 2     3572100  0 2    10287648000  0 1 2    342921600 1 2    114307200  0 2    63504000  1 2    25200 2     76204800  0 3    42336000  0 1 3    428652000  0 1 3    212625 1 3     5334336000  0 2 3    9601804800  0 1 2 3    489888000  1 2 3    222264000  0 2 3    12002256000 1 2 3    66679200  2 3    666792000  0 3     666792000  0 1 3    47628000 1 3    1333584000  0 2 3    444528000  1 2 3    777924000  2 3    55566000  0 3    105840 1 3    3472875 2 3    11025 3    4665600  0 4    2939328000  0 1 4     4898880000  0 1 4    29160000  1 4     41150592000  0 2 4    20575296000  0 1 2 4    4898880000  1 2 4    20575296000  0 2 4    1371686400  1 2 4    95256000  2 4     40824000  0 3 4     8573040000  0 1 3 4    11664000  1 3 4     24004512000  0 2 3 4    34292160000  1 2 3 4    12002256000  2 3 4     333396000  0 3 4    5292000  1 3 4    1333584000  2 3 4    3969000  3 4    6804000  0 4    272160000  0 1 4    58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4    476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4    30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │  
    │ │ │  i3 : time inverse phi
    │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ + -- used 0.0645625s (cpu); 0.0645621s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Birational.out
    │ │ │ @@ -40,18 +40,18 @@
    │ │ │                        - t  + t t
    │ │ │                           3    2 4
    │ │ │                       }
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │  
    │ │ │  i3 : time isBirational phi
    │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc)
    │ │ │ + -- used 0.0253448s (cpu); 0.0253471s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc)
    │ │ │ + -- used 0.0281203s (cpu); 0.0158762s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_is__Dominant.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7},{x_4..x_8}};
    │ │ │  
    │ │ │  o2 : RationalMap (rational map from PP^8 to PP^8)
    │ │ │  
    │ │ │  i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc)
    │ │ │ + -- used 2.65473s (cpu); 2.31996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │  
    │ │ │  i5 : -- hyperelliptic curve of genus 3
    │ │ │       C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6-26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5-24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7-23*x_1*x_7+8*x_2*x_7-22*x_3*x_7+20*x_4*x_7-15*x_5*x_7,x_2*x_5+47*x_5^2-40*x_0*x_6+37*x_1*x_6-25*x_2*x_6-22*x_3*x_6-8*x_4*x_6+27*x_5*x_6+15*x_6^2-23*x_0*x_7-42*x_1*x_7+27*x_2*x_7+35*x_3*x_7+39*x_4*x_7+24*x_5*x_7,x_1*x_5+15*x_5^2+49*x_0*x_6+8*x_1*x_6-31*x_2*x_6+9*x_3*x_6+38*x_4*x_6-36*x_5*x_6-30*x_6^2-33*x_0*x_7+26*x_1*x_7+32*x_2*x_7+27*x_3*x_7+6*x_4*x_7+36*x_5*x_7,x_0*x_5+30*x_5^2-11*x_0*x_6-38*x_1*x_6+13*x_2*x_6-32*x_3*x_6-30*x_4*x_6+4*x_5*x_6-28*x_6^2-30*x_0*x_7-6*x_1*x_7-45*x_2*x_7+34*x_3*x_7+20*x_4*x_7+48*x_5*x_7,x_3*x_4+46*x_5^2-37*x_0*x_6+27*x_1*x_6+33*x_2*x_6+8*x_3*x_6-32*x_4*x_6+42*x_5*x_6-34*x_6^2-37*x_0*x_7-28*x_1*x_7+10*x_2*x_7-27*x_3*x_7-42*x_4*x_7-8*x_5*x_7,x_2*x_4-25*x_5^2-4*x_0*x_6+2*x_1*x_6-31*x_2*x_6-5*x_3*x_6+16*x_4*x_6-24*x_5*x_6+31*x_6^2-30*x_0*x_7+32*x_1*x_7+12*x_2*x_7-40*x_3*x_7+3*x_4*x_7-28*x_5*x_7,x_0*x_4+15*x_5^2+48*x_0*x_6-50*x_1*x_6+46*x_2*x_6-48*x_3*x_6-23*x_4*x_6-28*x_5*x_6+39*x_6^2+38*x_1*x_7-5*x_3*x_7+5*x_4*x_7-34*x_5*x_7,x_3^2-31*x_5^2+41*x_0*x_6-30*x_1*x_6-4*x_2*x_6+43*x_3*x_6+23*x_4*x_6+7*x_5*x_6+31*x_6^2-19*x_0*x_7+25*x_1*x_7-49*x_2*x_7-16*x_3*x_7-45*x_4*x_7+25*x_5*x_7,x_2*x_3+13*x_5^2-45*x_0*x_6-22*x_1*x_6+33*x_2*x_6-26*x_3*x_6-21*x_4*x_6+34*x_5*x_6-21*x_6^2-47*x_0*x_7-10*x_1*x_7+29*x_2*x_7-46*x_3*x_7-x_4*x_7+20*x_5*x_7,x_1*x_3+22*x_5^2+4*x_0*x_6+3*x_1*x_6+45*x_2*x_6+37*x_3*x_6+17*x_4*x_6+36*x_5*x_6-2*x_6^2-31*x_0*x_7+3*x_1*x_7-12*x_2*x_7+19*x_3*x_7+28*x_4*x_7+30*x_5*x_7,x_0*x_3-47*x_5^2-43*x_0*x_6+6*x_1*x_6-40*x_2*x_6+21*x_3*x_6+26*x_4*x_6-5*x_5*x_6-5*x_6^2+4*x_0*x_7-15*x_1*x_7+18*x_2*x_7-31*x_3*x_7+50*x_4*x_7-46*x_5*x_7,x_2^2+4*x_5^2+31*x_0*x_6+41*x_1*x_6+31*x_2*x_6+28*x_3*x_6+42*x_4*x_6-28*x_5*x_6-4*x_6^2-7*x_0*x_7+15*x_1*x_7-9*x_2*x_7+31*x_3*x_7+3*x_4*x_7+7*x_5*x_7,x_1*x_2-46*x_5^2-6*x_0*x_6-50*x_1*x_6+32*x_2*x_6-10*x_3*x_6+42*x_4*x_6+33*x_5*x_6+18*x_6^2-9*x_0*x_7-20*x_1*x_7+45*x_2*x_7-9*x_3*x_7+10*x_4*x_7-8*x_5*x_7,x_0*x_2-9*x_5^2+34*x_0*x_6-45*x_1*x_6+19*x_2*x_6+24*x_3*x_6+23*x_4*x_6-37*x_5*x_6-44*x_6^2+24*x_0*x_7-33*x_2*x_7+41*x_3*x_7-40*x_4*x_7+4*x_5*x_7,x_1^2+x_1*x_4+x_4^2-28*x_5^2-33*x_0*x_6-17*x_1*x_6+11*x_3*x_6+20*x_4*x_6+25*x_5*x_6-21*x_6^2-22*x_0*x_7+24*x_1*x_7-14*x_2*x_7+5*x_3*x_7-39*x_4*x_7-18*x_5*x_7,x_0*x_1-47*x_5^2-5*x_0*x_6-9*x_1*x_6-45*x_2*x_6+48*x_3*x_6+45*x_4*x_6-29*x_5*x_6+3*x_6^2+29*x_0*x_7+40*x_1*x_7+46*x_2*x_7+27*x_3*x_7-36*x_4*x_7-39*x_5*x_7,x_0^2-31*x_5^2+36*x_0*x_6-30*x_1*x_6-10*x_2*x_6+42*x_3*x_6+9*x_4*x_6+34*x_5*x_6-6*x_6^2+48*x_0*x_7-47*x_1*x_7-19*x_2*x_7+25*x_3*x_7+28*x_4*x_7+34*x_5*x_7);
    │ │ │ @@ -21,12 +21,12 @@
    │ │ │  
    │ │ │  i6 : phi = rationalMap(C,3,2);
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from PP^7 to PP^7)
    │ │ │  
    │ │ │  i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc)
    │ │ │ + -- used 3.94783s (cpu); 2.94981s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_kernel_lp__Ring__Map_cm__Z__Z_rp.out
    │ │ │ @@ -6,23 +6,23 @@
    │ │ │  o1 = map (QQ[x ..x ], QQ[y ..y  ], {- 5x x  + x x  + x x  + 35x x  - 7x x  + x x  - x x  - 49x  - 5x x  + 2x x  - x x  + 27x x  - 4x  + x x  - 7x x  + 2x x  - 2x x  + 14x x  - 4x x , - x x  - 6x x  - 5x x  + 2x x  + x x  + x x  - 5x x  - x x  + 2x x  + 7x x  - 2x x  + 2x x  - 3x x , - 25x  + 9x x  + 10x x  - 2x x  - x  + 29x x  - x x  - 7x x  - 13x x  + 3x x  + x x  - x x  + 2x x  - x x  + 7x x  - 2x x  - 8x x  + 2x x  - 3x x , x x  + x x  + x  + 7x x  - 9x x  + 12x x  - 4x  + 2x x  + 2x x  - 14x x  + 4x x  + x x  - x x  - 14x x  + x x , - 5x x  + x x  - 7x x  + 8x x  - 5x x  + 2x x  - x x  + x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , x x  + x  - 7x x  - 8x x  + x x  + x x  + 2x x  - x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  + x  - 8x x  + x x  + 6x x  - 2x  + x x  + x x  - 7x x  + 2x x  + x x  - 7x x  + 2x x , x x  - 7x x  + x x  + x x  - 7x x  + 2x  - x x , - 4x x  + x x  - x  - 7x x  + 8x x  + x x  - x x  - 6x x  + 2x  - x x  - x x  + 7x x  - 2x x  - x x  + 7x x  - 2x x , - 5x x  + 2x  + x x  - x  - x x  + 8x x  - 10x x  + 2x x  + 2x x  - 2x x  + 14x x  - 4x x  + 5x x  - 3x x  - 2x x  + 7x x  - 2x x  - 3x x , - 5x x  + x x  + x x  - 4x x  - x x  + x x  + x x , x x  - x x  + 5x x  + x x  - 14x x  - x x  - 8x x  - 8x x  + 2x x  + 4x x  + 2x x  + 4x x  + 3x x  - 7x x  + 2x x  - 3x x })
    │ │ │                0   8       0   11        0 3    2 4    3 4      0 5     2 5    3 5    4 5      5     0 6     2 6    4 6      5 6     6    4 7     5 7     6 7     4 8      5 8     6 8     1 2     1 5     0 6     1 6    4 6    5 6     0 7    1 7     2 7     5 7     6 7     1 8     7 8       0     0 2      0 4     2 4    4      0 5    2 5     4 5      0 6     4 6    5 6    0 7     2 7    4 7     5 7     6 7     0 8     4 8     7 8   2 4    3 4    4     2 5     4 5      5 6     6     3 7     4 7      5 7     6 7    3 8    4 8      5 8    6 8      0 4    2 4     2 5     4 5     0 6     2 6    4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   0 4    4     1 5     4 5    0 6    1 6     4 6    5 6    4 7     5 7     6 7    4 8     5 8     6 8   2 3    4     4 5    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8   1 3     1 5    1 6    4 6     5 6     6    3 7      0 3    3 4    4     0 5     4 5    0 6    4 6     5 6     6    3 7    4 7     5 7     6 7    4 8     5 8     6 8      0 2     2    2 4    4    2 5     4 5      0 6     5 6     2 7     4 7      5 7     6 7     0 8     2 8     4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7   0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2 7     0 8     1 8     5 8     6 8     7 8
    │ │ │  
    │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │                   0   8          0   11
    │ │ │  
    │ │ │  i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ + -- used 0.0215404s (cpu); 0.0215418s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │  
    │ │ │  i3 : time kernel(phi,2)
    │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ + -- used 1.14536s (cpu); 0.538298s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_parametrize_lp__Ideal_rp.out
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │                8           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i3 : time parametrize L
    │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ + -- used 0.00636444s (cpu); 0.00638338s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │  
    │ │ │  i5 : time parametrize Q
    │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ + -- used 0.632307s (cpu); 0.466254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_point_lp__Quotient__Ring_rp.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 3560583829489988690
    │ │ │  
    │ │ │  i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331);
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │  
    │ │ │  i2 : time p = point source f
    │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc)
    │ │ │ + -- used 0.497934s (cpu); 0.238097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -20,12 +20,12 @@
    │ │ │                                                             -----[y ..y  ]
    │ │ │                                                             33331  0   11
    │ │ │  o2 : Ideal of -------------------------------------------------------------------------------------------------------
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │  i3 : time p == f^* f p
    │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc)
    │ │ │ + -- used 0.230663s (cpu); 0.142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_projective__Degrees.out
    │ │ │ @@ -8,15 +8,15 @@
    │ │ │                       0   4              0   5       1    0 2     1 2    0 3     2    1 3     1 3    0 4     2 3    1 4     3    2 4
    │ │ │  
    │ │ │  o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ]
    │ │ │                          0   4                 0   5
    │ │ │  
    │ │ │  i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc)
    │ │ │ + -- used 0.0412574s (cpu); 0.0211614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : psi=inverseMap(toMap(phi,Dominant=>infinity))
    │ │ │  
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                           0   5
    │ │ │  o4 : RingMap ------------------ <-- GF 109561[t ..t ]
    │ │ │               x x  - x x  + x x                 0   4
    │ │ │                2 3    1 4    0 5
    │ │ │  
    │ │ │  i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc)
    │ │ │ + -- used 0.0279848s (cpu); 0.0140302s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : -- Cremona transformation of P^6 defined by the quadrics through a rational octic surface
    │ │ │       phi = map specialCremonaTransformation(7,ZZ/300007)
    │ │ │ @@ -48,21 +48,21 @@
    │ │ │            300007  0   6   300007  0   6     2 4    1 5          0 4          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6   2 3    0 5          1 3          1 4          4         0 5          1 5         2 5          4 5         5          3 6         4 6         5 6        0 3         1 4         3 4         4          0 5         1 5         2 5          3 5          4 5         5         3 6          4 6         5 6          0 1          1         0 2          1 2         2          1 4          1 5         2 5          0 6         1 6         2 6         0          1         0 2         1 2         2         1 4          4         0 5         1 5          2 5          4 5         5         0 6         1 6          2 6          3 6         4 6         5 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o6 : RingMap ------[x ..x ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   6
    │ │ │  
    │ │ │  i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc)
    │ │ │ + -- used 7.3527e-05s (cpu); 6.2036e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.9904e-05s (cpu); 3.7457e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -3,15 +3,15 @@
    │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │  
    │ │ │                  ZZ
    │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │                33331  0   6
    │ │ │  
    │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ + -- used 0.133048s (cpu); 0.133048s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_rational__Map_lp__Ring_cm__Tally_rp.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │                     0         1         2         3        4         5
    │ │ │  
    │ │ │  o4 : Ideal of X
    │ │ │  
    │ │ │  i5 : D = new Tally from {H => 2,C => 1};
    │ │ │  
    │ │ │  i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc)
    │ │ │ + -- used 0.0396531s (cpu); 0.0396503s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -123,13 +123,13 @@
    │ │ │                        x x x  + x x x  + x x x  + x x  + x x x  - 2x x x  + x x
    │ │ │                         0 1 5    0 2 5    1 2 5    2 5    1 4 5     2 4 5    4 5
    │ │ │                       }
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │  
    │ │ │  i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc)
    │ │ │ + -- used 1.62842s (cpu); 0.70643s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cremona__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1330846641081
    │ │ │  
    │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ + -- used 1.64986s (cpu); 1.26429s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Cubic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730018912715498288
    │ │ │  
    │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ + -- used 0.10227s (cpu); 0.102271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -62,15 +62,15 @@
    │ │ │                        8x x  - 12x x  + 24x  - 11x x  + 17x x x  - 24x x  - 10x x  + 11x x  - 3x  - 6x x  + 28x x x  - 70x x  - 21x x x  + 47x x x  - 13x x  - 14x x  + 66x x  - 22x x  - 20x  + 2x x  - 2x x x  - 10x x  - 11x x x  + 8x x x  - 5x x  + 3x x x  + 23x x x  - 11x x x  - 12x x  + 3x x  - 3x x  - 2x x  + 3x x  + x  - 11x x  + 14x x x  + 34x x  - 6x x x  - 16x x x  + 3x x  - 15x x x  - 66x x x  + 12x x x  + 30x x  - 19x x x  + 2x x x  - 5x x x  - 2x x x  - 7x x  + 6x x  + 21x x  - 3x x  - 21x x  + x x  + 5x  - 8x x  + 7x x x  - 32x x  - 13x x x  + 28x x x  - 9x x  + 70x x x  - 27x x x  - 36x x  + x x x  + 4x x x  - 7x x x  - 2x x x  + 3x x  - 25x x x  - 23x x x  + 4x x x  + 27x x x  - 14x x x  - 9x x  - 2x x  + 10x x  - 6x x  - 10x x  + 3x x  - 2x x
    │ │ │                          0 1      0 1      1      0 2      0 1 2      1 2      0 2      1 2     2     0 3      0 1 3      1 3      0 2 3      1 2 3      2 3      0 3      1 3      2 3      3     0 4     0 1 4      1 4      0 2 4     1 2 4     2 4     0 3 4      1 3 4      2 3 4      3 4     0 4     1 4     2 4     3 4    4      0 5      0 1 5      1 5     0 2 5      1 2 5     2 5      0 3 5      1 3 5      2 3 5      3 5      0 4 5     1 4 5     2 4 5     3 4 5     4 5     0 5      1 5     2 5      3 5    4 5     5     0 6     0 1 6      1 6      0 2 6      1 2 6     2 6      1 3 6      2 3 6      3 6    0 4 6     1 4 6     2 4 6     3 4 6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6      1 6     2 6      3 6     4 6     5 6
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ + -- used 0.0195273s (cpu); 0.0195271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_special__Quadratic__Transformation.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729200582376678705
    │ │ │  
    │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ + -- used 0.0782691s (cpu); 0.0782673s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -50,15 +50,15 @@
    │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │                       }
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │  
    │ │ │  i2 : time describe oo
    │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ + -- used 0.117603s (cpu); 0.0334491s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/example-output/_to__External__String_lp__Rational__Map_rp.out
    │ │ │ @@ -7,34 +7,34 @@
    │ │ │  i2 : str = toExternalString phi;
    │ │ │  
    │ │ │  i3 : #str
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │  
    │ │ │  i4 : time phi' = value str;
    │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ + -- used 0.0280019s (cpu); 0.0280041s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │  
    │ │ │  i5 : time describe phi'
    │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ + -- used 0.00670417s (cpu); 0.00671332s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │       number of minimal representatives: 1
    │ │ │       dimension base locus: 1
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │  
    │ │ │  i6 : time describe inverse phi'
    │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ + -- used 0.00554705s (cpu); 0.00555551s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Chern__Schwartz__Mac__Pherson.html
    │ │ │ @@ -97,30 +97,30 @@
    │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │                          0   4
    │ │ │
    │ │ │
    i3 : time ChernSchwartzMacPherson C
    │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ + -- used 2.54343s (cpu); 1.34304s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o3 : -----
    │ │ │          5
    │ │ │         H
    │ │ │
    │ │ │
    i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ + -- used 1.53812s (cpu); 1.05304s (thread); 0s (gc)
    │ │ │  
    │ │ │         4     3     2
    │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          5
    │ │ │ @@ -167,30 +167,30 @@
    │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i9 : time ChernClass G
    │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ + -- used 0.39165s (cpu); 0.214069s (thread); 0s (gc)
    │ │ │  
    │ │ │          9      8      7      6      5      4     3
    │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o9 : -----
    │ │ │         10
    │ │ │        H
    │ │ │
    │ │ │
    i10 : time ChernClass(G,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ + -- used 0.154793s (cpu); 0.0449216s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6      5      4     3
    │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o10 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -39,26 +39,26 @@
    │ │ │ │                 2                           2
    │ │ │ │  o2 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                 1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │  o2 : Ideal of GF 78125[x ..x ]
    │ │ │ │                          0   4
    │ │ │ │  i3 : time ChernSchwartzMacPherson C
    │ │ │ │ - -- used 2.25862s (cpu); 1.18322s (thread); 0s (gc)
    │ │ │ │ + -- used 2.54343s (cpu); 1.34304s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o3 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o3 : -----
    │ │ │ │          5
    │ │ │ │         H
    │ │ │ │  i4 : time ChernSchwartzMacPherson(C,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 1.61784s (cpu); 1.14031s (thread); 0s (gc)
    │ │ │ │ + -- used 1.53812s (cpu); 1.05304s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         4     3     2
    │ │ │ │  o4 = 3H  + 5H  + 3H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          5
    │ │ │ │ @@ -88,26 +88,26 @@
    │ │ │ │          0,2 1,3    0,1 2,3
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o8 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p
    │ │ │ │  ]
    │ │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │ │  i9 : time ChernClass G
    │ │ │ │ - -- used 0.439952s (cpu); 0.258932s (thread); 0s (gc)
    │ │ │ │ + -- used 0.39165s (cpu); 0.214069s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          9      8      7      6      5      4     3
    │ │ │ │  o9 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o9 : -----
    │ │ │ │         10
    │ │ │ │        H
    │ │ │ │  i10 : time ChernClass(G,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.132347s (cpu); 0.0449789s (thread); 0s (gc)
    │ │ │ │ + -- used 0.154793s (cpu); 0.0449216s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6      5      4     3
    │ │ │ │  o10 = 10H  + 30H  + 60H  + 75H  + 57H  + 25H  + 5H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o10 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Euler__Characteristic.html
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o1 : Ideal of ------[p   ..p   , p   , p   , p   , p   , p   , p   , p   , p   ]
    │ │ │                190181  0,1   0,2   1,2   0,3   1,3   2,3   0,4   1,4   2,4   3,4
    │ │ │
    │ │ │
    i2 : time EulerCharacteristic I
    │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc)
    │ │ │ + -- used 0.358491s (cpu); 0.192059s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │
    │ │ │
    i3 : time EulerCharacteristic(I,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc)
    │ │ │ + -- used 0.0303717s (cpu); 0.0172716s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 10
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,20 +31,20 @@ │ │ │ │ i1 : I = Grassmannian(1,4,CoefficientRing=>ZZ/190181); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of ------[p ..p , p , p , p , p , p , p , p , p │ │ │ │ ] │ │ │ │ 190181 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ │ i2 : time EulerCharacteristic I │ │ │ │ - -- used 0.265746s (cpu); 0.15298s (thread); 0s (gc) │ │ │ │ + -- used 0.358491s (cpu); 0.192059s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ i3 : time EulerCharacteristic(I,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0115158s (cpu); 0.0109715s (thread); 0s (gc) │ │ │ │ + -- used 0.0303717s (cpu); 0.0172716s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 10 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ No test is made to see if the projective variety is smooth. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_u_l_e_r_(_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- topological Euler characteristic of a │ │ │ │ (smooth) projective variety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp!.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ target variety: PP^5 │ │ │ coefficient ring: QQ
    │ │ │
    │ │ │
    i4 : time phi! ;
    │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ + -- used 0.118638s (cpu); 0.0709907s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │
    │ │ │
    i5 : describe phi
    │ │ │ @@ -127,15 +127,15 @@
    │ │ │       target variety: PP^5
    │ │ │       coefficient ring: QQ
    │ │ │
    │ │ │
    i9 : time phi! ;
    │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ + -- used 0.0580553s (cpu); 0.044975s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │
    │ │ │
    i10 : describe phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i3 : describe phi
    │ │ │ │  
    │ │ │ │  o3 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i4 : time phi! ;
    │ │ │ │ - -- used 0.0532429s (cpu); 0.0528992s (thread); 0s (gc)
    │ │ │ │ + -- used 0.118638s (cpu); 0.0709907s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (Cremona transformation of PP^5 of type (2,2))
    │ │ │ │  i5 : describe phi
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^5
    │ │ │ │       target variety: PP^5
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  i8 : describe phi
    │ │ │ │  
    │ │ │ │  o8 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^5
    │ │ │ │       coefficient ring: QQ
    │ │ │ │  i9 : time phi! ;
    │ │ │ │ - -- used 0.0360627s (cpu); 0.0357049s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0580553s (cpu); 0.044975s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : RationalMap (quadratic rational map from PP^4 to PP^5)
    │ │ │ │  i10 : describe phi
    │ │ │ │  
    │ │ │ │  o10 = rational map defined by forms of degree 2
    │ │ │ │        source variety: PP^4
    │ │ │ │        target variety: PP^5
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/___Rational__Map_sp^_st_st_sp__Ideal.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i6 : time phi^** q
    │ │ │ - -- used 0.157531s (cpu); 0.157527s (thread); 0s (gc)
    │ │ │ + -- used 0.184367s (cpu); 0.184366s (thread); 0s (gc)
    │ │ │  
    │ │ │                  e        d        c        b        a
    │ │ │  o6 = ideal (u - -*v, t - -*v, z - -*v, y - -*v, x - -*v)
    │ │ │                  f        f        f        f        f
    │ │ │  
    │ │ │  o6 : Ideal of frac(QQ[a..f])[x, y, z, t, u, v]
    │ │ │
    │ │ │
    i4 : time SegreClass X
    │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ + -- used 0.827915s (cpu); 0.549293s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o4 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i5 : time SegreClass lift(X,P7)
    │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ + -- used 0.67955s (cpu); 0.379962s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o5 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i6 : time SegreClass(X,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ + -- used 0.0508406s (cpu); 0.026628s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5       4      3
    │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o6 : -----
    │ │ │          8
    │ │ │         H
    │ │ │
    │ │ │
    i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ + -- used 0.152985s (cpu); 0.124011s (thread); 0s (gc)
    │ │ │  
    │ │ │            7        6       5      4      3
    │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │  
    │ │ │       ZZ[H]
    │ │ │  o7 : -----
    │ │ │          8
    │ │ │ @@ -203,25 +203,25 @@
    │ │ │          
    │ │ │

    The method also accepts as input a ring map phi representing a rational map $\Phi:X\dashrightarrow Y$ between projective varieties. In this case, the method returns the push-forward to the Chow ring of the ambient projective space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it basically computes SegreClass ideal matrix phi. In the next example, we compute the Segre class of the base locus of a birational map $\mathbb{G}(1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : use ZZ/100003[x_0..x_6]
    │ │ │  
    │ │ │ -o9 =   ZZ
    │ │ │ - ------[x ..x ]
    │ │ │ - 100003  0   6
    │ │ │ +       ZZ
    │ │ │ +o9 = ------[x ..x ]
    │ │ │ +     100003  0   6
    │ │ │  
    │ │ │  o9 : PolynomialRing
    │ │ │
    │ │ │
    i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},{x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ + -- used 0.280103s (cpu); 0.120852s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                          ZZ
    │ │ │                                                        ------[y ..y ]
    │ │ │                                                        100003  0   9                                                ZZ              2                              2
    │ │ │  o10 = map (----------------------------------------------------------------------------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y , y  - y y  - y y , y y  + y y  - y y , y y  - y y , y y  - y y  - y y , y y  - y y  - y y })
    │ │ │             (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )  100003  0   6     3    0 5    1 6   3 4    1 7   4    2 7    0 9   2 5    3 5    1 8   4 5    1 9   4 8    2 9    3 9   7 8    4 9    6 9
    │ │ │               5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i11 : time SegreClass phi
    │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ + -- used 0.227822s (cpu); 0.227831s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o11 : -----
    │ │ │          10
    │ │ │ @@ -267,30 +267,30 @@
    │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6    1 7    0 8   2 3    1 4    0 5
    │ │ │
    │ │ │
    i13 : -- Segre class of B in G(1,4)
    │ │ │        time SegreClass B
    │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ + -- used 0.450925s (cpu); 0.310725s (thread); 0s (gc)
    │ │ │  
    │ │ │           9      8      7      6     5
    │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o13 : -----
    │ │ │          10
    │ │ │         H
    │ │ │
    │ │ │
    i14 : -- Segre class of B in P^9
    │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ + -- used 1.99007s (cpu); 1.0831s (thread); 0s (gc)
    │ │ │  
    │ │ │             9       8       7      6     5
    │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │  
    │ │ │        ZZ[H]
    │ │ │  o14 : -----
    │ │ │          10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -81,47 +81,47 @@
    │ │ │ │                 2 2                2 2                                        2
    │ │ │ │  2                                                    2 2
    │ │ │ │                x x  - 2x x x x  + x x  - 2x x x x  - 2x x x x  + 4x x x x  + x x
    │ │ │ │  + 4x x x x  - 2x x x x  - 2x x x x  - 2x x x x  + x x
    │ │ │ │                 3 4     2 3 4 5    2 5     1 3 4 6     1 2 5 6     0 3 5 6    1
    │ │ │ │  6     1 2 4 7     0 3 4 7     0 2 5 7     0 1 6 7    0 7
    │ │ │ │  i4 : time SegreClass X
    │ │ │ │ - -- used 0.865825s (cpu); 0.519842s (thread); 0s (gc)
    │ │ │ │ + -- used 0.827915s (cpu); 0.549293s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o4 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o4 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i5 : time SegreClass lift(X,P7)
    │ │ │ │ - -- used 0.565093s (cpu); 0.36901s (thread); 0s (gc)
    │ │ │ │ + -- used 0.67955s (cpu); 0.379962s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o5 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o5 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i6 : time SegreClass(X,Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.0212909s (cpu); 0.0208755s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0508406s (cpu); 0.026628s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5       4      3
    │ │ │ │  o6 = 3240H  - 1188H  + 396H  - 114H  + 24H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o6 : -----
    │ │ │ │          8
    │ │ │ │         H
    │ │ │ │  i7 : time SegreClass(lift(X,P7),Certify=>true)
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 0.097715s (cpu); 0.0973659s (thread); 0s (gc)
    │ │ │ │ + -- used 0.152985s (cpu); 0.124011s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            7        6       5      4      3
    │ │ │ │  o7 = 2816H  - 1056H  + 324H  - 78H  + 12H
    │ │ │ │  
    │ │ │ │       ZZ[H]
    │ │ │ │  o7 : -----
    │ │ │ │          8
    │ │ │ │ @@ -134,22 +134,22 @@
    │ │ │ │  method returns the push-forward to the Chow ring of the ambient projective
    │ │ │ │  space of $X$ of the Segre class of the base locus of $\Phi$ in $X$, i.e., it
    │ │ │ │  basically computes SegreClass ideal matrix phi. In the next example, we compute
    │ │ │ │  the Segre class of the base locus of a birational map $\mathbb{G}
    │ │ │ │  (1,4)\subset\mathbb{P}^9 \dashrightarrow \mathbb{P}^6$.
    │ │ │ │  i9 : use ZZ/100003[x_0..x_6]
    │ │ │ │  
    │ │ │ │ -o9 =   ZZ
    │ │ │ │ - ------[x ..x ]
    │ │ │ │ - 100003  0   6
    │ │ │ │ +       ZZ
    │ │ │ │ +o9 = ------[x ..x ]
    │ │ │ │ +     100003  0   6
    │ │ │ │  
    │ │ │ │  o9 : PolynomialRing
    │ │ │ │  i10 : time phi = inverseMap toMap(minors(2,matrix{{x_0,x_1,x_3,x_4,x_5},
    │ │ │ │  {x_1,x_2,x_4,x_5,x_6}}),Dominant=>2)
    │ │ │ │ - -- used 0.216303s (cpu); 0.10276s (thread); 0s (gc)
    │ │ │ │ + -- used 0.280103s (cpu); 0.120852s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                          ZZ
    │ │ │ │                                                        ------[y ..y ]
    │ │ │ │                                                        100003  0   9
    │ │ │ │  ZZ              2                              2
    │ │ │ │  o10 = map (--------------------------------------------------------------------
    │ │ │ │  --------------------------------, ------[x ..x ], {y  - y y  - y y , y y  - y y
    │ │ │ │ @@ -169,15 +169,15 @@
    │ │ │ │  o10 : RingMap -----------------------------------------------------------------
    │ │ │ │  ----------------------------------- <-- ------[x ..x ]
    │ │ │ │                (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )     100003  0   6
    │ │ │ │                  5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2 6
    │ │ │ │  1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i11 : time SegreClass phi
    │ │ │ │ - -- used 0.338604s (cpu); 0.228164s (thread); 0s (gc)
    │ │ │ │ + -- used 0.227822s (cpu); 0.227831s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o11 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o11 : -----
    │ │ │ │          10
    │ │ │ │ @@ -198,26 +198,26 @@
    │ │ │ │  ------------------------------------
    │ │ │ │                 (y y  - y y  + y y , y y  - y y  + y y , y y  - y y  + y y , y y
    │ │ │ │  - y y  + y y , y y  - y y  + y y )
    │ │ │ │                   5 7    4 8    2 9   5 6    3 8    1 9   4 6    3 7    0 9   2
    │ │ │ │  6    1 7    0 8   2 3    1 4    0 5
    │ │ │ │  i13 : -- Segre class of B in G(1,4)
    │ │ │ │        time SegreClass B
    │ │ │ │ - -- used 0.39646s (cpu); 0.292129s (thread); 0s (gc)
    │ │ │ │ + -- used 0.450925s (cpu); 0.310725s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9      8      7      6     5
    │ │ │ │  o13 = 23H  - 42H  + 36H  - 22H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o13 : -----
    │ │ │ │          10
    │ │ │ │         H
    │ │ │ │  i14 : -- Segre class of B in P^9
    │ │ │ │        time SegreClass lift(B,ambient ring B)
    │ │ │ │ - -- used 1.41797s (cpu); 0.900612s (thread); 0s (gc)
    │ │ │ │ + -- used 1.99007s (cpu); 1.0831s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             9       8       7      6     5
    │ │ │ │  o14 = 2764H  - 984H  + 294H  - 67H  + 9H
    │ │ │ │  
    │ │ │ │        ZZ[H]
    │ │ │ │  o14 : -----
    │ │ │ │          10
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_abstract__Rational__Map.html
    │ │ │ @@ -101,15 +101,15 @@
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ + -- used 0.000493397s (cpu); 0.000485585s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: given by a function
    │ │ │ @@ -119,23 +119,23 @@
    │ │ │            
    │ │ │

    Now we compute first the degree of the forms defining the abstract map psi and then the corresponding concrete rational map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time projectiveDegrees(psi,3)
    │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ + -- used 0.414107s (cpu); 0.242631s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    │ │ │
    i6 : time rationalMap psi
    │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ + -- used 0.604915s (cpu); 0.504893s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │                        0   1   2   3   4   5
    │ │ │       defining forms: {
    │ │ │ @@ -233,15 +233,15 @@
    │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │                 65521  0   3
    │ │ │
    │ │ │
    i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ + -- used 0.18261s (cpu); 0.0872618s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -253,26 +253,26 @@
    │ │ │            
    │ │ │

    The degree of the forms defining the abstract map T can be obtained by the following command:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time projectiveDegrees(T,2)
    │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ + -- used 5.3433s (cpu); 2.46689s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3
    │ │ │
    │ │ │

    We verify that the composition of T with itself is defined by linear forms:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i16 : time T2 = T * T
    │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ + -- used 2.8546e-05s (cpu); 2.671e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ @@ -281,15 +281,15 @@
    │ │ │  
    │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │
    │ │ │
    i17 : time projectiveDegrees(T2,2)
    │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ + -- used 7.99029s (cpu); 3.92144s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = 1
    │ │ │
    │ │ │

    We verify that the composition of T with itself leaves a random point fixed:

    │ │ │ │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │
    │ │ │

    We now compute the concrete rational map corresponding to T:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i21 : time f = rationalMap T
    │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ + -- used 6.20953s (cpu); 3.31023s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │                     65521  0   1   2   3
    │ │ │                       ZZ
    │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,32 +35,32 @@
    │ │ │ │  i3 : P5 := QQ[u_0..u_5]
    │ │ │ │  
    │ │ │ │  o3 = QQ[u ..u ]
    │ │ │ │           0   5
    │ │ │ │  
    │ │ │ │  o3 : PolynomialRing
    │ │ │ │  i4 : time psi = abstractRationalMap(P4,P5,f)
    │ │ │ │ - -- used 0.000410019s (cpu); 0.000406292s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000493397s (cpu); 0.000485585s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o4 : AbstractRationalMap (rational map from PP^4 to PP^5)
    │ │ │ │  Now we compute first the degree of the forms defining the abstract map psi and
    │ │ │ │  then the corresponding concrete rational map.
    │ │ │ │  i5 : time projectiveDegrees(psi,3)
    │ │ │ │ - -- used 0.298853s (cpu); 0.18527s (thread); 0s (gc)
    │ │ │ │ + -- used 0.414107s (cpu); 0.242631s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = 2
    │ │ │ │  i6 : time rationalMap psi
    │ │ │ │ - -- used 0.504026s (cpu); 0.366499s (thread); 0s (gc)
    │ │ │ │ + -- used 0.604915s (cpu); 0.504893s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = -- rational map --
    │ │ │ │       source: Proj(QQ[t , t , t , t , t ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[u , u , u , u , u , u ])
    │ │ │ │                        0   1   2   3   4   5
    │ │ │ │       defining forms: {
    │ │ │ │ @@ -139,48 +139,48 @@
    │ │ │ │  o13 = ideal (- x  + x x , - x x  + x x , - x  + x x )
    │ │ │ │                  1    0 2     1 2    0 3     2    1 3
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o13 : Ideal of -----[x ..x ]
    │ │ │ │                 65521  0   3
    │ │ │ │  i14 : time T = abstractRationalMap(I,"OADP")
    │ │ │ │ - -- used 0.149185s (cpu); 0.0769299s (thread); 0s (gc)
    │ │ │ │ + -- used 0.18261s (cpu); 0.0872618s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o14 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  The degree of the forms defining the abstract map T can be obtained by the
    │ │ │ │  following command:
    │ │ │ │  i15 : time projectiveDegrees(T,2)
    │ │ │ │ - -- used 4.07764s (cpu); 2.12022s (thread); 0s (gc)
    │ │ │ │ + -- used 5.3433s (cpu); 2.46689s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = 3
    │ │ │ │  We verify that the composition of T with itself is defined by linear forms:
    │ │ │ │  i16 : time T2 = T * T
    │ │ │ │ - -- used 2.8564e-05s (cpu); 2.8273e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 2.8546e-05s (cpu); 2.671e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │        defining forms: given by a function
    │ │ │ │  
    │ │ │ │  o16 : AbstractRationalMap (rational map from PP^3 to PP^3)
    │ │ │ │  i17 : time projectiveDegrees(T2,2)
    │ │ │ │ - -- used 6.65901s (cpu); 3.45699s (thread); 0s (gc)
    │ │ │ │ + -- used 7.99029s (cpu); 3.92144s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = 1
    │ │ │ │  We verify that the composition of T with itself leaves a random point fixed:
    │ │ │ │  i18 : p = apply(3,i->random(ZZ/65521))|{1}
    │ │ │ │  
    │ │ │ │  o18 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │ @@ -193,15 +193,15 @@
    │ │ │ │  i20 : T q
    │ │ │ │  
    │ │ │ │  o20 = {-6648, -23396, -12311, 1}
    │ │ │ │  
    │ │ │ │  o20 : List
    │ │ │ │  We now compute the concrete rational map corresponding to T:
    │ │ │ │  i21 : time f = rationalMap T
    │ │ │ │ - -- used 5.38367s (cpu); 2.92119s (thread); 0s (gc)
    │ │ │ │ + -- used 6.20953s (cpu); 3.31023s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(-----[x , x , x , x ])
    │ │ │ │                     65521  0   1   2   3
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(-----[x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_approximate__Inverse__Map.html
    │ │ │ @@ -139,15 +139,15 @@
    │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ + -- used 0.319869s (cpu); 0.243932s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                    ZZ
    │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │                                  ZZ
    │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -200,15 +200,15 @@
    │ │ │            
    │ │ │
    i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ + -- used 0.326886s (cpu); 0.246914s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i6 : assert(psi == psi')
    │ │ │ @@ -295,15 +295,15 @@ │ │ │
    │ │ │
    i8 : -- without the option 'CodimBsInv=>4', it takes about triple time 
    │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ + -- used 2.228s (cpu); 1.88917s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = -- rational map --
    │ │ │                                  ZZ
    │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │               {
    │ │ │                                  2
    │ │ │ @@ -367,15 +367,15 @@
    │ │ │              
    │ │ │
    i10 : -- in this case we can remedy enabling the option Certify
    │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ + -- used 3.23525s (cpu); 2.80126s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = -- rational map --
    │ │ │                                   ZZ
    │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │                {
    │ │ │                                   2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -135,15 +135,15 @@
    │ │ │ │  -- approximateInverseMap: step 4 of 10
    │ │ │ │  -- approximateInverseMap: step 5 of 10
    │ │ │ │  -- approximateInverseMap: step 6 of 10
    │ │ │ │  -- approximateInverseMap: step 7 of 10
    │ │ │ │  -- approximateInverseMap: step 8 of 10
    │ │ │ │  -- approximateInverseMap: step 9 of 10
    │ │ │ │  -- approximateInverseMap: step 10 of 10
    │ │ │ │ - -- used 0.272017s (cpu); 0.206969s (thread); 0s (gc)
    │ │ │ │ + -- used 0.319869s (cpu); 0.243932s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                    ZZ
    │ │ │ │       source: Proj(--[t , t , t , t , t , t , t , t , t ])
    │ │ │ │                    97  0   1   2   3   4   5   6   7   8
    │ │ │ │                                  ZZ
    │ │ │ │       target: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -252,15 +252,15 @@
    │ │ │ │  
    │ │ │ │  o3 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i4 : assert(phi * psi == 1 and psi * phi == 1)
    │ │ │ │  i5 : time psi' = approximateInverseMap(phi,CodimBsInv=>5);
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 0.227935s (cpu); 0.16233s (thread); 0s (gc)
    │ │ │ │ + -- used 0.326886s (cpu); 0.246914s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 : RationalMap (quadratic rational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i6 : assert(psi == psi')
    │ │ │ │  A more complicated example is the following (here _i_n_v_e_r_s_e_M_a_p takes a lot of
    │ │ │ │  time!).
    │ │ │ │  i7 : phi = rationalMap map(P8,ZZ/97[x_0..x_11]/ideal(x_1*x_3-8*x_2*x_3+25*x_3^2-25*x_2*x_4-
    │ │ │ │  22*x_3*x_4+x_0*x_5+13*x_2*x_5+41*x_3*x_5-x_0*x_6+12*x_2*x_6+25*x_1*x_7+25*x_3*x_7+23*x_5*x_7-
    │ │ │ │ @@ -418,15 +418,15 @@
    │ │ │ │  
    │ │ │ │  o7 : RationalMap (quadratic rational map from PP^8 to 8-dimensional subvariety of PP^11)
    │ │ │ │  i8 : -- without the option 'CodimBsInv=>4', it takes about triple time
    │ │ │ │       time psi=approximateInverseMap(phi,CodimBsInv=>4)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │ - -- used 2.31467s (cpu); 1.78736s (thread); 0s (gc)
    │ │ │ │ + -- used 2.228s (cpu); 1.88917s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = -- rational map --
    │ │ │ │                                  ZZ
    │ │ │ │       source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                  97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │               {
    │ │ │ │                                  2
    │ │ │ │ @@ -526,15 +526,15 @@
    │ │ │ │  o9 = false
    │ │ │ │  i10 : -- in this case we can remedy enabling the option Certify
    │ │ │ │        time psi = approximateInverseMap(phi,CodimBsInv=>4,Certify=>true)
    │ │ │ │  -- approximateInverseMap: step 1 of 3
    │ │ │ │  -- approximateInverseMap: step 2 of 3
    │ │ │ │  -- approximateInverseMap: step 3 of 3
    │ │ │ │  Certify: output certified!
    │ │ │ │ - -- used 3.88333s (cpu); 3.11658s (thread); 0s (gc)
    │ │ │ │ + -- used 3.23525s (cpu); 2.80126s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = -- rational map --
    │ │ │ │                                   ZZ
    │ │ │ │        source: subvariety of Proj(--[x , x , x , x , x , x , x , x , x , x , x  , x  ]) defined by
    │ │ │ │                                   97  0   1   2   3   4   5   6   7   8   9   10   11
    │ │ │ │                {
    │ │ │ │                                   2
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_degree__Map.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 : RingMap ringP8 <-- ringP14
    │ │ │
    │ │ │
    i5 : time degreeMap phi
    │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc)
    │ │ │ + -- used 0.0537572s (cpu); 0.0537559s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a general subspace of P^14 
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │  
    │ │ │  o6 : RingMap ringP8 <-- ringP8
    │ │ │
    │ │ │
    i7 : time degreeMap phi'
    │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc)
    │ │ │ + -- used 1.56205s (cpu); 0.862278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -266,15 +266,15 @@ │ │ │ │ 4 0 5 1 5 2 5 3 5 4 5 5 0 6 │ │ │ │ 1 6 2 6 3 6 4 6 5 6 6 0 7 1 7 │ │ │ │ 2 7 3 7 4 7 5 7 6 7 7 0 8 1 8 2 │ │ │ │ 8 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o4 : RingMap ringP8 <-- ringP14 │ │ │ │ i5 : time degreeMap phi │ │ │ │ - -- used 0.0453696s (cpu); 0.0453707s (thread); 0s (gc) │ │ │ │ + -- used 0.0537572s (cpu); 0.0537559s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ i6 : -- Compose phi:P^8--->P^14 with a linear projection P^14--->P^8 from a │ │ │ │ general subspace of P^14 │ │ │ │ -- of dimension 5 (so that the composition phi':P^8--->P^8 must have │ │ │ │ degree equal to deg(G(1,5))=14) │ │ │ │ phi'=phi*map(ringP14,ringP8,for i to 8 list random(1,ringP14)) │ │ │ │ @@ -418,15 +418,15 @@ │ │ │ │ 0 5 1 5 2 5 3 5 4 5 5 0 6 1 6 │ │ │ │ 2 6 3 6 4 6 5 6 6 0 7 1 7 2 7 3 │ │ │ │ 7 4 7 5 7 6 7 7 0 8 1 8 2 8 │ │ │ │ 3 8 4 8 5 8 6 8 7 8 8 │ │ │ │ │ │ │ │ o6 : RingMap ringP8 <-- ringP8 │ │ │ │ i7 : time degreeMap phi' │ │ │ │ - -- used 1.24889s (cpu); 0.706401s (thread); 0s (gc) │ │ │ │ + -- used 1.56205s (cpu); 0.862278s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s -- projective degrees of a rational map between │ │ │ │ projective varieties │ │ │ │ ********** WWaayyss ttoo uussee ddeeggrreeeeMMaapp:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_force__Image.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time forceImage(Phi,ideal 0_(target Phi))
    │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc)
    │ │ │ + -- used 0.00081254s (cpu); 0.000804349s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : Phi;
    │ │ │  
    │ │ │  o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ │ │ o2 : Ideal of P6 │ │ │ │ i3 : Phi = rationalMap(X,Dominant=>2); │ │ │ │ │ │ │ │ o3 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of │ │ │ │ PP^9) │ │ │ │ i4 : time forceImage(Phi,ideal 0_(target Phi)) │ │ │ │ - -- used 0.000607219s (cpu); 0.000601939s (thread); 0s (gc) │ │ │ │ + -- used 0.00081254s (cpu); 0.000804349s (thread); 0s (gc) │ │ │ │ i5 : Phi; │ │ │ │ │ │ │ │ o5 : RationalMap (cubic dominant rational map from PP^6 to 6-dimensional │ │ │ │ subvariety of PP^9) │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ If the declaration is false, nonsensical answers may result. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_graph.html │ │ │ @@ -113,15 +113,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (p1,p2) = graph phi;
    │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc)
    │ │ │ + -- used 0.0922538s (cpu); 0.0295831s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : p1
    │ │ │  
    │ │ │  o4 = -- rational map --
    │ │ │ @@ -272,15 +272,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    When the source of the rational map is a multi-projective variety, the method returns all the projections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │ │ │ w w - w w + w w │ │ │ │ 2 4 1 5 0 6 │ │ │ │ } │ │ │ │ │ │ │ │ o1 : RationalMap (quadratic Cremona transformation of PP^20) │ │ │ │ i2 : time psi = inverseMap phi │ │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc) │ │ │ │ + -- used 0.20957s (cpu); 0.116482s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = -- rational map -- │ │ │ │ source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ , w , w , w , w , w , w , w ]) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 │ │ │ │ 14 15 16 17 18 19 20 │ │ │ │ target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w , w , w , w │ │ │ │ @@ -216,15 +216,15 @@ │ │ │ │ 15 9 20 8 22 3 10 0 13 4 15 9 21 8 23 2 10 0 12 4 │ │ │ │ 20 6 21 8 24 1 10 0 11 4 22 6 23 9 24 4 5 3 6 0 7 │ │ │ │ 1 8 2 9 │ │ │ │ │ │ │ │ o4 : RingMap QQ[w ..w ] <-- QQ[w ..w ] │ │ │ │ 0 26 0 26 │ │ │ │ i5 : time psi = inverseMap phi │ │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc) │ │ │ │ + -- used 0.471849s (cpu); 0.249085s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = map (QQ[w ..w ], QQ[w ..w ], {- w w + w w + w w - w w - w w , │ │ │ │ - w w + w w + w w - w w - w w , - w w + w w + w w - w w - │ │ │ │ w w , - w w - w w + w w - w w - w w , - w w - w w + w w - │ │ │ │ w w - w w , - w w - w w + w w - w w - w w , - w w - w w + │ │ │ │ w w - w w - w w , w w - w w + w w - w w - w w , - w w + │ │ │ │ w w - w w + w w - w w , - w w + w w - w w + w w - w w │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse_lp__Rational__Map_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^4 to PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time g = graph p2;
    │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc)
    │ │ │ + -- used 0.0977423s (cpu); 0.0447804s (thread); 0s (gc) │ │ │
    │ │ │
    i10 : g_0;
    │ │ │  
    │ │ │  o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4)
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,15 +50,15 @@ │ │ │ │ - x + x x │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time (p1,p2) = graph phi; │ │ │ │ - -- used 0.0188178s (cpu); 0.0184354s (thread); 0s (gc) │ │ │ │ + -- used 0.0922538s (cpu); 0.0295831s (thread); 0s (gc) │ │ │ │ i4 : p1 │ │ │ │ │ │ │ │ o4 = -- rational map -- │ │ │ │ ZZ ZZ │ │ │ │ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y │ │ │ │ , y , y , y , y ]) defined by │ │ │ │ 190181 0 1 2 3 4 190181 0 │ │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ │ │ │ o8 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ When the source of the rational map is a multi-projective variety, the method │ │ │ │ returns all the projections. │ │ │ │ i9 : time g = graph p2; │ │ │ │ - -- used 0.0317165s (cpu); 0.0312624s (thread); 0s (gc) │ │ │ │ + -- used 0.0977423s (cpu); 0.0447804s (thread); 0s (gc) │ │ │ │ i10 : g_0; │ │ │ │ │ │ │ │ o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ │ │ of PP^4 x PP^5 x PP^5 to PP^4) │ │ │ │ i11 : g_1; │ │ │ │ │ │ │ │ o11 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_ideal_lp__Rational__Map_rp.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4) │ │ │
    │ │ │
    i3 : time ideal phi
    │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ + -- used 0.00502322s (cpu); 0.00502123s (thread); 0s (gc)
    │ │ │  
    │ │ │               2                                     2                      
    │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2
    │ │ │       x x , x  - x x )
    │ │ │ @@ -195,15 +195,15 @@
    │ │ │  
    │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^5 x PP^4 to PP^4)
    │ │ │
    │ │ │
    i6 : time ideal phi'
    │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ + -- used 0.114269s (cpu); 0.114268s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal 1
    │ │ │  
    │ │ │                                                                                                              QQ[x ..x , y ..y ]
    │ │ │                                                                                                                  0   5   0   4
    │ │ │  o6 : Ideal of --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    │ │ │                                                                                                                                                                                                       2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                         2
    │ │ │ │                        x  - x x
    │ │ │ │                         1    0 3
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (quadratic rational map from hypersurface in PP^5 to PP^4)
    │ │ │ │  i3 : time ideal phi
    │ │ │ │ - -- used 0.0035599s (cpu); 0.00355522s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00502322s (cpu); 0.00502123s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2                                     2
    │ │ │ │  o3 = ideal (x  - x x , x x  - x x  + x x , x x  - x  + x x , x x  - x x  +
    │ │ │ │               4    3 5   2 4    3 4    1 5   2 3    3    1 4   1 2    1 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2
    │ │ │ │       x x , x  - x x )
    │ │ │ │ @@ -121,15 +121,15 @@
    │ │ │ │                        y
    │ │ │ │                         4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o5 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of
    │ │ │ │  PP^5 x PP^4 to PP^4)
    │ │ │ │  i6 : time ideal phi'
    │ │ │ │ - -- used 0.0930691s (cpu); 0.0930488s (thread); 0s (gc)
    │ │ │ │ + -- used 0.114269s (cpu); 0.114268s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = ideal 1
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  QQ[x ..x , y ..y ]
    │ │ │ │  
    │ │ │ │  0   5   0   4
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_inverse__Map.html
    │ │ │ @@ -153,15 +153,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic Cremona transformation of PP^20)
    │ │ │
    │ │ │
    i2 : time psi = inverseMap phi
    │ │ │ - -- used 0.184232s (cpu); 0.12115s (thread); 0s (gc)
    │ │ │ + -- used 0.20957s (cpu); 0.116482s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = -- rational map --
    │ │ │       source: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       target: Proj(QQ[w , w , w , w , w , w , w , w , w , w , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  , w  ])
    │ │ │                        0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
    │ │ │       defining forms: {
    │ │ │ @@ -251,15 +251,15 @@
    │ │ │  o4 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i5 : time psi = inverseMap phi
    │ │ │ - -- used 0.371428s (cpu); 0.224639s (thread); 0s (gc)
    │ │ │ + -- used 0.471849s (cpu); 0.249085s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = map (QQ[w ..w  ], QQ[w ..w  ], {- w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   + w w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , - w w   - w  w   + w  w   - w  w   - w w  , w  w   - w  w   + w  w   - w  w   - w w  , - w  w   + w  w   - w  w   + w  w   - w  w  , - w  w   + w  w   - w  w   + w  w   - w  w  , w w   - w w   + w w   + w  w   - w  w  , - w w   + w w   + w  w   + w w   - w w  , - w w   + w w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , - w w   - w  w   + w  w   + w w   - w w  , w  w   - w  w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w  w   - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w  - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w   - w w   + w w   - w w   + w w  , w w  - w w  - w w   + w w   - w w  , - w w  + w w  + w w   - w w   + w w  , w w  - w w  - w w  + w w   - w w  })
    │ │ │                0   26       0   26       5 22    8 23    14 24    13 25    0 26     5 18    8 19    14 20    10 25    1 26     5 16    8 17    13 20    10 24    2 26     5 15    14 17    13 19    10 23    3 26     5 21    20 23    19 24    17 25    4 26     8 15    14 16    13 18    10 22    6 26     8 21    20 22    18 24    16 25    7 26   17 18    16 19    15 20    10 21    9 26     13 21    17 22    16 23    15 24    11 26     14 21    19 22    18 23    15 25    12 26   0 21    4 22    7 23    12 24    11 25     4 18    7 19    12 20    1 21    9 25     4 16    7 17    11 20    2 21    9 24     4 15    12 17    11 19    3 21    9 23     7 15    12 16    11 18    6 21    9 22   12 13    11 14    0 15    3 22    6 23   10 12    9 14    1 15    3 18    6 19   10 11    9 13    2 15    3 16    6 17   8 9    7 10    1 16    2 18    6 20   5 9    4 10    1 17    2 19    3 20   8 11    7 13    0 16    2 22    6 24   5 11    4 13    0 17    2 23    3 24   8 12    7 14    0 18    1 22    6 25   5 12    4 14    0 19    1 23    3 25   5 7    4 8    0 20    1 24    2 25     5 6    3 8    0 10    1 13    2 14   4 6    3 7    0 9    1 11    2 12
    │ │ │  
    │ │ │  o5 : RingMap QQ[w ..w  ] <-- QQ[w ..w  ]
    │ │ │                   0   26          0   26
    │ │ │
    │ │ │
    i3 : time inverse phi
    │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ + -- used 0.0645625s (cpu); 0.0645621s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │                        0   1   2   3   4
    │ │ │       defining forms: {
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -290,15 +290,15 @@
    │ │ │ │  58320000  1 4    190512000  0 2 4    4898880000 1 2 4    190512000 2 4
    │ │ │ │  476280000  0 3 4    204120000  1 3 4    2857680000  2 3 4    23814000  3 4
    │ │ │ │  30618000 0 4    46656 1 4   12757500 2 4    51030000  3 4   30375 4
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o2 : RationalMap (rational map from PP^4 to PP^4)
    │ │ │ │  i3 : time inverse phi
    │ │ │ │ - -- used 0.056969s (cpu); 0.0569687s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0645625s (cpu); 0.0645621s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       target: Proj(QQ[x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4
    │ │ │ │       defining forms: {
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Birational.html
    │ │ │ @@ -123,24 +123,24 @@
    │ │ │  
    │ │ │  o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i3 : time isBirational phi
    │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc)
    │ │ │ + -- used 0.0253448s (cpu); 0.0253471s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │
    │ │ │
    i4 : time isBirational(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc)
    │ │ │ + -- used 0.0281203s (cpu); 0.0158762s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -58,20 +58,20 @@ │ │ │ │ - t + t t │ │ │ │ 3 2 4 │ │ │ │ } │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in │ │ │ │ PP^5) │ │ │ │ i3 : time isBirational phi │ │ │ │ - -- used 0.0193201s (cpu); 0.0193206s (thread); 0s (gc) │ │ │ │ + -- used 0.0253448s (cpu); 0.0253471s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : time isBirational(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0136925s (cpu); 0.0132915s (thread); 0s (gc) │ │ │ │ + -- used 0.0281203s (cpu); 0.0158762s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_D_o_m_i_n_a_n_t -- whether a rational map is dominant │ │ │ │ ********** WWaayyss ttoo uussee iissBBiirraattiioonnaall:: ********** │ │ │ │ * isBirational(RationalMap) │ │ │ │ * isBirational(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_is__Dominant.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc)
    │ │ │ + -- used 2.65473s (cpu); 2.31996s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : P7 = ZZ/101[x_0..x_7];
    │ │ │ @@ -115,15 +115,15 @@ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDominant(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc)
    │ │ │ + -- used 3.94783s (cpu); 2.94981s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : P8 = ZZ/101[x_0..x_8]; │ │ │ │ i2 : phi = rationalMap ideal jacobian ideal det matrix{{x_0..x_4},{x_1..x_5},{x_2..x_6},{x_3..x_7}, │ │ │ │ {x_4..x_8}}; │ │ │ │ │ │ │ │ o2 : RationalMap (rational map from PP^8 to PP^8) │ │ │ │ i3 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 2.58345s (cpu); 2.01134s (thread); 0s (gc) │ │ │ │ + -- used 2.65473s (cpu); 2.31996s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ i4 : P7 = ZZ/101[x_0..x_7]; │ │ │ │ i5 : -- hyperelliptic curve of genus 3 │ │ │ │ C = ideal(x_4*x_5+23*x_5^2-23*x_0*x_6-18*x_1*x_6+6*x_2*x_6+37*x_3*x_6+23*x_4*x_6- │ │ │ │ 26*x_5*x_6+2*x_6^2-25*x_0*x_7+45*x_1*x_7+30*x_2*x_7-49*x_3*x_7-49*x_4*x_7+50*x_5*x_7,x_3*x_5- │ │ │ │ 24*x_5^2+21*x_0*x_6+x_1*x_6+46*x_3*x_6+27*x_4*x_6+5*x_5*x_6+35*x_6^2+20*x_0*x_7- │ │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ │ │ o5 : Ideal of P7 │ │ │ │ i6 : phi = rationalMap(C,3,2); │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from PP^7 to PP^7) │ │ │ │ i7 : time isDominant(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 3.88844s (cpu); 2.54882s (thread); 0s (gc) │ │ │ │ + -- used 3.94783s (cpu); 2.94981s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_B_i_r_a_t_i_o_n_a_l -- whether a rational map is birational │ │ │ │ ********** WWaayyss ttoo uussee iissDDoommiinnaanntt:: ********** │ │ │ │ * isDominant(RationalMap) │ │ │ │ * isDominant(RingMap) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_kernel_lp__Ring__Map_cm__Z__Z_rp.html │ │ │ @@ -90,26 +90,26 @@ │ │ │ o1 : RingMap QQ[x ..x ] <-- QQ[y ..y ] │ │ │ 0 8 0 11 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time kernel(phi,1)
    │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ + -- used 0.0215404s (cpu); 0.0215418s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal ()
    │ │ │  
    │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │                    0   11
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time kernel(phi,2)
    │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ + -- used 1.14536s (cpu); 0.538298s (thread); 0s (gc)
    │ │ │  
    │ │ │                             2                                                
    │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                             
    │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │  4 8     5 8     6 8     7 8      0 1    1 2    1 4     0 6    1 6    4 6    0 7
    │ │ │ │  0 2    1 2     0 4    1 4      1 5    2 5     4 5     0 6     1 6     4 6     2
    │ │ │ │  7     0 8     1 8     5 8     6 8     7 8
    │ │ │ │  
    │ │ │ │  o1 : RingMap QQ[x ..x ] <-- QQ[y ..y  ]
    │ │ │ │                   0   8          0   11
    │ │ │ │  i2 : time kernel(phi,1)
    │ │ │ │ - -- used 0.0174446s (cpu); 0.0174411s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0215404s (cpu); 0.0215418s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = ideal ()
    │ │ │ │  
    │ │ │ │  o2 : Ideal of QQ[y ..y  ]
    │ │ │ │                    0   11
    │ │ │ │  i3 : time kernel(phi,2)
    │ │ │ │ - -- used 0.911685s (cpu); 0.449335s (thread); 0s (gc)
    │ │ │ │ + -- used 1.14536s (cpu); 0.538298s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                             2
    │ │ │ │  o3 = ideal (y y  + y y  + y  + 5y y  + y y  + 5y y  - y y  - 4y y  - 5y y  -
    │ │ │ │               2 4    3 4    4     2 5    3 5     4 5    1 6     2 6     5 6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │  
    │ │ │ │       4y y  - 2y y  - y y  + 4y y  - 5y y  - 4y y  + 3y y  - 4y y  - y y   -
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_parametrize_lp__Ideal_rp.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time parametrize L
    │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ + -- used 0.00636444s (cpu); 0.00638338s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -201,15 +201,15 @@
    │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │                10000019  0   9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time parametrize Q
    │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ + -- used 0.632307s (cpu); 0.466254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = -- rational map --
    │ │ │                       ZZ
    │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │       - 849671x  + 3034137x )
    │ │ │ │                8           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o2 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i3 : time parametrize L
    │ │ │ │ - -- used 0.00500618s (cpu); 0.00500168s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00636444s (cpu); 0.00638338s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -136,15 +136,15 @@
    │ │ │ │       1211601x x  - 2168594x x  - 1801762x x  + 3022242x x  + 3618789x )
    │ │ │ │               5 9           6 9           7 9           8 9           9
    │ │ │ │  
    │ │ │ │                   ZZ
    │ │ │ │  o4 : Ideal of --------[x ..x ]
    │ │ │ │                10000019  0   9
    │ │ │ │  i5 : time parametrize Q
    │ │ │ │ - -- used 0.5466s (cpu); 0.394392s (thread); 0s (gc)
    │ │ │ │ + -- used 0.632307s (cpu); 0.466254s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │       source: Proj(--------[t , t , t , t , t , t , t ])
    │ │ │ │                    10000019  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │       target: Proj(--------[x , x , x , x , x , x , x , x , x , x ])
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_point_lp__Quotient__Ring_rp.html
    │ │ │ @@ -78,15 +78,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to PP^8)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time p = point source f
    │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc)
    │ │ │ + -- used 0.497934s (cpu); 0.238097s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = ideal (y   - 9235y  , y  + 11075y  , y  - 5847y  , y  + 7396y  , y  +
    │ │ │               10        11   9         11   8        11   7        11   6  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       13530y  , y  + 4359y  , y  - 2924y  , y  + 13040y  , y  + 6904y  , y  -
    │ │ │             11   5        11   4        11   3         11   2        11   1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -100,15 +100,15 @@
    │ │ │                (y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y  , y y  - y y  + y y , y y  - y y  + y y )
    │ │ │                  6 7    5 8    4 11   3 7    2 8    1 11   3 5    2 6    0 11   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p == f^* f p
    │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc)
    │ │ │ + -- used 0.230663s (cpu); 0.142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ documentation) , see _p_o_i_n_t_(_M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_). │ │ │ │ Below we verify the birationality of a rational map. │ │ │ │ i1 : f = inverseMap specialQuadraticTransformation(9,ZZ/33331); │ │ │ │ │ │ │ │ o1 : RationalMap (cubic rational map from 8-dimensional subvariety of PP^11 to │ │ │ │ PP^8) │ │ │ │ i2 : time p = point source f │ │ │ │ - -- used 0.463068s (cpu); 0.208194s (thread); 0s (gc) │ │ │ │ + -- used 0.497934s (cpu); 0.238097s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = ideal (y - 9235y , y + 11075y , y - 5847y , y + 7396y , y + │ │ │ │ 10 11 9 11 8 11 7 11 6 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 13530y , y + 4359y , y - 2924y , y + 13040y , y + 6904y , y - │ │ │ │ 11 5 11 4 11 3 11 2 11 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : Ideal of ----------------------------------------------------------------- │ │ │ │ -------------------------------------- │ │ │ │ (y y - y y + y y , y y - y y + y y , y y - y y + y y , y │ │ │ │ y - y y + y y , y y - y y + y y ) │ │ │ │ 6 7 5 8 4 11 3 7 2 8 1 11 3 5 2 6 0 11 │ │ │ │ 3 4 1 6 0 8 2 4 1 5 0 7 │ │ │ │ i3 : time p == f^* f p │ │ │ │ - -- used 0.212468s (cpu); 0.135812s (thread); 0s (gc) │ │ │ │ + -- used 0.230663s (cpu); 0.142s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t -- pick a random K rational point on the scheme X │ │ │ │ defined by I │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * point(PolynomialRing) │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_projective__Degrees.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ 0 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time projectiveDegrees(phi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc)
    │ │ │ + -- used 0.0412574s (cpu); 0.0211614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {1, 2, 4, 4, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -117,15 +117,15 @@ │ │ │ 2 3 1 4 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time projectiveDegrees(psi,Certify=>true)
    │ │ │  Certify: output certified!
    │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc)
    │ │ │ + -- used 0.0279848s (cpu); 0.0140302s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {2, 4, 4, 2, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,25 +143,25 @@ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ 300007 0 6 300007 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time projectiveDegrees phi
    │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc)
    │ │ │ + -- used 7.3527e-05s (cpu); 6.2036e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 2, 4, 8, 8, 4, 1}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time projectiveDegrees(phi,NumDegrees=>1)
    │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.9904e-05s (cpu); 3.7457e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = {4, 1}
    │ │ │  
    │ │ │  o8 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 0 4 0 5 1 0 2 1 2 0 3 │ │ │ │ 2 1 3 1 3 0 4 2 3 1 4 3 2 4 │ │ │ │ │ │ │ │ o2 : RingMap GF 109561[t ..t ] <-- GF 109561[x ..x ] │ │ │ │ 0 4 0 5 │ │ │ │ i3 : time projectiveDegrees(phi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0151376s (cpu); 0.0148069s (thread); 0s (gc) │ │ │ │ + -- used 0.0412574s (cpu); 0.0211614s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {1, 2, 4, 4, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : psi=inverseMap(toMap(phi,Dominant=>infinity)) │ │ │ │ │ │ │ │ GF 109561[x ..x ] │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ GF 109561[x ..x ] │ │ │ │ 0 5 │ │ │ │ o4 : RingMap ------------------ <-- GF 109561[t ..t ] │ │ │ │ x x - x x + x x 0 4 │ │ │ │ 2 3 1 4 0 5 │ │ │ │ i5 : time projectiveDegrees(psi,Certify=>true) │ │ │ │ Certify: output certified! │ │ │ │ - -- used 0.0116489s (cpu); 0.0113647s (thread); 0s (gc) │ │ │ │ + -- used 0.0279848s (cpu); 0.0140302s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = {2, 4, 4, 2, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : -- Cremona transformation of P^6 defined by the quadrics through a │ │ │ │ rational octic surface │ │ │ │ phi = map specialCremonaTransformation(7,ZZ/300007) │ │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ 4 5 5 0 6 1 6 2 6 3 6 4 6 │ │ │ │ 5 6 │ │ │ │ │ │ │ │ ZZ ZZ │ │ │ │ o6 : RingMap ------[x ..x ] <-- ------[x ..x ] │ │ │ │ 300007 0 6 300007 0 6 │ │ │ │ i7 : time projectiveDegrees phi │ │ │ │ - -- used 5.859e-05s (cpu); 5.361e-05s (thread); 0s (gc) │ │ │ │ + -- used 7.3527e-05s (cpu); 6.2036e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 2, 4, 8, 8, 4, 1} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : time projectiveDegrees(phi,NumDegrees=>1) │ │ │ │ - -- used 2.6109e-05s (cpu); 2.5939e-05s (thread); 0s (gc) │ │ │ │ + -- used 3.9904e-05s (cpu); 3.7457e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = {4, 1} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ Another way to use this method is by passing an integer i as second argument. │ │ │ │ However, this is equivalent to first projectiveDegrees(phi,NumDegrees=>i) and │ │ │ │ generally it is not faster. │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ideal_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ o2 : Ideal of -----[x ..x ] │ │ │ 33331 0 6 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time phi = rationalMap(V,3,2)
    │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ + -- used 0.133048s (cpu); 0.133048s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = -- rational map --
    │ │ │                      ZZ
    │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │                      ZZ
    │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  , y  ])
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  i1 : ZZ/33331[x_0..x_6]; V = ideal(x_4^2-x_3*x_5,x_2*x_4-x_1*x_5,x_2*x_3-
    │ │ │ │  x_1*x_4,x_2^2-x_0*x_5,x_1*x_2-x_0*x_4,x_1^2-x_0*x_3,x_6);
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o2 : Ideal of -----[x ..x ]
    │ │ │ │                33331  0   6
    │ │ │ │  i3 : time phi = rationalMap(V,3,2)
    │ │ │ │ - -- used 0.095321s (cpu); 0.0953215s (thread); 0s (gc)
    │ │ │ │ + -- used 0.133048s (cpu); 0.133048s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = -- rational map --
    │ │ │ │                      ZZ
    │ │ │ │       source: Proj(-----[x , x , x , x , x , x , x ])
    │ │ │ │                    33331  0   1   2   3   4   5   6
    │ │ │ │                      ZZ
    │ │ │ │       target: Proj(-----[y , y , y , y , y , y , y , y , y , y , y  , y  , y  ,
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_rational__Map_lp__Ring_cm__Tally_rp.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i5 : D = new Tally from {H => 2,C => 1};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time phi = rationalMap D
    │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc)
    │ │ │ + -- used 0.0396531s (cpu); 0.0396503s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = -- rational map --
    │ │ │                                    ZZ
    │ │ │       source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by
    │ │ │                                  65521  0   1   2   3   4   5
    │ │ │               {
    │ │ │                   2                  2
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │  
    │ │ │  o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time ? image(phi,"F4")
    │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc)
    │ │ │ + -- used 1.62842s (cpu); 0.70643s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153
    │ │ │       hypersurfaces of degree 2
    │ │ │ │ │ │ │ │ │ │ │ │

    See also the package WeilDivisors, which provides general tools for working with divisors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ │ │ │ │ o4 = ideal(- 32646x - 28377x + 26433x - 29566x + 3783x + 26696x ) │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : Ideal of X │ │ │ │ i5 : D = new Tally from {H => 2,C => 1}; │ │ │ │ i6 : time phi = rationalMap D │ │ │ │ - -- used 0.0301481s (cpu); 0.0301432s (thread); 0s (gc) │ │ │ │ + -- used 0.0396531s (cpu); 0.0396503s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = -- rational map -- │ │ │ │ ZZ │ │ │ │ source: subvariety of Proj(-----[x , x , x , x , x , x ]) defined by │ │ │ │ 65521 0 1 2 3 4 5 │ │ │ │ { │ │ │ │ 2 2 │ │ │ │ @@ -169,15 +169,15 @@ │ │ │ │ 2 2 │ │ │ │ x x x + x x x + x x x + x x + x x x - 2x x x + x x │ │ │ │ 0 1 5 0 2 5 1 2 5 2 5 1 4 5 2 4 5 4 5 │ │ │ │ } │ │ │ │ │ │ │ │ o6 : RationalMap (cubic rational map from surface in PP^5 to PP^20) │ │ │ │ i7 : time ? image(phi,"F4") │ │ │ │ - -- used 1.24116s (cpu); 0.701199s (thread); 0s (gc) │ │ │ │ + -- used 1.62842s (cpu); 0.70643s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = surface of degree 38 and sectional genus 20 in PP^20 cut out by 153 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ See also the package _W_e_i_l_D_i_v_i_s_o_r_s, which provides general tools for working │ │ │ │ with divisors. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_t_i_o_n_a_l_M_a_p -- makes a rational map │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cremona__Transformation.html │ │ │ @@ -70,15 +70,15 @@ │ │ │
    │ │ │

    Description

    │ │ │

    A Cremona transformation is said to be special if the base locus scheme is smooth and irreducible. To ensure this condition, the field K must be large enough but no check is made.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ + -- used 1.64986s (cpu); 1.26429s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │        source variety: PP^3                      
    │ │ │        target variety: PP^3                      
    │ │ │        dominance: true                           
    │ │ │        birationality: true                       
    │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │              K, according to the classification given in Table 1 of _S_p_e_c_i_a_l
    │ │ │ │              _c_u_b_i_c_ _C_r_e_m_o_n_a_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _P_6_ _a_n_d_ _P_7.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A Cremona transformation is said to be special if the base locus scheme is
    │ │ │ │  smooth and irreducible. To ensure this condition, the field K must be large
    │ │ │ │  enough but no check is made.
    │ │ │ │  i1 : time apply(1..12,i -> describe specialCremonaTransformation(i,ZZ/3331))
    │ │ │ │ - -- used 1.59376s (cpu); 1.16591s (thread); 0s (gc)
    │ │ │ │ + -- used 1.64986s (cpu); 1.26429s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = (rational map defined by forms of degree 3,
    │ │ │ │        source variety: PP^3
    │ │ │ │        target variety: PP^3
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true
    │ │ │ │        projective degrees: {1, 3, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Cubic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialCubicTransformation 9
    │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ + -- used 0.10227s (cpu); 0.102271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6
    │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ + -- used 0.0195273s (cpu); 0.0195271s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^6
    │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special cubic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 2 of _S_p_e_c_i_a_l_ _c_u_b_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s_ _o_f_ _p_r_o_j_e_c_t_i_v_e
    │ │ │ │              _s_p_a_c_e_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialCubicTransformation 9
    │ │ │ │ - -- used 0.0954111s (cpu); 0.0954104s (thread); 0s (gc)
    │ │ │ │ + -- used 0.10227s (cpu); 0.102271s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6
    │ │ │ │       target: subvariety of Proj(QQ[t , t , t , t , t , t , t , t , t , t ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -323,15 +323,15 @@
    │ │ │ │  6     4 6      0 5 6      1 5 6     2 5 6      3 5 6      4 5 6     5 6     0 6
    │ │ │ │  1 6     2 6      3 6     4 6     5 6
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.0182984s (cpu); 0.0182857s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0195273s (cpu); 0.0195271s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^6
    │ │ │ │       target variety: complete intersection of type (2,2,2) in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 3, 9, 17, 21, 16, 8}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_special__Quadratic__Transformation.html
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │

    The field K is required to be large enough.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time specialQuadraticTransformation 4
    │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ + -- used 0.0782691s (cpu); 0.0782673s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = -- rational map --
    │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ]) defined by
    │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │               {
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │
    │ │ │
    i2 : time describe oo
    │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ + -- used 0.117603s (cpu); 0.0334491s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │       source variety: PP^8
    │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │       dominance: true
    │ │ │       birationality: true
    │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _r_a_t_i_o_n_a_l_ _m_a_p, an example of special quadratic birational
    │ │ │ │              transformation over K, according to the classification given in
    │ │ │ │              Table 1 of _E_x_a_m_p_l_e_s_ _o_f_ _s_p_e_c_i_a_l_ _q_u_a_d_r_a_t_i_c_ _b_i_r_a_t_i_o_n_a_l_ _t_r_a_n_s_f_o_r_m_a_t_i_o_n_s
    │ │ │ │              _i_n_t_o_ _c_o_m_p_l_e_t_e_ _i_n_t_e_r_s_e_c_t_i_o_n_s_ _o_f_ _q_u_a_d_r_i_c_s.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  The field K is required to be large enough.
    │ │ │ │  i1 : time specialQuadraticTransformation 4
    │ │ │ │ - -- used 0.0733927s (cpu); 0.0733921s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0782691s (cpu); 0.0782673s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = -- rational map --
    │ │ │ │       source: Proj(QQ[x , x , x , x , x , x , x , x , x ])
    │ │ │ │                        0   1   2   3   4   5   6   7   8
    │ │ │ │       target: subvariety of Proj(QQ[y , y , y , y , y , y , y , y , y , y ])
    │ │ │ │  defined by
    │ │ │ │                                      0   1   2   3   4   5   6   7   8   9
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │                                                     2
    │ │ │ │                        x x  - x x  + x x  - x x  - x  - x x
    │ │ │ │                         0 1    0 4    3 6    4 6    6    5 7
    │ │ │ │                       }
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (quadratic birational map from PP^8 to hypersurface in PP^9)
    │ │ │ │  i2 : time describe oo
    │ │ │ │ - -- used 0.110232s (cpu); 0.0307456s (thread); 0s (gc)
    │ │ │ │ + -- used 0.117603s (cpu); 0.0334491s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = rational map defined by forms of degree 2
    │ │ │ │       source variety: PP^8
    │ │ │ │       target variety: hypersurface of degree 3 in PP^9
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true
    │ │ │ │       projective degrees: {1, 2, 4, 8, 16, 21, 17, 9, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/_to__External__String_lp__Rational__Map_rp.html
    │ │ │ @@ -88,23 +88,23 @@
    │ │ │  
    │ │ │  o3 = 6927
    │ │ │
    │ │ │
    i4 : time phi' = value str;
    │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ + -- used 0.0280019s (cpu); 0.0280041s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │
    │ │ │
    i5 : time describe phi'
    │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ + -- used 0.00670417s (cpu); 0.00671332s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │       source variety: PP^3
    │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │       degree base locus: 5
    │ │ │       coefficient ring: ZZ/33331
    │ │ │
    │ │ │
    i6 : time describe inverse phi'
    │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ + -- used 0.00554705s (cpu); 0.00555551s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │       target variety: PP^3
    │ │ │       dominance: true
    │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,32 +19,32 @@
    │ │ │ │  
    │ │ │ │  o1 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i2 : str = toExternalString phi;
    │ │ │ │  i3 : #str
    │ │ │ │  
    │ │ │ │  o3 = 6927
    │ │ │ │  i4 : time phi' = value str;
    │ │ │ │ - -- used 0.0234197s (cpu); 0.0234189s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0280019s (cpu); 0.0280041s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (cubic birational map from PP^3 to hypersurface in PP^4)
    │ │ │ │  i5 : time describe phi'
    │ │ │ │ - -- used 0.00540039s (cpu); 0.00540078s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00670417s (cpu); 0.00671332s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = rational map defined by forms of degree 3
    │ │ │ │       source variety: PP^3
    │ │ │ │       target variety: smooth quadric hypersurface in PP^4
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {1, 3, 4, 2}
    │ │ │ │       number of minimal representatives: 1
    │ │ │ │       dimension base locus: 1
    │ │ │ │       degree base locus: 5
    │ │ │ │       coefficient ring: ZZ/33331
    │ │ │ │  i6 : time describe inverse phi'
    │ │ │ │ - -- used 0.0044104s (cpu); 0.00441117s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00554705s (cpu); 0.00555551s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = rational map defined by forms of degree 2
    │ │ │ │       source variety: smooth quadric hypersurface in PP^4
    │ │ │ │       target variety: PP^3
    │ │ │ │       dominance: true
    │ │ │ │       birationality: true (the inverse map is already calculated)
    │ │ │ │       projective degrees: {2, 4, 3, 1}
    │ │ ├── ./usr/share/doc/Macaulay2/Cremona/html/index.html
    │ │ │ @@ -58,29 +58,29 @@
    │ │ │              
    │ │ │
    i1 : ZZ/300007[t_0..t_6];
    │ │ │
    │ │ │
    i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ + -- used 0.00651371s (cpu); 0.00651227s (thread); 0s (gc)
    │ │ │  
    │ │ │              ZZ              ZZ                3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o2 = map (------[t ..t ], ------[x ..x ], {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   300007  0   9       2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │  
    │ │ │                 ZZ                 ZZ
    │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │               300007  0   6      300007  0   9
    │ │ │
    │ │ │
    i3 : time J = kernel(phi,2)
    │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ + -- used 0.187395s (cpu); 0.0938856s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x 
    │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │  
    │ │ │ @@ -88,43 +88,43 @@
    │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │                300007  0   9
    │ │ │
    │ │ │
    i4 : time degreeMap phi
    │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ + -- used 0.0586502s (cpu); 0.0586499s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projectiveDegrees phi
    │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ + -- used 0.744311s (cpu); 0.55853s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ + -- used 0.103903s (cpu); 0.103704s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = {5}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ + -- used 0.00294027s (cpu); 0.00294735s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         ZZ
    │ │ │                                                                       ------[x ..x ]
    │ │ │              ZZ                                                       300007  0   9                                                  3                2    2                2        2                      2                  2    2                 2                       3                2    2                2                                 2                           2    2                                  2        2                      2                  2                        2                         2    2                 2                       3                2    2
    │ │ │  o7 = map (------[t ..t ], ----------------------------------------------------------------------------------------------------, {- t  + 2t t t  - t t  - t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t , - t t  + t t t  + t t t  - t t t  - t t  + t t t , - t t t  + t t  + t t  - t t t  - t t t  + t t t , - t t  + t t  + t t t  - t t t  - t t  + t t t , - t t  + t t t  + t t t  - t t  - t t t  + t t t , - t t  + t t  + t t t  - t t  - t t t  + t t t , - t  + 2t t t  - t t  - t t  + t t t })
    │ │ │            300007  0   6   (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )      2     1 2 3    0 3    1 4    0 2 4     2 3    1 3    1 2 4    0 3 4    1 5    0 2 5     2 3    2 4    1 3 4    0 4    1 2 5    0 3 5     3     2 3 4    1 4    2 5    1 3 5     2 4    1 3 4    1 2 5    0 3 5    1 6    0 2 6     2 3 4    1 4    2 5    0 4 5    1 2 6    0 3 6     3 4    2 4    2 3 5    1 4 5    2 6    1 3 6     2 4    2 3 5    1 4 5    0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4     3 4 5    2 5    3 6    2 4 6
    │ │ │                              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i8 : time psi = inverseMap phi
    │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ + -- used 0.447739s (cpu); 0.447744s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                         ZZ
    │ │ │                                                       ------[x ..x ]
    │ │ │                                                       300007  0   9                                                ZZ              3                2               2    2                        2                          2     2        2                               2                                   2               2             2                       3                                                 2                 2    2                                  2    2                 2                                                 3                         2      2    2      2                                              2
    │ │ │  o8 = map (----------------------------------------------------------------------------------------------------, ------[t ..t ], {x  - 2x x x  + x x  - x x x  + x x  + x x  + x x x  - x x x  + x x  - 2x x x  - x x x  - 2x x , x x  - x x  - x x x  + x x x  + x x x  + x x  - 2x x x  - x x x  + x x x , x x  - x x x  + x x  - x x x  + x x  - x x x  - x x x , x  - x x x  + x x x  + x x x  - 2x x x  - x x x , x x  - x x x  + x x  + x x  - x x x  - x x x  - x x x , x x  - x x  - x x x  + x x  + x x x  + x x x  - 2x x x  - x x x  + x x x , x  - 2x x x  - x x x  + x x  + x x  + x x  + x x  + x x x  - 2x x x  - x x x  - x x x  - 2x x })
    │ │ │            (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )  300007  0   6     2     1 2 3    0 3    1 2 5    0 5    1 6    0 2 6    0 4 6    1 7     0 2 7    0 4 7     0 9   2 3    1 3    1 2 6    0 3 6    0 5 6    1 8     0 2 8    0 4 8    0 1 9   2 3    1 3 6    0 6    0 3 8    1 9    0 2 9    0 4 9   3    1 3 8    0 6 8    1 2 9     0 3 9    0 5 9   3 6    2 3 8    0 8    2 9    1 3 9    0 6 9    0 7 9   3 6    3 8    2 6 8    1 8    2 3 9    2 5 9     1 6 9    1 7 9    0 8 9   6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6 9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │              6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ @@ -156,44 +156,44 @@
    │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │
    │ │ │
    i9 : time isInverseMap(phi,psi)
    │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ + -- used 0.0113264s (cpu); 0.0113318s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time degreeMap psi
    │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ + -- used 0.563595s (cpu); 0.294308s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 1
    │ │ │
    │ │ │
    i11 : time projectiveDegrees psi
    │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ + -- used 6.43014s (cpu); 5.97295s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │

    We repeat the example using the type RationalMap and using deterministic methods.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ 2 │ │ │ │ o6 = y T │ │ │ │ 2 │ │ │ │ │ │ │ │ o6 : R[T ..T ] │ │ │ │ 1 3 │ │ │ │ i7 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.0137422s (cpu); 0.0130223s │ │ │ │ +Finding easy relations : -- used 0.0402553s (cpu); 0.0193477s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = H │ │ │ │ │ │ │ │ o7 : PolynomialRing, 3 skew commutative variable(s) │ │ │ │ i8 : homologyClass(KR,z1*z2) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Module.html │ │ │ @@ -129,15 +129,15 @@ │ │ │ │ │ │ o5 : Complex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ + -- used 0.00250238s (cpu); 0.00250843s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                       ZZ
    │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ @@ -242,15 +242,15 @@
    │ │ │  
    │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │
    │ │ │
    i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ + -- used 0.198282s (cpu); 0.100168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = -- rational map --
    │ │ │                       ZZ
    │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │                                     ZZ
    │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │ @@ -315,15 +315,15 @@
    │ │ │  
    │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i14 : time phi^(-1)
    │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ + -- used 0.493489s (cpu); 0.493164s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = -- rational map --
    │ │ │                                     ZZ
    │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x ]) defined by
    │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │                {
    │ │ │                 x x  - x x  + x x ,
    │ │ │ @@ -376,49 +376,49 @@
    │ │ │  
    │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9 to PP^6)
    │ │ │
    │ │ │
    i15 : time degrees phi^(-1)
    │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ + -- used 0.472144s (cpu); 0.366608s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    │ │ │
    i16 : time degrees phi
    │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ + -- used 0.0875272s (cpu); 0.0251346s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │  
    │ │ │  o16 : List
    │ │ │
    │ │ │
    i17 : time describe phi
    │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ + -- used 0.00421075s (cpu); 0.00422119s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │        source variety: PP^6
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i18 : time describe phi^(-1)
    │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ + -- used 0.011936s (cpu); 0.0119473s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        target variety: PP^6
    │ │ │        dominance: true
    │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ @@ -427,41 +427,41 @@
    │ │ │        degree base locus: 24
    │ │ │        coefficient ring: ZZ/300007
    │ │ │
    │ │ │
    i19 : time (f,g) = graph phi^-1; f;
    │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ + -- used 0.0120656s (cpu); 0.0120784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │
    │ │ │
    i21 : time degrees f
    │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ + -- used 1.19811s (cpu); 1.02906s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │  
    │ │ │  o21 : List
    │ │ │
    │ │ │
    i22 : time degree f
    │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.7684e-05s (cpu); 1.7206e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = 1
    │ │ │
    │ │ │
    i23 : time describe f
    │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ + -- used 0.00172246s (cpu); 0.00172799s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20 hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2, 0},{2, 0})
    │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │        dominance: true
    │ │ │        birationality: true
    │ │ │        projective degrees: {904, 508, 268, 130, 56, 20, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  map) from a list of $m+1$ homogeneous elements of the same degree in $K
    │ │ │ │  [x_0,...,x_n]/I$.
    │ │ │ │  Below is an example using the methods provided by this package, dealing with a
    │ │ │ │  birational transformation $\Phi:\mathbb{P}^6 \dashrightarrow \mathbb{G}
    │ │ │ │  (2,4)\subset\mathbb{P}^9$ of bidegree $(3,3)$.
    │ │ │ │  i1 : ZZ/300007[t_0..t_6];
    │ │ │ │  i2 : time phi = toMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00430215s (cpu); 0.00429842s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00651371s (cpu); 0.00651227s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              ZZ              ZZ                3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │  3                2    2                2                                 2
    │ │ │ │  2    2                                  2        2                      2
    │ │ │ │  2                        2                         2    2                 2
    │ │ │ │  3                2    2
    │ │ │ │ @@ -52,43 +52,43 @@
    │ │ │ │  0 5    1 3 6    0 4 6     3 4    3 5    2 4 5    1 5    2 3 6    1 4 6     4
    │ │ │ │  3 4 5    2 5    3 6    2 4 6
    │ │ │ │  
    │ │ │ │                 ZZ                 ZZ
    │ │ │ │  o2 : RingMap ------[t ..t ] <-- ------[x ..x ]
    │ │ │ │               300007  0   6      300007  0   9
    │ │ │ │  i3 : time J = kernel(phi,2)
    │ │ │ │ - -- used 0.137231s (cpu); 0.0699679s (thread); 0s (gc)
    │ │ │ │ + -- used 0.187395s (cpu); 0.0938856s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = ideal (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │               6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       - x x  + x x , x x  - x x  + x x )
    │ │ │ │          1 6    0 8   2 4    1 5    0 7
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o3 : Ideal of ------[x ..x ]
    │ │ │ │                300007  0   9
    │ │ │ │  i4 : time degreeMap phi
    │ │ │ │ - -- used 0.02944s (cpu); 0.0294445s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0586502s (cpu); 0.0586499s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = 1
    │ │ │ │  i5 : time projectiveDegrees phi
    │ │ │ │ - -- used 0.68756s (cpu); 0.487586s (thread); 0s (gc)
    │ │ │ │ + -- used 0.744311s (cpu); 0.55853s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : time projectiveDegrees(phi,NumDegrees=>0)
    │ │ │ │ - -- used 0.0623207s (cpu); 0.0622653s (thread); 0s (gc)
    │ │ │ │ + -- used 0.103903s (cpu); 0.103704s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = {5}
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time phi = toMap(phi,Dominant=>J)
    │ │ │ │ - -- used 0.0021486s (cpu); 0.00214939s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00294027s (cpu); 0.00294735s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                                         ZZ
    │ │ │ │                                                                       ------[x
    │ │ │ │  ..x ]
    │ │ │ │              ZZ                                                       300007  0
    │ │ │ │  9                                                  3                2    2
    │ │ │ │  2        2                      2                  2    2                 2
    │ │ │ │ @@ -123,15 +123,15 @@
    │ │ │ │  o7 : RingMap ------[t ..t ] <-- -----------------------------------------------
    │ │ │ │  -----------------------------------------------------
    │ │ │ │               300007  0   6      (x x  - x x  + x x , x x  - x x  + x x , x x  -
    │ │ │ │  x x  + x x , x x  - x x  + x x , x x  - x x  + x x )
    │ │ │ │                                    6 7    5 8    4 9   3 7    2 8    1 9   3 5
    │ │ │ │  2 6    0 9   3 4    1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i8 : time psi = inverseMap phi
    │ │ │ │ - -- used 0.474252s (cpu); 0.394534s (thread); 0s (gc)
    │ │ │ │ + -- used 0.447739s (cpu); 0.447744s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                         ZZ
    │ │ │ │                                                       ------[x ..x ]
    │ │ │ │                                                       300007  0   9
    │ │ │ │  ZZ              3                2               2    2
    │ │ │ │  2                          2     2        2                               2
    │ │ │ │  2               2             2                       3
    │ │ │ │ @@ -164,31 +164,31 @@
    │ │ │ │  o8 : RingMap ------------------------------------------------------------------
    │ │ │ │  ---------------------------------- <-- ------[t ..t ]
    │ │ │ │               (x x  - x x  + x x , x x  - x x  + x x , x x  - x x  + x x , x x
    │ │ │ │  - x x  + x x , x x  - x x  + x x )     300007  0   6
    │ │ │ │                 6 7    5 8    4 9   3 7    2 8    1 9   3 5    2 6    0 9   3 4
    │ │ │ │  1 6    0 8   2 4    1 5    0 7
    │ │ │ │  i9 : time isInverseMap(phi,psi)
    │ │ │ │ - -- used 0.00931603s (cpu); 0.00931855s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0113264s (cpu); 0.0113318s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time degreeMap psi
    │ │ │ │ - -- used 0.458493s (cpu); 0.294259s (thread); 0s (gc)
    │ │ │ │ + -- used 0.563595s (cpu); 0.294308s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = 1
    │ │ │ │  i11 : time projectiveDegrees psi
    │ │ │ │ - -- used 5.29004s (cpu); 4.63968s (thread); 0s (gc)
    │ │ │ │ + -- used 6.43014s (cpu); 5.97295s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ │ │  We repeat the example using the type _R_a_t_i_o_n_a_l_M_a_p and using deterministic
    │ │ │ │  methods.
    │ │ │ │  i12 : time phi = rationalMap minors(3,matrix{{t_0..t_4},{t_1..t_5},{t_2..t_6}})
    │ │ │ │ - -- used 0.00220238s (cpu); 0.00220313s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00250238s (cpu); 0.00250843s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o12 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                       ZZ
    │ │ │ │        target: Proj(------[x , x , x , x , x , x , x , x , x , x ])
    │ │ │ │ @@ -233,15 +233,15 @@
    │ │ │ │                            3                2    2
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o12 : RationalMap (cubic rational map from PP^6 to PP^9)
    │ │ │ │  i13 : time phi = rationalMap(phi,Dominant=>2)
    │ │ │ │ - -- used 0.15731s (cpu); 0.0849869s (thread); 0s (gc)
    │ │ │ │ + -- used 0.198282s (cpu); 0.100168s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 = -- rational map --
    │ │ │ │                       ZZ
    │ │ │ │        source: Proj(------[t , t , t , t , t , t , t ])
    │ │ │ │                     300007  0   1   2   3   4   5   6
    │ │ │ │                                     ZZ
    │ │ │ │        target: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │ @@ -304,15 +304,15 @@
    │ │ │ │                         - t  + 2t t t  - t t  - t t  + t t t
    │ │ │ │                            4     3 4 5    2 5    3 6    2 4 6
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o13 : RationalMap (cubic rational map from PP^6 to 6-dimensional subvariety of
    │ │ │ │  PP^9)
    │ │ │ │  i14 : time phi^(-1)
    │ │ │ │ - -- used 0.512059s (cpu); 0.426868s (thread); 0s (gc)
    │ │ │ │ + -- used 0.493489s (cpu); 0.493164s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 = -- rational map --
    │ │ │ │                                     ZZ
    │ │ │ │        source: subvariety of Proj(------[x , x , x , x , x , x , x , x , x , x
    │ │ │ │  ]) defined by
    │ │ │ │                                   300007  0   1   2   3   4   5   6   7   8   9
    │ │ │ │                {
    │ │ │ │ @@ -373,67 +373,67 @@
    │ │ │ │                          6     3 6 8    5 6 8    2 8    4 8    3 9    5 9    2 6
    │ │ │ │  9     4 6 9    2 7 9    4 7 9     0 9
    │ │ │ │                        }
    │ │ │ │  
    │ │ │ │  o14 : RationalMap (cubic birational map from 6-dimensional subvariety of PP^9
    │ │ │ │  to PP^6)
    │ │ │ │  i15 : time degrees phi^(-1)
    │ │ │ │ - -- used 0.347749s (cpu); 0.274141s (thread); 0s (gc)
    │ │ │ │ + -- used 0.472144s (cpu); 0.366608s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │  
    │ │ │ │  o15 : List
    │ │ │ │  i16 : time degrees phi
    │ │ │ │ - -- used 0.0180113s (cpu); 0.0176993s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0875272s (cpu); 0.0251346s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 = {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │  
    │ │ │ │  o16 : List
    │ │ │ │  i17 : time describe phi
    │ │ │ │ - -- used 0.00320718s (cpu); 0.00320744s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00421075s (cpu); 0.00422119s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 = rational map defined by forms of degree 3
    │ │ │ │        source variety: PP^6
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {1, 3, 9, 17, 21, 15, 5}
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i18 : time describe phi^(-1)
    │ │ │ │ - -- used 0.00997997s (cpu); 0.0099807s (thread); 0s (gc)
    │ │ │ │ + -- used 0.011936s (cpu); 0.0119473s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 = rational map defined by forms of degree 3
    │ │ │ │        source variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │        target variety: PP^6
    │ │ │ │        dominance: true
    │ │ │ │        birationality: true (the inverse map is already calculated)
    │ │ │ │        projective degrees: {5, 15, 21, 17, 9, 3, 1}
    │ │ │ │        number of minimal representatives: 1
    │ │ │ │        dimension base locus: 4
    │ │ │ │        degree base locus: 24
    │ │ │ │        coefficient ring: ZZ/300007
    │ │ │ │  i19 : time (f,g) = graph phi^-1; f;
    │ │ │ │ - -- used 0.00950571s (cpu); 0.00950659s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0120656s (cpu); 0.0120784s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o20 : MultihomogeneousRationalMap (birational map from 6-dimensional subvariety
    │ │ │ │  of PP^9 x PP^6 to 6-dimensional subvariety of PP^9)
    │ │ │ │  i21 : time degrees f
    │ │ │ │ - -- used 1.33327s (cpu); 0.95512s (thread); 0s (gc)
    │ │ │ │ + -- used 1.19811s (cpu); 1.02906s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o21 = {904, 508, 268, 130, 56, 20, 5}
    │ │ │ │  
    │ │ │ │  o21 : List
    │ │ │ │  i22 : time degree f
    │ │ │ │ - -- used 1.625e-05s (cpu); 1.593e-05s (thread); 0s (gc)
    │ │ │ │ + -- used 1.7684e-05s (cpu); 1.7206e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o22 = 1
    │ │ │ │  i23 : time describe f
    │ │ │ │ - -- used 0.00161465s (cpu); 0.00161555s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00172246s (cpu); 0.00172799s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o23 = rational map defined by multiforms of degree {1, 0}
    │ │ │ │        source variety: 6-dimensional subvariety of PP^9 x PP^6 cut out by 20
    │ │ │ │  hypersurfaces of degrees ({1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1,
    │ │ │ │  1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{2, 0},{2, 0},{2, 0},{2,
    │ │ │ │  0},{2, 0})
    │ │ │ │        target variety: 6-dimensional variety of degree 5 in PP^9 cut out by 5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.out
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │                                    2     2     2       2 2     2 2      2 2      2 2     2 2        2 2       2 2        2       2       2
    │ │ │         Differential => {a, b, c, a T , b T , c T , a*b c T , b c T , -a b T , -a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │                                      1     2     3         1       4        6        5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │  
    │ │ │  o16 : DGAlgebra
    │ │ │  
    │ │ │  i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0344827s (cpu); 0.0183202s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___Basic_spoperations_spon_sp__D__G_sp__Algebras.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        Underlying algebra => R[S ..S ]
    │ │ │                                 1   4
    │ │ │        Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.016973s (cpu); 0.0160828s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0345135s (cpu); 0.0216576s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i6 : describe HB
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                                      2
    │ │ │        Differential => {a, b, c, d, a T }
    │ │ │                                        1
    │ │ │  
    │ │ │  o9 : DGAlgebra
    │ │ │  
    │ │ │  i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0188901s (cpu); 0.0173443s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.321028s (cpu); 0.0626935s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___H__H_sp__D__G__Algebra__Map.out
    │ │ │ @@ -55,15 +55,15 @@
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 0 |
    │ │ │                 {2} | 1 |
    │ │ │  
    │ │ │  o6 : ComplexMap
    │ │ │  
    │ │ │  i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0307627s (cpu); 0.017651s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.out
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │                                1                                                             {6} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c b a |     3
    │ │ │                                                                                      
    │ │ │                                                                                     2
    │ │ │  
    │ │ │  o6 : Complex
    │ │ │  
    │ │ │  i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.126962s (cpu); 0.0524544s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.151101s (cpu); 0.0558439s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : ideal HKR
    │ │ │  
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │  i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2-c^2*d^2}
    │ │ │  
    │ │ │  o9 = R'
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.54717s (cpu); 0.472623s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.771115s (cpu); 0.68909s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : numgens HKR'
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_cycles.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.019887s (cpu); 0.0171466s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0499479s (cpu); 0.0242867s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : numgens HA
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Algebra.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o3 = {1, 4, 6, 4, 1}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0169473s (cpu); 0.0162102s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0342352s (cpu); 0.0218532s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i5 : R = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4,a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │  i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o7 = {1, 5, 10, 10, 4}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0853296s (cpu); 0.0826839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.127307s (cpu); 0.103034s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │  
    │ │ │  i9 : numgens HA
    │ │ │  
    │ │ │ @@ -114,15 +114,15 @@
    │ │ │  i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A))
    │ │ │  
    │ │ │  o15 = {1, 7, 7, 1}
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0511448s (cpu); 0.0499304s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.117266s (cpu); 0.0950784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : R = ZZ/101[a,b,c,d]
    │ │ │  
    │ │ │ @@ -151,14 +151,14 @@
    │ │ │         Underlying algebra => S[T ..T ]
    │ │ │                                  1   4
    │ │ │         Differential => {a, b, c, d}
    │ │ │  
    │ │ │  o20 : DGAlgebra
    │ │ │  
    │ │ │  i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.0169588s (cpu); 0.016221s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.035201s (cpu); 0.0223172s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │  
    │ │ │  i22 :
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Class.out
    │ │ │ @@ -43,15 +43,15 @@
    │ │ │  o6 = y T
    │ │ │          2
    │ │ │  
    │ │ │  o6 : R[T ..T ]
    │ │ │          1   3
    │ │ │  
    │ │ │  i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0137422s (cpu); 0.0130223s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0402553s (cpu); 0.0193477s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │  
    │ │ │  i8 : homologyClass(KR,z1*z2)
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_homology__Module.out
    │ │ │ @@ -34,15 +34,15 @@
    │ │ │  o5 = R  <-- R  <-- R  <-- R  <-- R
    │ │ │                                    
    │ │ │       0      1      2      3      4
    │ │ │  
    │ │ │  o5 : Complex
    │ │ │  
    │ │ │  i6 : HKR = HH(KR)
    │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc)
    │ │ │ + -- used 0.290677s (cpu); 0.180575s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │  
    │ │ │  i7 : degList = first entries vars Q / degree / first
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product.out
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │                 2
    │ │ │  o9 = (true, x y T T T  - x x y T T T )
    │ │ │               2 2 1 2 3    1 2 2 2 3 4
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.517042s (cpu); 0.445082s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.851888s (cpu); 0.65181s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.out
    │ │ │ @@ -27,15 +27,15 @@
    │ │ │                                 1   4
    │ │ │        Differential => {t , t , t , t }
    │ │ │                          1   2   3   4
    │ │ │  
    │ │ │  o4 : DGAlgebra
    │ │ │  
    │ │ │  i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.138884s (cpu); 0.136232s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.18848s (cpu); 0.174573s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │  
    │ │ │  i6 : masseys = masseyTripleProduct(KR,1,1,1);
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/example-output/_tor__Algebra_lp__Ring_cm__Ring_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  i3 : S = R/ideal{a^3*b^3*c^3*d^3}
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc)
    │ │ │ + -- used 0.642579s (cpu); 0.530767s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : numgens HB
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebra_sp__Maps.html
    │ │ │ @@ -289,15 +289,15 @@
    │ │ │          
    │ │ │

    One can also obtain the map on homology induced by a DGAlgebra map.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0344827s (cpu); 0.0183202s (thread); 0s (gc)
    │ │ │  
    │ │ │                            ZZ
    │ │ │                           ---[a..c]
    │ │ │              ZZ           101
    │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │             101  1   2           3   1     1
    │ │ │                          (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -210,15 +210,15 @@
    │ │ │ │  a c T , b c T T , -a c T T , b c T T , -a T T , c T T , b T T }
    │ │ │ │                                      1     2     3         1       4        6
    │ │ │ │  5       3 4        3 5       2 4      1 7     3 7     2 7
    │ │ │ │  
    │ │ │ │  o16 : DGAlgebra
    │ │ │ │  One can also obtain the map on homology induced by a DGAlgebra map.
    │ │ │ │  i17 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.0138129s (cpu); 0.0130958s
    │ │ │ │ +Finding easy relations           :  -- used 0.0344827s (cpu); 0.0183202s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                            ZZ
    │ │ │ │                           ---[a..c]
    │ │ │ │              ZZ           101
    │ │ │ │  o17 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │             101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___Basic_spoperations_spon_sp__D__G_sp__Algebras.html
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │          
    │ │ │

    One can compute the homology algebra of a DGAlgebra using the homology (or HH) command.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -174,15 +174,15 @@ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ One can compute the homology algebra of a DGAlgebra using the homology (or HH) │ │ │ │ command. │ │ │ │ i5 : HB = HH B │ │ │ │ -Finding easy relations : -- used 0.016973s (cpu); 0.0160828s │ │ │ │ +Finding easy relations : -- used 0.0345135s (cpu); 0.0216576s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = HB │ │ │ │ │ │ │ │ o5 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i6 : describe HB │ │ │ │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ 1 5 │ │ │ │ 2 │ │ │ │ Differential => {a, b, c, d, a T } │ │ │ │ 1 │ │ │ │ │ │ │ │ o9 : DGAlgebra │ │ │ │ i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4) │ │ │ │ -Finding easy relations : -- used 0.0188901s (cpu); 0.0173443s │ │ │ │ +Finding easy relations : -- used 0.321028s (cpu); 0.0626935s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o10 = ---[X ..X ] │ │ │ │ 101 1 3 │ │ │ │ │ │ │ │ o10 : PolynomialRing, 3 skew commutative variable(s) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___H__H_sp__D__G__Algebra__Map.html │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ │ │ o6 : ComplexMap │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -242,15 +242,15 @@ │ │ │ │ │ │ o15 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : HB = HH B
    │ │ │ -Finding easy relations           :  -- used 0.016973s (cpu); 0.0160828s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0345135s (cpu); 0.0216576s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HB
    │ │ │  
    │ │ │  o5 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : homologyAlgebra(C,GenDegreeLimit=>4,RelDegreeLimit=>4)
    │ │ │ -Finding easy relations           :  -- used 0.0188901s (cpu); 0.0173443s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.321028s (cpu); 0.0626935s (thread); 0s (gc)
    │ │ │  
    │ │ │         ZZ
    │ │ │  o10 = ---[X ..X ]
    │ │ │        101  1   3
    │ │ │  
    │ │ │  o10 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i7 : HHg = HH g
    │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0307627s (cpu); 0.017651s (thread); 0s (gc)
    │ │ │  
    │ │ │                           ZZ
    │ │ │                          ---[a..c]
    │ │ │             ZZ           101
    │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │            101  1   2           3   1     1
    │ │ │                         (c, b, a )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -62,15 +62,15 @@
    │ │ │ │       2 : R  <------------- R  : 2
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 0 |
    │ │ │ │                 {2} | 1 |
    │ │ │ │  
    │ │ │ │  o6 : ComplexMap
    │ │ │ │  i7 : HHg = HH g
    │ │ │ │ -Finding easy relations           :  -- used 0.0145697s (cpu); 0.0138207s
    │ │ │ │ +Finding easy relations           :  -- used 0.0307627s (cpu); 0.017651s
    │ │ │ │  (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                           ZZ
    │ │ │ │                          ---[a..c]
    │ │ │ │             ZZ           101
    │ │ │ │  o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
    │ │ │ │            101  1   2           3   1     1
    │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/___The_sp__Koszul_spcomplex_spas_spa_sp__D__G_sp__Algebra.html
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │          
    │ │ │

    Since the Koszul complex is a DG algebra, its homology is itself an algebra. One can obtain this algebra using the command homology, homologyAlgebra, or HH (all commands work). This algebra structure can detect whether or not the ring is a complete intersection or Gorenstein.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ │ │ o6 : Complex │ │ │ │ Since the Koszul complex is a DG algebra, its homology is itself an algebra. │ │ │ │ One can obtain this algebra using the command homology, homologyAlgebra, or HH │ │ │ │ (all commands work). This algebra structure can detect whether or not the ring │ │ │ │ is a complete intersection or Gorenstein. │ │ │ │ i7 : HKR = HH KR │ │ │ │ -Finding easy relations : -- used 0.126962s (cpu); 0.0524544s │ │ │ │ +Finding easy relations : -- used 0.151101s (cpu); 0.0558439s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = HKR │ │ │ │ │ │ │ │ o7 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i8 : ideal HKR │ │ │ │ │ │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ i9 : R' = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3,a*c,a*d,b*c,b*d,a^2*b^2- │ │ │ │ c^2*d^2} │ │ │ │ │ │ │ │ o9 = R' │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : HKR' = HH koszulComplexDGA R' │ │ │ │ -Finding easy relations : -- used 0.54717s (cpu); 0.472623s (thread); │ │ │ │ +Finding easy relations : -- used 0.771115s (cpu); 0.68909s (thread); │ │ │ │ 0s (gc) │ │ │ │ │ │ │ │ o10 = HKR' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : numgens HKR' │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_cycles.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.019887s (cpu); 0.0171466s │ │ │ │ +Finding easy relations : -- used 0.0499479s (cpu); 0.0242867s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ i5 : numgens HA │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Algebra.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : HKR = HH KR
    │ │ │ -Finding easy relations           :  -- used 0.126962s (cpu); 0.0524544s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.151101s (cpu); 0.0558439s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = HKR
    │ │ │  
    │ │ │  o7 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i10 : HKR' = HH koszulComplexDGA R'
    │ │ │ -Finding easy relations           :  -- used 0.54717s (cpu); 0.472623s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.771115s (cpu); 0.68909s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = HKR'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.019887s (cpu); 0.0171466s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0499479s (cpu); 0.0242867s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │
    i4 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0169473s (cpu); 0.0162102s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0342352s (cpu); 0.0218532s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = HA
    │ │ │  
    │ │ │  o4 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o7 : List
    │ │ │
    │ │ │
    i8 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0853296s (cpu); 0.0826839s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.127307s (cpu); 0.103034s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HA
    │ │ │  
    │ │ │  o8 : QuotientRing
    │ │ │
    │ │ │
    i16 : HA = homologyAlgebra(A)
    │ │ │ -Finding easy relations           :  -- used 0.0511448s (cpu); 0.0499304s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.117266s (cpu); 0.0950784s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = HA
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │
    │ │ │ @@ -302,15 +302,15 @@ │ │ │ │ │ │ o20 : DGAlgebra
    │ │ │
    │ │ │
    i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14)
    │ │ │ -Finding easy relations           :  -- used 0.0169588s (cpu); 0.016221s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.035201s (cpu); 0.0223172s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = HB
    │ │ │  
    │ │ │  o21 : PolynomialRing, 4 skew commutative variable(s)
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ o2 : DGAlgebra │ │ │ │ i3 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o3 = {1, 4, 6, 4, 1} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0169473s (cpu); 0.0162102s │ │ │ │ +Finding easy relations : -- used 0.0342352s (cpu); 0.0218532s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = HA │ │ │ │ │ │ │ │ o4 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ Note that HA is a graded commutative polynomial ring (i.e. an exterior algebra) │ │ │ │ since R is a complete intersection. │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ o6 : DGAlgebra │ │ │ │ i7 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o7 = {1, 5, 10, 10, 4} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0853296s (cpu); 0.0826839s │ │ │ │ +Finding easy relations : -- used 0.127307s (cpu); 0.103034s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = HA │ │ │ │ │ │ │ │ o8 : QuotientRing │ │ │ │ i9 : numgens HA │ │ │ │ │ │ │ │ @@ -122,15 +122,15 @@ │ │ │ │ o14 : DGAlgebra │ │ │ │ i15 : apply(maxDegree A + 1, i -> numgens prune homology(i,A)) │ │ │ │ │ │ │ │ o15 = {1, 7, 7, 1} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : HA = homologyAlgebra(A) │ │ │ │ -Finding easy relations : -- used 0.0511448s (cpu); 0.0499304s │ │ │ │ +Finding easy relations : -- used 0.117266s (cpu); 0.0950784s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = HA │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ One can check that HA has Poincare duality since R is Gorenstein. │ │ │ │ If your DGAlgebra has generators in even degrees, then one must specify the │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ o20 = {Ring => S } │ │ │ │ Underlying algebra => S[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {a, b, c, d} │ │ │ │ │ │ │ │ o20 : DGAlgebra │ │ │ │ i21 : HB = homologyAlgebra(B,GenDegreeLimit=>7,RelDegreeLimit=>14) │ │ │ │ -Finding easy relations : -- used 0.0169588s (cpu); 0.016221s │ │ │ │ +Finding easy relations : -- used 0.035201s (cpu); 0.0223172s │ │ │ │ (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = HB │ │ │ │ │ │ │ │ o21 : PolynomialRing, 4 skew commutative variable(s) │ │ │ │ ********** WWaayyss ttoo uussee hhoommoollooggyyAAllggeebbrraa:: ********** │ │ │ │ * homologyAlgebra(DGAlgebra) │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_homology__Class.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ o6 : R[T ..T ] │ │ │ 1 3
    │ │ │
    │ │ │
    i7 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.0137422s (cpu); 0.0130223s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.0402553s (cpu); 0.0193477s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = H
    │ │ │  
    │ │ │  o7 : PolynomialRing, 3 skew commutative variable(s)
    │ │ │
    │ │ │
    i6 : HKR = HH(KR)
    │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc)
    │ │ │ + -- used 0.290677s (cpu); 0.180575s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o6 = HKR
    │ │ │  
    │ │ │  o6 : QuotientRing
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 1 4 6 4 1 │ │ │ │ o5 = R <-- R <-- R <-- R <-- R │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o5 : Complex │ │ │ │ i6 : HKR = HH(KR) │ │ │ │ - -- used 0.27818s (cpu); 0.202362s (thread); 0s (gc) │ │ │ │ + -- used 0.290677s (cpu); 0.180575s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o6 = HKR │ │ │ │ │ │ │ │ o6 : QuotientRing │ │ │ │ The following is the graded canonical module of R: │ │ │ │ i7 : degList = first entries vars Q / degree / first │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product.html │ │ │ @@ -192,15 +192,15 @@ │ │ │
    │ │ │

    Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey triple product of the homology classes represented by z1,z2 and z3 is the homology class of lift12*z3 + z1*lift23. To see this, we compute and check:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,16 +49,16 @@ │ │ │ │ Underlying algebra => R[T ..T ] │ │ │ │ 1 4 │ │ │ │ Differential => {t , t , t , t } │ │ │ │ 1 2 3 4 │ │ │ │ │ │ │ │ o4 : DGAlgebra │ │ │ │ i5 : H = HH(KR) │ │ │ │ -Finding easy relations : -- used 0.138884s (cpu); 0.136232s │ │ │ │ -(thread); 0s (gc) │ │ │ │ +Finding easy relations : -- used 0.18848s (cpu); 0.174573s (thread); │ │ │ │ +0s (gc) │ │ │ │ │ │ │ │ o5 = H │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : masseys = masseyTripleProduct(KR,1,1,1); │ │ │ │ │ │ │ │ 5 343 │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_tor__Algebra_lp__Ring_cm__Ring_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ i2 : M = coker matrix {{a^3*b^3*c^3*d^3}}; │ │ │ │ i3 : S = R/ideal{a^3*b^3*c^3*d^3} │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8) │ │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc) │ │ │ │ + -- used 0.642579s (cpu); 0.530767s (thread); 0s (gc) │ │ │ │ Finding easy relations : │ │ │ │ o4 = HB │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : numgens HB │ │ │ │ │ │ │ │ o5 = 35 │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_complement__Graph.out │ │ │ @@ -2,15 +2,15 @@ │ │ │ │ │ │ i1 : R = QQ[a,b,c,d,e]; │ │ │ │ │ │ i2 : c5 = graph {a*b,b*c,c*d,d*e,e*a}; -- graph of the 5-cycle │ │ │ │ │ │ i3 : complementGraph c5 -- the graph complement of the 5-cycle │ │ │ │ │ │ -o3 = Graph{"edges" => {{a, c}, {b, e}, {b, d}, {c, e}, {a, d}}} │ │ │ +o3 = Graph{"edges" => {{a, d}, {a, c}, {b, e}, {b, d}, {c, e}}} │ │ │ "ring" => R │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ o3 : Graph │ │ │ │ │ │ i4 : c5hypergraph = hyperGraph c5 -- the 5-cycle, but viewed as a hypergraph │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_random__Hyper__Graph.out │ │ │ @@ -3,25 +3,25 @@ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 1 3 4 1 5 2 3 4 5 │ │ │ + 2 3 5 1 3 1 2 4 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ o3 : HyperGraph │ │ │ │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ - 2 3 4 1 2 1 3 4 5 │ │ │ + 1 3 4 3 5 1 2 4 5 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x } │ │ │ 1 2 3 4 5 │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch limit reached │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/example-output/_spanning__Tree.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : R = QQ[x_1..x_6]; │ │ │ │ │ │ i2 : C = cycle R; -- a 6-cycle │ │ │ │ │ │ i3 : spanningTree C │ │ │ │ │ │ o3 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }}} │ │ │ - 1 2 3 4 4 5 1 6 5 6 │ │ │ + 1 2 2 3 3 4 4 5 5 6 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x , x } │ │ │ 1 2 3 4 5 6 │ │ │ │ │ │ o3 : Graph │ │ │ │ │ │ i4 : T = graph {x_1*x_2,x_2*x_3, x_1*x_4,x_1*x_5,x_5*x_6}; -- a tree (no cycles) │ │ │ @@ -21,15 +21,15 @@ │ │ │ o5 = true │ │ │ │ │ │ i6 : G = graph {x_1*x_2,x_2*x_3,x_3*x_1,x_4*x_5,x_5*x_6,x_6*x_4}; -- two three cycles │ │ │ │ │ │ i7 : spanningTree G │ │ │ │ │ │ o7 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }}} │ │ │ - 1 3 2 3 4 6 5 6 │ │ │ + 1 2 1 3 4 5 4 6 │ │ │ "ring" => R │ │ │ "vertices" => {x , x , x , x , x , x } │ │ │ 1 2 3 4 5 6 │ │ │ │ │ │ o7 : Graph │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_complement__Graph.html │ │ │ @@ -84,15 +84,15 @@ │ │ │
    i2 : c5 = graph {a*b,b*c,c*d,d*e,e*a}; -- graph of the 5-cycle
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ When applied to a graph, complementGraph returns the graph whose edge set is │ │ │ │ the set of edges not in G. When applied to a hypergraph, the edge set is found │ │ │ │ by taking the complement of each edge of H in the vertex set. │ │ │ │ i1 : R = QQ[a,b,c,d,e]; │ │ │ │ i2 : c5 = graph {a*b,b*c,c*d,d*e,e*a}; -- graph of the 5-cycle │ │ │ │ i3 : complementGraph c5 -- the graph complement of the 5-cycle │ │ │ │ │ │ │ │ -o3 = Graph{"edges" => {{a, c}, {b, e}, {b, d}, {c, e}, {a, d}}} │ │ │ │ +o3 = Graph{"edges" => {{a, d}, {a, c}, {b, e}, {b, d}, {c, e}}} │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o3 : Graph │ │ │ │ i4 : c5hypergraph = hyperGraph c5 -- the 5-cycle, but viewed as a hypergraph │ │ │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{a, b}, {b, c}, {c, d}, {a, e}, {d, e}}} │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_random__Hyper__Graph.html │ │ │ @@ -88,28 +88,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,24 +25,24 @@ │ │ │ │ _T_i_m_e_L_i_m_i_t). The method will return null if it cannot find a hypergraph within │ │ │ │ the branch and time limits. │ │ │ │ i1 : R = QQ[x_1..x_5]; │ │ │ │ i2 : randomHyperGraph(R,{3,2,4}) │ │ │ │ i3 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 1 3 4 1 5 2 3 4 5 │ │ │ │ + 2 3 5 1 3 1 2 4 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ o3 : HyperGraph │ │ │ │ i4 : randomHyperGraph(R,{3,2,4}) │ │ │ │ │ │ │ │ o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}} │ │ │ │ - 2 3 4 1 2 1 3 4 5 │ │ │ │ + 1 3 4 3 5 1 2 4 5 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x } │ │ │ │ 1 2 3 4 5 │ │ │ │ │ │ │ │ o4 : HyperGraph │ │ │ │ i5 : randomHyperGraph(R,{4,4,2,2}) -- impossible, returns null when time/branch │ │ │ │ limit reached │ │ ├── ./usr/share/doc/Macaulay2/EdgeIdeals/html/_spanning__Tree.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -112,15 +112,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -13,15 +13,15 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This function returns a breadth first spanning tree of a graph. │ │ │ │ i1 : R = QQ[x_1..x_6]; │ │ │ │ i2 : C = cycle R; -- a 6-cycle │ │ │ │ i3 : spanningTree C │ │ │ │ │ │ │ │ o3 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }}} │ │ │ │ - 1 2 3 4 4 5 1 6 5 6 │ │ │ │ + 1 2 2 3 3 4 4 5 5 6 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x , x } │ │ │ │ 1 2 3 4 5 6 │ │ │ │ │ │ │ │ o3 : Graph │ │ │ │ i4 : T = graph {x_1*x_2,x_2*x_3, x_1*x_4,x_1*x_5,x_5*x_6}; -- a tree (no │ │ │ │ cycles) │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : G = graph {x_1*x_2,x_2*x_3,x_3*x_1,x_4*x_5,x_5*x_6,x_6*x_4}; -- two three │ │ │ │ cycles │ │ │ │ i7 : spanningTree G │ │ │ │ │ │ │ │ o7 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }}} │ │ │ │ - 1 3 2 3 4 6 5 6 │ │ │ │ + 1 2 1 3 4 5 4 6 │ │ │ │ "ring" => R │ │ │ │ "vertices" => {x , x , x , x , x , x } │ │ │ │ 1 2 3 4 5 6 │ │ │ │ │ │ │ │ o7 : Graph │ │ │ │ ********** WWaayyss ttoo uussee ssppaannnniinnggTTrreeee:: ********** │ │ │ │ * spanningTree(Graph) │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/example-output/___Eigen__Solver.out │ │ │ @@ -15,14 +15,14 @@ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ ------------------------------------------------------------------------ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ - -- .34144s elapsed │ │ │ + -- .278901s elapsed │ │ │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ o4 = 156 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/EigenSolver/html/index.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,22 +29,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc) │ │ │ │ + -- used 0.00372932s (cpu); 0.00372495s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc) │ │ │ │ + -- used 0.00197103s (cpu); 0.00197342s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_eliminate.html │ │ │ @@ -97,26 +97,26 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -30,22 +30,22 @@ │ │ │ │ i3 : g = x^2+c*x+d │ │ │ │ │ │ │ │ 2 │ │ │ │ o3 = x + x*c + d │ │ │ │ │ │ │ │ o3 : R │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc) │ │ │ │ + -- used 0.0036454s (cpu); 0.00364396s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc) │ │ │ │ + -- used 0.00199918s (cpu); 0.0020023s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ │ │ o3 : R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : z123 = masseyTripleProduct(KR,z1,z2,z3)
    │ │ │ -Finding easy relations           :  -- used 0.517042s (cpu); 0.445082s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.851888s (cpu); 0.65181s (thread); 0s (gc)
    │ │ │  
    │ │ │               2
    │ │ │  o10 = x x y z T T T T
    │ │ │         1 2 2   2 3 4 5
    │ │ │  
    │ │ │  o10 : R[T ..T ]
    │ │ │           1   5
    │ │ │ ├── html2text {} │ │ │ │ @@ -90,16 +90,16 @@ │ │ │ │ Note that the first return value of _g_e_t_B_o_u_n_d_a_r_y_P_r_e_i_m_a_g_e indicates that the │ │ │ │ inputs are indeed boundaries, and the second value is the lift of the boundary │ │ │ │ along the differential. │ │ │ │ Given cycles z1,z2,z3 such that z1*z2 and z2*z3 are boundaries, the Massey │ │ │ │ triple product of the homology classes represented by z1,z2 and z3 is the │ │ │ │ homology class of lift12*z3 + z1*lift23. To see this, we compute and check: │ │ │ │ i10 : z123 = masseyTripleProduct(KR,z1,z2,z3) │ │ │ │ -Finding easy relations : -- used 0.517042s (cpu); 0.445082s │ │ │ │ -(thread); 0s (gc) │ │ │ │ +Finding easy relations : -- used 0.851888s (cpu); 0.65181s (thread); │ │ │ │ +0s (gc) │ │ │ │ │ │ │ │ 2 │ │ │ │ o10 = x x y z T T T T │ │ │ │ 1 2 2 2 3 4 5 │ │ │ │ │ │ │ │ o10 : R[T ..T ] │ │ │ │ 1 5 │ │ ├── ./usr/share/doc/Macaulay2/DGAlgebras/html/_massey__Triple__Product_lp__D__G__Algebra_cm__Z__Z_cm__Z__Z_cm__Z__Z_rp.html │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ │ o4 : DGAlgebra │ │ │
    │ │ │
    i5 : H = HH(KR)
    │ │ │ -Finding easy relations           :  -- used 0.138884s (cpu); 0.136232s (thread); 0s (gc)
    │ │ │ +Finding easy relations           :  -- used 0.18848s (cpu); 0.174573s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = H
    │ │ │  
    │ │ │  o5 : QuotientRing
    │ │ │
    │ │ │
    i4 : HB = torAlgebra(R,S,GenDegreeLimit=>4,RelDegreeLimit=>8)
    │ │ │ - -- used 0.601766s (cpu); 0.506804s (thread); 0s (gc)
    │ │ │ + -- used 0.642579s (cpu); 0.530767s (thread); 0s (gc)
    │ │ │  Finding easy relations           : 
    │ │ │  o4 = HB
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │
    │ │ │
    i3 : complementGraph c5 -- the graph complement of the 5-cycle
    │ │ │  
    │ │ │ -o3 = Graph{"edges" => {{a, c}, {b, e}, {b, d}, {c, e}, {a, d}}}
    │ │ │ +o3 = Graph{"edges" => {{a, d}, {a, c}, {b, e}, {b, d}, {c, e}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o3 : Graph
    │ │ │
    │ │ │
    i3 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │  o3 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              1   3   4     1   5     2   3   4   5
    │ │ │ +                              2   3   5     1   3     1   2   4   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │  o3 : HyperGraph
    │ │ │
    │ │ │
    i4 : randomHyperGraph(R,{3,2,4})
    │ │ │  
    │ │ │  o4 = HyperGraph{"edges" => {{x , x , x }, {x , x }, {x , x , x , x }}}
    │ │ │ -                              2   3   4     1   2     1   3   4   5
    │ │ │ +                              1   3   4     3   5     1   2   4   5
    │ │ │                  "ring" => R
    │ │ │                  "vertices" => {x , x , x , x , x }
    │ │ │                                  1   2   3   4   5
    │ │ │  
    │ │ │  o4 : HyperGraph
    │ │ │
    │ │ │
    i3 : spanningTree C
    │ │ │  
    │ │ │  o3 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}
    │ │ │ -                         1   2     3   4     4   5     1   6     5   6
    │ │ │ +                         1   2     2   3     3   4     4   5     5   6
    │ │ │             "ring" => R
    │ │ │             "vertices" => {x , x , x , x , x , x }
    │ │ │                             1   2   3   4   5   6
    │ │ │  
    │ │ │  o3 : Graph
    │ │ │
    │ │ │
    i7 : spanningTree G
    │ │ │  
    │ │ │  o7 = Graph{"edges" => {{x , x }, {x , x }, {x , x }, {x , x }}}
    │ │ │ -                         1   3     2   3     4   6     5   6
    │ │ │ +                         1   2     1   3     4   5     4   6
    │ │ │             "ring" => R
    │ │ │             "vertices" => {x , x , x , x , x , x }
    │ │ │                             1   2   3   4   5   6
    │ │ │  
    │ │ │  o7 : Graph
    │ │ │
    │ │ │
    i3 : elapsedTime sols = zeroDimSolve I;
    │ │ │ - -- .34144s elapsed
    │ │ │ + -- .278901s elapsed │ │ │
    │ │ │
    i4 : #sols -- 156 solutions
    │ │ │  
    │ │ │  o4 = 156
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*e*f + a*d*e*f + c*d*e*f, a*b*c*d*e + a*b*c*d*f + a*b*c*e*f + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ a*b*d*e*f + a*c*d*e*f + b*c*d*e*f, a*b*c*d*e*f - 1) │ │ │ │ │ │ │ │ o2 : Ideal of QQ[a..f] │ │ │ │ i3 : elapsedTime sols = zeroDimSolve I; │ │ │ │ - -- .34144s elapsed │ │ │ │ + -- .278901s elapsed │ │ │ │ i4 : #sols -- 156 solutions │ │ │ │ │ │ │ │ o4 = 156 │ │ │ │ The authors would like to acknowledge the June 2020 Macaulay2 workshop held │ │ │ │ virtually at Warwick, where this package was first developed. │ │ │ │ RReeffeerreenncceess: │ │ │ │ * [1] Sturmfels, Bernd. Solving systems of polynomial equations. No. 97. │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc) │ │ │ + -- used 0.00372932s (cpu); 0.00372495s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc) │ │ │ + -- used 0.00197103s (cpu); 0.00197342s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_eliminate.out │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ 2 │ │ │ o3 = x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(x,ideal(f,g)) │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc) │ │ │ + -- used 0.0036454s (cpu); 0.00364396s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o4 = ideal(a*b*c - b*c - a d + a*c*d - b + 2b*d - d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc) │ │ │ + -- used 0.00199918s (cpu); 0.0020023s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 │ │ │ o5 = ideal(- a*b*c + b*c + a d - a*c*d + b - 2b*d + d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : sylvesterMatrix(f,g,x) │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_resultant_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o3 = x + x + x*c + d │ │ │ │ │ │ o3 : R │ │ │ │ │ │ i4 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc) │ │ │ + -- used 1.71728s (cpu); 1.5103s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o4 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -73,15 +73,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : time ideal resultant(f,g,x) │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc) │ │ │ + -- used 0.0173944s (cpu); 0.0173975s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/example-output/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ │ 8 5 │ │ │ o4 = x + x + x*c + d │ │ │ │ │ │ o4 : R │ │ │ │ │ │ i5 : time eliminate(ideal(f,g),x) │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc) │ │ │ + -- used 1.6159s (cpu); 1.46189s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o5 = ideal(a b*c - a d + a b - b - 6a b*c - 18a b c + 7b c + 48a b c - │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c - 46a b c + 35b c + 15a b*c - 35b c + 21b c - 7b c + b*c + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -75,15 +75,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 3 4 4 │ │ │ - 216b*c*d + 2052a*d - 1944d ) │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : time ideal resultant(f,g,x) │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc) │ │ │ + -- used 0.0169919s (cpu); 0.0169951s (thread); 0s (gc) │ │ │ │ │ │ 7 8 3 5 8 6 3 4 7 3 3 2 │ │ │ o6 = ideal(- a b*c + a d - a b + b + 6a b*c + 18a b c - 7b c - 48a b c + │ │ │ ------------------------------------------------------------------------ │ │ │ 6 2 3 2 3 5 3 3 4 4 4 3 5 2 6 7 │ │ │ 21b c + 46a b c - 35b c - 15a b*c + 35b c - 21b c + 7b c - b*c - │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_discriminant_lp__Ring__Element_cm__Ring__Element_rp.html │ │ │ @@ -103,26 +103,26 @@ │ │ │ │ │ │ o3 : R │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00276448s (cpu); 0.00276172s (thread); 0s (gc)
    │ │ │ + -- used 0.00372932s (cpu); 0.00372495s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00161961s (cpu); 0.00162013s (thread); 0s (gc)
    │ │ │ + -- used 0.00197103s (cpu); 0.00197342s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(x,ideal(f,g))
    │ │ │ - -- used 0.00357906s (cpu); 0.00357709s (thread); 0s (gc)
    │ │ │ + -- used 0.0036454s (cpu); 0.00364396s (thread); 0s (gc)
    │ │ │  
    │ │ │                        2    2             2           2
    │ │ │  o4 = ideal(a*b*c - b*c  - a d + a*c*d - b  + 2b*d - d )
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.00211786s (cpu); 0.0021216s (thread); 0s (gc)
    │ │ │ + -- used 0.00199918s (cpu); 0.0020023s (thread); 0s (gc)
    │ │ │  
    │ │ │                          2    2             2           2
    │ │ │  o5 = ideal(- a*b*c + b*c  + a d - a*c*d + b  - 2b*d + d )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i4 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc)
    │ │ │ + -- used 1.71728s (cpu); 1.5103s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc)
    │ │ │ + -- used 0.0173944s (cpu); 0.0173975s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  i3 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o3 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o3 : R
    │ │ │ │  i4 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.89068s (cpu); 1.67085s (thread); 0s (gc)
    │ │ │ │ + -- used 1.71728s (cpu); 1.5103s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o4 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -90,15 +90,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.0240253s (cpu); 0.0240283s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0173944s (cpu); 0.0173975s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Elimination/html/_sylvester__Matrix_lp__Ring__Element_cm__Ring__Element_cm__Ring__Element_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  
    │ │ │  o4 : R
    │ │ │
    │ │ │
    i5 : time eliminate(ideal(f,g),x)
    │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc)
    │ │ │ + -- used 1.6159s (cpu); 1.46189s (thread); 0s (gc)
    │ │ │  
    │ │ │              7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -163,15 +163,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : time ideal resultant(f,g,x)
    │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc)
    │ │ │ + -- used 0.0169919s (cpu); 0.0169951s (thread); 0s (gc)
    │ │ │  
    │ │ │                7       8     3 5    8     6         3 4      7       3 3 2  
    │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7  
    │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i4 : g = x^8+x^5+c*x+d
    │ │ │ │  
    │ │ │ │        8    5
    │ │ │ │  o4 = x  + x  + x*c + d
    │ │ │ │  
    │ │ │ │  o4 : R
    │ │ │ │  i5 : time eliminate(ideal(f,g),x)
    │ │ │ │ - -- used 1.67634s (cpu); 1.45099s (thread); 0s (gc)
    │ │ │ │ + -- used 1.6159s (cpu); 1.46189s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o5 = ideal(a b*c - a d + a b  - b  - 6a b*c - 18a b c + 7b c + 48a b c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  - 46a b c  + 35b c  + 15a b*c  - 35b c  + 21b c  - 7b c  + b*c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -85,15 +85,15 @@
    │ │ │ │       + 792a*b c*d - 1512a*b*c d + 648a*c d - 360a b*d  + 648a c*d  - 504b d
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                 3          4        4
    │ │ │ │       - 216b*c*d  + 2052a*d  - 1944d )
    │ │ │ │  
    │ │ │ │  o5 : Ideal of R
    │ │ │ │  i6 : time ideal resultant(f,g,x)
    │ │ │ │ - -- used 0.01611s (cpu); 0.016112s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0169919s (cpu); 0.0169951s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                7       8     3 5    8     6         3 4      7       3 3 2
    │ │ │ │  o6 = ideal(- a b*c + a d - a b  + b  + 6a b*c + 18a b c - 7b c - 48a b c  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │          6 2      3 2 3      5 3      3   4      4 4      3 5     2 6      7
    │ │ │ │       21b c  + 46a b c  - 35b c  - 15a b*c  + 35b c  - 21b c  + 7b c  - b*c  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_lines__Hypersurface.out
    │ │ │ @@ -1,11 +1,11 @@
    │ │ │  -- -*- M2-comint -*- hash: 1331975673177
    │ │ │  
    │ │ │  i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc)
    │ │ │ + -- used 0.0363058s (cpu); 0.0363077s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/example-output/_rational__Curve.out
    │ │ │ @@ -37,83 +37,83 @@
    │ │ │  i6 : rationalCurve(2) - rationalCurve(1)/8
    │ │ │  
    │ │ │  o6 = 609250
    │ │ │  
    │ │ │  o6 : QQ
    │ │ │  
    │ │ │  i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc)
    │ │ │ + -- used 0.402089s (cpu); 0.34762s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : time rationalCurve(3)
    │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc)
    │ │ │ + -- used 0.141634s (cpu); 0.141644s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │  
    │ │ │  i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc)
    │ │ │ + -- used 5.28842s (cpu); 4.64979s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc)
    │ │ │ + -- used 0.145437s (cpu); 0.145447s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │  
    │ │ │  i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc)
    │ │ │ + -- used 5.55897s (cpu); 4.90851s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : time rationalCurve(4)
    │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc)
    │ │ │ + -- used 1.59288s (cpu); 1.4533s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │  
    │ │ │  i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc)
    │ │ │ + -- used 7.24919s (cpu); 6.00017s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │  
    │ │ │  i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc)
    │ │ │ + -- used 1.71893s (cpu); 1.501s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │  
    │ │ │  i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc)
    │ │ │ + -- used 7.6756s (cpu); 6.42546s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │  
    │ │ │  i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc)
    │ │ │ + -- used 7.18198s (cpu); 5.93205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │  
    │ │ │  i17 :
    │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_lines__Hypersurface.html
    │ │ │ @@ -71,15 +71,15 @@
    │ │ │            

    Computes the number of lines on a general hypersurface of degree 2n - 3 in \mathbb P^n.

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the number of lines on a general hypersurface of degree │ │ │ │ 2n - 3 in \mathbb P^n │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Computes the number of lines on a general hypersurface of degree 2n - 3 in │ │ │ │ \mathbb P^n. │ │ │ │ i1 : time for n from 2 to 10 list linesHypersurface(n) │ │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc) │ │ │ │ + -- used 0.0363058s (cpu); 0.0363077s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** WWaayyss ttoo uussee lliinneessHHyyppeerrssuurrffaaccee:: ********** │ │ ├── ./usr/share/doc/Macaulay2/EnumerationCurves/html/_rational__Curve.html │ │ │ @@ -152,15 +152,15 @@ │ │ │

    The numbers of conics on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i1 : time for n from 2 to 10 list linesHypersurface(n)
    │ │ │ - -- used 0.0280835s (cpu); 0.0280868s (thread); 0s (gc)
    │ │ │ + -- used 0.0363058s (cpu); 0.0363077s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8
    │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc)
    │ │ │ + -- used 0.402089s (cpu); 0.34762s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {609250, 92288, 52812, 22428, 9728}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ @@ -168,27 +168,27 @@ │ │ │

    For rational curves of degree 3:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -198,15 +198,15 @@ │ │ │

    The number of rational curves of degree 3 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │
    │ │ │
    i8 : time rationalCurve(3)
    │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc)
    │ │ │ + -- used 0.141634s (cpu); 0.141644s (thread); 0s (gc)
    │ │ │  
    │ │ │       8564575000
    │ │ │  o8 = ----------
    │ │ │           27
    │ │ │  
    │ │ │  o8 : QQ
    │ │ │
    │ │ │
    i9 : time for D in T list rationalCurve(3,D)
    │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc)
    │ │ │ + -- used 5.28842s (cpu); 4.64979s (thread); 0s (gc)
    │ │ │  
    │ │ │        8564575000  422690816           4834592  11239424
    │ │ │  o9 = {----------, ---------, 6424365, -------, --------}
    │ │ │            27          27                 3        27
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time rationalCurve(3) - rationalCurve(1)/27
    │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc)
    │ │ │ + -- used 0.145437s (cpu); 0.145447s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = 317206375
    │ │ │  
    │ │ │  o10 : QQ
    │ │ │
    │ │ │ @@ -214,15 +214,15 @@ │ │ │

    The numbers of rational curves of degree 3 on general complete intersection Calabi-Yau threefolds can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27
    │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc)
    │ │ │ + -- used 5.55897s (cpu); 4.90851s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {317206375, 15655168, 6424326, 1611504, 416256}
    │ │ │  
    │ │ │  o11 : List
    │ │ │
    │ │ │ @@ -230,27 +230,27 @@ │ │ │

    For rational curves of degree 4:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : time rationalCurve(4)
    │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc)
    │ │ │ + -- used 1.59288s (cpu); 1.4533s (thread); 0s (gc)
    │ │ │  
    │ │ │        15517926796875
    │ │ │  o12 = --------------
    │ │ │              64
    │ │ │  
    │ │ │  o12 : QQ
    │ │ │
    │ │ │
    i13 : time rationalCurve(4,{4,2})
    │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc)
    │ │ │ + -- used 7.24919s (cpu); 6.00017s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = 3883914084
    │ │ │  
    │ │ │  o13 : QQ
    │ │ │
    │ │ │ @@ -258,15 +258,15 @@ │ │ │

    The number of rational curves of degree 4 on a general quintic threefold can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : time rationalCurve(4) - rationalCurve(2)/8
    │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc)
    │ │ │ + -- used 1.71893s (cpu); 1.501s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 242467530000
    │ │ │  
    │ │ │  o14 : QQ
    │ │ │
    │ │ │ @@ -274,25 +274,25 @@ │ │ │

    The numbers of rational curves of degree 4 on general complete intersections of types (4,2) and (3,3) in \mathbb P^5 can be computed as follows:

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8
    │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc)
    │ │ │ + -- used 7.6756s (cpu); 6.42546s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3883902528
    │ │ │  
    │ │ │  o15 : QQ
    │ │ │
    │ │ │
    i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8
    │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc)
    │ │ │ + -- used 7.18198s (cpu); 5.93205s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 1139448384
    │ │ │  
    │ │ │  o16 : QQ
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,85 +59,85 @@ │ │ │ │ │ │ │ │ o6 = 609250 │ │ │ │ │ │ │ │ o6 : QQ │ │ │ │ The numbers of conics on general complete intersection Calabi-Yau threefolds │ │ │ │ can be computed as follows: │ │ │ │ i7 : time for D in T list rationalCurve(2,D) - rationalCurve(1,D)/8 │ │ │ │ - -- used 0.328797s (cpu); 0.276936s (thread); 0s (gc) │ │ │ │ + -- used 0.402089s (cpu); 0.34762s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {609250, 92288, 52812, 22428, 9728} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ For rational curves of degree 3: │ │ │ │ i8 : time rationalCurve(3) │ │ │ │ - -- used 0.228142s (cpu); 0.168847s (thread); 0s (gc) │ │ │ │ + -- used 0.141634s (cpu); 0.141644s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 │ │ │ │ o8 = ---------- │ │ │ │ 27 │ │ │ │ │ │ │ │ o8 : QQ │ │ │ │ i9 : time for D in T list rationalCurve(3,D) │ │ │ │ - -- used 5.32989s (cpu); 4.61697s (thread); 0s (gc) │ │ │ │ + -- used 5.28842s (cpu); 4.64979s (thread); 0s (gc) │ │ │ │ │ │ │ │ 8564575000 422690816 4834592 11239424 │ │ │ │ o9 = {----------, ---------, 6424365, -------, --------} │ │ │ │ 27 27 3 27 │ │ │ │ │ │ │ │ o9 : List │ │ │ │ The number of rational curves of degree 3 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i10 : time rationalCurve(3) - rationalCurve(1)/27 │ │ │ │ - -- used 0.217214s (cpu); 0.167544s (thread); 0s (gc) │ │ │ │ + -- used 0.145437s (cpu); 0.145447s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = 317206375 │ │ │ │ │ │ │ │ o10 : QQ │ │ │ │ The numbers of rational curves of degree 3 on general complete intersection │ │ │ │ Calabi-Yau threefolds can be computed as follows: │ │ │ │ i11 : time for D in T list rationalCurve(3,D) - rationalCurve(1,D)/27 │ │ │ │ - -- used 5.31342s (cpu); 4.64208s (thread); 0s (gc) │ │ │ │ + -- used 5.55897s (cpu); 4.90851s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = {317206375, 15655168, 6424326, 1611504, 416256} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ For rational curves of degree 4: │ │ │ │ i12 : time rationalCurve(4) │ │ │ │ - -- used 1.64976s (cpu); 1.4421s (thread); 0s (gc) │ │ │ │ + -- used 1.59288s (cpu); 1.4533s (thread); 0s (gc) │ │ │ │ │ │ │ │ 15517926796875 │ │ │ │ o12 = -------------- │ │ │ │ 64 │ │ │ │ │ │ │ │ o12 : QQ │ │ │ │ i13 : time rationalCurve(4,{4,2}) │ │ │ │ - -- used 7.46787s (cpu); 5.79404s (thread); 0s (gc) │ │ │ │ + -- used 7.24919s (cpu); 6.00017s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = 3883914084 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ The number of rational curves of degree 4 on a general quintic threefold can be │ │ │ │ computed as follows: │ │ │ │ i14 : time rationalCurve(4) - rationalCurve(2)/8 │ │ │ │ - -- used 1.65931s (cpu); 1.42972s (thread); 0s (gc) │ │ │ │ + -- used 1.71893s (cpu); 1.501s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 242467530000 │ │ │ │ │ │ │ │ o14 : QQ │ │ │ │ The numbers of rational curves of degree 4 on general complete intersections of │ │ │ │ types (4,2) and (3,3) in \mathbb P^5 can be computed as follows: │ │ │ │ i15 : time rationalCurve(4,{4,2}) - rationalCurve(2,{4,2})/8 │ │ │ │ - -- used 7.68075s (cpu); 6.13623s (thread); 0s (gc) │ │ │ │ + -- used 7.6756s (cpu); 6.42546s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3883902528 │ │ │ │ │ │ │ │ o15 : QQ │ │ │ │ i16 : time rationalCurve(4,{3,3}) - rationalCurve(2,{3,3})/8 │ │ │ │ - -- used 7.9262s (cpu); 6.01692s (thread); 0s (gc) │ │ │ │ + -- used 7.18198s (cpu); 5.93205s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 1139448384 │ │ │ │ │ │ │ │ o16 : QQ │ │ │ │ ********** WWaayyss ttoo uussee rraattiioonnaallCCuurrvvee:: ********** │ │ │ │ * rationalCurve(ZZ) │ │ │ │ * rationalCurve(ZZ,List) │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/example-output/_egb__Toric.out │ │ │ @@ -10,34 +10,34 @@ │ │ │ o3 = map (R, S, {x , x x , x x , x }) │ │ │ 1 1 0 1 0 0 │ │ │ │ │ │ o3 : RingMap R <-- S │ │ │ │ │ │ i4 : G = egbToric(m, OutFile=>stdio) │ │ │ 3 │ │ │ - -- used .00198437 seconds │ │ │ - -- used .000540734 seconds │ │ │ + -- used .0027049 seconds │ │ │ + -- used .00112103 seconds │ │ │ (9, 9) │ │ │ new stuff found │ │ │ 4 │ │ │ - -- used .00328788 seconds │ │ │ - -- used .00432848 seconds │ │ │ + -- used .00487625 seconds │ │ │ + -- used .00506632 seconds │ │ │ (16, 26) │ │ │ new stuff found │ │ │ 5 │ │ │ - -- used .00788476 seconds │ │ │ - -- used .0260362 seconds │ │ │ + -- used .0134169 seconds │ │ │ + -- used .0288429 seconds │ │ │ (25, 60) │ │ │ 6 │ │ │ - -- used .0175752 seconds │ │ │ - -- used .212106 seconds │ │ │ + -- used .0226244 seconds │ │ │ + -- used .236642 seconds │ │ │ (36, 120) │ │ │ 7 │ │ │ - -- used .0370974 seconds │ │ │ - -- used .791376 seconds │ │ │ + -- used .0454796 seconds │ │ │ + -- used .874367 seconds │ │ │ (49, 217) │ │ │ │ │ │ 2 │ │ │ o4 = {- y + y , - y y + y , - y y + y y , - y y + │ │ │ 1,0 0,1 1,1 0,0 1,0 2,1 0,0 2,0 1,0 2,1 1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ y y , - y y + y y , - y y + y y , - y y + │ │ ├── ./usr/share/doc/Macaulay2/EquivariantGB/html/_egb__Toric.html │ │ │ @@ -101,34 +101,34 @@ │ │ │ o3 : RingMap R <-- S
    │ │ │
    │ │ │
    i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │  3
    │ │ │ -     -- used .00198437 seconds
    │ │ │ -     -- used .000540734 seconds
    │ │ │ +     -- used .0027049 seconds
    │ │ │ +     -- used .00112103 seconds
    │ │ │  (9, 9)
    │ │ │  new stuff found
    │ │ │  4
    │ │ │ -     -- used .00328788 seconds
    │ │ │ -     -- used .00432848 seconds
    │ │ │ +     -- used .00487625 seconds
    │ │ │ +     -- used .00506632 seconds
    │ │ │  (16, 26)
    │ │ │  new stuff found
    │ │ │  5
    │ │ │ -     -- used .00788476 seconds
    │ │ │ -     -- used .0260362 seconds
    │ │ │ +     -- used .0134169 seconds
    │ │ │ +     -- used .0288429 seconds
    │ │ │  (25, 60)
    │ │ │  6
    │ │ │ -     -- used .0175752 seconds
    │ │ │ -     -- used .212106 seconds
    │ │ │ +     -- used .0226244 seconds
    │ │ │ +     -- used .236642 seconds
    │ │ │  (36, 120)
    │ │ │  7
    │ │ │ -     -- used .0370974 seconds
    │ │ │ -     -- used .791376 seconds
    │ │ │ +     -- used .0454796 seconds
    │ │ │ +     -- used .874367 seconds
    │ │ │  (49, 217)
    │ │ │  
    │ │ │                                     2
    │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,34 +33,34 @@
    │ │ │ │                    2               2
    │ │ │ │  o3 = map (R, S, {x , x x , x x , x })
    │ │ │ │                    1   1 0   1 0   0
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- S
    │ │ │ │  i4 : G = egbToric(m, OutFile=>stdio)
    │ │ │ │  3
    │ │ │ │ -     -- used .00198437 seconds
    │ │ │ │ -     -- used .000540734 seconds
    │ │ │ │ +     -- used .0027049 seconds
    │ │ │ │ +     -- used .00112103 seconds
    │ │ │ │  (9, 9)
    │ │ │ │  new stuff found
    │ │ │ │  4
    │ │ │ │ -     -- used .00328788 seconds
    │ │ │ │ -     -- used .00432848 seconds
    │ │ │ │ +     -- used .00487625 seconds
    │ │ │ │ +     -- used .00506632 seconds
    │ │ │ │  (16, 26)
    │ │ │ │  new stuff found
    │ │ │ │  5
    │ │ │ │ -     -- used .00788476 seconds
    │ │ │ │ -     -- used .0260362 seconds
    │ │ │ │ +     -- used .0134169 seconds
    │ │ │ │ +     -- used .0288429 seconds
    │ │ │ │  (25, 60)
    │ │ │ │  6
    │ │ │ │ -     -- used .0175752 seconds
    │ │ │ │ -     -- used .212106 seconds
    │ │ │ │ +     -- used .0226244 seconds
    │ │ │ │ +     -- used .236642 seconds
    │ │ │ │  (36, 120)
    │ │ │ │  7
    │ │ │ │ -     -- used .0370974 seconds
    │ │ │ │ -     -- used .791376 seconds
    │ │ │ │ +     -- used .0454796 seconds
    │ │ │ │ +     -- used .874367 seconds
    │ │ │ │  (49, 217)
    │ │ │ │  
    │ │ │ │                                     2
    │ │ │ │  o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
    │ │ │ │           1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Fast__Minors__Strategy__Tutorial.out
    │ │ │ @@ -462,50 +462,50 @@
    │ │ │                 3 2 4     3 6
    │ │ │  o27 = ideal(12x x x  - 4x x )
    │ │ │                 3 7 9     3 9
    │ │ │  
    │ │ │  o27 : Ideal of S
    │ │ │  
    │ │ │  i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc)
    │ │ │ + -- used 0.235066s (cpu); 0.172562s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │  
    │ │ │  i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc)
    │ │ │ + -- used 0.377864s (cpu); 0.243329s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │  
    │ │ │  i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc)
    │ │ │ + -- used 0.581966s (cpu); 0.368048s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │  
    │ │ │  i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc)
    │ │ │ + -- used 0.300822s (cpu); 0.233416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │  
    │ │ │  i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc)
    │ │ │ + -- used 0.464162s (cpu); 0.248254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │  
    │ │ │  i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc)
    │ │ │ + -- used 0.405066s (cpu); 0.272011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │  
    │ │ │  i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc)
    │ │ │ + -- used 0.362747s (cpu); 0.240964s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │  
    │ │ │  i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc)
    │ │ │ + -- used 19.5605s (cpu); 12.84s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │  
    │ │ │  i36 : peek StrategyDefault
    │ │ │  
    │ │ │  o36 = OptionTable{GRevLexLargest => 0      }
    │ │ │                    GRevLexSmallest => 16
    │ │ │ @@ -514,15 +514,15 @@
    │ │ │                    LexSmallest => 16
    │ │ │                    LexSmallestTerm => 16
    │ │ │                    Points => 0
    │ │ │                    Random => 16
    │ │ │                    RandomNonzero => 16
    │ │ │  
    │ │ │  i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc)
    │ │ │ + -- used 0.45547s (cpu); 0.380341s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -582,15 +582,15 @@
    │ │ │  i41 : ptsStratGeometric = new OptionTable from (options chooseGoodMinors)#PointOptions;
    │ │ │  
    │ │ │  i42 : ptsStratGeometric#ExtendField --look at the default value
    │ │ │  
    │ │ │  o42 = true
    │ │ │  
    │ │ │  i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc)
    │ │ │ + -- used 0.760153s (cpu); 0.611235s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │  
    │ │ │  i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │  
    │ │ │  o44 = OptionTable{DecompositionStrategy => Decompose}
    │ │ │                    DimensionFunction => dim
    │ │ │ @@ -605,47 +605,47 @@
    │ │ │  o44 : OptionTable
    │ │ │  
    │ │ │  i45 : ptsStratRational.ExtendField --look at our changed value
    │ │ │  
    │ │ │  o45 = false
    │ │ │  
    │ │ │  i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc)
    │ │ │ + -- used 0.521084s (cpu); 0.450882s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │  
    │ │ │  i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc)
    │ │ │ + -- used 4.35788s (cpu); 3.91067s (thread); 0s (gc)
    │ │ │  
    │ │ │  i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc)
    │ │ │ + -- used 0.979538s (cpu); 0.824092s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │  
    │ │ │  i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc)
    │ │ │ + -- used 3.58625s (cpu); 3.36342s (thread); 0s (gc)
    │ │ │  
    │ │ │  i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc)
    │ │ │ + -- used 2.94573s (cpu); 2.43591s (thread); 0s (gc)
    │ │ │  
    │ │ │  i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc)
    │ │ │ + -- used 1.01229s (cpu); 0.93891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │  
    │ │ │  i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc)
    │ │ │ + -- used 3.31185s (cpu); 2.72932s (thread); 0s (gc)
    │ │ │  
    │ │ │  i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc)
    │ │ │ + -- used 4.04259s (cpu); 3.43991s (thread); 0s (gc)
    │ │ │  
    │ │ │  i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc)
    │ │ │ + -- used 11.6132s (cpu); 9.62585s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │  
    │ │ │  i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc)
    │ │ │ + -- used 8.96829s (cpu); 7.36393s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │  
    │ │ │  i56 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Regular__In__Codimension__Tutorial.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  o2 : Ideal of S
    │ │ │  
    │ │ │  i3 : dim (S/J)
    │ │ │  
    │ │ │  o3 = 4
    │ │ │  
    │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ + -- used 1.18993s (cpu); 0.756142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ + -- used 13.3074s (cpu); 9.34486s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time regularInCodimension(1, S/J, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 452.908 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ @@ -87,21 +87,21 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 49, and computed = 39
    │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ -regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.43458s (cpu); 1.01606s (thread); 0s (gc)
    │ │ │ +regularInCodimension:  Loop completed, submatrices considered = 49, and compute -- used 1.69305s (cpu); 1.1984s (thread); 0s (gc)
    │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ + -- used 0.221683s (cpu); 0.15609s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ + -- used 0.193756s (cpu); 0.133139s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ + -- used 0.95771s (cpu); 0.637674s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -165,15 +165,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 10, and computed = 10
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 10, and computed = 10.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ + -- used 0.852016s (cpu); 0.601959s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -214,15 +214,15 @@
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 25, and computed = 23
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 3
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 25, and computed = 23.  singular locus dimension appears to be = 3
    │ │ │  
    │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ + -- used 0.546003s (cpu); 0.373622s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/___Strategy__Default.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5509279875405941999
    │ │ │  
    │ │ │  i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │  
    │ │ │  i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.73127s elapsed
    │ │ │ + -- 1.61205s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │  
    │ │ │  i3 : peek StrategyDefault
    │ │ │  
    │ │ │  o3 = OptionTable{GRevLexLargest => 0      }
    │ │ │                   GRevLexSmallest => 16
    │ │ │ @@ -16,12 +16,12 @@
    │ │ │                   LexSmallest => 16
    │ │ │                   LexSmallestTerm => 16
    │ │ │                   Points => 0
    │ │ │                   Random => 16
    │ │ │                   RandomNonzero => 16
    │ │ │  
    │ │ │  i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.19064s elapsed
    │ │ │ + -- .971402s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_is__Codim__At__Least.out
    │ │ │ @@ -16,29 +16,29 @@
    │ │ │  i5 : r = rank myDiff;
    │ │ │  
    │ │ │  i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc)
    │ │ │ + -- used 0.00400021s (cpu); 0.0034092s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : I = ideal(x_2^8*x_10^3-3*x_1*x_2^7*x_10^2*x_11+3*x_1^2*x_2^6*x_10*x_11^2-x_1^3*x_2^5*x_11^3,x_5^5*x_6^3*x_11^3-3*x_5^6*x_6^2*x_11^2*x_12+3*x_5^7*x_6*x_11*x_12^2-x_5^8*x_12^3,x_1^5*x_2^3*x_4^3-3*x_1^6*x_2^2*x_4^2*x_5+3*x_1^7*x_2*x_4*x_5^2-x_1^8*x_5^3,x_6^8*x_11^3-3*x_5*x_6^7*x_11^2*x_12+3*x_5^2*x_6^6*x_11*x_12^2-x_5^3*x_6^5*x_12^3,x_8^3*x_10^8-3*x_7*x_8^2*x_10^7*x_11+3*x_7^2*x_8*x_10^6*x_11^2-x_7^3*x_10^5*x_11^3,x_2^8*x_4^3-3*x_1*x_2^7*x_4^2*x_5+3*x_1^2*x_2^6*x_4*x_5^2-x_1^3*x_2^5*x_5^3,-x_6^3*x_11^8+3*x_5*x_6^2*x_11^7*x_12-3*x_5^2*x_6*x_11^6*x_12^2+x_5^3*x_11^5*x_12^3,-x_6^3*x_7^3*x_9^5+3*x_4*x_6^2*x_7^2*x_9^6-3*x_4^2*x_6*x_7*x_9^7+x_4^3*x_9^8,x_8^8*x_10^3-3*x_7*x_8^7*x_10^2*x_11+3*x_7^2*x_8^6*x_10*x_11^2-x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3-3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3);
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o8 : Ideal of ---[x  , x , x , x , x  , x , x , x  , x , x , x , x ]
    │ │ │                127  11   8   1   9   12   6   5   10   2   4   3   7
    │ │ │  
    │ │ │  i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc)
    │ │ │ + -- used 0.000452752s (cpu); 0.00325482s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc)
    │ │ │ + -- used 0.000330497s (cpu); 0.00307954s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_proj__Dim.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : pdim(module I)
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc)
    │ │ │ + -- used 0.320407s (cpu); 0.180761s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │  
    │ │ │  i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc)
    │ │ │ + -- used 0.0148508s (cpu); 0.0160678s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_recursive__Minors.out
    │ │ │ @@ -4,20 +4,20 @@
    │ │ │  
    │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │  
    │ │ │               6      7
    │ │ │  o2 : Matrix R  <-- R
    │ │ │  
    │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ + -- used 0.568394s (cpu); 0.505724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ + -- used 1.41864s (cpu); 1.28351s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │  
    │ │ │  i5 : I1 == I2
    │ │ │  
    │ │ │  o5 = true
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/example-output/_regular__In__Codimension.out
    │ │ │ @@ -17,44 +17,44 @@
    │ │ │  i6 : S = T/I;
    │ │ │  
    │ │ │  i7 : dim S
    │ │ │  
    │ │ │  o7 = 3
    │ │ │  
    │ │ │  i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc)
    │ │ │ + -- used 0.813424s (cpu); 0.62154s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc)
    │ │ │ + -- used 8.1655s (cpu); 6.11118s (thread); 0s (gc)
    │ │ │  
    │ │ │  i10 : R = QQ[c, f, g, h]/ideal(g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3-f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h-c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c);
    │ │ │  
    │ │ │  i11 : dim(R)
    │ │ │  
    │ │ │  o11 = 2
    │ │ │  
    │ │ │  i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc)
    │ │ │ + -- used 0.0240005s (cpu); 0.0218344s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │  
    │ │ │  i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc)
    │ │ │ + -- used 0.233636s (cpu); 0.161639s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │  
    │ │ │  i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc)
    │ │ │ + -- used 1.2013s (cpu); 0.735407s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc)
    │ │ │ + -- used 1.59361s (cpu); 1.0549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : time regularInCodimension(2, S, Verbose=>true)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 327.599 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -386,15 +386,15 @@
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc)
    │ │ │ +internalChooseMinor: Ch -- used 8.60426s (cpu); 6.49853s (thread); 0s (gc)
    │ │ │  oosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ @@ -430,15 +430,15 @@
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 328, and computed = 180
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 1
    │ │ │  regularInCodimension:  Loop completed, submatrices considered = 328, and computed = 180.  singular locus dimension appears to be = 1
    │ │ │  
    │ │ │  i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc)
    │ │ │ + -- used 1.62811s (cpu); 1.24193s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -490,59 +490,59 @@
    │ │ │  i18 : StrategyCurrent#Random = 0;
    │ │ │  
    │ │ │  i19 : StrategyCurrent#LexSmallest = 100;
    │ │ │  
    │ │ │  i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │  
    │ │ │  i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc)
    │ │ │ + -- used 0.384636s (cpu); 0.263254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc)
    │ │ │ + -- used 0.145733s (cpu); 0.0894967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc)
    │ │ │ + -- used 0.481996s (cpu); 0.333493s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc)
    │ │ │ + -- used 2.27333s (cpu); 1.64218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │  
    │ │ │  i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │  
    │ │ │  i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc)
    │ │ │ + -- used 3.10047s (cpu); 2.1406s (thread); 0s (gc)
    │ │ │  
    │ │ │  i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc)
    │ │ │ + -- used 2.96386s (cpu); 2.0487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc)
    │ │ │ + -- used 0.514021s (cpu); 0.377889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │  
    │ │ │  i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc)
    │ │ │ + -- used 0.898605s (cpu); 0.702043s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc)
    │ │ │ + -- used 1.24569s (cpu); 1.01534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc)
    │ │ │ + -- used 2.08977s (cpu); 1.64234s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │  
    │ │ │  i33 :
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Fast__Minors__Strategy__Tutorial.html
    │ │ │ @@ -620,71 +620,71 @@
    │ │ │          
    │ │ │

    Here the $1$ passed to the function says how many minors to compute. For instance, let's compute 8 minors for each of these strategies and see if that was enough to verify that the ring is regular in codimension 1. In other words, if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/J$ has dimension 3).

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random))
    │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc)
    │ │ │ + -- used 0.235066s (cpu); 0.172562s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 2
    │ │ │
    │ │ │
    i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest))
    │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc)
    │ │ │ + -- used 0.377864s (cpu); 0.243329s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = 3
    │ │ │
    │ │ │
    i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm))
    │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc)
    │ │ │ + -- used 0.581966s (cpu); 0.368048s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 1
    │ │ │
    │ │ │
    i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest))
    │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc)
    │ │ │ + -- used 0.300822s (cpu); 0.233416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 2
    │ │ │
    │ │ │
    i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest))
    │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc)
    │ │ │ + -- used 0.464162s (cpu); 0.248254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = 3
    │ │ │
    │ │ │
    i33 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallestTerm))
    │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc)
    │ │ │ + -- used 0.405066s (cpu); 0.272011s (thread); 0s (gc)
    │ │ │  
    │ │ │  o33 = 3
    │ │ │
    │ │ │
    i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest))
    │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc)
    │ │ │ + -- used 0.362747s (cpu); 0.240964s (thread); 0s (gc)
    │ │ │  
    │ │ │  o34 = 3
    │ │ │
    │ │ │
    i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points))
    │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc)
    │ │ │ + -- used 19.5605s (cpu); 12.84s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 1
    │ │ │
    │ │ │
    │ │ │

    Indeed, in this example, even computing determinants of 1,000 random submatrices is not typically enough to verify that $V(J)$ is regular in codimension 1. On the other hand, Points is almost always quite effective at finding valuable submatrices, but can be quite slow. In this particular example, we can see that LexSmallestTerm also performs very well (and does it quickly). Since different strategies work better or worse on different examples, the default strategy actually mixes and matches various strategies. The default strategy, which we now elucidate,

    │ │ │ @@ -709,15 +709,15 @@ │ │ │
    │ │ │

    says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, LexSmallestTerm, Random, RandomNonzero all with equal probability (note RandomNonzero, which we have not yet discussed chooses random submatrices where no row or column is zero, which is good for working in sparse matrices). For instance, if we run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, Verbose=>true);
    │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc)
    │ │ │ + -- used 0.45547s (cpu); 0.380341s (thread); 0s (gc)
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ @@ -820,15 +820,15 @@
    │ │ │  
    │ │ │  o42 = true
    │ │ │
    │ │ │
    i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratGeometric))
    │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc)
    │ │ │ + -- used 0.760153s (cpu); 0.611235s (thread); 0s (gc)
    │ │ │  
    │ │ │  o43 = 2
    │ │ │
    │ │ │
    i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that value
    │ │ │ @@ -852,15 +852,15 @@
    │ │ │  
    │ │ │  o45 = false
    │ │ │
    │ │ │
    i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, PointOptions=>ptsStratRational))
    │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc)
    │ │ │ + -- used 0.521084s (cpu); 0.450882s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = 2
    │ │ │
    │ │ │
    │ │ │

    Other options may also be passed to the RandomPoints package via the PointOptions option.

    │ │ │ @@ -868,69 +868,69 @@ │ │ │
    │ │ │

    regularInCodimension: It is reasonable to think that you should find a few minors (with one strategy or another), and see if perhaps the minors you have computed so far are enough to verify our ring is regular in codimension 1. This is exactly what regularInCodimension does. One can control at a fine level how frequently new minors are computed, and how frequently the dimension of what we have computed so far is checked, by the option codimCheckFunction. For more on that, see RegularInCodimensionTutorial and regularInCodimension. Let us finish running regularInCodimension on our example with several different strategies.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i47 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefault)
    │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc)
    │ │ │ + -- used 4.35788s (cpu); 3.91067s (thread); 0s (gc) │ │ │
    │ │ │
    i48 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultNonRandom)
    │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc)
    │ │ │ + -- used 0.979538s (cpu); 0.824092s (thread); 0s (gc)
    │ │ │  
    │ │ │  o48 = true
    │ │ │
    │ │ │
    i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random)
    │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc)
    │ │ │ + -- used 3.58625s (cpu); 3.36342s (thread); 0s (gc) │ │ │
    │ │ │
    i50 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallest)
    │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc)
    │ │ │ + -- used 2.94573s (cpu); 2.43591s (thread); 0s (gc) │ │ │
    │ │ │
    i51 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>LexSmallestTerm)
    │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc)
    │ │ │ + -- used 1.01229s (cpu); 0.93891s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = true
    │ │ │
    │ │ │
    i52 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallest)
    │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc)
    │ │ │ + -- used 3.31185s (cpu); 2.72932s (thread); 0s (gc) │ │ │
    │ │ │
    i53 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>GRevLexSmallestTerm)
    │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc)
    │ │ │ + -- used 4.04259s (cpu); 3.43991s (thread); 0s (gc) │ │ │
    │ │ │
    i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points)
    │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc)
    │ │ │ + -- used 11.6132s (cpu); 9.62585s (thread); 0s (gc)
    │ │ │  
    │ │ │  o54 = true
    │ │ │
    │ │ │
    i55 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>StrategyDefaultWithPoints)
    │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc)
    │ │ │ + -- used 8.96829s (cpu); 7.36393s (thread); 0s (gc)
    │ │ │  
    │ │ │  o55 = true
    │ │ │
    │ │ │
    │ │ │

    If regularInCodimension outputs nothing, then it couldn't verify that the ring was regular in that codimension. We set MaxMinors => 100 to keep it from running too long with an ineffective strategy. Again, even though GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular example, in others they perform better than other strategies. Note similar considerations also apply to projDim.

    │ │ │ ├── html2text {} │ │ │ │ @@ -486,44 +486,44 @@ │ │ │ │ o27 : Ideal of S │ │ │ │ Here the $1$ passed to the function says how many minors to compute. For │ │ │ │ instance, let's compute 8 minors for each of these strategies and see if that │ │ │ │ was enough to verify that the ring is regular in codimension 1. In other words, │ │ │ │ if the dimension of $J$ plus the ideal of partial minors is $\leq 1$ (since $S/ │ │ │ │ J$ has dimension 3). │ │ │ │ i28 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Random)) │ │ │ │ - -- used 0.177969s (cpu); 0.122004s (thread); 0s (gc) │ │ │ │ + -- used 0.235066s (cpu); 0.172562s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 2 │ │ │ │ i29 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallest)) │ │ │ │ - -- used 0.324762s (cpu); 0.212652s (thread); 0s (gc) │ │ │ │ + -- used 0.377864s (cpu); 0.243329s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = 3 │ │ │ │ i30 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexSmallestTerm)) │ │ │ │ - -- used 0.505075s (cpu); 0.32834s (thread); 0s (gc) │ │ │ │ + -- used 0.581966s (cpu); 0.368048s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 1 │ │ │ │ i31 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>LexLargest)) │ │ │ │ - -- used 0.226825s (cpu); 0.185587s (thread); 0s (gc) │ │ │ │ + -- used 0.300822s (cpu); 0.233416s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 2 │ │ │ │ i32 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexSmallest)) │ │ │ │ - -- used 0.386378s (cpu); 0.21271s (thread); 0s (gc) │ │ │ │ + -- used 0.464162s (cpu); 0.248254s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = 3 │ │ │ │ i33 : time dim (J + chooseGoodMinors(8, 6, M, J, │ │ │ │ Strategy=>GRevLexSmallestTerm)) │ │ │ │ - -- used 0.356033s (cpu); 0.24901s (thread); 0s (gc) │ │ │ │ + -- used 0.405066s (cpu); 0.272011s (thread); 0s (gc) │ │ │ │ │ │ │ │ o33 = 3 │ │ │ │ i34 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>GRevLexLargest)) │ │ │ │ - -- used 0.299885s (cpu); 0.188636s (thread); 0s (gc) │ │ │ │ + -- used 0.362747s (cpu); 0.240964s (thread); 0s (gc) │ │ │ │ │ │ │ │ o34 = 3 │ │ │ │ i35 : time dim (J + chooseGoodMinors(8, 6, M, J, Strategy=>Points)) │ │ │ │ - -- used 15.4766s (cpu); 10.5375s (thread); 0s (gc) │ │ │ │ + -- used 19.5605s (cpu); 12.84s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 1 │ │ │ │ Indeed, in this example, even computing determinants of 1,000 random │ │ │ │ submatrices is not typically enough to verify that $V(J)$ is regular in │ │ │ │ codimension 1. On the other hand, Points is almost always quite effective at │ │ │ │ finding valuable submatrices, but can be quite slow. In this particular │ │ │ │ example, we can see that LexSmallestTerm also performs very well (and does it │ │ │ │ @@ -544,15 +544,15 @@ │ │ │ │ says that we should use GRevLexSmallest, GRevLexSmallestTerm, LexSmallest, │ │ │ │ LexSmallestTerm, Random, RandomNonzero all with equal probability (note │ │ │ │ RandomNonzero, which we have not yet discussed chooses random submatrices where │ │ │ │ no row or column is zero, which is good for working in sparse matrices). For │ │ │ │ instance, if we run: │ │ │ │ i37 : time chooseGoodMinors(20, 6, M, J, Strategy=>StrategyDefault, │ │ │ │ Verbose=>true); │ │ │ │ - -- used 0.383136s (cpu); 0.324174s (thread); 0s (gc) │ │ │ │ + -- used 0.45547s (cpu); 0.380341s (thread); 0s (gc) │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ @@ -633,15 +633,15 @@ │ │ │ │ i41 : ptsStratGeometric = new OptionTable from (options │ │ │ │ chooseGoodMinors)#PointOptions; │ │ │ │ i42 : ptsStratGeometric#ExtendField --look at the default value │ │ │ │ │ │ │ │ o42 = true │ │ │ │ i43 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratGeometric)) │ │ │ │ - -- used 0.487214s (cpu); 0.426333s (thread); 0s (gc) │ │ │ │ + -- used 0.760153s (cpu); 0.611235s (thread); 0s (gc) │ │ │ │ │ │ │ │ o43 = 2 │ │ │ │ i44 : ptsStratRational = ptsStratGeometric++{ExtendField=>false} --change that │ │ │ │ value │ │ │ │ │ │ │ │ o44 = OptionTable{DecompositionStrategy => Decompose} │ │ │ │ DimensionFunction => dim │ │ │ │ @@ -655,58 +655,58 @@ │ │ │ │ │ │ │ │ o44 : OptionTable │ │ │ │ i45 : ptsStratRational.ExtendField --look at our changed value │ │ │ │ │ │ │ │ o45 = false │ │ │ │ i46 : time dim (J + chooseGoodMinors(1, 6, M, J, Strategy=>Points, │ │ │ │ PointOptions=>ptsStratRational)) │ │ │ │ - -- used 0.506683s (cpu); 0.379698s (thread); 0s (gc) │ │ │ │ + -- used 0.521084s (cpu); 0.450882s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = 2 │ │ │ │ Other options may also be passed to the _R_a_n_d_o_m_P_o_i_n_t_s package via the │ │ │ │ _P_o_i_n_t_O_p_t_i_o_n_s option. │ │ │ │ rreegguullaarrIInnCCooddiimmeennssiioonn:: It is reasonable to think that you should find a few │ │ │ │ minors (with one strategy or another), and see if perhaps the minors you have │ │ │ │ computed so far are enough to verify our ring is regular in codimension 1. This │ │ │ │ is exactly what regularInCodimension does. One can control at a fine level how │ │ │ │ frequently new minors are computed, and how frequently the dimension of what we │ │ │ │ have computed so far is checked, by the option codimCheckFunction. For more on │ │ │ │ that, see _R_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n_T_u_t_o_r_i_a_l and _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n. Let us finish │ │ │ │ running regularInCodimension on our example with several different strategies. │ │ │ │ i47 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefault) │ │ │ │ - -- used 3.28944s (cpu); 3.0128s (thread); 0s (gc) │ │ │ │ + -- used 4.35788s (cpu); 3.91067s (thread); 0s (gc) │ │ │ │ i48 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultNonRandom) │ │ │ │ - -- used 0.905703s (cpu); 0.789473s (thread); 0s (gc) │ │ │ │ + -- used 0.979538s (cpu); 0.824092s (thread); 0s (gc) │ │ │ │ │ │ │ │ o48 = true │ │ │ │ i49 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Random) │ │ │ │ - -- used 3.58264s (cpu); 3.36454s (thread); 0s (gc) │ │ │ │ + -- used 3.58625s (cpu); 3.36342s (thread); 0s (gc) │ │ │ │ i50 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallest) │ │ │ │ - -- used 2.38279s (cpu); 1.9883s (thread); 0s (gc) │ │ │ │ + -- used 2.94573s (cpu); 2.43591s (thread); 0s (gc) │ │ │ │ i51 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>LexSmallestTerm) │ │ │ │ - -- used 0.831174s (cpu); 0.71578s (thread); 0s (gc) │ │ │ │ + -- used 1.01229s (cpu); 0.93891s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = true │ │ │ │ i52 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallest) │ │ │ │ - -- used 2.6018s (cpu); 2.15961s (thread); 0s (gc) │ │ │ │ + -- used 3.31185s (cpu); 2.72932s (thread); 0s (gc) │ │ │ │ i53 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>GRevLexSmallestTerm) │ │ │ │ - -- used 3.03003s (cpu); 2.62369s (thread); 0s (gc) │ │ │ │ + -- used 4.04259s (cpu); 3.43991s (thread); 0s (gc) │ │ │ │ i54 : time regularInCodimension(1, S/J, MaxMinors => 100, Strategy=>Points) │ │ │ │ - -- used 9.15531s (cpu); 7.58445s (thread); 0s (gc) │ │ │ │ + -- used 11.6132s (cpu); 9.62585s (thread); 0s (gc) │ │ │ │ │ │ │ │ o54 = true │ │ │ │ i55 : time regularInCodimension(1, S/J, MaxMinors => 100, │ │ │ │ Strategy=>StrategyDefaultWithPoints) │ │ │ │ - -- used 7.17456s (cpu); 5.85532s (thread); 0s (gc) │ │ │ │ + -- used 8.96829s (cpu); 7.36393s (thread); 0s (gc) │ │ │ │ │ │ │ │ o55 = true │ │ │ │ If regularInCodimension outputs nothing, then it couldn't verify that the ring │ │ │ │ was regular in that codimension. We set MaxMinors => 100 to keep it from │ │ │ │ running too long with an ineffective strategy. Again, even though │ │ │ │ GRevLexSmallest and GRevLexSmallestTerm are not effective in this particular │ │ │ │ example, in others they perform better than other strategies. Note similar │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Regular__In__Codimension__Tutorial.html │ │ │ @@ -81,23 +81,23 @@ │ │ │
    │ │ │

    It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have embedded it with a Segre embedding inside $P^8$. In particular, this example is even regular in codimension 3.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time regularInCodimension(1, S/J)
    │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ + -- used 1.18993s (cpu); 0.756142s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │
    i5 : time regularInCodimension(2, S/J)
    │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ + -- used 13.3074s (cpu); 9.34486s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the ideal made up of a small number of minors of the Jacobian matrix. In this example, instead of computing all relevant 1465128 minors to compute the singular locus, and then trying to compute the dimension of the ideal they generate, we instead compute a few of them. regularInCodimension returns true if it verified that the ring is regular in codim 1 or 2 (respectively) and null if not. Because of the randomness that exists in terms of selecting minors, the execution time can actually vary quite a bit. Let's take a look at what is occurring by using the Verbose option. We go through the output and explain what each line is telling us.

    │ │ │
    │ │ │ │ │ │ @@ -172,29 +172,29 @@ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 49, and computed = 39 │ │ │ regularInCodimension: singularLocus dimension verified by isCodimAtLeast │ │ │ regularInCodimension: partial singular locus dimension computed, = 2 │ │ │ -regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.43458s (cpu); 1.01606s (thread); 0s (gc) │ │ │ +regularInCodimension: Loop completed, submatrices considered = 49, and compute -- used 1.69305s (cpu); 1.1984s (thread); 0s (gc) │ │ │ d = 39. singular locus dimension appears to be = 2 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    MaxMinors. The first output says that we will compute up to 452.9 minors before giving up. We can control that by setting the option MaxMinors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ + -- used 0.221683s (cpu); 0.15609s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -219,15 +219,15 @@
    │ │ │          
    │ │ │

    Selecting submatrices of the Jacobian. We also see output like: ``Choosing LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a given submatrix. For instance, we can run:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom, Verbose=>true)
    │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ + -- used 0.193756s (cpu); 0.133139s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │          
    │ │ │

    Computing minors vs considering the dimension of what has been computed. Periodically we compute the codimension of the partial ideal of minors we have computed so far. There are two options to control this. First, we can tell the function when to first compute the dimension of the working partial ideal of minors.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t->3, Verbose=>true)
    │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ + -- used 0.95771s (cpu); 0.637674s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 10 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing Random
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 3, and computed = 3
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │ @@ -291,15 +291,15 @@
    │ │ │          
    │ │ │

    CodimCheckFunction. The option CodimCheckFunction controls how frequently the dimension of the partial ideal of minors is computed. For instance, setting CodimCheckFunction => t -> t/5 will say it should compute dimension after every 5 minors are examined. In general, after the output of the CodimCheckFunction increases by an integer we compute the codimension again. The default function has the space between computations grow exponentially.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t->t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ + -- used 0.852016s (cpu); 0.601959s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices considered: 2, and computed = 2
    │ │ │  regularInCodimension:  isCodimAtLeast failed, computing codim.
    │ │ │  regularInCodimension:  partial singular locus dimension computed, = 4
    │ │ │ @@ -348,15 +348,15 @@
    │ │ │          
    │ │ │

    isCodimAtLeast and dim. We see the lines about the ``isCodimAtLeast failed''. This means that isCodimAtLeast was not enough on its own to verify that our ring is regular in codimension 1. After this, ``partial singular locus dimension computed'' indicates we did a complete dimension computation of the partial ideal defining the singular locus. How isCodimAtLeast is called can be controlled via the options SPairsFunction and PairLimit, which are simply passed to isCodimAtLeast. You can force the function to only use isCodimAtLeast and not call dimension by setting UseOnlyFastCodim => true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim => true, Verbose=>true)
    │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ + -- used 0.546003s (cpu); 0.373622s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5 minors, we will compute up to 25 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,19 +24,19 @@
    │ │ │ │  i3 : dim (S/J)
    │ │ │ │  
    │ │ │ │  o3 = 4
    │ │ │ │  It is the cone over $P^2 \times E$ where $E$ is an elliptic curve. We have
    │ │ │ │  embedded it with a Segre embedding inside $P^8$. In particular, this example is
    │ │ │ │  even regular in codimension 3.
    │ │ │ │  i4 : time regularInCodimension(1, S/J)
    │ │ │ │ - -- used 0.954389s (cpu); 0.635206s (thread); 0s (gc)
    │ │ │ │ + -- used 1.18993s (cpu); 0.756142s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : time regularInCodimension(2, S/J)
    │ │ │ │ - -- used 11.1794s (cpu); 8.10432s (thread); 0s (gc)
    │ │ │ │ + -- used 13.3074s (cpu); 9.34486s (thread); 0s (gc)
    │ │ │ │  We try to verify that $S/J$ is regular in codimension 1 or 2 by computing the
    │ │ │ │  ideal made up of a small number of minors of the Jacobian matrix. In this
    │ │ │ │  example, instead of computing all relevant 1465128 minors to compute the
    │ │ │ │  singular locus, and then trying to compute the dimension of the ideal they
    │ │ │ │  generate, we instead compute a few of them. regularInCodimension returns true
    │ │ │ │  if it verified that the ring is regular in codim 1 or 2 (respectively) and null
    │ │ │ │  if not. Because of the randomness that exists in terms of selecting minors, the
    │ │ │ │ @@ -121,22 +121,22 @@
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 49, and computed = 39
    │ │ │ │  regularInCodimension:  singularLocus dimension verified by isCodimAtLeast
    │ │ │ │  regularInCodimension:  partial singular locus dimension computed, = 2
    │ │ │ │  regularInCodimension:  Loop completed, submatrices considered = 49, and compute
    │ │ │ │ --- used 1.43458s (cpu); 1.01606s (thread); 0s (gc)
    │ │ │ │ +-- used 1.69305s (cpu); 1.1984s (thread); 0s (gc)
    │ │ │ │  d = 39.  singular locus dimension appears to be = 2
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  MMaaxxMMiinnoorrss.. The first output says that we will compute up to 452.9 minors before
    │ │ │ │  giving up. We can control that by setting the option MaxMinors.
    │ │ │ │  i7 : time regularInCodimension(1, S/J, MaxMinors=>10, Verbose=>true)
    │ │ │ │ - -- used 0.175899s (cpu); 0.12452s (thread); 0s (gc)
    │ │ │ │ + -- used 0.221683s (cpu); 0.15609s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -159,15 +159,15 @@
    │ │ │ │  There are other finer ways to control the MaxMinors option, but they will not
    │ │ │ │  be discussed in this tutorial. See _r_e_g_u_l_a_r_I_n_C_o_d_i_m_e_n_s_i_o_n.
    │ │ │ │  SSeelleeccttiinngg ssuubbmmaattrriicceess ooff tthhee JJaaccoobbiiaann.. We also see output like: ``Choosing
    │ │ │ │  LexSmallest'' or ``Choosing Random''. This is saying how we are selecting a
    │ │ │ │  given submatrix. For instance, we can run:
    │ │ │ │  i8 : time regularInCodimension(1, S/J, MaxMinors=>10, Strategy=>StrategyRandom,
    │ │ │ │  Verbose=>true)
    │ │ │ │ - -- used 0.15707s (cpu); 0.106723s (thread); 0s (gc)
    │ │ │ │ + -- used 0.193756s (cpu); 0.133139s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │ @@ -197,15 +197,15 @@
    │ │ │ │  CCoommppuuttiinngg mmiinnoorrss vvss ccoonnssiiddeerriinngg tthhee ddiimmeennssiioonn ooff wwhhaatt hhaass bbeeeenn ccoommppuutteedd..
    │ │ │ │  Periodically we compute the codimension of the partial ideal of minors we have
    │ │ │ │  computed so far. There are two options to control this. First, we can tell the
    │ │ │ │  function when to first compute the dimension of the working partial ideal of
    │ │ │ │  minors.
    │ │ │ │  i9 : time regularInCodimension(1, S/J, MaxMinors=>10, MinMinorsFunction => t-
    │ │ │ │  >3, Verbose=>true)
    │ │ │ │ - -- used 0.627779s (cpu); 0.442058s (thread); 0s (gc)
    │ │ │ │ + -- used 0.95771s (cpu); 0.637674s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 10 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing Random
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │ @@ -243,15 +243,15 @@
    │ │ │ │  dimension of the partial ideal of minors is computed. For instance, setting
    │ │ │ │  CodimCheckFunction => t -> t/5 will say it should compute dimension after every
    │ │ │ │  5 minors are examined. In general, after the output of the CodimCheckFunction
    │ │ │ │  increases by an integer we compute the codimension again. The default function
    │ │ │ │  has the space between computations grow exponentially.
    │ │ │ │  i10 : time regularInCodimension(1, S/J, MaxMinors=>25, CodimCheckFunction => t-
    │ │ │ │  >t/5, MinMinorsFunction => t->2, Verbose=>true)
    │ │ │ │ - -- used 0.739844s (cpu); 0.504085s (thread); 0s (gc)
    │ │ │ │ + -- used 0.852016s (cpu); 0.601959s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallestTerm
    │ │ │ │  regularInCodimension:  Loop step, about to compute dimension.  Submatrices
    │ │ │ │  considered: 2, and computed = 2
    │ │ │ │ @@ -308,15 +308,15 @@
    │ │ │ │  dimension computed'' indicates we did a complete dimension computation of the
    │ │ │ │  partial ideal defining the singular locus. How isCodimAtLeast is called can be
    │ │ │ │  controlled via the options SPairsFunction and PairLimit, which are simply
    │ │ │ │  passed to _i_s_C_o_d_i_m_A_t_L_e_a_s_t. You can force the function to only use isCodimAtLeast
    │ │ │ │  and not call dimension by setting UseOnlyFastCodim => true.
    │ │ │ │  i11 : time regularInCodimension(1, S/J, MaxMinors=>25, UseOnlyFastCodim =>
    │ │ │ │  true, Verbose=>true)
    │ │ │ │ - -- used 0.482077s (cpu); 0.314107s (thread); 0s (gc)
    │ │ │ │ + -- used 0.546003s (cpu); 0.373622s (thread); 0s (gc)
    │ │ │ │  regularInCodimension: ring dimension =4, there are 1465128 possible 5 by 5
    │ │ │ │  minors, we will compute up to 25 of them.
    │ │ │ │  regularInCodimension: About to enter loop
    │ │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │ │  internalChooseMinor: Choosing LexSmallest
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ │ │  internalChooseMinor: Choosing RandomNonZero
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/___Strategy__Default.html
    │ │ │ @@ -68,15 +68,15 @@
    │ │ │              
    │ │ │
    i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e-b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g-e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f-a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2-g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3-h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2);
    │ │ │
    │ │ │
    i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault)
    │ │ │ - -- 1.73127s elapsed
    │ │ │ + -- 1.61205s elapsed
    │ │ │  
    │ │ │  o2 = true
    │ │ │
    │ │ │ In this particular example, on one machine, we list average time to completion of each of the above strategies after 100 runs.
      │ │ │
    • StrategyDefault: 1.65 seconds
    • │ │ │ @@ -122,15 +122,15 @@ │ │ │
    • StrategyPoints: choose all submatrices via Points.
    • │ │ │
    • StrategyDefaultWithPoints: like StrategyDefault but replaces the Random and RandomNonZero submatrices as with matrices chosen as in Points.
    • │ │ │
    │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It begins as the default strategy, but the user can modify it.

    Using a single heuristic Alternatively, if the user only wants to use say LexSmallestTerm they can set, Strategy to point to that symbol, instead of a creating a custom strategy HashTable. For example: │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm)
    │ │ │ - -- 1.19064s elapsed
    │ │ │ + -- .971402s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i1 : T=ZZ/7[a..i]/ideal(f*h-e*i,c*h-b*i,f*g-d*i,e*g-d*h,c*g-a*i,b*g-a*h,c*e- │ │ │ │ b*f,c*d-a*f,b*d-a*e,g^3-h^2*i-g*i^2,d*g^2-e*h*i-d*i^2,a*g^2-b*h*i-a*i^2,d^2*g- │ │ │ │ e^2*i-d*f*i,a*d*g-b*e*i-a*f*i,a^2*g-b^2*i-a*c*i,d^3-e^2*f-d*f^2,a*d^2-b*e*f- │ │ │ │ a*f^2,a^2*d-b^2*f-a*c*f,c^3+f^3-i^3,b*c^2+e*f^2-h*i^2,a*c^2+d*f^2- │ │ │ │ g*i^2,b^2*c+e^2*f-h^2*i,a*b*c+d*e*f-g*h*i,a^2*c+d^2*f-g^2*i,b^3+e^3- │ │ │ │ h^3,a*b^2+d*e^2-g*h^2,a^2*b+d^2*e-g^2*h,a^3+e^2*f+d*f^2-h^2*i-g*i^2); │ │ │ │ i2 : elapsedTime regularInCodimension(1, T, Strategy=>StrategyDefault) │ │ │ │ - -- 1.73127s elapsed │ │ │ │ + -- 1.61205s elapsed │ │ │ │ │ │ │ │ o2 = true │ │ │ │ In this particular example, on one machine, we list average time to completion │ │ │ │ of each of the above strategies after 100 runs. │ │ │ │ * StrategyDefault: 1.65 seconds │ │ │ │ * StrategyRandom: 8.32 seconds │ │ │ │ * StrategyDefaultNonRandom: 0.99 seconds │ │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ Additionally, a MutableHashTable named StrategyCurrent is also exported. It │ │ │ │ begins as the default strategy, but the user can modify it. │ │ │ │ │ │ │ │ UUssiinngg aa ssiinnggllee hheeuurriissttiicc Alternatively, if the user only wants to use say │ │ │ │ LexSmallestTerm they can set, Strategy to point to that symbol, instead of a │ │ │ │ creating a custom strategy HashTable. For example: │ │ │ │ i4 : elapsedTime regularInCodimension(1, T, Strategy=>LexSmallestTerm) │ │ │ │ - -- 1.19064s elapsed │ │ │ │ + -- .971402s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _S_t_r_a_t_e_g_y_D_e_f_a_u_l_t is an _o_p_t_i_o_n_ _t_a_b_l_e. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/FastMinors.m2:1993:0. │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_is__Codim__At__Least.html │ │ │ @@ -114,15 +114,15 @@ │ │ │ │ │ │ o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : time isCodimAtLeast(3, J)
    │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc)
    │ │ │ + -- used 0.00400021s (cpu); 0.0034092s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by computing gb(I, PairLimit=>f(i)) for successive values of i. Here f(i) is a function that takes t, some approximation of the base degree value of the polynomial ring (for example, in a standard graded polynomial ring, this is probably expected to be \{1\}). And i is a counting variable. You can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=>( (i) -> f(i) ), the default function is SPairsFunction=>i->ceiling(1.5^i) Perhaps more commonly however, the user may want to instead tell the function to compute for larger values of i. This is done via the option PairLimit. This is the max value of i to be plugged into SPairsFunction before the function gives up. In other words, PairLimit=>5 will tell the function to check codimension 5 times.

    │ │ │ @@ -136,24 +136,24 @@ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7
    │ │ │
    │ │ │
    i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true)
    │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc)
    │ │ │ + -- used 0.000452752s (cpu); 0.00325482s (thread); 0s (gc)
    │ │ │  isCodimAtLeast: Computing codim of monomials based on ideal generators.
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false)
    │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc)
    │ │ │ + -- used 0.000330497s (cpu); 0.00307954s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │
    │ │ │
    │ │ │

    Notice in the first case the function returned null, because the depth of search was not high enough. It only computed codim 5 times. The second returned true, but it did so as soon as the answer was found (and before we hit the PairLimit limit).

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ 30 12 │ │ │ │ o4 : Matrix R <-- R │ │ │ │ i5 : r = rank myDiff; │ │ │ │ i6 : J = chooseGoodMinors(15, r, myDiff, Strategy=>StrategyDefaultNonRandom); │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : time isCodimAtLeast(3, J) │ │ │ │ - -- used 0.00394593s (cpu); 0.00280101s (thread); 0s (gc) │ │ │ │ + -- used 0.00400021s (cpu); 0.0034092s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = true │ │ │ │ The function works by computing gb(I, PairLimit=>f(i)) for successive values of │ │ │ │ i. Here f(i) is a function that takes t, some approximation of the base degree │ │ │ │ value of the polynomial ring (for example, in a standard graded polynomial │ │ │ │ ring, this is probably expected to be \{1\}). And i is a counting variable. You │ │ │ │ can provide your own function by calling isCodimAtLeast(n, I, SPairsFunction=> │ │ │ │ @@ -72,20 +72,20 @@ │ │ │ │ x_7^3*x_8^5*x_11^3,x_2^5*x_3^3*x_11^3- │ │ │ │ 3*x_2^6*x_3^2*x_11^2*x_12+3*x_2^7*x_3*x_11*x_12^2-x_2^8*x_12^3); │ │ │ │ │ │ │ │ ZZ │ │ │ │ o8 : Ideal of ---[x , x , x , x , x , x , x , x , x , x , x , x ] │ │ │ │ 127 11 8 1 9 12 6 5 10 2 4 3 7 │ │ │ │ i9 : time isCodimAtLeast(5, I, PairLimit => 5, Verbose=>true) │ │ │ │ - -- used 0.00231368s (cpu); 0.00253938s (thread); 0s (gc) │ │ │ │ + -- used 0.000452752s (cpu); 0.00325482s (thread); 0s (gc) │ │ │ │ isCodimAtLeast: Computing codim of monomials based on ideal generators. │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time isCodimAtLeast(5, I, PairLimit => 200, Verbose=>false) │ │ │ │ - -- used 6.0604e-05s (cpu); 0.00243851s (thread); 0s (gc) │ │ │ │ + -- used 0.000330497s (cpu); 0.00307954s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = true │ │ │ │ Notice in the first case the function returned null, because the depth of │ │ │ │ search was not high enough. It only computed codim 5 times. The second returned │ │ │ │ true, but it did so as soon as the answer was found (and before we hit the │ │ │ │ PairLimit limit). │ │ │ │ ********** WWaayyss ttoo uussee iissCCooddiimmAAttLLeeaasstt:: ********** │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_proj__Dim.html │ │ │ @@ -99,23 +99,23 @@ │ │ │ │ │ │ o3 = 2
    │ │ │
    │ │ │
    i4 : time projDim(module I, Strategy=>StrategyRandom)
    │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc)
    │ │ │ + -- used 0.320407s (cpu); 0.180761s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 1
    │ │ │
    │ │ │
    i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1)
    │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc)
    │ │ │ + -- used 0.0148508s (cpu); 0.0160678s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 1
    │ │ │
    │ │ │
    │ │ │

    The option MaxMinors can be used to control how many minors are computed at each step. If this is not specified, the number of minors is a function of the dimension $d$ of the polynomial ring and the possible minors $c$. Specifically it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors => ZZ to specify that a fixed integer is used for each step. Alternatively, the user can control the number of minors computed at each step by setting the option MaxMinors => List. In this case, the list specifies how many minors to be computed at each step, (working backwards). Finally, you can also set MaxMinors to be a custom function of the dimension $d$ of the polynomial ring and the maximum number of minors.

    │ │ │ ├── html2text {} │ │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ i2 : I = ideal((x^3+y)^2, (x^2+y^2)^2, (x+y^3)^2, (x*y)^2); │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : pdim(module I) │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : time projDim(module I, Strategy=>StrategyRandom) │ │ │ │ - -- used 0.267277s (cpu); 0.158683s (thread); 0s (gc) │ │ │ │ + -- used 0.320407s (cpu); 0.180761s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 1 │ │ │ │ i5 : time projDim(module I, Strategy=>StrategyRandom, MinDimension => 1) │ │ │ │ - -- used 0.0107026s (cpu); 0.0126789s (thread); 0s (gc) │ │ │ │ + -- used 0.0148508s (cpu); 0.0160678s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 1 │ │ │ │ The option MaxMinors can be used to control how many minors are computed at │ │ │ │ each step. If this is not specified, the number of minors is a function of the │ │ │ │ dimension $d$ of the polynomial ring and the possible minors $c$. Specifically │ │ │ │ it is 10 * d + 2 * log_1.3(c). Otherwise the user can set the option MaxMinors │ │ │ │ => ZZ to specify that a fixed integer is used for each step. Alternatively, the │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_recursive__Minors.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ 6 7 │ │ │ o2 : Matrix R <-- R
    │ │ │
    │ │ │
    i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ + -- used 0.568394s (cpu); 0.505724s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ + -- used 1.41864s (cpu); 1.28351s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of R
    │ │ │
    │ │ │
    i5 : I1 == I2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  strategy for minors
    │ │ │ │  i1 : R = QQ[x,y];
    │ │ │ │  i2 : M = random(R^{5,5,5,5,5,5}, R^7);
    │ │ │ │  
    │ │ │ │               6      7
    │ │ │ │  o2 : Matrix R  <-- R
    │ │ │ │  i3 : time I2 = recursiveMinors(4, M, Threads=>0);
    │ │ │ │ - -- used 0.514952s (cpu); 0.461544s (thread); 0s (gc)
    │ │ │ │ + -- used 0.568394s (cpu); 0.505724s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 : Ideal of R
    │ │ │ │  i4 : time I1 = minors(4, M, Strategy=>Cofactor);
    │ │ │ │ - -- used 1.47881s (cpu); 1.27687s (thread); 0s (gc)
    │ │ │ │ + -- used 1.41864s (cpu); 1.28351s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of R
    │ │ │ │  i5 : I1 == I2
    │ │ │ │  
    │ │ │ │  o5 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _m_i_n_o_r_s -- ideal generated by minors
    │ │ ├── ./usr/share/doc/Macaulay2/FastMinors/html/_regular__In__Codimension.html
    │ │ │ @@ -131,23 +131,23 @@
    │ │ │  
    │ │ │  o7 = 3
    │ │ │
    │ │ │
    i8 : time regularInCodimension(1, S)
    │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc)
    │ │ │ + -- used 0.813424s (cpu); 0.62154s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : time regularInCodimension(2, S)
    │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc)
    │ │ │ + -- used 8.1655s (cpu); 6.11118s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    There are numerous examples where regularInCodimension is several orders of magnitude faster that calls of dim singularLocus.

    │ │ │
    │ │ │
    │ │ │ @@ -165,39 +165,39 @@ │ │ │ │ │ │ o11 = 2
    │ │ │
    │ │ │
    i12 : time (dim singularLocus (R))
    │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc)
    │ │ │ + -- used 0.0240005s (cpu); 0.0218344s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = -1
    │ │ │
    │ │ │
    i13 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc)
    │ │ │ + -- used 0.233636s (cpu); 0.161639s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 = true
    │ │ │
    │ │ │
    i14 : time regularInCodimension(2, R)
    │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc)
    │ │ │ + -- used 1.2013s (cpu); 0.735407s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │
    │ │ │
    i15 : time regularInCodimension(2, R)
    │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc)
    │ │ │ + -- used 1.59361s (cpu); 1.0549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = true
    │ │ │
    │ │ │
    │ │ │

    The function works by choosing interesting looking submatrices, computing their determinants, and periodically (based on a logarithmic growth setting), computing the dimension of a subideal of the Jacobian. The option Verbose can be used to see this in action.

    │ │ │ @@ -537,15 +537,15 @@ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc) │ │ │ +internalChooseMinor: Ch -- used 8.60426s (cpu); 6.49853s (thread); 0s (gc) │ │ │ oosing GRevLexSmallestTerm │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing Random │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ @@ -589,15 +589,15 @@ │ │ │
    │ │ │

    The maximum number of minors considered can be controlled by the option MaxMinors. Alternatively, it can be controlled in a more precise way by passing a function to the option MaxMinors. This function should have two inputs; the first is minimum number of minors needed to determine whether the ring is regular in codimension n, and the second is the total number of minors available in the Jacobian. The function regularInCodimension does not recompute determinants, so MaxMinors or is only an upper bound on the number of minors computed.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30)
    │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc)
    │ │ │ + -- used 1.62811s (cpu); 1.24193s (thread); 0s (gc)
    │ │ │  regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 minors, we will compute up to 30 of them.
    │ │ │  regularInCodimension: About to enter loop
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing GRevLexSmallest
    │ │ │  internalChooseMinor: Choosing LexSmallestTerm
    │ │ │ @@ -666,39 +666,39 @@
    │ │ │              
    │ │ │
    i20 : StrategyCurrent#LexSmallestTerm = 0;
    │ │ │
    │ │ │
    i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc)
    │ │ │ + -- used 0.384636s (cpu); 0.263254s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc)
    │ │ │ + -- used 0.145733s (cpu); 0.0894967s (thread); 0s (gc)
    │ │ │  
    │ │ │  o22 = true
    │ │ │
    │ │ │
    i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc)
    │ │ │ + -- used 0.481996s (cpu); 0.333493s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc)
    │ │ │ + -- used 2.27333s (cpu); 1.64218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    i25 : StrategyCurrent#LexSmallest = 0;
    │ │ │ @@ -708,53 +708,53 @@ │ │ │
    │ │ │
    i26 : StrategyCurrent#LexSmallestTerm = 100;
    │ │ │
    │ │ │
    i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc)
    │ │ │ + -- used 3.10047s (cpu); 2.1406s (thread); 0s (gc) │ │ │
    │ │ │
    i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent)
    │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc)
    │ │ │ + -- used 2.96386s (cpu); 2.0487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │
    │ │ │
    i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc)
    │ │ │ + -- used 0.514021s (cpu); 0.377889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = true
    │ │ │
    │ │ │
    i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent)
    │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc)
    │ │ │ + -- used 0.898605s (cpu); 0.702043s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │
    │ │ │
    i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc)
    │ │ │ + -- used 1.24569s (cpu); 1.01534s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = true
    │ │ │
    │ │ │
    i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom)
    │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc)
    │ │ │ + -- used 2.08977s (cpu); 1.64234s (thread); 0s (gc)
    │ │ │  
    │ │ │  o32 = true
    │ │ │
    │ │ │
    │ │ │

    The minimum number of minors computed before checking the codimension can also be controlled by an option MinMinorsFunction. This is should be a function of a single variable, the number of minors computed. Finally, via the option CodimCheckFunction, you can pass the regularInCodimension a function which controls how frequently the codimension of the partial Jacobian ideal is computed. By default this is the floor of 1.3^k. Finally, passing the option Modulus => p will do the computation after changing the coefficient ring to ZZ/p.

    │ │ │ ├── html2text {} │ │ │ │ @@ -72,19 +72,19 @@ │ │ │ │ │ │ │ │ o5 : Ideal of T │ │ │ │ i6 : S = T/I; │ │ │ │ i7 : dim S │ │ │ │ │ │ │ │ o7 = 3 │ │ │ │ i8 : time regularInCodimension(1, S) │ │ │ │ - -- used 0.654392s (cpu); 0.499543s (thread); 0s (gc) │ │ │ │ + -- used 0.813424s (cpu); 0.62154s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : time regularInCodimension(2, S) │ │ │ │ - -- used 7.00197s (cpu); 5.27802s (thread); 0s (gc) │ │ │ │ + -- used 8.1655s (cpu); 6.11118s (thread); 0s (gc) │ │ │ │ There are numerous examples where regularInCodimension is several orders of │ │ │ │ magnitude faster that calls of dim singularLocus. │ │ │ │ The following is a (pruned) affine chart on an Abelian surface obtained as a │ │ │ │ product of two elliptic curves. It is nonsingular, as our function verifies. If │ │ │ │ one does not prune it, then the dim singularLocus call takes an enormous amount │ │ │ │ of time, otherwise the running times of dim singularLocus and our function are │ │ │ │ frequently about the same. │ │ │ │ @@ -92,27 +92,27 @@ │ │ │ │ (g^3+h^3+1,f*g^3+f*h^3+f,c*g^3+c*h^3+c,f^2*g^3+f^2*h^3+f^2,c*f*g^3+c*f*h^3+c*f,c^2*g^3+c^2*h^3+c^2,f^3*g^3+f^3*h^3+f^3,c*f^2*g^3+c*f^2*h^3+c*f^2,c^2*f*g^3+c^2*f*h^3+c^2*f,c^3- │ │ │ │ f^2-c,c^3*h-f^2*h-c*h,c^3*g-f^2*g-c*g,c^3*h^2-f^2*h^2-c*h^2,c^3*g*h-f^2*g*h-c*g*h,c^3*g^2-f^2*g^2-c*g^2,c^3*h^3-f^2*h^3-c*h^3,c^3*g*h^2-f^2*g*h^2-c*g*h^2,c^3*g^2*h-f^2*g^2*h- │ │ │ │ c*g^2*h,c^3*g^3+f^2*h^3+c*h^3+f^2+c); │ │ │ │ i11 : dim(R) │ │ │ │ │ │ │ │ o11 = 2 │ │ │ │ i12 : time (dim singularLocus (R)) │ │ │ │ - -- used 0.0199988s (cpu); 0.0198096s (thread); 0s (gc) │ │ │ │ + -- used 0.0240005s (cpu); 0.0218344s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = -1 │ │ │ │ i13 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.182885s (cpu); 0.135147s (thread); 0s (gc) │ │ │ │ + -- used 0.233636s (cpu); 0.161639s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 = true │ │ │ │ i14 : time regularInCodimension(2, R) │ │ │ │ - -- used 0.91949s (cpu); 0.572332s (thread); 0s (gc) │ │ │ │ + -- used 1.2013s (cpu); 0.735407s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : time regularInCodimension(2, R) │ │ │ │ - -- used 1.24103s (cpu); 0.866303s (thread); 0s (gc) │ │ │ │ + -- used 1.59361s (cpu); 1.0549s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = true │ │ │ │ The function works by choosing interesting looking submatrices, computing their │ │ │ │ determinants, and periodically (based on a logarithmic growth setting), │ │ │ │ computing the dimension of a subideal of the Jacobian. The option Verbose can │ │ │ │ be used to see this in action. │ │ │ │ i16 : time regularInCodimension(2, S, Verbose=>true) │ │ │ │ @@ -461,15 +461,15 @@ │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ -internalChooseMinor: Ch -- used 6.56865s (cpu); 4.94928s (thread); 0s (gc) │ │ │ │ +internalChooseMinor: Ch -- used 8.60426s (cpu); 6.49853s (thread); 0s (gc) │ │ │ │ oosing GRevLexSmallestTerm │ │ │ │ internalChooseMinor: Choosing RandomNonZero │ │ │ │ internalChooseMinor: Choosing LexSmallest │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing Random │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallestTerm │ │ │ │ @@ -515,15 +515,15 @@ │ │ │ │ a function to the option MaxMinors. This function should have two inputs; the │ │ │ │ first is minimum number of minors needed to determine whether the ring is │ │ │ │ regular in codimension n, and the second is the total number of minors │ │ │ │ available in the Jacobian. The function regularInCodimension does not recompute │ │ │ │ determinants, so MaxMinors or is only an upper bound on the number of minors │ │ │ │ computed. │ │ │ │ i17 : time regularInCodimension(2, S, Verbose=>true, MaxMinors=>30) │ │ │ │ - -- used 1.27203s (cpu); 0.95852s (thread); 0s (gc) │ │ │ │ + -- used 1.62811s (cpu); 1.24193s (thread); 0s (gc) │ │ │ │ regularInCodimension: ring dimension =3, there are 17325 possible 4 by 4 │ │ │ │ minors, we will compute up to 30 of them. │ │ │ │ regularInCodimension: About to enter loop │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing LexSmallestTerm │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ internalChooseMinor: Choosing GRevLexSmallest │ │ │ │ @@ -590,51 +590,51 @@ │ │ │ │ because there are a small number of entries with nonzero constant terms, which │ │ │ │ are selected repeatedly). However, in our first example, the LexSmallestTerm is │ │ │ │ much faster, and Random does not perform well at all. │ │ │ │ i18 : StrategyCurrent#Random = 0; │ │ │ │ i19 : StrategyCurrent#LexSmallest = 100; │ │ │ │ i20 : StrategyCurrent#LexSmallestTerm = 0; │ │ │ │ i21 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.30306s (cpu); 0.217176s (thread); 0s (gc) │ │ │ │ + -- used 0.384636s (cpu); 0.263254s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ i22 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.113658s (cpu); 0.0792881s (thread); 0s (gc) │ │ │ │ + -- used 0.145733s (cpu); 0.0894967s (thread); 0s (gc) │ │ │ │ │ │ │ │ o22 = true │ │ │ │ i23 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.366044s (cpu); 0.272723s (thread); 0s (gc) │ │ │ │ + -- used 0.481996s (cpu); 0.333493s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 1.73381s (cpu); 1.2512s (thread); 0s (gc) │ │ │ │ + -- used 2.27333s (cpu); 1.64218s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ i25 : StrategyCurrent#LexSmallest = 0; │ │ │ │ i26 : StrategyCurrent#LexSmallestTerm = 100; │ │ │ │ i27 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.32962s (cpu); 1.64458s (thread); 0s (gc) │ │ │ │ + -- used 3.10047s (cpu); 2.1406s (thread); 0s (gc) │ │ │ │ i28 : time regularInCodimension(2, R, Strategy=>StrategyCurrent) │ │ │ │ - -- used 2.38741s (cpu); 1.61396s (thread); 0s (gc) │ │ │ │ + -- used 2.96386s (cpu); 2.0487s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.462956s (cpu); 0.370163s (thread); 0s (gc) │ │ │ │ + -- used 0.514021s (cpu); 0.377889s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = true │ │ │ │ i30 : time regularInCodimension(1, S, Strategy=>StrategyCurrent) │ │ │ │ - -- used 0.770202s (cpu); 0.604272s (thread); 0s (gc) │ │ │ │ + -- used 0.898605s (cpu); 0.702043s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ i31 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.07872s (cpu); 0.871235s (thread); 0s (gc) │ │ │ │ + -- used 1.24569s (cpu); 1.01534s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time regularInCodimension(1, S, Strategy=>StrategyRandom) │ │ │ │ - -- used 1.85936s (cpu); 1.48073s (thread); 0s (gc) │ │ │ │ + -- used 2.08977s (cpu); 1.64234s (thread); 0s (gc) │ │ │ │ │ │ │ │ o32 = true │ │ │ │ The minimum number of minors computed before checking the codimension can also │ │ │ │ be controlled by an option MinMinorsFunction. This is should be a function of a │ │ │ │ single variable, the number of minors computed. Finally, via the option │ │ │ │ CodimCheckFunction, you can pass the regularInCodimension a function which │ │ │ │ controls how frequently the codimension of the partial Jacobian ideal is │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/example-output/___Fitting_spideals_spof_spfinite_spmodules.out │ │ │ @@ -81,23 +81,23 @@ │ │ │ │ │ │ i14 : K3=nextDegree(gens ker Q2,2,S); │ │ │ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R │ │ │ │ │ │ i15 : time I=co1Fitting(K3) │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc) │ │ │ + -- used 0.00317807s (cpu); 0.00317454s (thread); 0s (gc) │ │ │ │ │ │ o15 = ideal (a a + a - a , a a - a , a a + a - a , a a - a ) │ │ │ 9 11 5 12 3 11 6 9 10 4 11 3 10 5 │ │ │ │ │ │ o15 : Ideal of R │ │ │ │ │ │ i16 : time J=fittingIdeal(2-1,coker K3); │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc) │ │ │ + -- used 0.00692976s (cpu); 0.00693301s (thread); 0s (gc) │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ │ │ i17 : I==J │ │ │ │ │ │ o17 = true │ │ ├── ./usr/share/doc/Macaulay2/FiniteFittingIdeals/html/___Fitting_spideals_spof_spfinite_spmodules.html │ │ │ @@ -202,26 +202,26 @@ │ │ │ 8 8 │ │ │ o14 : Matrix R <-- R
    │ │ │
    │ │ │
    i15 : time I=co1Fitting(K3)
    │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc)
    │ │ │ + -- used 0.00317807s (cpu); 0.00317454s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │  
    │ │ │  o15 : Ideal of R
    │ │ │
    │ │ │
    i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc)
    │ │ │ + -- used 0.00692976s (cpu); 0.00693301s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │
    │ │ │
    i17 : I==J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -95,22 +95,22 @@
    │ │ │ │                2      6
    │ │ │ │  o13 : Matrix R  <-- R
    │ │ │ │  i14 : K3=nextDegree(gens ker Q2,2,S);
    │ │ │ │  
    │ │ │ │                8      8
    │ │ │ │  o14 : Matrix R  <-- R
    │ │ │ │  i15 : time I=co1Fitting(K3)
    │ │ │ │ - -- used 0.00282615s (cpu); 0.00282256s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00317807s (cpu); 0.00317454s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o15 = ideal (a a   + a  - a  , a a   - a , a a   + a  - a  , a a   - a )
    │ │ │ │                9 11    5    12   3 11    6   9 10    4    11   3 10    5
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : time J=fittingIdeal(2-1,coker K3);
    │ │ │ │ - -- used 0.00631438s (cpu); 0.00631331s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00692976s (cpu); 0.00693301s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : I==J
    │ │ │ │  
    │ │ │ │  o17 = true
    │ │ │ │  Note that our method is a bit faster for this small example, and for rank 2
    │ │ │ │  quotients of S^3=\mathbb{Z}[x,y]^3 the time difference is massive.
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Object.out
    │ │ │ @@ -4,19 +4,19 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285265f0}
    │ │ │ +o2 = int32{Address => 0x7fd66b07f530}
    │ │ │  
    │ │ │  i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285265f0
    │ │ │ +o3 = 0x7fd66b07f530
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : class x
    │ │ │  
    │ │ │  o4 = int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  
    │ │ │  o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog}
    │ │ │  
    │ │ │  o2 : ForeignObject of type char**
    │ │ │  
    │ │ │  i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010}
    │ │ │ +o3 = {0x7fd66b12bbe0, 0x7fd66b12bbd0, 0x7fd66b12bbb0}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │  
    │ │ │  i4 : x = charstarstar {"foo", "bar", "baz"}
    │ │ │  
    │ │ │  o4 = {foo, bar, baz}
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Array__Type_sp__Visible__List.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {foo, bar}
    │ │ │  
    │ │ │  o1 : ForeignObject of type char**
    │ │ │  
    │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ +o2 = {0x7fd66b12b9b0, 0x7fd66b12b9a0, 0x7fd66b12b990}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │  
    │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │  
    │ │ │  o3 = int32[2]*
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Pointer__Type_sp__Pointer.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730835169888399450
    │ │ │  
    │ │ │  i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7f7f1f69e700
    │ │ │ +o1 = 0x7fd66dbe97b0
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7f7f1f69e700
    │ │ │ +o2 = 0x7fd66dbe97b0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp__Pointer.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ +o2 = 0x7fd66b0e7d50
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : int ptr
    │ │ │  
    │ │ │  o3 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Type_sp_st_spvoidstar.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1731230829183683930
    │ │ │  
    │ │ │  i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ +o1 = 0x7fd66b0e7ee0
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : int * ptr
    │ │ │  
    │ │ │  o2 = 5
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Foreign__Union__Type_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = myunion
    │ │ │  
    │ │ │  o1 : ForeignUnionType
    │ │ │  
    │ │ │  i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.92598e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.94444e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │  
    │ │ │  i3 : myunion pi
    │ │ │  
    │ │ │  o3 = HashTable{"bar" => 3.14159   }
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Pointer.out
    │ │ │ @@ -4,28 +4,28 @@
    │ │ │  
    │ │ │  o1 = 20
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285264f0}
    │ │ │ +o2 = int32{Address => 0x7fd66b0e7f90}
    │ │ │  
    │ │ │  i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285264f0
    │ │ │ +o3 = 0x7fd66b0e7f90
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │  
    │ │ │  i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7f7f285264f5
    │ │ │ +o4 = 0x7fd66b0e7f95
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │  
    │ │ │  i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7f7f285264ed
    │ │ │ +o5 = 0x7fd66b0e7f8d
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/___Shared__Library.out
    │ │ │ @@ -4,10 +4,10 @@
    │ │ │  
    │ │ │  o1 = mpfr
    │ │ │  
    │ │ │  o1 : SharedLibrary
    │ │ │  
    │ │ │  i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7f7f2f6e4550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7fd67f288550, mpfr}
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/__st_spvoidstar_sp_eq_sp__Thing.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = 5
    │ │ │  
    │ │ │  o1 : ForeignObject of type int32
    │ │ │  
    │ │ │  i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f285268c0
    │ │ │ +o2 = 0x7fd66b0e79a0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 : *ptr = int 6
    │ │ │  
    │ │ │  o3 = 6
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_address.out
    │ │ │ @@ -1,15 +1,15 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730181884377373595
    │ │ │  
    │ │ │  i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563c19575b40
    │ │ │ +o1 = 0x55a9e9e1fb40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │  
    │ │ │  i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526a20
    │ │ │ +o2 = 0x7fd66b0e7fd0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_foreign__Function.out
    │ │ │ @@ -78,14 +78,14 @@
    │ │ │  
    │ │ │  o16 = free
    │ │ │  
    │ │ │  o16 : ForeignFunction
    │ │ │  
    │ │ │  i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7f443c06a4f0
    │ │ │ +o17 = 0x7f7cc006a4f0
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │  
    │ │ │  i18 : registerFinalizer(x, free)
    │ │ │  
    │ │ │  i19 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_get__Memory.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 10647988412767280310
    │ │ │  
    │ │ │  i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7f7f2b093240
    │ │ │ +o1 = 0x7fd67aa7e490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │  
    │ │ │  i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7f7f285260a0
    │ │ │ +o2 = 0x7fd66b0e7dc0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │  
    │ │ │  i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7f7f2854afc0
    │ │ │ +o3 = 0x7fd66b0e7ca0
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.out
    │ │ │ @@ -17,18 +17,18 @@
    │ │ │  o3 = finalizer
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │  
    │ │ │  i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │  
    │ │ │  i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7f7f1407f910
    │ │ │ -freeing memory at 0x7f7f1407f930
    │ │ │ -freeing memory at 0x7f7f1407f950
    │ │ │ -freeing memory at 0x7f7f1407f990
    │ │ │ -freeing memory at 0x7f7f1407f250
    │ │ │ -freeing memory at 0x7f7f1407f230
    │ │ │ -freeing memory at 0x7f7f1407f9b0
    │ │ │ -freeing memory at 0x7f7f1407f970
    │ │ │ -freeing memory at 0x7f7f1407f8f0
    │ │ │ +freeing memory at 0x7fd65407f8f0
    │ │ │ +freeing memory at 0x7fd65407f910
    │ │ │ +freeing memory at 0x7fd65407f930
    │ │ │ +freeing memory at 0x7fd65407f950
    │ │ │ +freeing memory at 0x7fd65407f230
    │ │ │ +freeing memory at 0x7fd65407f990
    │ │ │ +freeing memory at 0x7fd65407f9b0
    │ │ │ +freeing memory at 0x7fd65407f250
    │ │ │ +freeing memory at 0x7fd65407f970
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/example-output/_value_lp__Foreign__Object_rp.out
    │ │ │ @@ -20,21 +20,21 @@
    │ │ │  
    │ │ │  o4 = 5
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │  
    │ │ │  i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7f7f2854ad20
    │ │ │ +o5 = 0x7fd66b0e7220
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │  
    │ │ │  i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7f7f2854ad20
    │ │ │ +o6 = 0x7fd66b0e7220
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │  
    │ │ │  i7 : x = charstar "Hello, world!"
    │ │ │  
    │ │ │  o7 = Hello, world!
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Object.html
    │ │ │ @@ -64,27 +64,27 @@
    │ │ │  o1 : ForeignObject of type int32
    │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285265f0}
    │ │ │ +o2 = int32{Address => 0x7fd66b07f530} │ │ │
    │ │ │
    │ │ │

    To get this, use address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285265f0
    │ │ │ +o3 = 0x7fd66b07f530
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Use class to determine the type of the object.

    │ │ │ ├── html2text {} │ │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ i1 : x = int 5 │ │ │ │ │ │ │ │ o1 = 5 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f7f285265f0} │ │ │ │ +o2 = int32{Address => 0x7fd66b07f530} │ │ │ │ To get this, use _a_d_d_r_e_s_s. │ │ │ │ i3 : address x │ │ │ │ │ │ │ │ -o3 = 0x7f7f285265f0 │ │ │ │ +o3 = 0x7fd66b07f530 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Use _c_l_a_s_s to determine the type of the object. │ │ │ │ i4 : class x │ │ │ │ │ │ │ │ o4 = int32 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type.html │ │ │ @@ -74,15 +74,15 @@ │ │ │ o2 : ForeignObject of type char**
    │ │ │
    │ │ │
    i3 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010}
    │ │ │ +o3 = {0x7fd66b12bbe0, 0x7fd66b12bbd0, 0x7fd66b12bbb0}
    │ │ │  
    │ │ │  o3 : ForeignObject of type void**
    │ │ │
    │ │ │
    │ │ │

    Foreign pointer arrays may be subscripted using _.

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ "lazy", "dog"} │ │ │ │ │ │ │ │ o2 = {the, quick, brown, fox, jumps, over, the, lazy, dog} │ │ │ │ │ │ │ │ o2 : ForeignObject of type char** │ │ │ │ i3 : voidstarstar {address int 0, address int 1, address int 2} │ │ │ │ │ │ │ │ -o3 = {0x7f7f2854a030, 0x7f7f2854a020, 0x7f7f2854a010} │ │ │ │ +o3 = {0x7fd66b12bbe0, 0x7fd66b12bbd0, 0x7fd66b12bbb0} │ │ │ │ │ │ │ │ o3 : ForeignObject of type void** │ │ │ │ Foreign pointer arrays may be subscripted using __. │ │ │ │ i4 : x = charstarstar {"foo", "bar", "baz"} │ │ │ │ │ │ │ │ o4 = {foo, bar, baz} │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Array__Type_sp__Visible__List.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type char**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │  
    │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ +o2 = {0x7fd66b12b9b0, 0x7fd66b12b9a0, 0x7fd66b12b990}
    │ │ │  
    │ │ │  o2 : ForeignObject of type void**
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : charstarstar {"foo", "bar"}
    │ │ │ │  
    │ │ │ │  o1 = {foo, bar}
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type char**
    │ │ │ │  i2 : voidstarstar {address int 0, address int 1, address int 2}
    │ │ │ │  
    │ │ │ │ -o2 = {0x7f7f28567e20, 0x7f7f28567e10, 0x7f7f28567e00}
    │ │ │ │ +o2 = {0x7fd66b12b9b0, 0x7fd66b12b9a0, 0x7fd66b12b990}
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type void**
    │ │ │ │  i3 : int2star = foreignPointerArrayType(2 * int)
    │ │ │ │  
    │ │ │ │  o3 = int32[2]*
    │ │ │ │  
    │ │ │ │  o3 : ForeignPointerArrayType
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Pointer__Type_sp__Pointer.html
    │ │ │ @@ -73,24 +73,24 @@
    │ │ │            

    To cast a Macaulay2 pointer to a foreign object with a pointer type, give the type followed by the pointer.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = address int 0
    │ │ │  
    │ │ │ -o1 = 0x7f7f1f69e700
    │ │ │ +o1 = 0x7fd66dbe97b0
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    i2 : voidstar ptr
    │ │ │  
    │ │ │ -o2 = 0x7f7f1f69e700
    │ │ │ +o2 = 0x7fd66dbe97b0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,20 +15,20 @@ │ │ │ │ * Outputs: │ │ │ │ o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ To cast a Macaulay2 pointer to a foreign object with a pointer type, give the │ │ │ │ type followed by the pointer. │ │ │ │ i1 : ptr = address int 0 │ │ │ │ │ │ │ │ -o1 = 0x7f7f1f69e700 │ │ │ │ +o1 = 0x7fd66dbe97b0 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ i2 : voidstar ptr │ │ │ │ │ │ │ │ -o2 = 0x7f7f1f69e700 │ │ │ │ +o2 = 0x7fd66dbe97b0 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _F_o_r_e_i_g_n_P_o_i_n_t_e_r_T_y_p_e_ _P_o_i_n_t_e_r -- cast a Macaulay2 pointer to a foreign │ │ │ │ pointer │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp__Pointer.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : ptr = address x
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ +o2 = 0x7fd66b0e7d50
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : int ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  i1 : x = int 5
    │ │ │ │  
    │ │ │ │  o1 = 5
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type int32
    │ │ │ │  i2 : ptr = address x
    │ │ │ │  
    │ │ │ │ -o2 = 0x7f7f28526ca0
    │ │ │ │ +o2 = 0x7fd66b0e7d50
    │ │ │ │  
    │ │ │ │  o2 : Pointer
    │ │ │ │  i3 : int ptr
    │ │ │ │  
    │ │ │ │  o3 = 5
    │ │ │ │  
    │ │ │ │  o3 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Type_sp_st_spvoidstar.html
    │ │ │ @@ -73,15 +73,15 @@
    │ │ │            

    This is syntactic sugar for T value ptr (see ForeignType Pointer) for dereferencing pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = voidstar address int 5
    │ │ │  
    │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ +o1 = 0x7fd66b0e7ee0
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    i2 : int * ptr
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _f_o_r_e_i_g_n_ _o_b_j_e_c_t, of type T;
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This is syntactic sugar for T value ptr (see _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r) for
    │ │ │ │  dereferencing pointers.
    │ │ │ │  i1 : ptr = voidstar address int 5
    │ │ │ │  
    │ │ │ │ -o1 = 0x7f7f2854aa70
    │ │ │ │ +o1 = 0x7fd66b0e7ee0
    │ │ │ │  
    │ │ │ │  o1 : ForeignObject of type void*
    │ │ │ │  i2 : int * ptr
    │ │ │ │  
    │ │ │ │  o2 = 5
    │ │ │ │  
    │ │ │ │  o2 : ForeignObject of type int32
    │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Foreign__Union__Type_sp__Thing.html
    │ │ │ @@ -82,15 +82,15 @@
    │ │ │  o1 : ForeignUnionType
    │ │ │
    │ │ │
    i2 : myunion 27
    │ │ │  
    │ │ │ -o2 = HashTable{"bar" => 6.92598e-310}
    │ │ │ +o2 = HashTable{"bar" => 6.94444e-310}
    │ │ │                 "foo" => 27
    │ │ │  
    │ │ │  o2 : ForeignObject of type myunion
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ i1 : myunion = foreignUnionType("myunion", {"foo" => int, "bar" => double}) │ │ │ │ │ │ │ │ o1 = myunion │ │ │ │ │ │ │ │ o1 : ForeignUnionType │ │ │ │ i2 : myunion 27 │ │ │ │ │ │ │ │ -o2 = HashTable{"bar" => 6.92598e-310} │ │ │ │ +o2 = HashTable{"bar" => 6.94444e-310} │ │ │ │ "foo" => 27 │ │ │ │ │ │ │ │ o2 : ForeignObject of type myunion │ │ │ │ i3 : myunion pi │ │ │ │ │ │ │ │ o3 = HashTable{"bar" => 3.14159 } │ │ │ │ "foo" => 1413754136 │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Pointer.html │ │ │ @@ -64,50 +64,50 @@ │ │ │ o1 : ForeignObject of type int32 │ │ │
    │ │ │
    i2 : peek x
    │ │ │  
    │ │ │ -o2 = int32{Address => 0x7f7f285264f0}
    │ │ │ +o2 = int32{Address => 0x7fd66b0e7f90} │ │ │
    │ │ │
    │ │ │

    These pointers can be accessed using address.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = address x
    │ │ │  
    │ │ │ -o3 = 0x7f7f285264f0
    │ │ │ +o3 = 0x7fd66b0e7f90
    │ │ │  
    │ │ │  o3 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Simple arithmetic can be performed on pointers.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : ptr + 5
    │ │ │  
    │ │ │ -o4 = 0x7f7f285264f5
    │ │ │ +o4 = 0x7fd66b0e7f95
    │ │ │  
    │ │ │  o4 : Pointer
    │ │ │
    │ │ │
    i5 : ptr - 3
    │ │ │  
    │ │ │ -o5 = 0x7f7f285264ed
    │ │ │ +o5 = 0x7fd66b0e7f8d
    │ │ │  
    │ │ │  o5 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,30 +10,30 @@ │ │ │ │ i1 : x = int 20 │ │ │ │ │ │ │ │ o1 = 20 │ │ │ │ │ │ │ │ o1 : ForeignObject of type int32 │ │ │ │ i2 : peek x │ │ │ │ │ │ │ │ -o2 = int32{Address => 0x7f7f285264f0} │ │ │ │ +o2 = int32{Address => 0x7fd66b0e7f90} │ │ │ │ These pointers can be accessed using _a_d_d_r_e_s_s. │ │ │ │ i3 : ptr = address x │ │ │ │ │ │ │ │ -o3 = 0x7f7f285264f0 │ │ │ │ +o3 = 0x7fd66b0e7f90 │ │ │ │ │ │ │ │ o3 : Pointer │ │ │ │ Simple arithmetic can be performed on pointers. │ │ │ │ i4 : ptr + 5 │ │ │ │ │ │ │ │ -o4 = 0x7f7f285264f5 │ │ │ │ +o4 = 0x7fd66b0e7f95 │ │ │ │ │ │ │ │ o4 : Pointer │ │ │ │ i5 : ptr - 3 │ │ │ │ │ │ │ │ -o5 = 0x7f7f285264ed │ │ │ │ +o5 = 0x7fd66b0e7f8d │ │ │ │ │ │ │ │ o5 : Pointer │ │ │ │ ******** MMeennuu ******** │ │ │ │ * _n_u_l_l_P_o_i_n_t_e_r -- the null pointer │ │ │ │ * _a_d_d_r_e_s_s -- pointer to type or object │ │ │ │ * _F_o_r_e_i_g_n_T_y_p_e_ _P_o_i_n_t_e_r -- dereference a pointer │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aa ppooiinntteerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/___Shared__Library.html │ │ │ @@ -64,15 +64,15 @@ │ │ │ o1 : SharedLibrary │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : peek mpfr
    │ │ │  
    │ │ │ -o2 = SharedLibrary{0x7f7f2f6e4550, mpfr}
    │ │ │ +o2 = SharedLibrary{0x7fd67f288550, mpfr} │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    Menu

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : address int
    │ │ │  
    │ │ │ -o1 = 0x563c19575b40
    │ │ │ +o1 = 0x55a9e9e1fb40
    │ │ │  
    │ │ │  o1 : Pointer
    │ │ │
    │ │ │
    │ │ │

    If x is a foreign object, then this returns the address to the object. It behaves like the & "address-of" operator in C.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : address int 5
    │ │ │  
    │ │ │ -o2 = 0x7f7f28526a20
    │ │ │ +o2 = 0x7fd66b0e7fd0
    │ │ │  
    │ │ │  o2 : Pointer
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,22 +11,22 @@ │ │ │ │ * Outputs: │ │ │ │ o a _p_o_i_n_t_e_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ If x is a foreign type, then this returns the address to the ffi_type struct │ │ │ │ used by libffi to identify the type. │ │ │ │ i1 : address int │ │ │ │ │ │ │ │ -o1 = 0x563c19575b40 │ │ │ │ +o1 = 0x55a9e9e1fb40 │ │ │ │ │ │ │ │ o1 : Pointer │ │ │ │ If x is a foreign object, then this returns the address to the object. It │ │ │ │ behaves like the & "address-of" operator in C. │ │ │ │ i2 : address int 5 │ │ │ │ │ │ │ │ -o2 = 0x7f7f28526a20 │ │ │ │ +o2 = 0x7fd66b0e7fd0 │ │ │ │ │ │ │ │ o2 : Pointer │ │ │ │ ********** WWaayyss ttoo uussee aaddddrreessss:: ********** │ │ │ │ * address(ForeignObject) │ │ │ │ * address(ForeignType) │ │ │ │ * address(Nothing) (missing documentation) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_foreign__Function.html │ │ │ @@ -232,15 +232,15 @@ │ │ │ o16 : ForeignFunction │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : x = malloc 8
    │ │ │  
    │ │ │ -o17 = 0x7f443c06a4f0
    │ │ │ +o17 = 0x7f7cc006a4f0
    │ │ │  
    │ │ │  o17 : ForeignObject of type void*
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : registerFinalizer(x, free)
    │ │ │ ├── html2text {} │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ i16 : free = foreignFunction("free", void, voidstar) │ │ │ │ │ │ │ │ o16 = free │ │ │ │ │ │ │ │ o16 : ForeignFunction │ │ │ │ i17 : x = malloc 8 │ │ │ │ │ │ │ │ -o17 = 0x7f443c06a4f0 │ │ │ │ +o17 = 0x7f7cc006a4f0 │ │ │ │ │ │ │ │ o17 : ForeignObject of type void* │ │ │ │ i18 : registerFinalizer(x, free) │ │ │ │ ********** WWaayyss ttoo uussee ffoorreeiiggnnFFuunnccttiioonn:: ********** │ │ │ │ * foreignFunction(Pointer,String,ForeignType,VisibleList) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,ForeignType) │ │ │ │ * foreignFunction(SharedLibrary,String,ForeignType,VisibleList) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_get__Memory.html │ │ │ @@ -77,43 +77,43 @@ │ │ │

    Allocate n bytes of memory using the GC garbage collector.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : ptr = getMemory 8
    │ │ │  
    │ │ │ -o1 = 0x7f7f2b093240
    │ │ │ +o1 = 0x7fd67aa7e490
    │ │ │  
    │ │ │  o1 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    If the memory will not contain any pointers, then set the Atomic option to true.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : ptr = getMemory(8, Atomic => true)
    │ │ │  
    │ │ │ -o2 = 0x7f7f285260a0
    │ │ │ +o2 = 0x7fd66b0e7dc0
    │ │ │  
    │ │ │  o2 : ForeignObject of type void*
    │ │ │
    │ │ │
    │ │ │

    Alternatively, a foreign object type T may be specified. In this case, the number of bytes and whether the Atomic option should be set will be determined automatically.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : ptr = getMemory int
    │ │ │  
    │ │ │ -o3 = 0x7f7f2854afc0
    │ │ │ +o3 = 0x7fd66b0e7ca0
    │ │ │  
    │ │ │  o3 : ForeignObject of type void*
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,30 +14,30 @@ │ │ │ │ o Atomic => ..., default value false │ │ │ │ * Outputs: │ │ │ │ o an instance of the type _v_o_i_d_s_t_a_r, │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Allocate n bytes of memory using the _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r. │ │ │ │ i1 : ptr = getMemory 8 │ │ │ │ │ │ │ │ -o1 = 0x7f7f2b093240 │ │ │ │ +o1 = 0x7fd67aa7e490 │ │ │ │ │ │ │ │ o1 : ForeignObject of type void* │ │ │ │ If the memory will not contain any pointers, then set the Atomic option to │ │ │ │ _t_r_u_e. │ │ │ │ i2 : ptr = getMemory(8, Atomic => true) │ │ │ │ │ │ │ │ -o2 = 0x7f7f285260a0 │ │ │ │ +o2 = 0x7fd66b0e7dc0 │ │ │ │ │ │ │ │ o2 : ForeignObject of type void* │ │ │ │ Alternatively, a foreign object type T may be specified. In this case, the │ │ │ │ number of bytes and whether the Atomic option should be set will be determined │ │ │ │ automatically. │ │ │ │ i3 : ptr = getMemory int │ │ │ │ │ │ │ │ -o3 = 0x7f7f2854afc0 │ │ │ │ +o3 = 0x7fd66b0e7ca0 │ │ │ │ │ │ │ │ o3 : ForeignObject of type void* │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_i_s_t_e_r_F_i_n_a_l_i_z_e_r_(_F_o_r_e_i_g_n_O_b_j_e_c_t_,_F_u_n_c_t_i_o_n_) -- register a finalizer for a │ │ │ │ foreign object │ │ │ │ ********** WWaayyss ttoo uussee ggeettMMeemmoorryy:: ********** │ │ │ │ * getMemory(ForeignType) │ │ ├── ./usr/share/doc/Macaulay2/ForeignFunctions/html/_register__Finalizer_lp__Foreign__Object_cm__Function_rp.html │ │ │ @@ -100,23 +100,23 @@ │ │ │ │ │ │
    i4 : for i to 9 do (x := malloc 8; registerFinalizer(x, finalizer))
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : collectGarbage()
    │ │ │ -freeing memory at 0x7f7f1407f910
    │ │ │ -freeing memory at 0x7f7f1407f930
    │ │ │ -freeing memory at 0x7f7f1407f950
    │ │ │ -freeing memory at 0x7f7f1407f990
    │ │ │ -freeing memory at 0x7f7f1407f250
    │ │ │ -freeing memory at 0x7f7f1407f230
    │ │ │ -freeing memory at 0x7f7f1407f9b0
    │ │ │ -freeing memory at 0x7f7f1407f970
    │ │ │ -freeing memory at 0x7f7f1407f8f0
    │ │ │ +freeing memory at 0x7fd65407f8f0 │ │ │ +freeing memory at 0x7fd65407f910 │ │ │ +freeing memory at 0x7fd65407f930 │ │ │ +freeing memory at 0x7fd65407f950 │ │ │ +freeing memory at 0x7fd65407f230 │ │ │ +freeing memory at 0x7fd65407f990 │ │ │ +freeing memory at 0x7fd65407f9b0 │ │ │ +freeing memory at 0x7fd65407f250 │ │ │ +freeing memory at 0x7fd65407f970 │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : x = voidstar address int 5
    │ │ │  
    │ │ │ -o5 = 0x7f7f2854ad20
    │ │ │ +o5 = 0x7fd66b0e7220
    │ │ │  
    │ │ │  o5 : ForeignObject of type void*
    │ │ │
    │ │ │
    i6 : value x
    │ │ │  
    │ │ │ -o6 = 0x7f7f2854ad20
    │ │ │ +o6 = 0x7fd66b0e7220
    │ │ │  
    │ │ │  o6 : Pointer
    │ │ │
    │ │ │
    │ │ │

    Foreign string objects are converted to strings.

    │ │ │ ├── html2text {} │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = 5 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ Foreign pointer objects are converted to _P_o_i_n_t_e_r objects. │ │ │ │ i5 : x = voidstar address int 5 │ │ │ │ │ │ │ │ -o5 = 0x7f7f2854ad20 │ │ │ │ +o5 = 0x7fd66b0e7220 │ │ │ │ │ │ │ │ o5 : ForeignObject of type void* │ │ │ │ i6 : value x │ │ │ │ │ │ │ │ -o6 = 0x7f7f2854ad20 │ │ │ │ +o6 = 0x7fd66b0e7220 │ │ │ │ │ │ │ │ o6 : Pointer │ │ │ │ Foreign string objects are converted to strings. │ │ │ │ i7 : x = charstar "Hello, world!" │ │ │ │ │ │ │ │ o7 = Hello, world! │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/example-output/_put__Matrix.out │ │ │ @@ -6,27 +6,27 @@ │ │ │ | 1 2 3 4 | │ │ │ │ │ │ 2 4 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : s = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-15935-0/0 │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ i3 : F = openOut(s) │ │ │ │ │ │ -o3 = /tmp/M2-15935-0/0 │ │ │ +o3 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : putMatrix(F,A) │ │ │ │ │ │ i5 : close(F) │ │ │ │ │ │ -o5 = /tmp/M2-15935-0/0 │ │ │ +o5 = /tmp/M2-20955-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : getMatrix(s) │ │ │ │ │ │ o6 = | 1 1 1 1 | │ │ │ | 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/FourTiTwo/html/_put__Matrix.html │ │ │ @@ -79,36 +79,36 @@ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : s = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-15935-0/0
    │ │ │ +o2 = /tmp/M2-20955-0/0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : F = openOut(s)
    │ │ │  
    │ │ │ -o3 = /tmp/M2-15935-0/0
    │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : putMatrix(F,A)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : close(F)
    │ │ │  
    │ │ │ -o5 = /tmp/M2-15935-0/0
    │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : getMatrix(s)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,24 +16,24 @@
    │ │ │ │  o1 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ │ │  
    │ │ │ │                2       4
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  i2 : s = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-15935-0/0
    │ │ │ │ +o2 = /tmp/M2-20955-0/0
    │ │ │ │  i3 : F = openOut(s)
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-15935-0/0
    │ │ │ │ +o3 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : putMatrix(F,A)
    │ │ │ │  i5 : close(F)
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-15935-0/0
    │ │ │ │ +o5 = /tmp/M2-20955-0/0
    │ │ │ │  
    │ │ │ │  o5 : File
    │ │ │ │  i6 : getMatrix(s)
    │ │ │ │  
    │ │ │ │  o6 = | 1 1 1 1 |
    │ │ │ │       | 1 2 3 4 |
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_fpt.out
    │ │ │ @@ -155,31 +155,31 @@
    │ │ │  i26 : numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) -- FinalAttempt improves the estimate slightly
    │ │ │  
    │ │ │  o26 = {.142067, .144}
    │ │ │  
    │ │ │  o26 : List
    │ │ │  
    │ │ │  i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc)
    │ │ │ + -- used 2.88922s (cpu); 1.61258s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │  
    │ │ │  i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc)
    │ │ │ + -- used 1.6027s (cpu); 0.967968s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │  
    │ │ │  i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc)
    │ │ │ + -- used 1.3763s (cpu); 0.829928s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/example-output/_frobenius__Nu.out
    │ │ │ @@ -43,34 +43,34 @@
    │ │ │  o12 = 220
    │ │ │  
    │ │ │  i13 : R = ZZ/17[x,y,z];
    │ │ │  
    │ │ │  i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │  
    │ │ │  i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc)
    │ │ │ + -- used 0.00401294s (cpu); 0.00700304s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │  
    │ │ │  i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc)
    │ │ │ + -- used 0.497064s (cpu); 0.33561s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │  
    │ │ │  i17 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │  
    │ │ │  i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc)
    │ │ │ + -- used 0.571606s (cpu); 0.323695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │  
    │ │ │  i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc)
    │ │ │ + -- used 1.611s (cpu); 1.33367s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │  
    │ │ │  i21 : R = ZZ/3[x,y];
    │ │ │  
    │ │ │  i22 : M = ideal(x, y);
    │ │ │  
    │ │ │ @@ -85,34 +85,34 @@
    │ │ │  o24 = 8
    │ │ │  
    │ │ │  i25 : R = ZZ/5[x,y,z];
    │ │ │  
    │ │ │  i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │  
    │ │ │  i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc)
    │ │ │ + -- used 1.31285s (cpu); 0.764832s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │  
    │ │ │  i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc)
    │ │ │ + -- used 1.9806s (cpu); 1.20629s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │  
    │ │ │  i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc)
    │ │ │ + -- used 2.08596s (cpu); 1.72915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │  
    │ │ │  i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc)
    │ │ │ + -- used 0.616618s (cpu); 0.530041s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │  
    │ │ │  i32 : R = ZZ/7[x,y];
    │ │ │  
    │ │ │  i33 : f = (x - 1)^3 - (y - 2)^2;
    │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_fpt.html
    │ │ │ @@ -363,37 +363,37 @@
    │ │ │          
    │ │ │

    The computations performed when FinalAttempt is set to true are often slow, and often fail to improve the estimate, and for this reason, this option should be used sparingly. It is often more effective to increase the values of Attempts or DepthOfSearch, instead.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -228,29 +228,29 @@ │ │ │ │ │ │ │ │ o26 : List │ │ │ │ The computations performed when FinalAttempt is set to true are often slow, and │ │ │ │ often fail to improve the estimate, and for this reason, this option should be │ │ │ │ used sparingly. It is often more effective to increase the values of Attempts │ │ │ │ or DepthOfSearch, instead. │ │ │ │ i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true) │ │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc) │ │ │ │ + -- used 2.88922s (cpu); 1.61258s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {.142067, .144} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7) │ │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc) │ │ │ │ + -- used 1.6027s (cpu); 0.967968s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o28 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o28 : QQ │ │ │ │ i29 : time fpt(f, DepthOfSearch => 4) │ │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc) │ │ │ │ + -- used 1.3763s (cpu); 0.829928s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 │ │ │ │ o29 = - │ │ │ │ 7 │ │ │ │ │ │ │ │ o29 : QQ │ │ │ │ As seen in several examples above, when the exact answer is not found, a list │ │ ├── ./usr/share/doc/Macaulay2/FrobeniusThresholds/html/_frobenius__Nu.html │ │ │ @@ -192,23 +192,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i27 : time numeric fpt(f, DepthOfSearch => 3, FinalAttempt => true)
    │ │ │ - -- used 2.21552s (cpu); 1.26312s (thread); 0s (gc)
    │ │ │ + -- used 2.88922s (cpu); 1.61258s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = {.142067, .144}
    │ │ │  
    │ │ │  o27 : List
    │ │ │
    │ │ │
    i28 : time fpt(f, DepthOfSearch => 3, Attempts => 7)
    │ │ │ - -- used 1.34032s (cpu); 0.819238s (thread); 0s (gc)
    │ │ │ + -- used 1.6027s (cpu); 0.967968s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o28 = -
    │ │ │        7
    │ │ │  
    │ │ │  o28 : QQ
    │ │ │
    │ │ │
    i29 : time fpt(f, DepthOfSearch => 4)
    │ │ │ - -- used 1.09779s (cpu); 0.697093s (thread); 0s (gc)
    │ │ │ + -- used 1.3763s (cpu); 0.829928s (thread); 0s (gc)
    │ │ │  
    │ │ │        1
    │ │ │  o29 = -
    │ │ │        7
    │ │ │  
    │ │ │  o29 : QQ
    │ │ │
    │ │ │
    i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial
    │ │ │
    │ │ │
    i15 : time frobeniusNu(3, f)
    │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc)
    │ │ │ + -- used 0.00401294s (cpu); 0.00700304s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 3756
    │ │ │
    │ │ │
    i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false)
    │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc)
    │ │ │ + -- used 0.497064s (cpu); 0.33561s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = 3756
    │ │ │
    │ │ │
    │ │ │

    The valid values for the option ContainmentTest are FrobeniusPower, FrobeniusRoot, and StandardPower. The default value of this option depends on what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to StandardPower if frobeniusNu is passed an ideal $I$. We describe the consequences of setting ContainmentTest to each of these values below.

    │ │ │ @@ -225,23 +225,23 @@ │ │ │ │ │ │
    i18 : f = x^3 + y^3 + z^3 + x*y*z;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by default
    │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc)
    │ │ │ + -- used 0.571606s (cpu); 0.323695s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = 499
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower)
    │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc)
    │ │ │ + -- used 1.611s (cpu); 1.33367s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = 499
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Finally, when ContainmentTest is set to FrobeniusPower, then instead of producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as defined in the paper Frobenius Powers by Hernández, Teixeira, and Witt, which can be computed with the function frobeniusPower, from the TestIdeals package. In particular, frobeniusNu(e,I,J) and frobeniusNu(e,I,J,ContainmentTest=>FrobeniusPower) need not agree. However, they will agree when $I$ is a principal ideal.

    │ │ │ @@ -287,46 +287,46 @@ │ │ │ │ │ │
    i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time frobeniusNu(5, f) -- uses binary search (default)
    │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc)
    │ │ │ + -- used 1.31285s (cpu); 0.764832s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time frobeniusNu(5, f, Search => Linear)
    │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc)
    │ │ │ + -- used 1.9806s (cpu); 1.20629s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = 1124
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : M = ideal(x, y, z);
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default)
    │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc)
    │ │ │ + -- used 2.08596s (cpu); 1.72915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = 97
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets luckier
    │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc)
    │ │ │ + -- used 0.616618s (cpu); 0.530041s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = 97
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    The option AtOrigin (default value true) can be turned off to tell frobeniusNu to effectively do the computation over all possible maximal ideals $J$ and take the minimum.

    │ │ │ ├── html2text {} │ │ │ │ @@ -106,19 +106,19 @@ │ │ │ │ algorithms, namely diagonal polynomials, binomials, forms in two variables, and │ │ │ │ polynomials whose factors are in simple normal crossing. This feature can be │ │ │ │ disabled by setting the option UseSpecialAlgorithms (default value true) to │ │ │ │ false. │ │ │ │ i13 : R = ZZ/17[x,y,z]; │ │ │ │ i14 : f = x^3 + y^4 + z^5; -- a diagonal polynomial │ │ │ │ i15 : time frobeniusNu(3, f) │ │ │ │ - -- used 0.00399957s (cpu); 0.00414499s (thread); 0s (gc) │ │ │ │ + -- used 0.00401294s (cpu); 0.00700304s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 3756 │ │ │ │ i16 : time frobeniusNu(3, f, UseSpecialAlgorithms => false) │ │ │ │ - -- used 0.512037s (cpu); 0.349891s (thread); 0s (gc) │ │ │ │ + -- used 0.497064s (cpu); 0.33561s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 3756 │ │ │ │ The valid values for the option ContainmentTest are FrobeniusPower, │ │ │ │ FrobeniusRoot, and StandardPower. The default value of this option depends on │ │ │ │ what is passed to frobeniusNu. Indeed, by default, ContainmentTest is set to │ │ │ │ FrobeniusRoot if frobeniusNu is passed a ring element $f$, and is set to │ │ │ │ StandardPower if frobeniusNu is passed an ideal $I$. We describe the │ │ │ │ @@ -133,19 +133,19 @@ │ │ │ │ is contained in $J$. The output is unaffected, but this option often speeds up │ │ │ │ computations, specially when a polynomial or principal ideal is passed as the │ │ │ │ second argument. │ │ │ │ i17 : R = ZZ/5[x,y,z]; │ │ │ │ i18 : f = x^3 + y^3 + z^3 + x*y*z; │ │ │ │ i19 : time frobeniusNu(4, f) -- ContainmentTest is set to FrobeniusRoot, by │ │ │ │ default │ │ │ │ - -- used 0.302679s (cpu); 0.200173s (thread); 0s (gc) │ │ │ │ + -- used 0.571606s (cpu); 0.323695s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = 499 │ │ │ │ i20 : time frobeniusNu(4, f, ContainmentTest => StandardPower) │ │ │ │ - -- used 1.56248s (cpu); 1.20583s (thread); 0s (gc) │ │ │ │ + -- used 1.611s (cpu); 1.33367s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = 499 │ │ │ │ Finally, when ContainmentTest is set to FrobeniusPower, then instead of │ │ │ │ producing the invariant $\nu_I^J(p^e)$ as defined above, frobeniusNu instead │ │ │ │ outputs the maximal integer $n$ such that the $n$^{th} (generalized) Frobenius │ │ │ │ power of $I$ is not contained in the $p^e$-th Frobenius power of $J$. Here, the │ │ │ │ $n$^{th} Frobenius power of $I$, when $n$ is a nonnegative integer, is as │ │ │ │ @@ -167,31 +167,31 @@ │ │ │ │ The function frobeniusNu works by searching through the list of potential │ │ │ │ integers $n$ and checking containments of $I^n$ in the specified Frobenius │ │ │ │ power of $J$. The way this search is approached is specified by the option │ │ │ │ Search, which can be set to Binary (the default value) or Linear. │ │ │ │ i25 : R = ZZ/5[x,y,z]; │ │ │ │ i26 : f = x^2*y^4 + y^2*z^7 + z^2*x^8; │ │ │ │ i27 : time frobeniusNu(5, f) -- uses binary search (default) │ │ │ │ - -- used 1.02964s (cpu); 0.633188s (thread); 0s (gc) │ │ │ │ + -- used 1.31285s (cpu); 0.764832s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = 1124 │ │ │ │ i28 : time frobeniusNu(5, f, Search => Linear) │ │ │ │ - -- used 1.53299s (cpu); 0.899133s (thread); 0s (gc) │ │ │ │ + -- used 1.9806s (cpu); 1.20629s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = 1124 │ │ │ │ i29 : M = ideal(x, y, z); │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : time frobeniusNu(2, M, M^2) -- uses binary search (default) │ │ │ │ - -- used 2.15426s (cpu); 1.79821s (thread); 0s (gc) │ │ │ │ + -- used 2.08596s (cpu); 1.72915s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = 97 │ │ │ │ i31 : time frobeniusNu(2, M, M^2, Search => Linear) -- but linear search gets │ │ │ │ luckier │ │ │ │ - -- used 0.692075s (cpu); 0.57169s (thread); 0s (gc) │ │ │ │ + -- used 0.616618s (cpu); 0.530041s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = 97 │ │ │ │ The option AtOrigin (default value true) can be turned off to tell frobeniusNu │ │ │ │ to effectively do the computation over all possible maximal ideals $J$ and take │ │ │ │ the minimum. │ │ │ │ i32 : R = ZZ/7[x,y]; │ │ │ │ i33 : f = (x - 1)^3 - (y - 2)^2; │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/example-output/_orbit__Closure.out │ │ │ @@ -208,21 +208,21 @@ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc) │ │ │ + -- used 1.33207s (cpu); 0.434282s (thread); 0s (gc) │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o27 : KClass │ │ │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc) │ │ │ + -- used 3.22057s (cpu); 1.13974s (thread); 0s (gc) │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ o28 : KClass │ │ │ │ │ │ i29 : │ │ ├── ./usr/share/doc/Macaulay2/GKMVarieties/html/_orbit__Closure.html │ │ │ @@ -386,25 +386,25 @@ │ │ │ 3 4 │ │ │ o26 : Matrix QQ <-- QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time C = orbitClosure(X,Mat)
    │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc)
    │ │ │ + -- used 1.33207s (cpu); 0.434282s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o27 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time C = orbitClosure(X,Mat, RREFMethod => true)
    │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc)
    │ │ │ + -- used 3.22057s (cpu); 1.13974s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = an "equivariant K-class" on a GKM variety 
    │ │ │  
    │ │ │  o28 : KClass
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -241,21 +241,21 @@ │ │ │ │ o26 = | 7 6 3/10 10/9 | │ │ │ │ | 3/7 5/4 3/7 10 | │ │ │ │ | 6/7 2/9 5 3/2 | │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o26 : Matrix QQ <-- QQ │ │ │ │ i27 : time C = orbitClosure(X,Mat) │ │ │ │ - -- used 0.595776s (cpu); 0.359545s (thread); 0s (gc) │ │ │ │ + -- used 1.33207s (cpu); 0.434282s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o27 : KClass │ │ │ │ i28 : time C = orbitClosure(X,Mat, RREFMethod => true) │ │ │ │ - -- used 1.80107s (cpu); 1.03657s (thread); 0s (gc) │ │ │ │ + -- used 3.22057s (cpu); 1.13974s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = an "equivariant K-class" on a GKM variety │ │ │ │ │ │ │ │ o28 : KClass │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_l_i_z_e_d_F_l_a_g_V_a_r_i_e_t_y -- makes a generalized flag variety as a GKM │ │ │ │ variety │ │ ├── ./usr/share/doc/Macaulay2/Graphs/example-output/_new__Digraph.out │ │ │ @@ -32,12 +32,12 @@ │ │ │ 5 => {6} │ │ │ 6 => {} │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ i3 : keys H │ │ │ │ │ │ -o3 = {map, newDigraph, digraph} │ │ │ +o3 = {map, digraph, newDigraph} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Graphs/html/_new__Digraph.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ o2 : SortedDigraph │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys H
    │ │ │  
    │ │ │ -o3 = {map, newDigraph, digraph}
    │ │ │ +o3 = {map, digraph, newDigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 4 => {} │ │ │ │ 5 => {6} │ │ │ │ 6 => {} │ │ │ │ │ │ │ │ o2 : SortedDigraph │ │ │ │ i3 : keys H │ │ │ │ │ │ │ │ -o3 = {map, newDigraph, digraph} │ │ │ │ +o3 = {map, digraph, newDigraph} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_o_p_S_o_r_t -- topologically sort the vertices of a digraph │ │ │ │ * _S_o_r_t_e_d_D_i_g_r_a_p_h -- hashtable used in topSort │ │ │ │ * _t_o_p_o_l_o_g_i_c_a_l_S_o_r_t -- outputs a list of vertices in a topologically sorted │ │ │ │ order of a DAG. │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_nonminimal__Maps.out │ │ │ @@ -103,46 +103,46 @@ │ │ │ │ │ │ i13 : #compsJ │ │ │ │ │ │ o13 = 2 │ │ │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21 │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ ----------------------------------------------------------------------- │ │ │ - -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 | │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ 1 36 │ │ │ o14 : Matrix kk <-- kk │ │ │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16 │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ ----------------------------------------------------------------------- │ │ │ - -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 | │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ 1 36 │ │ │ o15 : Matrix kk <-- kk │ │ │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ - 2 2 2 │ │ │ -o16 = ideal (a - 44b*c - 35c + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c + │ │ │ + 2 2 2 │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 15c - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c - 16a*d + 2b*d + │ │ │ + 2 2 2 │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - 19c*d + 34d , b - 30b*c + 19c - 22a*d + 21b*d + 50c*d - 12d , b*c - │ │ │ + 2 2 2 2 2 │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 │ │ │ - 29b*c*d - 36c d + 24a*d + 2b*d + 50c*d + 9d , c - 24b*c*d + 39c d - │ │ │ + 2 2 2 2 3 3 2 │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 3 │ │ │ - 8a*d - 29b*d - 29c*d - 17d ) │ │ │ + 2 2 2 3 │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ 0 1 2 3 │ │ │ o17 = total: 1 6 8 3 │ │ │ @@ -150,28 +150,28 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o17 : BettiTally │ │ │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 │ │ │ -o18 = ideal (a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c - │ │ │ + 2 2 2 │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 45c - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c + 33a*d + 16b*d │ │ │ + 2 2 2 │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 2 │ │ │ - - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , b*c - 43b*c*d + │ │ │ + 2 2 2 2 2 │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ - 19c d + 34a*d + 21b*d + 46c*d + 20d , c + 38b*c*d + 22c d - 15a*d │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 3 │ │ │ - - 47b*d - 39c*d + 40d ) │ │ │ + 2 2 3 │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ 0 1 2 3 │ │ │ o19 = total: 1 6 8 3 │ │ │ @@ -179,27 +179,30 @@ │ │ │ 1: . 4 4 1 │ │ │ 2: . 2 4 2 │ │ │ │ │ │ o19 : BettiTally │ │ │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ - +------------------------------------------------------+ │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d) | │ │ │ - +------------------------------------------------------+ │ │ │ - |ideal (c - 16d, b + d, a + 16d) | │ │ │ - +------------------------------------------------------+ │ │ │ - | 2 2 | │ │ │ - |ideal (b - 6c + 33d, a - 36c + 2d, c + 43c*d - d ) | │ │ │ - +------------------------------------------------------+ │ │ │ - | 2 2 | │ │ │ - |ideal (b + 29c + 7d, a - 19c + 24d, c - 20c*d - 30d )| │ │ │ - +------------------------------------------------------+ │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ │ │ │ i21 : netList decompose F2 │ │ │ │ │ │ - +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ - | 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 | │ │ │ -o21 = |ideal (a*c + 2b*c - 13c + 33a*d + 16b*d - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , a*b - 20b*c - 45c - 35a*d + 21b*d - 34c*d + 10d , a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , c + 38b*c*d + 22c d - 15a*d - 47b*d - 39c*d + 40d , b*c - 43b*c*d + 19c d + 34a*d + 21b*d + 46c*d + 20d )| │ │ │ - +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Point__On__Rational__Variety_lp__Ideal_rp.out │ │ │ @@ -200,67 +200,72 @@ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38 │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8 │ │ │ ----------------------------------------------------------------------- │ │ │ - -24 -10 -29 | │ │ │ + -29 -22 -29 -24 | │ │ │ │ │ │ 1 24 │ │ │ o13 : Matrix kk <-- kk │ │ │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ - 2 2 2 │ │ │ -o14 = ideal (a + 33b*c - 33c + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c - │ │ │ + 2 2 2 │ │ │ +o14 = ideal (a - 30b*c + 23c - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 2c - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c - 24a*d + 3b*d - │ │ │ + 2 2 2 │ │ │ + 33c - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c - 22a*d + 32b*d │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - 8c*d - 46d , b - 10b*c - 16c - 29a*d - 29b*d - 22c*d + 8d ) │ │ │ + 2 2 2 2 │ │ │ + + 19c*d - 4d , b - 29b*c - 29c - 24a*d - 8b*d + 19c*d - 12d ) │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ │ │ i15 : decompose F1 │ │ │ │ │ │ - 2 2 2 │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b - 10b*c - 16c - 20b*d + 24c*d - 29d ), │ │ │ + 2 2 2 │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b - 29b*c - 29c + 3b*d + 16c*d - 26d ), │ │ │ ----------------------------------------------------------------------- │ │ │ - ideal (c - 24d, b - 38d, a + 15d)} │ │ │ + ideal (c - 22d, b - 21d, a + 8d)} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19 │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47 │ │ │ ----------------------------------------------------------------------- │ │ │ - -47 -39 34 0 | │ │ │ + 34 19 21 39 0 | │ │ │ │ │ │ 1 24 │ │ │ o16 : Matrix kk <-- kk │ │ │ │ │ │ i17 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ - 2 2 2 │ │ │ -o17 = ideal (a - 8b*c + 26c - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c - │ │ │ + 2 2 2 2 │ │ │ +o17 = ideal (a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 │ │ │ - 38c + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c - 39a*d + 21b*d │ │ │ + 2 2 │ │ │ + - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c + 21a*d - 13b*d - │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 2 2 2 │ │ │ - - 13c*d - 35d , b + 34b*c - 18c + 19b*d + 29c*d + 41d ) │ │ │ + 2 2 2 2 │ │ │ + 39c*d - 43d , b + 39b*c - 47c + 34b*d + 40c*d - 41d ) │ │ │ │ │ │ o17 : Ideal of S │ │ │ │ │ │ i18 : decompose F2 │ │ │ │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c + │ │ │ + 2 2 2 │ │ │ +o18 = {ideal (a*c + 19b*c - 18c + 21a*d - 13b*d - 39c*d - 43d , b + 39b*c - │ │ │ ----------------------------------------------------------------------- │ │ │ - 26d)} │ │ │ + 2 2 2 │ │ │ + 47c + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c - 39a*d - 29b*d - 30c*d │ │ │ + ----------------------------------------------------------------------- │ │ │ + 2 2 2 2 │ │ │ + + 16d , a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d )} │ │ │ │ │ │ o18 : List │ │ │ │ │ │ i19 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/example-output/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.out │ │ │ @@ -68,54 +68,54 @@ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : netList randomPointsOnRationalVariety(compsJ_0, 10) │ │ │ │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 -18 21 -38 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 -34 38 -15 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 7 47 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 -38 36 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 -13 -37 -7 22 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 24 -20 27 30 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 -20 17 0 -48 || │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 -39 -39 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 -6 -28 -3 43 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 40 -9 | | │ │ │ - +--------------------------------------------------------------------------------------+ │ │ │ - │ │ │ -i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ - │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 37 -47 0 | | │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 -43 21 -38 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 -48 30 -48 0 || │ │ │ + || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 -47 38 -15 || │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 40 -18 0 | | │ │ │ + || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 48 7 47 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 3 13 0 | | │ │ │ + || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 -3 -38 36 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 -18 30 0 | | │ │ │ + || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 -10 -7 22 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 12 18 0 | | │ │ │ + || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 -30 27 30 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 -37 0 | | │ │ │ + || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 44 0 -48 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 6 -28 0 | | │ │ │ + || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 -8 -39 -39 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 -33 26 0 | | │ │ │ + || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 -3 43 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ - || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 -20 4 0 | | │ │ │ + || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 -13 40 -9 | | │ │ │ +-------------------------------------------------------------------------------------+ │ │ │ │ │ │ +i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ + │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 -35 -47 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 -48 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 -22 -18 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 30 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 -18 18 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 -39 19 20 -37 0 || │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 -9 -28 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 -28 26 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 -13 4 0 | | │ │ │ + +---------------------------------------------------------------------------------------+ │ │ │ + │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_nonminimal__Maps.html │ │ │ @@ -232,52 +232,52 @@ │ │ │ o13 = 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21
    │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 |
    │ │ │ +      40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o14 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16
    │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 |
    │ │ │ +      28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o15 : Matrix kk  <-- kk
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │ -              2              2                            2               
    │ │ │ -o16 = ideal (a  - 44b*c - 35c  + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c +
    │ │ │ +              2              2                             2               
    │ │ │ +o16 = ideal (a  + 25b*c - 43c  + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2                   2                 
    │ │ │ -      15c  - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c  - 16a*d + 2b*d +
    │ │ │ +         2                              2                  2                
    │ │ │ +      46c  + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c  + 39a*d - 20b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2   2              2                              2     2  
    │ │ │ -      19c*d + 34d , b  - 30b*c + 19c  - 22a*d + 21b*d + 50c*d - 12d , b*c  -
    │ │ │ +                  2   2              2                              2     2  
    │ │ │ +      - 22c*d - 2d , b  + 24b*c + 19c  - 10a*d + 21b*d - 16c*d - 35d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2       2        2     3   3                2   
    │ │ │ -      29b*c*d - 36c d + 24a*d  + 2b*d  + 50c*d  + 9d , c  - 24b*c*d + 39c d -
    │ │ │ +                   2         2        2        2      3   3                2 
    │ │ │ +      29b*c*d - 30c d - 36a*d  + 34b*d  + 48c*d  - 23d , c  - 24b*c*d - 16c d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -          2        2        2      3
    │ │ │ -      8a*d  - 29b*d  - 29c*d  - 17d )
    │ │ │ +             2        2        2      3
    │ │ │ +      + 19a*d  - 38b*d  - 29c*d  - 26d )
    │ │ │  
    │ │ │  o16 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : betti res F1
    │ │ │ @@ -291,28 +291,28 @@
    │ │ │  o17 : BettiTally
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o18 = ideal (a  - 35b*c + 22c  - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c -
    │ │ │ +              2             2                              2               
    │ │ │ +o18 = ideal (a  - 9b*c - 18c  - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                              2                  2                
    │ │ │ -      45c  - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c  + 33a*d + 16b*d
    │ │ │ +        2                              2                   2                
    │ │ │ +      6c  + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c  + 27a*d - 47b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2   2              2                   2     2            
    │ │ │ -      - 18c*d - 39d , b  - 47b*c - 28c  - 5b*d - c*d - 30d , b*c  - 43b*c*d +
    │ │ │ +                 2   2              2                      2     2          
    │ │ │ +      - 28c*d - d , b  + 19b*c - 13c  - 37b*d + 32c*d + 15d , b*c  - 43b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      19c d + 34a*d  + 21b*d  + 46c*d  + 20d , c  + 38b*c*d + 22c d - 15a*d 
    │ │ │ +           2         2        2       2      3   3               2         2
    │ │ │ +      - 47c d + 34a*d  - 22b*d  - 6c*d  + 17d , c  + 2b*c*d + 22c d - 18a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2      3
    │ │ │ -      - 47b*d  - 39c*d  + 40d )
    │ │ │ +             2        2    3
    │ │ │ +      + 38b*d  - 39c*d  - d )
    │ │ │  
    │ │ │  o18 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : betti res F2
    │ │ │ @@ -331,35 +331,38 @@
    │ │ │            

    What are the ideals F1 and F2?

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i20 : netList decompose F1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c - 16d, b + d, a + 16d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                    2            2    |
    │ │ │ -      |ideal (b - 6c + 33d, a - 36c + 2d, c  + 43c*d - d )   |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b + 29c + 7d, a - 19c + 24d, c  - 20c*d - 30d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 3 | │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - 24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i21 : netList decompose F2
    │ │ │  
    │ │ │ -      +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                       2                              2   2              2                   2                   2                              2   2              2                              2   3                2         2        2        2      3     2                2         2        2        2      3 |
    │ │ │ -o21 = |ideal (a*c + 2b*c - 13c  + 33a*d + 16b*d - 18c*d - 39d , b  - 47b*c - 28c  - 5b*d - c*d - 30d , a*b - 20b*c - 45c  - 35a*d + 21b*d - 34c*d + 10d , a  - 35b*c + 22c  - 25a*d + 23b*d + 43c*d + 30d , c  + 38b*c*d + 22c d - 15a*d  - 47b*d  - 39c*d  + 40d , b*c  - 43b*c*d + 19c d + 34a*d  + 21b*d  + 46c*d  + 20d )|
    │ │ │ -      +----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-------------------------------------------------------+ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ + +-------------------------------------------------------+ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ + +-------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ + +-------------------------------------------------------+ │ │ │
    │ │ │
    │ │ │

    We can determine what these represent. One should be a set of 6 points, where 5 lie on a plane. The other should be 6 points with 3 points on one line, and the other 3 points on a skew line.

    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -170,117 +170,115 @@ │ │ │ │ 32 13 21 33 19 31 │ │ │ │ i12 : compsJ = decompose J; │ │ │ │ i13 : #compsJ │ │ │ │ │ │ │ │ o13 = 2 │ │ │ │ i14 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o14 = | 42 9 39 9 34 7 -12 -17 -29 -35 50 2 13 19 -44 50 2 -29 15 2 -27 21 │ │ │ │ +o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -36 -29 -39 -10 24 -16 19 -29 39 -38 -22 -8 -30 -24 | │ │ │ │ + 40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o14 : Matrix kk <-- kk │ │ │ │ i15 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o15 = | 30 10 43 20 -39 23 -30 40 -34 22 46 -25 21 -18 -35 -1 21 -39 -45 16 │ │ │ │ +o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -35 -5 19 -47 -20 -13 34 33 -28 -43 22 2 0 -15 -47 38 | │ │ │ │ + 28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 | │ │ │ │ │ │ │ │ 1 36 │ │ │ │ o15 : Matrix kk <-- kk │ │ │ │ i16 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o16 = ideal (a - 44b*c - 35c + 2a*d + 7b*d + 39c*d + 42d , a*b - 39b*c + │ │ │ │ + 2 2 2 │ │ │ │ +o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 15c - 27a*d + 13b*d - 29c*d + 9d , a*c - 38b*c - 10c - 16a*d + 2b*d + │ │ │ │ + 2 2 2 │ │ │ │ + 46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - 19c*d + 34d , b - 30b*c + 19c - 22a*d + 21b*d + 50c*d - 12d , b*c - │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 │ │ │ │ - 29b*c*d - 36c d + 24a*d + 2b*d + 50c*d + 9d , c - 24b*c*d + 39c d - │ │ │ │ + 2 2 2 2 3 3 2 │ │ │ │ + 29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 3 │ │ │ │ - 8a*d - 29b*d - 29c*d - 17d ) │ │ │ │ + 2 2 2 3 │ │ │ │ + + 19a*d - 38b*d - 29c*d - 26d ) │ │ │ │ │ │ │ │ o16 : Ideal of S │ │ │ │ i17 : betti res F1 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o17 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o17 : BettiTally │ │ │ │ i18 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o18 = ideal (a - 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , a*b - 20b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c + │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 45c - 35a*d + 21b*d - 34c*d + 10d , a*c + 2b*c - 13c + 33a*d + 16b*d │ │ │ │ + 2 2 2 │ │ │ │ + 6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 2 │ │ │ │ - - 18c*d - 39d , b - 47b*c - 28c - 5b*d - c*d - 30d , b*c - 43b*c*d + │ │ │ │ + 2 2 2 2 2 │ │ │ │ + - 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 3 3 2 2 │ │ │ │ - 19c d + 34a*d + 21b*d + 46c*d + 20d , c + 38b*c*d + 22c d - 15a*d │ │ │ │ + 2 2 2 2 3 3 2 2 │ │ │ │ + - 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 3 │ │ │ │ - - 47b*d - 39c*d + 40d ) │ │ │ │ + 2 2 3 │ │ │ │ + + 38b*d - 39c*d - d ) │ │ │ │ │ │ │ │ o18 : Ideal of S │ │ │ │ i19 : betti res F2 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ o19 = total: 1 6 8 3 │ │ │ │ 0: 1 . . . │ │ │ │ 1: . 4 4 1 │ │ │ │ 2: . 2 4 2 │ │ │ │ │ │ │ │ o19 : BettiTally │ │ │ │ What are the ideals F1 and F2? │ │ │ │ i20 : netList decompose F1 │ │ │ │ │ │ │ │ - +------------------------------------------------------+ │ │ │ │ -o20 = |ideal (c - 13d, b + 32d, a + 36d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - |ideal (c - 16d, b + d, a + 16d) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b - 6c + 33d, a - 36c + 2d, c + 43c*d - d ) | │ │ │ │ - +------------------------------------------------------+ │ │ │ │ - | 2 2 | │ │ │ │ - |ideal (b + 29c + 7d, a - 19c + 24d, c - 20c*d - 30d )| │ │ │ │ - +------------------------------------------------------+ │ │ │ │ -i21 : netList decompose F2 │ │ │ │ - │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ +--+ │ │ │ │ +o20 = |ideal (c + 39d, b + 27d, a - 18d) │ │ │ │ +| │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --+ │ │ │ │ - | 2 2 2 │ │ │ │ -2 2 2 2 2 │ │ │ │ -2 2 3 2 2 2 │ │ │ │ -2 3 2 2 2 2 2 3 | │ │ │ │ -o21 = |ideal (a*c + 2b*c - 13c + 33a*d + 16b*d - 18c*d - 39d , b - 47b*c - │ │ │ │ -28c - 5b*d - c*d - 30d , a*b - 20b*c - 45c - 35a*d + 21b*d - 34c*d + 10d , a │ │ │ │ -- 35b*c + 22c - 25a*d + 23b*d + 43c*d + 30d , c + 38b*c*d + 22c d - 15a*d - │ │ │ │ -47b*d - 39c*d + 40d , b*c - 43b*c*d + 19c d + 34a*d + 21b*d + 46c*d + 20d │ │ │ │ +--+ │ │ │ │ + | 2 2 2 3 │ │ │ │ +2 2 2 3 2 2 2 3 | │ │ │ │ + |ideal (a - 29b - 8c - 13d, b + 24b*c + 19c + 34b*d + 5c*d + 37d , c - │ │ │ │ +24b*c*d - 16c d + 8b*d + 22c*d + 19d , b*c - 29b*c*d - 30c d - 38c*d + 14d │ │ │ │ )| │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ -------------------------------------------------------------------------------- │ │ │ │ --+ │ │ │ │ +--+ │ │ │ │ +i21 : netList decompose F2 │ │ │ │ + │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ +o21 = |ideal (c - 32d, b - 5d, a - 29d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 43d, b - 47d, a - 27d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 24d, b - 49d, a) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + |ideal (c + 14d, b + 31d, a - 16d) | │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ + | 2 2 | │ │ │ │ + |ideal (b + 11c + 22d, a + 11c + 42d, c - 43c*d + 31d )| │ │ │ │ + +-------------------------------------------------------+ │ │ │ │ We can determine what these represent. One should be a set of 6 points, where 5 │ │ │ │ lie on a plane. The other should be 6 points with 3 points on one line, and the │ │ │ │ other 3 points on a skew line. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y -- find a random point on a variety that can │ │ │ │ be detected to be rational │ │ │ │ ********** WWaayyss ttoo uussee nnoonnmmiinniimmaallMMaappss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Point__On__Rational__Variety_lp__Ideal_rp.html │ │ │ @@ -318,90 +318,95 @@ │ │ │

    There are 2 components. We attempt to find a point on the first component

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i13 : pt1 = randomPointOnRationalVariety compsJ_0
    │ │ │  
    │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38
    │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -24 -10 -29 |
    │ │ │ +      -29 -22 -29 -24 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o13 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i14 : F1 = sub(F, (vars S)|pt1)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o14 = ideal (a  + 33b*c - 33c  + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o14 = ideal (a  - 30b*c + 23c  - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2                   2                 
    │ │ │ -      2c  - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c  - 24a*d + 3b*d -
    │ │ │ +         2                              2                   2                
    │ │ │ +      33c  - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c  - 22a*d + 32b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                2   2              2                             2
    │ │ │ -      8c*d - 46d , b  - 10b*c - 16c  - 29a*d - 29b*d - 22c*d + 8d )
    │ │ │ +                  2   2              2                             2
    │ │ │ +      + 19c*d - 4d , b  - 29b*c - 29c  - 24a*d - 8b*d + 19c*d - 12d )
    │ │ │  
    │ │ │  o14 : Ideal of S
    │ │ │
    │ │ │
    i15 : decompose F1
    │ │ │  
    │ │ │ -                                    2              2                      2
    │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b  - 10b*c - 16c  - 20b*d + 24c*d - 29d ),
    │ │ │ +                                   2              2                     2
    │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b  - 29b*c - 29c  + 3b*d + 16c*d - 26d ),
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      ideal (c - 24d, b - 38d, a + 15d)}
    │ │ │ +      ideal (c - 22d, b - 21d, a + 8d)}
    │ │ │  
    │ │ │  o15 : List
    │ │ │
    │ │ │
    │ │ │

    We attempt to find a point on the second component in parameter space, and its corresponding ideal.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i16 : pt2 = randomPointOnRationalVariety compsJ_1
    │ │ │  
    │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19
    │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -47 -39 34 0 |
    │ │ │ +      34 19 21 39 0 |
    │ │ │  
    │ │ │                 1       24
    │ │ │  o16 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i17 : F2 = sub(F, (vars S)|pt2)
    │ │ │  
    │ │ │ -              2             2                              2               
    │ │ │ -o17 = ideal (a  - 8b*c + 26c  - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c -
    │ │ │ +              2              2                          2                   2
    │ │ │ +o17 = ideal (a  + 17b*c - 20c  - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2                   2                
    │ │ │ -      38c  + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c  - 39a*d + 21b*d
    │ │ │ +                                   2                   2                  
    │ │ │ +      - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c  + 21a*d - 13b*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2   2              2                      2
    │ │ │ -      - 13c*d - 35d , b  + 34b*c - 18c  + 19b*d + 29c*d + 41d )
    │ │ │ +                 2   2              2                      2
    │ │ │ +      39c*d - 43d , b  + 39b*c - 47c  + 34b*d + 40c*d - 41d )
    │ │ │  
    │ │ │  o17 : Ideal of S
    │ │ │
    │ │ │
    i18 : decompose F2
    │ │ │  
    │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c +
    │ │ │ +                               2                              2   2          
    │ │ │ +o18 = {ideal (a*c + 19b*c - 18c  + 21a*d - 13b*d - 39c*d - 43d , b  + 39b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      26d)}
    │ │ │ +         2                      2                   2                        
    │ │ │ +      47c  + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c  - 39a*d - 29b*d - 30c*d
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +           2   2              2                          2
    │ │ │ +      + 16d , a  + 17b*c - 20c  - 4a*d - b*d - 2c*d + 46d )}
    │ │ │  
    │ │ │  o18 : List
    │ │ │
    │ │ │
    │ │ │

    It turns out that this is the ideal of 2 skew lines, just not defined over this field.

    │ │ │ ├── html2text {} │ │ │ │ @@ -212,67 +212,72 @@ │ │ │ │ │ │ │ │ o12 = {11, 8} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ There are 2 components. We attempt to find a point on the first component │ │ │ │ i13 : pt1 = randomPointOnRationalVariety compsJ_0 │ │ │ │ │ │ │ │ -o13 = | 50 15 46 -33 2 -43 -46 8 33 19 -2 -18 -8 -22 43 -29 19 3 -16 -29 -38 │ │ │ │ +o13 = | 13 48 43 23 41 36 -4 -12 -30 -16 -33 -36 19 19 30 -10 -38 32 -29 -8 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -24 -10 -29 | │ │ │ │ + -29 -22 -29 -24 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o13 : Matrix kk <-- kk │ │ │ │ i14 : F1 = sub(F, (vars S)|pt1) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o14 = ideal (a + 33b*c - 33c + 19a*d + 2b*d + 15c*d + 50d , a*b + 43b*c - │ │ │ │ + 2 2 2 │ │ │ │ +o14 = ideal (a - 30b*c + 23c - 16a*d + 41b*d + 48c*d + 13d , a*b + 30b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 2c - 29a*d - 18b*d - 43c*d + 46d , a*c - 38b*c + 19c - 24a*d + 3b*d - │ │ │ │ + 2 2 2 │ │ │ │ + 33c - 10a*d - 36b*d + 36c*d + 43d , a*c - 29b*c - 38c - 22a*d + 32b*d │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - 8c*d - 46d , b - 10b*c - 16c - 29a*d - 29b*d - 22c*d + 8d ) │ │ │ │ + 2 2 2 2 │ │ │ │ + + 19c*d - 4d , b - 29b*c - 29c - 24a*d - 8b*d + 19c*d - 12d ) │ │ │ │ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : decompose F1 │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o15 = {ideal (a - 38b + 19c + 44d, b - 10b*c - 16c - 20b*d + 24c*d - 29d ), │ │ │ │ + 2 2 2 │ │ │ │ +o15 = {ideal (a - 29b - 38c - 9d, b - 29b*c - 29c + 3b*d + 16c*d - 26d ), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - ideal (c - 24d, b - 38d, a + 15d)} │ │ │ │ + ideal (c - 22d, b - 21d, a + 8d)} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ We attempt to find a point on the second component in parameter space, and its │ │ │ │ corresponding ideal. │ │ │ │ i16 : pt2 = randomPointOnRationalVariety compsJ_1 │ │ │ │ │ │ │ │ -o16 = | -14 40 -5 26 -48 -26 -35 41 -8 -15 -38 31 -13 29 21 16 39 21 -18 19 │ │ │ │ +o16 = | 46 -2 16 -20 -1 -30 -43 -41 17 -4 -16 -29 -39 40 49 -39 -18 -13 -47 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - -47 -39 34 0 | │ │ │ │ + 34 19 21 39 0 | │ │ │ │ │ │ │ │ 1 24 │ │ │ │ o16 : Matrix kk <-- kk │ │ │ │ i17 : F2 = sub(F, (vars S)|pt2) │ │ │ │ │ │ │ │ - 2 2 2 │ │ │ │ -o17 = ideal (a - 8b*c + 26c - 15a*d - 48b*d + 40c*d - 14d , a*b + 21b*c - │ │ │ │ + 2 2 2 2 │ │ │ │ +o17 = ideal (a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d , a*b + 49b*c - 16c │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 │ │ │ │ - 38c + 16a*d + 31b*d - 26c*d - 5d , a*c - 47b*c + 39c - 39a*d + 21b*d │ │ │ │ + 2 2 │ │ │ │ + - 39a*d - 29b*d - 30c*d + 16d , a*c + 19b*c - 18c + 21a*d - 13b*d - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 2 2 2 │ │ │ │ - - 13c*d - 35d , b + 34b*c - 18c + 19b*d + 29c*d + 41d ) │ │ │ │ + 2 2 2 2 │ │ │ │ + 39c*d - 43d , b + 39b*c - 47c + 34b*d + 40c*d - 41d ) │ │ │ │ │ │ │ │ o17 : Ideal of S │ │ │ │ i18 : decompose F2 │ │ │ │ │ │ │ │ -o18 = {ideal (b + 19c - 18d, a + 23c + 43d), ideal (b + 15c + 37d, a + 37c + │ │ │ │ + 2 2 2 │ │ │ │ +o18 = {ideal (a*c + 19b*c - 18c + 21a*d - 13b*d - 39c*d - 43d , b + 39b*c - │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 26d)} │ │ │ │ + 2 2 2 │ │ │ │ + 47c + 34b*d + 40c*d - 41d , a*b + 49b*c - 16c - 39a*d - 29b*d - 30c*d │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 2 2 2 2 │ │ │ │ + + 16d , a + 17b*c - 20c - 4a*d - b*d - 2c*d + 46d )} │ │ │ │ │ │ │ │ o18 : List │ │ │ │ It turns out that this is the ideal of 2 skew lines, just not defined over this │ │ │ │ field. │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This routine expects the input to represent an irreducible variety │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/GroebnerStrata/html/_random__Points__On__Rational__Variety_lp__Ideal_cm__Z__Z_rp.html │ │ │ @@ -186,64 +186,64 @@ │ │ │

    There are 2 components. We attempt to find points on each of these two components. We are successful. This indicates that the corresponding varieties are both rational. Also, if we can find one point, we can find as many as we want.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ - │ │ │ - │ │ │ │ │ │ + │ │ │ + │ │ │ + │ │ │
    │ │ │
    i13 : netList randomPointsOnRationalVariety(compsJ_0, 10)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 -18 21 -38 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 -34 38 -15 |   |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 7 47 |       |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 -38 36 |      |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 -13 -37 -7 22 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 24 -20 27 30 | |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 -20 17 0 -48 ||
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 -39 -39 |    |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 -6 -28 -3 43 |   |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -      || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 40 -9 |      |
    │ │ │ -      +--------------------------------------------------------------------------------------+
    │ │ │ -
    │ │ │ -
    i14 : netList randomPointsOnRationalVariety(compsJ_1, 10)
    │ │ │ -
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 37 -47 0 |   |
    │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 -43 21 -38 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 -48 30 -48 0 ||
    │ │ │ +      || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 -47 38 -15 ||
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 40 -18 0 |    |
    │ │ │ +      || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 48 7 47 |     |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 3 13 0 |     |
    │ │ │ +      || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 -3 -38 36 |     |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 -18 30 0 |    |
    │ │ │ +      || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 -10 -7 22 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 12 18 0 |     |
    │ │ │ +      || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 -30 27 30 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 -37 0 |      |
    │ │ │ +      || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 44 0 -48 |  |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 6 -28 0 |    |
    │ │ │ +      || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 -8 -39 -39 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 -33 26 0 |    |
    │ │ │ +      || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 -3 43 |      |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │ -      || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 -20 4 0 |   |
    │ │ │ +      || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 -13 40 -9 | |
    │ │ │        +-------------------------------------------------------------------------------------+
    │ │ │
    │ │ │ +
    i14 : netList randomPointsOnRationalVariety(compsJ_1, 10)
    │ │ │ +
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 -35 -47 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 -48 0 |          |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 -22 -18 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 0 |            |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 30 0 |         |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 -18 18 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 -39 19 20 -37 0 ||
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 -9 -28 0 |     |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 -28 26 0 |    |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +      || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 -13 4 0 |        |
    │ │ │ +      +---------------------------------------------------------------------------------------+
    │ │ │ +
    │ │ │ │ │ │
    │ │ │

    Caveat

    │ │ │
    │ │ │

    This routine expects the input to represent an irreducible variety

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -84,99 +84,99 @@ │ │ │ │ There are 2 components. We attempt to find points on each of these two │ │ │ │ components. We are successful. This indicates that the corresponding varieties │ │ │ │ are both rational. Also, if we can find one point, we can find as many as we │ │ │ │ want. │ │ │ │ i13 : netList randomPointsOnRationalVariety(compsJ_0, 10) │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ -o13 = || 29 -40 15 -49 3 -13 -6 -39 2 39 47 15 19 -47 -46 -39 -16 32 -43 34 -13 │ │ │ │ --18 21 -38 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 37 -7 -24 8 -26 38 9 -31 24 -47 -34 12 16 22 -22 45 -28 16 -47 2 -48 - │ │ │ │ -34 38 -15 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 6 1 -31 -7 44 8 -50 24 -48 -16 23 23 -23 39 -5 43 19 -15 48 15 -11 -17 │ │ │ │ -7 47 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -41 -49 6 -16 -12 31 23 6 -7 11 3 -42 40 11 -28 46 35 -28 -3 33 1 -28 │ │ │ │ --38 36 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -11 -27 -4 40 -34 6 44 -2 19 -23 -29 21 29 -47 -37 15 -47 -24 -10 2 - │ │ │ │ -13 -37 -7 22 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -50 42 20 -30 -46 -48 -5 40 -47 39 13 47 32 -9 41 -32 -18 25 -30 -22 │ │ │ │ -24 -20 27 30 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 50 22 -30 3 -43 -29 -33 -18 6 39 -29 24 -49 -33 -15 -19 -15 -37 44 33 │ │ │ │ --20 17 0 -48 || │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || -9 31 -37 -42 -7 -8 -11 -21 12 9 13 -9 13 -26 11 22 36 34 -8 4 -11 -49 │ │ │ │ --39 -39 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 47 14 -11 -16 -20 -40 42 5 -2 36 8 -45 -30 41 -26 16 -8 -34 35 -22 - │ │ │ │ -6 -28 -3 43 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ - || 23 -8 -3 -17 38 0 11 -33 -7 6 -31 -4 -31 25 6 -2 -35 -11 -13 3 -49 -41 │ │ │ │ -40 -9 | | │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ ---------------+ │ │ │ │ -i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ │ - │ │ │ │ - +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ -o14 = || 38 -31 49 39 4 46 -29 -5 -39 -40 14 -11 -31 46 43 -26 4 30 -35 27 -40 │ │ │ │ -37 -47 0 | | │ │ │ │ +o13 = || 13 15 3 36 2 48 44 -35 -34 39 5 -32 34 19 -42 -47 -16 -34 -39 -13 -18 │ │ │ │ +-43 21 -38 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -1 -5 -10 -10 -11 42 6 46 -4 47 42 -40 47 -27 -20 49 -39 -31 -37 -29 - │ │ │ │ -48 30 -48 0 || │ │ │ │ + || -43 48 14 29 -47 -10 47 22 8 -47 15 -26 2 16 -49 22 -28 -18 45 -48 -34 │ │ │ │ +-47 38 -15 || │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 29 18 20 1 18 26 -31 -45 -21 10 22 -30 10 32 -31 -21 -49 28 -22 46 1 │ │ │ │ -40 -18 0 | | │ │ │ │ + || -3 45 42 47 -50 16 -30 28 43 -16 24 19 15 -23 37 39 19 -8 43 -11 -17 │ │ │ │ +48 7 47 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -17 3 17 -9 -36 -45 49 30 -45 24 -28 41 8 -4 -26 -28 7 30 -41 -17 -13 │ │ │ │ -3 13 0 | | │ │ │ │ + || -49 7 32 -6 -30 -41 -10 2 44 11 -25 4 33 40 -19 11 35 -17 46 1 -28 - │ │ │ │ +3 -38 36 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 37 33 -47 -20 -49 45 29 19 41 13 -38 44 23 40 -48 45 8 -29 42 -46 49 - │ │ │ │ -18 30 0 | | │ │ │ │ + || 35 -48 -2 45 -35 29 34 12 -32 -23 50 2 2 29 -3 -47 -47 -34 15 -13 -37 │ │ │ │ +-10 -7 22 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -9 -3 -26 13 35 49 -8 49 -40 13 -20 9 27 5 -8 -15 -28 15 -18 -16 -46 │ │ │ │ -12 18 0 | | │ │ │ │ + || 47 8 -14 6 -1 -13 -7 16 -20 39 -34 -22 -22 32 17 -9 -18 -6 -32 24 -20 │ │ │ │ +-30 27 30 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 28 32 0 0 -17 -44 25 42 7 -35 29 -17 19 8 -9 -26 -21 23 20 -23 44 -39 │ │ │ │ --37 0 | | │ │ │ │ + || -2 -36 -39 41 -6 34 -10 42 5 39 20 33 33 -49 -15 -33 -15 41 -19 -20 17 │ │ │ │ +44 0 -48 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || -30 -29 27 14 17 39 33 15 -35 50 -50 45 -33 13 24 -44 0 -47 -9 47 -28 │ │ │ │ -6 -28 0 | | │ │ │ │ + || -30 37 -9 16 -36 19 -13 -14 -19 9 -33 5 4 13 44 -26 36 -12 22 -11 -49 │ │ │ │ +-8 -39 -39 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 7 -12 42 -29 30 1 3 -28 -7 36 -26 -40 42 38 -20 -23 28 -29 -28 5 -37 - │ │ │ │ -33 26 0 | | │ │ │ │ + || 27 41 32 -44 40 -20 41 33 28 36 44 31 -22 -30 9 41 -8 30 16 -6 -28 35 │ │ │ │ +-3 43 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ - || 28 -10 13 -39 -20 11 13 -13 -37 8 -36 -29 -29 17 24 -50 44 30 -13 22 5 │ │ │ │ --20 4 0 | | │ │ │ │ + || 37 -2 17 -42 -42 -12 18 -31 33 6 19 -31 3 -31 -11 25 -35 28 -2 -49 -41 │ │ │ │ +-13 40 -9 | | │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ -------------+ │ │ │ │ +i14 : netList randomPointsOnRationalVariety(compsJ_1, 10) │ │ │ │ + │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ +o14 = || -41 -1 -48 25 40 4 35 16 26 -41 -28 -16 27 -14 -39 4 4 30 -40 37 -31 - │ │ │ │ +35 -47 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -1 19 -3 12 50 3 4 25 48 50 34 -6 -29 6 -5 36 -39 -31 -48 30 47 -37 - │ │ │ │ +48 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -27 -3 -40 22 27 3 -28 -41 -12 -34 -10 40 46 29 30 24 -49 28 1 40 10 - │ │ │ │ +22 -18 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -26 -6 24 28 -27 26 34 47 13 50 3 -42 -17 5 4 -35 7 30 -13 3 8 -41 13 │ │ │ │ +0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 49 -7 48 1 48 25 25 -10 49 36 -16 35 -46 -5 25 -33 8 -29 49 -18 23 42 │ │ │ │ +30 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -35 28 -6 22 50 -49 2 -5 -11 -39 30 27 -16 34 -9 -34 -28 15 -46 12 27 │ │ │ │ +-18 18 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -49 -44 -16 -10 48 18 22 33 -35 -48 -28 -8 -23 -48 -25 -3 -21 23 44 - │ │ │ │ +39 19 20 -37 0 || │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || -33 -14 -18 10 2 -43 -26 45 10 19 -15 25 47 9 -15 -22 0 -47 -28 6 -33 │ │ │ │ +-9 -28 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 20 -27 -17 2 -47 -23 13 40 -19 -13 39 -23 5 -3 47 -6 28 -29 -37 -33 42 │ │ │ │ +-28 26 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ + || 19 10 -10 47 41 20 -43 -34 -43 2 44 29 22 35 -42 16 44 30 5 -20 -29 - │ │ │ │ +13 4 0 | | │ │ │ │ + +------------------------------------------------------------------------ │ │ │ │ +---------------+ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This routine expects the input to represent an irreducible variety │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y_(_I_d_e_a_l_) -- find a random point on a variety │ │ │ │ that can be detected to be rational │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _r_a_n_d_o_m_P_o_i_n_t_s_O_n_R_a_t_i_o_n_a_l_V_a_r_i_e_t_y_(_I_d_e_a_l_,_Z_Z_) -- find random points on a │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/example-output/___Groebner__Walk.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ │ │ i5 : elapsedTime gb I2 │ │ │ - -- 3.00191s elapsed │ │ │ + -- 2.40056s elapsed │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ - -- 2.08916s elapsed │ │ │ + -- 2.00513s elapsed │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/GroebnerWalk/html/index.html │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ │ │ o4 : Ideal of R2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime gb I2
    │ │ │ - -- 3.00191s elapsed
    │ │ │ + -- 2.40056s elapsed
    │ │ │  
    │ │ │  o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16]
    │ │ │  
    │ │ │  o5 : GroebnerBasis
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    but it is faster to compute directly in the first order and then use the Groebner walk.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime groebnerWalk(gb I1, R2)
    │ │ │ - -- 2.08916s elapsed
    │ │ │ + -- 2.00513s elapsed
    │ │ │  
    │ │ │  o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0]
    │ │ │  
    │ │ │  o6 : GroebnerBasis
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,23 +38,23 @@ │ │ │ │ using a different weight vector and then graded reverse lexicographic we could │ │ │ │ substitute and compute directly, │ │ │ │ i3 : R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]; │ │ │ │ i4 : I2 = sub(I1, R2); │ │ │ │ │ │ │ │ o4 : Ideal of R2 │ │ │ │ i5 : elapsedTime gb I2 │ │ │ │ - -- 3.00191s elapsed │ │ │ │ + -- 2.40056s elapsed │ │ │ │ │ │ │ │ o5 = GroebnerBasis[status: done; S-pairs encountered up to degree 16] │ │ │ │ │ │ │ │ o5 : GroebnerBasis │ │ │ │ but it is faster to compute directly in the first order and then use the │ │ │ │ Groebner walk. │ │ │ │ i6 : elapsedTime groebnerWalk(gb I1, R2) │ │ │ │ - -- 2.08916s elapsed │ │ │ │ + -- 2.00513s elapsed │ │ │ │ │ │ │ │ o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 0] │ │ │ │ │ │ │ │ o6 : GroebnerBasis │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The target ring must be the same ring as the ring of the starting ideal, except │ │ │ │ with different monomial order. The ring must be a polynomial ring over a field. │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Power_lp__List_cm__Z__Z_rp.out │ │ │ @@ -6,20 +6,22 @@ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ - 1 │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ - 4 │ │ │ + 1 │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ + 2 │ │ │ ------------------------------------------------------------------------ │ │ │ - 1 1 │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ - 8 2 │ │ │ + 1 │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ + 4 │ │ │ ------------------------------------------------------------------------ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ + 1 │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ + 8 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/example-output/_hadamard__Product_lp__List_cm__List_rp.out │ │ │ @@ -2,12 +2,12 @@ │ │ │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Power_lp__List_cm__Z__Z_rp.html │ │ │ @@ -84,23 +84,25 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : hadamardPower(L,3)
    │ │ │  
    │ │ │ -                  1                                                    
    │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ -                  4                                                    
    │ │ │ +                  1                                                  
    │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4},
    │ │ │ +                  2                                                  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                                 1                               1
    │ │ │ -     Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1,
    │ │ │ -                                 8                               2
    │ │ │ +                 1                                                    
    │ │ │ +     Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16},
    │ │ │ +                 4                                                    
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 1}, Point{1, 0, 4}}
    │ │ │ +                                 1
    │ │ │ +     Point{1, 0, 1}, Point{1, 1, -}}
    │ │ │ +                                 8
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,22 +22,24 @@ │ │ │ │ o1 = {Point{1, 1, -}, Point{1, 0, 1}, Point{1, 2, 4}} │ │ │ │ 2 │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : hadamardPower(L,3) │ │ │ │ │ │ │ │ 1 │ │ │ │ -o2 = {Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ - 4 │ │ │ │ +o2 = {Point{1, 0, -}, Point{1, 0, 2}, Point{1, 2, 1}, Point{1, 0, 4}, │ │ │ │ + 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1 1 │ │ │ │ - Point{1, 0, 1}, Point{1, 1, -}, Point{1, 0, 2}, Point{1, 0, -}, Point{1, │ │ │ │ - 8 2 │ │ │ │ + 1 │ │ │ │ + Point{1, 0, -}, Point{1, 8, 64}, Point{1, 4, 8}, Point{1, 0, 16}, │ │ │ │ + 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 1}, Point{1, 0, 4}} │ │ │ │ + 1 │ │ │ │ + Point{1, 0, 1}, Point{1, 1, -}} │ │ │ │ + 8 │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_o_w_e_r_(_L_i_s_t_,_Z_Z_) -- computes the $r$-th Hadmard powers of a set │ │ │ │ points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Hadamard/html/_hadamard__Product_lp__List_cm__List_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │
    i2 : M = {point{1,0}, point{2,2}};
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : hadamardProduct(L,M)
    │ │ │  
    │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}}
    │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ Given two sets of points $L$ and $M$ returns the list of (well-defined) │ │ │ │ entrywise multiplication of pairs of points in the cartesian product $L\times │ │ │ │ M$. │ │ │ │ i1 : L = {point{0,1}, point{1,2}}; │ │ │ │ i2 : M = {point{1,0}, point{2,2}}; │ │ │ │ i3 : hadamardProduct(L,M) │ │ │ │ │ │ │ │ -o3 = {Point{1, 0}, Point{0, 2}, Point{2, 4}} │ │ │ │ +o3 = {Point{2, 4}, Point{1, 0}, Point{0, 2}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _h_a_d_a_m_a_r_d_P_r_o_d_u_c_t_(_L_i_s_t_,_L_i_s_t_) -- Hadamard product of two sets of points │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Hadamard.m2:345:0. │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_css__Lead__Term.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ o5 = {9, 1, 99999, 9999999, 3, 999} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : netList cssLeadTerm(Hbeta, w) │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ - -- .000004479s elapsed │ │ │ - -- .000004238s elapsed │ │ │ - -- .000003977s elapsed │ │ │ - -- .000001883s elapsed │ │ │ - -- .000001392s elapsed │ │ │ + -- .00000821s elapsed │ │ │ + -- .00000697s elapsed │ │ │ + -- .000007544s elapsed │ │ │ + -- .000026503s elapsed │ │ │ + -- .000008587s elapsed │ │ │ │ │ │ +----------------------------------------------------+ │ │ │ | 1 5 5 5 | │ │ │ | - - - - - - | │ │ │ | 2 2 2 2 | │ │ │ o6 = |x x x x | │ │ │ | 1 2 4 5 | │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/example-output/_solve__Frobenius__Ideal.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : R = QQ[t_1..t_5]; │ │ │ │ │ │ i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3, t_2*t_4); │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : solveFrobeniusIdeal I │ │ │ - -- .000004088s elapsed │ │ │ + -- .000008661s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o3 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,15 +24,15 @@ │ │ │ 2 4 0 4 4 1 2 4 2 4 4 3 4 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : W = makeWeylAlgebra(QQ[x_1..x_5]); │ │ │ │ │ │ i5 : solveFrobeniusIdeal(I, W) │ │ │ - -- .00000535s elapsed │ │ │ + -- .000007972s elapsed │ │ │ Warning: F4 Algorithm not available over current coefficient ring or inhomogeneous ideal. │ │ │ Converting to Naive algorithm. │ │ │ │ │ │ │ │ │ o5 = {1, - 2logX + 3logX - 2logX + logX , - logX + logX - logX + logX , │ │ │ 0 1 2 3 0 1 2 4 │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_css__Lead__Term.html │ │ │ @@ -134,19 +134,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │ - -- .000004479s elapsed
    │ │ │ - -- .000004238s elapsed
    │ │ │ - -- .000003977s elapsed
    │ │ │ - -- .000001883s elapsed
    │ │ │ - -- .000001392s elapsed
    │ │ │ + -- .00000821s elapsed
    │ │ │ + -- .00000697s elapsed
    │ │ │ + -- .000007544s elapsed
    │ │ │ + -- .000026503s elapsed
    │ │ │ + -- .000008587s elapsed
    │ │ │  
    │ │ │       +----------------------------------------------------+
    │ │ │       |   1 5   5 5                                        |
    │ │ │       | - - - - - -                                        |
    │ │ │       |   2 2   2 2                                        |
    │ │ │  o6 = |x   x x   x                                         |
    │ │ │       | 1   2 4   5                                        |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -57,19 +57,19 @@
    │ │ │ │  o5 = {9, 1, 99999, 9999999, 3, 999}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : netList cssLeadTerm(Hbeta, w)
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │ - -- .000004479s elapsed
    │ │ │ │ - -- .000004238s elapsed
    │ │ │ │ - -- .000003977s elapsed
    │ │ │ │ - -- .000001883s elapsed
    │ │ │ │ - -- .000001392s elapsed
    │ │ │ │ + -- .00000821s elapsed
    │ │ │ │ + -- .00000697s elapsed
    │ │ │ │ + -- .000007544s elapsed
    │ │ │ │ + -- .000026503s elapsed
    │ │ │ │ + -- .000008587s elapsed
    │ │ │ │  
    │ │ │ │       +----------------------------------------------------+
    │ │ │ │       |   1 5   5 5                                        |
    │ │ │ │       | - - - - - -                                        |
    │ │ │ │       |   2 2   2 2                                        |
    │ │ │ │  o6 = |x   x x   x                                         |
    │ │ │ │       | 1   2 4   5                                        |
    │ │ ├── ./usr/share/doc/Macaulay2/HolonomicSystems/html/_solve__Frobenius__Ideal.html
    │ │ │ @@ -84,15 +84,15 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : solveFrobeniusIdeal I
    │ │ │ - -- .000004088s elapsed
    │ │ │ + -- .000008661s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -113,15 +113,15 @@
    │ │ │              
    │ │ │                
    i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : solveFrobeniusIdeal(I, W)
    │ │ │ - -- .00000535s elapsed
    │ │ │ + -- .000007972s elapsed
    │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or inhomogeneous ideal.
    │ │ │  Converting to Naive algorithm.
    │ │ │  
    │ │ │                                                                               
    │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │                  0        1        2       3        0       1       2       4 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  Here is [_S_S_T, Example 2.3.16]:
    │ │ │ │  i1 : R = QQ[t_1..t_5];
    │ │ │ │  i2 : I = ideal(t_1+t_2+t_3+t_4+t_5, t_1+t_2-t_4, t_2+t_3-t_4, t_1*t_3,
    │ │ │ │  t_2*t_4);
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : solveFrobeniusIdeal I
    │ │ │ │ - -- .000004088s elapsed
    │ │ │ │ + -- .000008661s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o3 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │         1             1             1             3                 2
    │ │ │ │       - -logX logX  - -logX logX  - -logX logX  - -logX logX  + logX }
    │ │ │ │         2    4    0   4    4    1   2    4    2   4    4    3       4
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : W = makeWeylAlgebra(QQ[x_1..x_5]);
    │ │ │ │  i5 : solveFrobeniusIdeal(I, W)
    │ │ │ │ - -- .00000535s elapsed
    │ │ │ │ + -- .000007972s elapsed
    │ │ │ │  Warning:  F4 Algorithm not available over current coefficient ring or
    │ │ │ │  inhomogeneous ideal.
    │ │ │ │  Converting to Naive algorithm.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o5 = {1, - 2logX  + 3logX  - 2logX  + logX , - logX  + logX  - logX  + logX ,
    │ │ │ │                  0        1        2       3        0       1       2       4
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/example-output/_bracket.out
    │ │ │ @@ -85,19 +85,16 @@
    │ │ │  
    │ │ │  o13 = 600
    │ │ │  
    │ │ │  i14 : H' = select(keys H, k->H#k != 0);
    │ │ │  
    │ │ │  i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -151,22 +148,25 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │  
    │ │ │  i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │  
    │ │ │  i17 : bracketMatrix(A,1,2)
    │ │ │  
    │ │ │  o17 = | 0    -T_8 -T_6 -T_7 -T_10 |
    │ │ ├── ./usr/share/doc/Macaulay2/HomotopyLieAlgebra/html/_bracket.html
    │ │ │ @@ -215,19 +215,16 @@
    │ │ │                
    i14 : H' = select(keys H, k->H#k != 0);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : H'
    │ │ │  
    │ │ │ -o15 = {({T , T }, T T  + T T  - z*T   + y*T  ), ({T , T }, - T T  + y*T  ),
    │ │ │ -          3   7    4 6    3 7      11      13      2   9      2 9      16  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      ({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ -         1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │ +o15 = {({T , T }, - T T  - T T  - z*T   + x*T  ), ({T , T }, - T T  + z*T  ),
    │ │ │ +          1   9      5 6    1 9      14      17      4   7      4 7      13  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        ({T , T  }, T T  - T T   + x*T  ), ({T , T }, - T T  + z*T  ), ({T ,
    │ │ │           1   10    4 6    1 10      20      5   9      5 9      16      3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T }, T T  - z*T   + x*T  ), ({T , T }, - T T  - T T  - z*T   + x*T  ),
    │ │ │         7    3 7      11      12      5   6      5 6    1 9      14      17  
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -281,25 +278,28 @@
    │ │ │        -----------------------------------------------------------------------
    │ │ │        z*T  ), ({T , T  }, T T  - T T   - z*T   + z*T  ), ({T , T }, T T  +
    │ │ │           17      5   10    4 9    5 10      17      19      3   8    2 6  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        T T  + T T  + y*T   - z*T  ), ({T , T }, T T  + y*T   - z*T  ), ({T ,
    │ │ │         3 8    4 9      14      17      3   6    3 6      11      12      5 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      T }, - T T  - T T   + z*T   + z*T  )}
    │ │ │ -       7      5 7    4 10      12      20
    │ │ │ +      T }, - T T  - T T   + z*T   + z*T  ), ({T , T }, T T  + T T  - z*T   +
    │ │ │ +       7      5 7    4 10      12      20      3   7    4 6    3 7      11  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      y*T  ), ({T , T }, - T T  + y*T  )}
    │ │ │ +         13      2   9      2 9      16
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : H#(H'_0)
    │ │ │  
    │ │ │ -o16 = 1
    │ │ │ +o16 = -1
    │ │ │  
    │ │ │  o16 : S[T ..T  ]
    │ │ │           1   99
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -118,19 +118,16 @@ │ │ │ │ 37 38 39 40 41 42 43 44 │ │ │ │ i13 : #keys H │ │ │ │ │ │ │ │ o13 = 600 │ │ │ │ i14 : H' = select(keys H, k->H#k != 0); │ │ │ │ i15 : H' │ │ │ │ │ │ │ │ -o15 = {({T , T }, T T + T T - z*T + y*T ), ({T , T }, - T T + y*T ), │ │ │ │ - 3 7 4 6 3 7 11 13 2 9 2 9 16 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - ({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ - 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ +o15 = {({T , T }, - T T - T T - z*T + x*T ), ({T , T }, - T T + z*T ), │ │ │ │ + 1 9 5 6 1 9 14 17 4 7 4 7 13 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ({T , T }, T T - T T + x*T ), ({T , T }, - T T + z*T ), ({T , │ │ │ │ 1 10 4 6 1 10 20 5 9 5 9 16 3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T }, T T - z*T + x*T ), ({T , T }, - T T - T T - z*T + x*T ), │ │ │ │ 7 3 7 11 12 5 6 5 6 1 9 14 17 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -184,21 +181,24 @@ │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ z*T ), ({T , T }, T T - T T - z*T + z*T ), ({T , T }, T T + │ │ │ │ 17 5 10 4 9 5 10 17 19 3 8 2 6 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ T T + T T + y*T - z*T ), ({T , T }, T T + y*T - z*T ), ({T , │ │ │ │ 3 8 4 9 14 17 3 6 3 6 11 12 5 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - T }, - T T - T T + z*T + z*T )} │ │ │ │ - 7 5 7 4 10 12 20 │ │ │ │ + T }, - T T - T T + z*T + z*T ), ({T , T }, T T + T T - z*T + │ │ │ │ + 7 5 7 4 10 12 20 3 7 4 6 3 7 11 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + y*T ), ({T , T }, - T T + y*T )} │ │ │ │ + 13 2 9 2 9 16 │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : H#(H'_0) │ │ │ │ │ │ │ │ -o16 = 1 │ │ │ │ +o16 = -1 │ │ │ │ │ │ │ │ o16 : S[T ..T ] │ │ │ │ 1 99 │ │ │ │ From this we see that [T_5, T_6] sends T_37 to -1 in kk. │ │ │ │ Another, often simpler view of the pairing is given by _b_r_a_c_k_e_t_M_a_t_r_i_x, where the │ │ │ │ rows and columns correspond to the generators of Pi^d and Pi^e, and the entries │ │ │ │ are the bracket products, interpreted as elements of Pi^{d+e}. Note the anti- │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/example-output/_cone_lp__Arrangement_cm__Ring__Element_rp.out │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ │ │ o13 = {x, y, x - y, 0, - x + y, x} │ │ │ │ │ │ o13 : Hyperplane Arrangement │ │ │ │ │ │ i14 : cA'' = trim cone(A, x) │ │ │ │ │ │ -o14 = {x - y, y, x} │ │ │ +o14 = {y, x, x - y} │ │ │ │ │ │ o14 : Hyperplane Arrangement │ │ │ │ │ │ i15 : assert isCentral cA'' │ │ │ │ │ │ i16 : assert(# hyperplanes cA'' =!= 1 + # hyperplanes A) │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/example-output/_type__B_lp__Z__Z_cm__Ring_rp.out │ │ │ @@ -33,16 +33,16 @@ │ │ │ o5 = {x , x + x , x + x , x } │ │ │ 1 1 2 1 2 2 │ │ │ │ │ │ o5 : Hyperplane Arrangement │ │ │ │ │ │ i6 : trim A3 │ │ │ │ │ │ -o6 = {x , x , x + x } │ │ │ - 2 1 1 2 │ │ │ +o6 = {x + x , x , x } │ │ │ + 1 2 2 1 │ │ │ │ │ │ o6 : Hyperplane Arrangement │ │ │ │ │ │ i7 : ring A3 │ │ │ │ │ │ ZZ │ │ │ o7 = --[x ..x ] │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/html/_cone_lp__Arrangement_cm__Ring__Element_rp.html │ │ │ @@ -167,15 +167,15 @@ │ │ │ o13 : Hyperplane Arrangement
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : cA'' = trim cone(A, x)
    │ │ │  
    │ │ │ -o14 = {x - y, y, x}
    │ │ │ +o14 = {y, x, x - y}
    │ │ │  
    │ │ │  o14 : Hyperplane Arrangement 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : assert isCentral cA''
    │ │ │ ├── html2text {} │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ i13 : cone(A, x) │ │ │ │ │ │ │ │ o13 = {x, y, x - y, 0, - x + y, x} │ │ │ │ │ │ │ │ o13 : Hyperplane Arrangement │ │ │ │ i14 : cA'' = trim cone(A, x) │ │ │ │ │ │ │ │ -o14 = {x - y, y, x} │ │ │ │ +o14 = {y, x, x - y} │ │ │ │ │ │ │ │ o14 : Hyperplane Arrangement │ │ │ │ i15 : assert isCentral cA'' │ │ │ │ i16 : assert(# hyperplanes cA'' =!= 1 + # hyperplanes A) │ │ │ │ When the second input is a _S_y_m_b_o_l, this method creates a new ring from the │ │ │ │ underlying ring of $A$ by adjoining the symbol as a variable and constructs the │ │ │ │ cone in this new ring. │ │ ├── ./usr/share/doc/Macaulay2/HyperplaneArrangements/html/_type__B_lp__Z__Z_cm__Ring_rp.html │ │ │ @@ -125,16 +125,16 @@ │ │ │ o5 : Hyperplane Arrangement
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : trim A3
    │ │ │  
    │ │ │ -o6 = {x , x , x  + x }
    │ │ │ -       2   1   1    2
    │ │ │ +o6 = {x  + x , x , x }
    │ │ │ +       1    2   2   1
    │ │ │  
    │ │ │  o6 : Hyperplane Arrangement 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : ring A3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,16 +51,16 @@
    │ │ │ │  
    │ │ │ │  o5 = {x , x  + x , x  + x , x }
    │ │ │ │         1   1    2   1    2   2
    │ │ │ │  
    │ │ │ │  o5 : Hyperplane Arrangement
    │ │ │ │  i6 : trim A3
    │ │ │ │  
    │ │ │ │ -o6 = {x , x , x  + x }
    │ │ │ │ -       2   1   1    2
    │ │ │ │ +o6 = {x  + x , x , x }
    │ │ │ │ +       1    2   2   1
    │ │ │ │  
    │ │ │ │  o6 : Hyperplane Arrangement
    │ │ │ │  i7 : ring A3
    │ │ │ │  
    │ │ │ │       ZZ
    │ │ │ │  o7 = --[x ..x ]
    │ │ │ │        2  1   2
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -16,15 +16,15 @@
    │ │ │  i3 : R = S/f
    │ │ │  
    │ │ │  o3 = R
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │  
    │ │ │  i4 : time R' = integralClosure R
    │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc)
    │ │ │ + -- used 0.957969s (cpu); 0.462046s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │  
    │ │ │  i5 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  i9 : R = S/f
    │ │ │  
    │ │ │  o9 = R
    │ │ │  
    │ │ │  o9 : QuotientRing
    │ │ │  
    │ │ │  i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc)
    │ │ │ + -- used 1.03599s (cpu); 0.477573s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │  
    │ │ │  i11 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -150,15 +150,15 @@
    │ │ │  i15 : R = S/f
    │ │ │  
    │ │ │  o15 = R
    │ │ │  
    │ │ │  o15 : QuotientRing
    │ │ │  
    │ │ │  i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc)
    │ │ │ + -- used 1.1629s (cpu); 0.50279s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │  
    │ │ │  i17 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -208,15 +208,15 @@
    │ │ │  i20 : R = S/f
    │ │ │  
    │ │ │  o20 = R
    │ │ │  
    │ │ │  o20 : QuotientRing
    │ │ │  
    │ │ │  i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc)
    │ │ │ + -- used 1.15527s (cpu); 0.526915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │  
    │ │ │  i22 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -266,15 +266,15 @@
    │ │ │  i25 : R = S/f
    │ │ │  
    │ │ │  o25 = R
    │ │ │  
    │ │ │  o25 : QuotientRing
    │ │ │  
    │ │ │  i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc)
    │ │ │ + -- used 2.10417s (cpu); 0.878076s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │  
    │ │ │  i27 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │  i30 : R = S/f
    │ │ │  
    │ │ │  o30 = R
    │ │ │  
    │ │ │  o30 : QuotientRing
    │ │ │  
    │ │ │  i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc)
    │ │ │ + -- used 0.867777s (cpu); 0.472968s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │  
    │ │ │  i32 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -382,15 +382,15 @@
    │ │ │  i35 : R = S/f
    │ │ │  
    │ │ │  o35 = R
    │ │ │  
    │ │ │  o35 : QuotientRing
    │ │ │  
    │ │ │  i36 : time R' = integralClosure R
    │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc)
    │ │ │ + -- used 0.0576698s (cpu); 0.0576711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │  
    │ │ │  i37 : netList (ideal R')_*
    │ │ │  
    │ │ │ @@ -432,15 +432,15 @@
    │ │ │  i40 : R = S/I
    │ │ │  
    │ │ │  o40 = R
    │ │ │  
    │ │ │  o40 : QuotientRing
    │ │ │  
    │ │ │  i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc)
    │ │ │ + -- used 0.187278s (cpu); 0.0970815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │  
    │ │ │  i42 : icFractions R
    │ │ │  
    │ │ │ @@ -467,15 +467,15 @@
    │ │ │  i45 : R = S/I
    │ │ │  
    │ │ │  o45 = R
    │ │ │  
    │ │ │  o45 : QuotientRing
    │ │ │  
    │ │ │  i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc)
    │ │ │ + -- used 0.0812437s (cpu); 0.0812363s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │  
    │ │ │  i47 : icFractions R
    │ │ │  
    │ │ │ @@ -501,15 +501,15 @@
    │ │ │  i50 : R = S/I
    │ │ │  
    │ │ │  o50 = R
    │ │ │  
    │ │ │  o50 : QuotientRing
    │ │ │  
    │ │ │  i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc)
    │ │ │ + -- used 0.0551067s (cpu); 0.0551075s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │  
    │ │ │  i52 : icFractions R
    │ │ │  
    │ │ │ @@ -536,15 +536,15 @@
    │ │ │  i55 : R = S/I
    │ │ │  
    │ │ │  o55 = R
    │ │ │  
    │ │ │  o55 : QuotientRing
    │ │ │  
    │ │ │  i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc)
    │ │ │ + -- used 0.234603s (cpu); 0.137397s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │  
    │ │ │  i57 : icFractions R
    │ │ │  
    │ │ │ @@ -632,15 +632,15 @@
    │ │ │  i66 : R = S/I
    │ │ │  
    │ │ │  o66 = R
    │ │ │  
    │ │ │  o66 : QuotientRing
    │ │ │  
    │ │ │  i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc)
    │ │ │ + -- used 0.113255s (cpu); 0.113035s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │  
    │ │ │  i68 : icFractions R
    │ │ │  
    │ │ │ @@ -721,15 +721,15 @@
    │ │ │  i77 : R = S/I
    │ │ │  
    │ │ │  o77 = R
    │ │ │  
    │ │ │  o77 : QuotientRing
    │ │ │  
    │ │ │  i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc)
    │ │ │ + -- used 0.667243s (cpu); 0.46373s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │  
    │ │ │  i79 : icFractions R
    │ │ │  
    │ │ │ @@ -749,15 +749,15 @@
    │ │ │  i81 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o81 = R
    │ │ │  
    │ │ │  o81 : QuotientRing
    │ │ │  
    │ │ │  i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc)
    │ │ │ + -- used 0.688685s (cpu); 0.475841s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │  
    │ │ │  i83 : icFractions R
    │ │ │  
    │ │ │ @@ -777,20 +777,20 @@
    │ │ │  i85 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o85 = R
    │ │ │  
    │ │ │  o85 : QuotientRing
    │ │ │  
    │ │ │  i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time .000568686 sec #minors 4]
    │ │ │ + [jacobian time .000716405 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .205692 sec  #fractions 6]
    │ │ │ - [step 1:   time .231823 sec  #fractions 6]
    │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc)
    │ │ │ + [step 0:   time .279362 sec  #fractions 6]
    │ │ │ + [step 1:   time .156924 sec  #fractions 6]
    │ │ │ + -- used 0.441098s (cpu); 0.327209s (thread); 0s (gc)
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │  
    │ │ │  i87 : icFractions R
    │ │ │  
    │ │ │ @@ -810,20 +810,20 @@
    │ │ │  i89 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o89 = R
    │ │ │  
    │ │ │  o89 : QuotientRing
    │ │ │  
    │ │ │  i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ - [jacobian time .000531076 sec #minors 4]
    │ │ │ + [jacobian time .000670116 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0900187 sec  #fractions 6]
    │ │ │ - [step 1:   time .361551 sec  #fractions 6]
    │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc)
    │ │ │ + [step 0:   time .266951 sec  #fractions 6]
    │ │ │ + [step 1:   time .382568 sec  #fractions 6]
    │ │ │ + -- used 0.65424s (cpu); 0.425013s (thread); 0s (gc)
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │  
    │ │ │  i91 : icFractions R
    │ │ │  
    │ │ │ @@ -843,20 +843,20 @@
    │ │ │  i93 : R = S/sub(I,S)
    │ │ │  
    │ │ │  o93 = R
    │ │ │  
    │ │ │  o93 : QuotientRing
    │ │ │  
    │ │ │  i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │ - [jacobian time .000614342 sec #minors 1]
    │ │ │ + [jacobian time .000885563 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .115349 sec  #fractions 6]
    │ │ │ - [step 1:   time .476597 sec  #fractions 6]
    │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc)
    │ │ │ + [step 0:   time .301729 sec  #fractions 6]
    │ │ │ + [step 1:   time .68322 sec  #fractions 6]
    │ │ │ + -- used 0.990036s (cpu); 0.590066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │  
    │ │ │  i95 : icFractions R
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.out
    │ │ │ @@ -1,50 +1,50 @@
    │ │ │  -- -*- M2-comint -*- hash: 13177954069434615273
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │  
    │ │ │  i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .000590017 sec #minors 3]
    │ │ │ + [jacobian time .00117774 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │ -      radical (use minprimes) .00261628 seconds
    │ │ │ -      idlizer1:  .00964141 seconds
    │ │ │ -      idlizer2:  .00985369 seconds
    │ │ │ -      minpres:   .00867646 seconds
    │ │ │ -  time .0425597 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00339736 seconds
    │ │ │ +      idlizer1:  .0096856 seconds
    │ │ │ +      idlizer2:  .0112375 seconds
    │ │ │ +      minpres:   .0105021 seconds
    │ │ │ +  time .0508319 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00239377 seconds
    │ │ │ -      idlizer1:  .0111541 seconds
    │ │ │ -      idlizer2:  .00992828 seconds
    │ │ │ -      minpres:   .0111938 seconds
    │ │ │ -  time .0454337 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00478433 seconds
    │ │ │ +      idlizer1:  .0146722 seconds
    │ │ │ +      idlizer2:  .0132138 seconds
    │ │ │ +      minpres:   .0139497 seconds
    │ │ │ +  time .0634958 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │ -      radical (use minprimes) .00239345 seconds
    │ │ │ -      idlizer1:  .0115122 seconds
    │ │ │ -      idlizer2:  .00971861 seconds
    │ │ │ -      minpres:   .00890232 seconds
    │ │ │ -  time .0434159 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00303693 seconds
    │ │ │ +      idlizer1:  .0164851 seconds
    │ │ │ +      idlizer2:  .0143606 seconds
    │ │ │ +      minpres:   .0120521 seconds
    │ │ │ +  time .0596535 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) .00252848 seconds
    │ │ │ -      idlizer1:  .118442 seconds
    │ │ │ -      idlizer2:  .0133284 seconds
    │ │ │ -      minpres:   .0156925 seconds
    │ │ │ -  time .162067 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00323109 seconds
    │ │ │ +      idlizer1:  .160633 seconds
    │ │ │ +      idlizer2:  .0178752 seconds
    │ │ │ +      minpres:   .0218933 seconds
    │ │ │ +  time .220674 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) .00282827 seconds
    │ │ │ -      idlizer1:  .00924351 seconds
    │ │ │ -      idlizer2:  .0162379 seconds
    │ │ │ -      minpres:   .0120262 seconds
    │ │ │ -  time .0536223 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00364484 seconds
    │ │ │ +      idlizer1:  .0115651 seconds
    │ │ │ +      idlizer2:  .0189379 seconds
    │ │ │ +      minpres:   .015161 seconds
    │ │ │ +  time .0667249 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00232149 seconds
    │ │ │ -      idlizer1:  .00789534 seconds
    │ │ │ -  time .0169089 sec  #fractions 5]
    │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc)
    │ │ │ +      radical (use minprimes) .00347184 seconds
    │ │ │ +      idlizer1:  .0127651 seconds
    │ │ │ +  time .0259012 sec  #fractions 5]
    │ │ │ + -- used 0.49625s (cpu); 0.407521s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │  i3 : trim ideal R'
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/example-output/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.out
    │ │ │ @@ -13,26 +13,26 @@
    │ │ │  
    │ │ │                  2      2    2        2   2 2     2
    │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │  
    │ │ │  o3 : Ideal of S
    │ │ │  
    │ │ │  i4 : time integralClosure J
    │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ + -- used 1.81097s (cpu); 1.03007s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │  
    │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ + -- used 1.45146s (cpu); 0.722064s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │  
    │ │ │  o3 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time R' = integralClosure R
    │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc)
    │ │ │ + -- used 0.957969s (cpu); 0.462046s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = R'
    │ │ │  
    │ │ │  o4 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -186,15 +186,15 @@ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc)
    │ │ │ + -- used 1.03599s (cpu); 0.477573s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = R'
    │ │ │  
    │ │ │  o10 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -273,15 +273,15 @@ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc)
    │ │ │ + -- used 1.1629s (cpu); 0.50279s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 = R'
    │ │ │  
    │ │ │  o16 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -348,15 +348,15 @@ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
    │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc)
    │ │ │ + -- used 1.15527s (cpu); 0.526915s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = R'
    │ │ │  
    │ │ │  o21 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -423,15 +423,15 @@ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc)
    │ │ │ + -- used 2.10417s (cpu); 0.878076s (thread); 0s (gc)
    │ │ │  
    │ │ │  o26 = R'
    │ │ │  
    │ │ │  o26 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -498,15 +498,15 @@ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc)
    │ │ │ + -- used 0.867777s (cpu); 0.472968s (thread); 0s (gc)
    │ │ │  
    │ │ │  o31 = R'
    │ │ │  
    │ │ │  o31 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i36 : time R' = integralClosure R
    │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc)
    │ │ │ + -- used 0.0576698s (cpu); 0.0576711s (thread); 0s (gc)
    │ │ │  
    │ │ │  o36 = R'
    │ │ │  
    │ │ │  o36 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -643,15 +643,15 @@ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc)
    │ │ │ + -- used 0.187278s (cpu); 0.0970815s (thread); 0s (gc)
    │ │ │  
    │ │ │  o41 = R'
    │ │ │  
    │ │ │  o41 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -695,15 +695,15 @@ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc)
    │ │ │ + -- used 0.0812437s (cpu); 0.0812363s (thread); 0s (gc)
    │ │ │  
    │ │ │  o46 = R'
    │ │ │  
    │ │ │  o46 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -746,15 +746,15 @@ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
    │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc)
    │ │ │ + -- used 0.0551067s (cpu); 0.0551075s (thread); 0s (gc)
    │ │ │  
    │ │ │  o51 = R'
    │ │ │  
    │ │ │  o51 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
    │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc)
    │ │ │ + -- used 0.234603s (cpu); 0.137397s (thread); 0s (gc)
    │ │ │  
    │ │ │  o56 = R'
    │ │ │  
    │ │ │  o56 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -932,15 +932,15 @@ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i67 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc)
    │ │ │ + -- used 0.113255s (cpu); 0.113035s (thread); 0s (gc)
    │ │ │  
    │ │ │  o67 = R'
    │ │ │  
    │ │ │  o67 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1056,15 +1056,15 @@ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i78 : time R' = integralClosure(R, Strategy => Radical)
    │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc)
    │ │ │ + -- used 0.667243s (cpu); 0.46373s (thread); 0s (gc)
    │ │ │  
    │ │ │  o78 = R'
    │ │ │  
    │ │ │  o78 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1098,15 +1098,15 @@ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
    │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc)
    │ │ │ + -- used 0.688685s (cpu); 0.475841s (thread); 0s (gc)
    │ │ │  
    │ │ │  o82 = R'
    │ │ │  
    │ │ │  o82 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1140,20 +1140,20 @@ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
    │ │ │ - [jacobian time .000568686 sec #minors 4]
    │ │ │ + [jacobian time .000716405 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .205692 sec  #fractions 6]
    │ │ │ - [step 1:   time .231823 sec  #fractions 6]
    │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc)
    │ │ │ + [step 0:   time .279362 sec  #fractions 6]
    │ │ │ + [step 1:   time .156924 sec  #fractions 6]
    │ │ │ + -- used 0.441098s (cpu); 0.327209s (thread); 0s (gc)
    │ │ │  
    │ │ │  o86 = R'
    │ │ │  
    │ │ │  o86 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1187,20 +1187,20 @@ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
    │ │ │ - [jacobian time .000531076 sec #minors 4]
    │ │ │ + [jacobian time .000670116 sec #minors 4]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .0900187 sec  #fractions 6]
    │ │ │ - [step 1:   time .361551 sec  #fractions 6]
    │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc)
    │ │ │ + [step 0:   time .266951 sec  #fractions 6]
    │ │ │ + [step 1:   time .382568 sec  #fractions 6]
    │ │ │ + -- used 0.65424s (cpu); 0.425013s (thread); 0s (gc)
    │ │ │  
    │ │ │  o90 = R'
    │ │ │  
    │ │ │  o90 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -1237,20 +1237,20 @@ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
    │ │ │ - [jacobian time .000614342 sec #minors 1]
    │ │ │ + [jacobian time .000885563 sec #minors 1]
    │ │ │  integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │ - [step 0:   time .115349 sec  #fractions 6]
    │ │ │ - [step 1:   time .476597 sec  #fractions 6]
    │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc)
    │ │ │ + [step 0:   time .301729 sec  #fractions 6]
    │ │ │ + [step 1:   time .68322 sec  #fractions 6]
    │ │ │ + -- used 0.990036s (cpu); 0.590066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o94 = R'
    │ │ │  
    │ │ │  o94 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,15 +48,15 @@ │ │ │ │ o2 : Ideal of S │ │ │ │ i3 : R = S/f │ │ │ │ │ │ │ │ o3 = R │ │ │ │ │ │ │ │ o3 : QuotientRing │ │ │ │ i4 : time R' = integralClosure R │ │ │ │ - -- used 0.69883s (cpu); 0.430243s (thread); 0s (gc) │ │ │ │ + -- used 0.957969s (cpu); 0.462046s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = R' │ │ │ │ │ │ │ │ o4 : QuotientRing │ │ │ │ i5 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------+ │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : R = S/f │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : QuotientRing │ │ │ │ i10 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.788474s (cpu); 0.418463s (thread); 0s (gc) │ │ │ │ + -- used 1.03599s (cpu); 0.477573s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = R' │ │ │ │ │ │ │ │ o10 : QuotientRing │ │ │ │ i11 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ o14 : Ideal of S │ │ │ │ i15 : R = S/f │ │ │ │ │ │ │ │ o15 = R │ │ │ │ │ │ │ │ o15 : QuotientRing │ │ │ │ i16 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.874799s (cpu); 0.497563s (thread); 0s (gc) │ │ │ │ + -- used 1.1629s (cpu); 0.50279s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = R' │ │ │ │ │ │ │ │ o16 : QuotientRing │ │ │ │ i17 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -281,15 +281,15 @@ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : R = S/f │ │ │ │ │ │ │ │ o20 = R │ │ │ │ │ │ │ │ o20 : QuotientRing │ │ │ │ i21 : time R' = integralClosure(R, Strategy => SimplifyFractions) │ │ │ │ - -- used 0.948566s (cpu); 0.526929s (thread); 0s (gc) │ │ │ │ + -- used 1.15527s (cpu); 0.526915s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = R' │ │ │ │ │ │ │ │ o21 : QuotientRing │ │ │ │ i22 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -363,15 +363,15 @@ │ │ │ │ o24 : Ideal of S │ │ │ │ i25 : R = S/f │ │ │ │ │ │ │ │ o25 = R │ │ │ │ │ │ │ │ o25 : QuotientRing │ │ │ │ i26 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 1.74854s (cpu); 0.873262s (thread); 0s (gc) │ │ │ │ + -- used 2.10417s (cpu); 0.878076s (thread); 0s (gc) │ │ │ │ │ │ │ │ o26 = R' │ │ │ │ │ │ │ │ o26 : QuotientRing │ │ │ │ i27 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -445,15 +445,15 @@ │ │ │ │ o29 : Ideal of S │ │ │ │ i30 : R = S/f │ │ │ │ │ │ │ │ o30 = R │ │ │ │ │ │ │ │ o30 : QuotientRing │ │ │ │ i31 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.549469s (cpu); 0.440596s (thread); 0s (gc) │ │ │ │ + -- used 0.867777s (cpu); 0.472968s (thread); 0s (gc) │ │ │ │ │ │ │ │ o31 = R' │ │ │ │ │ │ │ │ o31 : QuotientRing │ │ │ │ i32 : netList (ideal R')_* │ │ │ │ │ │ │ │ +------------------------------------------------------------------------ │ │ │ │ @@ -527,15 +527,15 @@ │ │ │ │ o34 : Ideal of S │ │ │ │ i35 : R = S/f │ │ │ │ │ │ │ │ o35 = R │ │ │ │ │ │ │ │ o35 : QuotientRing │ │ │ │ i36 : time R' = integralClosure R │ │ │ │ - -- used 0.044023s (cpu); 0.0440201s (thread); 0s (gc) │ │ │ │ + -- used 0.0576698s (cpu); 0.0576711s (thread); 0s (gc) │ │ │ │ │ │ │ │ o36 = R' │ │ │ │ │ │ │ │ o36 : QuotientRing │ │ │ │ i37 : netList (ideal R')_* │ │ │ │ │ │ │ │ +-----------+ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ o39 : Ideal of S │ │ │ │ i40 : R = S/I │ │ │ │ │ │ │ │ o40 = R │ │ │ │ │ │ │ │ o40 : QuotientRing │ │ │ │ i41 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.0436521s (cpu); 0.0436527s (thread); 0s (gc) │ │ │ │ + -- used 0.187278s (cpu); 0.0970815s (thread); 0s (gc) │ │ │ │ │ │ │ │ o41 = R' │ │ │ │ │ │ │ │ o41 : QuotientRing │ │ │ │ i42 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -603,15 +603,15 @@ │ │ │ │ o44 : Ideal of S │ │ │ │ i45 : R = S/I │ │ │ │ │ │ │ │ o45 = R │ │ │ │ │ │ │ │ o45 : QuotientRing │ │ │ │ i46 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.0621814s (cpu); 0.0621828s (thread); 0s (gc) │ │ │ │ + -- used 0.0812437s (cpu); 0.0812363s (thread); 0s (gc) │ │ │ │ │ │ │ │ o46 = R' │ │ │ │ │ │ │ │ o46 : QuotientRing │ │ │ │ i47 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -632,15 +632,15 @@ │ │ │ │ o49 : Ideal of S │ │ │ │ i50 : R = S/I │ │ │ │ │ │ │ │ o50 = R │ │ │ │ │ │ │ │ o50 : QuotientRing │ │ │ │ i51 : time R' = integralClosure (R, Strategy => RadicalCodim1) │ │ │ │ - -- used 0.0426811s (cpu); 0.0426768s (thread); 0s (gc) │ │ │ │ + -- used 0.0551067s (cpu); 0.0551075s (thread); 0s (gc) │ │ │ │ │ │ │ │ o51 = R' │ │ │ │ │ │ │ │ o51 : QuotientRing │ │ │ │ i52 : icFractions R │ │ │ │ │ │ │ │ 2 │ │ │ │ @@ -662,15 +662,15 @@ │ │ │ │ o54 : Ideal of S │ │ │ │ i55 : R = S/I │ │ │ │ │ │ │ │ o55 = R │ │ │ │ │ │ │ │ o55 : QuotientRing │ │ │ │ i56 : time R' = integralClosure (R, Strategy => Vasconcelos) │ │ │ │ - -- used 0.0565581s (cpu); 0.0565591s (thread); 0s (gc) │ │ │ │ + -- used 0.234603s (cpu); 0.137397s (thread); 0s (gc) │ │ │ │ │ │ │ │ o56 = R' │ │ │ │ │ │ │ │ o56 : QuotientRing │ │ │ │ i57 : icFractions R │ │ │ │ │ │ │ │ b*d │ │ │ │ @@ -754,15 +754,15 @@ │ │ │ │ o65 : BettiTally │ │ │ │ i66 : R = S/I │ │ │ │ │ │ │ │ o66 = R │ │ │ │ │ │ │ │ o66 : QuotientRing │ │ │ │ i67 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.0601817s (cpu); 0.0601808s (thread); 0s (gc) │ │ │ │ + -- used 0.113255s (cpu); 0.113035s (thread); 0s (gc) │ │ │ │ │ │ │ │ o67 = R' │ │ │ │ │ │ │ │ o67 : QuotientRing │ │ │ │ i68 : icFractions R │ │ │ │ │ │ │ │ 2 2 │ │ │ │ @@ -838,15 +838,15 @@ │ │ │ │ o76 : BettiTally │ │ │ │ i77 : R = S/I │ │ │ │ │ │ │ │ o77 = R │ │ │ │ │ │ │ │ o77 : QuotientRing │ │ │ │ i78 : time R' = integralClosure(R, Strategy => Radical) │ │ │ │ - -- used 0.399687s (cpu); 0.347773s (thread); 0s (gc) │ │ │ │ + -- used 0.667243s (cpu); 0.46373s (thread); 0s (gc) │ │ │ │ │ │ │ │ o78 = R' │ │ │ │ │ │ │ │ o78 : QuotientRing │ │ │ │ i79 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -862,15 +862,15 @@ │ │ │ │ o80 : PolynomialRing │ │ │ │ i81 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o81 = R │ │ │ │ │ │ │ │ o81 : QuotientRing │ │ │ │ i82 : time R' = integralClosure(R, Strategy => AllCodimensions) │ │ │ │ - -- used 0.511397s (cpu); 0.373479s (thread); 0s (gc) │ │ │ │ + -- used 0.688685s (cpu); 0.475841s (thread); 0s (gc) │ │ │ │ │ │ │ │ o82 = R' │ │ │ │ │ │ │ │ o82 : QuotientRing │ │ │ │ i83 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -886,20 +886,20 @@ │ │ │ │ o84 : PolynomialRing │ │ │ │ i85 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o85 = R │ │ │ │ │ │ │ │ o85 : QuotientRing │ │ │ │ i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1) │ │ │ │ - [jacobian time .000568686 sec #minors 4] │ │ │ │ + [jacobian time .000716405 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .205692 sec #fractions 6] │ │ │ │ - [step 1: time .231823 sec #fractions 6] │ │ │ │ - -- used 0.441545s (cpu); 0.311876s (thread); 0s (gc) │ │ │ │ + [step 0: time .279362 sec #fractions 6] │ │ │ │ + [step 1: time .156924 sec #fractions 6] │ │ │ │ + -- used 0.441098s (cpu); 0.327209s (thread); 0s (gc) │ │ │ │ │ │ │ │ o86 = R' │ │ │ │ │ │ │ │ o86 : QuotientRing │ │ │ │ i87 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -915,20 +915,20 @@ │ │ │ │ o88 : PolynomialRing │ │ │ │ i89 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o89 = R │ │ │ │ │ │ │ │ o89 : QuotientRing │ │ │ │ i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1) │ │ │ │ - [jacobian time .000531076 sec #minors 4] │ │ │ │ + [jacobian time .000670116 sec #minors 4] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .0900187 sec #fractions 6] │ │ │ │ - [step 1: time .361551 sec #fractions 6] │ │ │ │ - -- used 0.455508s (cpu); 0.332486s (thread); 0s (gc) │ │ │ │ + [step 0: time .266951 sec #fractions 6] │ │ │ │ + [step 1: time .382568 sec #fractions 6] │ │ │ │ + -- used 0.65424s (cpu); 0.425013s (thread); 0s (gc) │ │ │ │ │ │ │ │ o90 = R' │ │ │ │ │ │ │ │ o90 : QuotientRing │ │ │ │ i91 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 3 2 │ │ │ │ @@ -947,20 +947,20 @@ │ │ │ │ i93 : R = S/sub(I,S) │ │ │ │ │ │ │ │ o93 = R │ │ │ │ │ │ │ │ o93 : QuotientRing │ │ │ │ i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, │ │ │ │ StartWithOneMinor}, Verbosity => 1) │ │ │ │ - [jacobian time .000614342 sec #minors 1] │ │ │ │ + [jacobian time .000885563 sec #minors 1] │ │ │ │ integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ - [step 0: time .115349 sec #fractions 6] │ │ │ │ - [step 1: time .476597 sec #fractions 6] │ │ │ │ - -- used 0.595576s (cpu); 0.43448s (thread); 0s (gc) │ │ │ │ + [step 0: time .301729 sec #fractions 6] │ │ │ │ + [step 1: time .68322 sec #fractions 6] │ │ │ │ + -- used 0.990036s (cpu); 0.590066s (thread); 0s (gc) │ │ │ │ │ │ │ │ o94 = R' │ │ │ │ │ │ │ │ o94 : QuotientRing │ │ │ │ i95 : icFractions R │ │ │ │ │ │ │ │ 2 2 2 2 3 2 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp..._cm__Verbosity_eq_gt..._rp.html │ │ │ @@ -71,52 +71,52 @@ │ │ │ │ │ │
    i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time R' = integralClosure(R, Verbosity => 2)
    │ │ │ - [jacobian time .000590017 sec #minors 3]
    │ │ │ + [jacobian time .00117774 sec #minors 3]
    │ │ │  integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2
    │ │ │  
    │ │ │   [step 0: 
    │ │ │ -      radical (use minprimes) .00261628 seconds
    │ │ │ -      idlizer1:  .00964141 seconds
    │ │ │ -      idlizer2:  .00985369 seconds
    │ │ │ -      minpres:   .00867646 seconds
    │ │ │ -  time .0425597 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00339736 seconds
    │ │ │ +      idlizer1:  .0096856 seconds
    │ │ │ +      idlizer2:  .0112375 seconds
    │ │ │ +      minpres:   .0105021 seconds
    │ │ │ +  time .0508319 sec  #fractions 4]
    │ │ │   [step 1: 
    │ │ │ -      radical (use minprimes) .00239377 seconds
    │ │ │ -      idlizer1:  .0111541 seconds
    │ │ │ -      idlizer2:  .00992828 seconds
    │ │ │ -      minpres:   .0111938 seconds
    │ │ │ -  time .0454337 sec  #fractions 4]
    │ │ │ +      radical (use minprimes) .00478433 seconds
    │ │ │ +      idlizer1:  .0146722 seconds
    │ │ │ +      idlizer2:  .0132138 seconds
    │ │ │ +      minpres:   .0139497 seconds
    │ │ │ +  time .0634958 sec  #fractions 4]
    │ │ │   [step 2: 
    │ │ │ -      radical (use minprimes) .00239345 seconds
    │ │ │ -      idlizer1:  .0115122 seconds
    │ │ │ -      idlizer2:  .00971861 seconds
    │ │ │ -      minpres:   .00890232 seconds
    │ │ │ -  time .0434159 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00303693 seconds
    │ │ │ +      idlizer1:  .0164851 seconds
    │ │ │ +      idlizer2:  .0143606 seconds
    │ │ │ +      minpres:   .0120521 seconds
    │ │ │ +  time .0596535 sec  #fractions 5]
    │ │ │   [step 3: 
    │ │ │ -      radical (use minprimes) .00252848 seconds
    │ │ │ -      idlizer1:  .118442 seconds
    │ │ │ -      idlizer2:  .0133284 seconds
    │ │ │ -      minpres:   .0156925 seconds
    │ │ │ -  time .162067 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00323109 seconds
    │ │ │ +      idlizer1:  .160633 seconds
    │ │ │ +      idlizer2:  .0178752 seconds
    │ │ │ +      minpres:   .0218933 seconds
    │ │ │ +  time .220674 sec  #fractions 5]
    │ │ │   [step 4: 
    │ │ │ -      radical (use minprimes) .00282827 seconds
    │ │ │ -      idlizer1:  .00924351 seconds
    │ │ │ -      idlizer2:  .0162379 seconds
    │ │ │ -      minpres:   .0120262 seconds
    │ │ │ -  time .0536223 sec  #fractions 5]
    │ │ │ +      radical (use minprimes) .00364484 seconds
    │ │ │ +      idlizer1:  .0115651 seconds
    │ │ │ +      idlizer2:  .0189379 seconds
    │ │ │ +      minpres:   .015161 seconds
    │ │ │ +  time .0667249 sec  #fractions 5]
    │ │ │   [step 5: 
    │ │ │ -      radical (use minprimes) .00232149 seconds
    │ │ │ -      idlizer1:  .00789534 seconds
    │ │ │ -  time .0169089 sec  #fractions 5]
    │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc)
    │ │ │ +      radical (use minprimes) .00347184 seconds
    │ │ │ +      idlizer1:  .0127651 seconds
    │ │ │ +  time .0259012 sec  #fractions 5]
    │ │ │ + -- used 0.49625s (cpu); 0.407521s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = R'
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,52 +12,52 @@ │ │ │ │ displayed. A value of 0 means: keep quiet. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ When the computation takes a considerable time, this function can be used to │ │ │ │ decide if it will ever finish, or to get a feel for what is happening during │ │ │ │ the computation. │ │ │ │ i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); │ │ │ │ i2 : time R' = integralClosure(R, Verbosity => 2) │ │ │ │ - [jacobian time .000590017 sec #minors 3] │ │ │ │ + [jacobian time .00117774 sec #minors 3] │ │ │ │ integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 │ │ │ │ │ │ │ │ [step 0: │ │ │ │ - radical (use minprimes) .00261628 seconds │ │ │ │ - idlizer1: .00964141 seconds │ │ │ │ - idlizer2: .00985369 seconds │ │ │ │ - minpres: .00867646 seconds │ │ │ │ - time .0425597 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00339736 seconds │ │ │ │ + idlizer1: .0096856 seconds │ │ │ │ + idlizer2: .0112375 seconds │ │ │ │ + minpres: .0105021 seconds │ │ │ │ + time .0508319 sec #fractions 4] │ │ │ │ [step 1: │ │ │ │ - radical (use minprimes) .00239377 seconds │ │ │ │ - idlizer1: .0111541 seconds │ │ │ │ - idlizer2: .00992828 seconds │ │ │ │ - minpres: .0111938 seconds │ │ │ │ - time .0454337 sec #fractions 4] │ │ │ │ + radical (use minprimes) .00478433 seconds │ │ │ │ + idlizer1: .0146722 seconds │ │ │ │ + idlizer2: .0132138 seconds │ │ │ │ + minpres: .0139497 seconds │ │ │ │ + time .0634958 sec #fractions 4] │ │ │ │ [step 2: │ │ │ │ - radical (use minprimes) .00239345 seconds │ │ │ │ - idlizer1: .0115122 seconds │ │ │ │ - idlizer2: .00971861 seconds │ │ │ │ - minpres: .00890232 seconds │ │ │ │ - time .0434159 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00303693 seconds │ │ │ │ + idlizer1: .0164851 seconds │ │ │ │ + idlizer2: .0143606 seconds │ │ │ │ + minpres: .0120521 seconds │ │ │ │ + time .0596535 sec #fractions 5] │ │ │ │ [step 3: │ │ │ │ - radical (use minprimes) .00252848 seconds │ │ │ │ - idlizer1: .118442 seconds │ │ │ │ - idlizer2: .0133284 seconds │ │ │ │ - minpres: .0156925 seconds │ │ │ │ - time .162067 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00323109 seconds │ │ │ │ + idlizer1: .160633 seconds │ │ │ │ + idlizer2: .0178752 seconds │ │ │ │ + minpres: .0218933 seconds │ │ │ │ + time .220674 sec #fractions 5] │ │ │ │ [step 4: │ │ │ │ - radical (use minprimes) .00282827 seconds │ │ │ │ - idlizer1: .00924351 seconds │ │ │ │ - idlizer2: .0162379 seconds │ │ │ │ - minpres: .0120262 seconds │ │ │ │ - time .0536223 sec #fractions 5] │ │ │ │ + radical (use minprimes) .00364484 seconds │ │ │ │ + idlizer1: .0115651 seconds │ │ │ │ + idlizer2: .0189379 seconds │ │ │ │ + minpres: .015161 seconds │ │ │ │ + time .0667249 sec #fractions 5] │ │ │ │ [step 5: │ │ │ │ - radical (use minprimes) .00232149 seconds │ │ │ │ - idlizer1: .00789534 seconds │ │ │ │ - time .0169089 sec #fractions 5] │ │ │ │ - -- used 0.368261s (cpu); 0.301585s (thread); 0s (gc) │ │ │ │ + radical (use minprimes) .00347184 seconds │ │ │ │ + idlizer1: .0127651 seconds │ │ │ │ + time .0259012 sec #fractions 5] │ │ │ │ + -- used 0.49625s (cpu); 0.407521s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = R' │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : trim ideal R' │ │ │ │ │ │ │ │ 3 2 2 2 4 4 │ │ ├── ./usr/share/doc/Macaulay2/IntegralClosure/html/_integral__Closure_lp__Ideal_cm__Ring__Element_cm__Z__Z_rp.html │ │ │ @@ -109,29 +109,29 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time integralClosure J
    │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ + -- used 1.81097s (cpu); 1.03007s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ + -- used 1.45146s (cpu); 0.722064s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2              2 2                2          2   2     
    │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2   3               2 2     2   5
    │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,25 +46,25 @@
    │ │ │ │  i3 : J = ideal jacobian ideal F
    │ │ │ │  
    │ │ │ │                  2      2    2        2   2 2     2
    │ │ │ │  o3 = ideal (2a*b c + 3a , 2a b*c + 3b , a b  + 3c )
    │ │ │ │  
    │ │ │ │  o3 : Ideal of S
    │ │ │ │  i4 : time integralClosure J
    │ │ │ │ - -- used 1.00532s (cpu); 0.717095s (thread); 0s (gc)
    │ │ │ │ + -- used 1.81097s (cpu); 1.03007s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o4 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : time integralClosure(J, Strategy=>{RadicalCodim1})
    │ │ │ │ - -- used 0.637826s (cpu); 0.4847s (thread); 0s (gc)
    │ │ │ │ + -- used 1.45146s (cpu); 0.722064s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               2 2              2 2                2          2   2
    │ │ │ │  o5 = ideal (b c  - 16000a*c, a c  - 16000b*c, a*b c - 16000a , a b*c -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │             2   3               2 2     2   5
    │ │ │ │       16000b , a c - 16000a*b, a b  + 3c , a b + 15997a*c)
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_equivariant__Hilbert.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o3 : DiagonalAction
    │ │ │  
    │ │ │  i4 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o4 = false
    │ │ │  
    │ │ │  i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00274702s elapsed
    │ │ │ + -- .00317537s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -51,10 +51,10 @@
    │ │ │           0   1
    │ │ │  
    │ │ │  i6 : T.cache.?equivariantHilbert
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000427798s elapsed
    │ │ │ + -- .000606858s elapsed
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_hsop_spalgorithms.out
    │ │ │ @@ -23,23 +23,23 @@
    │ │ │  o3 = QQ[x..z] <- {| 0 -1 0  |, | 0 -1 0 |}
    │ │ │                    | 1 0  0  |  | 1 0  0 |
    │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ + -- used 0.986781s (cpu); 0.63802s (thread); 0s (gc)
    │ │ │  
    │ │ │         2   2    2   3       3
    │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ + -- used 0.940831s (cpu); 0.480619s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -90,23 +90,23 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │          2 6    8
    │ │ │       90y z  + z }
    │ │ │  
    │ │ │  o5 : List
    │ │ │  
    │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ + -- used 0.0319392s (cpu); 0.0319437s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ + -- used 2.75814s (cpu); 1.69362s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.out
    │ │ │ @@ -14,15 +14,15 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .779956s elapsed
    │ │ │ + -- .728545s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -32,15 +32,15 @@
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .524625s elapsed
    │ │ │ + -- .571132s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/example-output/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.out
    │ │ │ @@ -14,28 +14,28 @@
    │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │  
    │ │ │  i4 : elapsedTime invariants S4
    │ │ │ - -- .677194s elapsed
    │ │ │ + -- .593653s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │        4
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .104964s elapsed
    │ │ │ + -- .0736658s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_equivariant__Hilbert.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime equivariantHilbertSeries(T, Order => 5)
    │ │ │ - -- .00274702s elapsed
    │ │ │ + -- .00317537s elapsed
    │ │ │  
    │ │ │                    -1    -1       2 2              -2    -1 -1    -2  2  
    │ │ │  o5 = 1 + (z z  + z   + z  )T + (z z  + z  + z  + z   + z  z   + z  )T  +
    │ │ │             0 1    1     0        0 1    0    1    1     0  1     0      
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3    2        2      -1        -3    -1      -1 -2    -2 -1    -3  3
    │ │ │       (z z  + z z  + z z  + z z   + 1 + z   + z  z  + z  z   + z  z   + z  )T 
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime equivariantHilbertSeries(T, Order => 5);
    │ │ │ - -- .000427798s elapsed
    │ │ │ + -- .000606858s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    For the programmer

    │ │ │ ├── html2text {} │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ | 0 -1 1 | │ │ │ │ │ │ │ │ o3 : DiagonalAction │ │ │ │ i4 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : elapsedTime equivariantHilbertSeries(T, Order => 5) │ │ │ │ - -- .00274702s elapsed │ │ │ │ + -- .00317537s elapsed │ │ │ │ │ │ │ │ -1 -1 2 2 -2 -1 -1 -2 2 │ │ │ │ o5 = 1 + (z z + z + z )T + (z z + z + z + z + z z + z )T + │ │ │ │ 0 1 1 0 0 1 0 1 1 0 1 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 2 -1 -3 -1 -1 -2 -2 -1 -3 3 │ │ │ │ (z z + z z + z z + z z + 1 + z + z z + z z + z z + z )T │ │ │ │ @@ -54,13 +54,13 @@ │ │ │ │ │ │ │ │ o5 : ZZ[z ..z ][T] │ │ │ │ 0 1 │ │ │ │ i6 : T.cache.?equivariantHilbert │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime equivariantHilbertSeries(T, Order => 5); │ │ │ │ - -- .000427798s elapsed │ │ │ │ + -- .000606858s elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _e_q_u_i_v_a_r_i_a_n_t_H_i_l_b_e_r_t is a _s_y_m_b_o_l. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/InvariantRing/AbelianGroupsDoc.m2:185:0. │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_hsop_spalgorithms.html │ │ │ @@ -92,26 +92,26 @@ │ │ │ │ │ │ │ │ │

    The two algorithms used in primaryInvariants are timed. One sees that the Dade algorithm is faster, however the primary invariants output are all of degree 8 and have ugly coefficients.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time P1=primaryInvariants C4xC2
    │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ + -- used 0.986781s (cpu); 0.63802s (thread); 0s (gc)
    │ │ │  
    │ │ │         2   2    2   3       3
    │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ + -- used 0.940831s (cpu); 0.480619s (thread); 0s (gc)
    │ │ │  
    │ │ │                     8                 7                   6 2  
    │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │       ------------------------------------------------------------------------
    │ │ │                     5 3                  4 4                 3 5  
    │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -168,26 +168,26 @@
    │ │ │            
    │ │ │

    The extra work done by the default algorithm to ensure an optimal hsop is rewarded by needing to calculate a smaller collection of corresponding secondary invariants. In fact, it has proved quicker overall to calculate the invariant ring based on the optimal algorithm rather than the Dade algorithm.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ + -- used 0.0319392s (cpu); 0.0319437s (thread); 0s (gc)
    │ │ │  
    │ │ │            4    4
    │ │ │  o6 = {1, x  + y }
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ + -- used 2.75814s (cpu); 1.69362s (thread); 0s (gc)
    │ │ │  
    │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4  
    │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -69,22 +69,22 @@
    │ │ │ │                    | 0 0  -1 |  | 0 0  1 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  The two algorithms used in _p_r_i_m_a_r_y_I_n_v_a_r_i_a_n_t_s are timed. One sees that the Dade
    │ │ │ │  algorithm is faster, however the primary invariants output are all of degree 8
    │ │ │ │  and have ugly coefficients.
    │ │ │ │  i4 : time P1=primaryInvariants C4xC2
    │ │ │ │ - -- used 0.797659s (cpu); 0.519949s (thread); 0s (gc)
    │ │ │ │ + -- used 0.986781s (cpu); 0.63802s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         2   2    2   3       3
    │ │ │ │  o4 = {z , x  + y , x y - x*y }
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : time P2=primaryInvariants(C4xC2,Dade=>true)
    │ │ │ │ - -- used 0.671422s (cpu); 0.364464s (thread); 0s (gc)
    │ │ │ │ + -- used 0.940831s (cpu); 0.480619s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                     8                 7                   6 2
    │ │ │ │  o5 = {656100000000x  - 4738500000000x y + 10209037500000x y  -
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     5 3                  4 4                 3 5
    │ │ │ │       1232156250000x y  - 14757374609375x y  + 1232156250000x y  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -138,22 +138,22 @@
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  The extra work done by the default algorithm to ensure an optimal hsop is
    │ │ │ │  rewarded by needing to calculate a smaller collection of corresponding
    │ │ │ │  secondary invariants. In fact, it has proved quicker overall to calculate the
    │ │ │ │  invariant ring based on the optimal algorithm rather than the Dade algorithm.
    │ │ │ │  i6 : time secondaryInvariants(P1,C4xC2)
    │ │ │ │ - -- used 0.0219117s (cpu); 0.0219168s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0319392s (cpu); 0.0319437s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            4    4
    │ │ │ │  o6 = {1, x  + y }
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : time secondaryInvariants(P2,C4xC2)
    │ │ │ │ - -- used 2.00343s (cpu); 1.26795s (thread); 0s (gc)
    │ │ │ │ + -- used 2.75814s (cpu); 1.69362s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │            2   2    2   4   2 2    2 2   2 2   3       3   4    4   6   2 4
    │ │ │ │  o7 = {1, z , x  + y , z , x z  + y z , x y , x y - x*y , x  + y , z , x z  +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2 4   2 2 2   3   2      3 2   4 2    4 2   4 2    2 4   5       5   6
    │ │ │ │       y z , x y z , x y*z  - x*y z , x z  + y z , x y  + x y , x y - x*y , x
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Degree__Bound_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .779956s elapsed
    │ │ │ + -- .728545s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -117,15 +117,15 @@
    │ │ │              
    │ │ │
    i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │  
    │ │ │  Warning: stopping condition not met!
    │ │ │  Output may not generate the entire ring of invariants.
    │ │ │  Increase value of DegreeBound.
    │ │ │  
    │ │ │ - -- .524625s elapsed
    │ │ │ + -- .571132s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .779956s elapsed
    │ │ │ │ + -- .728545s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │ @@ -50,15 +50,15 @@
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,DegreeBound=>4)
    │ │ │ │  
    │ │ │ │  Warning: stopping condition not met!
    │ │ │ │  Output may not generate the entire ring of invariants.
    │ │ │ │  Increase value of DegreeBound.
    │ │ │ │  
    │ │ │ │ - -- .524625s elapsed
    │ │ │ │ + -- .571132s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o5 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ ├── ./usr/share/doc/Macaulay2/InvariantRing/html/_invariants_lp..._cm__Use__Linear__Algebra_eq_gt..._rp.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │  
    │ │ │  o3 : FiniteGroupAction
    │ │ │
    │ │ │
    i4 : elapsedTime invariants S4
    │ │ │ - -- .677194s elapsed
    │ │ │ + -- .593653s elapsed
    │ │ │  
    │ │ │                            2    2    2    2   3    3    3    3   4    4    4  
    │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        4
    │ │ │       x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ - -- .104964s elapsed
    │ │ │ + -- .0736658s elapsed
    │ │ │  
    │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,27 +35,27 @@
    │ │ │ │  o3 = R <- {| 0 1 0 0 |, | 0 0 0 1 |}
    │ │ │ │             | 1 0 0 0 |  | 1 0 0 0 |
    │ │ │ │             | 0 0 1 0 |  | 0 1 0 0 |
    │ │ │ │             | 0 0 0 1 |  | 0 0 1 0 |
    │ │ │ │  
    │ │ │ │  o3 : FiniteGroupAction
    │ │ │ │  i4 : elapsedTime invariants S4
    │ │ │ │ - -- .677194s elapsed
    │ │ │ │ + -- .593653s elapsed
    │ │ │ │  
    │ │ │ │                            2    2    2    2   3    3    3    3   4    4    4
    │ │ │ │  o4 = {x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  + x , x  + x  + x  +
    │ │ │ │         1    2    3    4   1    2    3    4   1    2    3    4   1    2    3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        4
    │ │ │ │       x }
    │ │ │ │        4
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime invariants(S4,UseLinearAlgebra=>true)
    │ │ │ │ - -- .104964s elapsed
    │ │ │ │ + -- .0736658s elapsed
    │ │ │ │  
    │ │ │ │  o5 = {x  + x  + x  + x , x x  + x x  + x x  + x x  + x x  + x x , x x x  +
    │ │ │ │         1    2    3    4   1 2    1 3    2 3    1 4    2 4    3 4   1 2 3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x x x  + x x x  + x x x , x x x x }
    │ │ │ │        1 2 4    1 3 4    2 3 4   1 2 3 4
    │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/example-output/_is__Isomorphic.out
    │ │ │ @@ -156,20 +156,20 @@
    │ │ │                     {-1} | 0 0 0  0 0 0 0 0 0 0  0 0  0 0  0 0 0  0 0 0 0  0 0 0 0   0   0   0   0   0   0    0    0   0   0    0   0   0    0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    x_2  x_1  x_0  |  {-1} | 0   0    0   0    0   0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0    0    0    0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    x_0  0    0    0    0    0    0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     x_2 x_1 x_0^2 |
    │ │ │                     {-1} | 0 0 0  0 0 0 0 0 0 0  0 0  0 0  0 0 0  0 0 0 0  0 0 1 0   0   0   0   0   0   0    0    0   0   0    0   0   0    0    0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    |  {-1} | 0   0    0   0    0   0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0   0    0    0    0    0    0    0    0    0    0    0    0   0    0    0    0    0    0   0    0    0    0    0    0    0    0    x_0  -x_2 x_1  -x_3 x_2  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     x_3 x_2 x_1^2 |
    │ │ │  
    │ │ │                                  40
    │ │ │  o22 : S-module, subquotient of S
    │ │ │  
    │ │ │  i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ - -- 1.4004s elapsed
    │ │ │ + -- 1.62622s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ - -- .00002087s elapsed
    │ │ │ + -- .000064127s elapsed
    │ │ │  
    │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677  
    │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098 
    │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393 
    │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851 
    │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ ├── ./usr/share/doc/Macaulay2/Isomorphism/html/_is__Isomorphic.html
    │ │ │ @@ -328,23 +328,23 @@
    │ │ │                                  40
    │ │ │  o22 : S-module, subquotient of S
    │ │ │
    │ │ │
    i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ - -- 1.4004s elapsed
    │ │ │ + -- 1.62622s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ - -- .00002087s elapsed
    │ │ │ + -- .000064127s elapsed
    │ │ │  
    │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677  
    │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098 
    │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393 
    │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851 
    │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -684,19 +684,19 @@
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     0   0   0     0   0   0     0   0   0     0   0   0     0   0   0
    │ │ │ │  0   0   0     x_3 x_2 x_1^2 |
    │ │ │ │  
    │ │ │ │                                  40
    │ │ │ │  o22 : S-module, subquotient of S
    │ │ │ │  i23 : elapsedTime isIsomorphic(T1, T2)
    │ │ │ │ - -- 1.4004s elapsed
    │ │ │ │ + -- 1.62622s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  i24 : elapsedTime isomorphism(T1, T2)
    │ │ │ │ - -- .00002087s elapsed
    │ │ │ │ + -- .000064127s elapsed
    │ │ │ │  
    │ │ │ │  o24 = {-1} | 1      -3976  -13490 13495  -2886  2577   14757  -881   7677
    │ │ │ │        {-1} | -2527  -13566 2778   -6934  -14806 4619   -13099 6022   -10907
    │ │ │ │        {-1} | -15420 5642   1489   1354   4591   11881  -5253  7296   -1098
    │ │ │ │        {-1} | 7909   -12428 -2260  -8465  12113  -6893  8411   4186   -9393
    │ │ │ │        {-1} | -9615  2934   10440  5015   8145   -5585  1360   3295   12851
    │ │ │ │        {-1} | -4881  -7984  12700  -10391 -10009 -14538 13207  262    -6500
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/example-output/_from__J__S__O__N.out
    │ │ │ @@ -39,19 +39,19 @@
    │ │ │  
    │ │ │  o8 = {1, 2, 3}
    │ │ │  
    │ │ │  o8 : List
    │ │ │  
    │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79250-0/0.json
    │ │ │  
    │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79250-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │  
    │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │  
    │ │ │  o11 = {1, 2, 3}
    │ │ ├── ./usr/share/doc/Macaulay2/JSON/html/_from__J__S__O__N.html
    │ │ │ @@ -167,22 +167,22 @@
    │ │ │            

    The input may also be a file containing JSON data.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │  
    │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ +o9 = /tmp/M2-79250-0/0.json │ │ │
    │ │ │
    i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │  
    │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ +o10 = /tmp/M2-79250-0/0.json
    │ │ │  
    │ │ │  o10 : File
    │ │ │
    │ │ │
    i11 : fromJSON openIn jsonFile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -53,18 +53,18 @@
    │ │ │ │  
    │ │ │ │  o8 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  The input may also be a file containing JSON data.
    │ │ │ │  i9 : jsonFile = temporaryFileName() | ".json"
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o9 = /tmp/M2-79250-0/0.json
    │ │ │ │  i10 : jsonFile << "[1, 2, 3]" << endl << close
    │ │ │ │  
    │ │ │ │ -o10 = /tmp/M2-50412-0/0.json
    │ │ │ │ +o10 = /tmp/M2-79250-0/0.json
    │ │ │ │  
    │ │ │ │  o10 : File
    │ │ │ │  i11 : fromJSON openIn jsonFile
    │ │ │ │  
    │ │ │ │  o11 = {1, 2, 3}
    │ │ │ │  
    │ │ │ │  o11 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Example_sp1.out
    │ │ │ @@ -17,24 +17,24 @@
    │ │ │  o3 = ideal (y0*z0*x2 + x0*z0*y2 + x0*y0*z2 + z0*x1*y1 + y0*x1*z1 + x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1 + x0*z0*y1 + x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o3 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00226289s elapsed
    │ │ │ + -- .00298849s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │  
    │ │ │  i5 : elapsedTime radical J2I
    │ │ │ - -- .297009s elapsed
    │ │ │ + -- .277696s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/example-output/___Storing_sp__Computations.out
    │ │ │ @@ -33,15 +33,15 @@
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : I.cache.?jet
    │ │ │  
    │ │ │  o7 = false
    │ │ │  
    │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ - -- .0247993s elapsed
    │ │ │ + -- .0114759s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i9 : I.cache.?jet
    │ │ │ @@ -53,23 +53,23 @@
    │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │                                 | 2x0x1-y1       |
    │ │ │                                 | x0^2-y0        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ - -- .0146144s elapsed
    │ │ │ + -- .00320824s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │  
    │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00634335s elapsed
    │ │ │ + -- .00286022s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │  
    │ │ │  i13 : Q = R/I
    │ │ │ @@ -148,15 +148,15 @@
    │ │ │  o22 = true
    │ │ │  
    │ │ │  i23 : f.cache.?jet
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0116862s elapsed
    │ │ │ + -- .0154046s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │                                 | t1 2t0t1       |
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │  
    │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000613795s elapsed
    │ │ │ + -- .000814701s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Example_sp1.html
    │ │ │ @@ -87,27 +87,27 @@
    │ │ │          
    │ │ │

    However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is generated by the individual terms in the generators of the ideal of jets. This observation provides an alternative algorithm for computing radicals of jets of monomial ideals, which can be faster than the default radical computation in Macaulay2.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ However, by [GS06, Theorem 3.1], the radical is always a (squarefree) monomial │ │ │ │ ideal. In fact, the proof of [GS06, Theorem 3.2] shows that the radical is │ │ │ │ generated by the individual terms in the generators of the ideal of jets. This │ │ │ │ observation provides an alternative algorithm for computing radicals of jets of │ │ │ │ monomial ideals, which can be faster than the default radical computation in │ │ │ │ Macaulay2. │ │ │ │ i4 : elapsedTime jetsRadical(2,I) │ │ │ │ - -- .00226289s elapsed │ │ │ │ + -- .00298849s elapsed │ │ │ │ │ │ │ │ o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0) │ │ │ │ │ │ │ │ o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ i5 : elapsedTime radical J2I │ │ │ │ - -- .297009s elapsed │ │ │ │ + -- .277696s elapsed │ │ │ │ │ │ │ │ o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2] │ │ │ │ For a monomial hypersurface, [GS06, Theorem 3.2] describes the minimal primes │ │ ├── ./usr/share/doc/Macaulay2/Jets/html/___Storing_sp__Computations.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ │ │ │ o7 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -146,26 +146,26 @@ │ │ │ | x0^2-y0 | │ │ │ jetsMaxOrder => 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -290,15 +290,15 @@ │ │ │ │ │ │ o23 = false │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime jetsRadical(2,I)
    │ │ │ - -- .00226289s elapsed
    │ │ │ + -- .00298849s elapsed
    │ │ │  
    │ │ │  o4 = ideal (y0*z0*x2, x0*z0*y2, x0*y0*z2, z0*x1*y1, y0*x1*z1, x0*y1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       y0*z0*x1, x0*z0*y1, x0*y0*z1, x0*y0*z0)
    │ │ │  
    │ │ │  o4 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i5 : elapsedTime radical J2I
    │ │ │ - -- .297009s elapsed
    │ │ │ + -- .277696s elapsed
    │ │ │  
    │ │ │  o5 = ideal (x0*y0*z0, x0*y0*z1, x0*z0*y1, y0*z0*x1, x0*y1*z1, y0*x1*z1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       z0*x1*y1, x0*y0*z2, x0*z0*y2, y0*z0*x2)
    │ │ │  
    │ │ │  o5 : Ideal of QQ[x0, y0, z0][x1, y1, z1][x2, y2, z2]
    │ │ │
    │ │ │
    i8 : elapsedTime jets(3,I)
    │ │ │ - -- .0247993s elapsed
    │ │ │ + -- .0114759s elapsed
    │ │ │  
    │ │ │                                                    2                 2
    │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i11 : elapsedTime jets(3,I)
    │ │ │ - -- .0146144s elapsed
    │ │ │ + -- .00320824s elapsed
    │ │ │  
    │ │ │                                                     2                 2
    │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │
    │ │ │
    i12 : elapsedTime jets(2,I)
    │ │ │ - -- .00634335s elapsed
    │ │ │ + -- .00286022s elapsed
    │ │ │  
    │ │ │                               2                 2
    │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │
    │ │ │
    i24 : elapsedTime jets(3,f)
    │ │ │ - -- .0116862s elapsed
    │ │ │ + -- .0154046s elapsed
    │ │ │  
    │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3, y3]                                                      2                    2
    │ │ │  o24 = map (QQ[t0][t1][t2][t3], ----------------------------------------------------------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                                                        2                 2
    │ │ │                                 (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                                      QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ @@ -324,15 +324,15 @@
    │ │ │                                 | t0 t0^2        |
    │ │ │                   jetsMaxOrder => 3
    │ │ │
    │ │ │
    i27 : elapsedTime jets(2,f)
    │ │ │ - -- .000613795s elapsed
    │ │ │ + -- .000814701s elapsed
    │ │ │  
    │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]                          2                    2
    │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │                                              2                 2
    │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │  
    │ │ │                                           QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,15 +41,15 @@
    │ │ │ │  o6 = ideal(x  - y)
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : I.cache.?jet
    │ │ │ │  
    │ │ │ │  o7 = false
    │ │ │ │  i8 : elapsedTime jets(3,I)
    │ │ │ │ - -- .0247993s elapsed
    │ │ │ │ + -- .0114759s elapsed
    │ │ │ │  
    │ │ │ │                                                    2                 2
    │ │ │ │  o8 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i9 : I.cache.?jet
    │ │ │ │  
    │ │ │ │ @@ -58,22 +58,22 @@
    │ │ │ │  
    │ │ │ │  o10 = CacheTable{jetsMatrix => | 2x0x3-y3+2x1x2 |}
    │ │ │ │                                 | 2x0x2-y2+x1^2  |
    │ │ │ │                                 | 2x0x1-y1       |
    │ │ │ │                                 | x0^2-y0        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i11 : elapsedTime jets(3,I)
    │ │ │ │ - -- .0146144s elapsed
    │ │ │ │ + -- .00320824s elapsed
    │ │ │ │  
    │ │ │ │                                                     2                 2
    │ │ │ │  o11 = ideal (2x0*x3 - y3 + 2x1*x2, 2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o11 : Ideal of QQ[x0, y0][x1, y1][x2, y2][x3, y3]
    │ │ │ │  i12 : elapsedTime jets(2,I)
    │ │ │ │ - -- .00634335s elapsed
    │ │ │ │ + -- .00286022s elapsed
    │ │ │ │  
    │ │ │ │                               2                 2
    │ │ │ │  o12 = ideal (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ │ │  
    │ │ │ │  o12 : Ideal of QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  For quotient rings, data is stored under *.jet. Each jets order gives rise to a
    │ │ │ │  different quotient that is stored separately under *.jet.jetsRing (order zero
    │ │ │ │ @@ -153,15 +153,15 @@
    │ │ │ │  i22 : isWellDefined f
    │ │ │ │  
    │ │ │ │  o22 = true
    │ │ │ │  i23 : f.cache.?jet
    │ │ │ │  
    │ │ │ │  o23 = false
    │ │ │ │  i24 : elapsedTime jets(3,f)
    │ │ │ │ - -- .0116862s elapsed
    │ │ │ │ + -- .0154046s elapsed
    │ │ │ │  
    │ │ │ │                                                QQ[x0, y0][x1, y1][x2, y2][x3,
    │ │ │ │  y3]                                                      2                    2
    │ │ │ │  o24 = map (QQ[t0][t1][t2][t3], ------------------------------------------------
    │ │ │ │  ----------------, {t3, 2t0*t3 + 2t1*t2, t2, 2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                                                        2
    │ │ │ │  2
    │ │ │ │ @@ -183,15 +183,15 @@
    │ │ │ │  
    │ │ │ │  o26 = CacheTable{jetsMatrix => | t3 2t0t3+2t1t2 |}
    │ │ │ │                                 | t2 2t0t2+t1^2  |
    │ │ │ │                                 | t1 2t0t1       |
    │ │ │ │                                 | t0 t0^2        |
    │ │ │ │                   jetsMaxOrder => 3
    │ │ │ │  i27 : elapsedTime jets(2,f)
    │ │ │ │ - -- .000613795s elapsed
    │ │ │ │ + -- .000814701s elapsed
    │ │ │ │  
    │ │ │ │                                     QQ[x0, y0][x1, y1][x2, y2]
    │ │ │ │  2                    2
    │ │ │ │  o27 = map (QQ[t0][t1][t2], ------------------------------------------, {t2,
    │ │ │ │  2t0*t2 + t1 , t1, 2t0*t1, t0, t0 })
    │ │ │ │                                              2                 2
    │ │ │ │                             (2x0*x2 - y2 + x1 , 2x0*x1 - y1, x0  - y0)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_analyze__Strand.out
    │ │ │ @@ -19,15 +19,15 @@
    │ │ │        32003  0   5   0   5         32003  0   5   0   5          32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5           32003  0   5   0   5          32003  0   5   0   5
    │ │ │                                                                                                                                                                                                                                                                                           
    │ │ │       0                            1                             2                              3                              4                              5                              6                              7                              8                             9
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │  
    │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0269396s elapsed
    │ │ │ + -- .0305541s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │  
    │ │ │  i6 : betti F_a, betti F
    │ │ │  
    │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ @@ -46,19 +46,19 @@
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │  
    │ │ │  o9 = 14
    │ │ │  
    │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .0024042s elapsed
    │ │ │ - -- .00650777s elapsed
    │ │ │ - -- .0527064s elapsed
    │ │ │ - -- .0736751s elapsed
    │ │ │ - -- .016221s elapsed
    │ │ │ + -- .00296112s elapsed
    │ │ │ + -- .00805075s elapsed
    │ │ │ + -- .0275992s elapsed
    │ │ │ + -- .0462432s elapsed
    │ │ │ + -- .00436879s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Table.out
    │ │ │ @@ -3,20 +3,20 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00223679s elapsed
    │ │ │ - -- .00804055s elapsed
    │ │ │ - -- .0226273s elapsed
    │ │ │ - -- .00963621s elapsed
    │ │ │ - -- .00349231s elapsed
    │ │ │ - -- .474407s elapsed
    │ │ │ + -- .00312888s elapsed
    │ │ │ + -- .00768868s elapsed
    │ │ │ + -- .0279775s elapsed
    │ │ │ + -- .0113343s elapsed
    │ │ │ + -- .00439147s elapsed
    │ │ │ + -- .400449s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -26,15 +26,15 @@
    │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .247702s elapsed
    │ │ │ + -- .216672s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,22 +48,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │  
    │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00450803s elapsed
    │ │ │ - -- .017145s elapsed
    │ │ │ - -- .132278s elapsed
    │ │ │ - -- 1.14139s elapsed
    │ │ │ - -- .517143s elapsed
    │ │ │ - -- .0710902s elapsed
    │ │ │ - -- .00652267s elapsed
    │ │ │ - -- 6.47678s elapsed
    │ │ │ + -- .00538201s elapsed
    │ │ │ + -- .0208165s elapsed
    │ │ │ + -- .121611s elapsed
    │ │ │ + -- 1.05198s elapsed
    │ │ │ + -- .47187s elapsed
    │ │ │ + -- .0569017s elapsed
    │ │ │ + -- .00829579s elapsed
    │ │ │ + -- 6.28684s elapsed
    │ │ │  
    │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Betti__Tables.out
    │ │ │ @@ -3,19 +3,19 @@
    │ │ │  i1 : a=5,b=5
    │ │ │  
    │ │ │  o1 = (5, 5)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .0103685s elapsed
    │ │ │ - -- .00662677s elapsed
    │ │ │ - -- .0228435s elapsed
    │ │ │ - -- .0337852s elapsed
    │ │ │ - -- .00363175s elapsed
    │ │ │ + -- .00305476s elapsed
    │ │ │ + -- .00733376s elapsed
    │ │ │ + -- .0277025s elapsed
    │ │ │ + -- .0113175s elapsed
    │ │ │ + -- .00420875s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │  
    │ │ │                ZZ
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │  
    │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .248736s elapsed
    │ │ │ + -- .209665s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -70,22 +70,22 @@
    │ │ │           1: . . . . . . . . . .
    │ │ │           2: . . . . . . . . . .
    │ │ │           3: . . . . . . . . . .
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │  
    │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00536115s elapsed
    │ │ │ - -- .0370005s elapsed
    │ │ │ - -- .204983s elapsed
    │ │ │ - -- 1.32933s elapsed
    │ │ │ - -- .430969s elapsed
    │ │ │ - -- .0511654s elapsed
    │ │ │ - -- .00654992s elapsed
    │ │ │ - -- 6.84149s elapsed
    │ │ │ + -- .00543162s elapsed
    │ │ │ + -- .0202663s elapsed
    │ │ │ + -- .109769s elapsed
    │ │ │ + -- 1.14465s elapsed
    │ │ │ + -- .473105s elapsed
    │ │ │ + -- .0474626s elapsed
    │ │ │ + -- .00805537s elapsed
    │ │ │ + -- 6.27442s elapsed
    │ │ │  
    │ │ │  i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o8 : List
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_carpet__Det.out
    │ │ │ @@ -3,82 +3,82 @@
    │ │ │  i1 : a=4,b=4
    │ │ │  
    │ │ │  o1 = (4, 4)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : d=carpetDet(a,b)
    │ │ │ - -- .00694639s elapsed
    │ │ │ - -- .0123481s elapsed
    │ │ │ + -- .0080706s elapsed
    │ │ │ + -- .0140967s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000297184s elapsed
    │ │ │ + -- .000283788s elapsed
    │ │ │  1
    │ │ │ - -- .000143437s elapsed
    │ │ │ + -- .000228178s elapsed
    │ │ │  1
    │ │ │ - -- .000131295s elapsed
    │ │ │ + -- .000173857s elapsed
    │ │ │  1
    │ │ │ - -- .000128579s elapsed
    │ │ │ + -- .000179947s elapsed
    │ │ │  1
    │ │ │ - -- .000143327s elapsed
    │ │ │ + -- .000246311s elapsed
    │ │ │  2
    │ │ │ - -- .000142685s elapsed
    │ │ │ + -- .000188789s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154078s elapsed
    │ │ │ + -- .000197423s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000160099s elapsed
    │ │ │ + -- .000235954s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000140462s elapsed
    │ │ │ + -- .000260644s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00013971s elapsed
    │ │ │ + -- .000183743s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000138028s elapsed
    │ │ │ + -- .000170697s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132678s elapsed
    │ │ │ + -- .000167883s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000120584s elapsed
    │ │ │ + -- .000173951s elapsed
    │ │ │  2
    │ │ │ - -- .000122919s elapsed
    │ │ │ + -- .000145589s elapsed
    │ │ │  2
    │ │ │ - -- .000134922s elapsed
    │ │ │ + -- .000155031s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012317s elapsed
    │ │ │ + -- .00016271s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000140812s elapsed
    │ │ │ + -- .000180971s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000133859s elapsed
    │ │ │ + -- .000168531s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000142265s elapsed
    │ │ │ + -- .00017714s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000130654s elapsed
    │ │ │ + -- .000195081s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000172724s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000117308s elapsed
    │ │ │ + -- .000153133s elapsed
    │ │ │  2
    │ │ │ - -- .000119734s elapsed
    │ │ │ + -- .000171883s elapsed
    │ │ │  1
    │ │ │ - -- .000126405s elapsed
    │ │ │ + -- .000167409s elapsed
    │ │ │  1
    │ │ │ - -- .000127438s elapsed
    │ │ │ + -- .000163484s elapsed
    │ │ │  1
    │ │ │ - -- .000133549s elapsed
    │ │ │ + -- .000151628s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │  
    │ │ │  i3 : factor d
    │ │ │  
    │ │ │        32 6
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_compute__Bound.out
    │ │ │ @@ -3,17 +3,17 @@
    │ │ │  i1 : (a,b)=computeBound(6,4,3)
    │ │ │  
    │ │ │  o1 = (9, 7)
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │  
    │ │ │  i2 : computeBound 3
    │ │ │ - -- .193447s elapsed
    │ │ │ - -- .265378s elapsed
    │ │ │ - -- .211761s elapsed
    │ │ │ - -- .284175s elapsed
    │ │ │ - -- .322238s elapsed
    │ │ │ - -- .410165s elapsed
    │ │ │ + -- .177918s elapsed
    │ │ │ + -- .19592s elapsed
    │ │ │ + -- .182155s elapsed
    │ │ │ + -- .29462s elapsed
    │ │ │ + -- .227293s elapsed
    │ │ │ + -- .192633s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_degenerate__K3__Betti__Tables.out
    │ │ │ @@ -9,19 +9,19 @@
    │ │ │  i2 : e=(-1,5)
    │ │ │  
    │ │ │  o2 = (-1, 5)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │  
    │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .0634893s elapsed
    │ │ │ - -- .00657433s elapsed
    │ │ │ - -- .0254523s elapsed
    │ │ │ - -- .00879327s elapsed
    │ │ │ - -- .00336788s elapsed
    │ │ │ + -- .0334179s elapsed
    │ │ │ + -- .00737552s elapsed
    │ │ │ + -- .0302602s elapsed
    │ │ │ + -- .00995625s elapsed
    │ │ │ + -- .00408811s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -49,15 +49,15 @@
    │ │ │  i4 : keys h
    │ │ │  
    │ │ │  o4 = {0, 2, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .309166s elapsed
    │ │ │ + -- .257533s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -77,19 +77,19 @@
    │ │ │  i7 : e=(-1,5^2)
    │ │ │  
    │ │ │  o7 = (-1, 25)
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00250595s elapsed
    │ │ │ - -- .00659358s elapsed
    │ │ │ - -- .0231823s elapsed
    │ │ │ - -- .0102019s elapsed
    │ │ │ - -- .00377573s elapsed
    │ │ │ + -- .00304241s elapsed
    │ │ │ + -- .00755411s elapsed
    │ │ │ + -- .0305028s elapsed
    │ │ │ + -- .0162895s elapsed
    │ │ │ + -- .00449834s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/example-output/_resonance__Det.out
    │ │ │ @@ -1,172 +1,172 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729182891690704738
    │ │ │  
    │ │ │  i1 : a=4
    │ │ │  
    │ │ │  o1 = 4
    │ │ │  
    │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0177477s elapsed
    │ │ │ + -- .0210588s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000051325s elapsed
    │ │ │ + -- .000055192s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000095639s elapsed
    │ │ │ + -- .000119865s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000076743s elapsed
    │ │ │ + -- .000083476s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000079969s elapsed
    │ │ │ + -- .000106085s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000083625s elapsed
    │ │ │ + -- .000107413s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000093434s elapsed
    │ │ │ + -- .00010274s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000024326s elapsed
    │ │ │ + -- .000032908s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000067026s elapsed
    │ │ │ + -- .000083798s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .00009138s elapsed
    │ │ │ + -- .000112368s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000095969s elapsed
    │ │ │ + -- .000115386s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000090488s elapsed
    │ │ │ + -- .000111017s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081492s elapsed
    │ │ │ + -- .000105723s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .00009612s elapsed
    │ │ │ + -- .000112633s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000065421s elapsed
    │ │ │ + -- .000095768s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .000077685s elapsed
    │ │ │ + -- .000086287s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000024636s elapsed
    │ │ │ + -- .000034508s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000076392s elapsed
    │ │ │ + -- .00009826s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000027041s elapsed
    │ │ │ + -- .000032758s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_analyze__Strand.html
    │ │ │ @@ -102,15 +102,15 @@
    │ │ │  
    │ │ │  o3 : Complex
    │ │ │
    │ │ │
    i4 : L = analyzeStrand(F,a); #L
    │ │ │ - -- .0269396s elapsed
    │ │ │ + -- .0305541s elapsed
    │ │ │  
    │ │ │  o5 = 350
    │ │ │
    │ │ │
    i6 : betti F_a, betti F
    │ │ │ @@ -141,19 +141,19 @@
    │ │ │  
    │ │ │  o9 = 14
    │ │ │
    │ │ │
    i10 : carpetBettiTable(a,b,3)
    │ │ │ - -- .0024042s elapsed
    │ │ │ - -- .00650777s elapsed
    │ │ │ - -- .0527064s elapsed
    │ │ │ - -- .0736751s elapsed
    │ │ │ - -- .016221s elapsed
    │ │ │ + -- .00296112s elapsed
    │ │ │ + -- .00805075s elapsed
    │ │ │ + -- .0275992s elapsed
    │ │ │ + -- .0462432s elapsed
    │ │ │ + -- .00436879s elapsed
    │ │ │  
    │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -49,15 +49,15 @@
    │ │ │ │       0                            1                             2
    │ │ │ │  3                              4                              5
    │ │ │ │  6                              7                              8
    │ │ │ │  9
    │ │ │ │  
    │ │ │ │  o3 : Complex
    │ │ │ │  i4 : L = analyzeStrand(F,a); #L
    │ │ │ │ - -- .0269396s elapsed
    │ │ │ │ + -- .0305541s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 350
    │ │ │ │  i6 : betti F_a, betti F
    │ │ │ │  
    │ │ │ │                 0         0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o6 = (total: 833, total: 1 36 187 491 793 833 573 250 63 7)
    │ │ │ │            6: 350      0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │ @@ -72,19 +72,19 @@
    │ │ │ │  o7 = 2   3
    │ │ │ │  
    │ │ │ │  o7 : Expression of class Product
    │ │ │ │  i8 : L3 = select(L,c->c%3==0); #L3
    │ │ │ │  
    │ │ │ │  o9 = 14
    │ │ │ │  i10 : carpetBettiTable(a,b,3)
    │ │ │ │ - -- .0024042s elapsed
    │ │ │ │ - -- .00650777s elapsed
    │ │ │ │ - -- .0527064s elapsed
    │ │ │ │ - -- .0736751s elapsed
    │ │ │ │ - -- .016221s elapsed
    │ │ │ │ + -- .00296112s elapsed
    │ │ │ │ + -- .00805075s elapsed
    │ │ │ │ + -- .0275992s elapsed
    │ │ │ │ + -- .0462432s elapsed
    │ │ │ │ + -- .00436879s elapsed
    │ │ │ │  
    │ │ │ │               0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o10 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │            0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │            1: . 36 160 315 288  14   .   .  . .
    │ │ │ │            2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │            3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Table.html
    │ │ │ @@ -83,20 +83,20 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ - -- .00223679s elapsed
    │ │ │ - -- .00804055s elapsed
    │ │ │ - -- .0226273s elapsed
    │ │ │ - -- .00963621s elapsed
    │ │ │ - -- .00349231s elapsed
    │ │ │ - -- .474407s elapsed
    │ │ │ + -- .00312888s elapsed
    │ │ │ + -- .00768868s elapsed
    │ │ │ + -- .0279775s elapsed
    │ │ │ + -- .0113343s elapsed
    │ │ │ + -- .00439147s elapsed
    │ │ │ + -- .400449s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i4 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .247702s elapsed
    │ │ │ + -- .216672s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -140,22 +140,22 @@
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │
    │ │ │
    i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00450803s elapsed
    │ │ │ - -- .017145s elapsed
    │ │ │ - -- .132278s elapsed
    │ │ │ - -- 1.14139s elapsed
    │ │ │ - -- .517143s elapsed
    │ │ │ - -- .0710902s elapsed
    │ │ │ - -- .00652267s elapsed
    │ │ │ - -- 6.47678s elapsed
    │ │ │ + -- .00538201s elapsed │ │ │ + -- .0208165s elapsed │ │ │ + -- .121611s elapsed │ │ │ + -- 1.05198s elapsed │ │ │ + -- .47187s elapsed │ │ │ + -- .0569017s elapsed │ │ │ + -- .00829579s elapsed │ │ │ + -- 6.28684s elapsed │ │ │
    │ │ │
    i7 : carpetBettiTable(h,7)
    │ │ │  
    │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,20 +25,20 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : elapsedTime T=carpetBettiTable(a,b,3)
    │ │ │ │ - -- .00223679s elapsed
    │ │ │ │ - -- .00804055s elapsed
    │ │ │ │ - -- .0226273s elapsed
    │ │ │ │ - -- .00963621s elapsed
    │ │ │ │ - -- .00349231s elapsed
    │ │ │ │ - -- .474407s elapsed
    │ │ │ │ + -- .00312888s elapsed
    │ │ │ │ + -- .00768868s elapsed
    │ │ │ │ + -- .0279775s elapsed
    │ │ │ │ + -- .0113343s elapsed
    │ │ │ │ + -- .00439147s elapsed
    │ │ │ │ + -- .400449s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │  o2 : BettiTally
    │ │ │ │  i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o3 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i4 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .247702s elapsed
    │ │ │ │ + -- .216672s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o4 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -66,22 +66,22 @@
    │ │ │ │  o5 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00450803s elapsed
    │ │ │ │ - -- .017145s elapsed
    │ │ │ │ - -- .132278s elapsed
    │ │ │ │ - -- 1.14139s elapsed
    │ │ │ │ - -- .517143s elapsed
    │ │ │ │ - -- .0710902s elapsed
    │ │ │ │ - -- .00652267s elapsed
    │ │ │ │ - -- 6.47678s elapsed
    │ │ │ │ + -- .00538201s elapsed
    │ │ │ │ + -- .0208165s elapsed
    │ │ │ │ + -- .121611s elapsed
    │ │ │ │ + -- 1.05198s elapsed
    │ │ │ │ + -- .47187s elapsed
    │ │ │ │ + -- .0569017s elapsed
    │ │ │ │ + -- .00829579s elapsed
    │ │ │ │ + -- 6.28684s elapsed
    │ │ │ │  i7 : carpetBettiTable(h,7)
    │ │ │ │  
    │ │ │ │              0  1   2   3    4    5    6    7   8   9 10 11
    │ │ │ │  o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55  1
    │ │ │ │           0: 1  .   .   .    .    .    .    .   .   .  .  .
    │ │ │ │           1: . 55 320 891 1408 1155    .    .   .   .  .  .
    │ │ │ │           2: .  .   .   .    .    . 1155 1408 891 320 55  .
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Betti__Tables.html
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : h=carpetBettiTables(a,b)
    │ │ │ - -- .0103685s elapsed
    │ │ │ - -- .00662677s elapsed
    │ │ │ - -- .0228435s elapsed
    │ │ │ - -- .0337852s elapsed
    │ │ │ - -- .00363175s elapsed
    │ │ │ + -- .00305476s elapsed
    │ │ │ + -- .00733376s elapsed
    │ │ │ + -- .0277025s elapsed
    │ │ │ + -- .0113175s elapsed
    │ │ │ + -- .00420875s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -134,15 +134,15 @@
    │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │                 3  0   5   0   5
    │ │ │
    │ │ │
    i5 : elapsedTime T'=minimalBetti J
    │ │ │ - -- .248736s elapsed
    │ │ │ + -- .209665s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -162,22 +162,22 @@
    │ │ │  
    │ │ │  o6 : BettiTally
    │ │ │
    │ │ │
    i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ - -- .00536115s elapsed
    │ │ │ - -- .0370005s elapsed
    │ │ │ - -- .204983s elapsed
    │ │ │ - -- 1.32933s elapsed
    │ │ │ - -- .430969s elapsed
    │ │ │ - -- .0511654s elapsed
    │ │ │ - -- .00654992s elapsed
    │ │ │ - -- 6.84149s elapsed
    │ │ │ + -- .00543162s elapsed │ │ │ + -- .0202663s elapsed │ │ │ + -- .109769s elapsed │ │ │ + -- 1.14465s elapsed │ │ │ + -- .473105s elapsed │ │ │ + -- .0474626s elapsed │ │ │ + -- .00805537s elapsed │ │ │ + -- 6.27442s elapsed │ │ │
    │ │ │
    i8 : keys h
    │ │ │  
    │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,19 +21,19 @@
    │ │ │ │  resulting data allow us to compute the Betti tables for arbitrary primes.
    │ │ │ │  i1 : a=5,b=5
    │ │ │ │  
    │ │ │ │  o1 = (5, 5)
    │ │ │ │  
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : h=carpetBettiTables(a,b)
    │ │ │ │ - -- .0103685s elapsed
    │ │ │ │ - -- .00662677s elapsed
    │ │ │ │ - -- .0228435s elapsed
    │ │ │ │ - -- .0337852s elapsed
    │ │ │ │ - -- .00363175s elapsed
    │ │ │ │ + -- .00305476s elapsed
    │ │ │ │ + -- .00733376s elapsed
    │ │ │ │ + -- .0277025s elapsed
    │ │ │ │ + -- .0113175s elapsed
    │ │ │ │ + -- .00420875s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
    │ │ │ │  
    │ │ │ │                ZZ
    │ │ │ │  o4 : Ideal of --[x ..x , y ..y ]
    │ │ │ │                 3  0   5   0   5
    │ │ │ │  i5 : elapsedTime T'=minimalBetti J
    │ │ │ │ - -- .248736s elapsed
    │ │ │ │ + -- .209665s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 160 315 302 302 315 160 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 315 288  14   .   .  . .
    │ │ │ │           2: .  .   .   .  14 288 315 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -83,22 +83,22 @@
    │ │ │ │  o6 = total: . . . . . . . . . .
    │ │ │ │           1: . . . . . . . . . .
    │ │ │ │           2: . . . . . . . . . .
    │ │ │ │           3: . . . . . . . . . .
    │ │ │ │  
    │ │ │ │  o6 : BettiTally
    │ │ │ │  i7 : elapsedTime h=carpetBettiTables(6,6);
    │ │ │ │ - -- .00536115s elapsed
    │ │ │ │ - -- .0370005s elapsed
    │ │ │ │ - -- .204983s elapsed
    │ │ │ │ - -- 1.32933s elapsed
    │ │ │ │ - -- .430969s elapsed
    │ │ │ │ - -- .0511654s elapsed
    │ │ │ │ - -- .00654992s elapsed
    │ │ │ │ - -- 6.84149s elapsed
    │ │ │ │ + -- .00543162s elapsed
    │ │ │ │ + -- .0202663s elapsed
    │ │ │ │ + -- .109769s elapsed
    │ │ │ │ + -- 1.14465s elapsed
    │ │ │ │ + -- .473105s elapsed
    │ │ │ │ + -- .0474626s elapsed
    │ │ │ │ + -- .00805537s elapsed
    │ │ │ │ + -- 6.27442s elapsed
    │ │ │ │  i8 : keys h
    │ │ │ │  
    │ │ │ │  o8 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o8 : List
    │ │ │ │  i9 : carpetBettiTable(h,7)
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_carpet__Det.html
    │ │ │ @@ -80,82 +80,82 @@
    │ │ │  
    │ │ │  o1 : Sequence
    │ │ │
    │ │ │
    i2 : d=carpetDet(a,b)
    │ │ │ - -- .00694639s elapsed
    │ │ │ - -- .0123481s elapsed
    │ │ │ + -- .0080706s elapsed
    │ │ │ + -- .0140967s elapsed
    │ │ │  (number Of blocks, 26)
    │ │ │ - -- .000297184s elapsed
    │ │ │ + -- .000283788s elapsed
    │ │ │  1
    │ │ │ - -- .000143437s elapsed
    │ │ │ + -- .000228178s elapsed
    │ │ │  1
    │ │ │ - -- .000131295s elapsed
    │ │ │ + -- .000173857s elapsed
    │ │ │  1
    │ │ │ - -- .000128579s elapsed
    │ │ │ + -- .000179947s elapsed
    │ │ │  1
    │ │ │ - -- .000143327s elapsed
    │ │ │ + -- .000246311s elapsed
    │ │ │  2
    │ │ │ - -- .000142685s elapsed
    │ │ │ + -- .000188789s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000154078s elapsed
    │ │ │ + -- .000197423s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000160099s elapsed
    │ │ │ + -- .000235954s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000140462s elapsed
    │ │ │ + -- .000260644s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .00013971s elapsed
    │ │ │ + -- .000183743s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000138028s elapsed
    │ │ │ + -- .000170697s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132678s elapsed
    │ │ │ + -- .000167883s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000120584s elapsed
    │ │ │ + -- .000173951s elapsed
    │ │ │  2
    │ │ │ - -- .000122919s elapsed
    │ │ │ + -- .000145589s elapsed
    │ │ │  2
    │ │ │ - -- .000134922s elapsed
    │ │ │ + -- .000155031s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .00012317s elapsed
    │ │ │ + -- .00016271s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000140812s elapsed
    │ │ │ + -- .000180971s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000133859s elapsed
    │ │ │ + -- .000168531s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000142265s elapsed
    │ │ │ + -- .00017714s elapsed
    │ │ │   2
    │ │ │  2 3
    │ │ │ - -- .000130654s elapsed
    │ │ │ + -- .000195081s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000132116s elapsed
    │ │ │ + -- .000172724s elapsed
    │ │ │   2
    │ │ │  2
    │ │ │ - -- .000117308s elapsed
    │ │ │ + -- .000153133s elapsed
    │ │ │  2
    │ │ │ - -- .000119734s elapsed
    │ │ │ + -- .000171883s elapsed
    │ │ │  1
    │ │ │ - -- .000126405s elapsed
    │ │ │ + -- .000167409s elapsed
    │ │ │  1
    │ │ │ - -- .000127438s elapsed
    │ │ │ + -- .000163484s elapsed
    │ │ │  1
    │ │ │ - -- .000133549s elapsed
    │ │ │ + -- .000151628s elapsed
    │ │ │  1
    │ │ │  
    │ │ │  o2 = 3131031158784
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,82 +19,82 @@ │ │ │ │ determinants and return their product. │ │ │ │ i1 : a=4,b=4 │ │ │ │ │ │ │ │ o1 = (4, 4) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : d=carpetDet(a,b) │ │ │ │ - -- .00694639s elapsed │ │ │ │ - -- .0123481s elapsed │ │ │ │ + -- .0080706s elapsed │ │ │ │ + -- .0140967s elapsed │ │ │ │ (number Of blocks, 26) │ │ │ │ - -- .000297184s elapsed │ │ │ │ + -- .000283788s elapsed │ │ │ │ 1 │ │ │ │ - -- .000143437s elapsed │ │ │ │ + -- .000228178s elapsed │ │ │ │ 1 │ │ │ │ - -- .000131295s elapsed │ │ │ │ + -- .000173857s elapsed │ │ │ │ 1 │ │ │ │ - -- .000128579s elapsed │ │ │ │ + -- .000179947s elapsed │ │ │ │ 1 │ │ │ │ - -- .000143327s elapsed │ │ │ │ + -- .000246311s elapsed │ │ │ │ 2 │ │ │ │ - -- .000142685s elapsed │ │ │ │ + -- .000188789s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000154078s elapsed │ │ │ │ + -- .000197423s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000160099s elapsed │ │ │ │ + -- .000235954s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000140462s elapsed │ │ │ │ + -- .000260644s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .00013971s elapsed │ │ │ │ + -- .000183743s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000138028s elapsed │ │ │ │ + -- .000170697s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000132678s elapsed │ │ │ │ + -- .000167883s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000120584s elapsed │ │ │ │ + -- .000173951s elapsed │ │ │ │ 2 │ │ │ │ - -- .000122919s elapsed │ │ │ │ + -- .000145589s elapsed │ │ │ │ 2 │ │ │ │ - -- .000134922s elapsed │ │ │ │ + -- .000155031s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .00012317s elapsed │ │ │ │ + -- .00016271s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000140812s elapsed │ │ │ │ + -- .000180971s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000133859s elapsed │ │ │ │ + -- .000168531s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000142265s elapsed │ │ │ │ + -- .00017714s elapsed │ │ │ │ 2 │ │ │ │ 2 3 │ │ │ │ - -- .000130654s elapsed │ │ │ │ + -- .000195081s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000132116s elapsed │ │ │ │ + -- .000172724s elapsed │ │ │ │ 2 │ │ │ │ 2 │ │ │ │ - -- .000117308s elapsed │ │ │ │ + -- .000153133s elapsed │ │ │ │ 2 │ │ │ │ - -- .000119734s elapsed │ │ │ │ + -- .000171883s elapsed │ │ │ │ 1 │ │ │ │ - -- .000126405s elapsed │ │ │ │ + -- .000167409s elapsed │ │ │ │ 1 │ │ │ │ - -- .000127438s elapsed │ │ │ │ + -- .000163484s elapsed │ │ │ │ 1 │ │ │ │ - -- .000133549s elapsed │ │ │ │ + -- .000151628s elapsed │ │ │ │ 1 │ │ │ │ │ │ │ │ o2 = 3131031158784 │ │ │ │ i3 : factor d │ │ │ │ │ │ │ │ 32 6 │ │ │ │ o3 = 2 3 │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_compute__Bound.html │ │ │ @@ -85,20 +85,20 @@ │ │ │ │ │ │ o1 : Sequence │ │ │
    │ │ │
    i2 : computeBound 3
    │ │ │ - -- .193447s elapsed
    │ │ │ - -- .265378s elapsed
    │ │ │ - -- .211761s elapsed
    │ │ │ - -- .284175s elapsed
    │ │ │ - -- .322238s elapsed
    │ │ │ - -- .410165s elapsed
    │ │ │ + -- .177918s elapsed
    │ │ │ + -- .19592s elapsed
    │ │ │ + -- .182155s elapsed
    │ │ │ + -- .29462s elapsed
    │ │ │ + -- .227293s elapsed
    │ │ │ + -- .192633s elapsed
    │ │ │  
    │ │ │  o2 = 6
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,20 +25,20 @@ │ │ │ │ classes mod k. We conjecture that c=k^2-k. │ │ │ │ i1 : (a,b)=computeBound(6,4,3) │ │ │ │ │ │ │ │ o1 = (9, 7) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : computeBound 3 │ │ │ │ - -- .193447s elapsed │ │ │ │ - -- .265378s elapsed │ │ │ │ - -- .211761s elapsed │ │ │ │ - -- .284175s elapsed │ │ │ │ - -- .322238s elapsed │ │ │ │ - -- .410165s elapsed │ │ │ │ + -- .177918s elapsed │ │ │ │ + -- .19592s elapsed │ │ │ │ + -- .182155s elapsed │ │ │ │ + -- .29462s elapsed │ │ │ │ + -- .227293s elapsed │ │ │ │ + -- .192633s elapsed │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_l_a_t_i_v_e_E_q_u_a_t_i_o_n_s -- compute the relative quadrics │ │ │ │ ********** WWaayyss ttoo uussee ccoommppuutteeBBoouunndd:: ********** │ │ │ │ * computeBound(ZZ) │ │ │ │ * computeBound(ZZ,ZZ,ZZ) │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_degenerate__K3__Betti__Tables.html │ │ │ @@ -90,19 +90,19 @@ │ │ │ │ │ │ o2 : Sequence
    │ │ │
    │ │ │
    i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .0634893s elapsed
    │ │ │ - -- .00657433s elapsed
    │ │ │ - -- .0254523s elapsed
    │ │ │ - -- .00879327s elapsed
    │ │ │ - -- .00336788s elapsed
    │ │ │ + -- .0334179s elapsed
    │ │ │ + -- .00737552s elapsed
    │ │ │ + -- .0302602s elapsed
    │ │ │ + -- .00995625s elapsed
    │ │ │ + -- .00408811s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -136,15 +136,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ - -- .309166s elapsed
    │ │ │ + -- .257533s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ @@ -178,19 +178,19 @@
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │
    │ │ │
    i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ - -- .00250595s elapsed
    │ │ │ - -- .00659358s elapsed
    │ │ │ - -- .0231823s elapsed
    │ │ │ - -- .0102019s elapsed
    │ │ │ - -- .00377573s elapsed
    │ │ │ + -- .00304241s elapsed
    │ │ │ + -- .00755411s elapsed
    │ │ │ + -- .0305028s elapsed
    │ │ │ + -- .0162895s elapsed
    │ │ │ + -- .00449834s elapsed
    │ │ │  
    │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,19 +27,19 @@
    │ │ │ │  o1 : Sequence
    │ │ │ │  i2 : e=(-1,5)
    │ │ │ │  
    │ │ │ │  o2 = (-1, 5)
    │ │ │ │  
    │ │ │ │  o2 : Sequence
    │ │ │ │  i3 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .0634893s elapsed
    │ │ │ │ - -- .00657433s elapsed
    │ │ │ │ - -- .0254523s elapsed
    │ │ │ │ - -- .00879327s elapsed
    │ │ │ │ - -- .00336788s elapsed
    │ │ │ │ + -- .0334179s elapsed
    │ │ │ │ + -- .00737552s elapsed
    │ │ │ │ + -- .0302602s elapsed
    │ │ │ │ + -- .00995625s elapsed
    │ │ │ │ + -- .00408811s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o3 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -65,15 +65,15 @@
    │ │ │ │  o3 : HashTable
    │ │ │ │  i4 : keys h
    │ │ │ │  
    │ │ │ │  o4 = {0, 2, 3, 5}
    │ │ │ │  
    │ │ │ │  o4 : List
    │ │ │ │  i5 : elapsedTime T= minimalBetti degenerateK3(a,b,e,Characteristic=>5)
    │ │ │ │ - -- .309166s elapsed
    │ │ │ │ + -- .257533s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o5 = total: 1 36 167 370 476 476 370 167 36 1
    │ │ │ │           0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │           1: . 36 160 322 336 140  48   7  . .
    │ │ │ │           2: .  .   7  48 140 336 322 160 36 .
    │ │ │ │           3: .  .   .   .   .   .   .   .  . 1
    │ │ │ │ @@ -94,19 +94,19 @@
    │ │ │ │  these mistakes.
    │ │ │ │  i7 : e=(-1,5^2)
    │ │ │ │  
    │ │ │ │  o7 = (-1, 25)
    │ │ │ │  
    │ │ │ │  o7 : Sequence
    │ │ │ │  i8 : h=degenerateK3BettiTables(a,b,e)
    │ │ │ │ - -- .00250595s elapsed
    │ │ │ │ - -- .00659358s elapsed
    │ │ │ │ - -- .0231823s elapsed
    │ │ │ │ - -- .0102019s elapsed
    │ │ │ │ - -- .00377573s elapsed
    │ │ │ │ + -- .00304241s elapsed
    │ │ │ │ + -- .00755411s elapsed
    │ │ │ │ + -- .0305028s elapsed
    │ │ │ │ + -- .0162895s elapsed
    │ │ │ │ + -- .00449834s elapsed
    │ │ │ │  
    │ │ │ │                             0  1   2   3   4   5   6   7  8 9
    │ │ │ │  o8 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1     }
    │ │ │ │                          0: 1  .   .   .   .   .   .   .  . .
    │ │ │ │                          1: . 36 160 315 288   .   .   .  . .
    │ │ │ │                          2: .  .   .   .   . 288 315 160 36 .
    │ │ │ │                          3: .  .   .   .   .   .   .   .  . 1
    │ │ ├── ./usr/share/doc/Macaulay2/K3Carpets/html/_resonance__Det.html
    │ │ │ @@ -78,172 +78,172 @@
    │ │ │  
    │ │ │  o1 = 4
    │ │ │
    │ │ │
    i2 : (d1,d2)=resonanceDet(a)
    │ │ │ - -- .0177477s elapsed
    │ │ │ + -- .0210588s elapsed
    │ │ │  (number of blocks= , 18)
    │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │                               2 => 6
    │ │ │                               3 => 2
    │ │ │                               4 => 6
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      7: 1 1
    │ │ │ - -- .000051325s elapsed
    │ │ │ + -- .000055192s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . 2
    │ │ │ - -- .000095639s elapsed
    │ │ │ + -- .000119865s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      7: 2 .
    │ │ │      8: . .
    │ │ │      9: . 2
    │ │ │ - -- .000076743s elapsed
    │ │ │ + -- .000083476s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │      7: 2 .
    │ │ │      8: 1 .
    │ │ │      9: . 1
    │ │ │     10: . 2
    │ │ │ - -- .000079969s elapsed
    │ │ │ + -- .000106085s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (-3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      7: 1 .
    │ │ │      8: 1 .
    │ │ │      9: 2 2
    │ │ │     10: . 1
    │ │ │     11: . 1
    │ │ │ - -- .000083625s elapsed
    │ │ │ + -- .000107413s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      8: 1 .
    │ │ │      9: 2 1
    │ │ │     10: 1 2
    │ │ │     11: . 1
    │ │ │ - -- .000093434s elapsed
    │ │ │ + -- .00010274s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │      9: 1 1
    │ │ │ - -- .000024326s elapsed
    │ │ │ + -- .000032908s elapsed
    │ │ │  (e )(-1)
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │      9: 1 1
    │ │ │     10: 1 1
    │ │ │ - -- .000067026s elapsed
    │ │ │ + -- .000083798s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .00009138s elapsed
    │ │ │ + -- .000112368s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 2 1
    │ │ │     11: 1 2
    │ │ │     12: . 1
    │ │ │ - -- .000095969s elapsed
    │ │ │ + -- .000115386s elapsed
    │ │ │      2    3
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 1 .
    │ │ │     10: 1 .
    │ │ │     11: 2 2
    │ │ │     12: . 1
    │ │ │     13: . 1
    │ │ │ - -- .000090488s elapsed
    │ │ │ + -- .000111017s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 4 4
    │ │ │      9: 2 1
    │ │ │     10: 1 1
    │ │ │     11: 1 2
    │ │ │ - -- .000081492s elapsed
    │ │ │ + -- .000105723s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e ) (-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 3 3
    │ │ │     10: 2 .
    │ │ │     11: 1 .
    │ │ │     12: . 1
    │ │ │     13: . 2
    │ │ │ - -- .00009612s elapsed
    │ │ │ + -- .000112633s elapsed
    │ │ │      2    4
    │ │ │  (e ) (e ) (3)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     10: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000065421s elapsed
    │ │ │ + -- .000095768s elapsed
    │ │ │      2
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     11: 2 .
    │ │ │     12: . .
    │ │ │     13: . 2
    │ │ │ - -- .000077685s elapsed
    │ │ │ + -- .000086287s elapsed
    │ │ │      2    2
    │ │ │  (e ) (e )
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     11: 1 1
    │ │ │ - -- .000024636s elapsed
    │ │ │ + -- .000034508s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │         0 1
    │ │ │  total: 2 2
    │ │ │     12: 2 .
    │ │ │     13: . 2
    │ │ │ - -- .000076392s elapsed
    │ │ │ + -- .00009826s elapsed
    │ │ │      2
    │ │ │  (e ) (e )(-1)
    │ │ │    1    2
    │ │ │         0 1
    │ │ │  total: 1 1
    │ │ │     13: 1 1
    │ │ │ - -- .000027041s elapsed
    │ │ │ + -- .000032758s elapsed
    │ │ │  (e )
    │ │ │    1
    │ │ │  
    │ │ │         6      32    32
    │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │              1     2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,172 +19,172 @@
    │ │ │ │  grading. Viewed as a resolution over QQ(e_1,e_2), this resolution is non-
    │ │ │ │  minimal and carries further gradings. We decompose the crucial map of the a-th
    │ │ │ │  strand into blocks, compute their determinants, and factor the product.
    │ │ │ │  i1 : a=4
    │ │ │ │  
    │ │ │ │  o1 = 4
    │ │ │ │  i2 : (d1,d2)=resonanceDet(a)
    │ │ │ │ - -- .0177477s elapsed
    │ │ │ │ + -- .0210588s elapsed
    │ │ │ │  (number of blocks= , 18)
    │ │ │ │  (size of the matrices, Tally{1 => 4})
    │ │ │ │                               2 => 6
    │ │ │ │                               3 => 2
    │ │ │ │                               4 => 6
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      7: 1 1
    │ │ │ │ - -- .000051325s elapsed
    │ │ │ │ + -- .000055192s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . 2
    │ │ │ │ - -- .000095639s elapsed
    │ │ │ │ + -- .000119865s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      7: 2 .
    │ │ │ │      8: . .
    │ │ │ │      9: . 2
    │ │ │ │ - -- .000076743s elapsed
    │ │ │ │ + -- .000083476s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │      7: 2 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: . 1
    │ │ │ │     10: . 2
    │ │ │ │ - -- .000079969s elapsed
    │ │ │ │ + -- .000106085s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (-3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      7: 1 .
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 2
    │ │ │ │     10: . 1
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000083625s elapsed
    │ │ │ │ + -- .000107413s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      8: 1 .
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 2
    │ │ │ │     11: . 1
    │ │ │ │ - -- .000093434s elapsed
    │ │ │ │ + -- .00010274s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │      9: 1 1
    │ │ │ │ - -- .000024326s elapsed
    │ │ │ │ + -- .000032908s elapsed
    │ │ │ │  (e )(-1)
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │      9: 1 1
    │ │ │ │     10: 1 1
    │ │ │ │ - -- .000067026s elapsed
    │ │ │ │ + -- .000083798s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .00009138s elapsed
    │ │ │ │ + -- .000112368s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 2 1
    │ │ │ │     11: 1 2
    │ │ │ │     12: . 1
    │ │ │ │ - -- .000095969s elapsed
    │ │ │ │ + -- .000115386s elapsed
    │ │ │ │      2    3
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 1 .
    │ │ │ │     10: 1 .
    │ │ │ │     11: 2 2
    │ │ │ │     12: . 1
    │ │ │ │     13: . 1
    │ │ │ │ - -- .000090488s elapsed
    │ │ │ │ + -- .000111017s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 4 4
    │ │ │ │      9: 2 1
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 2
    │ │ │ │ - -- .000081492s elapsed
    │ │ │ │ + -- .000105723s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e ) (-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 3 3
    │ │ │ │     10: 2 .
    │ │ │ │     11: 1 .
    │ │ │ │     12: . 1
    │ │ │ │     13: . 2
    │ │ │ │ - -- .00009612s elapsed
    │ │ │ │ + -- .000112633s elapsed
    │ │ │ │      2    4
    │ │ │ │  (e ) (e ) (3)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     10: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .000065421s elapsed
    │ │ │ │ + -- .000095768s elapsed
    │ │ │ │      2
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     11: 2 .
    │ │ │ │     12: . .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000077685s elapsed
    │ │ │ │ + -- .000086287s elapsed
    │ │ │ │      2    2
    │ │ │ │  (e ) (e )
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     11: 1 1
    │ │ │ │ - -- .000024636s elapsed
    │ │ │ │ + -- .000034508s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │         0 1
    │ │ │ │  total: 2 2
    │ │ │ │     12: 2 .
    │ │ │ │     13: . 2
    │ │ │ │ - -- .000076392s elapsed
    │ │ │ │ + -- .00009826s elapsed
    │ │ │ │      2
    │ │ │ │  (e ) (e )(-1)
    │ │ │ │    1    2
    │ │ │ │         0 1
    │ │ │ │  total: 1 1
    │ │ │ │     13: 1 1
    │ │ │ │ - -- .000027041s elapsed
    │ │ │ │ + -- .000032758s elapsed
    │ │ │ │  (e )
    │ │ │ │    1
    │ │ │ │  
    │ │ │ │         6      32    32
    │ │ │ │  o2 = (3 , (e )  (e )  )
    │ │ │ │              1     2
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/example-output/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.out
    │ │ │ @@ -7,55 +7,55 @@
    │ │ │  
    │ │ │  i2 : m = syz m1;
    │ │ │  
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i3 : time LLL m;
    │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc)
    │ │ │ + -- used 0.0100998s (cpu); 0.0100967s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc)
    │ │ │ + -- used 0.0308514s (cpu); 0.0307785s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc)
    │ │ │ + -- used 0.124523s (cpu); 0.124375s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc)
    │ │ │ + -- used 0.013082s (cpu); 0.0130869s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc)
    │ │ │ + -- used 0.0620766s (cpu); 0.062084s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc)
    │ │ │ + -- used 0.0647416s (cpu); 0.0647479s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc)
    │ │ │ + -- used 0.349014s (cpu); 0.349023s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc)
    │ │ │ + -- used 0.153778s (cpu); 0.153794s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/LLLBases/html/___L__L__L_lp..._cm__Strategy_eq_gt..._rp.html
    │ │ │ @@ -139,78 +139,78 @@
    │ │ │                50       47
    │ │ │  o2 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i3 : time LLL m;
    │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc)
    │ │ │ + -- used 0.0100998s (cpu); 0.0100967s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o3 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i4 : time LLL(m, Strategy=>CohenEngine);
    │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc)
    │ │ │ + -- used 0.0308514s (cpu); 0.0307785s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o4 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i5 : time LLL(m, Strategy=>CohenTopLevel);
    │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc)
    │ │ │ + -- used 0.124523s (cpu); 0.124375s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o5 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i6 : time LLL(m, Strategy=>{Givens,RealFP});
    │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc)
    │ │ │ + -- used 0.013082s (cpu); 0.0130869s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o6 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i7 : time LLL(m, Strategy=>{Givens,RealQP});
    │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc)
    │ │ │ + -- used 0.0620766s (cpu); 0.062084s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o7 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i8 : time LLL(m, Strategy=>{Givens,RealXD});
    │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc)
    │ │ │ + -- used 0.0647416s (cpu); 0.0647479s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o8 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i9 : time LLL(m, Strategy=>{Givens,RealRR});
    │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc)
    │ │ │ + -- used 0.349014s (cpu); 0.349023s (thread); 0s (gc)
    │ │ │  
    │ │ │                50       47
    │ │ │  o9 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │
    i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP});
    │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc)
    │ │ │ + -- used 0.153778s (cpu); 0.153794s (thread); 0s (gc)
    │ │ │  
    │ │ │                 50       47
    │ │ │  o10 : Matrix ZZ   <-- ZZ
    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -115,50 +115,50 @@ │ │ │ │ 50 50 │ │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ i2 : m = syz m1; │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : time LLL m; │ │ │ │ - -- used 0.00904435s (cpu); 0.00904001s (thread); 0s (gc) │ │ │ │ + -- used 0.0100998s (cpu); 0.0100967s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o3 : Matrix ZZ <-- ZZ │ │ │ │ i4 : time LLL(m, Strategy=>CohenEngine); │ │ │ │ - -- used 0.0273886s (cpu); 0.02739s (thread); 0s (gc) │ │ │ │ + -- used 0.0308514s (cpu); 0.0307785s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : time LLL(m, Strategy=>CohenTopLevel); │ │ │ │ - -- used 0.107453s (cpu); 0.10743s (thread); 0s (gc) │ │ │ │ + -- used 0.124523s (cpu); 0.124375s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o5 : Matrix ZZ <-- ZZ │ │ │ │ i6 : time LLL(m, Strategy=>{Givens,RealFP}); │ │ │ │ - -- used 0.011869s (cpu); 0.0118693s (thread); 0s (gc) │ │ │ │ + -- used 0.013082s (cpu); 0.0130869s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o6 : Matrix ZZ <-- ZZ │ │ │ │ i7 : time LLL(m, Strategy=>{Givens,RealQP}); │ │ │ │ - -- used 0.0480703s (cpu); 0.0480742s (thread); 0s (gc) │ │ │ │ + -- used 0.0620766s (cpu); 0.062084s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o7 : Matrix ZZ <-- ZZ │ │ │ │ i8 : time LLL(m, Strategy=>{Givens,RealXD}); │ │ │ │ - -- used 0.0590818s (cpu); 0.0590819s (thread); 0s (gc) │ │ │ │ + -- used 0.0647416s (cpu); 0.0647479s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o8 : Matrix ZZ <-- ZZ │ │ │ │ i9 : time LLL(m, Strategy=>{Givens,RealRR}); │ │ │ │ - -- used 0.347092s (cpu); 0.347092s (thread); 0s (gc) │ │ │ │ + -- used 0.349014s (cpu); 0.349023s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o9 : Matrix ZZ <-- ZZ │ │ │ │ i10 : time LLL(m, Strategy=>{BKZ,Givens,RealQP}); │ │ │ │ - -- used 0.113298s (cpu); 0.113301s (thread); 0s (gc) │ │ │ │ + -- used 0.153778s (cpu); 0.153794s (thread); 0s (gc) │ │ │ │ │ │ │ │ 50 47 │ │ │ │ o10 : Matrix ZZ <-- ZZ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For most of the options, the columns do not need to be linearly independent. │ │ │ │ The strategies CohenEngine and CohenTopLevel currently require the columns to │ │ │ │ be linearly independent. │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/example-output/_are__Isomorphic.out │ │ │ @@ -16,14 +16,14 @@ │ │ │ │ │ │ 3 8 │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc) │ │ │ + -- used 1.08742s (cpu); 0.59212s (thread); 0s (gc) │ │ │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc) │ │ │ + -- used 0.659649s (cpu); 0.364223s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LatticePolytopes/html/_are__Isomorphic.html │ │ │ @@ -120,21 +120,21 @@ │ │ │
    │ │ │
    i5 : P = convexHull(M);
    │ │ │
    │ │ │
    i6 : time areIsomorphic(P,P);
    │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc)
    │ │ │ + -- used 1.08742s (cpu); 0.59212s (thread); 0s (gc) │ │ │
    │ │ │
    i7 : time areIsomorphic(P,P,smoothTest=>false);
    │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc)
    │ │ │ + -- used 0.659649s (cpu); 0.364223s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use areIsomorphic:

    │ │ │ ├── html2text {} │ │ │ │ @@ -35,17 +35,17 @@ │ │ │ │ | 0 0 1 0 1 0 1 1 | │ │ │ │ | 0 0 0 1 0 1 1 1 | │ │ │ │ │ │ │ │ 3 8 │ │ │ │ o4 : Matrix ZZ <-- ZZ │ │ │ │ i5 : P = convexHull(M); │ │ │ │ i6 : time areIsomorphic(P,P); │ │ │ │ - -- used 0.593992s (cpu); 0.441215s (thread); 0s (gc) │ │ │ │ + -- used 1.08742s (cpu); 0.59212s (thread); 0s (gc) │ │ │ │ i7 : time areIsomorphic(P,P,smoothTest=>false); │ │ │ │ - -- used 0.449515s (cpu); 0.292918s (thread); 0s (gc) │ │ │ │ + -- used 0.659649s (cpu); 0.364223s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee aarreeIIssoommoorrpphhiicc:: ********** │ │ │ │ * areIsomorphic(Matrix,Matrix) │ │ │ │ * areIsomorphic(Polyhedron,Polyhedron) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _a_r_e_I_s_o_m_o_r_p_h_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_find__Region.out │ │ │ @@ -29,21 +29,21 @@ │ │ │ i5 : findRegion({{0,0},{4,4}},M,f) │ │ │ │ │ │ o5 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ - -- .129699s elapsed │ │ │ + -- .104153s elapsed │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}}) │ │ │ - -- .0121746s elapsed │ │ │ + -- .0343522s elapsed │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/example-output/_linear__Truncations__Bound.out │ │ │ @@ -30,21 +30,21 @@ │ │ │ i5 : apply(L, d -> isLinearComplex res prune truncate(d,M)) │ │ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ - -- 4.16059s elapsed │ │ │ + -- 3.40498s elapsed │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ - -- .0266295s elapsed │ │ │ + -- .0292878s elapsed │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_find__Region.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    If some degrees d are known to satisfy f(d,M), then they can be specified using the option Inner in order to expedite the computation. Similarly, degrees not above those given in Outer will be assumed not to satisfy f(d,M). If f takes options these can also be given to findRegion.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime findRegion({{0,0},{4,4}},M,f)
    │ │ │ - -- .129699s elapsed
    │ │ │ + -- .104153s elapsed
    │ │ │  
    │ │ │  o6 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}})
    │ │ │ - -- .0121746s elapsed
    │ │ │ + -- .0343522s elapsed
    │ │ │  
    │ │ │  o7 = {{1, 2}, {3, 1}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ │ │ │ │ o5 : List │ │ │ │ If some degrees d are known to satisfy f(d,M), then they can be specified using │ │ │ │ the option Inner in order to expedite the computation. Similarly, degrees not │ │ │ │ above those given in Outer will be assumed not to satisfy f(d,M). If f takes │ │ │ │ options these can also be given to findRegion. │ │ │ │ i6 : elapsedTime findRegion({{0,0},{4,4}},M,f) │ │ │ │ - -- .129699s elapsed │ │ │ │ + -- .104153s elapsed │ │ │ │ │ │ │ │ o6 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{ │ │ │ │ {1,1}}) │ │ │ │ - -- .0121746s elapsed │ │ │ │ + -- .0343522s elapsed │ │ │ │ │ │ │ │ o7 = {{1, 2}, {3, 1}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCoonnttrriibbuuttoorrss ********** │ │ │ │ Mahrud Sayrafi contributed to the code for this function. │ │ │ │ ********** CCaavveeaatt ********** │ │ ├── ./usr/share/doc/Macaulay2/LinearTruncations/html/_linear__Truncations__Bound.html │ │ │ @@ -123,25 +123,25 @@ │ │ │
    │ │ │

    The output is a list of the minimal multidegrees $d$ such that the sum of the positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in the i-th step of the resolution of $M$.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M)
    │ │ │ - -- 4.16059s elapsed
    │ │ │ + -- 3.40498s elapsed
    │ │ │  
    │ │ │  o6 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : elapsedTime linearTruncationsBound M
    │ │ │ - -- .0266295s elapsed
    │ │ │ + -- .0292878s elapsed
    │ │ │  
    │ │ │  o7 = {{4, 3, 3}, {4, 4, 2}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ o5 = {true, true} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ The output is a list of the minimal multidegrees $d$ such that the sum of the │ │ │ │ positive coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in │ │ │ │ the i-th step of the resolution of $M$. │ │ │ │ i6 : elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M) │ │ │ │ - -- 4.16059s elapsed │ │ │ │ + -- 3.40498s elapsed │ │ │ │ │ │ │ │ o6 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime linearTruncationsBound M │ │ │ │ - -- .0266295s elapsed │ │ │ │ + -- .0292878s elapsed │ │ │ │ │ │ │ │ o7 = {{4, 3, 3}, {4, 4, 2}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ In general linearTruncationsBound will not find the minimal degrees where $M$ │ │ │ │ has a linear resolution but will be faster than repeatedly truncating $M$. │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/example-output/_hilbert__Samuel__Function.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ - -- .238651s elapsed │ │ │ + -- .216742s elapsed │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oo//sum │ │ │ │ │ │ @@ -44,21 +44,21 @@ │ │ │ │ │ │ 2 3 │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ - -- .0754774s elapsed │ │ │ + -- .0189068s elapsed │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ o11 : List │ │ │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ - -- .381402s elapsed │ │ │ + -- .306756s elapsed │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/LocalRings/html/_hilbert__Samuel__Function.html │ │ │ @@ -111,15 +111,15 @@ │ │ │ 1 │ │ │ o4 : RP-module, quotient of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime hilbertSamuelFunction(M, 0, 6)
    │ │ │ - -- .238651s elapsed
    │ │ │ + -- .216742s elapsed
    │ │ │  
    │ │ │  o5 = {1, 3, 6, 7, 6, 3, 1}
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -163,25 +163,25 @@ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds
    │ │ │ - -- .0754774s elapsed
    │ │ │ + -- .0189068s elapsed
    │ │ │  
    │ │ │  o11 = {1, 2, 3, 4, 5, 6}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds
    │ │ │ - -- .381402s elapsed
    │ │ │ + -- .306756s elapsed
    │ │ │  
    │ │ │  o12 = {6, 12, 18, 24, 30, 36}
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ i4 : M = RP^1/I │ │ │ │ │ │ │ │ o4 = cokernel | x5+y3+z3 y5+x3+z3 z5+x3+y3 | │ │ │ │ │ │ │ │ 1 │ │ │ │ o4 : RP-module, quotient of RP │ │ │ │ i5 : elapsedTime hilbertSamuelFunction(M, 0, 6) │ │ │ │ - -- .238651s elapsed │ │ │ │ + -- .216742s elapsed │ │ │ │ │ │ │ │ o5 = {1, 3, 6, 7, 6, 3, 1} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oo//sum │ │ │ │ │ │ │ │ o6 = 27 │ │ │ │ @@ -65,21 +65,21 @@ │ │ │ │ i10 : q = ideal"x2,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o10 = ideal (x , y ) │ │ │ │ │ │ │ │ o10 : Ideal of RP │ │ │ │ i11 : elapsedTime hilbertSamuelFunction(N, 0, 5) -- n+1 -- 0.02 seconds │ │ │ │ - -- .0754774s elapsed │ │ │ │ + -- .0189068s elapsed │ │ │ │ │ │ │ │ o11 = {1, 2, 3, 4, 5, 6} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ i12 : elapsedTime hilbertSamuelFunction(q, N, 0, 5) -- 6(n+1) -- 0.32 seconds │ │ │ │ - -- .381402s elapsed │ │ │ │ + -- .306756s elapsed │ │ │ │ │ │ │ │ o12 = {6, 12, 18, 24, 30, 36} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Hilbert-Samuel function with respect to a parameter ideal other than the │ │ │ │ maximal ideal can be slower. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Command.out │ │ │ @@ -5,12 +5,12 @@ │ │ │ i2 : f │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ │ │ i3 : (c = Command "date";) │ │ │ │ │ │ i4 : c │ │ │ -Sun Dec 14 15:26:56 UTC 2025 │ │ │ +Wed Jan 7 12:22:11 UTC 2026 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Database.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 9579076464446459296 │ │ │ │ │ │ i1 : filename = temporaryFileName () | ".dbm" │ │ │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ i2 : x = openDatabaseOut filename │ │ │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm │ │ │ +o2 = /tmp/M2-13231-0/0.dbm │ │ │ │ │ │ o2 : Database │ │ │ │ │ │ i3 : x#"first" = "hi there" │ │ │ │ │ │ o3 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___G__Cstats.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 1731899428494721487 │ │ │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706 } │ │ │ +o1 = HashTable{"bytesAlloc" => 43050590362 } │ │ │ "GC_free_space_divisor" => 3 │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ "gcCpuTimeSecs" => 0 │ │ │ - "heapSize" => 206680064 │ │ │ - "numGCs" => 795 │ │ │ - "numGCThreads" => 6 │ │ │ + "heapSize" => 225931264 │ │ │ + "numGCs" => 783 │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ o1 : HashTable │ │ │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ -o2 = 206680064 │ │ │ +o2 = 225931264 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___Minimal__Generators.out │ │ │ @@ -40,20 +40,20 @@ │ │ │ o6 : PolynomialRing │ │ │ │ │ │ i7 : I = monomialCurveIdeal(R, {1,4,5,9}); │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time J = truncate(8, I, MinimalGenerators => false); │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc) │ │ │ + -- used 0.00604401s (cpu); 0.00604071s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of R │ │ │ │ │ │ i9 : time K = truncate(8, I, MinimalGenerators => true); │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc) │ │ │ + -- used 0.0603359s (cpu); 0.0603461s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : numgens J │ │ │ │ │ │ o10 = 1067 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.out │ │ │ @@ -3,13 +3,13 @@ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ 200 200 │ │ │ o1 : Matrix RR <-- RR │ │ │ 53 53 │ │ │ │ │ │ i2 : time SVD(M); │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc) │ │ │ + -- used 0.0417848s (cpu); 0.041782s (thread); 0s (gc) │ │ │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc) │ │ │ + -- used 0.0410636s (cpu); 0.0410811s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_a_spfirst_sp__Macaulay2_spsession.out │ │ │ @@ -351,15 +351,15 @@ │ │ │ | b e h k n q | │ │ │ | c f i l o r | │ │ │ │ │ │ 3 │ │ │ o58 : R-module, quotient of R │ │ │ │ │ │ i59 : time C = resolution M │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc) │ │ │ + -- used 0.00234372s (cpu); 0.00233367s (thread); 0s (gc) │ │ │ │ │ │ 3 6 15 18 6 │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_at__End__Of__File_lp__File_rp.out │ │ │ @@ -14,10 +14,10 @@ │ │ │ │ │ │ i4 : peek read f │ │ │ │ │ │ o4 = "hi there" │ │ │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ -o5 = false │ │ │ +o5 = true │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_benchmark.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1330379359420 │ │ │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ -o1 = .000290697861367332 │ │ │ +o1 = .0003726770483759516 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_caching_spcomputation_spresults.out │ │ │ @@ -4,20 +4,20 @@ │ │ │ │ │ │ i2 : R = QQ[x,y,z]; │ │ │ │ │ │ i3 : M = coker vars R; │ │ │ │ │ │ i4 : elapsedTime pdim' M │ │ │ -- computing pdim' │ │ │ - -- .00670047s elapsed │ │ │ + -- .00488437s elapsed │ │ │ │ │ │ o4 = 3 │ │ │ │ │ │ i5 : elapsedTime pdim' M │ │ │ - -- .000001513s elapsed │ │ │ + -- .000002519s elapsed │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : peek M.cache │ │ │ │ │ │ o6 = CacheTable{cache => MutableHashTable{} } │ │ │ isHomogeneous => true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cancel__Task_lp__Task_rp.out │ │ │ @@ -18,29 +18,29 @@ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ o4 : Task │ │ │ │ │ │ i5 : n │ │ │ │ │ │ -o5 = 711206 │ │ │ +o5 = 1095574 │ │ │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ o6 = 0 │ │ │ │ │ │ i7 : t │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ o7 : Task │ │ │ │ │ │ i8 : n │ │ │ │ │ │ -o8 = 1453533 │ │ │ +o8 = 2222205 │ │ │ │ │ │ i9 : isReady t │ │ │ │ │ │ o9 = false │ │ │ │ │ │ i10 : cancelTask t │ │ │ │ │ │ @@ -53,22 +53,22 @@ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ o12 : Task │ │ │ │ │ │ i13 : n │ │ │ │ │ │ -o13 = 1453746 │ │ │ +o13 = 2222398 │ │ │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ o14 = 0 │ │ │ │ │ │ i15 : n │ │ │ │ │ │ -o15 = 1453746 │ │ │ +o15 = 2222398 │ │ │ │ │ │ i16 : isReady t │ │ │ │ │ │ o16 = false │ │ │ │ │ │ i17 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_change__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8535510246140175278 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_check.out │ │ │ @@ -4,51 +4,51 @@ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ o1 : Package │ │ │ │ │ │ i2 : check_1 FirstPackage │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this package │ │ │ - -- capturing check(1, "FirstPackage") -- .15147s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .136542s elapsed │ │ │ │ │ │ i3 : check FirstPackage │ │ │ - -- capturing check(0, "FirstPackage") -- .150181s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .150965s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .147318s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .144622s elapsed │ │ │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ - -- capturing check(1, "FirstPackage") -- .152579s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .139659s elapsed │ │ │ │ │ │ i5 : check "FirstPackage" │ │ │ - -- capturing check(0, "FirstPackage") -- .152053s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .151867s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .135863s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .137943s elapsed │ │ │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ i7 : check oo │ │ │ - -- capturing check(1, "FirstPackage") -- .153083s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .135696s elapsed │ │ │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ │ │ i9 : check oo │ │ │ - -- capturing check(0, "FirstPackage") -- .152703s elapsed │ │ │ - -- capturing check(1, "FirstPackage") -- .150901s elapsed │ │ │ + -- capturing check(0, "FirstPackage") -- .133351s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .13031s elapsed │ │ │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ i11 : check 1 │ │ │ - -- capturing check(1, "FirstPackage") -- .151346s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .131903s elapsed │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_communicating_spwith_spprograms.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 10365735446967377456 │ │ │ │ │ │ i1 : run "uname -a" │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ ba │ │ │ ad │ │ │ │ │ │ o2 = !grep a │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │ │ │ │ i4 : f = openInOut "!grep -E '^in'" │ │ │ │ │ │ o4 = !grep -E '^in' │ │ │ │ │ │ o4 : File │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_computing_sp__Groebner_spbases.out │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ ZZ │ │ │ o23 : Ideal of ----[x..z, w] │ │ │ 1277 │ │ │ │ │ │ i24 : gb I │ │ │ │ │ │ - -- registering gb 5 at 0x7f67b957e540 │ │ │ + -- registering gb 5 at 0x7f49bd44d540 │ │ │ │ │ │ -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4 │ │ │ -- number of monomials = 8 │ │ │ -- #reduction steps = 2 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ @@ -177,15 +177,15 @@ │ │ │ │ │ │ i32 : f = random(R^1,R^{-3,-3,-5,-6}); │ │ │ │ │ │ 1 4 │ │ │ o32 : Matrix R <-- R │ │ │ │ │ │ i33 : time betti gb f │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc) │ │ │ + -- used 0.227867s (cpu); 0.231374s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o33 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ │ @@ -208,15 +208,15 @@ │ │ │ │ │ │ 3 5 8 9 12 14 17 │ │ │ o35 = 1 - 2T - T + 2T + 2T - T - 2T + T │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ │ │ i36 : time betti gb f │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc) │ │ │ + -- used 0.00398845s (cpu); 0.00376715s (thread); 0s (gc) │ │ │ │ │ │ 0 1 │ │ │ o36 = total: 1 53 │ │ │ 0: 1 . │ │ │ 1: . . │ │ │ 2: . 2 │ │ │ 3: . 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,76 +1,76 @@ │ │ │ -- -*- M2-comint -*- hash: 11422793294564310273 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ o13 = ho there │ │ │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_copy__File_lp__String_cm__String_rp.out │ │ │ @@ -1,41 +1,41 @@ │ │ │ -- -*- M2-comint -*- hash: 11539475420155775110 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ │ │ i9 : get dst │ │ │ │ │ │ o9 = hi there │ │ │ │ │ │ i10 : removeFile src │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_cpu__Time.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 15508153783232232453 │ │ │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ -o1 = 354.029649282 │ │ │ +o1 = 383.166340652 │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ -o3 = 355.996910491 │ │ │ +o3 = 384.327232721 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ -o4 = 1.967261209000014 │ │ │ +o4 = 1.160892068999999 │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_current__Time.out │ │ │ @@ -1,24 +1,24 @@ │ │ │ -- -*- M2-comint -*- hash: 3660839476107967259 │ │ │ │ │ │ i1 : currentTime() │ │ │ │ │ │ -o1 = 1765726091 │ │ │ +o1 = 1767788593 │ │ │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ -o2 = 55.95363237235333 │ │ │ +o2 = 56.01899045890111 │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ -o3 = 11.44358846823999 │ │ │ +o3 = .2278855068132941 │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ │ │ i4 : run "date" │ │ │ -Sun Dec 14 15:28:11 UTC 2025 │ │ │ +Wed Jan 7 12:23:13 UTC 2026 │ │ │ │ │ │ o4 = 0 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elapsed__Time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1330565958025 │ │ │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ - -- 1.00015s elapsed │ │ │ + -- 1.00023s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_elimination_spof_spvariables.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o2 = ideal (- s - s*t + x - 1, - t - 3t - t + y, - s*t + z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : time leadTerm gens gb I │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc) │ │ │ + -- used 0.1387s (cpu); 0.138699s (thread); 0s (gc) │ │ │ │ │ │ o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4 │ │ │ ------------------------------------------------------------------------ │ │ │ 563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2 │ │ │ ------------------------------------------------------------------------ │ │ │ 267076255345488270sy3z4 5256861933965245618410txyz6 │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o7 = ideal (- s - s*t + x - 1, - t - 3t + y - t, - s*t + z) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : time G = eliminate(I,{s,t}) │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc) │ │ │ + -- used 0.42811s (cpu); 0.206841s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o8 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ------------------------------------------------------------------------ │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -154,15 +154,15 @@ │ │ │ i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}]; │ │ │ │ │ │ i11 : I1 = substitute(I,R1); │ │ │ │ │ │ o11 : Ideal of R1 │ │ │ │ │ │ i12 : time G = eliminate(I1,{s,t}) │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc) │ │ │ + -- used 0.0363006s (cpu); 0.0363011s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 6 3 3 6 9 2 8 5 4 2 7 │ │ │ o12 = ideal(x y - 3x y z + 3x*y z - z - 6x y z - 15x*y z + 21y z - │ │ │ ----------------------------------------------------------------------- │ │ │ 2 9 2 5 3 6 3 7 3 2 6 3 6 7 2 │ │ │ 3x y - 324x y z + 6x*y z - y z - 405x*y z - 3y z + 7x*y z - │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -228,15 +228,15 @@ │ │ │ │ │ │ 3 3 2 3 │ │ │ o16 = map (A, B, {s + s*t + 1, t + 3t + t, s*t }) │ │ │ │ │ │ o16 : RingMap A <-- B │ │ │ │ │ │ i17 : time G = kernel F │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc) │ │ │ + -- used 0.1109s (cpu); 0.11091s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 │ │ │ o17 = ideal(x y - 3x y - 6x y z - 3x y z + 3x*y - x y z + 12x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 7 2 2 5 3 6 3 7 3 5 4 3 6 9 7 │ │ │ 7x*y z - 324x y z + 6x*y z - y z - 15x*y z + 3x*y z - y + 2x*y z │ │ │ ----------------------------------------------------------------------- │ │ │ @@ -297,23 +297,23 @@ │ │ │ i19 : use ring I │ │ │ │ │ │ o19 = R │ │ │ │ │ │ o19 : PolynomialRing │ │ │ │ │ │ i20 : time f1 = resultant(I_0,I_2,s) │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc) │ │ │ + -- used 0.00189673s (cpu); 0.00189022s (thread); 0s (gc) │ │ │ │ │ │ 9 9 7 3 │ │ │ o20 = x*t - t - z*t - z │ │ │ │ │ │ o20 : R │ │ │ │ │ │ i21 : time f2 = resultant(I_1,f1,t) │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc) │ │ │ + -- used 0.0362551s (cpu); 0.0362736s (thread); 0s (gc) │ │ │ │ │ │ 3 9 2 9 2 8 2 6 3 9 2 7 8 7 2 │ │ │ o21 = - x y + 3x y + 6x y z + 3x y z - 3x*y + x y z - 12x*y z - 7x*y z + │ │ │ ----------------------------------------------------------------------- │ │ │ 2 5 3 6 3 7 3 5 4 3 6 9 7 8 │ │ │ 324x y z - 6x*y z + y z + 15x*y z - 3x*y z + y - 2x*y z + 6y z + │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_end__Package.out │ │ │ @@ -59,15 +59,15 @@ │ │ │ Version => 0.0 │ │ │ package prefix => /usr/ │ │ │ PackageIsLoaded => true │ │ │ pkgname => Foo │ │ │ private dictionary => Foo#"private dictionary" │ │ │ processed documentation => MutableHashTable{} │ │ │ raw documentation => MutableHashTable{} │ │ │ - source directory => /tmp/M2-10191-0/91-rundir/ │ │ │ + source directory => /tmp/M2-10311-0/91-rundir/ │ │ │ source file => stdio │ │ │ test inputs => MutableList{} │ │ │ │ │ │ i7 : dictionaryPath │ │ │ │ │ │ o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary, │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Exists.out │ │ │ @@ -1,20 +1,20 @@ │ │ │ -- -*- M2-comint -*- hash: 7475038936570224899 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10558-0/0 │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │ │ │ │ i2 : fileExists fn │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10558-0/0 │ │ │ +o3 = /tmp/M2-11028-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : fileExists fn │ │ │ │ │ │ o4 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Length.out │ │ │ @@ -1,28 +1,28 @@ │ │ │ -- -*- M2-comint -*- hash: 1216695447195237994 │ │ │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o1 : File │ │ │ │ │ │ i2 : fileLength f │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ i3 : close f │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ o5 = 8 │ │ │ │ │ │ i6 : get filename │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__File_rp.out │ │ │ @@ -1,25 +1,25 @@ │ │ │ -- -*- M2-comint -*- hash: 11202140621123993633 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode f │ │ │ │ │ │ o3 = 420 │ │ │ │ │ │ i4 : close f │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782570202197464532 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10989-0/0 │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-10989-0/0 │ │ │ +o2 = /tmp/M2-11899-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__File_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 17473878267845575442 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10854-0/0 │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ -o2 = /tmp/M2-10854-0/0 │ │ │ +o2 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = 7 + 7*8 + 7*64 │ │ │ │ │ │ o3 = 511 │ │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ │ i5 : fileMode f │ │ │ │ │ │ o5 = 511 │ │ │ │ │ │ i6 : close f │ │ │ │ │ │ -o6 = /tmp/M2-10854-0/0 │ │ │ +o6 = /tmp/M2-11624-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : fileMode fn │ │ │ │ │ │ o7 = 511 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Mode_lp__Z__Z_cm__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 16772784390799334723 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11977-0/0 │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-11977-0/0 │ │ │ +o2 = /tmp/M2-13917-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : m = fileMode fn │ │ │ │ │ │ o3 = 420 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_file__Time.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331310711075 │ │ │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ -o1 = 61 │ │ │ +o1 = 53 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.out │ │ │ @@ -29,15 +29,15 @@ │ │ │ {4} | 0 x2-3 y3-1 | │ │ │ │ │ │ 3 3 │ │ │ o6 : Matrix R <-- R │ │ │ │ │ │ i7 : syz f │ │ │ │ │ │ - -- registering gb 0 at 0x7f5498d2ce00 │ │ │ + -- registering gb 0 at 0x7fabc31bde00 │ │ │ │ │ │ -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3 │ │ │ -- number of monomials = 9 │ │ │ -- #reduction steps = 6 │ │ │ -- #spairs done = 6 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_get.out │ │ │ @@ -10,11 +10,11 @@ │ │ │ │ │ │ o2 = hi there │ │ │ │ │ │ i3 : removeFile "test-file" │ │ │ │ │ │ i4 : get "!date" │ │ │ │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025 │ │ │ +o4 = Wed Jan 7 12:22:33 UTC 2026 │ │ │ │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_instances.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Directory.out │ │ │ @@ -2,19 +2,19 @@ │ │ │ │ │ │ i1 : isDirectory "." │ │ │ │ │ │ o1 = true │ │ │ │ │ │ i2 : fn = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10380-0/0 │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │ │ │ │ i3 : fn << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10380-0/0 │ │ │ +o3 = /tmp/M2-10670-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : isDirectory fn │ │ │ │ │ │ o4 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Pseudoprime_lp__Z__Z_rp.out │ │ │ @@ -75,15 +75,15 @@ │ │ │ o17 = false │ │ │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ o18 = false │ │ │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ - -- 4.33674s elapsed │ │ │ + -- 6.01582s elapsed │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ @@ -97,17 +97,17 @@ │ │ │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ - -- .0569545s elapsed │ │ │ + -- .0621642s elapsed │ │ │ │ │ │ o23 = true │ │ │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ - -- .000114113s elapsed │ │ │ + -- .000136165s elapsed │ │ │ │ │ │ o24 = true │ │ │ │ │ │ i25 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_is__Regular__File.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 4782205245758053629 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-12188-0/0 │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │ │ │ │ i2 : fn << "hi there" << close │ │ │ │ │ │ -o2 = /tmp/M2-12188-0/0 │ │ │ +o2 = /tmp/M2-14348-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : isRegularFile fn │ │ │ │ │ │ o3 = true │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_make__Directory_lp__String_rp.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 5113372159204571746 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_max__Allowable__Threads.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1331887830690 │ │ │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ -o1 = 7 │ │ │ +o1 = 17 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_memoize.out │ │ │ @@ -3,31 +3,31 @@ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ │ │ i2 : time fib 28 │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc) │ │ │ + -- used 0.892603s (cpu); 0.622672s (thread); 0s (gc) │ │ │ │ │ │ o2 = 514229 │ │ │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ │ │ i4 : time fib 28 │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc) │ │ │ + -- used 7.6e-05s (cpu); 7.0592e-05s (thread); 0s (gc) │ │ │ │ │ │ o4 = 514229 │ │ │ │ │ │ i5 : time fib 28 │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc) │ │ │ + -- used 4.41e-06s (cpu); 3.224e-06s (thread); 0s (gc) │ │ │ │ │ │ o5 = 514229 │ │ │ │ │ │ i6 : fib = memoize( n -> fib(n-1) + fib(n-2) ) │ │ │ │ │ │ o6 = fib │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_methods.out │ │ │ @@ -18,19 +18,19 @@ │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ {19 => (codim, BettiTally) } │ │ │ - {20 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {21 => (dual, BettiTally) } │ │ │ + {20 => (dual, BettiTally) } │ │ │ + {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {24 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList │ │ │ │ │ │ i2 : methods resolution │ │ │ │ │ │ o2 = {0 => (resolution, Ideal) } │ │ │ @@ -60,20 +60,20 @@ │ │ │ {1 => (++, Module, GradedModule)} │ │ │ {2 => (++, Module, Module) } │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : methods( Matrix, Matrix ) │ │ │ │ │ │ -o5 = {0 => (contract, Matrix, Matrix) } │ │ │ - {1 => (diff, Matrix, Matrix) } │ │ │ - {2 => (diff', Matrix, Matrix) } │ │ │ - {3 => (-, Matrix, Matrix) } │ │ │ +o5 = {0 => (+, Matrix, Matrix) } │ │ │ + {1 => (-, Matrix, Matrix) } │ │ │ + {2 => (contract, Matrix, Matrix) } │ │ │ + {3 => (diff, Matrix, Matrix) } │ │ │ {4 => (contract', Matrix, Matrix) } │ │ │ - {5 => (+, Matrix, Matrix) } │ │ │ + {5 => (diff', Matrix, Matrix) } │ │ │ {6 => (markedGB, Matrix, Matrix) } │ │ │ {7 => (Hom, Matrix, Matrix) } │ │ │ {8 => (==, Matrix, Matrix) } │ │ │ {9 => (*, Matrix, Matrix) } │ │ │ {10 => (|, Matrix, Matrix) } │ │ │ {11 => (||, Matrix, Matrix) } │ │ │ {12 => (subquotient, Matrix, Matrix) } │ │ │ @@ -88,18 +88,18 @@ │ │ │ {21 => (quotient, Matrix, Matrix) } │ │ │ {22 => (quotient', Matrix, Matrix) } │ │ │ {23 => (remainder', Matrix, Matrix) } │ │ │ {24 => (%, Matrix, Matrix) } │ │ │ {25 => (remainder, Matrix, Matrix) } │ │ │ {26 => (pushout, Matrix, Matrix) } │ │ │ {27 => (solve, Matrix, Matrix) } │ │ │ - {28 => (pullback, Matrix, Matrix) } │ │ │ - {29 => (intersect, Matrix, Matrix) } │ │ │ - {30 => (intersect, Matrix, Matrix, Matrix, Matrix) } │ │ │ - {31 => (tensor, Matrix, Matrix) } │ │ │ + {28 => (intersect, Matrix, Matrix) } │ │ │ + {29 => (pullback, Matrix, Matrix) } │ │ │ + {30 => (tensor, Matrix, Matrix) } │ │ │ + {31 => (intersect, Matrix, Matrix, Matrix, Matrix) } │ │ │ {32 => (substitute, Matrix, Matrix) } │ │ │ {33 => (yonedaProduct, Matrix, Matrix) } │ │ │ {34 => (isShortExactSequence, Matrix, Matrix) } │ │ │ {35 => (horseshoeResolution, Matrix, Matrix) } │ │ │ {36 => (connectingExtMap, Module, Matrix, Matrix) } │ │ │ {37 => (connectingExtMap, Matrix, Matrix, Module) } │ │ │ {38 => (connectingTorMap, Module, Matrix, Matrix) } │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_minimal__Betti.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : S = ring I │ │ │ │ │ │ o2 = S │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ │ │ i3 : elapsedTime C = minimalBetti I │ │ │ - -- 1.82886s elapsed │ │ │ + -- 2.51322s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o3 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -26,44 +26,44 @@ │ │ │ o3 : BettiTally │ │ │ │ │ │ i4 : I = ideal I_*; │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2) │ │ │ - -- .745147s elapsed │ │ │ + -- .977091s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 │ │ │ o5 = total: 1 35 140 385 819 1080 735 196 │ │ │ 0: 1 . . . . . . . │ │ │ 1: . 35 140 189 84 . . . │ │ │ 2: . . . 196 735 1080 735 196 │ │ │ │ │ │ o5 : BettiTally │ │ │ │ │ │ i6 : I = ideal I_*; │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5) │ │ │ - -- .0317322s elapsed │ │ │ + -- .0410621s elapsed │ │ │ │ │ │ 0 1 2 3 4 │ │ │ o7 = total: 1 35 140 189 84 │ │ │ 0: 1 . . . . │ │ │ 1: . 35 140 189 84 │ │ │ │ │ │ o7 : BettiTally │ │ │ │ │ │ i8 : I = ideal I_*; │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5) │ │ │ - -- 1.20016s elapsed │ │ │ + -- 1.68311s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o9 = total: 1 35 140 385 819 1080 │ │ │ 0: 1 . . . . . │ │ │ 1: . 35 140 189 84 . │ │ │ 2: . . . 196 735 1080 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_mkdir.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 15555226809509933135 │ │ │ │ │ │ i1 : p = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-10741-0/0/ │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │ │ │ │ i2 : mkdir p │ │ │ │ │ │ i3 : isDirectory p │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : (fn = p | "foo") << "hi there" << close │ │ │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo │ │ │ +o4 = /tmp/M2-11391-0/0/foo │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_move__File_lp__String_cm__String_rp.out │ │ │ @@ -1,31 +1,31 @@ │ │ │ -- -*- M2-comint -*- hash: 4857944042471093218 │ │ │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ │ │ i5 : get dst │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ │ │ i7 : removeFile bak │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_nanosleep.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1331114612441 │ │ │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ - -- .500135s elapsed │ │ │ + -- .500132s elapsed │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_options_lp__Function_rp.out │ │ │ @@ -21,30 +21,30 @@ │ │ │ │ │ │ o3 = OptionTable{Generic => false} │ │ │ │ │ │ o3 : OptionTable │ │ │ │ │ │ i4 : methods codim │ │ │ │ │ │ -o4 = {0 => (codim, Variety) } │ │ │ - {1 => (codim, BettiTally) } │ │ │ - {2 => (codim, Module) } │ │ │ - {3 => (codim, QuotientRing) } │ │ │ - {4 => (codim, Ideal) } │ │ │ - {5 => (codim, MonomialIdeal) } │ │ │ - {6 => (codim, PolynomialRing)} │ │ │ - {7 => (codim, CoherentSheaf) } │ │ │ +o4 = {0 => (codim, CoherentSheaf) } │ │ │ + {1 => (codim, Variety) } │ │ │ + {2 => (codim, BettiTally) } │ │ │ + {3 => (codim, Module) } │ │ │ + {4 => (codim, QuotientRing) } │ │ │ + {5 => (codim, Ideal) } │ │ │ + {6 => (codim, MonomialIdeal) } │ │ │ + {7 => (codim, PolynomialRing)} │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ │ │ i5 : options oo │ │ │ │ │ │ o5 = {0 => (OptionTable{Generic => false})} │ │ │ - {1 => (OptionTable{}) } │ │ │ - {2 => (OptionTable{Generic => false})} │ │ │ + {1 => (OptionTable{Generic => false})} │ │ │ + {2 => (OptionTable{}) } │ │ │ {3 => (OptionTable{Generic => false})} │ │ │ {4 => (OptionTable{Generic => false})} │ │ │ {5 => (OptionTable{Generic => false})} │ │ │ {6 => (OptionTable{Generic => false})} │ │ │ {7 => (OptionTable{Generic => false})} │ │ │ │ │ │ o5 : NumberedVerticalList │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallel_spprogramming_spwith_spthreads_spand_sptasks.out │ │ │ @@ -5,26 +5,26 @@ │ │ │ o1 = {1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ - -- .640674s elapsed │ │ │ + -- .751295s elapsed │ │ │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ - -- .307919s elapsed │ │ │ + -- .188399s elapsed │ │ │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ o5 = 5 │ │ │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ -o6 = 7 │ │ │ +o6 = 17 │ │ │ │ │ │ i7 : R = QQ[x,y,z]; │ │ │ │ │ │ i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o8 = ideal (x + 2y - y - 2z, x - 8y + 10z - 1, x - 7y*z) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_parallelism_spin_spengine_spcomputations.out │ │ │ @@ -67,15 +67,15 @@ │ │ │ i3 : S = ring I │ │ │ │ │ │ o3 = S │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ - -- 2.07143s elapsed │ │ │ + -- 2.45561s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -84,15 +84,15 @@ │ │ │ o4 : BettiTally │ │ │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ - -- 1.82839s elapsed │ │ │ + -- 2.47016s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -105,15 +105,15 @@ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ o8 = 1 │ │ │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ - -- 1.75494s elapsed │ │ │ + -- 2.53146s elapsed │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ 0: 1 . . . . . . . . . . │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ @@ -132,15 +132,15 @@ │ │ │ o11 = 0 │ │ │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.23687s elapsed │ │ │ + -- 4.37647s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o13 : Complex │ │ │ @@ -150,15 +150,15 @@ │ │ │ o14 = 1 │ │ │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ - -- 2.55496s elapsed │ │ │ + -- 2.92176s elapsed │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 576 135 14 │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ o16 : Complex │ │ │ @@ -174,43 +174,43 @@ │ │ │ o18 : PolynomialRing │ │ │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 5.136s elapsed │ │ │ + -- 4.47144s elapsed │ │ │ │ │ │ 1 108 │ │ │ o20 : Matrix S <-- S │ │ │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ o21 = 1 │ │ │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 7.09108s elapsed │ │ │ + -- 10.002s elapsed │ │ │ │ │ │ 1 108 │ │ │ o23 : Matrix S <-- S │ │ │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ o24 = 10 │ │ │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ - -- 4.22028s elapsed │ │ │ + -- 4.3477s elapsed │ │ │ │ │ │ 1 108 │ │ │ o26 : Matrix S <-- S │ │ │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ │ │ o27 = AssociativeAlgebras │ │ │ @@ -233,15 +233,15 @@ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ ZZ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.006s elapsed │ │ │ + -- 1.22923s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ @@ -253,14 +253,14 @@ │ │ │ 101 │ │ │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ - -- 1.19796s elapsed │ │ │ + -- 1.73952s elapsed │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ 101 101 │ │ │ │ │ │ i35 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_poincare.out │ │ │ @@ -146,65 +146,65 @@ │ │ │ o26 : ZZ[T] │ │ │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ o27 = 3 │ │ │ │ │ │ i28 : time poincare I │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc) │ │ │ + -- used 0.00267189s (cpu); 1.5885e-05s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ - -- registering gb 19 at 0x7f3fe9e7e540 │ │ │ + -- registering gb 19 at 0x7fc056914540 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 4186 │ │ │ -- #reduction steps = 38 │ │ │ -- #spairs done = 11 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 29 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc) │ │ │ + -- -- used 0.0172706s (cpu); 0.0180053s (thread); 0s (gc) │ │ │ │ │ │ 1 11 │ │ │ o29 : Matrix R <-- R │ │ │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ - -- registering gb 20 at 0x7f3fe9e7e380 │ │ │ + -- registering gb 20 at 0x7fc056914380 │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ -- number of monomials = 0 │ │ │ -- #reduction steps = 0 │ │ │ -- #spairs done = 0 │ │ │ -- ncalls = 0 │ │ │ -- nloop = 0 │ │ │ -- nsaved = 0 │ │ │ -- │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ - -- registering gb 21 at 0x7f3fe9e7e000 │ │ │ + -- registering gb 21 at 0x7fc056914000 │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11 │ │ │ -- number of monomials = 267 │ │ │ -- #reduction steps = 236 │ │ │ -- #spairs done = 30 │ │ │ -- ncalls = 10 │ │ │ -- nloop = 20 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc) │ │ │ + -- -- used 0.00400687s (cpu); 0.0064099s (thread); 0s (gc) │ │ │ │ │ │ 3 6 9 │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ @@ -254,27 +254,27 @@ │ │ │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ o36 = 3 │ │ │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ - -- registering gb 22 at 0x7f3fe9ab3e00 │ │ │ + -- registering gb 22 at 0x7fc056a0ee00 │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39 │ │ │ -- number of monomials = 1051 │ │ │ -- #reduction steps = 284 │ │ │ -- #spairs done = 53 │ │ │ -- ncalls = 46 │ │ │ -- nloop = 54 │ │ │ -- nsaved = 0 │ │ │ - -- -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc) │ │ │ + -- -- used 0.0599726s (cpu); 0.0597862s (thread); 0s (gc) │ │ │ │ │ │ 1 39 │ │ │ o37 : Matrix S <-- S │ │ │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_printing_spto_spa_spfile.out │ │ │ @@ -12,19 +12,19 @@ │ │ │ │ │ │ o2 = stdio │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : fn = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-10932-0/0 │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │ │ │ │ i4 : fn << "hi there" << endl << close │ │ │ │ │ │ -o4 = /tmp/M2-10932-0/0 │ │ │ +o4 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o4 : File │ │ │ │ │ │ i5 : get fn │ │ │ │ │ │ o5 = hi there │ │ │ │ │ │ @@ -49,27 +49,27 @@ │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x + 1 │ │ │ o8 = stdio │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : fn << f << close │ │ │ │ │ │ -o9 = /tmp/M2-10932-0/0 │ │ │ +o9 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o9 : File │ │ │ │ │ │ i10 : get fn │ │ │ │ │ │ o10 = 10 9 8 7 6 5 4 3 2 │ │ │ x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x │ │ │ + 1 │ │ │ │ │ │ i11 : fn << toExternalString f << close │ │ │ │ │ │ -o11 = /tmp/M2-10932-0/0 │ │ │ +o11 = /tmp/M2-11782-0/0 │ │ │ │ │ │ o11 : File │ │ │ │ │ │ i12 : get fn │ │ │ │ │ │ o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+ │ │ │ 1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_process__I__D.out │ │ │ @@ -1,7 +1,7 @@ │ │ │ -- -*- M2-comint -*- hash: 1330513630563 │ │ │ │ │ │ i1 : processID() │ │ │ │ │ │ -o1 = 10191 │ │ │ +o1 = 10311 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_profile.out │ │ │ @@ -9,34 +9,34 @@ │ │ │ │ │ │ 4 5 │ │ │ o1 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i2 : profileSummary │ │ │ │ │ │ o2 = #run %time position │ │ │ - 1 94.52 ../../m2/matrix1.m2:279:4-282:58 │ │ │ - 1 92.12 ../../m2/matrix1.m2:281:22-281:43 │ │ │ - 1 44.16 ../../m2/matrix1.m2:193:25-193:52 │ │ │ - 1 30.59 ../../m2/matrix1.m2:114:5-156:72 │ │ │ - 1 29.47 ../../m2/matrix1.m2:140:10-155:16 │ │ │ - 1 23.83 ../../m2/matrix1.m2:181:4-181:42 │ │ │ - 1 22.54 ../../m2/set.m2:127:5-127:61 │ │ │ - 1 20.86 ../../m2/matrix1.m2:45:10-49:22 │ │ │ - 1 3.30 ../../m2/matrix1.m2:112:5-112:29 │ │ │ - 1 2.34 ../../m2/matrix1.m2:141:13-141:78 │ │ │ - 1 2.18 ../../m2/matrix1.m2:96:5-109:11 │ │ │ - 1 1.42 ../../m2/matrix1.m2:281:7-281:16 │ │ │ - 1 1.29 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 92.19 ../../m2/matrix1.m2:279:4-282:58 │ │ │ + 1 89.59 ../../m2/matrix1.m2:281:22-281:43 │ │ │ + 1 42.99 ../../m2/matrix1.m2:193:25-193:52 │ │ │ + 1 28.77 ../../m2/matrix1.m2:114:5-156:72 │ │ │ + 1 27.64 ../../m2/matrix1.m2:140:10-155:16 │ │ │ + 1 22.71 ../../m2/matrix1.m2:181:4-181:42 │ │ │ + 1 21.29 ../../m2/set.m2:127:5-127:61 │ │ │ + 1 19.23 ../../m2/matrix1.m2:45:10-49:22 │ │ │ + 1 3.57 ../../m2/matrix1.m2:112:5-112:29 │ │ │ + 1 2.62 ../../m2/matrix1.m2:96:5-109:11 │ │ │ + 1 2.3 ../../m2/matrix1.m2:141:13-141:78 │ │ │ + 1 1.91 ../../m2/matrix1.m2:276:4-277:73 │ │ │ + 1 1.72 ../../m2/matrix1.m2:147:20-147:64 │ │ │ + 1 1.63 ../../m2/matrix1.m2:281:7-281:16 │ │ │ + 1 1.56 ../../m2/matrix1.m2:98:10-98:46 │ │ │ 1 1.29 ../../m2/matrix1.m2:111:5-111:91 │ │ │ - 1 1.27 ../../m2/matrix1.m2:276:4-277:73 │ │ │ - 1 1.02 ../../m2/matrix1.m2:98:10-98:46 │ │ │ - 1 .97 ../../m2/matrix1.m2:182:4-184:74 │ │ │ - 1 .81 ../../m2/modules.m2:279:4-279:52 │ │ │ - 20 .64 ../../m2/matrix1.m2:191:14-192:67 │ │ │ - 20 .47 ../../m2/matrix1.m2:47:43-47:71 │ │ │ + 1 1.13 ../../m2/matrix1.m2:182:4-184:74 │ │ │ + 1 .96 ../../m2/modules.m2:279:4-279:52 │ │ │ + 20 .89 ../../m2/matrix1.m2:191:14-192:67 │ │ │ + 20 .78 ../../m2/matrix1.m2:47:43-47:71 │ │ │ 1 .0038s elapsed total │ │ │ │ │ │ i3 : coverageSummary │ │ │ │ │ │ o3 = covered lines: │ │ │ ../../m2/lists.m2:145:24-145:32 │ │ │ ../../m2/lists.m2:145:34-145:58 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_random__K__Rational__Point.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc) │ │ │ + -- used 0.237164s (cpu); 0.102487s (thread); 0s (gc) │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ @@ -33,15 +33,15 @@ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc) │ │ │ + -- used 0.843126s (cpu); 0.33904s (thread); 0s (gc) │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : p=10007,kk=ZZ/p,R=kk[x_0..x_2] │ │ │ @@ -58,12 +58,12 @@ │ │ │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c); │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc) │ │ │ + -- used 4.57597s (cpu); 2.15219s (thread); 0s (gc) │ │ │ │ │ │ o15 = 58 │ │ │ │ │ │ i16 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_read__Directory.out │ │ │ @@ -1,26 +1,26 @@ │ │ │ -- -*- M2-comint -*- hash: 20910736704070514 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : removeFile fn │ │ │ │ │ │ i6 : removeDirectory dir │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_reading_spfiles.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 13513555104200944796 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ │ │ i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : get fn │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ +8*y^3 │ │ │ @@ -38,15 +38,15 @@ │ │ │ │ │ │ o6 : Expression of class Product │ │ │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ print sample │ │ │ " << close │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : get fn │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_readlink.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 4408639611478781130 │ │ │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ │ │ i3 : readlink p │ │ │ │ │ │ o3 = foo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_realpath.out │ │ │ @@ -1,39 +1,39 @@ │ │ │ -- -*- M2-comint -*- hash: 324072347213224656 │ │ │ │ │ │ i1 : realpath "." │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ │ │ i5 : p << close │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ o5 : File │ │ │ │ │ │ i6 : readlink q │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i7 : realpath q │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ │ │ i8 : removeFile p │ │ │ │ │ │ i9 : removeFile q │ │ │ │ │ │ i10 : realpath "" │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_register__Finalizer.out │ │ │ @@ -1,16 +1,16 @@ │ │ │ -- -*- M2-comint -*- hash: 1729384374372662693 │ │ │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --")) │ │ │ │ │ │ i2 : collectGarbage() │ │ │ ---finalization: (1)[3]: -- finalizing sequence #4 -- │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 -- │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 -- │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (1)[4]: -- finalizing sequence #5 -- │ │ │ +--finalization: (2)[8]: -- finalizing sequence #9 -- │ │ │ +--finalization: (3)[5]: -- finalizing sequence #6 -- │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 -- │ │ │ --finalization: (5)[6]: -- finalizing sequence #7 -- │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 -- │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (9)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (8)[7]: -- finalizing sequence #8 -- │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_remove__Directory.out │ │ │ @@ -1,19 +1,19 @@ │ │ │ -- -*- M2-comint -*- hash: 8532980310097060089 │ │ │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ -o3 = {., ..} │ │ │ +o3 = {.., .} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : removeDirectory dir │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__Path.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420232148149387 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_root__U__R__I.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731420231525572968 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_saving_sppolynomials_spand_spmatrices_spin_spfiles.out │ │ │ @@ -25,19 +25,19 @@ │ │ │ o4 = image | x2 x2-y2 xyz7 | │ │ │ │ │ │ 1 │ │ │ o4 : R-module, submodule of R │ │ │ │ │ │ i5 : f = temporaryFileName() │ │ │ │ │ │ -o5 = /tmp/M2-11356-0/0 │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │ │ │ │ i6 : f << toString (p,m,M) << close │ │ │ │ │ │ -o6 = /tmp/M2-11356-0/0 │ │ │ +o6 = /tmp/M2-12646-0/0 │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : get f │ │ │ │ │ │ o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2, │ │ │ x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}}) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_serial__Number.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 5271760183816554957 │ │ │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ -o1 = 1426273 │ │ │ +o1 = 1526273 │ │ │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ -o2 = 1426275 │ │ │ +o2 = 1526275 │ │ │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_solve.out │ │ │ @@ -189,18 +189,18 @@ │ │ │ o25 = 40 │ │ │ │ │ │ i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A; │ │ │ │ │ │ i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B; │ │ │ │ │ │ i30 : time X = solve(A,B); │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc) │ │ │ + -- used 0.000221698s (cpu); 0.000206721s (thread); 0s (gc) │ │ │ │ │ │ i31 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc) │ │ │ + -- used 0.000103953s (cpu); 0.000103242s (thread); 0s (gc) │ │ │ │ │ │ i32 : norm(A*X-B) │ │ │ │ │ │ o32 = 5.111850690840453e-15 │ │ │ │ │ │ o32 : RR (of precision 53) │ │ │ │ │ │ @@ -209,18 +209,18 @@ │ │ │ o33 = 100 │ │ │ │ │ │ i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A; │ │ │ │ │ │ i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B; │ │ │ │ │ │ i38 : time X = solve(A,B); │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc) │ │ │ + -- used 0.143985s (cpu); 0.144011s (thread); 0s (gc) │ │ │ │ │ │ i39 : time X = solve(A,B, MaximalRank=>true); │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc) │ │ │ + -- used 0.136234s (cpu); 0.136261s (thread); 0s (gc) │ │ │ │ │ │ i40 : norm(A*X-B) │ │ │ │ │ │ o40 = 1.491578274689709814082355885932e-28 │ │ │ │ │ │ o40 : RR (of precision 100) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__Directory_lp__String_cm__String_rp.out │ │ │ @@ -1,60 +1,60 @@ │ │ │ -- -*- M2-comint -*- hash: 2989513528213557691 │ │ │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ -o1 = /tmp/M2-11147-0/0/ │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ -o2 = /tmp/M2-11147-0/1/ │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/ │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/ │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f │ │ │ +o6 = /tmp/M2-12217-0/0/a/f │ │ │ │ │ │ o6 : File │ │ │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g │ │ │ +o7 = /tmp/M2-12217-0/0/a/g │ │ │ │ │ │ o7 : File │ │ │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g │ │ │ │ │ │ o8 : File │ │ │ │ │ │ i9 : symlinkDirectory(src,dst,Verbose=>true) │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i10 : get (dst|"b/c/g") │ │ │ │ │ │ o10 = ho there │ │ │ │ │ │ i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true) │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │ │ │ │ i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ o12 = rm │ │ │ │ │ │ o12 : FunctionClosure │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_symlink__File.out │ │ │ @@ -1,12 +1,12 @@ │ │ │ -- -*- M2-comint -*- hash: 9343844672940306595 │ │ │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ o3 = false │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_temporary__File__Name.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 1731926531291302106 │ │ │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_time.out │ │ │ @@ -1,8 +1,8 @@ │ │ │ -- -*- M2-comint -*- hash: 1332435500723 │ │ │ │ │ │ i1 : time 3^30 │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc) │ │ │ + -- used 4.4803e-05s (cpu); 7.142e-06s (thread); 0s (gc) │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_timing.out │ │ │ @@ -1,14 +1,14 @@ │ │ │ -- -*- M2-comint -*- hash: 1730988300469098603 │ │ │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ o1 = 205891132094649 │ │ │ - -- .000018144 seconds │ │ │ + -- .000021827 seconds │ │ │ │ │ │ o1 : Time │ │ │ │ │ │ i2 : peek oo │ │ │ │ │ │ -o2 = Time{.000018144, 205891132094649} │ │ │ +o2 = Time{.000021827, 205891132094649} │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/example-output/_version.out │ │ │ @@ -34,15 +34,15 @@ │ │ │ "memtailor version" => 1.1 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.11.0 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.11 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Command.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │
    i3 : (c = Command "date";)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : c
    │ │ │ -Sun Dec 14 15:26:56 UTC 2025
    │ │ │ +Wed Jan  7 12:22:11 UTC 2026
    │ │ │  
    │ │ │  o4 = 0
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ in a file), then it gets executed with empty argument list. │ │ │ │ i1 : (f = Command ( () -> 2^30 );) │ │ │ │ i2 : f │ │ │ │ │ │ │ │ o2 = 1073741824 │ │ │ │ i3 : (c = Command "date";) │ │ │ │ i4 : c │ │ │ │ -Sun Dec 14 15:26:56 UTC 2025 │ │ │ │ +Wed Jan 7 12:22:11 UTC 2026 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_u_n -- run an external command │ │ │ │ * _A_f_t_e_r_E_v_a_l -- top level method applied after evaluation │ │ │ │ ********** MMeetthhooddss tthhaatt uussee aa ccoommmmaanndd:: ********** │ │ │ │ * code(Command) -- see _c_o_d_e -- display source code │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Database.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ A database file is just like a hash table, except both the keys and values have to be strings. In this example we create a database file, store a few entries, remove an entry with remove, close the file, and then remove the file. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : filename = temporaryFileName () | ".dbm"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o1 = /tmp/M2-13231-0/0.dbm │ │ │
    │ │ │
    i2 : x = openDatabaseOut filename
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │  
    │ │ │  o2 : Database
    │ │ │
    │ │ │
    i3 : x#"first" = "hi there"
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -7,18 +7,18 @@
    │ │ │ │  ************ DDaattaabbaassee ---- tthhee ccllaassss ooff aallll ddaattaabbaassee ffiilleess ************
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  A database file is just like a hash table, except both the keys and values have
    │ │ │ │  to be strings. In this example we create a database file, store a few entries,
    │ │ │ │  remove an entry with _r_e_m_o_v_e, close the file, and then remove the file.
    │ │ │ │  i1 : filename = temporaryFileName () | ".dbm"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o1 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  i2 : x = openDatabaseOut filename
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11641-0/0.dbm
    │ │ │ │ +o2 = /tmp/M2-13231-0/0.dbm
    │ │ │ │  
    │ │ │ │  o2 : Database
    │ │ │ │  i3 : x#"first" = "hi there"
    │ │ │ │  
    │ │ │ │  o3 = hi there
    │ │ │ │  i4 : x#"first"
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___G__Cstats.html
    │ │ │ @@ -53,33 +53,33 @@
    │ │ │          

    Description

    │ │ │

    Macaulay2 uses the Hans Boehm garbage collector to reclaim unused memory. The function GCstats provides information about its status, such as the total number of bytes allocated, the current heap size, the number of garbage collections done, the number of threads used in each collection, the total cpu time spent in garbage collection, etc.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : s = GCstats()
    │ │ │  
    │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706        }
    │ │ │ +o1 = HashTable{"bytesAlloc" => 43050590362        }
    │ │ │                 "GC_free_space_divisor" => 3
    │ │ │                 "GC_LARGE_ALLOC_WARN_INTERVAL" => 1
    │ │ │                 "gcCpuTimeSecs" => 0
    │ │ │ -               "heapSize" => 206680064
    │ │ │ -               "numGCs" => 795
    │ │ │ -               "numGCThreads" => 6
    │ │ │ +               "heapSize" => 225931264
    │ │ │ +               "numGCs" => 783
    │ │ │ +               "numGCThreads" => 16
    │ │ │  
    │ │ │  o1 : HashTable
    │ │ │
    │ │ │

    The value returned is a hash table, from which individual bits of information can be easily extracted, as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : s#"heapSize"
    │ │ │  
    │ │ │ -o2 = 206680064
    │ │ │ +o2 = 225931264 │ │ │
    │ │ │

    Any entries whose keys are all upper case give the values of environment variables affecting the operation of the garbage collector that have been specified by the user.

    │ │ │

    For further information about the individual items in the table, we refer the user to the source code and documentation of the garbage collector.

    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,28 +9,28 @@ │ │ │ │ Macaulay2 uses the Hans Boehm _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r to reclaim unused memory. The │ │ │ │ function GCstats provides information about its status, such as the total │ │ │ │ number of bytes allocated, the current heap size, the number of garbage │ │ │ │ collections done, the number of threads used in each collection, the total cpu │ │ │ │ time spent in garbage collection, etc. │ │ │ │ i1 : s = GCstats() │ │ │ │ │ │ │ │ -o1 = HashTable{"bytesAlloc" => 42969169706 } │ │ │ │ +o1 = HashTable{"bytesAlloc" => 43050590362 } │ │ │ │ "GC_free_space_divisor" => 3 │ │ │ │ "GC_LARGE_ALLOC_WARN_INTERVAL" => 1 │ │ │ │ "gcCpuTimeSecs" => 0 │ │ │ │ - "heapSize" => 206680064 │ │ │ │ - "numGCs" => 795 │ │ │ │ - "numGCThreads" => 6 │ │ │ │ + "heapSize" => 225931264 │ │ │ │ + "numGCs" => 783 │ │ │ │ + "numGCThreads" => 16 │ │ │ │ │ │ │ │ o1 : HashTable │ │ │ │ The value returned is a hash table, from which individual bits of information │ │ │ │ can be easily extracted, as follows. │ │ │ │ i2 : s#"heapSize" │ │ │ │ │ │ │ │ -o2 = 206680064 │ │ │ │ +o2 = 225931264 │ │ │ │ Any entries whose keys are all upper case give the values of environment │ │ │ │ variables affecting the operation of the garbage collector that have been │ │ │ │ specified by the user. │ │ │ │ For further information about the individual items in the table, we refer the │ │ │ │ user to the source code and documentation of the garbage collector. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _G_C_ _g_a_r_b_a_g_e_ _c_o_l_l_e_c_t_o_r │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___Minimal__Generators.html │ │ │ @@ -128,23 +128,23 @@ │ │ │ │ │ │ o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc)
    │ │ │ + -- used 0.00604401s (cpu); 0.00604071s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │
    │ │ │
    i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc)
    │ │ │ + -- used 0.0603359s (cpu); 0.0603461s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │
    │ │ │
    i10 : numgens J
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,19 +46,19 @@
    │ │ │ │  o6 = R
    │ │ │ │  
    │ │ │ │  o6 : PolynomialRing
    │ │ │ │  i7 : I = monomialCurveIdeal(R, {1,4,5,9});
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time J = truncate(8, I, MinimalGenerators => false);
    │ │ │ │ - -- used 0.00906552s (cpu); 0.00905868s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00604401s (cpu); 0.00604071s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time K = truncate(8, I, MinimalGenerators => true);
    │ │ │ │ - -- used 0.0794664s (cpu); 0.0794742s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0603359s (cpu); 0.0603461s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : numgens J
    │ │ │ │  
    │ │ │ │  o10 = 1067
    │ │ │ │  i11 : numgens K
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/___S__V__D_lp..._cm__Divide__Conquer_eq_gt..._rp.html
    │ │ │ @@ -68,21 +68,21 @@
    │ │ │  o1 : Matrix RR      <-- RR
    │ │ │                53          53
    │ │ │
    │ │ │
    i2 : time SVD(M);
    │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc)
    │ │ │ + -- used 0.0417848s (cpu); 0.041782s (thread); 0s (gc) │ │ │
    │ │ │
    i3 : time SVD(M, DivideConquer=>true);
    │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc)
    │ │ │ + -- used 0.0410636s (cpu); 0.0410811s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Functions with optional argument named DivideConquer:

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,17 +11,17 @@ │ │ │ │ For large matrices, this algorithm is often much faster. │ │ │ │ i1 : M = random(RR^200, RR^200); │ │ │ │ │ │ │ │ 200 200 │ │ │ │ o1 : Matrix RR <-- RR │ │ │ │ 53 53 │ │ │ │ i2 : time SVD(M); │ │ │ │ - -- used 0.0253142s (cpu); 0.0253129s (thread); 0s (gc) │ │ │ │ + -- used 0.0417848s (cpu); 0.041782s (thread); 0s (gc) │ │ │ │ i3 : time SVD(M, DivideConquer=>true); │ │ │ │ - -- used 0.0274055s (cpu); 0.0274142s (thread); 0s (gc) │ │ │ │ + -- used 0.0410636s (cpu); 0.0410811s (thread); 0s (gc) │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd DDiivviiddeeCCoonnqquueerr:: ********** │ │ │ │ * _S_V_D_(_._._._,_D_i_v_i_d_e_C_o_n_q_u_e_r_=_>_._._._) -- whether to use the LAPACK divide and │ │ │ │ conquer SVD algorithm │ │ │ │ ********** FFuurrtthheerr iinnffoorrmmaattiioonn ********** │ │ │ │ * Default value: _t_r_u_e │ │ │ │ * Function: _S_V_D -- singular value decomposition of a matrix │ │ │ │ * Option key: _D_i_v_i_d_e_C_o_n_q_u_e_r -- an optional argument │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_a_spfirst_sp__Macaulay2_spsession.html │ │ │ @@ -826,15 +826,15 @@ │ │ │
    │ │ │

    We may use resolution to produce a projective resolution of it, and time to report the time required.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i59 : time C = resolution M
    │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc)
    │ │ │ + -- used 0.00234372s (cpu); 0.00233367s (thread); 0s (gc)
    │ │ │  
    │ │ │         3      6      15      18      6
    │ │ │  o59 = R  <-- R  <-- R   <-- R   <-- R  <-- 0
    │ │ │                                              
    │ │ │        0      1      2       3       4      5
    │ │ │  
    │ │ │  o59 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -390,15 +390,15 @@ │ │ │ │ | c f i l o r | │ │ │ │ │ │ │ │ 3 │ │ │ │ o58 : R-module, quotient of R │ │ │ │ We may use _r_e_s_o_l_u_t_i_o_n to produce a projective resolution of it, and _t_i_m_e to │ │ │ │ report the time required. │ │ │ │ i59 : time C = resolution M │ │ │ │ - -- used 0.00192778s (cpu); 0.00191945s (thread); 0s (gc) │ │ │ │ + -- used 0.00234372s (cpu); 0.00233367s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 15 18 6 │ │ │ │ o59 = R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ │ │ │ │ o59 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_at__End__Of__File_lp__File_rp.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ o4 = "hi there" │ │ │
    │ │ │
    i5 : atEndOfFile f
    │ │ │  
    │ │ │ -o5 = false
    │ │ │ +o5 = true │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -23,13 +23,13 @@ │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : peek read f │ │ │ │ │ │ │ │ o4 = "hi there" │ │ │ │ i5 : atEndOfFile f │ │ │ │ │ │ │ │ -o5 = false │ │ │ │ +o5 = true │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _a_t_E_n_d_O_f_F_i_l_e_(_F_i_l_e_) -- test for end of file │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_files.m2:374:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_benchmark.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │ Produces an accurate timing for the code contained in the string s. The value returned is the number of seconds. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : benchmark "sqrt 2p100000"
    │ │ │  
    │ │ │ -o1 = .000290697861367332
    │ │ │ +o1 = .0003726770483759516
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │ The snippet of code provided will be run enough times to register meaningfully on the clock, and the garbage collector will be called beforehand.
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds it takes to evaluate the code │ │ │ │ in s │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Produces an accurate timing for the code contained in the string s. The value │ │ │ │ returned is the number of seconds. │ │ │ │ i1 : benchmark "sqrt 2p100000" │ │ │ │ │ │ │ │ -o1 = .000290697861367332 │ │ │ │ +o1 = .0003726770483759516 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ The snippet of code provided will be run enough times to register meaningfully │ │ │ │ on the clock, and the garbage collector will be called beforehand. │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _b_e_n_c_h_m_a_r_k is a _f_u_n_c_t_i_o_n_ _c_l_o_s_u_r_e. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_caching_spcomputation_spresults.html │ │ │ @@ -69,23 +69,23 @@ │ │ │
    i3 : M = coker vars R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime pdim' M
    │ │ │   -- computing pdim'
    │ │ │ - -- .00670047s elapsed
    │ │ │ + -- .00488437s elapsed
    │ │ │  
    │ │ │  o4 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime pdim' M
    │ │ │ - -- .000001513s elapsed
    │ │ │ + -- .000002519s elapsed
    │ │ │  
    │ │ │  o5 = 3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : peek M.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -8,19 +8,19 @@
    │ │ │ │  Here is a simple example of caching a computation in a _C_a_c_h_e_T_a_b_l_e, using the
    │ │ │ │  augmented null coalescing operator _?_?_=.
    │ │ │ │  i1 : pdim' = M -> M.cache.pdim' ??= ( printerr "computing pdim'"; pdim M );
    │ │ │ │  i2 : R = QQ[x,y,z];
    │ │ │ │  i3 : M = coker vars R;
    │ │ │ │  i4 : elapsedTime pdim' M
    │ │ │ │   -- computing pdim'
    │ │ │ │ - -- .00670047s elapsed
    │ │ │ │ + -- .00488437s elapsed
    │ │ │ │  
    │ │ │ │  o4 = 3
    │ │ │ │  i5 : elapsedTime pdim' M
    │ │ │ │ - -- .000001513s elapsed
    │ │ │ │ + -- .000002519s elapsed
    │ │ │ │  
    │ │ │ │  o5 = 3
    │ │ │ │  i6 : peek M.cache
    │ │ │ │  
    │ │ │ │  o6 = CacheTable{cache => MutableHashTable{}
    │ │ │ │  }
    │ │ │ │                  isHomogeneous => true
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cancel__Task_lp__Task_rp.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │  o4 : Task
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : n
    │ │ │  
    │ │ │ -o5 = 711206
    │ │ │ +o5 = 1095574 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : sleep 1
    │ │ │  
    │ │ │  o6 = 0
    │ │ │ @@ -127,15 +127,15 @@ │ │ │ o7 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : n
    │ │ │  
    │ │ │ -o8 = 1453533
    │ │ │ +o8 = 2222205 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : isReady t
    │ │ │  
    │ │ │  o9 = false
    │ │ │ @@ -163,29 +163,29 @@ │ │ │ o12 : Task │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : n
    │ │ │  
    │ │ │ -o13 = 1453746
    │ │ │ +o13 = 2222398 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : sleep 1
    │ │ │  
    │ │ │  o14 = 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : n
    │ │ │  
    │ │ │ -o15 = 1453746
    │ │ │ +o15 = 2222398 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : isReady t
    │ │ │  
    │ │ │  o16 = false
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,26 +28,26 @@ │ │ │ │ i4 : t │ │ │ │ │ │ │ │ o4 = <> │ │ │ │ │ │ │ │ o4 : Task │ │ │ │ i5 : n │ │ │ │ │ │ │ │ -o5 = 711206 │ │ │ │ +o5 = 1095574 │ │ │ │ i6 : sleep 1 │ │ │ │ │ │ │ │ o6 = 0 │ │ │ │ i7 : t │ │ │ │ │ │ │ │ o7 = <> │ │ │ │ │ │ │ │ o7 : Task │ │ │ │ i8 : n │ │ │ │ │ │ │ │ -o8 = 1453533 │ │ │ │ +o8 = 2222205 │ │ │ │ i9 : isReady t │ │ │ │ │ │ │ │ o9 = false │ │ │ │ i10 : cancelTask t │ │ │ │ i11 : sleep 2 │ │ │ │ stdio:2:25:(3):[1]: error: interrupted │ │ │ │ │ │ │ │ @@ -55,21 +55,21 @@ │ │ │ │ i12 : t │ │ │ │ │ │ │ │ o12 = <> │ │ │ │ │ │ │ │ o12 : Task │ │ │ │ i13 : n │ │ │ │ │ │ │ │ -o13 = 1453746 │ │ │ │ +o13 = 2222398 │ │ │ │ i14 : sleep 1 │ │ │ │ │ │ │ │ o14 = 0 │ │ │ │ i15 : n │ │ │ │ │ │ │ │ -o15 = 1453746 │ │ │ │ +o15 = 2222398 │ │ │ │ i16 : isReady t │ │ │ │ │ │ │ │ o16 = false │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _c_a_n_c_e_l_T_a_s_k_(_T_a_s_k_) -- stop a task │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_change__Directory.html │ │ │ @@ -71,36 +71,36 @@ │ │ │

    Change the current working directory to dir.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10463-0/0
    │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10463-0/0
    │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │
    │ │ │
    i3 : changeDirectory dir
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10463-0/0/
    │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    i4 : currentDirectory()
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10463-0/0/
    │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │
    │ │ │
    │ │ │

    If dir is omitted, then the current working directory is changed to the user's home directory.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,24 @@ │ │ │ │ o dir, a _s_t_r_i_n_g, │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the new working directory; │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Change the current working directory to dir. │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10463-0/0 │ │ │ │ +o1 = /tmp/M2-10833-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10463-0/0 │ │ │ │ +o2 = /tmp/M2-10833-0/0 │ │ │ │ i3 : changeDirectory dir │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10463-0/0/ │ │ │ │ +o3 = /tmp/M2-10833-0/0/ │ │ │ │ i4 : currentDirectory() │ │ │ │ │ │ │ │ -o4 = /tmp/M2-10463-0/0/ │ │ │ │ +o4 = /tmp/M2-10833-0/0/ │ │ │ │ If dir is omitted, then the current working directory is changed to the user's │ │ │ │ home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_D_i_r_e_c_t_o_r_y -- current working directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_a_n_g_e_D_i_r_e_c_t_o_r_y is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_check.html │ │ │ @@ -95,40 +95,40 @@ │ │ │ o1 : Package │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : check_1 FirstPackage
    │ │ │   -- warning: reloading FirstPackage; recreate instances of types from this package
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .15147s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .136542s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : check FirstPackage
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .150181s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .150965s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .147318s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .144622s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Alternatively, if the package is installed somewhere accessible, one can do the following.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : check_1 "FirstPackage"
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .152579s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .139659s elapsed │ │ │
    │ │ │
    i5 : check "FirstPackage"
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .152053s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .151867s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .135863s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .137943s elapsed │ │ │
    │ │ │
    │ │ │

    A TestInput object (or a list of such objects) can also be run directly.

    │ │ │
    │ │ │ │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ │ o6 : TestInput │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : check oo
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .153083s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .135696s elapsed │ │ │
    │ │ │
    i8 : tests "FirstPackage"
    │ │ │  
    │ │ │  o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]}
    │ │ │ @@ -156,16 +156,16 @@
    │ │ │  
    │ │ │  o8 : NumberedVerticalList
    │ │ │
    │ │ │
    i9 : check oo
    │ │ │ - -- capturing check(0, "FirstPackage")        -- .152703s elapsed
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .150901s elapsed
    │ │ │ + -- capturing check(0, "FirstPackage") -- .133351s elapsed │ │ │ + -- capturing check(1, "FirstPackage") -- .13031s elapsed │ │ │
    │ │ │
    │ │ │

    If only an integer is passed as an argument, then the test with that index from the last call to tests is run.

    │ │ │
    │ │ │ │ │ │ @@ -178,15 +178,15 @@ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : check 1
    │ │ │ - -- capturing check(1, "FirstPackage")        -- .151346s elapsed
    │ │ │ + -- capturing check(1, "FirstPackage") -- .131903s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -42,52 +42,52 @@ │ │ │ │ │ │ │ │ o1 = FirstPackage │ │ │ │ │ │ │ │ o1 : Package │ │ │ │ i2 : check_1 FirstPackage │ │ │ │ -- warning: reloading FirstPackage; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- capturing check(1, "FirstPackage") -- .15147s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .136542s elapsed │ │ │ │ i3 : check FirstPackage │ │ │ │ - -- capturing check(0, "FirstPackage") -- .150181s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .150965s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .147318s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .144622s elapsed │ │ │ │ Alternatively, if the package is installed somewhere accessible, one can do the │ │ │ │ following. │ │ │ │ i4 : check_1 "FirstPackage" │ │ │ │ - -- capturing check(1, "FirstPackage") -- .152579s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .139659s elapsed │ │ │ │ i5 : check "FirstPackage" │ │ │ │ - -- capturing check(0, "FirstPackage") -- .152053s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .151867s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .135863s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .137943s elapsed │ │ │ │ A _T_e_s_t_I_n_p_u_t object (or a list of such objects) can also be run directly. │ │ │ │ i6 : tests(1, "FirstPackage") │ │ │ │ │ │ │ │ o6 = TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3] │ │ │ │ │ │ │ │ o6 : TestInput │ │ │ │ i7 : check oo │ │ │ │ - -- capturing check(1, "FirstPackage") -- .153083s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .135696s elapsed │ │ │ │ i8 : tests "FirstPackage" │ │ │ │ │ │ │ │ o8 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o8 : NumberedVerticalList │ │ │ │ i9 : check oo │ │ │ │ - -- capturing check(0, "FirstPackage") -- .152703s elapsed │ │ │ │ - -- capturing check(1, "FirstPackage") -- .150901s elapsed │ │ │ │ + -- capturing check(0, "FirstPackage") -- .133351s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .13031s elapsed │ │ │ │ If only an integer is passed as an argument, then the test with that index from │ │ │ │ the last call to _t_e_s_t_s is run. │ │ │ │ i10 : tests "FirstPackage" │ │ │ │ │ │ │ │ o10 = {0 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:54:5-56:3]} │ │ │ │ {1 => TestInput[/usr/share/Macaulay2/FirstPackage.m2:58:5-60:3]} │ │ │ │ │ │ │ │ o10 : NumberedVerticalList │ │ │ │ i11 : check 1 │ │ │ │ - -- capturing check(1, "FirstPackage") -- .151346s elapsed │ │ │ │ + -- capturing check(1, "FirstPackage") -- .131903s elapsed │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Currently, if the package was only partially loaded because the documentation │ │ │ │ was obtainable from a database (see _b_e_g_i_n_D_o_c_u_m_e_n_t_a_t_i_o_n), then the package will │ │ │ │ be reloaded, this time completely, to ensure that all tests are considered; │ │ │ │ this may affect user objects of types declared by the package, as they may be │ │ │ │ not usable by the new instance of the package. In a future version, either the │ │ │ │ tests and the documentation will both be cached, or neither will. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_communicating_spwith_spprograms.html │ │ │ @@ -50,15 +50,15 @@ │ │ │
    │ │ │

    communicating with programs

    │ │ │
    │ │ │ The most naive way to interact with another program is simply to run it, let it communicate directly with the user, and wait for it to finish. This is done with the run command. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : run "uname -a"
    │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
    │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025-11-05) x86_64 GNU/Linux
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │ To run a program and provide it with input, one way is use the operator <<, with a file name whose first character is an exclamation point; the rest of the file name will be taken as the command to run, as in the following example. │ │ │ │ │ │ @@ -74,15 +74,15 @@ │ │ │ │ │ │
    │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the output from the other program. If the program requires no input data, then we can use get with a file name whose first character is an exclamation point. In the following example, we also peek at the string to see whether it includes a newline character. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : peek get "!uname -a"
    │ │ │  
    │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian
    │ │ │       6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n"
    │ │ │
    │ │ │ Bidirectional communication with a program is also possible. We use openInOut to create a file that serves as a bidirectional connection to a program. That file is called an input output file. In this example we open a connection to the unix utility grep and use it to locate the symbol names in Macaulay2 that begin with in. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -5,16 +5,16 @@ │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ ccoommmmuunniiccaattiinngg wwiitthh pprrooggrraammss ************ │ │ │ │ The most naive way to interact with another program is simply to run it, let it │ │ │ │ communicate directly with the user, and wait for it to finish. This is done │ │ │ │ with the _r_u_n command. │ │ │ │ i1 : run "uname -a" │ │ │ │ -Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 (2025- │ │ │ │ -11-05) x86_64 GNU/Linux │ │ │ │ +Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.57-1 │ │ │ │ +(2025-11-05) x86_64 GNU/Linux │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ To run a program and provide it with input, one way is use the operator _<_<, │ │ │ │ with a file name whose first character is an exclamation point; the rest of the │ │ │ │ file name will be taken as the command to run, as in the following example. │ │ │ │ i2 : "!grep a" << " ba \n bc \n ad \n ef \n" << close │ │ │ │ ba │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ More often, one wants to write Macaulay2 code to obtain and manipulate the │ │ │ │ output from the other program. If the program requires no input data, then we │ │ │ │ can use _g_e_t with a file name whose first character is an exclamation point. In │ │ │ │ the following example, we also peek at the string to see whether it includes a │ │ │ │ newline character. │ │ │ │ i3 : peek get "!uname -a" │ │ │ │ │ │ │ │ -o3 = "Linux sbuild 6.12.57+deb13-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ +o3 = "Linux sbuild 6.12.57+deb13-cloud-amd64 #1 SMP PREEMPT_DYNAMIC Debian │ │ │ │ 6.12.57-1 (2025-11-05) x86_64 GNU/Linux\n" │ │ │ │ Bidirectional communication with a program is also possible. We use _o_p_e_n_I_n_O_u_t │ │ │ │ to create a file that serves as a bidirectional connection to a program. That │ │ │ │ file is called an input output file. In this example we open a connection to │ │ │ │ the unix utility grep and use it to locate the symbol names in Macaulay2 that │ │ │ │ begin with in. │ │ │ │ i4 : f = openInOut "!grep -E '^in'" │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_computing_sp__Groebner_spbases.html │ │ │ @@ -269,15 +269,15 @@ │ │ │ 1277 │ │ │
    │ │ │
    i24 : gb I
    │ │ │  
    │ │ │ -   -- registering gb 5 at 0x7f67b957e540
    │ │ │ +   -- registering gb 5 at 0x7f49bd44d540
    │ │ │  
    │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │     -- number of monomials                = 8
    │ │ │     -- #reduction steps = 2
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -373,15 +373,15 @@
    │ │ │                1      4
    │ │ │  o32 : Matrix R  <-- R
    │ │ │
    │ │ │
    i33 : time betti gb f
    │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc)
    │ │ │ + -- used 0.227867s (cpu); 0.231374s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o33 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ @@ -417,15 +417,15 @@
    │ │ │  
    │ │ │  o35 : ZZ[T]
    │ │ │
    │ │ │
    i36 : time betti gb f
    │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc)
    │ │ │ + -- used 0.00398845s (cpu); 0.00376715s (thread); 0s (gc)
    │ │ │  
    │ │ │               0  1
    │ │ │  o36 = total: 1 53
    │ │ │            0: 1  .
    │ │ │            1: .  .
    │ │ │            2: .  2
    │ │ │            3: .  1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -140,15 +140,15 @@
    │ │ │ │  o23 = ideal (x*y - z , y  - w )
    │ │ │ │  
    │ │ │ │                  ZZ
    │ │ │ │  o23 : Ideal of ----[x..z, w]
    │ │ │ │                 1277
    │ │ │ │  i24 : gb I
    │ │ │ │  
    │ │ │ │ -   -- registering gb 5 at 0x7f67b957e540
    │ │ │ │ +   -- registering gb 5 at 0x7f49bd44d540
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(2)mm{3}(1)m{4}(2)om{5}(1)onumber of (nonminimal) gb elements = 4
    │ │ │ │     -- number of monomials                = 8
    │ │ │ │     -- #reduction steps = 2
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ │ │     -- nloop = 0
    │ │ │ │ @@ -213,15 +213,15 @@
    │ │ │ │  
    │ │ │ │  o31 : ZZ[T]
    │ │ │ │  i32 : f = random(R^1,R^{-3,-3,-5,-6});
    │ │ │ │  
    │ │ │ │                1      4
    │ │ │ │  o32 : Matrix R  <-- R
    │ │ │ │  i33 : time betti gb f
    │ │ │ │ - -- used 0.303879s (cpu); 0.305901s (thread); 0s (gc)
    │ │ │ │ + -- used 0.227867s (cpu); 0.231374s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o33 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ │ │ @@ -245,15 +245,15 @@
    │ │ │ │  i35 : poincare cokernel f = (1-T^3)*(1-T^3)*(1-T^5)*(1-T^6) -- cache poincare
    │ │ │ │  
    │ │ │ │              3    5     8     9    12     14    17
    │ │ │ │  o35 = 1 - 2T  - T  + 2T  + 2T  - T   - 2T   + T
    │ │ │ │  
    │ │ │ │  o35 : ZZ[T]
    │ │ │ │  i36 : time betti gb f
    │ │ │ │ - -- used 0.00799525s (cpu); 0.00545052s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00398845s (cpu); 0.00376715s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               0  1
    │ │ │ │  o36 = total: 1 53
    │ │ │ │            0: 1  .
    │ │ │ │            1: .  .
    │ │ │ │            2: .  2
    │ │ │ │            3: .  1
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,112 +80,112 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ take(N,-2)); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ i5 : ? X │ │ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ i6 : time f = X ===> Y; │ │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc) │ │ │ │ + -- used 3.97935s (cpu); 2.18083s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ i7 : f X │ │ │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, curve in PP^8 │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ i9 : V = random({{2},{1}},X); │ │ │ │ │ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ i11 : time g = V ===> W; │ │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc) │ │ │ │ + -- used 4.37872s (cpu); 2.44278s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ i12 : g||W │ │ │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 │ │ │ │ hypersurfaces of degrees 1^1 2^1 │ │ │ │ @@ -144,15 +144,15 @@ │ │ │ │ i15 : Z = projectiveVariety pfaffians(4,A); │ │ │ │ │ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ i16 : ? Z │ │ │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc) │ │ │ │ + -- used 7.23744s (cpu); 5.14081s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = h │ │ │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ i18 : h || GG_K(1,4) │ │ │ │ │ │ │ │ o18 = multi-rational map consisting of one single rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,24 +25,24 @@ │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^7 x PP^7) │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ i5 : time Phi Z; │ │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc) │ │ │ │ + -- used 0.189975s (cpu); 0.130013s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc) │ │ │ │ + -- used 2.4364s (cpu); 1.58346s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of │ │ │ │ multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_cm__Option_rp.html │ │ │ @@ -93,31 +93,31 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11185-0/0/
    │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11185-0/1/
    │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11185-0/0/a/
    │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11185-0/0/b/
    │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11185-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12295-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11185-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12295-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : stack findFiles src
    │ │ │  
    │ │ │ -o9 = /tmp/M2-11185-0/0/
    │ │ │ -     /tmp/M2-11185-0/0/b/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/
    │ │ │ -     /tmp/M2-11185-0/0/b/c/g
    │ │ │ -     /tmp/M2-11185-0/0/a/
    │ │ │ -     /tmp/M2-11185-0/0/a/g
    │ │ │ -     /tmp/M2-11185-0/0/a/f
    │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │
    │ │ │
    i10 : copyDirectory(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g
    │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f
    │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g
    │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f
    │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i12 : stack findFiles dst
    │ │ │  
    │ │ │ -o12 = /tmp/M2-11185-0/1/
    │ │ │ -      /tmp/M2-11185-0/1/a/
    │ │ │ -      /tmp/M2-11185-0/1/a/f
    │ │ │ -      /tmp/M2-11185-0/1/a/g
    │ │ │ -      /tmp/M2-11185-0/1/b/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/
    │ │ │ -      /tmp/M2-11185-0/1/b/c/g
    │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │
    │ │ │
    i13 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o13 = ho there
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,68 +25,68 @@ │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o a copy of the directory tree rooted at src is created, rooted at │ │ │ │ dst │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11185-0/0/ │ │ │ │ +o1 = /tmp/M2-12295-0/0/ │ │ │ │ i2 : dst = temporaryFileName() | "/" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11185-0/1/ │ │ │ │ +o2 = /tmp/M2-12295-0/1/ │ │ │ │ i3 : makeDirectory (src|"a/") │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11185-0/0/a/ │ │ │ │ +o3 = /tmp/M2-12295-0/0/a/ │ │ │ │ i4 : makeDirectory (src|"b/") │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11185-0/0/b/ │ │ │ │ +o4 = /tmp/M2-12295-0/0/b/ │ │ │ │ i5 : makeDirectory (src|"b/c/") │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11185-0/0/b/c/ │ │ │ │ +o5 = /tmp/M2-12295-0/0/b/c/ │ │ │ │ i6 : src|"a/f" << "hi there" << close │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11185-0/0/a/f │ │ │ │ +o6 = /tmp/M2-12295-0/0/a/f │ │ │ │ │ │ │ │ o6 : File │ │ │ │ i7 : src|"a/g" << "hi there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11185-0/0/a/g │ │ │ │ +o7 = /tmp/M2-12295-0/0/a/g │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : src|"b/c/g" << "ho there" << close │ │ │ │ │ │ │ │ -o8 = /tmp/M2-11185-0/0/b/c/g │ │ │ │ +o8 = /tmp/M2-12295-0/0/b/c/g │ │ │ │ │ │ │ │ o8 : File │ │ │ │ i9 : stack findFiles src │ │ │ │ │ │ │ │ -o9 = /tmp/M2-11185-0/0/ │ │ │ │ - /tmp/M2-11185-0/0/b/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/ │ │ │ │ - /tmp/M2-11185-0/0/b/c/g │ │ │ │ - /tmp/M2-11185-0/0/a/ │ │ │ │ - /tmp/M2-11185-0/0/a/g │ │ │ │ - /tmp/M2-11185-0/0/a/f │ │ │ │ +o9 = /tmp/M2-12295-0/0/ │ │ │ │ + /tmp/M2-12295-0/0/a/ │ │ │ │ + /tmp/M2-12295-0/0/a/g │ │ │ │ + /tmp/M2-12295-0/0/a/f │ │ │ │ + /tmp/M2-12295-0/0/b/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/ │ │ │ │ + /tmp/M2-12295-0/0/b/c/g │ │ │ │ i10 : copyDirectory(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-11185-0/0/b/c/g -> /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/g -> /tmp/M2-11185-0/1/a/g │ │ │ │ - -- copying: /tmp/M2-11185-0/0/a/f -> /tmp/M2-11185-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/g -> /tmp/M2-12295-0/1/a/g │ │ │ │ + -- copying: /tmp/M2-12295-0/0/a/f -> /tmp/M2-12295-0/1/a/f │ │ │ │ + -- copying: /tmp/M2-12295-0/0/b/c/g -> /tmp/M2-12295-0/1/b/c/g │ │ │ │ i11 : copyDirectory(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/b/c/g not newer than /tmp/M2-11185-0/1/b/c/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/g not newer than /tmp/M2-11185-0/1/a/g │ │ │ │ - -- skipping: /tmp/M2-11185-0/0/a/f not newer than /tmp/M2-11185-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/g not newer than /tmp/M2-12295-0/1/a/g │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/a/f not newer than /tmp/M2-12295-0/1/a/f │ │ │ │ + -- skipping: /tmp/M2-12295-0/0/b/c/g not newer than /tmp/M2-12295-0/1/b/c/g │ │ │ │ i12 : stack findFiles dst │ │ │ │ │ │ │ │ -o12 = /tmp/M2-11185-0/1/ │ │ │ │ - /tmp/M2-11185-0/1/a/ │ │ │ │ - /tmp/M2-11185-0/1/a/f │ │ │ │ - /tmp/M2-11185-0/1/a/g │ │ │ │ - /tmp/M2-11185-0/1/b/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/ │ │ │ │ - /tmp/M2-11185-0/1/b/c/g │ │ │ │ +o12 = /tmp/M2-12295-0/1/ │ │ │ │ + /tmp/M2-12295-0/1/a/ │ │ │ │ + /tmp/M2-12295-0/1/a/g │ │ │ │ + /tmp/M2-12295-0/1/a/f │ │ │ │ + /tmp/M2-12295-0/1/b/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/ │ │ │ │ + /tmp/M2-12295-0/1/b/c/g │ │ │ │ i13 : get (dst|"b/c/g") │ │ │ │ │ │ │ │ o13 = ho there │ │ │ │ Now we remove the files and directories we created. │ │ │ │ i14 : rm = d -> if isDirectory d then removeDirectory d else removeFile d │ │ │ │ │ │ │ │ o14 = rm │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_copy__File_lp__String_cm__String_rp.html │ │ │ @@ -78,65 +78,65 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10970-0/0
    │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10970-0/1
    │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10970-0/0
    │ │ │ +o3 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : copyFile(src,dst,Verbose=>true)
    │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1
    │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i7 : src << "ho there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-10970-0/0
    │ │ │ +o7 = /tmp/M2-11860-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true)
    │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1
    │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │
    │ │ │
    i9 : get dst
    │ │ │  
    │ │ │  o9 = hi there
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,37 +18,37 @@ │ │ │ │ o Verbose => a _B_o_o_l_e_a_n_ _v_a_l_u_e, default value false, whether to report │ │ │ │ individual file operations │ │ │ │ * Consequences: │ │ │ │ o the file may be copied │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10970-0/0 │ │ │ │ +o1 = /tmp/M2-11860-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10970-0/1 │ │ │ │ +o2 = /tmp/M2-11860-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10970-0/0 │ │ │ │ +o3 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : copyFile(src,dst,Verbose=>true) │ │ │ │ - -- copying: /tmp/M2-10970-0/0 -> /tmp/M2-10970-0/1 │ │ │ │ + -- copying: /tmp/M2-11860-0/0 -> /tmp/M2-11860-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i7 : src << "ho there" << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-10970-0/0 │ │ │ │ +o7 = /tmp/M2-11860-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ i8 : copyFile(src,dst,Verbose=>true,UpdateOnly => true) │ │ │ │ - -- skipping: /tmp/M2-10970-0/0 not newer than /tmp/M2-10970-0/1 │ │ │ │ + -- skipping: /tmp/M2-11860-0/0 not newer than /tmp/M2-11860-0/1 │ │ │ │ i9 : get dst │ │ │ │ │ │ │ │ o9 = hi there │ │ │ │ i10 : removeFile src │ │ │ │ i11 : removeFile dst │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_D_i_r_e_c_t_o_r_y │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_cpu__Time.html │ │ │ @@ -64,38 +64,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : t1 = cpuTime()
    │ │ │  
    │ │ │ -o1 = 354.029649282
    │ │ │ +o1 = 383.166340652
    │ │ │  
    │ │ │  o1 : RR (of precision 53)
    │ │ │
    │ │ │
    i2 : for i from 0 to 1000000 do 223131321321*324234324324;
    │ │ │
    │ │ │
    i3 : t2 = cpuTime()
    │ │ │  
    │ │ │ -o3 = 355.996910491
    │ │ │ +o3 = 384.327232721
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │
    i4 : t2-t1
    │ │ │  
    │ │ │ -o4 = 1.967261209000014
    │ │ │ +o4 = 1.160892068999999
    │ │ │  
    │ │ │  o4 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,26 +9,26 @@ │ │ │ │ cpuTime() │ │ │ │ * Outputs: │ │ │ │ o a _r_e_a_l_ _n_u_m_b_e_r, the number of seconds of cpu time used since the │ │ │ │ program was started │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : t1 = cpuTime() │ │ │ │ │ │ │ │ -o1 = 354.029649282 │ │ │ │ +o1 = 383.166340652 │ │ │ │ │ │ │ │ o1 : RR (of precision 53) │ │ │ │ i2 : for i from 0 to 1000000 do 223131321321*324234324324; │ │ │ │ i3 : t2 = cpuTime() │ │ │ │ │ │ │ │ -o3 = 355.996910491 │ │ │ │ +o3 = 384.327232721 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ i4 : t2-t1 │ │ │ │ │ │ │ │ -o4 = 1.967261209000014 │ │ │ │ +o4 = 1.160892068999999 │ │ │ │ │ │ │ │ o4 : RR (of precision 53) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_current__Time.html │ │ │ @@ -64,48 +64,48 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime()
    │ │ │  
    │ │ │ -o1 = 1765726091
    │ │ │ +o1 = 1767788593 │ │ │
    │ │ │

    We can compute, roughly, how many years ago the epoch began as follows.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 )
    │ │ │  
    │ │ │ -o2 = 55.95363237235333
    │ │ │ +o2 = 56.01899045890111
    │ │ │  
    │ │ │  o2 : RR (of precision 53)
    │ │ │
    │ │ │

    We can also compute how many months account for the fractional part of that number.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i3 : 12 * (oo - floor oo)
    │ │ │  
    │ │ │ -o3 = 11.44358846823999
    │ │ │ +o3 = .2278855068132941
    │ │ │  
    │ │ │  o3 : RR (of precision 53)
    │ │ │
    │ │ │

    Compare that to the current date, available from a standard Unix command.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : run "date"
    │ │ │ -Sun Dec 14 15:28:11 UTC 2025
    │ │ │ +Wed Jan  7 12:23:13 UTC 2026
    │ │ │  
    │ │ │  o4 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,31 +9,31 @@ │ │ │ │ currentTime() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the current time, in seconds since 00:00:00 1970-01-01 │ │ │ │ UTC, the beginning of the epoch │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : currentTime() │ │ │ │ │ │ │ │ -o1 = 1765726091 │ │ │ │ +o1 = 1767788593 │ │ │ │ We can compute, roughly, how many years ago the epoch began as follows. │ │ │ │ i2 : currentTime() /( (365 + 97./400) * 24 * 60 * 60 ) │ │ │ │ │ │ │ │ -o2 = 55.95363237235333 │ │ │ │ +o2 = 56.01899045890111 │ │ │ │ │ │ │ │ o2 : RR (of precision 53) │ │ │ │ We can also compute how many months account for the fractional part of that │ │ │ │ number. │ │ │ │ i3 : 12 * (oo - floor oo) │ │ │ │ │ │ │ │ -o3 = 11.44358846823999 │ │ │ │ +o3 = .2278855068132941 │ │ │ │ │ │ │ │ o3 : RR (of precision 53) │ │ │ │ Compare that to the current date, available from a standard Unix command. │ │ │ │ i4 : run "date" │ │ │ │ -Sun Dec 14 15:28:11 UTC 2025 │ │ │ │ +Wed Jan 7 12:23:13 UTC 2026 │ │ │ │ │ │ │ │ o4 = 0 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_u_r_r_e_n_t_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:1849:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elapsed__Time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the value of e. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime sleep 1
    │ │ │ - -- 1.00015s elapsed
    │ │ │ + -- 1.00023s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ ************ eellaappsseeddTTiimmee ---- ttiimmee aa ccoommppuuttaattiioonn iinncclluuddiinngg ttiimmee eellaappsseedd ************ │ │ │ │ * Usage: │ │ │ │ elapsedTime e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ elapsedTime e evaluates e, prints the amount of time elapsed, and returns the │ │ │ │ value of e. │ │ │ │ i1 : elapsedTime sleep 1 │ │ │ │ - -- 1.00015s elapsed │ │ │ │ + -- 1.00023s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _G_C_s_t_a_t_s -- information about the status of the garbage collector │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_elimination_spof_spvariables.html │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │
    │ │ │
    i3 : time leadTerm gens gb I
    │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc)
    │ │ │ + -- used 0.1387s (cpu); 0.138699s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │       ------------------------------------------------------------------------
    │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │       ------------------------------------------------------------------------
    │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │
    i8 : time G = eliminate(I,{s,t})
    │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc)
    │ │ │ + -- used 0.42811s (cpu); 0.206841s (thread); 0s (gc)
    │ │ │  
    │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │       ------------------------------------------------------------------------
    │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -245,15 +245,15 @@
    │ │ │  
    │ │ │  o11 : Ideal of R1
    │ │ │
    │ │ │
    i12 : time G = eliminate(I1,{s,t})
    │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc)
    │ │ │ + -- used 0.0363006s (cpu); 0.0363011s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7  
    │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2  
    │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -337,15 +337,15 @@
    │ │ │  
    │ │ │  o16 : RingMap A <-- B
    │ │ │
    │ │ │
    i17 : time G = kernel F
    │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc)
    │ │ │ + -- used 0.1109s (cpu); 0.11091s (thread); 0s (gc)
    │ │ │  
    │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8   
    │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7 
    │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -418,26 +418,26 @@
    │ │ │  
    │ │ │  o19 : PolynomialRing
    │ │ │
    │ │ │
    i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc)
    │ │ │ + -- used 0.00189673s (cpu); 0.00189022s (thread); 0s (gc)
    │ │ │  
    │ │ │           9    9      7    3
    │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │  
    │ │ │  o20 : R
    │ │ │
    │ │ │
    i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc)
    │ │ │ + -- used 0.0362551s (cpu); 0.0362736s (thread); 0s (gc)
    │ │ │  
    │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2  
    │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8   
    │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,15 +13,15 @@
    │ │ │ │  i2 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o2 = ideal (- s  - s*t + x - 1, - t  - 3t  - t + y, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : time leadTerm gens gb I
    │ │ │ │ - -- used 0.464405s (cpu); 0.277254s (thread); 0s (gc)
    │ │ │ │ + -- used 0.1387s (cpu); 0.138699s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o3 = | x3y9 5148txy3 108729sxy2z2 sy4z 46644741sxy3z 143sy5 6sxy4
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       563515116021sx2y3 4374txy2z3 612704350498473090tx2yz3 217458ty4z2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       267076255345488270sy3z4 5256861933965245618410txyz6
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -89,15 +89,15 @@
    │ │ │ │  i7 : I = ideal(x-s^3-s*t-1, y-t^3-3*t^2-t, z-s*t^3)
    │ │ │ │  
    │ │ │ │                 3                   3     2               3
    │ │ │ │  o7 = ideal (- s  - s*t + x - 1, - t  - 3t  + y - t, - s*t  + z)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : time G = eliminate(I,{s,t})
    │ │ │ │ - -- used 0.422625s (cpu); 0.238689s (thread); 0s (gc)
    │ │ │ │ + -- used 0.42811s (cpu); 0.206841s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │              3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o8 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │           7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │       7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ @@ -156,15 +156,15 @@
    │ │ │ │  Sometimes giving the variables different degrees will speed up the
    │ │ │ │  computations. Here, we set the degrees of x, y, and z to be the total degrees.
    │ │ │ │  i10 : R1 = QQ[x,y,z,s,t, Degrees=>{3,3,4,1,1}];
    │ │ │ │  i11 : I1 = substitute(I,R1);
    │ │ │ │  
    │ │ │ │  o11 : Ideal of R1
    │ │ │ │  i12 : time G = eliminate(I1,{s,t})
    │ │ │ │ - -- used 0.286447s (cpu); 0.110979s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0363006s (cpu); 0.0363011s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 6 3       3 6    9     2 8         5 4      2 7
    │ │ │ │  o12 = ideal(x y  - 3x y z  + 3x*y z  - z  - 6x y z - 15x*y z  + 21y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │          2 9       2 5 3       6 3    7 3         2 6     3 6       7 2
    │ │ │ │        3x y  - 324x y z  + 6x*y z  - y z  - 405x*y z  - 3y z  + 7x*y z  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -227,15 +227,15 @@
    │ │ │ │  i16 : F = map(A,B,{s^3+s*t+1, t^3+3*t^2+t, s*t^3})
    │ │ │ │  
    │ │ │ │                     3             3     2         3
    │ │ │ │  o16 = map (A, B, {s  + s*t + 1, t  + 3t  + t, s*t })
    │ │ │ │  
    │ │ │ │  o16 : RingMap A <-- B
    │ │ │ │  i17 : time G = kernel F
    │ │ │ │ - -- used 0.404757s (cpu); 0.227468s (thread); 0s (gc)
    │ │ │ │ + -- used 0.1109s (cpu); 0.11091s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │               3 9     2 9     2 8      2 6 3       9    2 7         8
    │ │ │ │  o17 = ideal(x y  - 3x y  - 6x y z - 3x y z  + 3x*y  - x y z + 12x*y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            7 2       2 5 3       6 3    7 3        5 4       3 6    9       7
    │ │ │ │        7x*y z  - 324x y z  + 6x*y z  - y z  - 15x*y z  + 3x*y z  - y  + 2x*y z
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ @@ -296,22 +296,22 @@
    │ │ │ │  involve the variables s and t.
    │ │ │ │  i19 : use ring I
    │ │ │ │  
    │ │ │ │  o19 = R
    │ │ │ │  
    │ │ │ │  o19 : PolynomialRing
    │ │ │ │  i20 : time f1 = resultant(I_0,I_2,s)
    │ │ │ │ - -- used 0.00191261s (cpu); 0.00191299s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00189673s (cpu); 0.00189022s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           9    9      7    3
    │ │ │ │  o20 = x*t  - t  - z*t  - z
    │ │ │ │  
    │ │ │ │  o20 : R
    │ │ │ │  i21 : time f2 = resultant(I_1,f1,t)
    │ │ │ │ - -- used 0.0583203s (cpu); 0.0583314s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0362551s (cpu); 0.0362736s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │           3 9     2 9     2 8      2 6 3       9    2 7         8        7 2
    │ │ │ │  o21 = - x y  + 3x y  + 6x y z + 3x y z  - 3x*y  + x y z - 12x*y z - 7x*y z  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            2 5 3       6 3    7 3        5 4       3 6    9       7      8
    │ │ │ │        324x y z  - 6x*y z  + y z  + 15x*y z  - 3x*y z  + y  - 2x*y z + 6y z +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_end__Package.html
    │ │ │ @@ -154,15 +154,15 @@
    │ │ │                                      Version => 0.0
    │ │ │               package prefix => /usr/
    │ │ │               PackageIsLoaded => true
    │ │ │               pkgname => Foo
    │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │               processed documentation => MutableHashTable{}
    │ │ │               raw documentation => MutableHashTable{}
    │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │               source file => stdio
    │ │ │               test inputs => MutableList{}
    │ │ │
    │ │ │
    i7 : dictionaryPath
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,15 +77,15 @@
    │ │ │ │                                      Version => 0.0
    │ │ │ │               package prefix => /usr/
    │ │ │ │               PackageIsLoaded => true
    │ │ │ │               pkgname => Foo
    │ │ │ │               private dictionary => Foo#"private dictionary"
    │ │ │ │               processed documentation => MutableHashTable{}
    │ │ │ │               raw documentation => MutableHashTable{}
    │ │ │ │ -             source directory => /tmp/M2-10191-0/91-rundir/
    │ │ │ │ +             source directory => /tmp/M2-10311-0/91-rundir/
    │ │ │ │               source file => stdio
    │ │ │ │               test inputs => MutableList{}
    │ │ │ │  i7 : dictionaryPath
    │ │ │ │  
    │ │ │ │  o7 = {Foo.Dictionary, Varieties.Dictionary, Isomorphism.Dictionary,
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       Truncations.Dictionary, Polyhedra.Dictionary, Saturation.Dictionary,
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Exists.html
    │ │ │ @@ -68,29 +68,29 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,16 +31,16 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/ │ │ │ │ -M2-53632-0/0-out.ms │ │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84642-0/0-in.ms -o /tmp/ │ │ │ │ +M2-84642-0/0-out.ms │ │ │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ │ #variables 3 │ │ │ │ #equations 3 │ │ │ │ #invalid equations 0 │ │ │ │ field characteristic 0 │ │ │ │ homogeneous input? 1 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ initial hash table size 131072 (2^17) │ │ │ │ max pair selection ALL │ │ │ │ reduce gb 1 │ │ │ │ #threads 6 │ │ │ │ info level 2 │ │ │ │ generate pbm files 0 │ │ │ │ ------------------------------------------ │ │ │ │ -Initial prime = 1196244169 │ │ │ │ +Initial prime = 1117130281 │ │ │ │ │ │ │ │ Legend for f4 information │ │ │ │ -------------------------------------------------------- │ │ │ │ deg current degree of pairs selected in this round │ │ │ │ sel number of pairs selected in this round │ │ │ │ pairs total number of pairs in pair list │ │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ │ @@ -73,26 +73,26 @@ │ │ │ │ deg sel pairs mat density new data │ │ │ │ time(rd) in sec (real|cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ reduce final basis 3 x 3 33.33% 3 new 0 zero │ │ │ │ -0.02 | 0.07 │ │ │ │ +0.00 | 0.00 │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -overall(elapsed) 0.06 sec │ │ │ │ -overall(cpu) 0.17 sec │ │ │ │ +overall(elapsed) 0.00 sec │ │ │ │ +overall(cpu) 0.01 sec │ │ │ │ select 0.00 sec 0.0% │ │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ │ -update 0.03 sec 57.3% │ │ │ │ -convert 0.02 sec 42.4% │ │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ │ +symbolic prep. 0.00 sec 0.2% │ │ │ │ +update 0.00 sec 87.1% │ │ │ │ +convert 0.00 sec 4.0% │ │ │ │ +linear algebra 0.00 sec 0.5% │ │ │ │ reduce gb 0.00 sec 0.0% │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ size of basis 3 │ │ │ │ #terms in basis 3 │ │ │ │ #pairs reduced 0 │ │ │ │ @@ -106,18 +106,18 @@ │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ │ [3] │ │ │ │ #polynomials to lift 3 │ │ │ │ ----------------------------------------- │ │ │ │ -New prime = 1107170621 │ │ │ │ +New prime = 1157291321 │ │ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ │ -multi-mod overall(elapsed) 0.02 sec │ │ │ │ +multi-mod overall(elapsed) 0.00 sec │ │ │ │ learning phase 0.00 Gops/sec │ │ │ │ application phase 0.00 Gops/sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ multi-modular steps │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----------------------- │ │ │ │ @@ -136,15 +136,15 @@ │ │ │ │ CRT (elapsed) 0.00 sec │ │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ -msolve overall time 0.19 sec (elapsed) / 0.49 sec (cpu) │ │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.04 sec (cpu) │ │ │ │ ------------------------------------------------------------------------------- │ │ │ │ ----- │ │ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/example-output/_components__Of__Kernel.out │ │ │ @@ -23,19 +23,19 @@ │ │ │ o4 : RingMap S <-- R │ │ │ │ │ │ i5 : peek componentsOfKernel(2, F) │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 6 │ │ │ number of distinct multidegrees = 6 │ │ │ - -- .00186857s elapsed │ │ │ + -- .0029236s elapsed │ │ │ computing total degree: 2 │ │ │ number of monomials = 21 │ │ │ number of distinct multidegrees = 18 │ │ │ - -- .00833047s elapsed │ │ │ + -- .0117245s elapsed │ │ │ │ │ │ o5 = MutableHashTable{{0, 1, 0, 0, 1} => {} } │ │ │ {0, 1, 0, 1, 0} => {} │ │ │ {0, 1, 1, 0, 0} => {} │ │ │ {0, 2, 0, 0, 2} => {} │ │ │ {0, 2, 0, 1, 1} => {} │ │ │ {0, 2, 0, 2, 0} => {} │ │ ├── ./usr/share/doc/Macaulay2/MultigradedImplicitization/html/_components__Of__Kernel.html │ │ │ @@ -117,19 +117,19 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,23 +20,23 @@ │ │ │ │ o1 : PolynomialRing │ │ │ │ i2 : I = ideal"xy,yz,zx" │ │ │ │ │ │ │ │ o2 = ideal (x*y, y*z, x*z) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime jMult I │ │ │ │ - -- .0234547s elapsed │ │ │ │ + -- .0469481s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ i4 : elapsedTime monjMult I │ │ │ │ - -- .107713s elapsed │ │ │ │ + -- .0900121s elapsed │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : elapsedTime multiplicitySequence I │ │ │ │ - -- .181349s elapsed │ │ │ │ + -- .191375s elapsed │ │ │ │ │ │ │ │ o5 = HashTable{2 => 3} │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o5 : HashTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_mon__Analytic__Spread.html │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ +o1 = /tmp/M2-11028-0/0 │ │ │
    │ │ │
    i2 : fileExists fn
    │ │ │  
    │ │ │  o2 = false
    │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : fileExists fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -10,21 +10,21 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether a file with the filename or path fn exists
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10558-0/0
    │ │ │ │ +o1 = /tmp/M2-11028-0/0
    │ │ │ │  i2 : fileExists fn
    │ │ │ │  
    │ │ │ │  o2 = false
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10558-0/0
    │ │ │ │ +o3 = /tmp/M2-11028-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : fileExists fn
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  If fn refers to a symbolic link, then whether the file exists is determined by
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Length.html
    │ │ │ @@ -69,15 +69,15 @@
    │ │ │          

    Description

    │ │ │

    The length of an open output file is determined from the internal count of the number of bytes written so far.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -510,27 +510,27 @@ │ │ │ o36 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : f = temporaryFileName() << "hi there"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12150-0/0
    │ │ │ +o1 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o1 : File
    │ │ │
    │ │ │
    i2 : fileLength f
    │ │ │ @@ -85,24 +85,24 @@
    │ │ │  o2 = 8
    │ │ │
    │ │ │
    i3 : close f
    │ │ │  
    │ │ │ -o3 = /tmp/M2-12150-0/0
    │ │ │ +o3 = /tmp/M2-14270-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : filename = toString f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-12150-0/0
    │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │
    │ │ │
    i5 : fileLength filename
    │ │ │  
    │ │ │  o5 = 8
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,28 +12,28 @@ │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the length of the file f or the file whose name is f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The length of an open output file is determined from the internal count of the │ │ │ │ number of bytes written so far. │ │ │ │ i1 : f = temporaryFileName() << "hi there" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12150-0/0 │ │ │ │ +o1 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o1 : File │ │ │ │ i2 : fileLength f │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : close f │ │ │ │ │ │ │ │ -o3 = /tmp/M2-12150-0/0 │ │ │ │ +o3 = /tmp/M2-14270-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : filename = toString f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-12150-0/0 │ │ │ │ +o4 = /tmp/M2-14270-0/0 │ │ │ │ i5 : fileLength filename │ │ │ │ │ │ │ │ o5 = 8 │ │ │ │ i6 : get filename │ │ │ │ │ │ │ │ o6 = hi there │ │ │ │ i7 : length oo │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__File_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11375-0/0
    │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11375-0/0
    │ │ │ +o2 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode f
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  o3 = 420
    │ │ │
    │ │ │
    i4 : close f
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11375-0/0
    │ │ │ +o4 = /tmp/M2-12685-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,26 +11,26 @@ │ │ │ │ * Inputs: │ │ │ │ o f, a _f_i_l_e │ │ │ │ * Outputs: │ │ │ │ o the mode of the open file f │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11375-0/0 │ │ │ │ +o1 = /tmp/M2-12685-0/0 │ │ │ │ i2 : f = fn << "hi there" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11375-0/0 │ │ │ │ +o2 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ i3 : fileMode f │ │ │ │ │ │ │ │ o3 = 420 │ │ │ │ i4 : close f │ │ │ │ │ │ │ │ -o4 = /tmp/M2-11375-0/0 │ │ │ │ +o4 = /tmp/M2-12685-0/0 │ │ │ │ │ │ │ │ o4 : File │ │ │ │ i5 : removeFile fn │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _f_i_l_e_M_o_d_e_(_F_i_l_e_) -- get file mode │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__String_rp.html │ │ │ @@ -69,22 +69,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -425,15 +425,15 @@ │ │ │ │ │ │ o33 = 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ +o1 = /tmp/M2-11899-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -11,18 +11,18 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Outputs:
    │ │ │ │            o an _i_n_t_e_g_e_r, the mode of the file located at the filename or path fn
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10989-0/0
    │ │ │ │ +o1 = /tmp/M2-11899-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10989-0/0
    │ │ │ │ +o2 = /tmp/M2-11899-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__File_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -245,23 +245,23 @@ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ 00000000000000185613 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ +o1 = /tmp/M2-11624-0/0 │ │ │
    │ │ │
    i2 : f = fn << "hi there"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = 7 + 7*8 + 7*64
    │ │ │ @@ -108,15 +108,15 @@
    │ │ │  o5 = 511
    │ │ │
    │ │ │
    i6 : close f
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,30 +12,30 @@
    │ │ │ │            o mo, an _i_n_t_e_g_e_r
    │ │ │ │            o f, a _f_i_l_e
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the open file f is set to mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10854-0/0
    │ │ │ │ +o1 = /tmp/M2-11624-0/0
    │ │ │ │  i2 : f = fn << "hi there"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10854-0/0
    │ │ │ │ +o2 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = 7 + 7*8 + 7*64
    │ │ │ │  
    │ │ │ │  o3 = 511
    │ │ │ │  i4 : fileMode(m,f)
    │ │ │ │  i5 : fileMode f
    │ │ │ │  
    │ │ │ │  o5 = 511
    │ │ │ │  i6 : close f
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-10854-0/0
    │ │ │ │ +o6 = /tmp/M2-11624-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : fileMode fn
    │ │ │ │  
    │ │ │ │  o7 = 511
    │ │ │ │  i8 : removeFile fn
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Mode_lp__Z__Z_cm__String_rp.html
    │ │ │ @@ -73,22 +73,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ +o1 = /tmp/M2-13917-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : m = fileMode fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o fn, a _s_t_r_i_n_g
    │ │ │ │      * Consequences:
    │ │ │ │            o the mode of the file located at the filename or path fn is set to
    │ │ │ │              mo
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11977-0/0
    │ │ │ │ +o1 = /tmp/M2-13917-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11977-0/0
    │ │ │ │ +o2 = /tmp/M2-13917-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : m = fileMode fn
    │ │ │ │  
    │ │ │ │  o3 = 420
    │ │ │ │  i4 : fileMode(m|7,fn)
    │ │ │ │  i5 : fileMode fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_file__Time.html
    │ │ │ @@ -76,15 +76,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning of the epoch, so the number of seconds ago a file or directory was modified may be found by using the following code. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : currentTime() - fileTime "."
    │ │ │  
    │ │ │ -o1 = 61
    │ │ │ +o1 = 53 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ returns null if no error occurs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The value is the number of seconds since 00:00:00 1970-01-01 UTC, the beginning │ │ │ │ of the epoch, so the number of seconds ago a file or directory was modified may │ │ │ │ be found by using the following code. │ │ │ │ i1 : currentTime() - fileTime "." │ │ │ │ │ │ │ │ -o1 = 61 │ │ │ │ +o1 = 53 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_u_r_r_e_n_t_T_i_m_e -- get the current time │ │ │ │ * _f_i_l_e_ _m_a_n_i_p_u_l_a_t_i_o_n -- Unix file manipulation functions │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _f_i_l_e_T_i_m_e is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_force__G__B_lp..._cm__Syzygy__Matrix_eq_gt..._rp.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ o6 : Matrix R <-- R
    │ │ │
    │ │ │
    i7 : syz f
    │ │ │  
    │ │ │ -   -- registering gb 0 at 0x7f5498d2ce00
    │ │ │ +   -- registering gb 0 at 0x7fabc31bde00
    │ │ │  
    │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb elements = 3
    │ │ │     -- number of monomials                = 9
    │ │ │     -- #reduction steps = 6
    │ │ │     -- #spairs done = 6
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       {3} | x2-3  0     -z4+2 |
    │ │ │ │       {4} | 0     x2-3  y3-1  |
    │ │ │ │  
    │ │ │ │               3      3
    │ │ │ │  o6 : Matrix R  <-- R
    │ │ │ │  i7 : syz f
    │ │ │ │  
    │ │ │ │ -   -- registering gb 0 at 0x7f5498d2ce00
    │ │ │ │ +   -- registering gb 0 at 0x7fabc31bde00
    │ │ │ │  
    │ │ │ │     -- [gb]{2}(1)m{3}(1)m{4}(1)m{5}(1)z{6}(1)z{7}(1)znumber of (nonminimal) gb
    │ │ │ │  elements = 3
    │ │ │ │     -- number of monomials                = 9
    │ │ │ │     -- #reduction steps = 6
    │ │ │ │     -- #spairs done = 6
    │ │ │ │     -- ncalls = 0
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_get.html
    │ │ │ @@ -96,15 +96,15 @@
    │ │ │                
    i3 : removeFile "test-file"
    │ │ │
    │ │ │
    i4 : get "!date"
    │ │ │  
    │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025
    │ │ │ +o4 = Wed Jan 7 12:22:33 UTC 2026 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ o1 : File │ │ │ │ i2 : get "test-file" │ │ │ │ │ │ │ │ o2 = hi there │ │ │ │ i3 : removeFile "test-file" │ │ │ │ i4 : get "!date" │ │ │ │ │ │ │ │ -o4 = Sun Dec 14 15:27:22 UTC 2025 │ │ │ │ +o4 = Wed Jan 7 12:22:33 UTC 2026 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d -- read from a file │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ │ │ * _c_l_o_s_e -- close a file │ │ │ │ * _F_i_l_e_ _<_<_ _T_h_i_n_g -- print to a file │ │ │ │ ********** WWaayyss ttoo uussee ggeett:: ********** │ │ │ │ * get(File) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_instances.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ defaultPrecision => 53 │ │ │ engineDebugLevel => 0 │ │ │ errorDepth => 0 │ │ │ gbTrace => 0 │ │ │ interpreterDepth => 1 │ │ │ lineNumber => 2 │ │ │ loadDepth => 3 │ │ │ - maxAllowableThreads => 7 │ │ │ + maxAllowableThreads => 17 │ │ │ maxExponent => 1073741823 │ │ │ minExponent => -1073741824 │ │ │ numTBBThreads => 0 │ │ │ o1 => 2432902008176640000 │ │ │ oo => 2432902008176640000 │ │ │ printingAccuracy => -1 │ │ │ printingLeadLimit => 5 │ │ │ ├── html2text {} │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ defaultPrecision => 53 │ │ │ │ engineDebugLevel => 0 │ │ │ │ errorDepth => 0 │ │ │ │ gbTrace => 0 │ │ │ │ interpreterDepth => 1 │ │ │ │ lineNumber => 2 │ │ │ │ loadDepth => 3 │ │ │ │ - maxAllowableThreads => 7 │ │ │ │ + maxAllowableThreads => 17 │ │ │ │ maxExponent => 1073741823 │ │ │ │ minExponent => -1073741824 │ │ │ │ numTBBThreads => 0 │ │ │ │ o1 => 2432902008176640000 │ │ │ │ oo => 2432902008176640000 │ │ │ │ printingAccuracy => -1 │ │ │ │ printingLeadLimit => 5 │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Directory.html │ │ │ @@ -75,22 +75,22 @@ │ │ │ o1 = true
    │ │ │
    │ │ │
    i2 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ +o2 = /tmp/M2-10670-0/0 │ │ │
    │ │ │
    i3 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : isDirectory fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a directory
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : isDirectory "."
    │ │ │ │  
    │ │ │ │  o1 = true
    │ │ │ │  i2 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10380-0/0
    │ │ │ │ +o2 = /tmp/M2-10670-0/0
    │ │ │ │  i3 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10380-0/0
    │ │ │ │ +o3 = /tmp/M2-10670-0/0
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : isDirectory fn
    │ │ │ │  
    │ │ │ │  o4 = false
    │ │ │ │  i5 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Pseudoprime_lp__Z__Z_rp.html
    │ │ │ @@ -211,15 +211,15 @@
    │ │ │  
    │ │ │  o18 = false
    │ │ │
    │ │ │
    i19 : elapsedTime facs = factor(m*m1)
    │ │ │ - -- 4.33674s elapsed
    │ │ │ + -- 6.01582s elapsed
    │ │ │  
    │ │ │  o19 = 1000000000000000000000000000057*1000000000000000000010000000083
    │ │ │  
    │ │ │  o19 : Expression of class Product
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime m3
    │ │ │ - -- .0569545s elapsed
    │ │ │ + -- .0621642s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    i24 : elapsedTime isPseudoprime m3
    │ │ │ - -- .000114113s elapsed
    │ │ │ + -- .000136165s elapsed
    │ │ │  
    │ │ │  o24 = true
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ i17 : isPrime (m*m1) │ │ │ │ │ │ │ │ o17 = false │ │ │ │ i18 : isPrime(m*m*m1*m1*m2^6) │ │ │ │ │ │ │ │ o18 = false │ │ │ │ i19 : elapsedTime facs = factor(m*m1) │ │ │ │ - -- 4.33674s elapsed │ │ │ │ + -- 6.01582s elapsed │ │ │ │ │ │ │ │ o19 = 1000000000000000000000000000057*1000000000000000000010000000083 │ │ │ │ │ │ │ │ o19 : Expression of class Product │ │ │ │ i20 : facs = facs//toList/toList │ │ │ │ │ │ │ │ o20 = {{1000000000000000000000000000057, 1}, │ │ │ │ @@ -98,19 +98,19 @@ │ │ │ │ o20 : List │ │ │ │ i21 : assert(set facs === set {{m,1}, {m1,1}}) │ │ │ │ i22 : m3 = nextPrime (m^3) │ │ │ │ │ │ │ │ o22 = 10000000000000000000000000001710000000000000000000000000097470000000000 │ │ │ │ 00000000000000185613 │ │ │ │ i23 : elapsedTime isPrime m3 │ │ │ │ - -- .0569545s elapsed │ │ │ │ + -- .0621642s elapsed │ │ │ │ │ │ │ │ o23 = true │ │ │ │ i24 : elapsedTime isPseudoprime m3 │ │ │ │ - -- .000114113s elapsed │ │ │ │ + -- .000136165s elapsed │ │ │ │ │ │ │ │ o24 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_P_r_i_m_e_(_Z_Z_) -- whether a integer or polynomial is prime │ │ │ │ * _f_a_c_t_o_r_(_Z_Z_) -- factor a ring element │ │ │ │ * _n_e_x_t_P_r_i_m_e_(_N_u_m_b_e_r_) -- compute the smallest prime greater than or equal to │ │ │ │ a given number │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_is__Regular__File.html │ │ │ @@ -68,22 +68,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ In UNIX, a regular file is one that is not special in some way. Special files include symbolic links and directories. A regular file is a sequence of bytes stored permanently in a file system. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ +o1 = /tmp/M2-14348-0/0 │ │ │
    │ │ │
    i2 : fn << "hi there" << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : isRegularFile fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -13,18 +13,18 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e, whether fn is the path to a regular file
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  In UNIX, a regular file is one that is not special in some way. Special files
    │ │ │ │  include symbolic links and directories. A regular file is a sequence of bytes
    │ │ │ │  stored permanently in a file system.
    │ │ │ │  i1 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-12188-0/0
    │ │ │ │ +o1 = /tmp/M2-14348-0/0
    │ │ │ │  i2 : fn << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-12188-0/0
    │ │ │ │ +o2 = /tmp/M2-14348-0/0
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : isRegularFile fn
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : removeFile fn
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_make__Directory_lp__String_rp.html
    │ │ │ @@ -76,22 +76,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -13,18 +13,18 @@ │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the name of the newly made directory │ │ │ │ * Consequences: │ │ │ │ o the directory is made, with as many new path components as needed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10722-0/0 │ │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │ │ i2 : makeDirectory (dir|"/a/b/c") │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c │ │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │ │ i3 : removeDirectory (dir|"/a/b/c") │ │ │ │ i4 : removeDirectory (dir|"/a/b") │ │ │ │ i5 : removeDirectory (dir|"/a") │ │ │ │ A filename starting with ~/ will have the tilde replaced by the home directory. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_k_d_i_r │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_max__Allowable__Threads.html │ │ │ @@ -64,15 +64,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10722-0/0
    │ │ │ +o1 = /tmp/M2-11352-0/0 │ │ │
    │ │ │
    i2 : makeDirectory (dir|"/a/b/c")
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10722-0/0/a/b/c
    │ │ │ +o2 = /tmp/M2-11352-0/0/a/b/c │ │ │
    │ │ │
    i3 : removeDirectory (dir|"/a/b/c")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : maxAllowableThreads
    │ │ │  
    │ │ │ -o1 = 7
    │ │ │ +o1 = 17 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -9,15 +9,15 @@ │ │ │ │ * Usage: │ │ │ │ maxAllowableThreads │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the maximum number to which _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s can be set │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : maxAllowableThreads │ │ │ │ │ │ │ │ -o1 = 7 │ │ │ │ +o1 = 17 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_a_r_a_l_l_e_l_ _p_r_o_g_r_a_m_m_i_n_g_ _w_i_t_h_ _t_h_r_e_a_d_s_ _a_n_d_ _t_a_s_k_s │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_a_x_A_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s is an _i_n_t_e_g_e_r. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_threads.m2:498:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_memoize.html │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ │ o1 : FunctionClosure
    │ │ │
    │ │ │
    i2 : time fib 28
    │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc)
    │ │ │ + -- used 0.892603s (cpu); 0.622672s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 514229
    │ │ │
    │ │ │
    i3 : fib = memoize fib
    │ │ │ @@ -78,23 +78,23 @@
    │ │ │  
    │ │ │  o3 : FunctionClosure
    │ │ │
    │ │ │
    i4 : time fib 28
    │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc)
    │ │ │ + -- used 7.6e-05s (cpu); 7.0592e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 514229
    │ │ │
    │ │ │
    i5 : time fib 28
    │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc)
    │ │ │ + -- used 4.41e-06s (cpu); 3.224e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 514229
    │ │ │
    │ │ │

    An optional second argument to memoize provides a list of initial values, each of the form x => v, where v is the value to be provided for the argument x.

    │ │ │

    Alternatively, values can be provided after defining the memoized function using the syntax f x = v. A slightly more efficient implementation of the above would be

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,28 +11,28 @@ │ │ │ │ arguments are presented. │ │ │ │ i1 : fib = n -> if n <= 1 then 1 else fib(n-1) + fib(n-2) │ │ │ │ │ │ │ │ o1 = fib │ │ │ │ │ │ │ │ o1 : FunctionClosure │ │ │ │ i2 : time fib 28 │ │ │ │ - -- used 1.26333s (cpu); 0.726987s (thread); 0s (gc) │ │ │ │ + -- used 0.892603s (cpu); 0.622672s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 514229 │ │ │ │ i3 : fib = memoize fib │ │ │ │ │ │ │ │ o3 = fib │ │ │ │ │ │ │ │ o3 : FunctionClosure │ │ │ │ i4 : time fib 28 │ │ │ │ - -- used 7.5542e-05s (cpu); 7.4801e-05s (thread); 0s (gc) │ │ │ │ + -- used 7.6e-05s (cpu); 7.0592e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 514229 │ │ │ │ i5 : time fib 28 │ │ │ │ - -- used 3.987e-06s (cpu); 3.627e-06s (thread); 0s (gc) │ │ │ │ + -- used 4.41e-06s (cpu); 3.224e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 514229 │ │ │ │ An optional second argument to memoize provides a list of initial values, each │ │ │ │ of the form x => v, where v is the value to be provided for the argument x. │ │ │ │ Alternatively, values can be provided after defining the memoized function │ │ │ │ using the syntax f x = v. A slightly more efficient implementation of the above │ │ │ │ would be │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_methods.html │ │ │ @@ -90,19 +90,19 @@ │ │ │ {13 => (hilbertPolynomial, ZZ, BettiTally) } │ │ │ {14 => (degree, BettiTally) } │ │ │ {15 => (hilbertSeries, ZZ, BettiTally) } │ │ │ {16 => (pdim, BettiTally) } │ │ │ {17 => (regularity, BettiTally) } │ │ │ {18 => (mathML, BettiTally) } │ │ │ {19 => (codim, BettiTally) } │ │ │ - {20 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ - {21 => (dual, BettiTally) } │ │ │ + {20 => (dual, BettiTally) } │ │ │ + {21 => (truncate, BettiTally, ZZ, ZZ) } │ │ │ {22 => (truncate, BettiTally, InfiniteNumber, ZZ) } │ │ │ - {23 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ - {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {23 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)} │ │ │ + {24 => (truncate, BettiTally, ZZ, InfiniteNumber) } │ │ │ {25 => (^, Ring, BettiTally) } │ │ │ │ │ │ o1 : NumberedVerticalList
    │ │ │
    │ │ │ @@ -188,20 +188,20 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : methods( Matrix, Matrix )
    │ │ │  
    │ │ │ -o5 = {0 => (contract, Matrix, Matrix)                            }
    │ │ │ -     {1 => (diff, Matrix, Matrix)                                }
    │ │ │ -     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ -     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ +     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ +     {2 => (contract, Matrix, Matrix)                            }
    │ │ │ +     {3 => (diff, Matrix, Matrix)                                }
    │ │ │       {4 => (contract', Matrix, Matrix)                           }
    │ │ │ -     {5 => (+, Matrix, Matrix)                                   }
    │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ @@ -216,18 +216,18 @@
    │ │ │       {21 => (quotient, Matrix, Matrix)                           }
    │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │       {24 => (%, Matrix, Matrix)                                  }
    │ │ │       {25 => (remainder, Matrix, Matrix)                          }
    │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ -     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ -     {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ -     {30 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {28 => (intersect, Matrix, Matrix)                          }
    │ │ │ +     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ +     {31 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,19 +30,19 @@
    │ │ │ │       {13 => (hilbertPolynomial, ZZ, BettiTally)                   }
    │ │ │ │       {14 => (degree, BettiTally)                                  }
    │ │ │ │       {15 => (hilbertSeries, ZZ, BettiTally)                       }
    │ │ │ │       {16 => (pdim, BettiTally)                                    }
    │ │ │ │       {17 => (regularity, BettiTally)                              }
    │ │ │ │       {18 => (mathML, BettiTally)                                  }
    │ │ │ │       {19 => (codim, BettiTally)                                   }
    │ │ │ │ -     {20 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │ -     {21 => (dual, BettiTally)                                    }
    │ │ │ │ +     {20 => (dual, BettiTally)                                    }
    │ │ │ │ +     {21 => (truncate, BettiTally, ZZ, ZZ)                        }
    │ │ │ │       {22 => (truncate, BettiTally, InfiniteNumber, ZZ)            }
    │ │ │ │ -     {23 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │ -     {24 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {23 => (truncate, BettiTally, InfiniteNumber, InfiniteNumber)}
    │ │ │ │ +     {24 => (truncate, BettiTally, ZZ, InfiniteNumber)            }
    │ │ │ │       {25 => (^, Ring, BettiTally)                                 }
    │ │ │ │  
    │ │ │ │  o1 : NumberedVerticalList
    │ │ │ │  i2 : methods resolution
    │ │ │ │  
    │ │ │ │  o2 = {0 => (resolution, Ideal) }
    │ │ │ │       {1 => (resolution, Module)}
    │ │ │ │ @@ -85,20 +85,20 @@
    │ │ │ │      * Inputs:
    │ │ │ │            o X, a _t_y_p_e
    │ │ │ │            o Y, a _t_y_p_e
    │ │ │ │      * Outputs:
    │ │ │ │            o a _v_e_r_t_i_c_a_l_ _l_i_s_t of those methods associated with
    │ │ │ │  i5 : methods( Matrix, Matrix )
    │ │ │ │  
    │ │ │ │ -o5 = {0 => (contract, Matrix, Matrix)                            }
    │ │ │ │ -     {1 => (diff, Matrix, Matrix)                                }
    │ │ │ │ -     {2 => (diff', Matrix, Matrix)                               }
    │ │ │ │ -     {3 => (-, Matrix, Matrix)                                   }
    │ │ │ │ +o5 = {0 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +     {1 => (-, Matrix, Matrix)                                   }
    │ │ │ │ +     {2 => (contract, Matrix, Matrix)                            }
    │ │ │ │ +     {3 => (diff, Matrix, Matrix)                                }
    │ │ │ │       {4 => (contract', Matrix, Matrix)                           }
    │ │ │ │ -     {5 => (+, Matrix, Matrix)                                   }
    │ │ │ │ +     {5 => (diff', Matrix, Matrix)                               }
    │ │ │ │       {6 => (markedGB, Matrix, Matrix)                            }
    │ │ │ │       {7 => (Hom, Matrix, Matrix)                                 }
    │ │ │ │       {8 => (==, Matrix, Matrix)                                  }
    │ │ │ │       {9 => (*, Matrix, Matrix)                                   }
    │ │ │ │       {10 => (|, Matrix, Matrix)                                  }
    │ │ │ │       {11 => (||, Matrix, Matrix)                                 }
    │ │ │ │       {12 => (subquotient, Matrix, Matrix)                        }
    │ │ │ │ @@ -113,18 +113,18 @@
    │ │ │ │       {21 => (quotient, Matrix, Matrix)                           }
    │ │ │ │       {22 => (quotient', Matrix, Matrix)                          }
    │ │ │ │       {23 => (remainder', Matrix, Matrix)                         }
    │ │ │ │       {24 => (%, Matrix, Matrix)                                  }
    │ │ │ │       {25 => (remainder, Matrix, Matrix)                          }
    │ │ │ │       {26 => (pushout, Matrix, Matrix)                            }
    │ │ │ │       {27 => (solve, Matrix, Matrix)                              }
    │ │ │ │ -     {28 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ -     {29 => (intersect, Matrix, Matrix)                          }
    │ │ │ │ -     {30 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ │ -     {31 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {28 => (intersect, Matrix, Matrix)                          }
    │ │ │ │ +     {29 => (pullback, Matrix, Matrix)                           }
    │ │ │ │ +     {30 => (tensor, Matrix, Matrix)                             }
    │ │ │ │ +     {31 => (intersect, Matrix, Matrix, Matrix, Matrix)          }
    │ │ │ │       {32 => (substitute, Matrix, Matrix)                         }
    │ │ │ │       {33 => (yonedaProduct, Matrix, Matrix)                      }
    │ │ │ │       {34 => (isShortExactSequence, Matrix, Matrix)               }
    │ │ │ │       {35 => (horseshoeResolution, Matrix, Matrix)                }
    │ │ │ │       {36 => (connectingExtMap, Module, Matrix, Matrix)           }
    │ │ │ │       {37 => (connectingExtMap, Matrix, Matrix, Module)           }
    │ │ │ │       {38 => (connectingTorMap, Module, Matrix, Matrix)           }
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_minimal__Betti.html
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │
    │ │ │
    i3 : elapsedTime C = minimalBetti I
    │ │ │ - -- 1.82886s elapsed
    │ │ │ + -- 2.51322s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ - -- .745147s elapsed
    │ │ │ + -- .977091s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7
    │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │  
    │ │ │ @@ -146,15 +146,15 @@
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ - -- .0317322s elapsed
    │ │ │ + -- .0410621s elapsed
    │ │ │  
    │ │ │              0  1   2   3  4
    │ │ │  o7 = total: 1 35 140 189 84
    │ │ │           0: 1  .   .   .  .
    │ │ │           1: . 35 140 189 84
    │ │ │  
    │ │ │  o7 : BettiTally
    │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │
    │ │ │
    i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ - -- 1.20016s elapsed
    │ │ │ + -- 1.68311s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5
    │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │           0: 1  .   .   .   .    .
    │ │ │           1: . 35 140 189  84    .
    │ │ │           2: .  .   . 196 735 1080
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -43,15 +43,15 @@
    │ │ │ │  0,5   1,5   2,5   3,5   4,5   0,6   1,6   2,6   3,6   4,6   5,6
    │ │ │ │  i2 : S = ring I
    │ │ │ │  
    │ │ │ │  o2 = S
    │ │ │ │  
    │ │ │ │  o2 : PolynomialRing
    │ │ │ │  i3 : elapsedTime C = minimalBetti I
    │ │ │ │ - -- 1.82886s elapsed
    │ │ │ │ + -- 2.51322s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │ │  o3 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ │ @@ -60,40 +60,40 @@
    │ │ │ │  o3 : BettiTally
    │ │ │ │  One can compute smaller parts of the Betti table, by using _D_e_g_r_e_e_L_i_m_i_t and/or
    │ │ │ │  _L_e_n_g_t_h_L_i_m_i_t.
    │ │ │ │  i4 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : elapsedTime C = minimalBetti(I, DegreeLimit=>2)
    │ │ │ │ - -- .745147s elapsed
    │ │ │ │ + -- .977091s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5   6   7
    │ │ │ │  o5 = total: 1 35 140 385 819 1080 735 196
    │ │ │ │           0: 1  .   .   .   .    .   .   .
    │ │ │ │           1: . 35 140 189  84    .   .   .
    │ │ │ │           2: .  .   . 196 735 1080 735 196
    │ │ │ │  
    │ │ │ │  o5 : BettiTally
    │ │ │ │  i6 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o6 : Ideal of S
    │ │ │ │  i7 : elapsedTime C = minimalBetti(I, DegreeLimit=>1, LengthLimit=>5)
    │ │ │ │ - -- .0317322s elapsed
    │ │ │ │ + -- .0410621s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3  4
    │ │ │ │  o7 = total: 1 35 140 189 84
    │ │ │ │           0: 1  .   .   .  .
    │ │ │ │           1: . 35 140 189 84
    │ │ │ │  
    │ │ │ │  o7 : BettiTally
    │ │ │ │  i8 : I = ideal I_*;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of S
    │ │ │ │  i9 : elapsedTime C = minimalBetti(I, LengthLimit=>5)
    │ │ │ │ - -- 1.20016s elapsed
    │ │ │ │ + -- 1.68311s elapsed
    │ │ │ │  
    │ │ │ │              0  1   2   3   4    5
    │ │ │ │  o9 = total: 1 35 140 385 819 1080
    │ │ │ │           0: 1  .   .   .   .    .
    │ │ │ │           1: . 35 140 189  84    .
    │ │ │ │           2: .  .   . 196 735 1080
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_mkdir.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │          

    Description

    │ │ │

    Only one directory will be made, so the components of the path p other than the last must already exist.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ o3 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : p = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ +o1 = /tmp/M2-11391-0/0/ │ │ │
    │ │ │
    i2 : mkdir p
    │ │ │
    │ │ │
    i4 : (fn = p | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,22 +12,22 @@
    │ │ │ │      * Consequences:
    │ │ │ │            o a directory will be created at the path p
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Only one directory will be made, so the components of the path p other than the
    │ │ │ │  last must already exist.
    │ │ │ │  i1 : p = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10741-0/0/
    │ │ │ │ +o1 = /tmp/M2-11391-0/0/
    │ │ │ │  i2 : mkdir p
    │ │ │ │  i3 : isDirectory p
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : (fn = p | "foo") << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10741-0/0/foo
    │ │ │ │ +o4 = /tmp/M2-11391-0/0/foo
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : removeFile fn
    │ │ │ │  i7 : removeDirectory p
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_move__File_lp__String_cm__String_rp.html
    │ │ │ @@ -81,52 +81,52 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -20,32 +20,32 @@ │ │ │ │ o the name of the backup file if one was created, or _n_u_l_l │ │ │ │ * Consequences: │ │ │ │ o the file will be moved by creating a new link to the file and │ │ │ │ removing the old one │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : src = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10615-0/0 │ │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │ │ i2 : dst = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10615-0/1 │ │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │ │ i3 : src << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-10615-0/0 │ │ │ │ +o3 = /tmp/M2-11145-0/0 │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : moveFile(src,dst,Verbose=>true) │ │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1 │ │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │ │ i5 : get dst │ │ │ │ │ │ │ │ o5 = hi there │ │ │ │ i6 : bak = moveFile(dst,Verbose=>true) │ │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak │ │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak │ │ │ │ │ │ │ │ -o6 = /tmp/M2-10615-0/1.bak │ │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │ │ i7 : removeFile bak │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_p_y_F_i_l_e │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * moveFile(String) │ │ │ │ * _m_o_v_e_F_i_l_e_(_S_t_r_i_n_g_,_S_t_r_i_n_g_) │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_nanosleep.html │ │ │ @@ -51,15 +51,15 @@ │ │ │

    nanosleep -- sleep for a given number of nanoseconds

    │ │ │
    │ │ │

    Description

    │ │ │ nanosleep n -- sleeps for n nanoseconds.
    │ │ │
    i1 : src = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10615-0/0
    │ │ │ +o1 = /tmp/M2-11145-0/0 │ │ │
    │ │ │
    i2 : dst = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10615-0/1
    │ │ │ +o2 = /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i3 : src << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10615-0/0
    │ │ │ +o3 = /tmp/M2-11145-0/0
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : moveFile(src,dst,Verbose=>true)
    │ │ │ ---moving: /tmp/M2-10615-0/0 -> /tmp/M2-10615-0/1
    │ │ │ +--moving: /tmp/M2-11145-0/0 -> /tmp/M2-11145-0/1 │ │ │
    │ │ │
    i5 : get dst
    │ │ │  
    │ │ │  o5 = hi there
    │ │ │
    │ │ │
    i6 : bak = moveFile(dst,Verbose=>true)
    │ │ │ ---backup file created: /tmp/M2-10615-0/1.bak
    │ │ │ +--backup file created: /tmp/M2-11145-0/1.bak
    │ │ │  
    │ │ │ -o6 = /tmp/M2-10615-0/1.bak
    │ │ │ +o6 = /tmp/M2-11145-0/1.bak │ │ │
    │ │ │
    i7 : removeFile bak
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nanosleep 500000000
    │ │ │ - -- .500135s elapsed
    │ │ │ + -- .500132s elapsed
    │ │ │  
    │ │ │  o1 = 0
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ [q ] │ │ │ │ _n_e_x_t | _p_r_e_v_i_o_u_s | _f_o_r_w_a_r_d | _b_a_c_k_w_a_r_d | _u_p | _i_n_d_e_x | _t_o_c │ │ │ │ =============================================================================== │ │ │ │ ************ nnaannoosslleeeepp ---- sslleeeepp ffoorr aa ggiivveenn nnuummbbeerr ooff nnaannoosseeccoonnddss ************ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ nanosleep n -- sleeps for n nanoseconds. │ │ │ │ i1 : elapsedTime nanosleep 500000000 │ │ │ │ - -- .500135s elapsed │ │ │ │ + -- .500132s elapsed │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_l_e_e_p -- sleep for a while │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _n_a_n_o_s_l_e_e_p is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_options_lp__Function_rp.html │ │ │ @@ -104,33 +104,33 @@ │ │ │ o3 : OptionTable
    │ │ │
    │ │ │
    i4 : methods codim
    │ │ │  
    │ │ │ -o4 = {0 => (codim, Variety)       }
    │ │ │ -     {1 => (codim, BettiTally)    }
    │ │ │ -     {2 => (codim, Module)        }
    │ │ │ -     {3 => (codim, QuotientRing)  }
    │ │ │ -     {4 => (codim, Ideal)         }
    │ │ │ -     {5 => (codim, MonomialIdeal) }
    │ │ │ -     {6 => (codim, PolynomialRing)}
    │ │ │ -     {7 => (codim, CoherentSheaf) }
    │ │ │ +o4 = {0 => (codim, CoherentSheaf) }
    │ │ │ +     {1 => (codim, Variety)       }
    │ │ │ +     {2 => (codim, BettiTally)    }
    │ │ │ +     {3 => (codim, Module)        }
    │ │ │ +     {4 => (codim, QuotientRing)  }
    │ │ │ +     {5 => (codim, Ideal)         }
    │ │ │ +     {6 => (codim, MonomialIdeal) }
    │ │ │ +     {7 => (codim, PolynomialRing)}
    │ │ │  
    │ │ │  o4 : NumberedVerticalList
    │ │ │
    │ │ │
    i5 : options oo
    │ │ │  
    │ │ │  o5 = {0 => (OptionTable{Generic => false})}
    │ │ │ -     {1 => (OptionTable{})                }
    │ │ │ -     {2 => (OptionTable{Generic => false})}
    │ │ │ +     {1 => (OptionTable{Generic => false})}
    │ │ │ +     {2 => (OptionTable{})                }
    │ │ │       {3 => (OptionTable{Generic => false})}
    │ │ │       {4 => (OptionTable{Generic => false})}
    │ │ │       {5 => (OptionTable{Generic => false})}
    │ │ │       {6 => (OptionTable{Generic => false})}
    │ │ │       {7 => (OptionTable{Generic => false})}
    │ │ │  
    │ │ │  o5 : NumberedVerticalList
    │ │ │ ├── html2text {} │ │ │ │ @@ -35,29 +35,29 @@ │ │ │ │ i3 : options(codim, Ideal) │ │ │ │ │ │ │ │ o3 = OptionTable{Generic => false} │ │ │ │ │ │ │ │ o3 : OptionTable │ │ │ │ i4 : methods codim │ │ │ │ │ │ │ │ -o4 = {0 => (codim, Variety) } │ │ │ │ - {1 => (codim, BettiTally) } │ │ │ │ - {2 => (codim, Module) } │ │ │ │ - {3 => (codim, QuotientRing) } │ │ │ │ - {4 => (codim, Ideal) } │ │ │ │ - {5 => (codim, MonomialIdeal) } │ │ │ │ - {6 => (codim, PolynomialRing)} │ │ │ │ - {7 => (codim, CoherentSheaf) } │ │ │ │ +o4 = {0 => (codim, CoherentSheaf) } │ │ │ │ + {1 => (codim, Variety) } │ │ │ │ + {2 => (codim, BettiTally) } │ │ │ │ + {3 => (codim, Module) } │ │ │ │ + {4 => (codim, QuotientRing) } │ │ │ │ + {5 => (codim, Ideal) } │ │ │ │ + {6 => (codim, MonomialIdeal) } │ │ │ │ + {7 => (codim, PolynomialRing)} │ │ │ │ │ │ │ │ o4 : NumberedVerticalList │ │ │ │ i5 : options oo │ │ │ │ │ │ │ │ o5 = {0 => (OptionTable{Generic => false})} │ │ │ │ - {1 => (OptionTable{}) } │ │ │ │ - {2 => (OptionTable{Generic => false})} │ │ │ │ + {1 => (OptionTable{Generic => false})} │ │ │ │ + {2 => (OptionTable{}) } │ │ │ │ {3 => (OptionTable{Generic => false})} │ │ │ │ {4 => (OptionTable{Generic => false})} │ │ │ │ {5 => (OptionTable{Generic => false})} │ │ │ │ {6 => (OptionTable{Generic => false})} │ │ │ │ {7 => (OptionTable{Generic => false})} │ │ │ │ │ │ │ │ o5 : NumberedVerticalList │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallel_spprogramming_spwith_spthreads_spand_sptasks.html │ │ │ @@ -72,21 +72,21 @@ │ │ │
    │ │ │
    i2 : L = random toList (1..10000);
    │ │ │
    │ │ │
    i3 : elapsedTime         apply(1..100, n -> sort L);
    │ │ │ - -- .640674s elapsed
    │ │ │ + -- .751295s elapsed │ │ │
    │ │ │
    i4 : elapsedTime parallelApply(1..100, n -> sort L);
    │ │ │ - -- .307919s elapsed
    │ │ │ + -- .188399s elapsed │ │ │
    │ │ │
    │ │ │

    You will have to try it on your examples to see how much they speed up.

    │ │ │

    Warning: Threads computing in parallel can give wrong answers if their code is not "thread safe", meaning they make modifications to memory without ensuring the modifications get safely communicated to other threads. (Thread safety can slow computations some.) Currently, modifications to Macaulay2 variables and mutable hash tables are thread safe, but not changes inside mutable lists. Also, access to external libraries such as singular, etc., may not currently be thread safe.

    │ │ │

    The rest of this document describes how to control parallel tasks more directly.

    │ │ │ @@ -100,15 +100,15 @@ │ │ │ o5 = 5
    │ │ │
    │ │ │
    i6 : allowableThreads = maxAllowableThreads
    │ │ │  
    │ │ │ -o6 = 7
    │ │ │ +o6 = 17 │ │ │
    │ │ │
    │ │ │

    To run a function in another thread use schedule, as in the following example.

    │ │ │
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -17,17 +17,17 @@ │ │ │ │ big computation. If the list is long, it will be split into chunks for each │ │ │ │ core, reducing the overhead. But the speedup is still limited by the different │ │ │ │ threads competing for memory, including cpu caches; it is like running │ │ │ │ Macaulay2 on a computer that is running other big programs at the same time. We │ │ │ │ can see this using _e_l_a_p_s_e_d_T_i_m_e. │ │ │ │ i2 : L = random toList (1..10000); │ │ │ │ i3 : elapsedTime apply(1..100, n -> sort L); │ │ │ │ - -- .640674s elapsed │ │ │ │ + -- .751295s elapsed │ │ │ │ i4 : elapsedTime parallelApply(1..100, n -> sort L); │ │ │ │ - -- .307919s elapsed │ │ │ │ + -- .188399s elapsed │ │ │ │ You will have to try it on your examples to see how much they speed up. │ │ │ │ Warning: Threads computing in parallel can give wrong answers if their code is │ │ │ │ not "thread safe", meaning they make modifications to memory without ensuring │ │ │ │ the modifications get safely communicated to other threads. (Thread safety can │ │ │ │ slow computations some.) Currently, modifications to Macaulay2 variables and │ │ │ │ mutable hash tables are thread safe, but not changes inside mutable lists. │ │ │ │ Also, access to external libraries such as singular, etc., may not currently be │ │ │ │ @@ -39,15 +39,15 @@ │ │ │ │ _a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s, and may be examined and changed as follows. (_a_l_l_o_w_a_b_l_e_T_h_r_e_a_d_s │ │ │ │ is temporarily increased if necessary inside _p_a_r_a_l_l_e_l_A_p_p_l_y.) │ │ │ │ i5 : allowableThreads │ │ │ │ │ │ │ │ o5 = 5 │ │ │ │ i6 : allowableThreads = maxAllowableThreads │ │ │ │ │ │ │ │ -o6 = 7 │ │ │ │ +o6 = 17 │ │ │ │ To run a function in another thread use _s_c_h_e_d_u_l_e, as in the following example. │ │ │ │ i7 : R = QQ[x,y,z]; │ │ │ │ i8 : I = ideal(x^2 + 2*y^2 - y - 2*z, x^2 - 8*y^2 + 10*z - 1, x^2 - 7*y*z) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o8 = ideal (x + 2y - y - 2z, x - 8y + 10z - 1, x - 7y*z) │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_parallelism_spin_spengine_spcomputations.html │ │ │ @@ -137,15 +137,15 @@ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : elapsedTime minimalBetti I
    │ │ │ - -- 2.07143s elapsed
    │ │ │ + -- 2.45561s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o4 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -160,15 +160,15 @@
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true)
    │ │ │ - -- 1.82839s elapsed
    │ │ │ + -- 2.47016s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o6 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  
    │ │ │  o8 = 1
    │ │ │
    │ │ │
    i9 : elapsedTime minimalBetti(I)
    │ │ │ - -- 1.75494s elapsed
    │ │ │ + -- 2.53146s elapsed
    │ │ │  
    │ │ │              0  1   2   3   4    5   6   7   8  9 10
    │ │ │  o9 = total: 1 35 140 385 819 1080 819 385 140 35  1
    │ │ │           0: 1  .   .   .   .    .   .   .   .  .  .
    │ │ │           1: . 35 140 189  84    .   .   .   .  .  .
    │ │ │           2: .  .   . 196 735 1080 735 196   .  .  .
    │ │ │           3: .  .   .   .   .    .  84 189 140 35  .
    │ │ │ @@ -231,15 +231,15 @@
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │
    │ │ │
    i13 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.23687s elapsed
    │ │ │ + -- 4.37647s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o13 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o13 : Complex
    │ │ │ @@ -258,15 +258,15 @@ │ │ │ │ │ │ o15 : Ideal of S │ │ │
    │ │ │
    i16 : elapsedTime freeResolution(I, Strategy => Nonminimal)
    │ │ │ - -- 2.55496s elapsed
    │ │ │ + -- 2.92176s elapsed
    │ │ │  
    │ │ │         1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o16 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S
    │ │ │                                                                                                    
    │ │ │        0      1       2        3        4         5         6         7         8        9        10
    │ │ │  
    │ │ │  o16 : Complex
    │ │ │ @@ -299,15 +299,15 @@ │ │ │ │ │ │ o19 : Ideal of S │ │ │
    │ │ │
    i20 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 5.136s elapsed
    │ │ │ + -- 4.47144s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o20 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ │ o22 : Ideal of S │ │ │
    │ │ │
    i23 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 7.09108s elapsed
    │ │ │ + -- 10.002s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o23 : Matrix S  <-- S
    │ │ │
    │ │ │ @@ -345,15 +345,15 @@ │ │ │ │ │ │ o25 : Ideal of S │ │ │
    │ │ │
    i26 : elapsedTime groebnerBasis(I, Strategy => "F4");
    │ │ │ - -- 4.22028s elapsed
    │ │ │ + -- 4.3477s elapsed
    │ │ │  
    │ │ │                1      108
    │ │ │  o26 : Matrix S  <-- S
    │ │ │
    │ │ │
    │ │ │ @@ -396,15 +396,15 @@ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ 101 │ │ │
    │ │ │
    i31 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.006s elapsed
    │ │ │ + -- 1.22923s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o31 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │
    i34 : elapsedTime NCGB(I, 22);
    │ │ │ - -- 1.19796s elapsed
    │ │ │ + -- 1.73952s elapsed
    │ │ │  
    │ │ │                 ZZ            1       ZZ            148
    │ │ │  o34 : Matrix (---<|a, b, c|>)  <-- (---<|a, b, c|>)
    │ │ │                101                   101
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -93,30 +93,30 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i3 : S = ring I │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : elapsedTime minimalBetti I │ │ │ │ - -- 2.07143s elapsed │ │ │ │ + -- 2.45561s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o4 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ 4: . . . . . . . . . . 1 │ │ │ │ │ │ │ │ o4 : BettiTally │ │ │ │ i5 : I = ideal I_*; │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : elapsedTime minimalBetti(I, ParallelizeByDegree => true) │ │ │ │ - -- 1.82839s elapsed │ │ │ │ + -- 2.47016s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o6 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ i7 : I = ideal I_*; │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o8 = 1 │ │ │ │ i9 : elapsedTime minimalBetti(I) │ │ │ │ - -- 1.75494s elapsed │ │ │ │ + -- 2.53146s elapsed │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ o9 = total: 1 35 140 385 819 1080 819 385 140 35 1 │ │ │ │ 0: 1 . . . . . . . . . . │ │ │ │ 1: . 35 140 189 84 . . . . . . │ │ │ │ 2: . . . 196 735 1080 735 196 . . . │ │ │ │ 3: . . . . . . 84 189 140 35 . │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ i11 : numTBBThreads = 0 │ │ │ │ │ │ │ │ o11 = 0 │ │ │ │ i12 : I = ideal I_*; │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ i13 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.23687s elapsed │ │ │ │ + -- 4.37647s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o13 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -168,15 +168,15 @@ │ │ │ │ i14 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o14 = 1 │ │ │ │ i15 : I = ideal I_*; │ │ │ │ │ │ │ │ o15 : Ideal of S │ │ │ │ i16 : elapsedTime freeResolution(I, Strategy => Nonminimal) │ │ │ │ - -- 2.55496s elapsed │ │ │ │ + -- 2.92176s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o16 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <- │ │ │ │ - S <-- S <-- S │ │ │ │ │ │ │ │ │ │ │ │ @@ -195,37 +195,37 @@ │ │ │ │ o18 = S │ │ │ │ │ │ │ │ o18 : PolynomialRing │ │ │ │ i19 : I = ideal random(S^1, S^{4:-5}); │ │ │ │ │ │ │ │ o19 : Ideal of S │ │ │ │ i20 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 5.136s elapsed │ │ │ │ + -- 4.47144s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o20 : Matrix S <-- S │ │ │ │ i21 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o21 = 1 │ │ │ │ i22 : I = ideal I_*; │ │ │ │ │ │ │ │ o22 : Ideal of S │ │ │ │ i23 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 7.09108s elapsed │ │ │ │ + -- 10.002s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o23 : Matrix S <-- S │ │ │ │ i24 : numTBBThreads = 10 │ │ │ │ │ │ │ │ o24 = 10 │ │ │ │ i25 : I = ideal I_*; │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : elapsedTime groebnerBasis(I, Strategy => "F4"); │ │ │ │ - -- 4.22028s elapsed │ │ │ │ + -- 4.3477s elapsed │ │ │ │ │ │ │ │ 1 108 │ │ │ │ o26 : Matrix S <-- S │ │ │ │ For Gröbner basis computation in associative algebras, ParallelizeByDegree is │ │ │ │ not relevant. In this case, use numTBBThreads to control the amount of │ │ │ │ parallelism. │ │ │ │ i27 : needsPackage "AssociativeAlgebras" │ │ │ │ @@ -246,15 +246,15 @@ │ │ │ │ 2 2 2 │ │ │ │ o30 = ideal (5a + 2b*c + 3c*b, 3a*c + 5b + 2c*a, 2a*b + 3b*a + 5c ) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o30 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i31 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.006s elapsed │ │ │ │ + -- 1.22923s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o31 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ i32 : I = ideal I_* │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ @@ -263,15 +263,15 @@ │ │ │ │ ZZ │ │ │ │ o32 : Ideal of ---<|a, b, c|> │ │ │ │ 101 │ │ │ │ i33 : numTBBThreads = 1 │ │ │ │ │ │ │ │ o33 = 1 │ │ │ │ i34 : elapsedTime NCGB(I, 22); │ │ │ │ - -- 1.19796s elapsed │ │ │ │ + -- 1.73952s elapsed │ │ │ │ │ │ │ │ ZZ 1 ZZ 148 │ │ │ │ o34 : Matrix (---<|a, b, c|>) <-- (---<|a, b, c|>) │ │ │ │ 101 101 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_i_m_a_l_B_e_t_t_i -- minimal betti numbers of (the minimal free resolution of) │ │ │ │ a homogeneous ideal or module │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_poincare.html │ │ │ @@ -370,36 +370,36 @@ │ │ │ │ │ │ o27 = 3 │ │ │
    │ │ │
    i28 : time poincare I
    │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00267189s (cpu); 1.5885e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o28 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o28 : ZZ[T]
    │ │ │
    │ │ │
    i29 : time gens gb I;
    │ │ │  
    │ │ │ -   -- registering gb 19 at 0x7f3fe9e7e540
    │ │ │ +   -- registering gb 19 at 0x7fc056914540
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 4186
    │ │ │     -- #reduction steps = 38
    │ │ │     -- #spairs done = 11
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 29
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0172706s (cpu); 0.0180053s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      11
    │ │ │  o29 : Matrix R  <-- R
    │ │ │
    │ │ │
    │ │ │ @@ -411,15 +411,15 @@ │ │ │
    i30 : R = QQ[a..d];
    │ │ │
    │ │ │
    i31 : I = ideal random(R^1, R^{3:-3});
    │ │ │  
    │ │ │ -   -- registering gb 20 at 0x7f3fe9e7e380
    │ │ │ +   -- registering gb 20 at 0x7fc056914380
    │ │ │  
    │ │ │     -- [gb]number of (nonminimal) gb elements = 0
    │ │ │     -- number of monomials                = 0
    │ │ │     -- #reduction steps = 0
    │ │ │     -- #spairs done = 0
    │ │ │     -- ncalls = 0
    │ │ │     -- nloop = 0
    │ │ │ @@ -428,24 +428,24 @@
    │ │ │  o31 : Ideal of R
    │ │ │
    │ │ │
    i32 : time p = poincare I
    │ │ │  
    │ │ │ -   -- registering gb 21 at 0x7f3fe9e7e000
    │ │ │ +   -- registering gb 21 at 0x7fc056914000
    │ │ │  
    │ │ │     -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of (nonminimal) gb elements = 11
    │ │ │     -- number of monomials                = 267
    │ │ │     -- #reduction steps = 236
    │ │ │     -- #spairs done = 30
    │ │ │     -- ncalls = 10
    │ │ │     -- nloop = 20
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.00400687s (cpu); 0.0064099s (thread); 0s (gc)
    │ │ │  
    │ │ │              3     6    9
    │ │ │  o32 = 1 - 3T  + 3T  - T
    │ │ │  
    │ │ │  o32 : ZZ[T]
    │ │ │
    │ │ │
    i37 : time gens gb J;
    │ │ │  
    │ │ │ -   -- registering gb 22 at 0x7f3fe9ab3e00
    │ │ │ +   -- registering gb 22 at 0x7fc056a0ee00
    │ │ │  
    │ │ │     -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9}(3,9)m
    │ │ │     -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m
    │ │ │     -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m{24}(1,3)m
    │ │ │     -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements = 39
    │ │ │     -- number of monomials                = 1051
    │ │ │     -- #reduction steps = 284
    │ │ │     -- #spairs done = 53
    │ │ │     -- ncalls = 46
    │ │ │     -- nloop = 54
    │ │ │     -- nsaved = 0
    │ │ │ -   --  -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc)
    │ │ │ +   --  -- used 0.0599726s (cpu); 0.0597862s (thread); 0s (gc)
    │ │ │  
    │ │ │                1      39
    │ │ │  o37 : Matrix S  <-- S
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -177,66 +177,66 @@ │ │ │ │ o26 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o26 : ZZ[T] │ │ │ │ i27 : gbTrace = 3 │ │ │ │ │ │ │ │ o27 = 3 │ │ │ │ i28 : time poincare I │ │ │ │ - -- used 0.00277298s (cpu); 2.153e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00267189s (cpu); 1.5885e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o28 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o28 : ZZ[T] │ │ │ │ i29 : time gens gb I; │ │ │ │ │ │ │ │ - -- registering gb 19 at 0x7f3fe9e7e540 │ │ │ │ + -- registering gb 19 at 0x7fc056914540 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(2,6)mm{7}(1,4)m{8}(0,2)number of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 4186 │ │ │ │ -- #reduction steps = 38 │ │ │ │ -- #spairs done = 11 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 29 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0251999s (cpu); 0.0250353s (thread); 0s (gc) │ │ │ │ + -- -- used 0.0172706s (cpu); 0.0180053s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 11 │ │ │ │ o29 : Matrix R <-- R │ │ │ │ In this case, the savings is minimal, but often it can be dramatic. Another │ │ │ │ important situation is to compute a Gröbner basis using a different monomial │ │ │ │ order. │ │ │ │ i30 : R = QQ[a..d]; │ │ │ │ i31 : I = ideal random(R^1, R^{3:-3}); │ │ │ │ │ │ │ │ - -- registering gb 20 at 0x7f3fe9e7e380 │ │ │ │ + -- registering gb 20 at 0x7fc056914380 │ │ │ │ │ │ │ │ -- [gb]number of (nonminimal) gb elements = 0 │ │ │ │ -- number of monomials = 0 │ │ │ │ -- #reduction steps = 0 │ │ │ │ -- #spairs done = 0 │ │ │ │ -- ncalls = 0 │ │ │ │ -- nloop = 0 │ │ │ │ -- nsaved = 0 │ │ │ │ -- │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time p = poincare I │ │ │ │ │ │ │ │ - -- registering gb 21 at 0x7f3fe9e7e000 │ │ │ │ + -- registering gb 21 at 0x7fc056914000 │ │ │ │ │ │ │ │ -- [gb]{3}(3)mmm{4}(2)mm{5}(3)mmm{6}(6)mmoooo{7}(4)mooo{8}(2)oonumber of │ │ │ │ (nonminimal) gb elements = 11 │ │ │ │ -- number of monomials = 267 │ │ │ │ -- #reduction steps = 236 │ │ │ │ -- #spairs done = 30 │ │ │ │ -- ncalls = 10 │ │ │ │ -- nloop = 20 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.00799718s (cpu); 0.00944086s (thread); 0s (gc) │ │ │ │ + -- -- used 0.00400687s (cpu); 0.0064099s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 6 9 │ │ │ │ o32 = 1 - 3T + 3T - T │ │ │ │ │ │ │ │ o32 : ZZ[T] │ │ │ │ i33 : S = QQ[a..d, MonomialOrder => Eliminate 2] │ │ │ │ │ │ │ │ @@ -281,30 +281,30 @@ │ │ │ │ │ │ │ │ o35 : ZZ[T] │ │ │ │ i36 : gbTrace = 3 │ │ │ │ │ │ │ │ o36 = 3 │ │ │ │ i37 : time gens gb J; │ │ │ │ │ │ │ │ - -- registering gb 22 at 0x7f3fe9ab3e00 │ │ │ │ + -- registering gb 22 at 0x7fc056a0ee00 │ │ │ │ │ │ │ │ -- [gb]{3}(3,3)mmm{4}(2,2)mm{5}(3,3)mmm{6}(3,7)mmm{7}(3,8)mmm{8}(3,9)mmm{9} │ │ │ │ (3,9)m │ │ │ │ -- mm{10}(2,8)mm{11}(1,5)m{12}(1,3)m{13}(1,3)m{14}(1,3)m{15}(1,3)m{16}(1,3)m │ │ │ │ -- {17}(1,3)m{18}(1,3)m{19}(1,3)m{20}(1,3)m{21}(1,3)m{22}(1,3)m{23}(1,3)m │ │ │ │ {24}(1,3)m │ │ │ │ -- {25}(1,3)m{26}(1,3)m{27}(1,3)m{28}(0,2)number of (nonminimal) gb elements │ │ │ │ = 39 │ │ │ │ -- number of monomials = 1051 │ │ │ │ -- #reduction steps = 284 │ │ │ │ -- #spairs done = 53 │ │ │ │ -- ncalls = 46 │ │ │ │ -- nloop = 54 │ │ │ │ -- nsaved = 0 │ │ │ │ - -- -- used 0.0840427s (cpu); 0.0832054s (thread); 0s (gc) │ │ │ │ + -- -- used 0.0599726s (cpu); 0.0597862s (thread); 0s (gc) │ │ │ │ │ │ │ │ 1 39 │ │ │ │ o37 : Matrix S <-- S │ │ │ │ i38 : selectInSubring(1, gens gb J) │ │ │ │ │ │ │ │ o38 = | 188529931266160087758259645374082357642621166724936033369975727480205 │ │ │ │ ----------------------------------------------------------------------- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_printing_spto_spa_spfile.html │ │ │ @@ -97,22 +97,22 @@ │ │ │ o2 : File │ │ │
    │ │ │
    i3 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ +o3 = /tmp/M2-11782-0/0 │ │ │
    │ │ │
    i4 : fn << "hi there" << endl << close
    │ │ │  
    │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o4 : File
    │ │ │
    │ │ │
    i5 : get fn
    │ │ │ @@ -151,15 +151,15 @@
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : fn << f << close
    │ │ │  
    │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o9 : File
    │ │ │
    │ │ │
    i10 : get fn
    │ │ │ @@ -169,15 +169,15 @@
    │ │ │        + 1
    │ │ │
    │ │ │
    i11 : fn << toExternalString f << close
    │ │ │  
    │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │  
    │ │ │  o11 : File
    │ │ │
    │ │ │
    i12 : get fn
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,18 +36,18 @@
    │ │ │ │  -- ho there --
    │ │ │ │  
    │ │ │ │  o2 = stdio
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : fn = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-10932-0/0
    │ │ │ │ +o3 = /tmp/M2-11782-0/0
    │ │ │ │  i4 : fn << "hi there" << endl << close
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-10932-0/0
    │ │ │ │ +o4 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o4 : File
    │ │ │ │  i5 : get fn
    │ │ │ │  
    │ │ │ │  o5 = hi there
    │ │ │ │  i6 : R = QQ[x]
    │ │ │ │  
    │ │ │ │ @@ -66,25 +66,25 @@
    │ │ │ │   10      9      8       7       6       5       4       3      2
    │ │ │ │  x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x + 1
    │ │ │ │  o8 = stdio
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : fn << f << close
    │ │ │ │  
    │ │ │ │ -o9 = /tmp/M2-10932-0/0
    │ │ │ │ +o9 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o9 : File
    │ │ │ │  i10 : get fn
    │ │ │ │  
    │ │ │ │  o10 =  10      9      8       7       6       5       4       3      2
    │ │ │ │        x   + 10x  + 45x  + 120x  + 210x  + 252x  + 210x  + 120x  + 45x  + 10x
    │ │ │ │        + 1
    │ │ │ │  i11 : fn << toExternalString f << close
    │ │ │ │  
    │ │ │ │ -o11 = /tmp/M2-10932-0/0
    │ │ │ │ +o11 = /tmp/M2-11782-0/0
    │ │ │ │  
    │ │ │ │  o11 : File
    │ │ │ │  i12 : get fn
    │ │ │ │  
    │ │ │ │  o12 = x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+
    │ │ │ │        1
    │ │ │ │  i13 : value get fn
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_process__I__D.html
    │ │ │ @@ -64,15 +64,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : processID()
    │ │ │  
    │ │ │ -o1 = 10191
    │ │ │ +o1 = 10311 │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ * Usage: │ │ │ │ processID() │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the process identifier of the current Macaulay2 process │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : processID() │ │ │ │ │ │ │ │ -o1 = 10191 │ │ │ │ +o1 = 10311 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_r_o_u_p_I_D -- the process group identifier │ │ │ │ * _s_e_t_G_r_o_u_p_I_D -- set the process group identifier │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _p_r_o_c_e_s_s_I_D is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_profile.html │ │ │ @@ -91,34 +91,34 @@ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -173,15 +173,15 @@ │ │ │ o14 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : profileSummary
    │ │ │  
    │ │ │  o2 = #run  %time   position                         
    │ │ │ -     1     94.52   ../../m2/matrix1.m2:279:4-282:58 
    │ │ │ -     1     92.12   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ -     1     44.16   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ -     1     30.59   ../../m2/matrix1.m2:114:5-156:72 
    │ │ │ -     1     29.47   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ -     1     23.83   ../../m2/matrix1.m2:181:4-181:42 
    │ │ │ -     1     22.54   ../../m2/set.m2:127:5-127:61     
    │ │ │ -     1     20.86   ../../m2/matrix1.m2:45:10-49:22  
    │ │ │ -     1     3.30    ../../m2/matrix1.m2:112:5-112:29 
    │ │ │ -     1     2.34    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ -     1     2.18    ../../m2/matrix1.m2:96:5-109:11  
    │ │ │ -     1     1.42    ../../m2/matrix1.m2:281:7-281:16 
    │ │ │ -     1     1.29    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ +     1     92.19   ../../m2/matrix1.m2:279:4-282:58 
    │ │ │ +     1     89.59   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ +     1     42.99   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ +     1     28.77   ../../m2/matrix1.m2:114:5-156:72 
    │ │ │ +     1     27.64   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ +     1     22.71   ../../m2/matrix1.m2:181:4-181:42 
    │ │ │ +     1     21.29   ../../m2/set.m2:127:5-127:61     
    │ │ │ +     1     19.23   ../../m2/matrix1.m2:45:10-49:22  
    │ │ │ +     1     3.57    ../../m2/matrix1.m2:112:5-112:29 
    │ │ │ +     1     2.62    ../../m2/matrix1.m2:96:5-109:11  
    │ │ │ +     1     2.3     ../../m2/matrix1.m2:141:13-141:78
    │ │ │ +     1     1.91    ../../m2/matrix1.m2:276:4-277:73 
    │ │ │ +     1     1.72    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ +     1     1.63    ../../m2/matrix1.m2:281:7-281:16 
    │ │ │ +     1     1.56    ../../m2/matrix1.m2:98:10-98:46  
    │ │ │       1     1.29    ../../m2/matrix1.m2:111:5-111:91 
    │ │ │ -     1     1.27    ../../m2/matrix1.m2:276:4-277:73 
    │ │ │ -     1     1.02    ../../m2/matrix1.m2:98:10-98:46  
    │ │ │ -     1     .97     ../../m2/matrix1.m2:182:4-184:74 
    │ │ │ -     1     .81     ../../m2/modules.m2:279:4-279:52 
    │ │ │ -     20    .64     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ -     20    .47     ../../m2/matrix1.m2:47:43-47:71  
    │ │ │ +     1     1.13    ../../m2/matrix1.m2:182:4-184:74 
    │ │ │ +     1     .96     ../../m2/modules.m2:279:4-279:52 
    │ │ │ +     20    .89     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ +     20    .78     ../../m2/matrix1.m2:47:43-47:71  
    │ │ │       1     .0038s  elapsed total                    
    │ │ │
    │ │ │
    i3 : coverageSummary
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,34 +25,34 @@
    │ │ │ │                4       5
    │ │ │ │  o1 : Matrix ZZ  <-- ZZ
    │ │ │ │  Afterwards, running profileSummary and coverageSummary produces easy to read
    │ │ │ │  tables summarizing the accumulated data so far in different ways.
    │ │ │ │  i2 : profileSummary
    │ │ │ │  
    │ │ │ │  o2 = #run  %time   position
    │ │ │ │ -     1     94.52   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ -     1     92.12   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ -     1     44.16   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ -     1     30.59   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ -     1     29.47   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ -     1     23.83   ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ -     1     22.54   ../../m2/set.m2:127:5-127:61
    │ │ │ │ -     1     20.86   ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ -     1     3.30    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ -     1     2.34    ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ -     1     2.18    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ -     1     1.42    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ -     1     1.29    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ +     1     92.19   ../../m2/matrix1.m2:279:4-282:58
    │ │ │ │ +     1     89.59   ../../m2/matrix1.m2:281:22-281:43
    │ │ │ │ +     1     42.99   ../../m2/matrix1.m2:193:25-193:52
    │ │ │ │ +     1     28.77   ../../m2/matrix1.m2:114:5-156:72
    │ │ │ │ +     1     27.64   ../../m2/matrix1.m2:140:10-155:16
    │ │ │ │ +     1     22.71   ../../m2/matrix1.m2:181:4-181:42
    │ │ │ │ +     1     21.29   ../../m2/set.m2:127:5-127:61
    │ │ │ │ +     1     19.23   ../../m2/matrix1.m2:45:10-49:22
    │ │ │ │ +     1     3.57    ../../m2/matrix1.m2:112:5-112:29
    │ │ │ │ +     1     2.62    ../../m2/matrix1.m2:96:5-109:11
    │ │ │ │ +     1     2.3     ../../m2/matrix1.m2:141:13-141:78
    │ │ │ │ +     1     1.91    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ +     1     1.72    ../../m2/matrix1.m2:147:20-147:64
    │ │ │ │ +     1     1.63    ../../m2/matrix1.m2:281:7-281:16
    │ │ │ │ +     1     1.56    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │       1     1.29    ../../m2/matrix1.m2:111:5-111:91
    │ │ │ │ -     1     1.27    ../../m2/matrix1.m2:276:4-277:73
    │ │ │ │ -     1     1.02    ../../m2/matrix1.m2:98:10-98:46
    │ │ │ │ -     1     .97     ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ -     1     .81     ../../m2/modules.m2:279:4-279:52
    │ │ │ │ -     20    .64     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ -     20    .47     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │ +     1     1.13    ../../m2/matrix1.m2:182:4-184:74
    │ │ │ │ +     1     .96     ../../m2/modules.m2:279:4-279:52
    │ │ │ │ +     20    .89     ../../m2/matrix1.m2:191:14-192:67
    │ │ │ │ +     20    .78     ../../m2/matrix1.m2:47:43-47:71
    │ │ │ │       1     .0038s  elapsed total
    │ │ │ │  i3 : coverageSummary
    │ │ │ │  
    │ │ │ │  o3 = covered lines:
    │ │ │ │       ../../m2/lists.m2:145:24-145:32
    │ │ │ │       ../../m2/lists.m2:145:34-145:58
    │ │ │ │       ../../m2/matrix.m2:12:5-12:35
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
    │ │ │ @@ -99,15 +99,15 @@
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │
    │ │ │
    i6 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc)
    │ │ │ + -- used 0.237164s (cpu); 0.102487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = ideal (x  - 53x , x  + 8x , x  - 4x )
    │ │ │               2      3   1     3   0     3
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i10 : time randomKRationalPoint(I)
    │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc)
    │ │ │ + -- used 0.843126s (cpu); 0.33904s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = ideal (x  - 27x , x  - 16x , x  - 9x , x  + 44x , x  - 52x )
    │ │ │                4      5   3      5   2     5   1      5   0      5
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │
    │ │ │
    i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c->degree c);
    │ │ │                       #select(degs,d->d==1))),f->f>0))
    │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc)
    │ │ │ + -- used 4.57597s (cpu); 2.15219s (thread); 0s (gc)
    │ │ │  
    │ │ │  o15 = 58
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : codim I, degree I │ │ │ │ │ │ │ │ o5 = (2, 10) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.173474s (cpu); 0.138239s (thread); 0s (gc) │ │ │ │ + -- used 0.237164s (cpu); 0.102487s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = ideal (x - 53x , x + 8x , x - 4x ) │ │ │ │ 2 3 1 3 0 3 │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : R=kk[x_0..x_5]; │ │ │ │ i8 : I=minors(3,random(R^5,R^{3:-1})); │ │ │ │ @@ -45,15 +45,15 @@ │ │ │ │ o8 : Ideal of R │ │ │ │ i9 : codim I, degree I │ │ │ │ │ │ │ │ o9 = (3, 10) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : time randomKRationalPoint(I) │ │ │ │ - -- used 0.663337s (cpu); 0.35806s (thread); 0s (gc) │ │ │ │ + -- used 0.843126s (cpu); 0.33904s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = ideal (x - 27x , x - 16x , x - 9x , x + 44x , x - 52x ) │ │ │ │ 4 5 3 5 2 5 1 5 0 5 │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ The claim that $63 \%$ of the intersections contain a K-rational point can be │ │ │ │ experimentally tested: │ │ │ │ @@ -69,15 +69,15 @@ │ │ │ │ o13 : RR (of precision 53) │ │ │ │ i14 : I=ideal random(n,R); │ │ │ │ │ │ │ │ o14 : Ideal of R │ │ │ │ i15 : time (#select(apply(100,i->(degs=apply(decompose(I+ideal random(1,R)),c- │ │ │ │ >degree c); │ │ │ │ #select(degs,d->d==1))),f->f>0)) │ │ │ │ - -- used 3.65398s (cpu); 1.92733s (thread); 0s (gc) │ │ │ │ + -- used 4.57597s (cpu); 2.15219s (thread); 0s (gc) │ │ │ │ │ │ │ │ o15 = 58 │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommKKRRaattiioonnaallPPooiinntt:: ********** │ │ │ │ * randomKRationalPoint(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_a_n_d_o_m_K_R_a_t_i_o_n_a_l_P_o_i_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_read__Directory.html │ │ │ @@ -68,38 +68,38 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11565-0/0
    │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11565-0/0
    │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │
    │ │ │
    i3 : (fn = dir | "/" | "foo") << "hi there" << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11565-0/0/foo
    │ │ │ +o3 = /tmp/M2-13075-0/0/foo
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : readDirectory dir
    │ │ │  
    │ │ │ -o4 = {., .., foo}
    │ │ │ +o4 = {.., ., foo}
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : removeFile fn
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,26 +10,26 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Outputs: │ │ │ │ o a _l_i_s_t, the list of filenames stored in the directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11565-0/0 │ │ │ │ +o1 = /tmp/M2-13075-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11565-0/0 │ │ │ │ +o2 = /tmp/M2-13075-0/0 │ │ │ │ i3 : (fn = dir | "/" | "foo") << "hi there" << close │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11565-0/0/foo │ │ │ │ +o3 = /tmp/M2-13075-0/0/foo │ │ │ │ │ │ │ │ o3 : File │ │ │ │ i4 : readDirectory dir │ │ │ │ │ │ │ │ -o4 = {., .., foo} │ │ │ │ +o4 = {.., ., foo} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : removeFile fn │ │ │ │ i6 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_m_o_v_e_D_i_r_e_c_t_o_r_y -- remove a directory │ │ │ │ * _r_e_m_o_v_e_F_i_l_e -- remove a file │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_reading_spfiles.html │ │ │ @@ -52,22 +52,22 @@ │ │ │
    │ │ │ Sometimes a file will contain a single expression whose value you wish to have access to. For example, it might be a polynomial produced by another program. The function get can be used to obtain the entire contents of a file as a single string. We illustrate this here with a file whose name is expression.

    │ │ │ First we create the file by writing the desired text to it. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11107-0/0
    │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │
    │ │ │
    i2 : fn << "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" << endl << close
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11107-0/0
    │ │ │ +o2 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ │ │ @@ -116,15 +116,15 @@ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create such a file.
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : fn << "sample = 2^100
    │ │ │       print sample
    │ │ │       " << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11107-0/0
    │ │ │ +o7 = /tmp/M2-12137-0/0
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │ Now verify that it contains the desired text with get. │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -8,20 +8,20 @@ │ │ │ │ Sometimes a file will contain a single expression whose value you wish to have │ │ │ │ access to. For example, it might be a polynomial produced by another program. │ │ │ │ The function _g_e_t can be used to obtain the entire contents of a file as a │ │ │ │ single string. We illustrate this here with a file whose name is expression. │ │ │ │ First we create the file by writing the desired text to it. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11107-0/0 │ │ │ │ +o1 = /tmp/M2-12137-0/0 │ │ │ │ i2 : fn << │ │ │ │ "z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2+8*y^3" │ │ │ │ << endl << close │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11107-0/0 │ │ │ │ +o2 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o2 : File │ │ │ │ Now we get the contents of the file, as a single string. │ │ │ │ i3 : get fn │ │ │ │ │ │ │ │ o3 = z^6+3*x*z^4+6*y*z^4+3*x^2*z^2+12*x*y*z^2+12*y^2*z^2+x^3+6*x^2*y+12*x*y^2 │ │ │ │ +8*y^3 │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ o6 : Expression of class Product │ │ │ │ Often a file will contain code written in the Macaulay2 language. Let's create │ │ │ │ such a file. │ │ │ │ i7 : fn << "sample = 2^100 │ │ │ │ print sample │ │ │ │ " << close │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11107-0/0 │ │ │ │ +o7 = /tmp/M2-12137-0/0 │ │ │ │ │ │ │ │ o7 : File │ │ │ │ Now verify that it contains the desired text with _g_e_t. │ │ │ │ i8 : get fn │ │ │ │ │ │ │ │ o8 = sample = 2^100 │ │ │ │ print sample │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_readlink.html │ │ │ @@ -68,15 +68,15 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, the resolved path to a symbolic link, or null if the file │ │ │ │ was not a symbolic link. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : p = temporaryFileName () │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11806-0/0 │ │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │ │ i2 : symlinkFile ("foo", p) │ │ │ │ i3 : readlink p │ │ │ │ │ │ │ │ o3 = foo │ │ │ │ i4 : removeFile p │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_l_p_a_t_h -- convert a filename to one passing through no symbolic links │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_realpath.html │ │ │ @@ -68,57 +68,57 @@ │ │ │
    │ │ │

    Description

    │ │ │
    │ │ │
    i1 : p = temporaryFileName ()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11806-0/0
    │ │ │ +o1 = /tmp/M2-13556-0/0 │ │ │
    │ │ │
    i2 : symlinkFile ("foo", p)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -130,15 +130,15 @@ │ │ │
    │ │ │
    i1 : realpath "."
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    i2 : p = temporaryFileName()
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11825-0/0
    │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i3 : q = temporaryFileName()
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11825-0/1
    │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │
    │ │ │
    i4 : symlinkFile(p,q)
    │ │ │
    │ │ │
    i5 : p << close
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11825-0/0
    │ │ │ +o5 = /tmp/M2-13595-0/0
    │ │ │  
    │ │ │  o5 : File
    │ │ │
    │ │ │
    i6 : readlink q
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11825-0/0
    │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i7 : realpath q
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11825-0/0
    │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │
    │ │ │
    i8 : removeFile p
    │ │ │
    │ │ │

    The empty string is interpreted as a reference to the current directory.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : realpath ""
    │ │ │  
    │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/
    │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ Every component of the path must exist in the file system and be accessible to the user. Terminal slashes will be dropped. Warning: under most operating systems, the value returned is an absolute path (one starting at the root of the file system), but under Solaris, this system call may, in certain circumstances, return a relative path when given a relative path.
    │ │ │ ├── html2text {} │ │ │ │ @@ -12,39 +12,39 @@ │ │ │ │ o fn, a _s_t_r_i_n_g, a filename, or path to a file │ │ │ │ * Outputs: │ │ │ │ o a _s_t_r_i_n_g, a pathname to fn passing through no symbolic links, and │ │ │ │ ending with a slash if fn refers to a directory │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : realpath "." │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o1 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ i2 : p = temporaryFileName() │ │ │ │ │ │ │ │ -o2 = /tmp/M2-11825-0/0 │ │ │ │ +o2 = /tmp/M2-13595-0/0 │ │ │ │ i3 : q = temporaryFileName() │ │ │ │ │ │ │ │ -o3 = /tmp/M2-11825-0/1 │ │ │ │ +o3 = /tmp/M2-13595-0/1 │ │ │ │ i4 : symlinkFile(p,q) │ │ │ │ i5 : p << close │ │ │ │ │ │ │ │ -o5 = /tmp/M2-11825-0/0 │ │ │ │ +o5 = /tmp/M2-13595-0/0 │ │ │ │ │ │ │ │ o5 : File │ │ │ │ i6 : readlink q │ │ │ │ │ │ │ │ -o6 = /tmp/M2-11825-0/0 │ │ │ │ +o6 = /tmp/M2-13595-0/0 │ │ │ │ i7 : realpath q │ │ │ │ │ │ │ │ -o7 = /tmp/M2-11825-0/0 │ │ │ │ +o7 = /tmp/M2-13595-0/0 │ │ │ │ i8 : removeFile p │ │ │ │ i9 : removeFile q │ │ │ │ The empty string is interpreted as a reference to the current directory. │ │ │ │ i10 : realpath "" │ │ │ │ │ │ │ │ -o10 = /tmp/M2-10191-0/86-rundir/ │ │ │ │ +o10 = /tmp/M2-10311-0/86-rundir/ │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ Every component of the path must exist in the file system and be accessible to │ │ │ │ the user. Terminal slashes will be dropped. Warning: under most operating │ │ │ │ systems, the value returned is an absolute path (one starting at the root of │ │ │ │ the file system), but under Solaris, this system call may, in certain │ │ │ │ circumstances, return a relative path when given a relative path. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_register__Finalizer.html │ │ │ @@ -76,23 +76,23 @@ │ │ │
    │ │ │
    i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "-- finalizing sequence #"|i|" --"))
    │ │ │
    │ │ │
    i2 : collectGarbage() 
    │ │ │ ---finalization: (1)[3]: -- finalizing sequence #4 --
    │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 --
    │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 --
    │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 --
    │ │ │ +--finalization: (1)[4]: -- finalizing sequence #5 --
    │ │ │ +--finalization: (2)[8]: -- finalizing sequence #9 --
    │ │ │ +--finalization: (3)[5]: -- finalizing sequence #6 --
    │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 --
    │ │ │  --finalization: (5)[6]: -- finalizing sequence #7 --
    │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 --
    │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 --
    │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 --
    │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 --
    │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ +--finalization: (9)[1]: -- finalizing sequence #2 -- │ │ │ +--finalization: (8)[7]: -- finalizing sequence #8 -- │ │ │
    │ │ │
    │ │ │
    │ │ │

    Caveat

    │ │ │ This function should mainly be used for debugging. Having a large number of finalizers might degrade the performance of the program. Moreover, registering two or more objects that are members of a circular chain of pointers for finalization will result in a memory leak, with none of the objects in the chain being freed, even if nothing else points to any of them.
    │ │ │ ├── html2text {} │ │ │ │ @@ -14,23 +14,23 @@ │ │ │ │ * Consequences: │ │ │ │ o A finalizer is registered with the garbage collector to print a │ │ │ │ string when that object is collected as garbage │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : for i from 1 to 9 do (x := 0 .. 10000 ; registerFinalizer(x, "- │ │ │ │ - finalizing sequence #"|i|" --")) │ │ │ │ i2 : collectGarbage() │ │ │ │ ---finalization: (1)[3]: -- finalizing sequence #4 -- │ │ │ │ ---finalization: (2)[7]: -- finalizing sequence #8 -- │ │ │ │ ---finalization: (3)[4]: -- finalizing sequence #5 -- │ │ │ │ ---finalization: (4)[1]: -- finalizing sequence #2 -- │ │ │ │ +--finalization: (1)[4]: -- finalizing sequence #5 -- │ │ │ │ +--finalization: (2)[8]: -- finalizing sequence #9 -- │ │ │ │ +--finalization: (3)[5]: -- finalizing sequence #6 -- │ │ │ │ +--finalization: (4)[3]: -- finalizing sequence #4 -- │ │ │ │ --finalization: (5)[6]: -- finalizing sequence #7 -- │ │ │ │ ---finalization: (6)[5]: -- finalizing sequence #6 -- │ │ │ │ ---finalization: (7)[8]: -- finalizing sequence #9 -- │ │ │ │ ---finalization: (8)[2]: -- finalizing sequence #3 -- │ │ │ │ ---finalization: (9)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (6)[2]: -- finalizing sequence #3 -- │ │ │ │ +--finalization: (7)[0]: -- finalizing sequence #1 -- │ │ │ │ +--finalization: (9)[1]: -- finalizing sequence #2 -- │ │ │ │ +--finalization: (8)[7]: -- finalizing sequence #8 -- │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This function should mainly be used for debugging. Having a large number of │ │ │ │ finalizers might degrade the performance of the program. Moreover, registering │ │ │ │ two or more objects that are members of a circular chain of pointers for │ │ │ │ finalization will result in a memory leak, with none of the objects in the │ │ │ │ chain being freed, even if nothing else points to any of them. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_remove__Directory.html │ │ │ @@ -71,29 +71,29 @@ │ │ │
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : dir = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10779-0/0
    │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i2 : makeDirectory dir
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10779-0/0
    │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │
    │ │ │
    i3 : readDirectory dir
    │ │ │  
    │ │ │ -o3 = {., ..}
    │ │ │ +o3 = {.., .}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : removeDirectory dir
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,21 +10,21 @@ │ │ │ │ * Inputs: │ │ │ │ o dir, a _s_t_r_i_n_g, a filename or path to a directory │ │ │ │ * Consequences: │ │ │ │ o the directory is removed │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : dir = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10779-0/0 │ │ │ │ +o1 = /tmp/M2-11469-0/0 │ │ │ │ i2 : makeDirectory dir │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10779-0/0 │ │ │ │ +o2 = /tmp/M2-11469-0/0 │ │ │ │ i3 : readDirectory dir │ │ │ │ │ │ │ │ -o3 = {., ..} │ │ │ │ +o3 = {.., .} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : removeDirectory dir │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_a_d_D_i_r_e_c_t_o_r_y -- read the contents of a directory │ │ │ │ * _m_a_k_e_D_i_r_e_c_t_o_r_y -- make a directory │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__Path.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

    Description

    │ │ │

    This string may be concatenated with an absolute path to get one understandable by external programs.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10283-0/0
    │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │
    │ │ │
    i2 : rootPath | fn
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10283-0/0
    │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │
    │ │ │ │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by external programs, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by external programs. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-10283-0/0 │ │ │ │ +o1 = /tmp/M2-10473-0/0 │ │ │ │ i2 : rootPath | fn │ │ │ │ │ │ │ │ -o2 = /tmp/M2-10283-0/0 │ │ │ │ +o2 = /tmp/M2-10473-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_U_R_I │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_P_a_t_h is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2025:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_root__U__R__I.html │ │ │ @@ -65,22 +65,22 @@ │ │ │

      Description

      │ │ │

      This string may be concatenated with an absolute path to get one understandable by an external browser.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i1 : fn = temporaryFileName()
      │ │ │  
      │ │ │ -o1 = /tmp/M2-11508-0/0
      │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │
      │ │ │
      i2 : rootURI | fn
      │ │ │  
      │ │ │ -o2 = file:///tmp/M2-11508-0/0
      │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │
      │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a _s_t_r_i_n_g, the path, as seen by an external browser, to the root of │ │ │ │ the file system seen by Macaulay2 │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This string may be concatenated with an absolute path to get one understandable │ │ │ │ by an external browser. │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11508-0/0 │ │ │ │ +o1 = /tmp/M2-12958-0/0 │ │ │ │ i2 : rootURI | fn │ │ │ │ │ │ │ │ -o2 = file:///tmp/M2-11508-0/0 │ │ │ │ +o2 = file:///tmp/M2-12958-0/0 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_o_o_t_P_a_t_h │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _r_o_o_t_U_R_I is a _s_t_r_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Macaulay2Doc/ov_system.m2:2041:0. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_saving_sppolynomials_spand_spmatrices_spin_spfiles.html │ │ │ @@ -90,22 +90,22 @@ │ │ │ o4 : R-module, submodule of R │ │ │
    │ │ │
    i5 : f = temporaryFileName()
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ +o5 = /tmp/M2-12646-0/0 │ │ │
    │ │ │
    i6 : f << toString (p,m,M) << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : get f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,18 +28,18 @@
    │ │ │ │  
    │ │ │ │  o4 = image | x2 x2-y2 xyz7 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o4 : R-module, submodule of R
    │ │ │ │  i5 : f = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11356-0/0
    │ │ │ │ +o5 = /tmp/M2-12646-0/0
    │ │ │ │  i6 : f << toString (p,m,M) << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11356-0/0
    │ │ │ │ +o6 = /tmp/M2-12646-0/0
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : get f
    │ │ │ │  
    │ │ │ │  o7 = (x^3-3*x^2*y+3*x*y^2-y^3-3*x^2+6*x*y-3*y^2+3*x-3*y-1,matrix {{x^2,
    │ │ │ │       x^2-y^2, x*y*z^7}},image matrix {{x^2, x^2-y^2, x*y*z^7}})
    │ │ │ │  i8 : (p',m',M') = value get f
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_serial__Number.html
    │ │ │ @@ -68,22 +68,22 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : serialNumber asdf
    │ │ │  
    │ │ │ -o1 = 1426273
    │ │ │ +o1 = 1526273 │ │ │
    │ │ │
    i2 : serialNumber foo
    │ │ │  
    │ │ │ -o2 = 1426275
    │ │ │ +o2 = 1526275 │ │ │
    │ │ │
    i3 : serialNumber ZZ
    │ │ │  
    │ │ │  o3 = 1000050
    │ │ │ ├── html2text {} │ │ │ │ @@ -10,18 +10,18 @@ │ │ │ │ * Inputs: │ │ │ │ o x │ │ │ │ * Outputs: │ │ │ │ o an _i_n_t_e_g_e_r, the serial number of x │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : serialNumber asdf │ │ │ │ │ │ │ │ -o1 = 1426273 │ │ │ │ +o1 = 1526273 │ │ │ │ i2 : serialNumber foo │ │ │ │ │ │ │ │ -o2 = 1426275 │ │ │ │ +o2 = 1526275 │ │ │ │ i3 : serialNumber ZZ │ │ │ │ │ │ │ │ o3 = 1000050 │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _s_e_r_i_a_l_N_u_m_b_e_r is a _c_o_m_p_i_l_e_d_ _f_u_n_c_t_i_o_n. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_solve.html │ │ │ @@ -366,21 +366,21 @@ │ │ │
    │ │ │
    i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i30 : time X = solve(A,B);
    │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc)
    │ │ │ + -- used 0.000221698s (cpu); 0.000206721s (thread); 0s (gc) │ │ │
    │ │ │
    i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc)
    │ │ │ + -- used 0.000103953s (cpu); 0.000103242s (thread); 0s (gc) │ │ │
    │ │ │
    i32 : norm(A*X-B)
    │ │ │  
    │ │ │  o32 = 5.111850690840453e-15
    │ │ │ @@ -411,21 +411,21 @@
    │ │ │              
    │ │ │
    i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │
    │ │ │
    i38 : time X = solve(A,B);
    │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc)
    │ │ │ + -- used 0.143985s (cpu); 0.144011s (thread); 0s (gc) │ │ │
    │ │ │
    i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc)
    │ │ │ + -- used 0.136234s (cpu); 0.136261s (thread); 0s (gc) │ │ │
    │ │ │
    i40 : norm(A*X-B)
    │ │ │  
    │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -192,33 +192,33 @@
    │ │ │ │  i24 : printingPrecision = 4;
    │ │ │ │  i25 : N = 40
    │ │ │ │  
    │ │ │ │  o25 = 40
    │ │ │ │  i26 : A = mutableMatrix(CC_53, N, N); fillMatrix A;
    │ │ │ │  i28 : B = mutableMatrix(CC_53, N, 2); fillMatrix B;
    │ │ │ │  i30 : time X = solve(A,B);
    │ │ │ │ - -- used 0.000227156s (cpu); 0.000219682s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000221698s (cpu); 0.000206721s (thread); 0s (gc)
    │ │ │ │  i31 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.000163036s (cpu); 0.000163226s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000103953s (cpu); 0.000103242s (thread); 0s (gc)
    │ │ │ │  i32 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o32 = 5.111850690840453e-15
    │ │ │ │  
    │ │ │ │  o32 : RR (of precision 53)
    │ │ │ │  Over higher precision RR or CC, these routines will be much slower than the
    │ │ │ │  lower precision LAPACK routines.
    │ │ │ │  i33 : N = 100
    │ │ │ │  
    │ │ │ │  o33 = 100
    │ │ │ │  i34 : A = mutableMatrix(CC_100, N, N); fillMatrix A;
    │ │ │ │  i36 : B = mutableMatrix(CC_100, N, 2); fillMatrix B;
    │ │ │ │  i38 : time X = solve(A,B);
    │ │ │ │ - -- used 0.482514s (cpu); 0.3008s (thread); 0s (gc)
    │ │ │ │ + -- used 0.143985s (cpu); 0.144011s (thread); 0s (gc)
    │ │ │ │  i39 : time X = solve(A,B, MaximalRank=>true);
    │ │ │ │ - -- used 0.237275s (cpu); 0.23721s (thread); 0s (gc)
    │ │ │ │ + -- used 0.136234s (cpu); 0.136261s (thread); 0s (gc)
    │ │ │ │  i40 : norm(A*X-B)
    │ │ │ │  
    │ │ │ │  o40 = 1.491578274689709814082355885932e-28
    │ │ │ │  
    │ │ │ │  o40 : RR (of precision 100)
    │ │ │ │  Giving the option ClosestFit=>true, in the case when the field is RR or CC,
    │ │ │ │  uses a least squares algorithm to find a best fit solution.
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__Directory_lp__String_cm__String_rp.html
    │ │ │ @@ -80,93 +80,93 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : src = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ +o1 = /tmp/M2-12217-0/0/ │ │ │
    │ │ │
    i2 : dst = temporaryFileName() | "/"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ +o2 = /tmp/M2-12217-0/1/ │ │ │
    │ │ │
    i3 : makeDirectory (src|"a/")
    │ │ │  
    │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ +o3 = /tmp/M2-12217-0/0/a/ │ │ │
    │ │ │
    i4 : makeDirectory (src|"b/")
    │ │ │  
    │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ +o4 = /tmp/M2-12217-0/0/b/ │ │ │
    │ │ │
    i5 : makeDirectory (src|"b/c/")
    │ │ │  
    │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/ │ │ │
    │ │ │
    i6 : src|"a/f" << "hi there" << close
    │ │ │  
    │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │  
    │ │ │  o6 : File
    │ │ │
    │ │ │
    i7 : src|"a/g" << "hi there" << close
    │ │ │  
    │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │  
    │ │ │  o7 : File
    │ │ │
    │ │ │
    i8 : src|"b/c/g" << "ho there" << close
    │ │ │  
    │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │  
    │ │ │  o8 : File
    │ │ │
    │ │ │
    i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │
    i10 : get (dst|"b/c/g")
    │ │ │  
    │ │ │  o10 = ho there
    │ │ │
    │ │ │
    i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g │ │ │
    │ │ │ Now we remove the files and directories we created. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,53 +30,53 @@
    │ │ │ │            o The directory tree rooted at src is duplicated by a directory tree
    │ │ │ │              rooted at dst. The files in the source tree are represented by
    │ │ │ │              relative symbolic links in the destination tree to the original
    │ │ │ │              files in the source tree.
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  i1 : src = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-11147-0/0/
    │ │ │ │ +o1 = /tmp/M2-12217-0/0/
    │ │ │ │  i2 : dst = temporaryFileName() | "/"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-11147-0/1/
    │ │ │ │ +o2 = /tmp/M2-12217-0/1/
    │ │ │ │  i3 : makeDirectory (src|"a/")
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-11147-0/0/a/
    │ │ │ │ +o3 = /tmp/M2-12217-0/0/a/
    │ │ │ │  i4 : makeDirectory (src|"b/")
    │ │ │ │  
    │ │ │ │ -o4 = /tmp/M2-11147-0/0/b/
    │ │ │ │ +o4 = /tmp/M2-12217-0/0/b/
    │ │ │ │  i5 : makeDirectory (src|"b/c/")
    │ │ │ │  
    │ │ │ │ -o5 = /tmp/M2-11147-0/0/b/c/
    │ │ │ │ +o5 = /tmp/M2-12217-0/0/b/c/
    │ │ │ │  i6 : src|"a/f" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o6 = /tmp/M2-11147-0/0/a/f
    │ │ │ │ +o6 = /tmp/M2-12217-0/0/a/f
    │ │ │ │  
    │ │ │ │  o6 : File
    │ │ │ │  i7 : src|"a/g" << "hi there" << close
    │ │ │ │  
    │ │ │ │ -o7 = /tmp/M2-11147-0/0/a/g
    │ │ │ │ +o7 = /tmp/M2-12217-0/0/a/g
    │ │ │ │  
    │ │ │ │  o7 : File
    │ │ │ │  i8 : src|"b/c/g" << "ho there" << close
    │ │ │ │  
    │ │ │ │ -o8 = /tmp/M2-11147-0/0/b/c/g
    │ │ │ │ +o8 = /tmp/M2-12217-0/0/b/c/g
    │ │ │ │  
    │ │ │ │  o8 : File
    │ │ │ │  i9 : symlinkDirectory(src,dst,Verbose=>true)
    │ │ │ │ ---symlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---symlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---symlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--symlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--symlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--symlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  i10 : get (dst|"b/c/g")
    │ │ │ │  
    │ │ │ │  o10 = ho there
    │ │ │ │  i11 : symlinkDirectory(src,dst,Verbose=>true,Undo=>true)
    │ │ │ │ ---unsymlinking: ../../../0/b/c/g -> /tmp/M2-11147-0/1/b/c/g
    │ │ │ │ ---unsymlinking: ../../0/a/g -> /tmp/M2-11147-0/1/a/g
    │ │ │ │ ---unsymlinking: ../../0/a/f -> /tmp/M2-11147-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../0/a/g -> /tmp/M2-12217-0/1/a/g
    │ │ │ │ +--unsymlinking: ../../0/a/f -> /tmp/M2-12217-0/1/a/f
    │ │ │ │ +--unsymlinking: ../../../0/b/c/g -> /tmp/M2-12217-0/1/b/c/g
    │ │ │ │  Now we remove the files and directories we created.
    │ │ │ │  i12 : rm = d -> if isDirectory d then removeDirectory d else removeFile d
    │ │ │ │  
    │ │ │ │  o12 = rm
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : scan(reverse findFiles src, rm)
    │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_symlink__File.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │        
    │ │ │

    Description

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ o dst, a _s_t_r_i_n_g │ │ │ │ * Consequences: │ │ │ │ o a symbolic link at the location in the directory tree specified by │ │ │ │ dst is created, pointing to src │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : fn = temporaryFileName() │ │ │ │ │ │ │ │ -o1 = /tmp/M2-11204-0/0 │ │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │ │ i2 : symlinkFile("qwert", fn) │ │ │ │ i3 : fileExists fn │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : readlink fn │ │ │ │ │ │ │ │ o4 = qwert │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_temporary__File__Name.html │ │ │ @@ -64,22 +64,22 @@ │ │ │
    │ │ │

    Description

    │ │ │ The file name is so unique that even with various suffixes appended, no collision with existing files will occur. The files will be removed when the program terminates, unless it terminates as the result of an error.
    │ │ │
    i1 : fn = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-11204-0/0
    │ │ │ +o1 = /tmp/M2-12334-0/0 │ │ │
    │ │ │
    i2 : symlinkFile("qwert", fn)
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : temporaryFileName () | ".tex"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-12169-0/0.tex
    │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │
    │ │ │
    i2 : temporaryFileName () | ".html"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-12169-0/1.html
    │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │
    │ │ │

    This function will work under Unix, and also under Windows if you have a directory on the same drive called /tmp.

    │ │ │

    If the name of the temporary file will be given to an external program, it may be necessary to concatenate it with rootPath or rootURI to enable the external program to find the file.

    │ │ │

    The temporary file name is derived from the value of the environment variable TMPDIR, if it has one.

    │ │ │

    If fork is used, then the parent and child Macaulay2 processes will each remove their own temporary files upon termination, with the parent removing any files created before fork was called.

    │ │ │ ├── html2text {} │ │ │ │ @@ -11,18 +11,18 @@ │ │ │ │ o a unique temporary file name. │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ The file name is so unique that even with various suffixes appended, no │ │ │ │ collision with existing files will occur. The files will be removed when the │ │ │ │ program terminates, unless it terminates as the result of an error. │ │ │ │ i1 : temporaryFileName () | ".tex" │ │ │ │ │ │ │ │ -o1 = /tmp/M2-12169-0/0.tex │ │ │ │ +o1 = /tmp/M2-14309-0/0.tex │ │ │ │ i2 : temporaryFileName () | ".html" │ │ │ │ │ │ │ │ -o2 = /tmp/M2-12169-0/1.html │ │ │ │ +o2 = /tmp/M2-14309-0/1.html │ │ │ │ This function will work under Unix, and also under Windows if you have a │ │ │ │ directory on the same drive called /tmp. │ │ │ │ If the name of the temporary file will be given to an external program, it may │ │ │ │ be necessary to concatenate it with _r_o_o_t_P_a_t_h or _r_o_o_t_U_R_I to enable the external │ │ │ │ program to find the file. │ │ │ │ The temporary file name is derived from the value of the environment variable │ │ │ │ TMPDIR, if it has one. │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_time.html │ │ │ @@ -59,15 +59,15 @@ │ │ │ │ │ │
    │ │ │

    Description

    │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value of e. The time used by the the current thread and garbage collection during the evaluation of e is also shown. │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time 3^30
    │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc)
    │ │ │ + -- used 4.4803e-05s (cpu); 7.142e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -7,15 +7,15 @@ │ │ │ │ * Usage: │ │ │ │ time e │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ time e evaluates e, prints the amount of cpu time used, and returns the value │ │ │ │ of e. The time used by the the current thread and garbage collection during the │ │ │ │ evaluation of e is also shown. │ │ │ │ i1 : time 3^30 │ │ │ │ - -- used 2.18e-05s (cpu); 1.1101e-05s (thread); 0s (gc) │ │ │ │ + -- used 4.4803e-05s (cpu); 7.142e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_i_m_i_n_g -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_timing.html │ │ │ @@ -54,24 +54,24 @@ │ │ │ timing e evaluates e and returns a list of type Time of the form {t,v}, where t is the number of seconds of cpu timing used, and v is the value of the expression.

    │ │ │ The default method for printing such timing results is to display the timing separately in a comment below the computed value. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : timing 3^30
    │ │ │  
    │ │ │  o1 = 205891132094649
    │ │ │ -     -- .000018144 seconds
    │ │ │ +     -- .000021827 seconds
    │ │ │  
    │ │ │  o1 : Time
    │ │ │
    │ │ │
    i2 : peek oo
    │ │ │  
    │ │ │ -o2 = Time{.000018144, 205891132094649}
    │ │ │ +o2 = Time{.000021827, 205891132094649} │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,20 +10,20 @@ │ │ │ │ is the number of seconds of cpu timing used, and v is the value of the │ │ │ │ expression. │ │ │ │ The default method for printing such timing results is to display the timing │ │ │ │ separately in a comment below the computed value. │ │ │ │ i1 : timing 3^30 │ │ │ │ │ │ │ │ o1 = 205891132094649 │ │ │ │ - -- .000018144 seconds │ │ │ │ + -- .000021827 seconds │ │ │ │ │ │ │ │ o1 : Time │ │ │ │ i2 : peek oo │ │ │ │ │ │ │ │ -o2 = Time{.000018144, 205891132094649} │ │ │ │ +o2 = Time{.000021827, 205891132094649} │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_i_m_e -- the class of all timing results │ │ │ │ * _t_i_m_e -- time a computation │ │ │ │ * _c_p_u_T_i_m_e -- seconds of cpu time used since Macaulay2 began │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_i_n_g -- time a computation using time elapsed │ │ │ │ * _e_l_a_p_s_e_d_T_i_m_e -- time a computation including time elapsed │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Macaulay2Doc/html/_version.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ "memtailor version" => 1.1 │ │ │ "mpfi version" => 1.5.4 │ │ │ "mpfr version" => 4.2.2 │ │ │ "mpsolve version" => 3.2.2 │ │ │ "mysql version" => not present │ │ │ "normaliz version" => 3.11.0 │ │ │ "ntl version" => 11.5.1 │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ "operating system" => Linux │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes LLLBases TangentCone ChainComplexExtras Varieties Schubert2 PushForward LocalRings PruneComplex BoijSoederberg BGG Bruns InvolutiveBases ConwayPolynomials EdgeIdeals FourTiTwo StatePolytope Polyhedra Truncations Polymake gfanInterface PieriMaps Normaliz Posets XML OpenMath SCSCP RationalPoints MapleInterface ConvexInterface SRdeformations NumericalAlgebraicGeometry BeginningMacaulay2 FormalGroupLaws Graphics WeylGroups HodgeIntegrals Cyclotomic Binomials Kronecker Nauty ToricVectorBundles ModuleDeformations PHCpack SimplicialDecomposability BooleanGB AdjointIdeal Parametrization Serialization NAGtypes NormalToricVarieties DGAlgebras Graphs GraphicalModels BIBasis KustinMiller Units NautyGraphs VersalDeformations CharacteristicClasses RandomIdeals RandomObjects RandomPlaneCurves RandomSpaceCurves RandomGenus14Curves RandomCanonicalCurves RandomCurves TensorComplexes MonomialAlgebras QthPower EliminationMatrices EllipticIntegrals Triplets CompleteIntersectionResolutions EagonResolution MCMApproximations MultiplierIdeals InvariantRing QuillenSuslin EnumerationCurves Book3264Examples WeilDivisors EllipticCurves HighestWeights MinimalPrimes Bertini TorAlgebra Permanents BinomialEdgeIdeals TateOnProducts LatticePolytopes FiniteFittingIdeals HigherCIOperators LieAlgebraRepresentations ConformalBlocks M0nbar AnalyzeSheafOnP1 MultiplierIdealsDim2 RunExternalM2 NumericalSchubertCalculus ToricTopology Cremona Resultants VectorFields SLPexpressions Miura ResidualIntersections Visualize EquivariantGB ExampleSystems RationalMaps FastMinors RandomPoints SwitchingFields SpectralSequences SectionRing OldPolyhedra OldToricVectorBundles K3Carpets ChainComplexOperations NumericalCertification PhylogeneticTrees MonodromySolver ReactionNetworks PackageCitations NumericSolutions GradedLieAlgebras InverseSystems Pullback EngineTests SVDComplexes RandomComplexes CohomCalg Topcom Triangulations ReflexivePolytopesDB AbstractToricVarieties TestIdeals FrobeniusThresholds NonPrincipalTestIdeals Seminormalization AlgebraicSplines TriangularSets Chordal Tropical SymbolicPowers Complexes OldChainComplexes GroebnerWalk RandomMonomialIdeals Matroids NumericalImplicitization NonminimalComplexes CoincidentRootLoci RelativeCanonicalResolution RandomCurvesOverVerySmallFiniteFields StronglyStableIdeals SLnEquivariantMatrices CorrespondenceScrolls NCAlgebra SpaceCurves ExteriorIdeals ToricInvariants SegreClasses SemidefiniteProgramming SumsOfSquares MultiGradedRationalMap AssociativeAlgebras VirtualResolutions Quasidegrees DiffAlg DeterminantalRepresentations FGLM SpechtModule SchurComplexes SimplicialPosets SlackIdeals PositivityToricBundles SparseResultants DecomposableSparseSystems MixedMultiplicity PencilsOfQuadrics ThreadedGB AdjunctionForSurfaces VectorGraphics GKMVarieties MonomialIntegerPrograms NoetherianOperators Hadamard StatGraphs GraphicalModelsMLE EigenSolver MultiplicitySequence ResolutionsOfStanleyReisnerRings NumericalLinearAlgebra ResLengthThree MonomialOrbits MultiprojectiveVarieties SpecialFanoFourfolds RationalPoints2 SuperLinearAlgebra SubalgebraBases AInfinity LinearTruncations ThinSincereQuivers Python BettiCharacters Jets FunctionFieldDesingularization HomotopyLieAlgebra TSpreadIdeals RealRoots ExteriorModules K3Surfaces GroebnerStrata QuaternaryQuartics CotangentSchubert OnlineLookup MergeTeX Probability Isomorphism CodingTheory WhitneyStratifications JSON ForeignFunctions GeometricDecomposability PseudomonomialPrimaryDecomposition PolyominoIdeals MatchingFields CellularResolutions SagbiGbDetection A1BrouwerDegrees QuadraticIdealExamplesByRoos TerraciniLoci MatrixSchubert RInterface OIGroebnerBases PlaneCurveLinearSeries Valuations SchurVeronese VNumber TropicalToric MultigradedBGG AbstractSimplicialComplexes MultigradedImplicitization Msolve Permutations SCMAlgebras NumericalSemigroups ExteriorExtensions Oscillators IncidenceCorrespondenceCohomology ToricHigherDirectImages Brackets IntegerProgramming GameTheory AllMarkovBases Tableaux CpMackeyFunctors JSONRPC MatrixFactorizations PathSignatures │ │ │ "pointer size" => 8 │ │ │ "python version" => 3.13.11 │ │ │ "readline version" => 8.3 │ │ │ "scscp version" => not present │ │ │ "tbb version" => 2022.1 │ │ │ ├── html2text {} │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ "memtailor version" => 1.1 │ │ │ │ "mpfi version" => 1.5.4 │ │ │ │ "mpfr version" => 4.2.2 │ │ │ │ "mpsolve version" => 3.2.2 │ │ │ │ "mysql version" => not present │ │ │ │ "normaliz version" => 3.11.0 │ │ │ │ "ntl version" => 11.5.1 │ │ │ │ - "operating system release" => 6.12.57+deb13-amd64 │ │ │ │ + "operating system release" => 6.12.57+deb13-cloud-amd64 │ │ │ │ "operating system" => Linux │ │ │ │ "packages" => Style FirstPackage Macaulay2Doc Parsing Classic │ │ │ │ Browse Benchmark Text SimpleDoc PackageTemplate Saturation PrimaryDecomposition │ │ │ │ FourierMotzkin Dmodules WeylAlgebras HolonomicSystems BernsteinSato │ │ │ │ ConnectionMatrices Depth Elimination GenericInitialIdeal IntegralClosure │ │ │ │ HyperplaneArrangements LexIdeals Markov NoetherNormalization Points ReesAlgebra │ │ │ │ Regularity SchurRings SymmetricPolynomials SchurFunctors SimplicialComplexes │ │ ├── ./usr/share/doc/Macaulay2/Markov/example-output/___Markov.out │ │ │ @@ -70,15 +70,15 @@ │ │ │ | 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2| 1,2,2,2 2,2,2,1 1,2,2,1 2,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ |- p p + p p |- p p + p p | │ │ │ | 1,1,2,1 1,2,1,1 1,1,1,1 1,2,2,1| 1,1,2,2 1,2,1,2 1,1,1,2 1,2,2,2| │ │ │ +-------------------------------------+-------------------------------------+ │ │ │ │ │ │ i8 : time netList primaryDecomposition J │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc) │ │ │ + -- used 4.59324s (cpu); 1.89244s (thread); 0s (gc) │ │ │ │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ o8 = |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,2,1,2 1,2,1,1 1,1,2,2 2,1,2,1 1,1,2,1 2,1,2,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ │ +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ |ideal (p , p , p , p , p p - p p , p p - p p ) | │ │ │ | 1,2,2,2 1,2,2,1 1,1,2,2 1,1,2,1 1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2 1,1,1,2 2,1,1,1 1,1,1,1 2,1,1,2 | │ │ ├── ./usr/share/doc/Macaulay2/Markov/html/index.html │ │ │ @@ -161,15 +161,15 @@ │ │ │
      │ │ │

      This ideal has 5 primary components. The first is the one that has statistical significance. The significance of the other components is still poorly understood.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i8 : time netList primaryDecomposition J
      │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc)
      │ │ │ + -- used 4.59324s (cpu); 1.89244s (thread); 0s (gc)
      │ │ │  
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │  o8 = |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,2,1,2   1,2,1,1   1,1,2,2 2,1,2,1    1,1,2,1 2,1,2,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │       +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
      │ │ │       |ideal (p       , p       , p       , p       , p       p        - p       p       , p       p        - p       p       )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
      │ │ │       |        1,2,2,2   1,2,2,1   1,1,2,2   1,1,2,1   1,2,1,2 2,2,1,1    1,2,1,1 2,2,1,2   1,1,1,2 2,1,1,1    1,1,1,1 2,1,1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -102,15 +102,15 @@
      │ │ │ │  1,2,2,2|
      │ │ │ │       +-------------------------------------+-----------------------------------
      │ │ │ │  --+
      │ │ │ │  This ideal has 5 primary components. The first is the one that has statistical
      │ │ │ │  significance. The significance of the other components is still poorly
      │ │ │ │  understood.
      │ │ │ │  i8 : time netList primaryDecomposition J
      │ │ │ │ - -- used 3.38775s (cpu); 1.60175s (thread); 0s (gc)
      │ │ │ │ + -- used 4.59324s (cpu); 1.89244s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │       +-------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ │ │  -------------------------------------------------------------------------------
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_sp__A__S__M_spvarieties.out
      │ │ │ @@ -212,17 +212,17 @@
      │ │ │        | 1 -1 1 |
      │ │ │        | 0 1  0 |
      │ │ │  
      │ │ │                 3       3
      │ │ │  o22 : Matrix ZZ  <-- ZZ
      │ │ │  
      │ │ │  i23 : time schubertRegularity B
      │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc)
      │ │ │ + -- used 0.100601s (cpu); 0.0340262s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │  
      │ │ │  i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc)
      │ │ │ + -- used 0.0189303s (cpu); 0.0189429s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │  
      │ │ │  i25 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/___Investigating_spmatrix_sp__Schubert_spvarieties.out
      │ │ │ @@ -178,17 +178,17 @@
      │ │ │        z   z   z   , z   z   z    - z   z   , z   z   z    - z   z   )
      │ │ │         1,2 1,3 2,4   1,2 1,4 2,2    1,2 2,4   1,2 1,3 2,2    1,2 2,3
      │ │ │  
      │ │ │  o15 : Ideal of QQ[z   ..z   ]
      │ │ │                     1,1   5,5
      │ │ │  
      │ │ │  i16 : time schubertRegularity p
      │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc)
      │ │ │ + -- used 0.000315607s (cpu); 0.000305473s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │  
      │ │ │  i17 : time regularity comodule I
      │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc)
      │ │ │ + -- used 0.0176733s (cpu); 0.0176848s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │  
      │ │ │  i18 :
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/example-output/_grothendieck__Polynomial.out
      │ │ │ @@ -3,25 +3,25 @@
      │ │ │  i1 : w = {2,1,4,3}
      │ │ │  
      │ │ │  o1 = {2, 1, 4, 3}
      │ │ │  
      │ │ │  o1 : List
      │ │ │  
      │ │ │  i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc)
      │ │ │ + -- used 0.00520285s (cpu); 0.00519798s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │  
      │ │ │  i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc)
      │ │ │ + -- used 0.00278733s (cpu); 0.00278889s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_sp__A__S__M_spvarieties.html
      │ │ │ @@ -383,23 +383,23 @@
      │ │ │          
      │ │ │

      Additionally, this package facilitates investigating homological invariants of ASM ideals such as regularity (schubertRegularity) and codimension (schubertCodim). efficiently by computing the associated invariants for their antidiagonal initial ideals, which are known to be squarefree by [Wei17]. Therefore the extremal Betti numbers (which encode regularity, depth, and projective dimension) of ASM ideals coincide with those of their antidiagonal initial ideals by [CV20].

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i23 : time schubertRegularity B
      │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc)
      │ │ │ + -- used 0.100601s (cpu); 0.0340262s (thread); 0s (gc)
      │ │ │  
      │ │ │  o23 = 1
      │ │ │
      │ │ │
      i24 : time regularity comodule schubertDeterminantalIdeal B
      │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc)
      │ │ │ + -- used 0.0189303s (cpu); 0.0189429s (thread); 0s (gc)
      │ │ │  
      │ │ │  o24 = 1
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating ASM varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -244,19 +244,19 @@ │ │ │ │ ASM ideals such as regularity (_s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y) and codimension │ │ │ │ (_s_c_h_u_b_e_r_t_C_o_d_i_m). efficiently by computing the associated invariants for their │ │ │ │ antidiagonal initial ideals, which are known to be squarefree by [Wei17]. │ │ │ │ Therefore the extremal Betti numbers (which encode regularity, depth, and │ │ │ │ projective dimension) of ASM ideals coincide with those of their antidiagonal │ │ │ │ initial ideals by [CV20]. │ │ │ │ i23 : time schubertRegularity B │ │ │ │ - -- used 0.100646s (cpu); 0.0344742s (thread); 0s (gc) │ │ │ │ + -- used 0.100601s (cpu); 0.0340262s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = 1 │ │ │ │ i24 : time regularity comodule schubertDeterminantalIdeal B │ │ │ │ - -- used 0.0147124s (cpu); 0.0147191s (thread); 0s (gc) │ │ │ │ + -- used 0.0189303s (cpu); 0.0189429s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = 1 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg AASSMM vvaarriieettiieess ********** │ │ │ │ * _i_s_P_a_r_t_i_a_l_A_S_M_(_M_a_t_r_i_x_) -- whether a matrix is a partial alternating sign │ │ │ │ matrix │ │ │ │ * _p_a_r_t_i_a_l_A_S_M_T_o_A_S_M_(_M_a_t_r_i_x_) -- extend a partial alternating sign matrix to an │ │ │ │ alternating sign matrix │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/___Investigating_spmatrix_sp__Schubert_spvarieties.html │ │ │ @@ -315,23 +315,23 @@ │ │ │
      │ │ │

      Finally, this package contains functions for investigating homological invariants of matrix Schubert varieties efficiently through combinatorial algorithms produced in [PSW24] via schubertRegularityschubertCodim.

      │ │ │
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      │ │ │
      i16 : time schubertRegularity p
      │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc)
      │ │ │ + -- used 0.000315607s (cpu); 0.000305473s (thread); 0s (gc)
      │ │ │  
      │ │ │  o16 = 5
      │ │ │
      │ │ │
      i17 : time regularity comodule I
      │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc)
      │ │ │ + -- used 0.0176733s (cpu); 0.0176848s (thread); 0s (gc)
      │ │ │  
      │ │ │  o17 = 5
      │ │ │
      │ │ │
      │ │ │

      Functions for investigating matrix Schubert varieties

      │ │ │ ├── html2text {} │ │ │ │ @@ -545,19 +545,19 @@ │ │ │ │ │ │ │ │ o15 : Ideal of QQ[z ..z ] │ │ │ │ 1,1 5,5 │ │ │ │ Finally, this package contains functions for investigating homological │ │ │ │ invariants of matrix Schubert varieties efficiently through combinatorial │ │ │ │ algorithms produced in [PSW24] via _s_c_h_u_b_e_r_t_R_e_g_u_l_a_r_i_t_y_s_c_h_u_b_e_r_t_C_o_d_i_m. │ │ │ │ i16 : time schubertRegularity p │ │ │ │ - -- used 0.000285165s (cpu); 0.000279514s (thread); 0s (gc) │ │ │ │ + -- used 0.000315607s (cpu); 0.000305473s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 = 5 │ │ │ │ i17 : time regularity comodule I │ │ │ │ - -- used 0.0152443s (cpu); 0.0152472s (thread); 0s (gc) │ │ │ │ + -- used 0.0176733s (cpu); 0.0176848s (thread); 0s (gc) │ │ │ │ │ │ │ │ o17 = 5 │ │ │ │ ********** FFuunnccttiioonnss ffoorr iinnvveessttiiggaattiinngg mmaattrriixx SScchhuubbeerrtt vvaarriieettiieess ********** │ │ │ │ * _a_n_t_i_D_i_a_g_I_n_i_t_(_L_i_s_t_) -- compute the (unique) antidiagonal initial ideal of │ │ │ │ an ASM ideal │ │ │ │ * _r_a_n_k_T_a_b_l_e_(_L_i_s_t_) -- compute a table of rank conditions that determines the │ │ │ │ corresponding ASM or matrix Schubert variety │ │ ├── ./usr/share/doc/Macaulay2/MatrixSchubert/html/_grothendieck__Polynomial.html │ │ │ @@ -80,28 +80,28 @@ │ │ │ │ │ │ o1 : List
      │ │ │
      │ │ │
      i2 : time grothendieckPolynomial w
      │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc)
      │ │ │ + -- used 0.00520285s (cpu); 0.00519798s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o2 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o2 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │
      │ │ │
      i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream")
      │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc)
      │ │ │ + -- used 0.00278733s (cpu); 0.00278889s (thread); 0s (gc)
      │ │ │  
      │ │ │        2        2      2               2
      │ │ │  o3 = x x x  - x x  - x x  - x x x  + x  + x x  + x x
      │ │ │        1 2 3    1 2    1 3    1 2 3    1    1 2    1 3
      │ │ │  
      │ │ │  o3 : QQ[x ..x ]
      │ │ │           1   4
      │ │ │ ├── html2text {} │ │ │ │ @@ -19,24 +19,24 @@ │ │ │ │ PipeDream. │ │ │ │ i1 : w = {2,1,4,3} │ │ │ │ │ │ │ │ o1 = {2, 1, 4, 3} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time grothendieckPolynomial w │ │ │ │ - -- used 0.00455946s (cpu); 0.00455689s (thread); 0s (gc) │ │ │ │ + -- used 0.00520285s (cpu); 0.00519798s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 1 4 │ │ │ │ i3 : time grothendieckPolynomial (w,Algorithm=>"PipeDream") │ │ │ │ - -- used 0.00228165s (cpu); 0.00228239s (thread); 0s (gc) │ │ │ │ + -- used 0.00278733s (cpu); 0.00278889s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 │ │ │ │ o3 = x x x - x x - x x - x x x + x + x x + x x │ │ │ │ 1 2 3 1 2 1 3 1 2 3 1 1 2 1 3 │ │ │ │ │ │ │ │ o3 : QQ[x ..x ] │ │ │ │ 1 4 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/___Matroid.out │ │ │ @@ -51,20 +51,20 @@ │ │ │ i9 : keys R10.cache │ │ │ │ │ │ o9 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o9 : List │ │ │ │ │ │ i10 : time isWellDefined R10 │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc) │ │ │ + -- used 0.063962s (cpu); 0.0613665s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : time fVector R10 │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc) │ │ │ + -- used 0.266068s (cpu); 0.0949922s (thread); 0s (gc) │ │ │ │ │ │ o11 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ │ @@ -76,15 +76,15 @@ │ │ │ o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats, │ │ │ ----------------------------------------------------------------------- │ │ │ groundSet, dual, storedRepresentation} │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : time fVector R10 │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc) │ │ │ + -- used 0.000441426s (cpu); 0.000236211s (thread); 0s (gc) │ │ │ │ │ │ o13 = HashTable{0 => 1 } │ │ │ 1 => 10 │ │ │ 2 => 45 │ │ │ 3 => 75 │ │ │ 4 => 30 │ │ │ 5 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_all__Minors.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ o2 : Matroid │ │ │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ - -- .0861244s elapsed │ │ │ + -- .0818794s elapsed │ │ │ │ │ │ i4 : #L │ │ │ │ │ │ o4 = 64 │ │ │ │ │ │ i5 : netList L_{0..4} │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_get__Isos.out │ │ │ @@ -33,14 +33,14 @@ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ o6 : Matroid │ │ │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc) │ │ │ + -- used 0.19236s (cpu); 0.0966993s (thread); 0s (gc) │ │ │ │ │ │ i8 : #autF7 │ │ │ │ │ │ o8 = 168 │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_has__Minor.out │ │ │ @@ -9,12 +9,12 @@ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ o2 = false │ │ │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc) │ │ │ + -- used 2.30913s (cpu); 1.43072s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_isomorphism_lp__Matroid_cm__Matroid_rp.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7}) │ │ │ │ │ │ o4 = a "matroid" of rank 4 on 10 elements │ │ │ │ │ │ o4 : Matroid │ │ │ │ │ │ i5 : time isomorphism(M5, minorM6) │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc) │ │ │ + -- used 0.0160114s (cpu); 0.015154s (thread); 0s (gc) │ │ │ │ │ │ o5 = HashTable{0 => 1} │ │ │ 1 => 0 │ │ │ 2 => 3 │ │ │ 3 => 2 │ │ │ 4 => 6 │ │ │ 5 => 5 │ │ │ @@ -56,15 +56,15 @@ │ │ │ i7 : N = relabel M6 │ │ │ │ │ │ o7 = a "matroid" of rank 5 on 15 elements │ │ │ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : time phi = isomorphism(N,M6) │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc) │ │ │ + -- used 5.5385s (cpu); 3.37185s (thread); 0s (gc) │ │ │ │ │ │ o8 = HashTable{0 => 11 } │ │ │ 1 => 0 │ │ │ 2 => 1 │ │ │ 3 => 6 │ │ │ 4 => 9 │ │ │ 5 => 8 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_quick__Isomorphism__Test.out │ │ │ @@ -37,15 +37,15 @@ │ │ │ o7 : Matroid │ │ │ │ │ │ i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R) │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : time quickIsomorphismTest(M0, M1) │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc) │ │ │ + -- used 0.00311827s (cpu); 0.000731617s (thread); 0s (gc) │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : value oo === false │ │ │ │ │ │ o11 = true │ │ ├── ./usr/share/doc/Macaulay2/Matroids/example-output/_set__Representation.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i5 : keys M.cache │ │ │ │ │ │ o5 = {groundSet, rankFunction, storedRepresentation} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime fVector M │ │ │ - -- .0246909s elapsed │ │ │ + -- .0153488s elapsed │ │ │ │ │ │ o6 = HashTable{0 => 1 } │ │ │ 1 => 6 │ │ │ 2 => 15 │ │ │ 3 => 20 │ │ │ 4 => 1 │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/___Matroid.html │ │ │ @@ -148,23 +148,23 @@ │ │ │ │ │ │ o9 : List │ │ │
      │ │ │
      i10 : time isWellDefined R10
      │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc)
      │ │ │ + -- used 0.063962s (cpu); 0.0613665s (thread); 0s (gc)
      │ │ │  
      │ │ │  o10 = true
      │ │ │
      │ │ │
      i11 : time fVector R10
      │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc)
      │ │ │ + -- used 0.266068s (cpu); 0.0949922s (thread); 0s (gc)
      │ │ │  
      │ │ │  o11 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ @@ -182,15 +182,15 @@
      │ │ │  
      │ │ │  o12 : List
      │ │ │
      │ │ │
      i13 : time fVector R10
      │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc)
      │ │ │ + -- used 0.000441426s (cpu); 0.000236211s (thread); 0s (gc)
      │ │ │  
      │ │ │  o13 = HashTable{0 => 1 }
      │ │ │                  1 => 10
      │ │ │                  2 => 45
      │ │ │                  3 => 75
      │ │ │                  4 => 30
      │ │ │                  5 => 1
      │ │ │ ├── html2text {}
      │ │ │ │ @@ -71,19 +71,19 @@
      │ │ │ │  o8 : Matroid
      │ │ │ │  i9 : keys R10.cache
      │ │ │ │  
      │ │ │ │  o9 = {groundSet, rankFunction, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o9 : List
      │ │ │ │  i10 : time isWellDefined R10
      │ │ │ │ - -- used 0.050878s (cpu); 0.0526062s (thread); 0s (gc)
      │ │ │ │ + -- used 0.063962s (cpu); 0.0613665s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o10 = true
      │ │ │ │  i11 : time fVector R10
      │ │ │ │ - -- used 0.195193s (cpu); 0.0769082s (thread); 0s (gc)
      │ │ │ │ + -- used 0.266068s (cpu); 0.0949922s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o11 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ │ │ @@ -93,15 +93,15 @@
      │ │ │ │  
      │ │ │ │  o12 = {hyperplanes, flatsRelationsTable, rankFunction, ideal, ranks, flats,
      │ │ │ │        -----------------------------------------------------------------------
      │ │ │ │        groundSet, dual, storedRepresentation}
      │ │ │ │  
      │ │ │ │  o12 : List
      │ │ │ │  i13 : time fVector R10
      │ │ │ │ - -- used 0.000402855s (cpu); 0.000203472s (thread); 0s (gc)
      │ │ │ │ + -- used 0.000441426s (cpu); 0.000236211s (thread); 0s (gc)
      │ │ │ │  
      │ │ │ │  o13 = HashTable{0 => 1 }
      │ │ │ │                  1 => 10
      │ │ │ │                  2 => 45
      │ │ │ │                  3 => 75
      │ │ │ │                  4 => 30
      │ │ │ │                  5 => 1
      │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_all__Minors.html
      │ │ │ @@ -92,15 +92,15 @@
      │ │ │  
      │ │ │  o2 : Matroid
      │ │ │
      │ │ │
      i3 : elapsedTime L = allMinors(V, U25);
      │ │ │ - -- .0861244s elapsed
      │ │ │ + -- .0818794s elapsed │ │ │
      │ │ │
      i4 : #L
      │ │ │  
      │ │ │  o4 = 64
      │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ o1 : Matroid │ │ │ │ i2 : U25 = uniformMatroid(2,5) │ │ │ │ │ │ │ │ o2 = a "matroid" of rank 2 on 5 elements │ │ │ │ │ │ │ │ o2 : Matroid │ │ │ │ i3 : elapsedTime L = allMinors(V, U25); │ │ │ │ - -- .0861244s elapsed │ │ │ │ + -- .0818794s elapsed │ │ │ │ i4 : #L │ │ │ │ │ │ │ │ o4 = 64 │ │ │ │ i5 : netList L_{0..4} │ │ │ │ │ │ │ │ +----------+-------+ │ │ │ │ o5 = |set {5, 3}|set {2}| │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_get__Isos.html │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ │ │ o6 : Matroid │ │ │
      │ │ │
      i7 : time autF7 = getIsos(F7, F7);
      │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc)
      │ │ │ + -- used 0.19236s (cpu); 0.0966993s (thread); 0s (gc) │ │ │
      │ │ │
      i8 : #autF7
      │ │ │  
      │ │ │  o8 = 168
      │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ symmetric group S_7: │ │ │ │ i6 : F7 = specificMatroid "fano" │ │ │ │ │ │ │ │ o6 = a "matroid" of rank 3 on 7 elements │ │ │ │ │ │ │ │ o6 : Matroid │ │ │ │ i7 : time autF7 = getIsos(F7, F7); │ │ │ │ - -- used 0.142029s (cpu); 0.0648897s (thread); 0s (gc) │ │ │ │ + -- used 0.19236s (cpu); 0.0966993s (thread); 0s (gc) │ │ │ │ i8 : #autF7 │ │ │ │ │ │ │ │ o8 = 168 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between │ │ │ │ isomorphic matroids │ │ │ │ * _q_u_i_c_k_I_s_o_m_o_r_p_h_i_s_m_T_e_s_t -- quick checks for isomorphism between matroids │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_has__Minor.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 = false │ │ │
      │ │ │
      i3 : time hasMinor(M6, M5)
      │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc)
      │ │ │ + -- used 2.30913s (cpu); 1.43072s (thread); 0s (gc)
      │ │ │  
      │ │ │  o3 = true
      │ │ │
      │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ elements, a "matroid" of rank 5 on 15 elements) │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : hasMinor(M4, uniformMatroid(2,4)) │ │ │ │ │ │ │ │ o2 = false │ │ │ │ i3 : time hasMinor(M6, M5) │ │ │ │ - -- used 1.78938s (cpu); 1.28303s (thread); 0s (gc) │ │ │ │ + -- used 2.30913s (cpu); 1.43072s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_i_n_o_r -- minor of matroid │ │ │ │ * _i_s_B_i_n_a_r_y -- whether a matroid is representable over F_2 │ │ │ │ ********** WWaayyss ttoo uussee hhaassMMiinnoorr:: ********** │ │ │ │ * hasMinor(Matroid,Matroid) │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_isomorphism_lp__Matroid_cm__Matroid_rp.html │ │ │ @@ -118,15 +118,15 @@ │ │ │ │ │ │ o4 : Matroid
    │ │ │
    │ │ │
    i5 : time isomorphism(M5, minorM6)
    │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc)
    │ │ │ + -- used 0.0160114s (cpu); 0.015154s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{0 => 1}
    │ │ │                 1 => 0
    │ │ │                 2 => 3
    │ │ │                 3 => 2
    │ │ │                 4 => 6
    │ │ │                 5 => 5
    │ │ │ @@ -164,15 +164,15 @@
    │ │ │  
    │ │ │  o7 : Matroid
    │ │ │
    │ │ │
    i8 : time phi = isomorphism(N,M6)
    │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc)
    │ │ │ + -- used 5.5385s (cpu); 3.37185s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = HashTable{0 => 11 }
    │ │ │                 1 => 0
    │ │ │                 2 => 1
    │ │ │                 3 => 6
    │ │ │                 4 => 9
    │ │ │                 5 => 8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,15 +40,15 @@
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : minorM6 = minor(M6, set{8}, set{4,5,6,7})
    │ │ │ │  
    │ │ │ │  o4 = a "matroid" of rank 4 on 10 elements
    │ │ │ │  
    │ │ │ │  o4 : Matroid
    │ │ │ │  i5 : time isomorphism(M5, minorM6)
    │ │ │ │ - -- used 0.0208457s (cpu); 0.0227737s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0160114s (cpu); 0.015154s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{0 => 1}
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 3
    │ │ │ │                 3 => 2
    │ │ │ │                 4 => 6
    │ │ │ │                 5 => 5
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  o6 : HashTable
    │ │ │ │  i7 : N = relabel M6
    │ │ │ │  
    │ │ │ │  o7 = a "matroid" of rank 5 on 15 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : time phi = isomorphism(N,M6)
    │ │ │ │ - -- used 4.74954s (cpu); 3.07529s (thread); 0s (gc)
    │ │ │ │ + -- used 5.5385s (cpu); 3.37185s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = HashTable{0 => 11 }
    │ │ │ │                 1 => 0
    │ │ │ │                 2 => 1
    │ │ │ │                 3 => 6
    │ │ │ │                 4 => 9
    │ │ │ │                 5 => 8
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_quick__Isomorphism__Test.html
    │ │ │ @@ -137,15 +137,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc)
    │ │ │ + -- used 0.00311827s (cpu); 0.000731617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = false
    │ │ │
    │ │ │
    i11 : value oo === false
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,15 +51,15 @@
    │ │ │ │  o7 = a "matroid" of rank 7 on 11 elements
    │ │ │ │  
    │ │ │ │  o7 : Matroid
    │ │ │ │  i8 : R = ZZ[x,y]; tuttePolynomial(M0, R) == tuttePolynomial(M1, R)
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  i10 : time quickIsomorphismTest(M0, M1)
    │ │ │ │ - -- used 0.000871805s (cpu); 0.000546956s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00311827s (cpu); 0.000731617s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : value oo === false
    │ │ │ │  
    │ │ │ │  o11 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _i_s_o_m_o_r_p_h_i_s_m_(_M_a_t_r_o_i_d_,_M_a_t_r_o_i_d_) -- computes an isomorphism between
    │ │ ├── ./usr/share/doc/Macaulay2/Matroids/html/_set__Representation.html
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : elapsedTime fVector M
    │ │ │ - -- .0246909s elapsed
    │ │ │ + -- .0153488s elapsed
    │ │ │  
    │ │ │  o6 = HashTable{0 => 1 }
    │ │ │                 1 => 6
    │ │ │                 2 => 15
    │ │ │                 3 => 20
    │ │ │                 4 => 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -48,15 +48,15 @@
    │ │ │ │  o4 : Matrix QQ  <-- QQ
    │ │ │ │  i5 : keys M.cache
    │ │ │ │  
    │ │ │ │  o5 = {groundSet, rankFunction, storedRepresentation}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : elapsedTime fVector M
    │ │ │ │ - -- .0246909s elapsed
    │ │ │ │ + -- .0153488s elapsed
    │ │ │ │  
    │ │ │ │  o6 = HashTable{0 => 1 }
    │ │ │ │                 1 => 6
    │ │ │ │                 2 => 15
    │ │ │ │                 3 => 20
    │ │ │ │                 4 => 1
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/___Hybrid.out
    │ │ │ @@ -5,16 +5,16 @@
    │ │ │  i2 : R = ZZ/101[w..z];
    │ │ │  
    │ │ │  i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2);
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │  
    │ │ │  i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000976812)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0138253)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000020849)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .00127335)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0358716)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000417584)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020544)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000617178
    │ │ │ - -- .0423566s elapsed
    │ │ │ + --  Time taken : .000791597
    │ │ │ + -- .0293258s elapsed
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical.out
    │ │ │ @@ -30,21 +30,21 @@
    │ │ │  
    │ │ │               2        2   3     2
    │ │ │  o5 = ideal (c , a*c, a , b , a*b )
    │ │ │  
    │ │ │  o5 : Ideal of R
    │ │ │  
    │ │ │  i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000461911s elapsed
    │ │ │ + -- .000592299s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0117995s elapsed
    │ │ │ + -- .0151319s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/example-output/_radical__Containment.out
    │ │ │ @@ -29,22 +29,22 @@
    │ │ │  o5 = 840
    │ │ │  
    │ │ │  i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .102182s elapsed
    │ │ │ + -- .0941091s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │  
    │ │ │  i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00174825s elapsed
    │ │ │ + -- .00232212s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │  
    │ │ │  i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00126877s elapsed
    │ │ │ + -- .00166052s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/___Hybrid.html
    │ │ │ @@ -72,21 +72,21 @@
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │
    │ │ │
    i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid{Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2);
    │ │ │ -  Strategy: Linear            (time .000976812)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Birational        (time .0138253)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: Factorization     (time .000355486)  #primes = 0 #prunedViaCodim = 0
    │ │ │ -  Strategy: DecomposeMonomials(time .000020849)  #primes = 1 #prunedViaCodim = 0
    │ │ │ +  Strategy: Linear            (time .00127335)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Birational        (time .0358716)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: Factorization     (time .000417584)  #primes = 0 #prunedViaCodim = 0
    │ │ │ +  Strategy: DecomposeMonomials(time .000020544)  #primes = 1 #prunedViaCodim = 0
    │ │ │   -- Converting annotated ideals to ideals and selecting minimal primes...
    │ │ │ - --  Time taken : .000617178
    │ │ │ - -- .0423566s elapsed
    │ │ │ + -- Time taken : .000791597 │ │ │ + -- .0293258s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -11,24 +11,23 @@ │ │ │ │ i1 : debug MinimalPrimes │ │ │ │ i2 : R = ZZ/101[w..z]; │ │ │ │ i3 : I = ideal(w*x^2-42*y*z, x^6+12*w*y+x^3*z, w^2-47*x^4*z-47*x*z^2); │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : elapsedTime minimalPrimes(ideal I_*, Strategy => Hybrid │ │ │ │ {Linear,Birational,Factorization,DecomposeMonomials}, Verbosity => 2); │ │ │ │ - Strategy: Linear (time .000976812) #primes = 0 #prunedViaCodim = │ │ │ │ + Strategy: Linear (time .00127335) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Birational (time .0358716) #primes = 0 #prunedViaCodim = 0 │ │ │ │ + Strategy: Factorization (time .000417584) #primes = 0 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ - Strategy: Birational (time .0138253) #primes = 0 #prunedViaCodim = 0 │ │ │ │ - Strategy: Factorization (time .000355486) #primes = 0 #prunedViaCodim = │ │ │ │ -0 │ │ │ │ - Strategy: DecomposeMonomials(time .000020849) #primes = 1 #prunedViaCodim = │ │ │ │ + Strategy: DecomposeMonomials(time .000020544) #primes = 1 #prunedViaCodim = │ │ │ │ 0 │ │ │ │ -- Converting annotated ideals to ideals and selecting minimal primes... │ │ │ │ - -- Time taken : .000617178 │ │ │ │ - -- .0423566s elapsed │ │ │ │ + -- Time taken : .000791597 │ │ │ │ + -- .0293258s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _p_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n_(_._._._,_S_t_r_a_t_e_g_y_=_>_._._._) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _H_y_b_r_i_d is a _s_e_l_f_ _i_n_i_t_i_a_l_i_z_i_n_g_ _t_y_p_e, with ancestor classes _L_i_s_t < │ │ │ │ _V_i_s_i_b_l_e_L_i_s_t < _B_a_s_i_c_L_i_s_t < _T_h_i_n_g. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical.html │ │ │ @@ -131,25 +131,25 @@ │ │ │ │ │ │ o5 : Ideal of R
    │ │ │
    │ │ │
    i6 : elapsedTime radical(ideal I_*, Strategy => Monomial)
    │ │ │ - -- .000461911s elapsed
    │ │ │ + -- .000592299s elapsed
    │ │ │  
    │ │ │  o6 = ideal (a, b, c)
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │
    │ │ │
    i7 : elapsedTime radical(ideal I_*, Unmixed => true)
    │ │ │ - -- .0117995s elapsed
    │ │ │ + -- .0151319s elapsed
    │ │ │  
    │ │ │  o7 = ideal (c, b, a)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -62,21 +62,21 @@ │ │ │ │ i5 : I = intersect(ideal(a^2,b^2,c), ideal(a,b^3,c^2)) │ │ │ │ │ │ │ │ 2 2 3 2 │ │ │ │ o5 = ideal (c , a*c, a , b , a*b ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : elapsedTime radical(ideal I_*, Strategy => Monomial) │ │ │ │ - -- .000461911s elapsed │ │ │ │ + -- .000592299s elapsed │ │ │ │ │ │ │ │ o6 = ideal (a, b, c) │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime radical(ideal I_*, Unmixed => true) │ │ │ │ - -- .0117995s elapsed │ │ │ │ + -- .0151319s elapsed │ │ │ │ │ │ │ │ o7 = ideal (c, b, a) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ For another example, see _P_r_i_m_a_r_y_D_e_c_o_m_p_o_s_i_t_i_o_n. │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ Eisenbud, Huneke, Vasconcelos, Invent. Math. 110 207-235 (1992). │ │ ├── ./usr/share/doc/Macaulay2/MinimalPrimes/html/_radical__Containment.html │ │ │ @@ -125,31 +125,31 @@ │ │ │ │ │ │ o6 = true
    │ │ │
    │ │ │
    i7 : elapsedTime radicalContainment(x_0, I)
    │ │ │ - -- .102182s elapsed
    │ │ │ + -- .0941091s elapsed
    │ │ │  
    │ │ │  o7 = true
    │ │ │
    │ │ │
    i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar")
    │ │ │ - -- .00174825s elapsed
    │ │ │ + -- .00232212s elapsed
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar")
    │ │ │ - -- .00126877s elapsed
    │ │ │ + -- .00166052s elapsed
    │ │ │  
    │ │ │  o9 = false
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -50,23 +50,23 @@ │ │ │ │ i5 : D = product(I_*/degree/sum) │ │ │ │ │ │ │ │ o5 = 840 │ │ │ │ i6 : x_0^(D-1) % I != 0 and x_0^D % I == 0 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime radicalContainment(x_0, I) │ │ │ │ - -- .102182s elapsed │ │ │ │ + -- .0941091s elapsed │ │ │ │ │ │ │ │ o7 = true │ │ │ │ i8 : elapsedTime radicalContainment(x_0, I, Strategy => "Kollar") │ │ │ │ - -- .00174825s elapsed │ │ │ │ + -- .00232212s elapsed │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : elapsedTime radicalContainment(x_n, I, Strategy => "Kollar") │ │ │ │ - -- .00126877s elapsed │ │ │ │ + -- .00166052s elapsed │ │ │ │ │ │ │ │ o9 = false │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ │ │ ********** WWaayyss ttoo uussee rraaddiiccaallCCoonnttaaiinnmmeenntt:: ********** │ │ │ │ * radicalContainment(Ideal,Ideal) │ │ │ │ * radicalContainment(RingElement,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/example-output/_multi__Rees__Ideal.out │ │ │ @@ -57,29 +57,29 @@ │ │ │ i9 : J = ideal vars U │ │ │ │ │ │ o9 = ideal (a, b, c) │ │ │ │ │ │ o9 : Ideal of U │ │ │ │ │ │ i10 : time multiReesIdeal J │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc) │ │ │ + -- used 0.385503s (cpu); 0.119379s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o10 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ │ 0 2 1 0 2 0 1 2 0 1 2 │ │ │ │ │ │ o10 : Ideal of U[X ..X ] │ │ │ 0 2 │ │ │ │ │ │ i11 : time multiReesIdeal (J, a) │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc) │ │ │ + -- used 0.105155s (cpu); 0.0317546s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o11 = ideal (c*X - b*X , b*X - a*X , a*X - c*X , c*X - a*X , b*X - c*X , │ │ │ 1 2 1 2 1 2 0 2 0 2 │ │ │ ----------------------------------------------------------------------- │ │ │ 2 2 2 │ │ │ a*X - b*X , X - X X , X X - X , X - X X ) │ │ ├── ./usr/share/doc/Macaulay2/MixedMultiplicity/html/_multi__Rees__Ideal.html │ │ │ @@ -173,15 +173,15 @@ │ │ │ │ │ │ o9 : Ideal of U
    │ │ │
    │ │ │
    i10 : time multiReesIdeal J
    │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc)
    │ │ │ + -- used 0.385503s (cpu); 0.119379s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ @@ -190,15 +190,15 @@
    │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │                    0   2
    │ │ │
    │ │ │
    i11 : time multiReesIdeal (J, a)
    │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc)
    │ │ │ + -- used 0.105155s (cpu); 0.0317546s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                               
    │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │                  1      2     1      2     1      2     0      2     0      2 
    │ │ │        -----------------------------------------------------------------------
    │ │ │                      2                 2   2
    │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -79,28 +79,28 @@
    │ │ │ │  i8 : U = T/minors(2,m);
    │ │ │ │  i9 : J = ideal vars U
    │ │ │ │  
    │ │ │ │  o9 = ideal (a, b, c)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of U
    │ │ │ │  i10 : time multiReesIdeal J
    │ │ │ │ - -- used 0.102055s (cpu); 0.0642847s (thread); 0s (gc)
    │ │ │ │ + -- used 0.385503s (cpu); 0.119379s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o10 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ │ │           0      2   1    0 2   0 1    2   0    1 2
    │ │ │ │  
    │ │ │ │  o10 : Ideal of U[X ..X ]
    │ │ │ │                    0   2
    │ │ │ │  i11 : time multiReesIdeal (J, a)
    │ │ │ │ - -- used 0.0842922s (cpu); 0.0247612s (thread); 0s (gc)
    │ │ │ │ + -- used 0.105155s (cpu); 0.0317546s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o11 = ideal (c*X  - b*X , b*X  - a*X , a*X  - c*X , c*X  - a*X , b*X  - c*X ,
    │ │ │ │                  1      2     1      2     1      2     0      2     0      2
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │                      2                 2   2
    │ │ │ │        a*X  - b*X , X  - X X , X X  - X , X  - X X )
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/example-output/_deform__M__C__M__Module_lp__Module_rp.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  
    │ │ │  o7 = image | x2 y2 |
    │ │ │  
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │  
    │ │ │  i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ + -- used 0.63021s (cpu); 0.402966s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -70,15 +70,15 @@
    │ │ │  o10 = cokernel | x2 y2  |
    │ │ │                 | -y -x2 |
    │ │ │  
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │  
    │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ + -- used 0.856374s (cpu); 0.602717s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/ModuleDeformations/html/_deform__M__C__M__Module_lp__Module_rp.html
    │ │ │ @@ -145,15 +145,15 @@
    │ │ │                               1
    │ │ │  o7 : R-module, submodule of R
    │ │ │
    │ │ │
    i8 : (S,N) = time deformMCMModule N0 
    │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ + -- used 0.63021s (cpu); 0.402966s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │                    {8} | xxi_4-y+xi_3                                       
    │ │ │       ------------------------------------------------------------------------
    │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │  
    │ │ │ @@ -186,15 +186,15 @@
    │ │ │                               2
    │ │ │  o10 : R-module, quotient of R
    │ │ │
    │ │ │
    i11 : (S',N') = time deformMCMModule N0'
    │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ + -- used 0.856374s (cpu); 0.602717s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │                      | xxi_4-y+xi_3                                       
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │        -x2-xxi_2-xi_1                             |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -70,15 +70,15 @@
    │ │ │ │  i7 : N0 = module ideal (x^2,y^2)
    │ │ │ │  
    │ │ │ │  o7 = image | x2 y2 |
    │ │ │ │  
    │ │ │ │                               1
    │ │ │ │  o7 : R-module, submodule of R
    │ │ │ │  i8 : (S,N) = time deformMCMModule N0
    │ │ │ │ - -- used 0.481255s (cpu); 0.333746s (thread); 0s (gc)
    │ │ │ │ + -- used 0.63021s (cpu); 0.402966s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = (S, cokernel {6} | x2-xxi_2-xi_1+xi_2^2-yxi_4^2-2xi_3xi_4^2+xi_2xi_4^3
    │ │ │ │                    {8} | xxi_4-y+xi_3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       xyxi_4+2xxi_3xi_4-xxi_2xi_4^2+y2+yxi_3+xi_3^2-xi_1xi_4^2 |)
    │ │ │ │       -x2-xxi_2-xi_1                                           |
    │ │ │ │  
    │ │ │ │ @@ -103,15 +103,15 @@
    │ │ │ │  
    │ │ │ │  o10 = cokernel | x2 y2  |
    │ │ │ │                 | -y -x2 |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o10 : R-module, quotient of R
    │ │ │ │  i11 : (S',N') = time deformMCMModule N0'
    │ │ │ │ - -- used 0.648667s (cpu); 0.498693s (thread); 0s (gc)
    │ │ │ │ + -- used 0.856374s (cpu); 0.602717s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = (S', cokernel | x2-xxi_4^3-xxi_2+xi_2xi_4^3-3xi_3xi_4^2+xi_2^2-xi_1
    │ │ │ │                      | xxi_4-y+xi_3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x2xi_4^2+xyxi_4+2xxi_3xi_4+y2+yxi_3+xi_3^2 |)
    │ │ │ │        -x2-xxi_2-xi_1                             |
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_dynamic__Flower__Solve.out
    │ │ │ @@ -3,27 +3,27 @@
    │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │  
    │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │  
    │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │  
    │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00296506s elapsed
    │ │ │ - -- .00282693s elapsed
    │ │ │ - -- .000335866s elapsed
    │ │ │ - -- .0027534s elapsed
    │ │ │ - -- .00295554s elapsed
    │ │ │ - -- .000235038s elapsed
    │ │ │ - -- .00283445s elapsed
    │ │ │ - -- .00295772s elapsed
    │ │ │ - -- .000236902s elapsed
    │ │ │ - -- .00296333s elapsed
    │ │ │ - -- .0029042s elapsed
    │ │ │ - -- .000232784s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .0042466s elapsed
    │ │ │ + -- .00415648s elapsed
    │ │ │ + -- .000495125s elapsed
    │ │ │ + -- .00413283s elapsed
    │ │ │ + -- .00421453s elapsed
    │ │ │ + -- .000389871s elapsed
    │ │ │ + -- .00379918s elapsed
    │ │ │ + -- .00392005s elapsed
    │ │ │ + -- .000342196s elapsed
    │ │ │ + -- .00428962s elapsed
    │ │ │ + -- .00376235s elapsed
    │ │ │ + -- .000332612s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49521-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/example-output/_monodromy__Group.out
    │ │ │ @@ -15,128 +15,128 @@
    │ │ │  
    │ │ │  i7 : dLoss = diff(varMatrix, gateMatrix{{loss}});
    │ │ │  
    │ │ │  i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │  
    │ │ │  i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 :
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_dynamic__Flower__Solve.html
    │ │ │ @@ -96,27 +96,27 @@
    │ │ │              
    │ │ │
    i3 : (p0, x0) = createSeedPair polys;
    │ │ │
    │ │ │
    i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ - -- .00296506s elapsed
    │ │ │ - -- .00282693s elapsed
    │ │ │ - -- .000335866s elapsed
    │ │ │ - -- .0027534s elapsed
    │ │ │ - -- .00295554s elapsed
    │ │ │ - -- .000235038s elapsed
    │ │ │ - -- .00283445s elapsed
    │ │ │ - -- .00295772s elapsed
    │ │ │ - -- .000236902s elapsed
    │ │ │ - -- .00296333s elapsed
    │ │ │ - -- .0029042s elapsed
    │ │ │ - -- .000232784s elapsed
    │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ + -- .0042466s elapsed
    │ │ │ + -- .00415648s elapsed
    │ │ │ + -- .000495125s elapsed
    │ │ │ + -- .00413283s elapsed
    │ │ │ + -- .00421453s elapsed
    │ │ │ + -- .000389871s elapsed
    │ │ │ + -- .00379918s elapsed
    │ │ │ + -- .00392005s elapsed
    │ │ │ + -- .000342196s elapsed
    │ │ │ + -- .00428962s elapsed
    │ │ │ + -- .00376235s elapsed
    │ │ │ + -- .000332612s elapsed
    │ │ │ +--backup directory created: /tmp/M2-49521-0/1
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 2
    │ │ │  found 1 points in the fiber so far
    │ │ │    H01: 1
    │ │ │    H10: 1
    │ │ │  number of paths tracked: 4
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -22,27 +22,27 @@
    │ │ │ │            o npaths, an _i_n_t_e_g_e_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Output is verbose. For other dynamic strategies, see _M_o_n_o_d_r_o_m_y_S_o_l_v_e_r_O_p_t_i_o_n_s.
    │ │ │ │  i1 : R = CC[a,b,c,d][x,y];
    │ │ │ │  i2 : polys = polySystem {a*x+b*y^2,c*x*y+d};
    │ │ │ │  i3 : (p0, x0) = createSeedPair polys;
    │ │ │ │  i4 : (L, npaths) = dynamicFlowerSolve(polys.PolyMap,p0,{x0})
    │ │ │ │ - -- .00296506s elapsed
    │ │ │ │ - -- .00282693s elapsed
    │ │ │ │ - -- .000335866s elapsed
    │ │ │ │ - -- .0027534s elapsed
    │ │ │ │ - -- .00295554s elapsed
    │ │ │ │ - -- .000235038s elapsed
    │ │ │ │ - -- .00283445s elapsed
    │ │ │ │ - -- .00295772s elapsed
    │ │ │ │ - -- .000236902s elapsed
    │ │ │ │ - -- .00296333s elapsed
    │ │ │ │ - -- .0029042s elapsed
    │ │ │ │ - -- .000232784s elapsed
    │ │ │ │ ---backup directory created: /tmp/M2-33427-0/1
    │ │ │ │ + -- .0042466s elapsed
    │ │ │ │ + -- .00415648s elapsed
    │ │ │ │ + -- .000495125s elapsed
    │ │ │ │ + -- .00413283s elapsed
    │ │ │ │ + -- .00421453s elapsed
    │ │ │ │ + -- .000389871s elapsed
    │ │ │ │ + -- .00379918s elapsed
    │ │ │ │ + -- .00392005s elapsed
    │ │ │ │ + -- .000342196s elapsed
    │ │ │ │ + -- .00428962s elapsed
    │ │ │ │ + -- .00376235s elapsed
    │ │ │ │ + -- .000332612s elapsed
    │ │ │ │ +--backup directory created: /tmp/M2-49521-0/1
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 2
    │ │ │ │  found 1 points in the fiber so far
    │ │ │ │    H01: 1
    │ │ │ │    H10: 1
    │ │ │ │  number of paths tracked: 4
    │ │ ├── ./usr/share/doc/Macaulay2/MonodromySolver/html/_monodromy__Group.html
    │ │ │ @@ -118,131 +118,131 @@
    │ │ │                
    i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
    │ │ │
    │ │ │
    i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})
    │ │ │  
    │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19,
    │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18,
    │ │ │ +     4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18,
    │ │ │ +     18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    │ │ │ +     18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8,
    │ │ │ +     3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │ +     2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16,
    │ │ │ +     10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15,
    │ │ │ +     7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6,
    │ │ │ +     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15,
    │ │ │ +     11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5,
    │ │ │ +     4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4,
    │ │ │ +     14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7,
    │ │ │ +     8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1,
    │ │ │ +     10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6},
    │ │ │ +     19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18,
    │ │ │ +     1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
    │ │ │ +     {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12,
    │ │ │ +     20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15,
    │ │ │ +     19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0,
    │ │ │ +     18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8,
    │ │ │ +     16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17,
    │ │ │ +     6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10,
    │ │ │ +     14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10,
    │ │ │ +     10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4,
    │ │ │ +     3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5,
    │ │ │ +     11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1,
    │ │ │ +     1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5,
    │ │ │ +     11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19,
    │ │ │ +     5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3,
    │ │ │ +     12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2,
    │ │ │ +     11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12,
    │ │ │ +     4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6},
    │ │ │ +     3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4,
    │ │ │ +     2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18,
    │ │ │ +     {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │ +     4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │ +     19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10,
    │ │ │ +     18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16,
    │ │ │ +     16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17,
    │ │ │ +     18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5,
    │ │ │ +     13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11,
    │ │ │ +     13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0,
    │ │ │ +     14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1,
    │ │ │ +     11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19,
    │ │ │ +     15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7,
    │ │ │ +     8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9,
    │ │ │ +     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4,
    │ │ │ +     11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19,
    │ │ │ +     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2,
    │ │ │ +     3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4,
    │ │ │ +     3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20},
    │ │ │ +     1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18,
    │ │ │ +     {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18,
    │ │ │ +     6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13,
    │ │ │ +     18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     20, 6, 9, 4}}
    │ │ │ +     18, 9, 4, 6}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,131 +32,131 @@ │ │ │ │ i4 : varMatrix = gateMatrix{{t_1,t_2}}; │ │ │ │ i5 : phi = transpose gateMatrix{{t_1^3, t_1^2*t_2, t_1*t_2^2, t_2^3}}; │ │ │ │ i6 : loss = sum for i from 0 to 3 list (u_i - phi_(i,0))^2; │ │ │ │ i7 : dLoss = diff(varMatrix, gateMatrix{{loss}}); │ │ │ │ i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss); │ │ │ │ i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10}) │ │ │ │ │ │ │ │ -o9 = {{2, 0, 11, 3, 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, │ │ │ │ +o9 = {{16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, │ │ │ │ + 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, 12, 10, 15, 13, 6, 17, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, │ │ │ │ + 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 19, 15, 17, 3}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, │ │ │ │ + 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 0, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 16, 17, 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, │ │ │ │ + 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, 15, 8, 10, 11, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 12, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ + 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, 7, 6, 11, 1, 9, 0, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, │ │ │ │ + 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 7, 8, 15, 14, 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, │ │ │ │ + 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, │ │ │ │ + 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, 16, 14, 3, 5, 2, 7, 8, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 2, 13, 11, 9, 8, 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, │ │ │ │ + 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, {12, 16, 7, 17, 10, 9, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, │ │ │ │ + 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 11, 2, 3, 10, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 7, 10, 4, 13, 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, │ │ │ │ + 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, 19, 20}, {16, 14, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 2, 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, │ │ │ │ + 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, 4}, {2, 0, 11, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 16, 9, 0, 4, 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, │ │ │ │ + 10, 4, 14, 6, 5, 1, 13, 9, 7, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, │ │ │ │ + 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {17, 16, 14, 9, 8, 7, 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, │ │ │ │ + 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 4, 6}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, │ │ │ │ + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 19, 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, │ │ │ │ + 20}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 17, 18, 19, 20}, {0, 9, 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, │ │ │ │ + 19, 20}, {0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 7, 12, 13, 14, 15, 16, 17, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 17, 18, 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, │ │ │ │ + 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 19, 13, 20, 6, 9, 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, │ │ │ │ + 16, 18, 9, 4, 6}, {3, 1, 12, 4, 0, 11, 13, 5, 2, 16, 10, 7, 8, 15, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 15, 12, 17, 18, 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, │ │ │ │ + 6, 17, 9, 18, 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 2, 13, 20, 8, 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, │ │ │ │ + 14, 20, 16, 18, 9, 4, 6}, {1, 7, 12, 19, 16, 4, 0, 6, 2, 13, 11, 9, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, │ │ │ │ + 10, 5, 20, 14, 18, 3, 15, 17}, {1, 16, 12, 19, 11, 15, 5, 17, 2, 7, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, │ │ │ │ + 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {2, 0, 1, 3, 6, 5, 9, 7, 10, 4, 13, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, │ │ │ │ + 11, 14, 8, 16, 15, 12, 17, 18, 19, 20}, {3, 16, 12, 4, 10, 11, 14, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 8, 6, 10, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, │ │ │ │ + 1, 0, 7, 8, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 1, 7, 17, 16, 9, 0, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 4, 10, 2, 6, 11, 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, │ │ │ │ + 11, 13, 10, 6, 5, 2, 14, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, │ │ │ │ + 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {17, 16, 14, 9, 8, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 11, 14, 5, 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, │ │ │ │ + 12, 11, 1, 2, 0, 5, 10, 3, 13, 4, 15, 6, 20, 18, 19}, {1, 16, 12, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, │ │ │ │ + 11, 15, 5, 17, 2, 7, 0, 3, 8, 10, 13, 20, 14, 18, 9, 4, 6}, {0, 1, 2, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, │ │ │ │ + 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {2, 0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 1, 3, 19, 0, 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, │ │ │ │ + 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 18, 19, 20}, {0, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, │ │ │ │ + 2, 3, 10, 5, 14, 7, 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 6}, {4, 1, 2, 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, │ │ │ │ + {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, 20, 6, 9, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ + 4}, {2, 1, 0, 3, 4, 5, 6, 7, 13, 9, 10, 11, 16, 8, 14, 15, 12, 17, 18, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 18, 9, 4, 6}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ + 19, 20}, {12, 16, 14, 19, 4, 3, 6, 15, 1, 9, 0, 17, 10, 2, 13, 20, 8, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 15, 6, 9, 4}, {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, │ │ │ │ + 18, 7, 11, 5}, {0, 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 16, 18, 9, 4, 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, │ │ │ │ + 16, 15, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 12, 17, 20, 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, │ │ │ │ + 18, 16, 19, 15, 17, 3}, {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 13, 14, 20, 16, 18, 9, 4, 6}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, │ │ │ │ + 13, 3, 8, 15, 20, 18, 19}, {0, 1, 2, 3, 9, 11, 4, 5, 8, 6, 10, 7, 12, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 0, 10, 19, 13, 20, 6, 9, 4}, {0, 1, 2, 20, 6, 5, 9, 7, 8, 4, 10, 11, │ │ │ │ + 13, 14, 15, 16, 17, 18, 19, 20}, {16, 7, 12, 19, 9, 1, 4, 10, 2, 6, 11, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 13, 14, 18, 16, 19, 15, 17, 3}, {3, 16, 14, 4, 5, 2, 7, 8, 1, 11, 0, │ │ │ │ + 14, 8, 0, 5, 20, 13, 18, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 10, 15, 13, 6, 17, 9, 18, 19, 20}, {12, 16, 14, 19, 4, 7, 6, 11, 1, │ │ │ │ + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 16, 3, 19, 10, 11, 14, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 9, 0, 5, 10, 2, 13, 20, 8, 18, 3, 15, 17}, {16, 1, 7, 17, 12, 18, 2, 19, │ │ │ │ + 15, 1, 0, 7, 17, 2, 13, 20, 8, 18, 9, 4, 6}, {0, 9, 2, 3, 10, 5, 14, 7, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 11, 8, 10, 20, 5, 0, 14, 3, 13, 15, 6, 9, 4}, {0, 1, 3, 19, 12, 5, 2, 7, │ │ │ │ + 8, 1, 4, 11, 12, 13, 6, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 3, 4, 5, 6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 15, 8, 10, 11, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {12, 16, 7, 17, 10, 9, │ │ │ │ + 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {12, 1, 3, 19, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 18, 19, 20}, {12, 16, 14, 17, 4, │ │ │ │ + 11, 13, 5, 15, 16, 10, 7, 17, 2, 14, 20, 8, 18, 9, 4, 6}, {0, 1, 3, 19, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 7, 6, 11, 1, 9, 0, 5, 10, 2, 13, 3, 8, 15, 20, 18, 19}, {0, 1, 3, 19, │ │ │ │ + 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {4, 1, 2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, 1, 2, │ │ │ │ + 3, 0, 5, 13, 7, 8, 16, 10, 11, 12, 6, 14, 15, 9, 17, 18, 19, 20}, {0, 1, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 5, 9, 7, 8, 4, 10, 11, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {4, │ │ │ │ + 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, 18, 9, 4, 6}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 16, 14, 3, 5, 2, 7, 8, 1, 11, 0, 12, 10, 6, 13, 15, 9, 17, 18, 19, 20}, │ │ │ │ + 1, 7, 17, 12, 18, 2, 19, 11, 8, 10, 20, 5, 13, 14, 3, 16, 15, 6, 9, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {12, 16, 7, 17, 10, 9, 14, 4, 11, 1, 0, 6, 5, 2, 13, 3, 8, 15, 20, 18, │ │ │ │ + {0, 14, 12, 19, 11, 15, 5, 17, 2, 7, 1, 3, 8, 13, 10, 20, 16, 18, 9, 4, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19}, {0, 11, 2, 3, 10, 4, 14, 6, 8, 1, 5, 9, 12, 13, 7, 15, 16, 17, 18, │ │ │ │ + 6}, {2, 0, 9, 3, 10, 5, 14, 7, 4, 1, 13, 11, 6, 8, 16, 15, 12, 17, 20, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 19, 20}, {16, 14, 17, 18, 8, 7, 12, 11, 3, 2, 1, 5, 15, 0, 10, 19, 13, │ │ │ │ + 18, 19}, {0, 1, 3, 19, 12, 11, 2, 5, 15, 8, 10, 7, 17, 13, 14, 20, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 20, 6, 9, 4}} │ │ │ │ + 18, 9, 4, 6}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ This is still somewhat experimental. │ │ │ │ ********** WWaayyss ttoo uussee mmoonnooddrroommyyGGrroouupp:: ********** │ │ │ │ * monodromyGroup(System) │ │ │ │ * monodromyGroup(System,AbstractPoint,List) │ │ ├── ./usr/share/doc/Macaulay2/Msolve/example-output/___Msolve.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i2 : I = ideal(x, y, z) │ │ │ │ │ │ o2 = ideal (x, y, z) │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : msolveGB(I, Verbosity => 2, Threads => 6) │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/M2-53632-0/0-out.ms │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84642-0/0-in.ms -o /tmp/M2-84642-0/0-out.ms │ │ │ │ │ │ --------------- INPUT DATA --------------- │ │ │ #variables 3 │ │ │ #equations 3 │ │ │ #invalid equations 0 │ │ │ field characteristic 0 │ │ │ homogeneous input? 1 │ │ │ @@ -28,15 +28,15 @@ │ │ │ initial hash table size 131072 (2^17) │ │ │ max pair selection ALL │ │ │ reduce gb 1 │ │ │ #threads 6 │ │ │ info level 2 │ │ │ generate pbm files 0 │ │ │ ------------------------------------------ │ │ │ -Initial prime = 1196244169 │ │ │ +Initial prime = 1117130281 │ │ │ │ │ │ Legend for f4 information │ │ │ -------------------------------------------------------- │ │ │ deg current degree of pairs selected in this round │ │ │ sel number of pairs selected in this round │ │ │ pairs total number of pairs in pair list │ │ │ mat matrix dimensions (# rows x # columns) │ │ │ @@ -46,25 +46,25 @@ │ │ │ time(rd) time of the current f4 round in seconds given │ │ │ for real and cpu time │ │ │ -------------------------------------------------------- │ │ │ │ │ │ deg sel pairs mat density new data time(rd) in sec (real|cpu) │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ -reduce final basis 3 x 3 33.33% 3 new 0 zero 0.02 | 0.07 │ │ │ +reduce final basis 3 x 3 33.33% 3 new 0 zero 0.00 | 0.00 │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -overall(elapsed) 0.06 sec │ │ │ -overall(cpu) 0.17 sec │ │ │ +overall(elapsed) 0.00 sec │ │ │ +overall(cpu) 0.01 sec │ │ │ select 0.00 sec 0.0% │ │ │ -symbolic prep. 0.00 sec 0.0% │ │ │ -update 0.03 sec 57.3% │ │ │ -convert 0.02 sec 42.4% │ │ │ -linear algebra 0.00 sec 0.0% │ │ │ +symbolic prep. 0.00 sec 0.2% │ │ │ +update 0.00 sec 87.1% │ │ │ +convert 0.00 sec 4.0% │ │ │ +linear algebra 0.00 sec 0.5% │ │ │ reduce gb 0.00 sec 0.0% │ │ │ ----------------------------------------- │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ size of basis 3 │ │ │ #terms in basis 3 │ │ │ #pairs reduced 0 │ │ │ @@ -78,18 +78,18 @@ │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ---------- COMPUTATIONAL DATA ----------- │ │ │ [3] │ │ │ #polynomials to lift 3 │ │ │ ----------------------------------------- │ │ │ -New prime = 1107170621 │ │ │ +New prime = 1157291321 │ │ │ │ │ │ ---------------- TIMINGS ---------------- │ │ │ -multi-mod overall(elapsed) 0.02 sec │ │ │ +multi-mod overall(elapsed) 0.00 sec │ │ │ learning phase 0.00 Gops/sec │ │ │ application phase 0.00 Gops/sec │ │ │ ----------------------------------------- │ │ │ │ │ │ multi-modular steps │ │ │ ------------------------------------------------------------------------------------------------------ │ │ │ {1}{2}<100.00%> │ │ │ @@ -105,15 +105,15 @@ │ │ │ ---------------- TIMINGS ---------------- │ │ │ CRT (elapsed) 0.00 sec │ │ │ ratrecon(elapsed) 0.00 sec │ │ │ ----------------------------------------- │ │ │ │ │ │ │ │ │ ------------------------------------------------------------------------------------ │ │ │ -msolve overall time 0.19 sec (elapsed) / 0.49 sec (cpu) │ │ │ +msolve overall time 0.01 sec (elapsed) / 0.04 sec (cpu) │ │ │ ------------------------------------------------------------------------------------ │ │ │ │ │ │ o3 = | z y x | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix R <-- R │ │ ├── ./usr/share/doc/Macaulay2/Msolve/html/index.html │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : msolveGB(I, Verbosity => 2, Threads => 6) 
    │ │ │ - -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-53632-0/0-in.ms -o /tmp/M2-53632-0/0-out.ms
    │ │ │ + -- running: /usr/bin/msolve -g 2 -t 6 -v 2 -f /tmp/M2-84642-0/0-in.ms -o /tmp/M2-84642-0/0-out.ms
    │ │ │  
    │ │ │  --------------- INPUT DATA ---------------
    │ │ │  #variables                       3
    │ │ │  #equations                       3
    │ │ │  #invalid equations               0
    │ │ │  field characteristic             0
    │ │ │  homogeneous input?               1
    │ │ │ @@ -97,15 +97,15 @@
    │ │ │  initial hash table size     131072 (2^17)
    │ │ │  max pair selection             ALL
    │ │ │  reduce gb                        1
    │ │ │  #threads                         6
    │ │ │  info level                       2
    │ │ │  generate pbm files               0
    │ │ │  ------------------------------------------
    │ │ │ -Initial prime = 1196244169
    │ │ │ +Initial prime = 1117130281
    │ │ │  
    │ │ │  Legend for f4 information
    │ │ │  --------------------------------------------------------
    │ │ │  deg       current degree of pairs selected in this round
    │ │ │  sel       number of pairs selected in this round
    │ │ │  pairs     total number of pairs in pair list
    │ │ │  mat       matrix dimensions (# rows x # columns)
    │ │ │ @@ -115,25 +115,25 @@
    │ │ │  time(rd)  time of the current f4 round in seconds given
    │ │ │            for real and cpu time
    │ │ │  --------------------------------------------------------
    │ │ │  
    │ │ │  deg     sel   pairs        mat          density            new data         time(rd) in sec (real|cpu)
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │ -reduce final basis        3 x 3          33.33%        3 new       0 zero         0.02 | 0.07         
    │ │ │ +reduce final basis        3 x 3          33.33%        3 new       0 zero         0.00 | 0.00         
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -overall(elapsed)        0.06 sec
    │ │ │ -overall(cpu)            0.17 sec
    │ │ │ +overall(elapsed)        0.00 sec
    │ │ │ +overall(cpu)            0.01 sec
    │ │ │  select                  0.00 sec   0.0%
    │ │ │ -symbolic prep.          0.00 sec   0.0%
    │ │ │ -update                  0.03 sec  57.3%
    │ │ │ -convert                 0.02 sec  42.4%
    │ │ │ -linear algebra          0.00 sec   0.0%
    │ │ │ +symbolic prep.          0.00 sec   0.2%
    │ │ │ +update                  0.00 sec  87.1%
    │ │ │ +convert                 0.00 sec   4.0%
    │ │ │ +linear algebra          0.00 sec   0.5%
    │ │ │  reduce gb               0.00 sec   0.0%
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  size of basis                     3
    │ │ │  #terms in basis                   3
    │ │ │  #pairs reduced                    0
    │ │ │ @@ -147,18 +147,18 @@
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ---------- COMPUTATIONAL DATA -----------
    │ │ │  [3]
    │ │ │  #polynomials to lift              3
    │ │ │  -----------------------------------------
    │ │ │ -New prime = 1107170621
    │ │ │ +New prime = 1157291321
    │ │ │  
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │ -multi-mod overall(elapsed)      0.02 sec
    │ │ │ +multi-mod overall(elapsed)      0.00 sec
    │ │ │  learning phase                  0.00 Gops/sec
    │ │ │  application phase               0.00 Gops/sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  multi-modular steps
    │ │ │  ------------------------------------------------------------------------------------------------------
    │ │ │  {1}{2}<100.00%> 
    │ │ │ @@ -174,15 +174,15 @@
    │ │ │  ---------------- TIMINGS ----------------
    │ │ │  CRT     (elapsed)               0.00 sec
    │ │ │  ratrecon(elapsed)               0.00 sec
    │ │ │  -----------------------------------------
    │ │ │  
    │ │ │  
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │ -msolve overall time           0.19 sec (elapsed) /  0.49 sec (cpu)
    │ │ │ +msolve overall time           0.01 sec (elapsed) /  0.04 sec (cpu)
    │ │ │  ------------------------------------------------------------------------------------
    │ │ │  
    │ │ │  o3 = | z y x |
    │ │ │  
    │ │ │               1      3
    │ │ │  o3 : Matrix R  <-- R
    │ │ │
    │ │ │
    i5 : peek componentsOfKernel(2, F)
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 6
    │ │ │  number of distinct multidegrees = 6
    │ │ │ - -- .00186857s elapsed
    │ │ │ + -- .0029236s elapsed
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 21
    │ │ │  number of distinct multidegrees = 18
    │ │ │ - -- .00833047s elapsed
    │ │ │ + -- .0117245s elapsed
    │ │ │  
    │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -51,19 +51,19 @@
    │ │ │ │  o4 : RingMap S <-- R
    │ │ │ │  i5 : peek componentsOfKernel(2, F)
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 6
    │ │ │ │  number of distinct multidegrees = 6
    │ │ │ │ - -- .00186857s elapsed
    │ │ │ │ + -- .0029236s elapsed
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 21
    │ │ │ │  number of distinct multidegrees = 18
    │ │ │ │ - -- .00833047s elapsed
    │ │ │ │ + -- .0117245s elapsed
    │ │ │ │  
    │ │ │ │  o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
    │ │ │ │                        {0, 1, 0, 1, 0} => {}
    │ │ │ │                        {0, 1, 1, 0, 0} => {}
    │ │ │ │                        {0, 2, 0, 0, 2} => {}
    │ │ │ │                        {0, 2, 0, 1, 1} => {}
    │ │ │ │                        {0, 2, 0, 2, 0} => {}
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_j__Mult.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : I = ideal"xy,yz,zx"
    │ │ │  
    │ │ │  o2 = ideal (x*y, y*z, x*z)
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime jMult I
    │ │ │ - -- .0234547s elapsed
    │ │ │ + -- .0469481s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 : elapsedTime monjMult I
    │ │ │ - -- .107713s elapsed
    │ │ │ + -- .0900121s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │  i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .181349s elapsed
    │ │ │ + -- .191375s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_mon__Analytic__Spread.out
    │ │ │ @@ -10,12 +10,12 @@
    │ │ │  
    │ │ │               2        3
    │ │ │  o2 = ideal (x , x*y, y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .171404s elapsed
    │ │ │ + -- .103246s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/example-output/_monj__Mult.out
    │ │ │ @@ -13,17 +13,17 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │        10 11   8 12   9 11   10 10   11 9   12 8
    │ │ │       x  y  , x y  , x y  , x  y  , x  y , x  y )
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │  
    │ │ │  i3 : elapsedTime monjMult I
    │ │ │ - -- .119902s elapsed
    │ │ │ + -- .122437s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │  
    │ │ │  i4 : elapsedTime jMult I
    │ │ │ - -- 1.54599s elapsed
    │ │ │ + -- 1.50928s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_j__Mult.html
    │ │ │ @@ -88,31 +88,31 @@
    │ │ │  
    │ │ │  o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : elapsedTime jMult I
    │ │ │ - -- .0234547s elapsed
    │ │ │ + -- .0469481s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    i4 : elapsedTime monjMult I
    │ │ │ - -- .107713s elapsed
    │ │ │ + -- .0900121s elapsed
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    i5 : elapsedTime multiplicitySequence I
    │ │ │ - -- .181349s elapsed
    │ │ │ + -- .191375s elapsed
    │ │ │  
    │ │ │  o5 = HashTable{2 => 3}
    │ │ │                 3 => 2
    │ │ │  
    │ │ │  o5 : HashTable
    │ │ │
    │ │ │
    i3 : elapsedTime monAnalyticSpread I
    │ │ │ - -- .171404s elapsed
    │ │ │ + -- .103246s elapsed
    │ │ │  
    │ │ │  o3 = 2
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : I = ideal"x2,xy,y3" │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o2 = ideal (x , x*y, y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monAnalyticSpread I │ │ │ │ - -- .171404s elapsed │ │ │ │ + -- .103246s elapsed │ │ │ │ │ │ │ │ o3 = 2 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ │ │ ********** WWaayyss ttoo uussee mmoonnAAnnaallyyttiiccSSpprreeaadd:: ********** │ │ │ │ * monAnalyticSpread(Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiplicitySequence/html/_monj__Mult.html │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ │ │ o2 : Ideal of R
    │ │ │
    │ │ │
    i3 : elapsedTime monjMult I
    │ │ │ - -- .119902s elapsed
    │ │ │ + -- .122437s elapsed
    │ │ │  
    │ │ │  o3 = 192
    │ │ │
    │ │ │
    i4 : elapsedTime jMult I
    │ │ │ - -- 1.54599s elapsed
    │ │ │ + -- 1.50928s elapsed
    │ │ │  
    │ │ │  o4 = 192
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,19 +24,19 @@ │ │ │ │ o2 = ideal (x y , x y , x y , x y , x y , x y , x y , x y , x y , │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 10 11 8 12 9 11 10 10 11 9 12 8 │ │ │ │ x y , x y , x y , x y , x y , x y ) │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime monjMult I │ │ │ │ - -- .119902s elapsed │ │ │ │ + -- .122437s elapsed │ │ │ │ │ │ │ │ o3 = 192 │ │ │ │ i4 : elapsedTime jMult I │ │ │ │ - -- 1.54599s elapsed │ │ │ │ + -- 1.50928s elapsed │ │ │ │ │ │ │ │ o4 = 192 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_p_l_i_c_i_t_y_S_e_q_u_e_n_c_e -- the multiplicity sequence of an ideal │ │ │ │ * _j_M_u_l_t -- the j-multiplicity of an ideal │ │ │ │ * _m_o_n_R_e_d_u_c_t_i_o_n -- the minimal monomial reduction of a monomial ideal │ │ │ │ * _N_P -- the Newton polyhedron of a monomial ideal │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ o4 : ProjectiveVariety, curve in PP^8 │ │ │ │ │ │ i5 : ? X │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │ │ │ │ i6 : time f = X ===> Y; │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc) │ │ │ + -- used 3.97935s (cpu); 2.18083s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i7 : f X │ │ │ │ │ │ o7 = Y │ │ │ │ │ │ @@ -38,15 +38,15 @@ │ │ │ o9 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i10 : W = random({{2},{1}},Y); │ │ │ │ │ │ o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8 │ │ │ │ │ │ i11 : time g = V ===> W; │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc) │ │ │ + -- used 4.37872s (cpu); 2.44278s (thread); 0s (gc) │ │ │ │ │ │ o11 : MultirationalMap (automorphism of PP^8) │ │ │ │ │ │ i12 : g||W │ │ │ │ │ │ o12 = multi-rational map consisting of one single rational map │ │ │ source variety: 6-dimensional subvariety of PP^8 cut out by 2 hypersurfaces of degrees 1^1 2^1 │ │ │ @@ -129,15 +129,15 @@ │ │ │ o15 : ProjectiveVariety, 6-dimensional subvariety of PP^9 │ │ │ │ │ │ i16 : ? Z │ │ │ │ │ │ o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2 │ │ │ │ │ │ i17 : time h = Z ===> GG_K(1,4) │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc) │ │ │ + -- used 7.23744s (cpu); 5.14081s (thread); 0s (gc) │ │ │ │ │ │ o17 = h │ │ │ │ │ │ o17 : MultirationalMap (isomorphism from PP^9 to PP^9) │ │ │ │ │ │ i18 : h || GG_K(1,4) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp^_st_st_sp__Multiprojective__Variety.out │ │ │ @@ -7,15 +7,15 @@ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi)); │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4 │ │ │ │ │ │ i4 : time X = Phi^* Y; │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc) │ │ │ + -- used 5.08046s (cpu); 4.1664s (thread); 0s (gc) │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 ) │ │ │ │ │ │ i5 : dim X, degree X, degrees X │ │ │ │ │ │ o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1), │ │ │ ------------------------------------------------------------------------ │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/___Multirational__Map_sp__Multiprojective__Variety.out │ │ │ @@ -11,26 +11,26 @@ │ │ │ o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7 x PP^7) │ │ │ │ │ │ i4 : Z = source Phi; │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7 │ │ │ │ │ │ i5 : time Phi Z; │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc) │ │ │ + -- used 0.189975s (cpu); 0.130013s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i6 : dim oo, degree oo, degrees oo │ │ │ │ │ │ o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Phi (point Z + point Z + point Z) │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc) │ │ │ + -- used 2.4364s (cpu); 1.58346s (thread); 0s (gc) │ │ │ │ │ │ o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 │ │ │ │ │ │ o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7 │ │ │ │ │ │ i8 : dim oo, degree oo, degrees oo │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_cm__Option_rp.out │ │ │ @@ -11,22 +11,22 @@ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ ------------------------------------------------------------------------ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc) │ │ │ + -- used 5.076s (cpu); 2.89314s (thread); 0s (gc) │ │ │ │ │ │ o4 = 2 │ │ │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc) │ │ │ + -- used 0.38506s (cpu); 0.304726s (thread); 0s (gc) │ │ │ │ │ │ o5 = 2 │ │ │ │ │ │ i6 : time degree Phi │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc) │ │ │ + -- used 0.374758s (cpu); 0.297921s (thread); 0s (gc) │ │ │ │ │ │ o6 = 2 │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_degree_lp__Multirational__Map_rp.out │ │ │ @@ -3,12 +3,12 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time degree Phi │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc) │ │ │ + -- used 0.629243s (cpu); 0.436659s (thread); 0s (gc) │ │ │ │ │ │ o3 = 1 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_describe_lp__Multirational__Map_rp.out │ │ │ @@ -1,52 +1,52 @@ │ │ │ -- -*- M2-comint -*- hash: 11533721324852072161 │ │ │ │ │ │ i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ i2 : time ? Phi │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc) │ │ │ + -- used 0.000686556s (cpu); 0.000185228s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 │ │ │ target variety: PP^4 x PP^5 │ │ │ ------------------------------------------------------------------------ │ │ │ hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i3 : image Phi; │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ i4 : time ? Phi │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc) │ │ │ + -- used 0.00277244s (cpu); 0.000269487s (thread); 0s (gc) │ │ │ │ │ │ o4 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ │ │ │ i5 : time describe Phi │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc) │ │ │ + -- used 1.39741s (cpu); 1.10639s (thread); 0s (gc) │ │ │ │ │ │ o5 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ multidegree: {51, 51, 51, 51, 51} │ │ │ degree: 1 │ │ │ degree sequence (map 1/2): [(1,0), (0,2)] │ │ │ degree sequence (map 2/2): [(0,1), (2,0)] │ │ │ coefficient ring: ZZ/65521 │ │ │ │ │ │ i6 : time ? Phi │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc) │ │ │ + -- used 0.000583043s (cpu); 0.000487549s (thread); 0s (gc) │ │ │ │ │ │ o6 = multi-rational map consisting of 2 rational maps │ │ │ source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ │ target variety: PP^4 x PP^5 │ │ │ base locus: empty subscheme of PP^4 x PP^5 │ │ │ dominance: false │ │ │ image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_graph_lp__Multirational__Map_rp.out │ │ │ @@ -3,45 +3,45 @@ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc) │ │ │ + -- used 0.0403774s (cpu); 0.0285846s (thread); 0s (gc) │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : Phi1; │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4) │ │ │ │ │ │ i4 : Phi2; │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc) │ │ │ + -- used 0.107216s (cpu); 0.0478177s (thread); 0s (gc) │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ o5 : Sequence │ │ │ │ │ │ i6 : Phi21; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : Phi22; │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc) │ │ │ + -- used 0.374728s (cpu); 0.221334s (thread); 0s (gc) │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : Phi211; │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_image_lp__Multirational__Map_rp.out │ │ │ @@ -11,25 +11,25 @@ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ i5 : time Z = image Phi; │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc) │ │ │ + -- used 0.169888s (cpu); 0.138634s (thread); 0s (gc) │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ o6 : Sequence │ │ │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc) │ │ │ + -- used 10.3195s (cpu); 2.93973s (thread); 0s (gc) │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ │ │ i8 : assert(Z == Z') │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse2.out │ │ │ @@ -4,25 +4,25 @@ │ │ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational normal curve of degree 6 │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal PP_K([6],2)); │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc) │ │ │ + -- used 0.463502s (cpu); 0.358226s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc) │ │ │ + -- used 1.41053s (cpu); 1.20646s (thread); 0s (gc) │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_inverse_lp__Multirational__Map_rp.out │ │ │ @@ -7,33 +7,33 @@ │ │ │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ │ │ i3 : time inverse Phi; │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc) │ │ │ + -- used 0.0716398s (cpu); 0.0582715s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ i5 : time inverse Psi; │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc) │ │ │ + -- used 0.25504s (cpu); 0.112109s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ │ │ i7 : time inverse Eta; │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc) │ │ │ + -- used 0.633518s (cpu); 0.35739s (thread); 0s (gc) │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Isomorphism_lp__Multirational__Map_rp.out │ │ │ @@ -6,32 +6,32 @@ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ │ │ i4 : time isIsomorphism Phi │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc) │ │ │ + -- used 0.00244814s (cpu); 9.645e-06s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3) │ │ │ │ │ │ i6 : time isIsomorphism Psi │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc) │ │ │ + -- used 0.510622s (cpu); 0.238194s (thread); 0s (gc) │ │ │ │ │ │ o6 = false │ │ │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i8 : time isIsomorphism Eta │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc) │ │ │ + -- used 1.99119s (cpu); 1.01047s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_is__Morphism_lp__Multirational__Map_rp.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2-a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │ │ │ │ i3 : time isMorphism Phi │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc) │ │ │ + -- used 0.555355s (cpu); 0.295866s (thread); 0s (gc) │ │ │ │ │ │ o3 = false │ │ │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc) │ │ │ + -- used 0.123916s (cpu); 0.0739107s (thread); 0s (gc) │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ │ │ i5 : time isMorphism Psi │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc) │ │ │ + -- used 4.36463s (cpu); 3.58316s (thread); 0s (gc) │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_linearly__Normal__Embedding.out │ │ │ @@ -3,24 +3,24 @@ │ │ │ i1 : K = ZZ/333331; │ │ │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc) │ │ │ + -- used 0.124674s (cpu); 0.0353389s (thread); 0s (gc) │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3 │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc) │ │ │ + -- used 0.589895s (cpu); 0.494374s (thread); 0s (gc) │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ │ │ i7 : describe g │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2}; │ │ │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │ │ │ │ i3 : time multidegree Phi │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc) │ │ │ + -- used 0.634285s (cpu); 0.398788s (thread); 0s (gc) │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.out │ │ │ @@ -1,21 +1,21 @@ │ │ │ -- -*- M2-comint -*- hash: 16199733219210081214 │ │ │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc) │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc) │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc) │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc) │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc) │ │ │ + -- used 0.00223888s (cpu); 0.00157421s (thread); 0s (gc) │ │ │ + -- used 0.258476s (cpu); 0.17014s (thread); 0s (gc) │ │ │ + -- used 0.273723s (cpu); 0.190323s (thread); 0s (gc) │ │ │ + -- used 0.262716s (cpu); 0.169153s (thread); 0s (gc) │ │ │ + -- used 0.240155s (cpu); 0.149846s (thread); 0s (gc) │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc) │ │ │ + -- used 0.21901s (cpu); 0.104875s (thread); 0s (gc) │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_point_lp__Multiprojective__Variety_rp.out │ │ │ @@ -3,26 +3,26 @@ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i3 : time p := point X │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc) │ │ │ + -- used 0.0826378s (cpu); 0.0278835s (thread); 0s (gc) │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i5 : time q = point Y │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc) │ │ │ + -- used 1.85996s (cpu); 1.19095s (thread); 0s (gc) │ │ │ │ │ │ o5 = q │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_segre_lp__Multirational__Map_rp.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ o4 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ │ │ i5 : Phi = rationalMap {f,g,h}; │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ i6 : time segre Phi; │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc) │ │ │ + -- used 1.30614s (cpu); 0.655128s (thread); 0s (gc) │ │ │ │ │ │ o6 : RationalMap (rational map from PP^4 to PP^149) │ │ │ │ │ │ i7 : describe segre Phi │ │ │ │ │ │ o7 = rational map defined by forms of degree 6 │ │ │ source variety: PP^4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/example-output/_show_lp__Multirational__Map_rp.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3) │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ │ │ i2 : time describe Phi │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc) │ │ │ + -- used 0.267779s (cpu); 0.160765s (thread); 0s (gc) │ │ │ │ │ │ o2 = multi-rational map consisting of 3 rational maps │ │ │ source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1) │ │ │ target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 │ │ │ base locus: empty subscheme of PP^3 x PP^2 │ │ │ dominance: true │ │ │ multidegree: {10, 14, 19, 25} │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Embedded__Projective__Variety_sp_eq_eq_eq_gt_sp__Embedded__Projective__Variety.html │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 = curve in PP^8 cut out by 17 hypersurfaces of degrees 1^2 2^15 │ │ │
    │ │ │
    i6 : time f = X ===> Y;
    │ │ │ - -- used 3.0434s (cpu); 1.80018s (thread); 0s (gc)
    │ │ │ + -- used 3.97935s (cpu); 2.18083s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (automorphism of PP^8)
    │ │ │
    │ │ │
    i7 : f X
    │ │ │ @@ -143,15 +143,15 @@
    │ │ │  
    │ │ │  o10 : ProjectiveVariety, 6-dimensional subvariety of PP^8
    │ │ │
    │ │ │
    i11 : time g = V ===> W;
    │ │ │ - -- used 3.14065s (cpu); 1.91214s (thread); 0s (gc)
    │ │ │ + -- used 4.37872s (cpu); 2.44278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : MultirationalMap (automorphism of PP^8)
    │ │ │
    │ │ │
    i12 : g||W
    │ │ │ @@ -252,15 +252,15 @@
    │ │ │  
    │ │ │  o16 = 6-dimensional subvariety of PP^9 cut out by 5 hypersurfaces of degree 2
    │ │ │
    │ │ │
    i17 : time h = Z ===> GG_K(1,4)
    │ │ │ - -- used 8.07742s (cpu); 4.95873s (thread); 0s (gc)
    │ │ │ + -- used 7.23744s (cpu); 5.14081s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 = h
    │ │ │  
    │ │ │  o17 : MultirationalMap (isomorphism from PP^9 to PP^9)
    │ │ │
    │ │ │
    i4 : time X = Phi^* Y;
    │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc)
    │ │ │ + -- used 5.08046s (cpu); 4.1664s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension 2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │
    │ │ │
    i5 : dim X, degree X, degrees X
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,15 +26,15 @@
    │ │ │ │  o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to
    │ │ │ │  PP^2 x PP^4)
    │ │ │ │  i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random(
    │ │ │ │  {1,1},ring target Phi));
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
    │ │ │ │  i4 : time X = Phi^* Y;
    │ │ │ │ - -- used 5.11368s (cpu); 3.88996s (thread); 0s (gc)
    │ │ │ │ + -- used 5.08046s (cpu); 4.1664s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4 (subvariety of codimension
    │ │ │ │  2 in threefold in PP^3 x PP^2 x PP^4 cut out by 12 hypersurfaces of multi-
    │ │ │ │  degrees (0,0,2)^1 (0,1,1)^2 (1,0,1)^7 (1,1,0)^2 )
    │ │ │ │  i5 : dim X, degree X, degrees X
    │ │ │ │  
    │ │ │ │  o5 = (1, 31, {({0, 0, 2}, 1), ({0, 0, 3}, 4), ({0, 1, 1}, 4), ({0, 4, 1}, 1),
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/___Multirational__Map_sp__Multiprojective__Variety.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
    │ │ │
    │ │ │
    i5 : time Phi Z;
    │ │ │ - -- used 0.0951343s (cpu); 0.0963862s (thread); 0s (gc)
    │ │ │ + -- used 0.189975s (cpu); 0.130013s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
    │ │ │
    │ │ │
    i6 : dim oo, degree oo, degrees oo
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o6 : Sequence
    │ │ │
    │ │ │
    i7 : time Phi (point Z + point Z + point Z)
    │ │ │ - -- used 2.05743s (cpu); 1.42394s (thread); 0s (gc)
    │ │ │ + -- used 2.4364s (cpu); 1.58346s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3 
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
    │ │ │
    │ │ │
    i4 : time degree(Phi,Strategy=>"random point")
    │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc)
    │ │ │ + -- used 5.076s (cpu); 2.89314s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │
    │ │ │
    i5 : time degree(Phi,Strategy=>"0-th projective degree")
    │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc)
    │ │ │ + -- used 0.38506s (cpu); 0.304726s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 2
    │ │ │
    │ │ │
    i6 : time degree Phi
    │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc)
    │ │ │ + -- used 0.374758s (cpu); 0.297921s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = 2
    │ │ │
    │ │ │

    Note, as in the example above, that calculation times may vary depending on the strategy used.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of │ │ │ │ target variety: hypersurface in PP^4 defined by a form of degree 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ multi-degrees (0,2)^1 (1,1)^3 (2,1)^8 (4,0)^1 │ │ │ │ i4 : time degree(Phi,Strategy=>"random point") │ │ │ │ - -- used 3.60186s (cpu); 2.37753s (thread); 0s (gc) │ │ │ │ + -- used 5.076s (cpu); 2.89314s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 2 │ │ │ │ i5 : time degree(Phi,Strategy=>"0-th projective degree") │ │ │ │ - -- used 0.300764s (cpu); 0.253978s (thread); 0s (gc) │ │ │ │ + -- used 0.38506s (cpu); 0.304726s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : time degree Phi │ │ │ │ - -- used 0.32363s (cpu); 0.259653s (thread); 0s (gc) │ │ │ │ + -- used 0.374758s (cpu); 0.297921s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = 2 │ │ │ │ Note, as in the example above, that calculation times may vary depending on the │ │ │ │ strategy used. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- degree of a multi-rational map │ │ │ │ * _d_e_g_r_e_e_M_a_p_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_degree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4)
    │ │ │
    │ │ │
    i3 : time degree Phi
    │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc)
    │ │ │ + -- used 0.629243s (cpu); 0.436659s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = 1
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time degree Phi │ │ │ │ - -- used 0.39932s (cpu); 0.353204s (thread); 0s (gc) │ │ │ │ + -- used 0.629243s (cpu); 0.436659s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = 1 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_,_O_p_t_i_o_n_) -- degree of a multi-rational map using a │ │ │ │ probabilistic approach │ │ │ │ * _d_e_g_r_e_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- degree of a rational map │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_describe_lp__Multirational__Map_rp.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4 x PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time ? Phi
    │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc)
    │ │ │ + -- used 0.000686556s (cpu); 0.000185228s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       ------------------------------------------------------------------------
    │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │ │ │ @@ -96,27 +96,27 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time ? Phi
    │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc)
    │ │ │ + -- used 0.00277244s (cpu); 0.000269487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time describe Phi
    │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc)
    │ │ │ + -- used 1.39741s (cpu); 1.10639s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │ @@ -126,15 +126,15 @@
    │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │       coefficient ring: ZZ/65521
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time ? Phi
    │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc)
    │ │ │ + -- used 0.000583043s (cpu); 0.000487549s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8 
    │ │ │       target variety: PP^4 x PP^5
    │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │       dominance: false
    │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,36 +16,36 @@
    │ │ │ │  ? Phi is a lite version of describe Phi. The latter has a different behavior
    │ │ │ │  than _d_e_s_c_r_i_b_e_(_R_a_t_i_o_n_a_l_M_a_p_), since it performs computations.
    │ │ │ │  i1 : Phi = multirationalMap graph rationalMap PP_(ZZ/65521)^(1,4);
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x
    │ │ │ │  PP^5 to PP^4 x PP^5)
    │ │ │ │  i2 : time ? Phi
    │ │ │ │ - -- used 0.000917731s (cpu); 0.000161313s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000686556s (cpu); 0.000185228s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i3 : image Phi;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^5
    │ │ │ │  i4 : time ? Phi
    │ │ │ │ - -- used 0.00272072s (cpu); 0.000248957s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00277244s (cpu); 0.000269487s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │       image: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │  i5 : time describe Phi
    │ │ │ │ - -- used 1.4658s (cpu); 1.13064s (thread); 0s (gc)
    │ │ │ │ + -- used 1.39741s (cpu); 1.10639s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       multidegree: {51, 51, 51, 51, 51}
    │ │ │ │       degree: 1
    │ │ │ │       degree sequence (map 1/2): [(1,0), (0,2)]
    │ │ │ │       degree sequence (map 2/2): [(0,1), (2,0)]
    │ │ │ │       coefficient ring: ZZ/65521
    │ │ │ │  i6 : time ? Phi
    │ │ │ │ - -- used 0.000169538s (cpu); 0.000607139s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000583043s (cpu); 0.000487549s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 = multi-rational map consisting of 2 rational maps
    │ │ │ │       source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9
    │ │ │ │  hypersurfaces of multi-degrees (0,2)^1 (1,1)^8
    │ │ │ │       target variety: PP^4 x PP^5
    │ │ │ │       base locus: empty subscheme of PP^4 x PP^5
    │ │ │ │       dominance: false
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_graph_lp__Multirational__Map_rp.html
    │ │ │ @@ -83,15 +83,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (Phi1,Phi2) = graph Phi
    │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc)
    │ │ │ + -- used 0.0403774s (cpu); 0.0285846s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (Phi1, Phi2)
    │ │ │  
    │ │ │  o2 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (Phi21,Phi22) = graph Phi2
    │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc)
    │ │ │ + -- used 0.107216s (cpu); 0.0478177s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = (Phi21, Phi22)
    │ │ │  
    │ │ │  o5 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time (Phi211,Phi212) = graph Phi21
    │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc)
    │ │ │ + -- used 0.374728s (cpu); 0.221334s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = (Phi211, Phi212)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,43 +19,43 @@ │ │ │ │ Phi)^-1 * (last graph Phi) == Phi are always satisfied. │ │ │ │ i1 : Phi = rationalMap(PP_(ZZ/333331)^(1,4),Dominant=>true) │ │ │ │ │ │ │ │ o1 = Phi │ │ │ │ │ │ │ │ o1 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i2 : time (Phi1,Phi2) = graph Phi │ │ │ │ - -- used 0.0895117s (cpu); 0.0398444s (thread); 0s (gc) │ │ │ │ + -- used 0.0403774s (cpu); 0.0285846s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = (Phi1, Phi2) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : Phi1; │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^4) │ │ │ │ i4 : Phi2; │ │ │ │ │ │ │ │ o4 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time (Phi21,Phi22) = graph Phi2 │ │ │ │ - -- used 0.032293s (cpu); 0.0340052s (thread); 0s (gc) │ │ │ │ + -- used 0.107216s (cpu); 0.0478177s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = (Phi21, Phi22) │ │ │ │ │ │ │ │ o5 : Sequence │ │ │ │ i6 : Phi21; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : Phi22; │ │ │ │ │ │ │ │ o7 : MultirationalMap (dominant rational map from 4-dimensional subvariety of │ │ │ │ PP^4 x PP^5 x PP^5 to hypersurface in PP^5) │ │ │ │ i8 : time (Phi211,Phi212) = graph Phi21 │ │ │ │ - -- used 0.194002s (cpu); 0.149271s (thread); 0s (gc) │ │ │ │ + -- used 0.374728s (cpu); 0.221334s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = (Phi211, Phi212) │ │ │ │ │ │ │ │ o8 : Sequence │ │ │ │ i9 : Phi211; │ │ │ │ │ │ │ │ o9 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_image_lp__Multirational__Map_rp.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time Z = image Phi;
    │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc)
    │ │ │ + -- used 0.169888s (cpu); 0.138634s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : dim Z, degree Z, degrees Z
    │ │ │ @@ -115,15 +115,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    Alternatively, the calculation can be performed using the Segre embedding as follows:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, │ │ │ │ x_3^2}; │ │ │ │ i2 : Phi = last graph rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to │ │ │ │ PP^2 x PP^4) │ │ │ │ i3 : time multidegree Phi │ │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc) │ │ │ │ + -- used 0.634285s (cpu); 0.398788s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = {66, 46, 31, 20} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : (degree source Phi,degree image Phi) │ │ │ │ │ │ │ │ o4 = (66, 20) │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Z__Z_cm__Multirational__Map_rp.html │ │ │ @@ -77,29 +77,29 @@ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4");
    │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc)
    │ │ │ + -- used 10.3195s (cpu); 2.93973s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4
    │ │ │
    │ │ │
    i8 : assert(Z == Z')
    │ │ │ ├── html2text {} │ │ │ │ @@ -23,26 +23,26 @@ │ │ │ │ 3*x_2^2+2*x_1*x_3+x_0*x_4, 2*x_1*x_2-2*x_0*x_3, -x_1^2+x_0*x_2}; │ │ │ │ │ │ │ │ o3 : RationalMap (quadratic rational map from PP^4 to PP^4) │ │ │ │ i4 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o4 : MultirationalMap (rational map from PP^4 to PP^7 x PP^4) │ │ │ │ i5 : time Z = image Phi; │ │ │ │ - -- used 0.200211s (cpu); 0.133927s (thread); 0s (gc) │ │ │ │ + -- used 0.169888s (cpu); 0.138634s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i6 : dim Z, degree Z, degrees Z │ │ │ │ │ │ │ │ o6 = (4, 151, {({1, 1}, 4), ({1, 2}, 3), ({2, 0}, 5), ({2, 1}, 13)}) │ │ │ │ │ │ │ │ o6 : Sequence │ │ │ │ Alternatively, the calculation can be performed using the Segre embedding as │ │ │ │ follows: │ │ │ │ i7 : time Z' = projectiveVariety (map segre target Phi) image(segre Phi,"F4"); │ │ │ │ - -- used 5.791s (cpu); 2.94859s (thread); 0s (gc) │ │ │ │ + -- used 10.3195s (cpu); 2.93973s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^4 │ │ │ │ i8 : assert(Z == Z') │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _M_u_l_t_i_p_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y -- direct image via a multi- │ │ │ │ rational map │ │ │ │ * _i_m_a_g_e_(_R_a_t_i_o_n_a_l_M_a_p_) -- closure of the image of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse2.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │
    │ │ │
    i3 : time Psi = inverse2 Phi;
    │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc)
    │ │ │ + -- used 0.463502s (cpu); 0.358226s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from GG(2,4) to PP^6)
    │ │ │
    │ │ │
    i4 : assert(Phi * Psi == 1)
    │ │ │ @@ -103,15 +103,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │
    │ │ │
    i6 : time Psi' = inverse2 Phi';
    │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc)
    │ │ │ + -- used 1.41053s (cpu); 1.20646s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6)
    │ │ │
    │ │ │
    i7 : assert(Phi' * Psi' == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ i2 : -- map defined by the cubics through the secant variety to the rational │ │ │ │ normal curve of degree 6 │ │ │ │ Phi = multirationalMap rationalMap(ring PP_K^6,ring GG_K(2,4),gens ideal │ │ │ │ PP_K([6],2)); │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from PP^6 to GG(2,4)) │ │ │ │ i3 : time Psi = inverse2 Phi; │ │ │ │ - -- used 0.36801s (cpu); 0.291283s (thread); 0s (gc) │ │ │ │ + -- used 0.463502s (cpu); 0.358226s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from GG(2,4) to PP^6) │ │ │ │ i4 : assert(Phi * Psi == 1) │ │ │ │ i5 : Phi' = Phi || Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^6 x PP^6 to GG(2,4) x GG(2,4)) │ │ │ │ i6 : time Psi' = inverse2 Phi'; │ │ │ │ - -- used 1.53154s (cpu); 1.09582s (thread); 0s (gc) │ │ │ │ + -- used 1.41053s (cpu); 1.20646s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from GG(2,4) x GG(2,4) to PP^6 x PP^6) │ │ │ │ i7 : assert(Phi' * Psi' == 1) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_ _<_=_=_>_ _M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p -- equality of multi-rational maps │ │ │ │ with checks on internal data │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_inverse_lp__Multirational__Map_rp.html │ │ │ @@ -88,45 +88,45 @@ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │
    │ │ │
    i3 : time inverse Phi;
    │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc)
    │ │ │ + -- used 0.0716398s (cpu); 0.0582715s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4)
    │ │ │
    │ │ │
    i4 : Psi = last graph Phi;
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5)
    │ │ │
    │ │ │
    i5 : time inverse Psi;
    │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc)
    │ │ │ + -- used 0.25504s (cpu); 0.112109s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i6 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5)
    │ │ │
    │ │ │
    i7 : time inverse Eta;
    │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc)
    │ │ │ + -- used 0.633518s (cpu); 0.35739s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5)
    │ │ │
    │ │ │
    i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1)
    │ │ │ ├── html2text {} │ │ │ │ @@ -24,32 +24,32 @@ │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from PP^4 to PP^5) │ │ │ │ i2 : -- we see Phi as a dominant map │ │ │ │ Phi = rationalMap(Phi,image Phi); │ │ │ │ │ │ │ │ o2 : MultirationalMap (dominant rational map from PP^4 to hypersurface in PP^5) │ │ │ │ i3 : time inverse Phi; │ │ │ │ - -- used 0.151859s (cpu); 0.0747115s (thread); 0s (gc) │ │ │ │ + -- used 0.0716398s (cpu); 0.0582715s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (birational map from hypersurface in PP^5 to PP^4) │ │ │ │ i4 : Psi = last graph Phi; │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to hypersurface in PP^5) │ │ │ │ i5 : time inverse Psi; │ │ │ │ - -- used 0.1777s (cpu); 0.0987744s (thread); 0s (gc) │ │ │ │ + -- used 0.25504s (cpu); 0.112109s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from hypersurface in PP^5 to 4- │ │ │ │ dimensional subvariety of PP^4 x PP^5) │ │ │ │ i6 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o6 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 x PP^5 to 4-dimensional subvariety of PP^4 x PP^5) │ │ │ │ i7 : time inverse Eta; │ │ │ │ - -- used 0.442368s (cpu); 0.288571s (thread); 0s (gc) │ │ │ │ + -- used 0.633518s (cpu); 0.35739s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to 4-dimensional subvariety of PP^4 x PP^5 x PP^5) │ │ │ │ i8 : assert(Phi * Phi^-1 == 1 and Phi^-1 * Phi == 1) │ │ │ │ i9 : assert(Psi * Psi^-1 == 1 and Psi^-1 * Psi == 1) │ │ │ │ i10 : assert(Eta * Eta^-1 == 1 and Eta^-1 * Eta == 1) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Isomorphism_lp__Multirational__Map_rp.html │ │ │ @@ -83,45 +83,45 @@ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │
    │ │ │
    i4 : time isIsomorphism Phi
    │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc)
    │ │ │ + -- used 0.00244814s (cpu); 9.645e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │
    │ │ │
    i5 : Psi = first graph Phi;
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to PP^3)
    │ │ │
    │ │ │
    i6 : time isIsomorphism Psi
    │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc)
    │ │ │ + -- used 0.510622s (cpu); 0.238194s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : Eta = first graph Psi;
    │ │ │  
    │ │ │  o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x PP^3 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │
    │ │ │
    i8 : time isIsomorphism Eta
    │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc)
    │ │ │ + -- used 1.99119s (cpu); 1.01047s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │
    │ │ │
    i9 : assert(o8 and (not o6) and (not o4))
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,31 +17,31 @@ │ │ │ │ ZZ/33331[a..d]; f = rationalMap {c^2-b*d,b*c-a*d,b^2-a*c}; │ │ │ │ │ │ │ │ o2 : RationalMap (quadratic rational map from PP^3 to PP^2) │ │ │ │ i3 : Phi = rationalMap {f,f}; │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from PP^3 to PP^2 x PP^2) │ │ │ │ i4 : time isIsomorphism Phi │ │ │ │ - -- used 0.00299491s (cpu); 9.007e-06s (thread); 0s (gc) │ │ │ │ + -- used 0.00244814s (cpu); 9.645e-06s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ i5 : Psi = first graph Phi; │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 to │ │ │ │ PP^3) │ │ │ │ i6 : time isIsomorphism Psi │ │ │ │ - -- used 0.331015s (cpu); 0.180919s (thread); 0s (gc) │ │ │ │ + -- used 0.510622s (cpu); 0.238194s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : Eta = first graph Psi; │ │ │ │ │ │ │ │ o7 : MultirationalMap (birational map from threefold in PP^3 x PP^2 x PP^2 x │ │ │ │ PP^3 to threefold in PP^3 x PP^2 x PP^2) │ │ │ │ i8 : time isIsomorphism Eta │ │ │ │ - -- used 1.56012s (cpu); 0.826624s (thread); 0s (gc) │ │ │ │ + -- used 1.99119s (cpu); 1.01047s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : assert(o8 and (not o6) and (not o4)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_n_v_e_r_s_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- inverse of a birational map │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a multi-rational map is a │ │ │ │ morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_is__Morphism_lp__Multirational__Map_rp.html │ │ │ @@ -80,31 +80,31 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^4 x PP^2) │ │ │
    │ │ │
    i3 : time isMorphism Phi
    │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc)
    │ │ │ + -- used 0.555355s (cpu); 0.295866s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = false
    │ │ │
    │ │ │
    i4 : time Psi = first graph Phi;
    │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc)
    │ │ │ + -- used 0.123916s (cpu); 0.0739107s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7)
    │ │ │
    │ │ │
    i5 : time isMorphism Psi
    │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc)
    │ │ │ + -- used 4.36463s (cpu); 3.58316s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │
    │ │ │
    i6 : assert((not o3) and o5)
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,24 +17,24 @@ │ │ │ │ i1 : ZZ/300007[a..e], f = first graph rationalMap ideal(c^2-b*d,b*c-a*d,b^2- │ │ │ │ a*c,e), g = rationalMap submatrix(matrix f,{0..2}); │ │ │ │ i2 : Phi = rationalMap {f,g}; │ │ │ │ │ │ │ │ o2 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 to PP^4 x PP^2) │ │ │ │ i3 : time isMorphism Phi │ │ │ │ - -- used 0.369946s (cpu); 0.279856s (thread); 0s (gc) │ │ │ │ + -- used 0.555355s (cpu); 0.295866s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : time Psi = first graph Phi; │ │ │ │ - -- used 0.170151s (cpu); 0.094037s (thread); 0s (gc) │ │ │ │ + -- used 0.123916s (cpu); 0.0739107s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : MultirationalMap (birational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^7 x PP^4 x PP^2 to 4-dimensional subvariety of PP^4 x PP^7) │ │ │ │ i5 : time isMorphism Psi │ │ │ │ - -- used 4.39879s (cpu); 3.33728s (thread); 0s (gc) │ │ │ │ + -- used 4.36463s (cpu); 3.58316s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : assert((not o3) and o5) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_I_s_o_m_o_r_p_h_i_s_m_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- whether a birational map is an │ │ │ │ isomorphism │ │ │ │ * _i_s_M_o_r_p_h_i_s_m_(_R_a_t_i_o_n_a_l_M_a_p_) -- whether a rational map is a morphism │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_linearly__Normal__Embedding.html │ │ │ @@ -79,30 +79,30 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │
    │ │ │
    i3 : time f = linearlyNormalEmbedding X;
    │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc)
    │ │ │ + -- used 0.124674s (cpu); 0.0353389s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : MultirationalMap (automorphism of X)
    │ │ │
    │ │ │
    i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an isomorphic projection of X in PP^3
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, curve in PP^3
    │ │ │
    │ │ │
    i5 : time g = linearlyNormalEmbedding Y;
    │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc)
    │ │ │ + -- used 0.589895s (cpu); 0.494374s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : MultirationalMap (birational map from Y to curve in PP^7)
    │ │ │
    │ │ │
    i6 : assert(isIsomorphism g)
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,23 +13,23 @@ │ │ │ │ is a linear projection │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/333331; │ │ │ │ i2 : X = PP_K^(1,7); -- rational normal curve of degree 7 │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, curve in PP^7 │ │ │ │ i3 : time f = linearlyNormalEmbedding X; │ │ │ │ - -- used 0.010893s (cpu); 0.00980925s (thread); 0s (gc) │ │ │ │ + -- used 0.124674s (cpu); 0.0353389s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : MultirationalMap (automorphism of X) │ │ │ │ i4 : Y = (rationalMap {for i to 3 list random(1,ring ambient X)}) X; -- an │ │ │ │ isomorphic projection of X in PP^3 │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, curve in PP^3 │ │ │ │ i5 : time g = linearlyNormalEmbedding Y; │ │ │ │ - -- used 0.564105s (cpu); 0.442475s (thread); 0s (gc) │ │ │ │ + -- used 0.589895s (cpu); 0.494374s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : MultirationalMap (birational map from Y to curve in PP^7) │ │ │ │ i6 : assert(isIsomorphism g) │ │ │ │ i7 : describe g │ │ │ │ │ │ │ │ o7 = multi-rational map consisting of one single rational map │ │ │ │ source variety: curve in PP^3 cut out by 6 hypersurfaces of degree 4 │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_multidegree_lp__Multirational__Map_rp.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4) │ │ │
    │ │ │
    i3 : time multidegree Phi
    │ │ │ - -- used 0.521458s (cpu); 0.386885s (thread); 0s (gc)
    │ │ │ + -- used 0.634285s (cpu); 0.398788s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = {66, 46, 31, 20}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi)
    │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc)
    │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc)
    │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc)
    │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc)
    │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc)
    │ │ │ + -- used 0.00223888s (cpu); 0.00157421s (thread); 0s (gc)
    │ │ │ + -- used 0.258476s (cpu); 0.17014s (thread); 0s (gc)
    │ │ │ + -- used 0.273723s (cpu); 0.190323s (thread); 0s (gc)
    │ │ │ + -- used 0.262716s (cpu); 0.169153s (thread); 0s (gc)
    │ │ │ + -- used 0.240155s (cpu); 0.149846s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = {51, 28, 14, 6, 2}
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time assert(oo == multidegree Phi)
    │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc)
    │ │ │ + -- used 0.21901s (cpu); 0.104875s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │
    │ │ │

    References

    │ │ │ ArXiv preprint: Computations with rational maps between multi-projective varieties.
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,25 +17,25 @@ │ │ │ │ This is calculated by means of the inverse image of an appropriate random │ │ │ │ subvariety of the target. │ │ │ │ i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4); │ │ │ │ │ │ │ │ o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x │ │ │ │ PP^5 to PP^5) │ │ │ │ i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi) │ │ │ │ - -- used 0.00397921s (cpu); 0.00133095s (thread); 0s (gc) │ │ │ │ - -- used 0.272866s (cpu); 0.142784s (thread); 0s (gc) │ │ │ │ - -- used 0.237166s (cpu); 0.173525s (thread); 0s (gc) │ │ │ │ - -- used 0.202997s (cpu); 0.139949s (thread); 0s (gc) │ │ │ │ - -- used 0.187465s (cpu); 0.110073s (thread); 0s (gc) │ │ │ │ + -- used 0.00223888s (cpu); 0.00157421s (thread); 0s (gc) │ │ │ │ + -- used 0.258476s (cpu); 0.17014s (thread); 0s (gc) │ │ │ │ + -- used 0.273723s (cpu); 0.190323s (thread); 0s (gc) │ │ │ │ + -- used 0.262716s (cpu); 0.169153s (thread); 0s (gc) │ │ │ │ + -- used 0.240155s (cpu); 0.149846s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = {51, 28, 14, 6, 2} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time assert(oo == multidegree Phi) │ │ │ │ - -- used 0.127059s (cpu); 0.0818662s (thread); 0s (gc) │ │ │ │ + -- used 0.21901s (cpu); 0.104875s (thread); 0s (gc) │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ ArXiv preprint: _C_o_m_p_u_t_a_t_i_o_n_s_ _w_i_t_h_ _r_a_t_i_o_n_a_l_ _m_a_p_s_ _b_e_t_w_e_e_n_ _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e │ │ │ │ _v_a_r_i_e_t_i_e_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_u_l_t_i_d_e_g_r_e_e_(_M_u_l_t_i_r_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a multi-rational │ │ │ │ map │ │ │ │ * _p_r_o_j_e_c_t_i_v_e_D_e_g_r_e_e_s_(_R_a_t_i_o_n_a_l_M_a_p_) -- projective degrees of a rational map │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_point_lp__Multiprojective__Variety_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time p := point X
    │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc)
    │ │ │ + -- used 0.0826378s (cpu); 0.0278835s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time q = point Y
    │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc)
    │ │ │ + -- used 1.85996s (cpu); 1.19095s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = q
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -14,25 +14,25 @@ │ │ │ │ o a _m_u_l_t_i_-_p_r_o_j_e_c_t_i_v_e_ _v_a_r_i_e_t_y, a random rational point on $X$ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : K = ZZ/1000003; │ │ │ │ i2 : X = PP_K^({1,1,2},{3,2,3}); │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 │ │ │ │ i3 : time p := point X │ │ │ │ - -- used 0.0161552s (cpu); 0.0167468s (thread); 0s (gc) │ │ │ │ + -- used 0.0826378s (cpu); 0.0278835s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1], │ │ │ │ [3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i4 : Y = random({2,1,2},X); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 │ │ │ │ i5 : time q = point Y │ │ │ │ - -- used 1.74407s (cpu); 0.993938s (thread); 0s (gc) │ │ │ │ + -- used 1.85996s (cpu); 1.19095s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = q │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 │ │ │ │ i6 : assert(isSubset(p,X) and isSubset(q,Y)) │ │ │ │ The list of homogeneous coordinates can be obtained with the operator |-. │ │ │ │ i7 : |- p │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_segre_lp__Multirational__Map_rp.html │ │ │ @@ -101,15 +101,15 @@ │ │ │ │ │ │ o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x PP^4) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time segre Phi;
    │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc)
    │ │ │ + -- used 1.30614s (cpu); 0.655128s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe segre Phi
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o4 : RationalMap (quadratic rational map from PP^4 to PP^4)
    │ │ │ │  i5 : Phi = rationalMap {f,g,h};
    │ │ │ │  
    │ │ │ │  o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^4 x
    │ │ │ │  PP^4)
    │ │ │ │  i6 : time segre Phi;
    │ │ │ │ - -- used 0.750404s (cpu); 0.533826s (thread); 0s (gc)
    │ │ │ │ + -- used 1.30614s (cpu); 0.655128s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : RationalMap (rational map from PP^4 to PP^149)
    │ │ │ │  i7 : describe segre Phi
    │ │ │ │  
    │ │ │ │  o7 = rational map defined by forms of degree 6
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: PP^149
    │ │ ├── ./usr/share/doc/Macaulay2/MultiprojectiveVarieties/html/_show_lp__Multirational__Map_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │  
    │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time describe Phi
    │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc)
    │ │ │ + -- used 0.267779s (cpu); 0.160765s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1)
    │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 
    │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ │       dominance: true
    │ │ │       multidegree: {10, 14, 19, 25}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3)
    │ │ │ │  
    │ │ │ │  o1 = Phi
    │ │ │ │  
    │ │ │ │  o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to
    │ │ │ │  threefold in PP^3 x PP^2 x PP^2)
    │ │ │ │  i2 : time describe Phi
    │ │ │ │ - -- used 0.273463s (cpu); 0.167098s (thread); 0s (gc)
    │ │ │ │ + -- used 0.267779s (cpu); 0.160765s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = multi-rational map consisting of 3 rational maps
    │ │ │ │       source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of
    │ │ │ │  multi-degree (1,1)
    │ │ │ │       target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces
    │ │ │ │  of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2
    │ │ │ │       base locus: empty subscheme of PP^3 x PP^2
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out
    │ │ │ @@ -26,22 +26,22 @@
    │ │ │  
    │ │ │  i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true};
    │ │ │  
    │ │ │  i8 : prob = n -> log(n)/n;
    │ │ │  
    │ │ │  i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96,
    │ │ │ +o9 = (65, 72, 90, 94, 94, 93, 94, 95, 97, 93, 98, 96, 97, 96, 98, 98, 95, 98,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99)
    │ │ │ +     96, 100, 95, 97, 97, 99, 100, 97, 98, 98, 98)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │  
    │ │ │  i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,
    │ │ │ +o10 = (17, 9, 6, 5, 3, 4, 3, 1, 3, 0, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1, 0, 0, 0, 1)
    │ │ │ +      1, 1, 1, 1, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Graphs.out
    │ │ │ @@ -4,15 +4,15 @@
    │ │ │  
    │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ +o2 = {DT_, D`{, DZ[, DW_, DEw}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │  
    │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_generate__Random__Regular__Graphs.out
    │ │ │ @@ -1,21 +1,21 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729831171060067675
    │ │ │  
    │ │ │  i1 : R = QQ[a..e];
    │ │ │  
    │ │ │  i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, c}, {b, d}, {a, e}, {d, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}},
    │ │ │ +     Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/example-output/_graph__Complement.out
    │ │ │ @@ -13,13 +13,13 @@
    │ │ │  i3 : graphComplement "Dhc"
    │ │ │  
    │ │ │  o3 = DUW
    │ │ │  
    │ │ │  i4 : G = generateBipartiteGraphs 7;
    │ │ │  
    │ │ │  i5 : time graphComplement G;
    │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc)
    │ │ │ + -- used 0.000464337s (cpu); 0.000655501s (thread); 0s (gc)
    │ │ │  
    │ │ │  i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc)
    │ │ │ + -- used 0.188207s (cpu); 0.0900525s (thread); 0s (gc)
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html
    │ │ │ @@ -117,28 +117,28 @@
    │ │ │                
    i8 : prob = n -> log(n)/n;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
    │ │ │  
    │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96,
    │ │ │ +o9 = (65, 72, 90, 94, 94, 93, 94, 95, 97, 93, 98, 96, 97, 96, 98, 98, 95, 98,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99)
    │ │ │ +     96, 100, 95, 97, 97, 99, 100, 97, 98, 98, 98)
    │ │ │  
    │ │ │  o9 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
    │ │ │  
    │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,
    │ │ │ +o10 = (17, 9, 6, 5, 3, 4, 3, 1, 3, 0, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      1, 1, 0, 0, 0, 1)
    │ │ │ +      1, 1, 1, 1, 0, 0)
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (61, 77, 85, 95, 93, 96, 96, 95, 98, 96, 99, 97, 96, 96, 97, 98, 98, 96, │ │ │ │ +o9 = (65, 72, 90, 94, 94, 93, 94, 95, 97, 93, 98, 96, 97, 96, 98, 98, 95, 98, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 98, 100, 97, 99, 100, 99, 100, 98, 97, 96, 99) │ │ │ │ + 96, 100, 95, 97, 97, 99, 100, 97, 98, 98, 98) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (11, 6, 4, 5, 4, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, │ │ │ │ +o10 = (17, 9, 6, 5, 3, 4, 3, 1, 3, 0, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 1, 1, 0, 0, 0, 1) │ │ │ │ + 1, 1, 1, 1, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Graphs.html │ │ │ @@ -100,15 +100,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ +o2 = {DT_, D`{, DZ[, DW_, DEw}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DSc, DR_, D|o, Ddw, D^k}
    │ │ │ │ +o2 = {DT_, D`{, DZ[, DW_, DEw}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -87,23 +87,23 @@
    │ │ │                
    i1 : R = QQ[a..e];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomRegularGraphs(R, 3, 2)
    │ │ │  
    │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}},
    │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, c}, {b, d}, {a, e}, {d, e}}},
    │ │ │              "ring" => R                                          
    │ │ │              "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}},
    │ │ │ +     Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}},
    │ │ │             "ring" => R                                          
    │ │ │             "vertices" => {a, b, c, d, e}                        
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}}
    │ │ │ +     Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}}
    │ │ │             "ring" => R
    │ │ │             "vertices" => {a, b, c, d, e}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -24,23 +24,23 @@ │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ If a _P_o_l_y_n_o_m_i_a_l_R_i_n_g $R$ is supplied instead, then the number of vertices is the │ │ │ │ number of generators. Moreover, the nauty-based strings are automatically │ │ │ │ converted to instances of the class _G_r_a_p_h in $R$. │ │ │ │ i1 : R = QQ[a..e]; │ │ │ │ i2 : generateRandomRegularGraphs(R, 3, 2) │ │ │ │ │ │ │ │ -o2 = {Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}, │ │ │ │ +o2 = {Graph{"edges" => {{a, c}, {b, c}, {b, d}, {a, e}, {d, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{a, b}, {b, c}, {a, d}, {c, e}, {d, e}}}, │ │ │ │ + Graph{"edges" => {{b, c}, {a, d}, {c, d}, {a, e}, {b, e}}}, │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - Graph{"edges" => {{b, c}, {a, d}, {b, d}, {a, e}, {c, e}}}} │ │ │ │ + Graph{"edges" => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}} │ │ │ │ "ring" => R │ │ │ │ "vertices" => {a, b, c, d, e} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ ├── ./usr/share/doc/Macaulay2/Nauty/html/_graph__Complement.html │ │ │ @@ -116,21 +116,21 @@ │ │ │ │ │ │
    i4 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time graphComplement G;
    │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc)
    │ │ │ + -- used 0.000464337s (cpu); 0.000655501s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time (graphComplement \ G);
    │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc)
    │ │ │ + -- used 0.188207s (cpu); 0.0900525s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -41,17 +41,17 @@ │ │ │ │ │ │ │ │ o3 = DUW │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i4 : G = generateBipartiteGraphs 7; │ │ │ │ i5 : time graphComplement G; │ │ │ │ - -- used 0.000476844s (cpu); 0.000401593s (thread); 0s (gc) │ │ │ │ + -- used 0.000464337s (cpu); 0.000655501s (thread); 0s (gc) │ │ │ │ i6 : time (graphComplement \ G); │ │ │ │ - -- used 0.147573s (cpu); 0.079233s (thread); 0s (gc) │ │ │ │ + -- used 0.188207s (cpu); 0.0900525s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_o_m_p_l_e_m_e_n_t_G_r_a_p_h -- returns the complement of a graph or hypergraph │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/___Example_co_sp__Generating_spand_spfiltering_spgraphs.out │ │ │ @@ -26,22 +26,22 @@ │ │ │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => true}; │ │ │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected)) │ │ │ │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99, │ │ │ +o9 = (74, 86, 91, 91, 91, 91, 99, 97, 96, 99, 97, 98, 94, 96, 99, 100, 97, │ │ │ ------------------------------------------------------------------------ │ │ │ - 94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98) │ │ │ + 98, 98, 96, 100, 99, 99, 98, 98, 98, 97, 97, 100) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected)) │ │ │ │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, │ │ │ +o10 = (14, 8, 5, 3, 7, 3, 1, 0, 3, 3, 2, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, │ │ │ ----------------------------------------------------------------------- │ │ │ - 0, 1, 1, 1, 0, 0) │ │ │ + 0, 1, 1, 0, 0, 0) │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Graphs.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ │ │ │ o1 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : generateRandomGraphs(5, 5) │ │ │ │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC} │ │ │ +o2 = {Dac, DSO, DwK, DRw, Dt{} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : generateRandomGraphs(5, 5, RandomSeed => 314159) │ │ │ │ │ │ o3 = {DDO, Dx_, Dlw, Dx{, D_K} │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_generate__Random__Regular__Graphs.out │ │ │ @@ -1,9 +1,9 @@ │ │ │ -- -*- M2-comint -*- hash: 1331287392268 │ │ │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ -o1 = {DMg, DLo, DLo} │ │ │ +o1 = {DLo, Dhc, DYc} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/example-output/_graph__Complement.out │ │ │ @@ -13,13 +13,13 @@ │ │ │ 4 => {2, 1} │ │ │ │ │ │ o2 : Graph │ │ │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ │ │ i4 : time graphComplement G; │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc) │ │ │ + -- used 0.000670754s (cpu); 0.000547287s (thread); 0s (gc) │ │ │ │ │ │ i5 : time (graphComplement \ G); │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc) │ │ │ + -- used 0.163163s (cpu); 0.0778834s (thread); 0s (gc) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/___Example_co_sp__Generating_spand_spfiltering_spgraphs.html │ │ │ @@ -117,28 +117,28 @@ │ │ │
      i8 : prob = n -> log(n)/n;
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), connected))
      │ │ │  
      │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99,
      │ │ │ +o9 = (74, 86, 91, 91, 91, 91, 99, 97, 96, 99, 97, 98, 94, 96, 99, 100, 97,
      │ │ │       ------------------------------------------------------------------------
      │ │ │ -     94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98)
      │ │ │ +     98, 98, 96, 100, 99, 99, 98, 98, 98, 97, 97, 100)
      │ │ │  
      │ │ │  o9 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), connected))
      │ │ │  
      │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      │ │ │ +o10 = (14, 8, 5, 3, 7, 3, 1, 0, 3, 3, 2, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0,
      │ │ │        -----------------------------------------------------------------------
      │ │ │ -      0, 1, 1, 1, 0, 0)
      │ │ │ +      0, 1, 1, 0, 0, 0)
      │ │ │  
      │ │ │  o10 : Sequence
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -38,25 +38,25 @@ │ │ │ │ connected, at least as $n$ tends to infinity. │ │ │ │ i7 : connected = buildGraphFilter {"Connectivity" => 0, "NegateConnectivity" => │ │ │ │ true}; │ │ │ │ i8 : prob = n -> log(n)/n; │ │ │ │ i9 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, 2*(prob n)), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o9 = (72, 79, 88, 91, 95, 95, 93, 96, 97, 99, 97, 95, 96, 97, 95, 98, 99, 99, │ │ │ │ +o9 = (74, 86, 91, 91, 91, 91, 99, 97, 96, 99, 97, 98, 94, 96, 99, 100, 97, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 94, 99, 96, 98, 98, 97, 97, 98, 98, 94, 98) │ │ │ │ + 98, 98, 96, 100, 99, 99, 98, 98, 98, 97, 97, 100) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ i10 : apply(2..30, n -> #filterGraphs(generateRandomGraphs(n, 100, (prob n)/2), │ │ │ │ connected)) │ │ │ │ │ │ │ │ -o10 = (18, 11, 7, 2, 7, 3, 5, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, │ │ │ │ +o10 = (14, 8, 5, 3, 7, 3, 1, 0, 3, 3, 2, 0, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 0, 1, 1, 1, 0, 0) │ │ │ │ + 0, 1, 1, 0, 0, 0) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _b_u_i_l_d_G_r_a_p_h_F_i_l_t_e_r -- creates the appropriate filter string for use with │ │ │ │ filterGraphs and countGraphs │ │ │ │ * _f_i_l_t_e_r_G_r_a_p_h_s -- filters (i.e., selects) graphs in a list for given │ │ │ │ properties │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Graphs.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : generateRandomGraphs(5, 5)
    │ │ │  
    │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC}
    │ │ │ +o2 = {Dac, DSO, DwK, DRw, Dt{}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -30,15 +30,15 @@
    │ │ │ │  i1 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o1 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : generateRandomGraphs(5, 5)
    │ │ │ │  
    │ │ │ │ -o2 = {DU?, Dt_, DFw, DTG, DxC}
    │ │ │ │ +o2 = {Dac, DSO, DwK, DRw, Dt{}
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : generateRandomGraphs(5, 5, RandomSeed => 314159)
    │ │ │ │  
    │ │ │ │  o3 = {DDO, Dx_, Dlw, Dx{, D_K}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_generate__Random__Regular__Graphs.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │            

    This method generates a specified number of random graphs on a given number of vertices with a given regularity. Note that some graphs may be isomorphic.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : generateRandomRegularGraphs(5, 3, 2)
    │ │ │  
    │ │ │ -o1 = {DMg, DLo, DLo}
    │ │ │ +o1 = {DLo, Dhc, DYc}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o G, a _l_i_s_t, the randomly generated regular graphs │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ This method generates a specified number of random graphs on a given number of │ │ │ │ vertices with a given regularity. Note that some graphs may be isomorphic. │ │ │ │ i1 : generateRandomRegularGraphs(5, 3, 2) │ │ │ │ │ │ │ │ -o1 = {DMg, DLo, DLo} │ │ │ │ +o1 = {DLo, Dhc, DYc} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The number of vertices $n$ must be positive as nauty cannot handle graphs with │ │ │ │ zero vertices. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_a_t_e_R_a_n_d_o_m_G_r_a_p_h_s -- generates random graphs on a given number of │ │ ├── ./usr/share/doc/Macaulay2/NautyGraphs/html/_graph__Complement.html │ │ │ @@ -110,21 +110,21 @@ │ │ │ │ │ │
    i3 : G = generateBipartiteGraphs 7;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time graphComplement G;
    │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc)
    │ │ │ + -- used 0.000670754s (cpu); 0.000547287s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time (graphComplement \ G);
    │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc)
    │ │ │ + -- used 0.163163s (cpu); 0.0778834s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use graphComplement:

    │ │ │ ├── html2text {} │ │ │ │ @@ -38,17 +38,17 @@ │ │ │ │ │ │ │ │ o2 : Graph │ │ │ │ Batch calls can be performed considerably faster when using the List input │ │ │ │ format. However, care should be taken as the returned list is entirely in │ │ │ │ Graph6 or Sparse6 format. │ │ │ │ i3 : G = generateBipartiteGraphs 7; │ │ │ │ i4 : time graphComplement G; │ │ │ │ - -- used 0.00101801s (cpu); 0.000811832s (thread); 0s (gc) │ │ │ │ + -- used 0.000670754s (cpu); 0.000547287s (thread); 0s (gc) │ │ │ │ i5 : time (graphComplement \ G); │ │ │ │ - -- used 0.146022s (cpu); 0.0727874s (thread); 0s (gc) │ │ │ │ + -- used 0.163163s (cpu); 0.0778834s (thread); 0s (gc) │ │ │ │ ********** WWaayyss ttoo uussee ggrraapphhCCoommpplleemmeenntt:: ********** │ │ │ │ * graphComplement(Graph) │ │ │ │ * graphComplement(List) │ │ │ │ * graphComplement(String) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _g_r_a_p_h_C_o_m_p_l_e_m_e_n_t is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/example-output/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.out │ │ │ @@ -47,15 +47,15 @@ │ │ │ o4 : Ideal of R │ │ │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ o5 = true │ │ │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ - -- .113138s elapsed │ │ │ + -- .0906126s elapsed │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ ------------------------------------------------------------------------ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/NoetherianOperators/html/___Strategy_sp_eq_gt_sp_dq__Punctual__Quot_dq.html │ │ │ @@ -120,15 +120,15 @@ │ │ │ │ │ │ o5 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot")
    │ │ │ - -- .113138s elapsed
    │ │ │ + -- .0906126s elapsed
    │ │ │  
    │ │ │  o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, |
    │ │ │       ------------------------------------------------------------------------
    │ │ │       2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ 1 2 3 2 3 │ │ │ │ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : isPrimary Q │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : elapsedTime noetherianOperators(Q, Strategy => "PunctualQuot") │ │ │ │ - -- .113138s elapsed │ │ │ │ + -- .0906126s elapsed │ │ │ │ │ │ │ │ o6 = {| 1 |, | dx_1 |, | dx_2 |, | dx_1^2 |, | dx_1dx_2 |, | dx_2^2 |, | │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2x_1x_3dx_1^3+3x_2x_3dx_1^2dx_2-3x_3x_4dx_1dx_2^2-2x_1x_4dx_2^3 |} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/___Chow_spring.out │ │ │ @@ -78,15 +78,15 @@ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc) │ │ │ + -- used 0.268141s (cpu); 0.269473s (thread); 0s (gc) │ │ │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ @@ -110,19 +110,19 @@ │ │ │ 2 2 2 2 2 2 2 2 3 2 │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc) │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc) │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc) │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc) │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc) │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc) │ │ │ + -- used 0.00400058s (cpu); 0.00152596s (thread); 0s (gc) │ │ │ + -- used 3.236e-05s (cpu); 0.000134791s (thread); 0s (gc) │ │ │ + -- used 1.216e-05s (cpu); 8.5552e-05s (thread); 0s (gc) │ │ │ + -- used 1.0587e-05s (cpu); 8.9444e-05s (thread); 0s (gc) │ │ │ + -- used 1.1448e-05s (cpu); 8.6472e-05s (thread); 0s (gc) │ │ │ + -- used 1.2318e-05s (cpu); 8.3775e-05s (thread); 0s (gc) │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_is__Well__Defined_lp__Normal__Toric__Variety_rp.out │ │ │ @@ -1,29 +1,29 @@ │ │ │ -- -*- M2-comint -*- hash: 16408385764843695632 │ │ │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ - -- setting random seed to 1765726817 │ │ │ + -- setting random seed to 1767789253 │ │ │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ -o3 = {2, 4, 5} │ │ │ +o3 = {2, 3, 6} │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9)); │ │ │ │ │ │ i7 : q │ │ │ │ │ │ -o7 = {5, 7, 7, 9, 9} │ │ │ +o7 = {3, 4, 6, 8, 9} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_monomials_lp__Toric__Divisor_rp.out │ │ │ @@ -6,61 +6,61 @@ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ 0 │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ - -- .0534782s elapsed │ │ │ + -- .035912s elapsed │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1)) │ │ │ - -- .0017525s elapsed │ │ │ + -- .0016787s elapsed │ │ │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ 0 1 │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ - -- .0763581s elapsed │ │ │ + -- .0377816s elapsed │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2)) │ │ │ - -- .00167424s elapsed │ │ │ + -- .00136606s elapsed │ │ │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ 0 1 │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ - -- 40.8741s elapsed │ │ │ + -- 32.4281s elapsed │ │ │ │ │ │ o11 = 7909 │ │ │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3)) │ │ │ - -- .0293459s elapsed │ │ │ + -- .0319871s elapsed │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Fan_rp.out │ │ │ @@ -24,19 +24,19 @@ │ │ │ o3 : List │ │ │ │ │ │ i4 : X = normalToricVariety F; │ │ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc) │ │ │ + -- used 3.5654e-05s (cpu); 2.2289e-05s (thread); 0s (gc) │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc) │ │ │ + -- used 0.0543238s (cpu); 0.0543363s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/example-output/_normal__Toric__Variety_lp__Polyhedron_rp.out │ │ │ @@ -88,15 +88,15 @@ │ │ │ o18 = | 0 1 0 | │ │ │ | 0 0 1 | │ │ │ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc) │ │ │ + -- used 0.0290511s (cpu); 0.0290518s (thread); 0s (gc) │ │ │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc) │ │ │ + -- used 0.00327888s (cpu); 0.0032839s (thread); 0s (gc) │ │ │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ │ │ i22 : │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/___Chow_spring.html │ │ │ @@ -207,15 +207,15 @@ │ │ │
    │ │ │

    We end with a slightly larger example.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -254,20 +254,20 @@ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i14 : Y = time smoothFanoToricVariety(5,100);
    │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc)
    │ │ │ + -- used 0.268141s (cpu); 0.269473s (thread); 0s (gc) │ │ │
    │ │ │
    i15 : A2 = intersectionRing Y;
    │ │ │
    │ │ │
    i19 : for i to dim Y list time hilbertFunction (i, A2)
    │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc)
    │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc)
    │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc)
    │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc)
    │ │ │ + -- used 0.00400058s (cpu); 0.00152596s (thread); 0s (gc)
    │ │ │ + -- used 3.236e-05s (cpu); 0.000134791s (thread); 0s (gc)
    │ │ │ + -- used 1.216e-05s (cpu); 8.5552e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.0587e-05s (cpu); 8.9444e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.1448e-05s (cpu); 8.6472e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.2318e-05s (cpu); 8.3775e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o19 = {1, 6, 13, 13, 6, 1}
    │ │ │  
    │ │ │  o19 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ i13 : for i to dim X list hilbertFunction (i, A1) │ │ │ │ │ │ │ │ o13 = {1, 2, 3, 3, 2, 1} │ │ │ │ │ │ │ │ o13 : List │ │ │ │ We end with a slightly larger example. │ │ │ │ i14 : Y = time smoothFanoToricVariety(5,100); │ │ │ │ - -- used 0.195947s (cpu); 0.196132s (thread); 0s (gc) │ │ │ │ + -- used 0.268141s (cpu); 0.269473s (thread); 0s (gc) │ │ │ │ i15 : A2 = intersectionRing Y; │ │ │ │ i16 : assert (# rays Y === numgens A2) │ │ │ │ i17 : ideal A2 │ │ │ │ │ │ │ │ o17 = ideal (t t , t t , t t , t t , t t , t t , t t , t t , t t t , │ │ │ │ 2 3 2 5 4 5 3 6 4 6 1 7 7 9 8 9 0 1 10 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ @@ -129,20 +129,20 @@ │ │ │ │ (t + t t , t t + t , t + t t , t t , t t + t , t - t t - 3t t + t │ │ │ │ t + 2t , - t t + t + 2t t , t t , - t t + t , t t ) │ │ │ │ 3 3 5 3 5 5 5 5 6 3 6 5 6 6 8 8 9 8 10 │ │ │ │ 9 10 10 8 9 9 9 10 8 9 8 10 10 8 10 │ │ │ │ │ │ │ │ o18 : QuotientRing │ │ │ │ i19 : for i to dim Y list time hilbertFunction (i, A2) │ │ │ │ - -- used 0.00192857s (cpu); 0.00120085s (thread); 0s (gc) │ │ │ │ - -- used 2.3484e-05s (cpu); 9.2934e-05s (thread); 0s (gc) │ │ │ │ - -- used 9.298e-06s (cpu); 7.0111e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.586e-06s (cpu); 6.6936e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.175e-06s (cpu); 7.2777e-05s (thread); 0s (gc) │ │ │ │ - -- used 8.416e-06s (cpu); 6.7105e-05s (thread); 0s (gc) │ │ │ │ + -- used 0.00400058s (cpu); 0.00152596s (thread); 0s (gc) │ │ │ │ + -- used 3.236e-05s (cpu); 0.000134791s (thread); 0s (gc) │ │ │ │ + -- used 1.216e-05s (cpu); 8.5552e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.0587e-05s (cpu); 8.9444e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.1448e-05s (cpu); 8.6472e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.2318e-05s (cpu); 8.3775e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o19 = {1, 6, 13, 13, 6, 1} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _s_h_e_a_v_e_s -- information about coherent sheaves and total │ │ │ │ coordinate rings (a.k.a. Cox rings) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_is__Well__Defined_lp__Normal__Toric__Variety_rp.html │ │ │ @@ -93,22 +93,22 @@ │ │ │
    │ │ │

    The second examples show that a randomly selected Kleinschmidt toric variety and a weighted projective space are also well-defined.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i2 : setRandomSeed (currentTime ());
    │ │ │ - -- setting random seed to 1765726817
    │ │ │ + -- setting random seed to 1767789253 │ │ │
    │ │ │
    i3 : a = sort apply (3, i -> random (7))
    │ │ │  
    │ │ │ -o3 = {2, 4, 5}
    │ │ │ +o3 = {2, 3, 6}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : assert isWellDefined kleinschmidt (4,a)
    │ │ │ @@ -126,15 +126,15 @@ │ │ │
    i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j -> random (1,9));
    │ │ │
    │ │ │
    i7 : q
    │ │ │  
    │ │ │ -o7 = {5, 7, 7, 9, 9}
    │ │ │ +o7 = {3, 4, 6, 8, 9}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : assert isWellDefined weightedProjectiveSpace q
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,27 +28,27 @@ │ │ │ │ * the intersection of the cones associated to two elements of coneList is a │ │ │ │ face of each cone. │ │ │ │ The first examples illustrate that small projective spaces are well-defined. │ │ │ │ i1 : assert all (5, d -> isWellDefined toricProjectiveSpace (d+1)) │ │ │ │ The second examples show that a randomly selected Kleinschmidt toric variety │ │ │ │ and a weighted projective space are also well-defined. │ │ │ │ i2 : setRandomSeed (currentTime ()); │ │ │ │ - -- setting random seed to 1765726817 │ │ │ │ + -- setting random seed to 1767789253 │ │ │ │ i3 : a = sort apply (3, i -> random (7)) │ │ │ │ │ │ │ │ -o3 = {2, 4, 5} │ │ │ │ +o3 = {2, 3, 6} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : assert isWellDefined kleinschmidt (4,a) │ │ │ │ i5 : q = sort apply (5, j -> random (1,9)); │ │ │ │ i6 : while not all (subsets (q,#q-1), s -> gcd s === 1) do q = sort apply (5, j │ │ │ │ -> random (1,9)); │ │ │ │ i7 : q │ │ │ │ │ │ │ │ -o7 = {5, 7, 7, 9, 9} │ │ │ │ +o7 = {3, 4, 6, 8, 9} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : assert isWellDefined weightedProjectiveSpace q │ │ │ │ The next ten examples illustrate various ways that two lists can fail to define │ │ │ │ a normal toric variety. By making the current debugging level greater than one, │ │ │ │ one gets some addition information about the nature of the failure. │ │ │ │ i9 : X = new MutableHashTable; │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_monomials_lp__Toric__Divisor_rp.html │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │
    │ │ │
    i3 : M1 = elapsedTime monomials D1
    │ │ │ - -- .0534782s elapsed
    │ │ │ + -- .035912s elapsed
    │ │ │  
    │ │ │         5     4     4   2 3       3   2 3   3 2     2 2   2   2   3 2   4   
    │ │ │  o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x ,
    │ │ │         2   1 2   0 2   1 2   0 1 2   0 2   1 2   0 1 2   0 1 2   0 2   1 2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │          3     2 2     3       4     5     4   2 3   3 2   4     5
    │ │ │       x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x }
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │
    i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring variety D1))
    │ │ │ - -- .0017525s elapsed
    │ │ │ + -- .0016787s elapsed │ │ │
    │ │ │
    │ │ │

    Toric varieties of Picard-rank 2 are slightly more interesting.

    │ │ │
    │ │ │ │ │ │ @@ -138,27 +138,27 @@ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -171,23 +171,23 @@ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i7 : M2 = elapsedTime monomials D2
    │ │ │ - -- .0763581s elapsed
    │ │ │ + -- .0377816s elapsed
    │ │ │  
    │ │ │         2     3 2     3     2 3
    │ │ │  o7 = {x x , x x , x x x , x x }
    │ │ │         1 3   1 2   0 1 2   0 1
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │
    i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring variety D2))
    │ │ │ - -- .00167424s elapsed
    │ │ │ + -- .00136606s elapsed │ │ │
    │ │ │
    i9 : X = kleinschmidt (5, {1,2,3});
    │ │ │
    │ │ │
    i11 : m3 = elapsedTime # monomials D3
    │ │ │ - -- 40.8741s elapsed
    │ │ │ + -- 32.4281s elapsed
    │ │ │  
    │ │ │  o11 = 7909
    │ │ │
    │ │ │
    i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety D3))
    │ │ │ - -- .0293459s elapsed
    │ │ │ + -- .0319871s elapsed │ │ │
    │ │ │
    │ │ │

    By exploiting latticePoints, this method function avoids using the basis function.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -27,61 +27,61 @@ │ │ │ │ i2 : D1 = 5*PP2_0 │ │ │ │ │ │ │ │ o2 = 5*PP2 │ │ │ │ 0 │ │ │ │ │ │ │ │ o2 : ToricDivisor on PP2 │ │ │ │ i3 : M1 = elapsedTime monomials D1 │ │ │ │ - -- .0534782s elapsed │ │ │ │ + -- .035912s elapsed │ │ │ │ │ │ │ │ 5 4 4 2 3 3 2 3 3 2 2 2 2 2 3 2 4 │ │ │ │ o3 = {x , x x , x x , x x , x x x , x x , x x , x x x , x x x , x x , x x , │ │ │ │ 2 1 2 0 2 1 2 0 1 2 0 2 1 2 0 1 2 0 1 2 0 2 1 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 2 3 4 5 4 2 3 3 2 4 5 │ │ │ │ x x x , x x x , x x x , x x , x , x x , x x , x x , x x , x } │ │ │ │ 0 1 2 0 1 2 0 1 2 0 2 1 0 1 0 1 0 1 0 1 0 │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime assert (set M1 === set first entries basis(degree D1, ring │ │ │ │ variety D1)) │ │ │ │ - -- .0017525s elapsed │ │ │ │ + -- .0016787s elapsed │ │ │ │ Toric varieties of Picard-rank 2 are slightly more interesting. │ │ │ │ i5 : FF2 = hirzebruchSurface 2; │ │ │ │ i6 : D2 = 2*FF2_0 + 3 * FF2_1 │ │ │ │ │ │ │ │ o6 = 2*FF2 + 3*FF2 │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o6 : ToricDivisor on FF2 │ │ │ │ i7 : M2 = elapsedTime monomials D2 │ │ │ │ - -- .0763581s elapsed │ │ │ │ + -- .0377816s elapsed │ │ │ │ │ │ │ │ 2 3 2 3 2 3 │ │ │ │ o7 = {x x , x x , x x x , x x } │ │ │ │ 1 3 1 2 0 1 2 0 1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : elapsedTime assert (set M2 === set first entries basis (degree D2, ring │ │ │ │ variety D2)) │ │ │ │ - -- .00167424s elapsed │ │ │ │ + -- .00136606s elapsed │ │ │ │ i9 : X = kleinschmidt (5, {1,2,3}); │ │ │ │ i10 : D3 = 3*X_0 + 5*X_1 │ │ │ │ │ │ │ │ o10 = 3*X + 5*X │ │ │ │ 0 1 │ │ │ │ │ │ │ │ o10 : ToricDivisor on X │ │ │ │ i11 : m3 = elapsedTime # monomials D3 │ │ │ │ - -- 40.8741s elapsed │ │ │ │ + -- 32.4281s elapsed │ │ │ │ │ │ │ │ o11 = 7909 │ │ │ │ i12 : elapsedTime assert (m3 === #first entries basis (degree D3, ring variety │ │ │ │ D3)) │ │ │ │ - -- .0293459s elapsed │ │ │ │ + -- .0319871s elapsed │ │ │ │ By exploiting _l_a_t_t_i_c_e_P_o_i_n_t_s, this method function avoids using the _b_a_s_i_s │ │ │ │ function. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _w_o_r_k_i_n_g_ _w_i_t_h_ _d_i_v_i_s_o_r_s -- information about toric divisors and their │ │ │ │ related groups │ │ │ │ * _r_i_n_g_(_N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_) -- make the total coordinate ring (a.k.a. Cox │ │ │ │ ring) │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Fan_rp.html │ │ │ @@ -125,25 +125,25 @@ │ │ │
    │ │ │

    The recommended method for creating a NormalToricVariety from a fan is normalToricVariety(List,List). In fact, this package avoids using objects from the Polyhedra package whenever possible. Here is a trivial example, namely projective 2-space, illustrating the substantial increase in time resulting from the use of a Polyhedra fan.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,22 +48,22 @@ │ │ │ │ i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) │ │ │ │ The recommended method for creating a _N_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y from a fan is │ │ │ │ _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_L_i_s_t_,_L_i_s_t_). In fact, this package avoids using objects from │ │ │ │ the _P_o_l_y_h_e_d_r_a package whenever possible. Here is a trivial example, namely │ │ │ │ projective 2-space, illustrating the substantial increase in time resulting │ │ │ │ from the use of a _P_o_l_y_h_e_d_r_a fan. │ │ │ │ i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) │ │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc) │ │ │ │ + -- used 3.5654e-05s (cpu); 2.2289e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = X1 │ │ │ │ │ │ │ │ o6 : NormalToricVariety │ │ │ │ i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull │ │ │ │ matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; │ │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc) │ │ │ │ + -- used 0.0543238s (cpu); 0.0543363s (thread); 0s (gc) │ │ │ │ i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y -- make a normal toric variety │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_F_a_n_) -- make a normal toric variety from a 'Polyhedra' │ │ │ │ fan │ │ ├── ./usr/share/doc/Macaulay2/NormalToricVarieties/html/_normal__Toric__Variety_lp__Polyhedron_rp.html │ │ │ @@ -233,21 +233,21 @@ │ │ │ 2 3 │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -102,17 +102,17 @@ │ │ │ │ │ │ │ │ o18 = | 0 1 0 | │ │ │ │ | 0 0 1 | │ │ │ │ │ │ │ │ 2 3 │ │ │ │ o18 : Matrix ZZ <-- ZZ │ │ │ │ i19 : X1 = time normalToricVariety convexHull (vertMatrix); │ │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc) │ │ │ │ + -- used 0.0290511s (cpu); 0.0290518s (thread); 0s (gc) │ │ │ │ i20 : X2 = time normalToricVariety vertMatrix; │ │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc) │ │ │ │ + -- used 0.00327888s (cpu); 0.0032839s (thread); 0s (gc) │ │ │ │ i21 : assert (set rays X2 === set rays X1 and max X1 === max X2) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_i_n_g_ _n_o_r_m_a_l_ _t_o_r_i_c_ _v_a_r_i_e_t_i_e_s -- information about the basic constructors │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_M_a_t_r_i_x_) -- make a normal toric variety from a polytope │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_o_r_m_a_l_T_o_r_i_c_V_a_r_i_e_t_y_(_P_o_l_y_h_e_d_r_o_n_) -- make a normal toric variety from a │ │ │ │ 'Polyhedra' polyhedron │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/___Convert__To__Cone.out │ │ │ @@ -21,21 +21,21 @@ │ │ │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue == 0 │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ Sampling image points ... │ │ │ - -- used .0884675 seconds │ │ │ + -- used .107765 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00923927 seconds │ │ │ + -- used .0280642 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00487238 seconds │ │ │ + -- used .00376363 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000642635 seconds │ │ │ + -- used .000495459 seconds │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_extract__Image__Equations.out │ │ │ @@ -11,21 +11,21 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ Sampling image points ... │ │ │ - -- used .00368858 seconds │ │ │ + -- used .00438314 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .00273464 seconds │ │ │ + -- used .00385012 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00106818 seconds │ │ │ + -- used .00126874 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000315712 seconds │ │ │ + -- used .0003215 seconds │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ 1 3 │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ 53 0 3 53 0 3 │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Hilbert__Function.out │ │ │ @@ -11,40 +11,40 @@ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ Sampling image points ... │ │ │ - -- used .0123198 seconds │ │ │ + -- used .014854 seconds │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0108776 seconds │ │ │ + -- used .0133614 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00719824 seconds │ │ │ + -- used .00772006 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000762781 seconds │ │ │ + -- used .000876456 seconds │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ Creating interpolation matrix ... │ │ │ - -- used .0026712 seconds │ │ │ + -- used .0035963 seconds │ │ │ Performing normalization preconditioning ... │ │ │ - -- used .00778446 seconds │ │ │ + -- used .0100255 seconds │ │ │ Computing numerical kernel ... │ │ │ - -- used .000791835 seconds │ │ │ + -- used .00106002 seconds │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_numerical__Image__Dim.out │ │ │ @@ -20,12 +20,12 @@ │ │ │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc) │ │ │ + -- used 0.0752999s (cpu); 0.0752912s (thread); 0s (gc) │ │ │ │ │ │ o9 = 69 │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/example-output/_real__Point.out │ │ │ @@ -31,15 +31,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ - -- .638062s elapsed │ │ │ + -- .508339s elapsed │ │ │ │ │ │ o7 = p │ │ │ │ │ │ o7 : Point │ │ │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/___Convert__To__Cone.html │ │ │ @@ -100,21 +100,21 @@ │ │ │ o4 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,21 +33,21 @@ │ │ │ │ o3 : Ideal of R │ │ │ │ i4 : (numericalHilbertFunction(F, I, 3, Verbose => false)).hilbertFunctionValue │ │ │ │ == 0 │ │ │ │ │ │ │ │ o4 = true │ │ │ │ i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .0884675 seconds │ │ │ │ + -- used .107765 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00923927 seconds │ │ │ │ + -- used .0280642 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00487238 seconds │ │ │ │ + -- used .00376363 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000642635 seconds │ │ │ │ + -- used .000495459 seconds │ │ │ │ │ │ │ │ o5 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 3 forms in the ideal of the image has dimension 3 │ │ │ │ │ │ │ │ o5 : NumericalInterpolationTable │ │ │ │ i6 : extractImageEquations(T, AttemptZZ => true) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_extract__Image__Equations.html │ │ │ @@ -102,21 +102,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,21 +38,21 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .00368858 seconds │ │ │ │ + -- used .00438314 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .00273464 seconds │ │ │ │ + -- used .00385012 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00106818 seconds │ │ │ │ + -- used .00126874 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000315712 seconds │ │ │ │ + -- used .0003215 seconds │ │ │ │ │ │ │ │ o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 | │ │ │ │ │ │ │ │ 1 3 │ │ │ │ o3 : Matrix (CC [y ..y ]) <-- (CC [y ..y ]) │ │ │ │ 53 0 3 53 0 3 │ │ │ │ Here is how to do the same computation symbolically. │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Hilbert__Function.html │ │ │ @@ -107,21 +107,21 @@ │ │ │ o2 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -147,19 +147,19 @@ │ │ │
    i6 : S = numericalImageSample(F, ideal 0_R, 60);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,39 +57,39 @@ │ │ │ │ │ │ │ │ o2 = | s3 s2t st2 t3 | │ │ │ │ │ │ │ │ 1 4 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : numericalHilbertFunction(F, ideal 0_R, 4) │ │ │ │ Sampling image points ... │ │ │ │ - -- used .0123198 seconds │ │ │ │ + -- used .014854 seconds │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0108776 seconds │ │ │ │ + -- used .0133614 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00719824 seconds │ │ │ │ + -- used .00772006 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000762781 seconds │ │ │ │ + -- used .000876456 seconds │ │ │ │ │ │ │ │ o3 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 4 forms in the ideal of the image has dimension 22 │ │ │ │ │ │ │ │ o3 : NumericalInterpolationTable │ │ │ │ The following example computes the dimension of Plücker quadrics in the │ │ │ │ defining ideal of the Grassmannian $Gr(2,4)$ of $P^1$'s in $P^3$, in the │ │ │ │ ambient space $P^5$. │ │ │ │ i4 : R = CC[x_(1,1)..x_(2,4)]; │ │ │ │ i5 : F = (minors(2, genericMatrix(R, 2, 4)))_*; │ │ │ │ i6 : S = numericalImageSample(F, ideal 0_R, 60); │ │ │ │ i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true) │ │ │ │ Creating interpolation matrix ... │ │ │ │ - -- used .0026712 seconds │ │ │ │ + -- used .0035963 seconds │ │ │ │ Performing normalization preconditioning ... │ │ │ │ - -- used .00778446 seconds │ │ │ │ + -- used .0100255 seconds │ │ │ │ Computing numerical kernel ... │ │ │ │ - -- used .000791835 seconds │ │ │ │ + -- used .00106002 seconds │ │ │ │ │ │ │ │ o7 = a "numerical interpolation table", indicating │ │ │ │ the space of degree 2 forms in the ideal of the image has dimension 1 │ │ │ │ │ │ │ │ o7 : NumericalInterpolationTable │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _N_u_m_e_r_i_c_a_l_I_n_t_e_r_p_o_l_a_t_i_o_n_T_a_b_l_e -- the class of all │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_numerical__Image__Dim.html │ │ │ @@ -140,15 +140,15 @@ │ │ │ 1 70 │ │ │ o8 : Matrix R <-- R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}})
    │ │ │ - -- used 2.2001e-05s (cpu); 1.9186e-05s (thread); 0s (gc)
    │ │ │ + -- used 3.5654e-05s (cpu); 2.2289e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = X1
    │ │ │  
    │ │ │  o6 : NormalToricVariety
    │ │ │
    │ │ │
    i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}};
    │ │ │ - -- used 0.0417375s (cpu); 0.0417407s (thread); 0s (gc)
    │ │ │ + -- used 0.0543238s (cpu); 0.0543363s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2)
    │ │ │
    │ │ │
    i19 : X1 = time normalToricVariety convexHull (vertMatrix);
    │ │ │ - -- used 0.0209352s (cpu); 0.020935s (thread); 0s (gc)
    │ │ │ + -- used 0.0290511s (cpu); 0.0290518s (thread); 0s (gc) │ │ │
    │ │ │
    i20 : X2 = time normalToricVariety vertMatrix;
    │ │ │ - -- used 0.00216116s (cpu); 0.00216187s (thread); 0s (gc)
    │ │ │ + -- used 0.00327888s (cpu); 0.0032839s (thread); 0s (gc) │ │ │
    │ │ │
    i21 : assert (set rays X2 === set rays X1 and max X1 === max X2)
    │ │ │
    │ │ │
    i5 : T = numericalHilbertFunction(F, I, 3, ConvertToCone => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .0884675 seconds
    │ │ │ +     -- used .107765 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00923927 seconds
    │ │ │ +     -- used .0280642 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00487238 seconds
    │ │ │ +     -- used .00376363 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000642635 seconds
    │ │ │ +     -- used .000495459 seconds
    │ │ │  
    │ │ │  o5 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 3 forms in the ideal of the image has dimension 3
    │ │ │  
    │ │ │  o5 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i3 : extractImageEquations(F, ideal 0_R, 2, AttemptZZ => true)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .00368858 seconds
    │ │ │ +     -- used .00438314 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .00273464 seconds
    │ │ │ +     -- used .00385012 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00106818 seconds
    │ │ │ +     -- used .00126874 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000315712 seconds
    │ │ │ +     -- used .0003215 seconds
    │ │ │  
    │ │ │  o3 = | y_1^2-y_0y_2 y_1y_2-y_0y_3 y_2^2-y_1y_3 |
    │ │ │  
    │ │ │                            1                   3
    │ │ │  o3 : Matrix (CC  [y ..y ])  <-- (CC  [y ..y ])
    │ │ │                 53  0   3           53  0   3
    │ │ │
    │ │ │
    i3 : numericalHilbertFunction(F, ideal 0_R, 4)
    │ │ │  Sampling image points ...
    │ │ │ -     -- used .0123198 seconds
    │ │ │ +     -- used .014854 seconds
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0108776 seconds
    │ │ │ +     -- used .0133614 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00719824 seconds
    │ │ │ +     -- used .00772006 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000762781 seconds
    │ │ │ +     -- used .000876456 seconds
    │ │ │  
    │ │ │  o3 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 4 forms in the ideal of the image has dimension 22
    │ │ │  
    │ │ │  o3 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i7 : numericalHilbertFunction(F, ideal 0_R, S, 2, UseSLP => true)
    │ │ │  Creating interpolation matrix ...
    │ │ │ -     -- used .0026712 seconds
    │ │ │ +     -- used .0035963 seconds
    │ │ │  Performing normalization preconditioning ...
    │ │ │ -     -- used .00778446 seconds
    │ │ │ +     -- used .0100255 seconds
    │ │ │  Computing numerical kernel ...
    │ │ │ -     -- used .000791835 seconds
    │ │ │ +     -- used .00106002 seconds
    │ │ │  
    │ │ │  o7 = a "numerical interpolation table", indicating
    │ │ │       the space of degree 2 forms in the ideal of the image has dimension 1
    │ │ │  
    │ │ │  o7 : NumericalInterpolationTable
    │ │ │
    │ │ │
    i9 : time numericalImageDim(F, ideal 0_R)
    │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc)
    │ │ │ + -- used 0.0752999s (cpu); 0.0752912s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = 69
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ 201-222. We numerically verify this below. │ │ │ │ i7 : R = CC[a_(1,1)..a_(14,5)]; │ │ │ │ i8 : F = sum(1..14, i -> basis(4, R, Variables=>toList(a_(i,1)..a_(i,5)))); │ │ │ │ │ │ │ │ 1 70 │ │ │ │ o8 : Matrix R <-- R │ │ │ │ i9 : time numericalImageDim(F, ideal 0_R) │ │ │ │ - -- used 0.0641647s (cpu); 0.064162s (thread); 0s (gc) │ │ │ │ + -- used 0.0752999s (cpu); 0.0752912s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 = 69 │ │ │ │ ********** WWaayyss ttoo uussee nnuummeerriiccaallIImmaaggeeDDiimm:: ********** │ │ │ │ * numericalImageDim(List,Ideal) │ │ │ │ * numericalImageDim(List,Ideal,Point) │ │ │ │ * numericalImageDim(Matrix,Ideal) │ │ │ │ * numericalImageDim(Matrix,Ideal,Point) │ │ ├── ./usr/share/doc/Macaulay2/NumericalImplicitization/html/_real__Point.html │ │ │ @@ -132,15 +132,15 @@ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime p = realPoint(I, Iterations => 100)
    │ │ │ - -- .638062s elapsed
    │ │ │ + -- .508339s elapsed
    │ │ │  
    │ │ │  o7 = p
    │ │ │  
    │ │ │  o7 : Point
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ i5 : I2 = ideal apply(entries transpose A, row -> sum(row, v -> v^2) - 1); │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : I = I1 + I2; │ │ │ │ │ │ │ │ o6 : Ideal of R │ │ │ │ i7 : elapsedTime p = realPoint(I, Iterations => 100) │ │ │ │ - -- .638062s elapsed │ │ │ │ + -- .508339s elapsed │ │ │ │ │ │ │ │ o7 = p │ │ │ │ │ │ │ │ o7 : Point │ │ │ │ i8 : matrix pack(5, p#Coordinates) │ │ │ │ │ │ │ │ o8 = | .722359 .289465 -.295808 .591752 -.454678 | │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/example-output/_set__Verbose__Level.out │ │ │ @@ -52,92 +52,92 @@ │ │ │ │ │ │ i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm)) │ │ │ │ │ │ i5 : setVerboseLevel 1; │ │ │ │ │ │ i6 : S = solveSchubertProblem(SchPblm,2,4) │ │ │ -- playCheckers │ │ │ --- cpu time = .00800386 │ │ │ +-- cpu time = .0119672 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00400121 │ │ │ +-- cpu time = .00403291 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00400194 │ │ │ +-- cpu time = .00414467 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00479222 │ │ │ +-- time to make equations: .00406548 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .01877 │ │ │ --- time of performing one checker move: .0033589 │ │ │ --- time of performing one checker move: .00399169 │ │ │ --- time to make equations: .00398021 │ │ │ + -- trackHomotopy time = .00807571 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .01991 │ │ │ +-- time of performing one checker move: .00405521 │ │ │ +-- time of performing one checker move: 0 │ │ │ +-- time to make equations: .00799988 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0199622 │ │ │ --- time to make equations: .00399873 │ │ │ + -- trackHomotopy time = .00781135 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0240002 │ │ │ +-- time to make equations: .00806599 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .105096 │ │ │ --- time to make equations: .00399983 │ │ │ + -- trackHomotopy time = .0304754 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .12472 │ │ │ +-- time to make equations: .00799462 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ --- time of performing one checker move: .0159996 │ │ │ --- time to make equations: .0996534 │ │ │ + -- trackHomotopy time = .00811143 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}] │ │ │ +-- time of performing one checker move: .0240003 │ │ │ +-- time to make equations: .118783 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ --- time of performing one checker move: .107588 │ │ │ --- time to make equations: .011977 │ │ │ + -- trackHomotopy time = .00941138 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}] │ │ │ +-- time of performing one checker move: .134701 │ │ │ +-- time to make equations: .0159716 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ --- time of performing one checker move: .107635 │ │ │ --- time of performing one checker move: 0 │ │ │ + -- trackHomotopy time = .0311304 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}] │ │ │ +-- time of performing one checker move: .133681 │ │ │ +-- time of performing one checker move: .00400829 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time to make equations: .00799983 │ │ │ +-- time to make equations: .0159595 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ --- time of performing one checker move: .108513 │ │ │ + -- trackHomotopy time = .120965 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}] │ │ │ +-- time of performing one checker move: .23422 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = .00664616 │ │ │ +-- cpu time = .00805804 │ │ │ -- making a recursive call to resolveNode │ │ │ -- playCheckers │ │ │ --- cpu time = 0 │ │ │ +-- cpu time = .00397023 │ │ │ resolveNode reached node of no remaining conditions │ │ │ --- time to make equations: .00400042 │ │ │ +-- time to make equations: .0120518 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ --- time of performing one checker move: .0997514 │ │ │ --- time of performing one checker move: .00399816 │ │ │ --- time to make equations: .00400027 │ │ │ + -- trackHomotopy time = .00829677 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}] │ │ │ +-- time of performing one checker move: .143704 │ │ │ +-- time of performing one checker move: 0 │ │ │ +-- time to make equations: .00398176 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ --- time of performing one checker move: .0159585 │ │ │ --- time of performing one checker move: .0923873 │ │ │ + -- trackHomotopy time = .00805339 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}] │ │ │ +-- time of performing one checker move: .0239165 │ │ │ +-- time of performing one checker move: .107106 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .003972 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00399838 │ │ │ +-- time of performing one checker move: .00400535 │ │ │ -- time of performing one checker move: 0 │ │ │ --- time of performing one checker move: .00400062 │ │ │ --- time to make equations: .0120026 │ │ │ +-- time of performing one checker move: 0 │ │ │ +-- time of performing one checker move: .00401506 │ │ │ +-- time to make equations: .0159531 │ │ │ Setup time: 0 │ │ │ Computing time:0 │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ --- time of performing one checker move: .113179 │ │ │ --- time of performing one checker move: 0 │ │ │ + -- trackHomotopy time = .0341203 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}] │ │ │ +-- time of performing one checker move: .141398 │ │ │ +-- time of performing one checker move: .00706141 │ │ │ │ │ │ o6 = {| -1.65573-.600637ii .0201935+.0437095ii |, | -.154703+.175591ii │ │ │ | -1.23037-1.66989ii -.0308057-.00120618ii | | -.801221-.0354303ii │ │ │ | 1.35971-.743988ii -.0713133-.049047ii | | .325581-2.08048ii │ │ │ | -.397038-1.8974ii .0102261-.024397ii | | -.475895-.209388ii │ │ │ ------------------------------------------------------------------------ │ │ │ .0376857+.0683239ii |} │ │ ├── ./usr/share/doc/Macaulay2/NumericalSchubertCalculus/html/_set__Verbose__Level.html │ │ │ @@ -147,92 +147,92 @@ │ │ │
    i5 : setVerboseLevel 1; 
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00800386
    │ │ │ +-- cpu time = .0119672
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00400121
    │ │ │ +-- cpu time = .00403291
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00400194
    │ │ │ +-- cpu time = .00414467
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00479222
    │ │ │ +-- time to make equations: .00406548
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .01877
    │ │ │ --- time of performing one checker move: .0033589
    │ │ │ --- time of performing one checker move: .00399169
    │ │ │ --- time to make equations: .00398021
    │ │ │ + -- trackHomotopy time = .00807571 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .01991
    │ │ │ +-- time of performing one checker move: .00405521
    │ │ │ +-- time of performing one checker move: 0
    │ │ │ +-- time to make equations: .00799988
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0199622
    │ │ │ --- time to make equations: .00399873
    │ │ │ + -- trackHomotopy time = .00781135 sec. for [{1, 2, 3, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0240002
    │ │ │ +-- time to make equations: .00806599
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .105096
    │ │ │ --- time to make equations: .00399983
    │ │ │ + -- trackHomotopy time = .0304754 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .12472
    │ │ │ +-- time to make equations: .00799462
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ --- time of performing one checker move: .0159996
    │ │ │ --- time to make equations: .0996534
    │ │ │ + -- trackHomotopy time = .00811143 sec. for [{2, 3, 1, 0}, {2, infinity, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .0240003
    │ │ │ +-- time to make equations: .118783
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ --- time of performing one checker move: .107588
    │ │ │ --- time to make equations: .011977
    │ │ │ + -- trackHomotopy time = .00941138 sec. for [{0, 1, 2, 3}, {infinity, 1, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .134701
    │ │ │ +-- time to make equations: .0159716
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ --- time of performing one checker move: .107635
    │ │ │ --- time of performing one checker move: 0
    │ │ │ + -- trackHomotopy time = .0311304 sec. for [{0, 1, 3, 2}, {infinity, 1, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .133681
    │ │ │ +-- time of performing one checker move: .00400829
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time to make equations: .00799983
    │ │ │ +-- time to make equations: .0159595
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ --- time of performing one checker move: .108513
    │ │ │ + -- trackHomotopy time = .120965 sec. for [{1, 3, 2, 0}, {infinity, 3, infinity, 1}]
    │ │ │ +-- time of performing one checker move: .23422
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = .00664616
    │ │ │ +-- cpu time = .00805804
    │ │ │  -- making a recursive call to resolveNode
    │ │ │  -- playCheckers
    │ │ │ --- cpu time = 0
    │ │ │ +-- cpu time = .00397023
    │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ --- time to make equations: .00400042
    │ │ │ +-- time to make equations: .0120518
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ --- time of performing one checker move: .0997514
    │ │ │ --- time of performing one checker move: .00399816
    │ │ │ --- time to make equations: .00400027
    │ │ │ + -- trackHomotopy time = .00829677 sec. for [{0, 1, 2, 3}, {0, infinity, 2, infinity}]
    │ │ │ +-- time of performing one checker move: .143704
    │ │ │ +-- time of performing one checker move: 0
    │ │ │ +-- time to make equations: .00398176
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ --- time of performing one checker move: .0159585
    │ │ │ --- time of performing one checker move: .0923873
    │ │ │ + -- trackHomotopy time = .00805339 sec. for [{0, 2, 3, 1}, {0, infinity, infinity, 2}]
    │ │ │ +-- time of performing one checker move: .0239165
    │ │ │ +-- time of performing one checker move: .107106
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .003972
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00399838
    │ │ │ +-- time of performing one checker move: .00400535
    │ │ │  -- time of performing one checker move: 0
    │ │ │ --- time of performing one checker move: .00400062
    │ │ │ --- time to make equations: .0120026
    │ │ │ +-- time of performing one checker move: 0
    │ │ │ +-- time of performing one checker move: .00401506
    │ │ │ +-- time to make equations: .0159531
    │ │ │  Setup time: 0
    │ │ │  Computing time:0
    │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ --- time of performing one checker move: .113179
    │ │ │ --- time of performing one checker move: 0
    │ │ │ + -- trackHomotopy time = .0341203 sec. for [{1, 3, 2, 0}, {1, infinity, infinity, 3}]
    │ │ │ +-- time of performing one checker move: .141398
    │ │ │ +-- time of performing one checker move: .00706141
    │ │ │  
    │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii 
    │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii  
    │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       .0376857+.0683239ii   |}
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -65,102 +65,102 @@
    │ │ │ │       -.0336427+.0141017ii  |
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : assert all(S,s->checkIncidenceSolution(s,SchPblm))
    │ │ │ │  i5 : setVerboseLevel 1;
    │ │ │ │  i6 : S = solveSchubertProblem(SchPblm,2,4)
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00800386
    │ │ │ │ +-- cpu time = .0119672
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00400121
    │ │ │ │ +-- cpu time = .00403291
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00400194
    │ │ │ │ +-- cpu time = .00414467
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00479222
    │ │ │ │ +-- time to make equations: .00406548
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0200437 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00807571 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .01877
    │ │ │ │ --- time of performing one checker move: .0033589
    │ │ │ │ --- time of performing one checker move: .00399169
    │ │ │ │ --- time to make equations: .00398021
    │ │ │ │ +-- time of performing one checker move: .01991
    │ │ │ │ +-- time of performing one checker move: .00405521
    │ │ │ │ +-- time of performing one checker move: 0
    │ │ │ │ +-- time to make equations: .00799988
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0063706 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .00781135 sec. for [{1, 2, 3, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0199622
    │ │ │ │ --- time to make equations: .00399873
    │ │ │ │ +-- time of performing one checker move: .0240002
    │ │ │ │ +-- time to make equations: .00806599
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0665117 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ + -- trackHomotopy time = .0304754 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .105096
    │ │ │ │ --- time to make equations: .00399983
    │ │ │ │ +-- time of performing one checker move: .12472
    │ │ │ │ +-- time to make equations: .00799462
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0060564 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │ + -- trackHomotopy time = .00811143 sec. for [{2, 3, 1, 0}, {2, infinity,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .0159996
    │ │ │ │ --- time to make equations: .0996534
    │ │ │ │ +-- time of performing one checker move: .0240003
    │ │ │ │ +-- time to make equations: .118783
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00690418 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │ + -- trackHomotopy time = .00941138 sec. for [{0, 1, 2, 3}, {infinity, 1, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .107588
    │ │ │ │ --- time to make equations: .011977
    │ │ │ │ +-- time of performing one checker move: .134701
    │ │ │ │ +-- time to make equations: .0159716
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0490889 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │ + -- trackHomotopy time = .0311304 sec. for [{0, 1, 3, 2}, {infinity, 1,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .107635
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ +-- time of performing one checker move: .133681
    │ │ │ │ +-- time of performing one checker move: .00400829
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time to make equations: .00799983
    │ │ │ │ +-- time to make equations: .0159595
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .0551627 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │ + -- trackHomotopy time = .120965 sec. for [{1, 3, 2, 0}, {infinity, 3,
    │ │ │ │  infinity, 1}]
    │ │ │ │ --- time of performing one checker move: .108513
    │ │ │ │ +-- time of performing one checker move: .23422
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = .00664616
    │ │ │ │ +-- cpu time = .00805804
    │ │ │ │  -- making a recursive call to resolveNode
    │ │ │ │  -- playCheckers
    │ │ │ │ --- cpu time = 0
    │ │ │ │ +-- cpu time = .00397023
    │ │ │ │  resolveNode reached node of no remaining conditions
    │ │ │ │ --- time to make equations: .00400042
    │ │ │ │ +-- time to make equations: .0120518
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00628713 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │ + -- trackHomotopy time = .00829677 sec. for [{0, 1, 2, 3}, {0, infinity, 2,
    │ │ │ │  infinity}]
    │ │ │ │ --- time of performing one checker move: .0997514
    │ │ │ │ --- time of performing one checker move: .00399816
    │ │ │ │ --- time to make equations: .00400027
    │ │ │ │ +-- time of performing one checker move: .143704
    │ │ │ │ +-- time of performing one checker move: 0
    │ │ │ │ +-- time to make equations: .00398176
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .00611061 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │ + -- trackHomotopy time = .00805339 sec. for [{0, 2, 3, 1}, {0, infinity,
    │ │ │ │  infinity, 2}]
    │ │ │ │ --- time of performing one checker move: .0159585
    │ │ │ │ --- time of performing one checker move: .0923873
    │ │ │ │ +-- time of performing one checker move: .0239165
    │ │ │ │ +-- time of performing one checker move: .107106
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .003972
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00399838
    │ │ │ │ +-- time of performing one checker move: .00400535
    │ │ │ │  -- time of performing one checker move: 0
    │ │ │ │ --- time of performing one checker move: .00400062
    │ │ │ │ --- time to make equations: .0120026
    │ │ │ │ +-- time of performing one checker move: 0
    │ │ │ │ +-- time of performing one checker move: .00401506
    │ │ │ │ +-- time to make equations: .0159531
    │ │ │ │  Setup time: 0
    │ │ │ │  Computing time:0
    │ │ │ │ - -- trackHomotopy time = .07797 sec. for [{1, 3, 2, 0}, {1, infinity, infinity,
    │ │ │ │ -3}]
    │ │ │ │ --- time of performing one checker move: .113179
    │ │ │ │ --- time of performing one checker move: 0
    │ │ │ │ + -- trackHomotopy time = .0341203 sec. for [{1, 3, 2, 0}, {1, infinity,
    │ │ │ │ +infinity, 3}]
    │ │ │ │ +-- time of performing one checker move: .141398
    │ │ │ │ +-- time of performing one checker move: .00706141
    │ │ │ │  
    │ │ │ │  o6 = {| -1.65573-.600637ii .0201935+.0437095ii   |, | -.154703+.175591ii
    │ │ │ │        | -1.23037-1.66989ii -.0308057-.00120618ii |  | -.801221-.0354303ii
    │ │ │ │        | 1.35971-.743988ii  -.0713133-.049047ii   |  | .325581-2.08048ii
    │ │ │ │        | -.397038-1.8974ii  .0102261-.024397ii    |  | -.475895-.209388ii
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       .0376857+.0683239ii   |}
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -14,35 +14,35 @@
    │ │ │  
    │ │ │  i4 : LL7a=select(LL7,L->not knownExample L);#LL7a
    │ │ │  
    │ │ │  o5 = 2
    │ │ │  
    │ │ │  i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .146189s elapsed
    │ │ │ + -- .135204s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .126375s elapsed
    │ │ │ + -- .116809s elapsed
    │ │ │  next gb
    │ │ │ - -- .000828707s elapsed
    │ │ │ + -- .000877162s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .190454s elapsed
    │ │ │ + -- .145247s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .151259s elapsed
    │ │ │ + -- .137816s elapsed
    │ │ │  next gb
    │ │ │ - -- .000705507s elapsed
    │ │ │ + -- .00065349s elapsed
    │ │ │  true
    │ │ │ - -- 1.58898s elapsed
    │ │ │ + -- 1.48229s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │  
    │ │ │  i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.5313s elapsed
    │ │ │ + -- 1.31673s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │  
    │ │ │  i8 : LL7b=={}
    │ │ │  
    │ │ │ @@ -75,23 +75,23 @@
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │  
    │ │ │  i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .207946s elapsed
    │ │ │ + -- .2217s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .134913s elapsed
    │ │ │ + -- .151615s elapsed
    │ │ │  next gb
    │ │ │ - -- .000914878s elapsed
    │ │ │ + -- .00104685s elapsed
    │ │ │  true
    │ │ │ - -- .683163s elapsed
    │ │ │ + -- .637281s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .716582s elapsed
    │ │ │ + -- .676091s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │  
    │ │ │  i12 : L={6,8,9,11}
    │ │ │  
    │ │ │ @@ -100,22 +100,22 @@
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : genus L
    │ │ │  
    │ │ │  o13 = 8
    │ │ │  
    │ │ │  i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0484596s elapsed
    │ │ │ + -- .0874803s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .370099s elapsed
    │ │ │ + -- .302279s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_heuristic__Smoothness.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │   -- setting random seed to 1644814534404491274313411285186041988099567563905780374824086062516559438
    │ │ │  
    │ │ │  i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.62892s elapsed
    │ │ │ + -- 3.38655s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Smoothable__Semigroup.out
    │ │ │ @@ -7,17 +7,17 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.05053s elapsed
    │ │ │ + -- .931767s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.34178s elapsed
    │ │ │ + -- 3.82061s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_is__Weierstrass__Semigroup.out
    │ │ │ @@ -7,12 +7,12 @@
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : genus L
    │ │ │  
    │ │ │  o2 = 8
    │ │ │  
    │ │ │  i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.3542s elapsed
    │ │ │ + -- 3.53196s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/example-output/_non__Weierstrass__Semigroups.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 6860996532851631556
    │ │ │  
    │ │ │  i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.35152s elapsed
    │ │ │ + -- 1.23931s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │  
    │ │ │  i2 : LLdifficult={{6, 8, 9, 11}}
    │ │ │  
    │ │ │ @@ -14,61 +14,61 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .514484s elapsed
    │ │ │ + -- .439659s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .187751s elapsed
    │ │ │ + -- .172486s elapsed
    │ │ │  next gb
    │ │ │ - -- .00166673s elapsed
    │ │ │ + -- .00324603s elapsed
    │ │ │  true
    │ │ │ - -- 1.09437s elapsed
    │ │ │ + -- .984376s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .483431s elapsed
    │ │ │ + -- .371182s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .204984s elapsed
    │ │ │ + -- .190419s elapsed
    │ │ │  next gb
    │ │ │ - -- .0026011s elapsed
    │ │ │ + -- .00272089s elapsed
    │ │ │  decompose
    │ │ │ - -- .13498s elapsed
    │ │ │ + -- .161085s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 3.11814s elapsed
    │ │ │ + -- 2.63937s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .139467s elapsed
    │ │ │ + -- .129154s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .154163s elapsed
    │ │ │ + -- .124261s elapsed
    │ │ │  next gb
    │ │ │ - -- .000485587s elapsed
    │ │ │ + -- .000537651s elapsed
    │ │ │  true
    │ │ │ - -- .687947s elapsed
    │ │ │ + -- .6576s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .550391s elapsed
    │ │ │ + -- .49442s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .233636s elapsed
    │ │ │ + -- .219416s elapsed
    │ │ │  next gb
    │ │ │ - -- .00395566s elapsed
    │ │ │ + -- .00584814s elapsed
    │ │ │  decompose
    │ │ │ - -- .975039s elapsed
    │ │ │ + -- .851224s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.73979s elapsed
    │ │ │ - -- 7.64035s elapsed
    │ │ │ + -- 2.55361s elapsed
    │ │ │ + -- 6.83513s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003787s elapsed
    │ │ │ - -- 7.67511s elapsed
    │ │ │ + -- .00000505s elapsed
    │ │ │ + -- 6.88195s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 :
    │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/___Lab__Book__Protocol.html
    │ │ │ @@ -96,38 +96,38 @@
    │ │ │  o5 = 2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0,Verbose=>true))
    │ │ │  unfolding
    │ │ │ - -- .146189s elapsed
    │ │ │ + -- .135204s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .126375s elapsed
    │ │ │ + -- .116809s elapsed
    │ │ │  next gb
    │ │ │ - -- .000828707s elapsed
    │ │ │ + -- .000877162s elapsed
    │ │ │  true
    │ │ │  unfolding
    │ │ │ - -- .190454s elapsed
    │ │ │ + -- .145247s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .151259s elapsed
    │ │ │ + -- .137816s elapsed
    │ │ │  next gb
    │ │ │ - -- .000705507s elapsed
    │ │ │ + -- .00065349s elapsed
    │ │ │  true
    │ │ │ - -- 1.58898s elapsed
    │ │ │ + -- 1.48229s elapsed
    │ │ │  
    │ │ │  o6 = {}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0))
    │ │ │ - -- 1.5313s elapsed
    │ │ │ + -- 1.31673s elapsed
    │ │ │  
    │ │ │  o7 = {}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -184,23 +184,23 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true)
    │ │ │  (13, 1)
    │ │ │  {5, 8, 11, 12}
    │ │ │  unfolding
    │ │ │ - -- .207946s elapsed
    │ │ │ + -- .2217s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .134913s elapsed
    │ │ │ + -- .151615s elapsed
    │ │ │  next gb
    │ │ │ - -- .000914878s elapsed
    │ │ │ + -- .00104685s elapsed
    │ │ │  true
    │ │ │ - -- .683163s elapsed
    │ │ │ + -- .637281s elapsed
    │ │ │  (5, 8,  all semigroups are smoothable)
    │ │ │ - -- .716582s elapsed
    │ │ │ + -- .676091s elapsed
    │ │ │  
    │ │ │  o11 = {}
    │ │ │  
    │ │ │  o11 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -223,22 +223,22 @@ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true)
    │ │ │ - -- .0484596s elapsed
    │ │ │ + -- .0874803s elapsed
    │ │ │  6
    │ │ │  false
    │ │ │  5
    │ │ │  false
    │ │ │  4
    │ │ │  decompose
    │ │ │ - -- .370099s elapsed
    │ │ │ + -- .302279s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(1, 1), (16, 3)}
    │ │ │  {0, -1}
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,34 +26,34 @@ │ │ │ │ o3 = 39 │ │ │ │ i4 : LL7a=select(LL7,L->not knownExample L);#LL7a │ │ │ │ │ │ │ │ o5 = 2 │ │ │ │ i6 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup │ │ │ │ (L,0.25,0,Verbose=>true)) │ │ │ │ unfolding │ │ │ │ - -- .146189s elapsed │ │ │ │ + -- .135204s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .126375s elapsed │ │ │ │ + -- .116809s elapsed │ │ │ │ next gb │ │ │ │ - -- .000828707s elapsed │ │ │ │ + -- .000877162s elapsed │ │ │ │ true │ │ │ │ unfolding │ │ │ │ - -- .190454s elapsed │ │ │ │ + -- .145247s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .151259s elapsed │ │ │ │ + -- .137816s elapsed │ │ │ │ next gb │ │ │ │ - -- .000705507s elapsed │ │ │ │ + -- .00065349s elapsed │ │ │ │ true │ │ │ │ - -- 1.58898s elapsed │ │ │ │ + -- 1.48229s elapsed │ │ │ │ │ │ │ │ o6 = {} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : elapsedTime LL7b=select(LL7a,L->not isSmoothableSemigroup(L,0.25,0)) │ │ │ │ - -- 1.5313s elapsed │ │ │ │ + -- 1.31673s elapsed │ │ │ │ │ │ │ │ o7 = {} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : LL7b=={} │ │ │ │ │ │ │ │ o8 = true │ │ │ │ @@ -92,23 +92,23 @@ │ │ │ │ o10 = (5, 8) │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : elapsedTime nonWeierstrassSemigroups(m,g,Verbose=>true) │ │ │ │ (13, 1) │ │ │ │ {5, 8, 11, 12} │ │ │ │ unfolding │ │ │ │ - -- .207946s elapsed │ │ │ │ + -- .2217s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .134913s elapsed │ │ │ │ + -- .151615s elapsed │ │ │ │ next gb │ │ │ │ - -- .000914878s elapsed │ │ │ │ + -- .00104685s elapsed │ │ │ │ true │ │ │ │ - -- .683163s elapsed │ │ │ │ + -- .637281s elapsed │ │ │ │ (5, 8, all semigroups are smoothable) │ │ │ │ - -- .716582s elapsed │ │ │ │ + -- .676091s elapsed │ │ │ │ │ │ │ │ o11 = {} │ │ │ │ │ │ │ │ o11 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (13,1), indicates that there 13 semigroups of │ │ │ │ multiplicity 5 and genus 8 of which only 1 is not flagged as smoothable by the │ │ │ │ @@ -120,22 +120,22 @@ │ │ │ │ o12 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : genus L │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ i14 : isWeierstrassSemigroup(L,0.2,Verbose=>true) │ │ │ │ - -- .0484596s elapsed │ │ │ │ + -- .0874803s elapsed │ │ │ │ 6 │ │ │ │ false │ │ │ │ 5 │ │ │ │ false │ │ │ │ 4 │ │ │ │ decompose │ │ │ │ - -- .370099s elapsed │ │ │ │ + -- .302279s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(1, 1), (16, 3)} │ │ │ │ {0, -1} │ │ │ │ │ │ │ │ o14 = true │ │ │ │ The first integer, 6, tells that in this attempt deformation parameters of │ │ │ │ degree >= 6 were used and no smooth fiber was found. Finally with all │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_heuristic__Smoothness.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime tally apply(10,i-> (
    │ │ │               c=minors(2,random(S^2,S^{3:-2}));
    │ │ │               c=sub(c,x_0=>1);
    │ │ │               R=kk[support c];c=sub(c,R);
    │ │ │               heuristicSmoothness c))
    │ │ │ - -- 3.62892s elapsed
    │ │ │ + -- 3.38655s elapsed
    │ │ │  
    │ │ │  o4 = Tally{false => 6}
    │ │ │             true => 4
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ -- setting random seed to │ │ │ │ 1644814534404491274313411285186041988099567563905780374824086062516559438 │ │ │ │ i4 : elapsedTime tally apply(10,i-> ( │ │ │ │ c=minors(2,random(S^2,S^{3:-2})); │ │ │ │ c=sub(c,x_0=>1); │ │ │ │ R=kk[support c];c=sub(c,R); │ │ │ │ heuristicSmoothness c)) │ │ │ │ - -- 3.62892s elapsed │ │ │ │ + -- 3.38655s elapsed │ │ │ │ │ │ │ │ o4 = Tally{false => 6} │ │ │ │ true => 4 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ ********** WWaayyss ttoo uussee hheeuurriissttiiccSSmmooootthhnneessss:: ********** │ │ │ │ * heuristicSmoothness(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Smoothable__Semigroup.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isSmoothableSemigroup(L,0.30,0)
    │ │ │ - -- 1.05053s elapsed
    │ │ │ + -- .931767s elapsed
    │ │ │  
    │ │ │  o3 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime isSmoothableSemigroup(L,0.14,0)
    │ │ │ - -- 4.34178s elapsed
    │ │ │ + -- 3.82061s elapsed
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,19 +29,19 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isSmoothableSemigroup(L,0.30,0) │ │ │ │ - -- 1.05053s elapsed │ │ │ │ + -- .931767s elapsed │ │ │ │ │ │ │ │ o3 = false │ │ │ │ i4 : elapsedTime isSmoothableSemigroup(L,0.14,0) │ │ │ │ - -- 4.34178s elapsed │ │ │ │ + -- 3.82061s elapsed │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_is__Weierstrass__Semigroup.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │ o2 = 8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime isWeierstrassSemigroup(L,0.15)
    │ │ │ - -- 4.3542s elapsed
    │ │ │ + -- 3.53196s elapsed
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o1 = {6, 8, 9, 11} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : genus L │ │ │ │ │ │ │ │ o2 = 8 │ │ │ │ i3 : elapsedTime isWeierstrassSemigroup(L,0.15) │ │ │ │ - -- 4.3542s elapsed │ │ │ │ + -- 3.53196s elapsed │ │ │ │ │ │ │ │ o3 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _m_a_k_e_U_n_f_o_l_d_i_n_g -- Makes the universal homogeneous unfolding of an ideal │ │ │ │ with positive degree parameters │ │ │ │ * _f_l_a_t_t_e_n_i_n_g_R_e_l_a_t_i_o_n_s -- Compute the flattening relations of an unfolding │ │ │ │ * _g_e_t_F_l_a_t_F_a_m_i_l_y -- Compute the flat family depending on a subset of │ │ ├── ./usr/share/doc/Macaulay2/NumericalSemigroups/html/_non__Weierstrass__Semigroups.html │ │ │ @@ -79,15 +79,15 @@ │ │ │

    We test which semigroups of multiplicity m and genus g are smoothable. If no smoothing was found then L is a candidate for a non Weierstrass semigroup. In this search certain semigroups L in LLdifficult, where the computation is particular heavy are excluded.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -101,62 +101,62 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : elapsedTime nonWeierstrassSemigroups(6,7)
    │ │ │  (6, 7,  all semigroups are smoothable)
    │ │ │ - -- 1.35152s elapsed
    │ │ │ + -- 1.23931s elapsed
    │ │ │  
    │ │ │  o1 = {}
    │ │ │  
    │ │ │  o1 : List
    │ │ │
    │ │ │
    i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true)
    │ │ │  (17, 5)
    │ │ │  {6, 7, 8, 17}
    │ │ │  unfolding
    │ │ │ - -- .514484s elapsed
    │ │ │ + -- .439659s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .187751s elapsed
    │ │ │ + -- .172486s elapsed
    │ │ │  next gb
    │ │ │ - -- .00166673s elapsed
    │ │ │ + -- .00324603s elapsed
    │ │ │  true
    │ │ │ - -- 1.09437s elapsed
    │ │ │ + -- .984376s elapsed
    │ │ │  {6, 7, 9, 17}
    │ │ │  unfolding
    │ │ │ - -- .483431s elapsed
    │ │ │ + -- .371182s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .204984s elapsed
    │ │ │ + -- .190419s elapsed
    │ │ │  next gb
    │ │ │ - -- .0026011s elapsed
    │ │ │ + -- .00272089s elapsed
    │ │ │  decompose
    │ │ │ - -- .13498s elapsed
    │ │ │ + -- .161085s elapsed
    │ │ │  number of components: 2
    │ │ │  support c, codim c: {(2, 2), (5, 2)}
    │ │ │  {0, -1}
    │ │ │ - -- 3.11814s elapsed
    │ │ │ + -- 2.63937s elapsed
    │ │ │  {6, 8, 9, 10}
    │ │ │  unfolding
    │ │ │ - -- .139467s elapsed
    │ │ │ + -- .129154s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .154163s elapsed
    │ │ │ + -- .124261s elapsed
    │ │ │  next gb
    │ │ │ - -- .000485587s elapsed
    │ │ │ + -- .000537651s elapsed
    │ │ │  true
    │ │ │ - -- .687947s elapsed
    │ │ │ + -- .6576s elapsed
    │ │ │  {6, 8, 10, 11, 13}
    │ │ │  unfolding
    │ │ │ - -- .550391s elapsed
    │ │ │ + -- .49442s elapsed
    │ │ │  flatteningRelations
    │ │ │ - -- .233636s elapsed
    │ │ │ + -- .219416s elapsed
    │ │ │  next gb
    │ │ │ - -- .00395566s elapsed
    │ │ │ + -- .00584814s elapsed
    │ │ │  decompose
    │ │ │ - -- .975039s elapsed
    │ │ │ + -- .851224s elapsed
    │ │ │  number of components: 1
    │ │ │  support c, codim c: {(5, 1)}
    │ │ │  {-1}
    │ │ │ - -- 2.73979s elapsed
    │ │ │ - -- 7.64035s elapsed
    │ │ │ + -- 2.55361s elapsed
    │ │ │ + -- 6.83513s elapsed
    │ │ │  0
    │ │ │  
    │ │ │  {}
    │ │ │ - -- .000003787s elapsed
    │ │ │ - -- 7.67511s elapsed
    │ │ │ + -- .00000505s elapsed
    │ │ │ + -- 6.88195s elapsed
    │ │ │  
    │ │ │  o3 = {{6, 8, 9, 11}}
    │ │ │  
    │ │ │  o3 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,76 +22,76 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ We test which semigroups of multiplicity m and genus g are smoothable. If no │ │ │ │ smoothing was found then L is a candidate for a non Weierstrass semigroup. In │ │ │ │ this search certain semigroups L in LLdifficult, where the computation is │ │ │ │ particular heavy are excluded. │ │ │ │ i1 : elapsedTime nonWeierstrassSemigroups(6,7) │ │ │ │ (6, 7, all semigroups are smoothable) │ │ │ │ - -- 1.35152s elapsed │ │ │ │ + -- 1.23931s elapsed │ │ │ │ │ │ │ │ o1 = {} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : LLdifficult={{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : elapsedTime nonWeierstrassSemigroups(6,8,LLdifficult,Verbose=>true) │ │ │ │ (17, 5) │ │ │ │ {6, 7, 8, 17} │ │ │ │ unfolding │ │ │ │ - -- .514484s elapsed │ │ │ │ + -- .439659s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .187751s elapsed │ │ │ │ + -- .172486s elapsed │ │ │ │ next gb │ │ │ │ - -- .00166673s elapsed │ │ │ │ + -- .00324603s elapsed │ │ │ │ true │ │ │ │ - -- 1.09437s elapsed │ │ │ │ + -- .984376s elapsed │ │ │ │ {6, 7, 9, 17} │ │ │ │ unfolding │ │ │ │ - -- .483431s elapsed │ │ │ │ + -- .371182s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .204984s elapsed │ │ │ │ + -- .190419s elapsed │ │ │ │ next gb │ │ │ │ - -- .0026011s elapsed │ │ │ │ + -- .00272089s elapsed │ │ │ │ decompose │ │ │ │ - -- .13498s elapsed │ │ │ │ + -- .161085s elapsed │ │ │ │ number of components: 2 │ │ │ │ support c, codim c: {(2, 2), (5, 2)} │ │ │ │ {0, -1} │ │ │ │ - -- 3.11814s elapsed │ │ │ │ + -- 2.63937s elapsed │ │ │ │ {6, 8, 9, 10} │ │ │ │ unfolding │ │ │ │ - -- .139467s elapsed │ │ │ │ + -- .129154s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .154163s elapsed │ │ │ │ + -- .124261s elapsed │ │ │ │ next gb │ │ │ │ - -- .000485587s elapsed │ │ │ │ + -- .000537651s elapsed │ │ │ │ true │ │ │ │ - -- .687947s elapsed │ │ │ │ + -- .6576s elapsed │ │ │ │ {6, 8, 10, 11, 13} │ │ │ │ unfolding │ │ │ │ - -- .550391s elapsed │ │ │ │ + -- .49442s elapsed │ │ │ │ flatteningRelations │ │ │ │ - -- .233636s elapsed │ │ │ │ + -- .219416s elapsed │ │ │ │ next gb │ │ │ │ - -- .00395566s elapsed │ │ │ │ + -- .00584814s elapsed │ │ │ │ decompose │ │ │ │ - -- .975039s elapsed │ │ │ │ + -- .851224s elapsed │ │ │ │ number of components: 1 │ │ │ │ support c, codim c: {(5, 1)} │ │ │ │ {-1} │ │ │ │ - -- 2.73979s elapsed │ │ │ │ - -- 7.64035s elapsed │ │ │ │ + -- 2.55361s elapsed │ │ │ │ + -- 6.83513s elapsed │ │ │ │ 0 │ │ │ │ │ │ │ │ {} │ │ │ │ - -- .000003787s elapsed │ │ │ │ - -- 7.67511s elapsed │ │ │ │ + -- .00000505s elapsed │ │ │ │ + -- 6.88195s elapsed │ │ │ │ │ │ │ │ o3 = {{6, 8, 9, 11}} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ In the verbose mode we get timings of various computation steps and further │ │ │ │ information. The first line, (17,5), indicates that there 17 semigroups of │ │ │ │ multiplicity 6 and genus 8 of which only 5 is not flagged as smoothable by the │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-3, -4}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Free__O__I__Module__Map_sp__Vector__In__Width.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ │ │ i5 : C = oiRes({b}, 2) │ │ │ │ │ │ o5 = 0: (e0, {3}, {-2}) │ │ │ 1: (e1, {5, 5}, {-4, -3}) │ │ │ - 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5}) │ │ │ + 2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : phi = C.dd_1 │ │ │ │ │ │ o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc) │ │ │ + -- used 0.101015s (cpu); 0.101015s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ o5 : OIResolution │ │ │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___O__I__Resolution_sp_us_sp__Z__Z.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc) │ │ │ + -- used 0.237782s (cpu); 0.136776s (thread); 0s (gc) │ │ │ │ │ │ i6 : C_0 │ │ │ │ │ │ o6 = Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/___Top__Nonminimal.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc) │ │ │ + -- used 0.565735s (cpu); 0.348073s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe__Full.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc) │ │ │ + -- used 0.263534s (cpu); 0.142568s (thread); 0s (gc) │ │ │ │ │ │ i6 : describeFull C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,21 +10,18 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : describe phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ - ------------------------------------------------------------------------ │ │ │ - } │ │ │ - 5},1 │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_describe_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc) │ │ │ + -- used 0.105841s (cpu); 0.105611s (thread); 0s (gc) │ │ │ │ │ │ i6 : describe C │ │ │ │ │ │ o6 = 0: Module: Basis symbol: e0 │ │ │ Basis element widths: {2} │ │ │ Degree shifts: {-2} │ │ │ Polynomial OI-algebra: (2, x, QQ, RowUpColUp) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_get__Schreyer__Map.out │ │ │ @@ -17,21 +17,21 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : G' = oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d , x d - x d - │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ + - x d - x d , x d - │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : H = getFreeOIModule G'#0 │ │ │ │ │ │ o7 = Basis symbol: d │ │ │ Basis element widths: {2, 3} │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_image_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,19 +10,19 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : image phi │ │ │ │ │ │ -o7 = {x x e0 - x x e0 - x x e0 │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ +o7 = {-x e0 + x e0 + x e0 - │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - + x x e0 , -x e0 + x e0 │ │ │ - 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ + x e0 , x x e0 - x x e0 - │ │ │ + 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ ------------------------------------------------------------------------ │ │ │ - + x e0 - x e0 } │ │ │ - 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ + x x e0 + x x e0 } │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__Complex.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc) │ │ │ + -- used 0.405651s (cpu); 0.300532s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_is__O__I__G__B.out │ │ │ @@ -15,15 +15,15 @@ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : isOIGB {b1, b2} │ │ │ │ │ │ o10 = false │ │ │ │ │ │ i11 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc) │ │ │ + -- used 0.0334577s (cpu); 0.0334591s (thread); 0s (gc) │ │ │ │ │ │ o11 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_minimize__O__I__G__B.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc) │ │ │ + -- used 0.035814s (cpu); 0.0358119s (thread); 0s (gc) │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ @@ -41,18 +41,17 @@ │ │ │ - x x e } │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ o13 : List │ │ │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ - │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ + 2 │ │ │ +o14 = {x e + x e , x x x e - x x e │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ ----------------------------------------------------------------------- │ │ │ - 2 │ │ │ - x x e , x e + x e } │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ + , x x e + x x e } │ │ │ + 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__Free__O__I__Module__Map_rp.out │ │ │ @@ -10,10 +10,10 @@ │ │ │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ │ │ i7 : net phi │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_net_lp__O__I__Resolution_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time C = oiRes({b}, 1); │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc) │ │ │ + -- used 0.260039s (cpu); 0.136496s (thread); 0s (gc) │ │ │ │ │ │ i6 : net C │ │ │ │ │ │ o6 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ │ │ i9 : time oiGB {b1, b2} │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc) │ │ │ + -- used 0.0363376s (cpu); 0.0363385s (thread); 0s (gc) │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ ------------------------------------------------------------------------ │ │ │ x x x e - x x x e } │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Res.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc) │ │ │ + -- used 0.586193s (cpu); 0.367513s (thread); 0s (gc) │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ 1: (e1, {4}, {-4}) │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ o5 : OIResolution │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_oi__Syz.out │ │ │ @@ -17,18 +17,18 @@ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ ------------------------------------------------------------------------ │ │ │ - - x d , x d - x d - │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ + - x d - x d , x d - │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ ------------------------------------------------------------------------ │ │ │ x d } │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/example-output/_reduce__O__I__G__B.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ │ │ i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2); │ │ │ │ │ │ i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2); │ │ │ │ │ │ i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal) │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc) │ │ │ + -- used 0.220711s (cpu); 0.154099s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o9 = {x e + x e , x x e + x x e , │ │ │ 2,1 1,{1},2 1,1 1,{1},2 1,2 1,1 2,{2},1 2,2 1,2 2,{2},2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ x x e - x x e } │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map.html │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,15 +17,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-3, -4})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-2, -5, -4, -3, -5, -4, -5, -3, -4})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-5, -5, -5, -2, -4, -4, -3, -3, -4})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Free__O__I__Module__Map_sp__Vector__In__Width.html
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i5 : C = oiRes({b}, 2)
    │ │ │  
    │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : phi = C.dd_1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,15 +19,15 @@
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2);
    │ │ │ │  i5 : C = oiRes({b}, 2)
    │ │ │ │  
    │ │ │ │  o5 = 0: (e0, {3}, {-2})
    │ │ │ │       1: (e1, {5, 5}, {-4, -3})
    │ │ │ │ -     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -5, -4, -3, -2, -4, -5, -5})
    │ │ │ │ +     2: (e2, {6, 6, 6, 6, 6, 6, 6, 6, 6}, {-3, -4, -4, -5, -4, -5, -5, -3, -2})
    │ │ │ │  
    │ │ │ │  o5 : OIResolution
    │ │ │ │  i6 : phi = C.dd_1
    │ │ │ │  
    │ │ │ │  o6 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ │  
    │ │ │ │  o6 : FreeOIModuleMap
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1)
    │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc)
    │ │ │ + -- used 0.101015s (cpu); 0.101015s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ complex, use _i_s_C_o_m_p_l_e_x. To get the $n$th differential in an OI-resolution C, │ │ │ │ use C.dd_n. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 1) │ │ │ │ - -- used 0.0819263s (cpu); 0.0819238s (thread); 0s (gc) │ │ │ │ + -- used 0.101015s (cpu); 0.101015s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4, 4}, {-4, -4}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : C.dd_0 │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___O__I__Resolution_sp_us_sp__Z__Z.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc)
    │ │ │ + -- used 0.237782s (cpu); 0.136776s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : C_0
    │ │ │  
    │ │ │  o6 = Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,15 +16,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Returns the free OI-module of $C$ in homological degree $n$.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.215335s (cpu); 0.118692s (thread); 0s (gc)
    │ │ │ │ + -- used 0.237782s (cpu); 0.136776s (thread); 0s (gc)
    │ │ │ │  i6 : C_0
    │ │ │ │  
    │ │ │ │  o6 = Basis symbol: e0
    │ │ │ │       Basis element widths: {2}
    │ │ │ │       Degree shifts: {-2}
    │ │ │ │       Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │       Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/___Top__Nonminimal.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc)
    │ │ │ + -- used 0.565735s (cpu); 0.348073s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ homological degree $n-1$ to be minimized. Therefore, use TopNonminimal => true │ │ │ │ for no minimization of the basis in degree $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.476094s (cpu); 0.290539s (thread); 0s (gc) │ │ │ │ + -- used 0.565735s (cpu); 0.348073s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd TTooppNNoonnmmiinniimmaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe__Full.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc)
    │ │ │ + -- used 0.263534s (cpu); 0.142568s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describeFull C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  Displays the free OI-modules and describes the differentials of an OI-
    │ │ │ │  resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.0881844s (cpu); 0.0881837s (thread); 0s (gc)
    │ │ │ │ + -- used 0.263534s (cpu); 0.142568s (thread); 0s (gc)
    │ │ │ │  i6 : describeFull C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,26 +102,23 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : describe phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ -     Basis element images: {-x   e0              + x   e0              +
    │ │ │ -                              2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1  
    │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ +     Basis element images: {x   x   e0              - x   x   e0             
    │ │ │ +                             2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   e0              - x   e0             , x   x   e0              -
    │ │ │ -      2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1  
    │ │ │ +     - x   x   e0              + x   x   e0             , -x   e0        
    │ │ │ +        2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     x   x   e0              - x   x   e0              + x   x   e0        
    │ │ │ -      2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3,
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -         }
    │ │ │ -     5},1
    │ │ │ + + x e0 + x e0 - x e0 } │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,24 +18,21 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : describe phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ - Basis element images: {-x e0 + x e0 + │ │ │ │ - 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 │ │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ + Basis element images: {x x e0 - x x e0 │ │ │ │ + 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x e0 - x e0 , x x e0 - │ │ │ │ - 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 │ │ │ │ + - x x e0 + x x e0 , -x e0 │ │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - x x e0 - x x e0 + x x e0 │ │ │ │ - 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - } │ │ │ │ - 5},1 │ │ │ │ + + x e0 + x e0 - x e0 } │ │ │ │ + 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_e_s_c_r_i_b_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1979:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_describe_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc)
    │ │ │ + -- used 0.105841s (cpu); 0.105611s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : describe C
    │ │ │  
    │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -14,15 +14,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Displays the free OI-modules and differentials of an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.0801109s (cpu); 0.0801106s (thread); 0s (gc)
    │ │ │ │ + -- used 0.105841s (cpu); 0.105611s (thread); 0s (gc)
    │ │ │ │  i6 : describe C
    │ │ │ │  
    │ │ │ │  o6 = 0: Module: Basis symbol: e0
    │ │ │ │                  Basis element widths: {2}
    │ │ │ │                  Degree shifts: {-2}
    │ │ │ │                  Polynomial OI-algebra: (2, x, QQ, RowUpColUp)
    │ │ │ │                  Monomial order: Lex
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_get__Schreyer__Map.html
    │ │ │ @@ -105,21 +105,21 @@
    │ │ │              
    │ │ │            
    │ │ │            
    │ │ │              
    │ │ │                
    i6 : G' = oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : H = getFreeOIModule G'#0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,21 +29,21 @@
    │ │ │ │       x   x   x   e       }
    │ │ │ │        2,3 2,1 1,2 3,{1},2
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ │ │  i6 : G' = oiSyz(G, d)
    │ │ │ │  
    │ │ │ │  o6 = {x   d           - x   d           + 1d             , x   d
    │ │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2
    │ │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   d             }
    │ │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │ │  
    │ │ │ │  o6 : List
    │ │ │ │  i7 : H = getFreeOIModule G'#0
    │ │ │ │  
    │ │ │ │  o7 = Basis symbol: d
    │ │ │ │       Basis element widths: {2, 3}
    │ │ │ │       Degree shifts: {-2, -3}
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_image_lp__Free__O__I__Module__Map_rp.html
    │ │ │ @@ -102,22 +102,22 @@
    │ │ │                
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : image phi
    │ │ │  
    │ │ │ -o7 = {x   x   e0              - x   x   e0              - x   x   e0        
    │ │ │ -       2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1    2,3 1,2  5,{1, 4,
    │ │ │ +o7 = {-x   e0              + x   e0              + x   e0              -
    │ │ │ +        2,2  5,{1, 3, 5},1    2,2  5,{1, 3, 4},1    2,3  5,{1, 2, 5},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -          + x   x   e0             , -x   e0              + x   e0        
    │ │ │ -     5},1    2,4 1,2  5,{1, 3, 5},1    2,2  5,{1, 3, 5},1    2,2  5,{1, 3,
    │ │ │ +     x   e0             , x   x   e0              - x   x   e0              -
    │ │ │ +      2,3  5,{1, 2, 4},1   2,3 1,1  5,{2, 4, 5},1    2,4 1,1  5,{2, 3, 5},1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -          + x   e0              - x   e0             }
    │ │ │ -     4},1    2,3  5,{1, 2, 5},1    2,3  5,{1, 2, 4},1
    │ │ │ +     x   x   e0              + x   x   e0             }
    │ │ │ +      2,3 1,2  5,{1, 4, 5},1    2,4 1,2  5,{1, 3, 5},1
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -18,22 +18,22 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : image phi │ │ │ │ │ │ │ │ -o7 = {x x e0 - x x e0 - x x e0 │ │ │ │ - 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 2,3 1,2 5,{1, 4, │ │ │ │ +o7 = {-x e0 + x e0 + x e0 - │ │ │ │ + 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, 4},1 2,3 5,{1, 2, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - + x x e0 , -x e0 + x e0 │ │ │ │ - 5},1 2,4 1,2 5,{1, 3, 5},1 2,2 5,{1, 3, 5},1 2,2 5,{1, 3, │ │ │ │ + x e0 , x x e0 - x x e0 - │ │ │ │ + 2,3 5,{1, 2, 4},1 2,3 1,1 5,{2, 4, 5},1 2,4 1,1 5,{2, 3, 5},1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - + x e0 - x e0 } │ │ │ │ - 4},1 2,3 5,{1, 2, 5},1 2,3 5,{1, 2, 4},1 │ │ │ │ + x x e0 + x x e0 } │ │ │ │ + 2,3 1,2 5,{1, 4, 5},1 2,4 1,2 5,{1, 3, 5},1 │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_m_a_g_e_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- get the basis element images of a free OI- │ │ │ │ module map │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__Complex.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc)
    │ │ │ + -- used 0.405651s (cpu); 0.300532s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ option must be either true or false, depending on whether one wants debug │ │ │ │ information printed. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time C = oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.309561s (cpu); 0.253624s (thread); 0s (gc) │ │ │ │ + -- used 0.405651s (cpu); 0.300532s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ i6 : isComplex C │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_is__O__I__G__B.html │ │ │ @@ -116,15 +116,15 @@ │ │ │ │ │ │ o10 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc)
    │ │ │ + -- used 0.0334577s (cpu); 0.0334591s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -24,15 +24,15 @@
    │ │ │ │  i5 : installGeneratorsInWidth(F, 3);
    │ │ │ │  i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i10 : isOIGB {b1, b2}
    │ │ │ │  
    │ │ │ │  o10 = false
    │ │ │ │  i11 : time B = oiGB {b1, b2}
    │ │ │ │ - -- used 0.0233297s (cpu); 0.0233295s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0334577s (cpu); 0.0334591s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o11 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_minimize__O__I__G__B.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │              
    │ │ │                
    i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time B = oiGB {b1, b2}
    │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc)
    │ │ │ + -- used 0.035814s (cpu); 0.0358119s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │          1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x   x   x   e           - x   x   x   e          }
    │ │ │         2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │  
    │ │ │ @@ -148,21 +148,20 @@
    │ │ │  o13 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : minimizeOIGB C -- an element gets removed
    │ │ │  
    │ │ │ -                                                                        
    │ │ │ -o14 = {x   x   e        + x   x   e          , x   x   x   e           -
    │ │ │ -        1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3   2,3 2,2 1,1 3,{2, 3},3  
    │ │ │ +                                                                   2
    │ │ │ +o14 = {x   e        + x   e       , x   x   x   e           - x   x   e     
    │ │ │ +        1,1 1,{1},1    2,1 1,{1},2   2,3 2,2 1,1 3,{2, 3},3    2,1 1,2 3,{1,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2
    │ │ │ -      x   x   e          , x   e        + x   e       }
    │ │ │ -       2,1 1,2 3,{1, 3},3   1,1 1,{1},1    2,1 1,{1},2
    │ │ │ +          , x   x   e        + x   x   e          }
    │ │ │ +      3},3   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 1); │ │ │ │ i4 : installGeneratorsInWidth(F, 2); │ │ │ │ i5 : installGeneratorsInWidth(F, 3); │ │ │ │ i6 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2); │ │ │ │ i8 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3); │ │ │ │ i10 : time B = oiGB {b1, b2} │ │ │ │ - -- used 0.0253589s (cpu); 0.0253584s (thread); 0s (gc) │ │ │ │ + -- used 0.035814s (cpu); 0.0358119s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 = {x e + x e , x x e + x x e , │ │ │ │ 1,1 1,{1},1 2,1 1,{1},2 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x x e - x x x e } │ │ │ │ 2,3 2,2 1,1 3,{2, 3},3 2,3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ @@ -49,21 +49,20 @@ │ │ │ │ 2 │ │ │ │ - x x e } │ │ │ │ 3},3 2,1 1,2 3,{1, 3},3 │ │ │ │ │ │ │ │ o13 : List │ │ │ │ i14 : minimizeOIGB C -- an element gets removed │ │ │ │ │ │ │ │ - │ │ │ │ -o14 = {x x e + x x e , x x x e - │ │ │ │ - 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 2,3 2,2 1,1 3,{2, 3},3 │ │ │ │ + 2 │ │ │ │ +o14 = {x e + x e , x x x e - x x e │ │ │ │ + 1,1 1,{1},1 2,1 1,{1},2 2,3 2,2 1,1 3,{2, 3},3 2,1 1,2 3,{1, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - 2 │ │ │ │ - x x e , x e + x e } │ │ │ │ - 2,1 1,2 3,{1, 3},3 1,1 1,{1},1 2,1 1,{1},2 │ │ │ │ + , x x e + x x e } │ │ │ │ + 3},3 1,2 1,1 2,{2},2 2,2 2,1 2,{1, 2},3 │ │ │ │ │ │ │ │ o14 : List │ │ │ │ ********** WWaayyss ttoo uussee mmiinniimmiizzeeOOIIGGBB:: ********** │ │ │ │ * minimizeOIGB(List) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _m_i_n_i_m_i_z_e_O_I_G_B is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__Free__O__I__Module__Map_rp.html │ │ │ @@ -102,15 +102,15 @@ │ │ │
    i6 : phi = C.dd_1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : net phi
    │ │ │  
    │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2})
    │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2})
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │

    Ways to use this method:

    │ │ │ ├── html2text {} │ │ │ │ @@ -18,13 +18,13 @@ │ │ │ │ i2 : F = makeFreeOIModule(e, {1,2}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 3); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(3,{2},1)+x_(2,2)*x_(2,1)*e_(3,{1,3},2); │ │ │ │ i5 : C = oiRes({b}, 2); │ │ │ │ i6 : phi = C.dd_1; │ │ │ │ i7 : net phi │ │ │ │ │ │ │ │ -o7 = Source: (e1, {5, 5}, {-3, -4}) Target: (e0, {3}, {-2}) │ │ │ │ +o7 = Source: (e1, {5, 5}, {-4, -3}) Target: (e0, {3}, {-2}) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _n_e_t_(_F_r_e_e_O_I_M_o_d_u_l_e_M_a_p_) -- display a free OI-module map source and target │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/OIGroebnerBases.m2:1931:0. │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_net_lp__O__I__Resolution_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ │
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time C = oiRes({b}, 1);
    │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc)
    │ │ │ + -- used 0.260039s (cpu); 0.136496s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : net C
    │ │ │  
    │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  Displays the basis element widths and degree shifts of the free OI-modules in
    │ │ │ │  an OI-resolution.
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │  i5 : time C = oiRes({b}, 1);
    │ │ │ │ - -- used 0.218164s (cpu); 0.115767s (thread); 0s (gc)
    │ │ │ │ + -- used 0.260039s (cpu); 0.136496s (thread); 0s (gc)
    │ │ │ │  i6 : net C
    │ │ │ │  
    │ │ │ │  o6 = 0: (e0, {2}, {-2})
    │ │ │ │       1: (e1, {4, 4}, {-4, -4})
    │ │ │ │  ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: **********
    │ │ │ │      * _n_e_t_(_O_I_R_e_s_o_l_u_t_i_o_n_) -- display an OI-resolution
    │ │ │ │  ===============================================================================
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__G__B.html
    │ │ │ @@ -111,15 +111,15 @@
    │ │ │              
    │ │ │                
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time oiGB {b1, b2}
    │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc)
    │ │ │ + -- used 0.0363376s (cpu); 0.0363385s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(1,1)*e_(1,{1},1)+x_(2,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},2)+x_(2,2)*x_(2,1)*e_(2,{1,2},3);
    │ │ │ │  i9 : time oiGB {b1, b2}
    │ │ │ │ - -- used 0.0270916s (cpu); 0.0270906s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0363376s (cpu); 0.0363385s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e          ,
    │ │ │ │         1,1 1,{1},1    2,1 1,{1},2   1,2 1,1 2,{2},2    2,2 2,1 2,{1, 2},3
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       x   x   x   e           - x   x   x   e          }
    │ │ │ │        2,3 2,2 1,1 3,{2, 3},3    2,3 2,1 1,2 3,{1, 3},3
    │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Res.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │              
    │ │ │                
    i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time oiRes({b}, 2, TopNonminimal => true)
    │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc)
    │ │ │ + -- used 0.586193s (cpu); 0.367513s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 0: (e0, {2}, {-2})
    │ │ │       1: (e1, {4}, {-4})
    │ │ │       2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5})
    │ │ │  
    │ │ │  o5 : OIResolution
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -33,15 +33,15 @@ │ │ │ │ Therefore, use TopNonminimal => true for no minimization of the basis in degree │ │ │ │ $n-1$. │ │ │ │ i1 : P = makePolynomialOIAlgebra(2, x, QQ); │ │ │ │ i2 : F = makeFreeOIModule(e, {1,1}, P); │ │ │ │ i3 : installGeneratorsInWidth(F, 2); │ │ │ │ i4 : b = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(2,1)*e_(2,{1},2); │ │ │ │ i5 : time oiRes({b}, 2, TopNonminimal => true) │ │ │ │ - -- used 0.425811s (cpu); 0.2725s (thread); 0s (gc) │ │ │ │ + -- used 0.586193s (cpu); 0.367513s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 0: (e0, {2}, {-2}) │ │ │ │ 1: (e1, {4}, {-4}) │ │ │ │ 2: (e2, {4, 5, 5, 5, 5, 5}, {-4, -5, -5, -5, -5, -5}) │ │ │ │ │ │ │ │ o5 : OIResolution │ │ │ │ ********** WWaayyss ttoo uussee ooiiRReess:: ********** │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_oi__Syz.html │ │ │ @@ -119,21 +119,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : oiSyz(G, d)
    │ │ │  
    │ │ │  o6 = {x   d           - x   d           + 1d             , x   d             
    │ │ │ -       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   2,4 4,{1, 2, 3},2
    │ │ │ +       1,2 3,{1, 3},1    1,1 3,{2, 3},1     3,{1, 2, 3},2   1,2 4,{1, 3, 4},2
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     - x   d             , x   d              - x   d              -
    │ │ │ -        2,3 4,{1, 2, 4},2   1,2 4,{1, 3, 4},2    1,1 4,{2, 3, 4},2  
    │ │ │ +     - x   d              - x   d             , x   d              -
    │ │ │ +        1,1 4,{2, 3, 4},2    1,3 4,{1, 2, 4},2   2,4 4,{1, 2, 3},2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       x   d             }
    │ │ │ -      1,3 4,{1, 2, 4},2
    │ │ │ +      2,3 4,{1, 2, 4},2
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    References:

    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ x x x e } │ │ │ │ 2,3 2,1 1,2 3,{1},2 │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : oiSyz(G, d) │ │ │ │ │ │ │ │ o6 = {x d - x d + 1d , x d │ │ │ │ - 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 2,4 4,{1, 2, 3},2 │ │ │ │ + 1,2 3,{1, 3},1 1,1 3,{2, 3},1 3,{1, 2, 3},2 1,2 4,{1, 3, 4},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - - x d , x d - x d - │ │ │ │ - 2,3 4,{1, 2, 4},2 1,2 4,{1, 3, 4},2 1,1 4,{2, 3, 4},2 │ │ │ │ + - x d - x d , x d - │ │ │ │ + 1,1 4,{2, 3, 4},2 1,3 4,{1, 2, 4},2 2,4 4,{1, 2, 3},2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x d } │ │ │ │ - 1,3 4,{1, 2, 4},2 │ │ │ │ + 2,3 4,{1, 2, 4},2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ RReeffeerreenncceess:: │ │ │ │ [1] M. Morrow and U. Nagel, Computing Gröbner Bases and Free Resolutions of │ │ │ │ OI-Modules, Preprint, arXiv:2303.06725, 2023. │ │ │ │ ********** WWaayyss ttoo uussee ooiiSSyyzz:: ********** │ │ │ │ * oiSyz(List,Symbol) │ │ ├── ./usr/share/doc/Macaulay2/OIGroebnerBases/html/_reduce__O__I__G__B.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │
    i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc)
    │ │ │ + -- used 0.220711s (cpu); 0.154099s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                         
    │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2                  2
    │ │ │       x   x   e        - x   x   e       }
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,15 +20,15 @@
    │ │ │ │  i1 : P = makePolynomialOIAlgebra(2, x, QQ);
    │ │ │ │  i2 : F = makeFreeOIModule(e, {1,1,2}, P);
    │ │ │ │  i3 : installGeneratorsInWidth(F, 1);
    │ │ │ │  i4 : installGeneratorsInWidth(F, 2);
    │ │ │ │  i5 : use F_1; b1 = x_(2,1)*e_(1,{1},2)+x_(1,1)*e_(1,{1},2);
    │ │ │ │  i7 : use F_2; b2 = x_(1,2)*x_(1,1)*e_(2,{2},1)+x_(2,2)*x_(1,2)*e_(2,{2},2);
    │ │ │ │  i9 : time B = oiGB({b1, b2}, Strategy => FastNonminimal)
    │ │ │ │ - -- used 0.127003s (cpu); 0.127006s (thread); 0s (gc)
    │ │ │ │ + -- used 0.220711s (cpu); 0.154099s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  o9 = {x   e        + x   e       , x   x   e        + x   x   e       ,
    │ │ │ │         2,1 1,{1},2    1,1 1,{1},2   1,2 1,1 2,{2},1    2,2 1,2 2,{2},2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        2                  2
    │ │ │ │       x   x   e        - x   x   e       }
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/___Fast__Nonminimal.out
    │ │ │ @@ -9,25 +9,25 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.28836s elapsed
    │ │ │ + -- 2.58568s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │  
    │ │ │  i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.58344s elapsed
    │ │ │ + -- 1.58181s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_betti_lp..._cm__Minimize_eq_gt..._rp.out
    │ │ │ @@ -9,15 +9,15 @@
    │ │ │  i2 : S = ring I
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │  i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 1.96896s elapsed
    │ │ │ + -- 2.71421s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/example-output/_computing_spresolutions.out
    │ │ │ @@ -36,19 +36,22 @@
    │ │ │            << res M << endl << endl;
    │ │ │            break;
    │ │ │            ) else (
    │ │ │            << "-- computation interrupted" << endl;
    │ │ │            status M.cache.resolution;
    │ │ │            << "-- continuing the computation" << endl;
    │ │ │            ))
    │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc)
    │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc)
    │ │ │ + -- used 1.05262s (cpu); 0.977552s (thread); 0s (gc)
    │ │ │ + -- used 1.07033s (cpu); 0.986918s (thread); 0s (gc)
    │ │ │ + -- used 0.261263s (cpu); 0.172135s (thread); 0s (gc)
    │ │ │  -- computation started: 
    │ │ │  -- computation interrupted
    │ │ │  -- continuing the computation
    │ │ │ +-- computation interrupted
    │ │ │ +-- continuing the computation
    │ │ │  -- computation complete
    │ │ │   4      11      89      122      40
    │ │ │  R  <-- R   <-- R   <-- R    <-- R   <-- 0
    │ │ │                                           
    │ │ │  0      1       2       3        4       5
    │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/___Fast__Nonminimal.html
    │ │ │ @@ -89,28 +89,28 @@
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 2.28836s elapsed
    │ │ │ + -- 2.58568s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C1 = res ideal(I_*)
    │ │ │ - -- 1.58344s elapsed
    │ │ │ + -- 1.58181s elapsed
    │ │ │  
    │ │ │        1      35      140      385      819      1080      819      385      140      35      1
    │ │ │  o4 = S  <-- S   <-- S    <-- S    <-- S    <-- S     <-- S    <-- S    <-- S    <-- S   <-- S  <-- 0
    │ │ │                                                                                                      
    │ │ │       0      1       2        3        4        5         6        7        8        9       10     11
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,28 +29,28 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 2.28836s elapsed │ │ │ │ + -- 2.58568s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ │ │ │ │ │ │ │ │ │ │ 0 1 2 3 4 5 6 7 8 │ │ │ │ 9 10 11 │ │ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ i4 : elapsedTime C1 = res ideal(I_*) │ │ │ │ - -- 1.58344s elapsed │ │ │ │ + -- 1.58181s elapsed │ │ │ │ │ │ │ │ 1 35 140 385 819 1080 819 385 140 │ │ │ │ 35 1 │ │ │ │ o4 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_betti_lp..._cm__Minimize_eq_gt..._rp.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o2 : PolynomialRing
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime C = res(I, FastNonminimal => true)
    │ │ │ - -- 1.96896s elapsed
    │ │ │ + -- 2.71421s elapsed
    │ │ │  
    │ │ │        1      35      241      841      1781      2464      2294      1432      576      135      14
    │ │ │  o3 = S  <-- S   <-- S    <-- S    <-- S     <-- S     <-- S     <-- S     <-- S    <-- S    <-- S   <-- 0
    │ │ │                                                                                                           
    │ │ │       0      1       2        3        4         5         6         7         8        9        10      11
    │ │ │  
    │ │ │  o3 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 0,5 1,5 2,5 3,5 4,5 0,6 1,6 2,6 3,6 4,6 5,6 │ │ │ │ i2 : S = ring I │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : elapsedTime C = res(I, FastNonminimal => true) │ │ │ │ - -- 1.96896s elapsed │ │ │ │ + -- 2.71421s elapsed │ │ │ │ │ │ │ │ 1 35 241 841 1781 2464 2294 1432 │ │ │ │ 576 135 14 │ │ │ │ o3 = S <-- S <-- S <-- S <-- S <-- S <-- S <-- S <-- S │ │ │ │ <-- S <-- S <-- 0 │ │ ├── ./usr/share/doc/Macaulay2/OldChainComplexes/html/_computing_spresolutions.html │ │ │ @@ -112,19 +112,22 @@ │ │ │ << res M << endl << endl; │ │ │ break; │ │ │ ) else ( │ │ │ << "-- computation interrupted" << endl; │ │ │ status M.cache.resolution; │ │ │ << "-- continuing the computation" << endl; │ │ │ )) │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc) │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc) │ │ │ + -- used 1.05262s (cpu); 0.977552s (thread); 0s (gc) │ │ │ + -- used 1.07033s (cpu); 0.986918s (thread); 0s (gc) │ │ │ + -- used 0.261263s (cpu); 0.172135s (thread); 0s (gc) │ │ │ -- computation started: │ │ │ -- computation interrupted │ │ │ -- continuing the computation │ │ │ +-- computation interrupted │ │ │ +-- continuing the computation │ │ │ -- computation complete │ │ │ 4 11 89 122 40 │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ 0 1 2 3 4 5
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -50,19 +50,22 @@ │ │ │ │ << res M << endl << endl; │ │ │ │ break; │ │ │ │ ) else ( │ │ │ │ << "-- computation interrupted" << endl; │ │ │ │ status M.cache.resolution; │ │ │ │ << "-- continuing the computation" << endl; │ │ │ │ )) │ │ │ │ - -- used 0.912289s (cpu); 0.749709s (thread); 0s (gc) │ │ │ │ - -- used 0.493728s (cpu); 0.422643s (thread); 0s (gc) │ │ │ │ + -- used 1.05262s (cpu); 0.977552s (thread); 0s (gc) │ │ │ │ + -- used 1.07033s (cpu); 0.986918s (thread); 0s (gc) │ │ │ │ + -- used 0.261263s (cpu); 0.172135s (thread); 0s (gc) │ │ │ │ -- computation started: │ │ │ │ -- computation interrupted │ │ │ │ -- continuing the computation │ │ │ │ +-- computation interrupted │ │ │ │ +-- continuing the computation │ │ │ │ -- computation complete │ │ │ │ 4 11 89 122 40 │ │ │ │ R <-- R <-- R <-- R <-- R <-- 0 │ │ │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ │ If the user has a chain complex in hand that is known to be a projective │ │ │ │ resolution of M, then it can be installed with M.cache.resolution = C. │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.out │ │ │ @@ -182,25 +182,25 @@ │ │ │ o15 = 4 │ │ │ │ │ │ i16 : for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .280854s elapsed │ │ │ - -- .263174s elapsed │ │ │ - -- .501439s elapsed │ │ │ - -- .231638s elapsed │ │ │ - -- .342923s elapsed │ │ │ - -- .34852s elapsed │ │ │ - -- .619954s elapsed │ │ │ - -- .456734s elapsed │ │ │ - -- .648967s elapsed │ │ │ - -- .367209s elapsed │ │ │ - -- .250328s elapsed │ │ │ + -- .260044s elapsed │ │ │ + -- .308781s elapsed │ │ │ + -- .495904s elapsed │ │ │ + -- .263177s elapsed │ │ │ + -- .320061s elapsed │ │ │ + -- .327781s elapsed │ │ │ + -- .619504s elapsed │ │ │ + -- .492191s elapsed │ │ │ + -- .525097s elapsed │ │ │ + -- .32743s elapsed │ │ │ + -- .194628s elapsed │ │ │ │ │ │ i17 : netList oo │ │ │ │ │ │ +---------------+---------------+ │ │ │ o17 = |{3, 4, 4} |{2, 3, 5} | │ │ │ +---------------+---------------+ │ │ │ |{3, 4, 4} |{2, 3, 5} | │ │ │ @@ -242,75 +242,75 @@ │ │ │ o22 = 15 │ │ │ │ │ │ i23 : allcomps = for G in Gs list ( │ │ │ IG = oscQuadrics(G, R); │ │ │ elapsedTime comps := decompose IG; │ │ │ {comps/codim, comps/degree} │ │ │ ); │ │ │ - -- .536601s elapsed │ │ │ - -- .816725s elapsed │ │ │ - -- 1.00632s elapsed │ │ │ - -- 1.37164s elapsed │ │ │ - -- .718355s elapsed │ │ │ - -- 1.00236s elapsed │ │ │ - -- 1.18305s elapsed │ │ │ - -- 1.31195s elapsed │ │ │ - -- .727806s elapsed │ │ │ - -- .774958s elapsed │ │ │ - -- .333808s elapsed │ │ │ - -- .5035s elapsed │ │ │ - -- .490585s elapsed │ │ │ - -- .637754s elapsed │ │ │ - -- .880246s elapsed │ │ │ - -- 1.2462s elapsed │ │ │ - -- .940742s elapsed │ │ │ - -- 1.01084s elapsed │ │ │ - -- 1.44951s elapsed │ │ │ - -- 1.31812s elapsed │ │ │ - -- 1.00162s elapsed │ │ │ - -- 1.3528s elapsed │ │ │ - -- 1.90187s elapsed │ │ │ - -- 1.44103s elapsed │ │ │ - -- .432654s elapsed │ │ │ - -- .573037s elapsed │ │ │ - -- 1.40316s elapsed │ │ │ - -- .640916s elapsed │ │ │ - -- .945512s elapsed │ │ │ - -- .952893s elapsed │ │ │ - -- 1.08722s elapsed │ │ │ - -- .825525s elapsed │ │ │ - -- .672893s elapsed │ │ │ - -- 1.13429s elapsed │ │ │ - -- .81054s elapsed │ │ │ - -- 1.14908s elapsed │ │ │ - -- 1.49209s elapsed │ │ │ - -- 1.09431s elapsed │ │ │ - -- 1.18828s elapsed │ │ │ - -- .875916s elapsed │ │ │ - -- .6899s elapsed │ │ │ - -- 1.08621s elapsed │ │ │ - -- 1.59117s elapsed │ │ │ - -- 1.88666s elapsed │ │ │ - -- 1.39064s elapsed │ │ │ - -- 1.01948s elapsed │ │ │ - -- 1.47672s elapsed │ │ │ - -- 1.19724s elapsed │ │ │ - -- .910329s elapsed │ │ │ - -- 1.02771s elapsed │ │ │ - -- 1.06676s elapsed │ │ │ - -- .986144s elapsed │ │ │ - -- .739995s elapsed │ │ │ - -- 1.05189s elapsed │ │ │ - -- .696168s elapsed │ │ │ - -- 1.4284s elapsed │ │ │ - -- 1.25123s elapsed │ │ │ - -- 1.4209s elapsed │ │ │ - -- .786654s elapsed │ │ │ - -- .485612s elapsed │ │ │ - -- .40177s elapsed │ │ │ + -- .464157s elapsed │ │ │ + -- .463272s elapsed │ │ │ + -- .88882s elapsed │ │ │ + -- 1.2018s elapsed │ │ │ + -- .719556s elapsed │ │ │ + -- .932679s elapsed │ │ │ + -- 1.10411s elapsed │ │ │ + -- 1.1805s elapsed │ │ │ + -- .765364s elapsed │ │ │ + -- .74465s elapsed │ │ │ + -- .439888s elapsed │ │ │ + -- .453828s elapsed │ │ │ + -- .487523s elapsed │ │ │ + -- .639348s elapsed │ │ │ + -- .919797s elapsed │ │ │ + -- 1.25323s elapsed │ │ │ + -- 1.09525s elapsed │ │ │ + -- .932327s elapsed │ │ │ + -- 1.31797s elapsed │ │ │ + -- 1.00979s elapsed │ │ │ + -- .80103s elapsed │ │ │ + -- 1.0123s elapsed │ │ │ + -- 1.5049s elapsed │ │ │ + -- 1.27823s elapsed │ │ │ + -- .495556s elapsed │ │ │ + -- .68628s elapsed │ │ │ + -- 1.3505s elapsed │ │ │ + -- .673301s elapsed │ │ │ + -- .577608s elapsed │ │ │ + -- .878936s elapsed │ │ │ + -- 1.14729s elapsed │ │ │ + -- .842864s elapsed │ │ │ + -- .567596s elapsed │ │ │ + -- 1.03209s elapsed │ │ │ + -- .884374s elapsed │ │ │ + -- 1.0549s elapsed │ │ │ + -- .983969s elapsed │ │ │ + -- 1.21315s elapsed │ │ │ + -- 1.23522s elapsed │ │ │ + -- .748005s elapsed │ │ │ + -- .642546s elapsed │ │ │ + -- 1.09486s elapsed │ │ │ + -- 1.38895s elapsed │ │ │ + -- 1.7561s elapsed │ │ │ + -- 1.19787s elapsed │ │ │ + -- 1.13349s elapsed │ │ │ + -- 1.4072s elapsed │ │ │ + -- 1.21471s elapsed │ │ │ + -- .999531s elapsed │ │ │ + -- 1.14572s elapsed │ │ │ + -- 1.10688s elapsed │ │ │ + -- .839171s elapsed │ │ │ + -- .874115s elapsed │ │ │ + -- 1.02676s elapsed │ │ │ + -- .666072s elapsed │ │ │ + -- 1.15554s elapsed │ │ │ + -- 1.19189s elapsed │ │ │ + -- 1.29931s elapsed │ │ │ + -- .766725s elapsed │ │ │ + -- .504907s elapsed │ │ │ + -- .434476s elapsed │ │ │ │ │ │ i24 : netList ({{"codimensions", "degrees"}} | allcomps) │ │ │ │ │ │ +------------------------+------------------------+ │ │ │ o24 = |codimensions |degrees | │ │ │ +------------------------+------------------------+ │ │ │ |{3, 5, 5} |{2, 4, 6} | │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.out │ │ │ @@ -39,15 +39,15 @@ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ ------------------------------------------------------------------------ │ │ │ .954}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ - -- .662s elapsed │ │ │ + -- 1s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ @@ -60,15 +60,15 @@ │ │ │ +---+---+---+---+ │ │ │ |72 |144|216|288| │ │ │ +---+---+---+---+ │ │ │ |288|216|144|72 | │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ - -- .721s elapsed │ │ │ + -- 1.05s elapsed │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ ------------------------------------------------------------------------ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o6 : List │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/___S__C__T_spgraphs_spwith_spexotic_spsolutions.out │ │ │ @@ -44,19 +44,19 @@ │ │ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ o5 = 3 │ │ │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ - -- .763s elapsed │ │ │ + -- .815s elapsed │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97} │ │ │ - -- .659s elapsed │ │ │ - -- .88s elapsed │ │ │ - -- 1.02s elapsed │ │ │ + -- .788s elapsed │ │ │ + -- 1.03s elapsed │ │ │ + -- 1.26s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ 1 => {3, 4} │ │ │ 2 => {0, 4} │ │ │ 3 => {0, 1} │ │ │ 4 => {2, 1} │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ @@ -69,20 +69,20 @@ │ │ │ +---+---+---+---+ │ │ │ |144|288|72 |216| │ │ │ +---+---+---+---+ │ │ │ |0 |0 |0 |0 | │ │ │ +---+---+---+---+ │ │ │ |216|72 |288|144| │ │ │ +---+---+---+---+ │ │ │ - -- 1.3s elapsed │ │ │ - -- 1.31s elapsed │ │ │ + -- 1.47s elapsed │ │ │ + -- 1.57s elapsed │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60} │ │ │ - -- 1.68s elapsed │ │ │ + -- 1.91s elapsed │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34} │ │ │ - -- 1.32s elapsed │ │ │ - -- 1.4s elapsed │ │ │ + -- 1.65s elapsed │ │ │ + -- 1.67s elapsed │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ - -- 1.79s elapsed │ │ │ + -- 1.71s elapsed │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78} │ │ │ - -- 1.59s elapsed │ │ │ + -- 1.56s elapsed │ │ │ │ │ │ i7 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_get__Linearly__Stable__Solutions.out │ │ │ @@ -1,15 +1,15 @@ │ │ │ -- -*- M2-comint -*- hash: 1729328129346969841 │ │ │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .250068s elapsed │ │ │ + -- .279032s elapsed │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21} │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/example-output/_show__Exotic__Solutions.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ 4 => {0, 3} │ │ │ │ │ │ o1 : Graph │ │ │ │ │ │ i2 : showExoticSolutions G │ │ │ -- warning: experimental computation over inexact field begun │ │ │ -- results not reliable (one warning given per session) │ │ │ - -- .943746s elapsed │ │ │ + -- 1.09886s elapsed │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ 1 => {0, 2} │ │ │ 2 => {1, 3} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 3} │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ @@ -50,14 +50,14 @@ │ │ │ 2 => {1, 3, 4} │ │ │ 3 => {2, 4} │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ o3 : Graph │ │ │ │ │ │ i4 : showExoticSolutions G │ │ │ - -- 1.24035s elapsed │ │ │ + -- 1.43774s elapsed │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Checking_spthe_spcodimension_spand_spirreducible_spdecomposition_spof_spthe_sp__I__G_spideal.html │ │ │ @@ -295,25 +295,25 @@ │ │ │ │ │ │ │ │ │
    i16 : for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .280854s elapsed
    │ │ │ - -- .263174s elapsed
    │ │ │ - -- .501439s elapsed
    │ │ │ - -- .231638s elapsed
    │ │ │ - -- .342923s elapsed
    │ │ │ - -- .34852s elapsed
    │ │ │ - -- .619954s elapsed
    │ │ │ - -- .456734s elapsed
    │ │ │ - -- .648967s elapsed
    │ │ │ - -- .367209s elapsed
    │ │ │ - -- .250328s elapsed
    │ │ │ + -- .260044s elapsed │ │ │ + -- .308781s elapsed │ │ │ + -- .495904s elapsed │ │ │ + -- .263177s elapsed │ │ │ + -- .320061s elapsed │ │ │ + -- .327781s elapsed │ │ │ + -- .619504s elapsed │ │ │ + -- .492191s elapsed │ │ │ + -- .525097s elapsed │ │ │ + -- .32743s elapsed │ │ │ + -- .194628s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : netList oo
    │ │ │  
    │ │ │        +---------------+---------------+
    │ │ │ @@ -380,75 +380,75 @@
    │ │ │            
    │ │ │              
    │ │ │                
    i23 : allcomps = for G in Gs list (
    │ │ │            IG = oscQuadrics(G, R);
    │ │ │            elapsedTime comps := decompose IG;
    │ │ │            {comps/codim, comps/degree}
    │ │ │            );
    │ │ │ - -- .536601s elapsed
    │ │ │ - -- .816725s elapsed
    │ │ │ - -- 1.00632s elapsed
    │ │ │ - -- 1.37164s elapsed
    │ │ │ - -- .718355s elapsed
    │ │ │ - -- 1.00236s elapsed
    │ │ │ - -- 1.18305s elapsed
    │ │ │ - -- 1.31195s elapsed
    │ │ │ - -- .727806s elapsed
    │ │ │ - -- .774958s elapsed
    │ │ │ - -- .333808s elapsed
    │ │ │ - -- .5035s elapsed
    │ │ │ - -- .490585s elapsed
    │ │ │ - -- .637754s elapsed
    │ │ │ - -- .880246s elapsed
    │ │ │ - -- 1.2462s elapsed
    │ │ │ - -- .940742s elapsed
    │ │ │ - -- 1.01084s elapsed
    │ │ │ - -- 1.44951s elapsed
    │ │ │ - -- 1.31812s elapsed
    │ │ │ - -- 1.00162s elapsed
    │ │ │ - -- 1.3528s elapsed
    │ │ │ - -- 1.90187s elapsed
    │ │ │ - -- 1.44103s elapsed
    │ │ │ - -- .432654s elapsed
    │ │ │ - -- .573037s elapsed
    │ │ │ - -- 1.40316s elapsed
    │ │ │ - -- .640916s elapsed
    │ │ │ - -- .945512s elapsed
    │ │ │ - -- .952893s elapsed
    │ │ │ - -- 1.08722s elapsed
    │ │ │ - -- .825525s elapsed
    │ │ │ - -- .672893s elapsed
    │ │ │ - -- 1.13429s elapsed
    │ │ │ - -- .81054s elapsed
    │ │ │ - -- 1.14908s elapsed
    │ │ │ - -- 1.49209s elapsed
    │ │ │ - -- 1.09431s elapsed
    │ │ │ - -- 1.18828s elapsed
    │ │ │ - -- .875916s elapsed
    │ │ │ - -- .6899s elapsed
    │ │ │ - -- 1.08621s elapsed
    │ │ │ - -- 1.59117s elapsed
    │ │ │ - -- 1.88666s elapsed
    │ │ │ - -- 1.39064s elapsed
    │ │ │ - -- 1.01948s elapsed
    │ │ │ - -- 1.47672s elapsed
    │ │ │ - -- 1.19724s elapsed
    │ │ │ - -- .910329s elapsed
    │ │ │ - -- 1.02771s elapsed
    │ │ │ - -- 1.06676s elapsed
    │ │ │ - -- .986144s elapsed
    │ │ │ - -- .739995s elapsed
    │ │ │ - -- 1.05189s elapsed
    │ │ │ - -- .696168s elapsed
    │ │ │ - -- 1.4284s elapsed
    │ │ │ - -- 1.25123s elapsed
    │ │ │ - -- 1.4209s elapsed
    │ │ │ - -- .786654s elapsed
    │ │ │ - -- .485612s elapsed
    │ │ │ - -- .40177s elapsed
    │ │ │ + -- .464157s elapsed │ │ │ + -- .463272s elapsed │ │ │ + -- .88882s elapsed │ │ │ + -- 1.2018s elapsed │ │ │ + -- .719556s elapsed │ │ │ + -- .932679s elapsed │ │ │ + -- 1.10411s elapsed │ │ │ + -- 1.1805s elapsed │ │ │ + -- .765364s elapsed │ │ │ + -- .74465s elapsed │ │ │ + -- .439888s elapsed │ │ │ + -- .453828s elapsed │ │ │ + -- .487523s elapsed │ │ │ + -- .639348s elapsed │ │ │ + -- .919797s elapsed │ │ │ + -- 1.25323s elapsed │ │ │ + -- 1.09525s elapsed │ │ │ + -- .932327s elapsed │ │ │ + -- 1.31797s elapsed │ │ │ + -- 1.00979s elapsed │ │ │ + -- .80103s elapsed │ │ │ + -- 1.0123s elapsed │ │ │ + -- 1.5049s elapsed │ │ │ + -- 1.27823s elapsed │ │ │ + -- .495556s elapsed │ │ │ + -- .68628s elapsed │ │ │ + -- 1.3505s elapsed │ │ │ + -- .673301s elapsed │ │ │ + -- .577608s elapsed │ │ │ + -- .878936s elapsed │ │ │ + -- 1.14729s elapsed │ │ │ + -- .842864s elapsed │ │ │ + -- .567596s elapsed │ │ │ + -- 1.03209s elapsed │ │ │ + -- .884374s elapsed │ │ │ + -- 1.0549s elapsed │ │ │ + -- .983969s elapsed │ │ │ + -- 1.21315s elapsed │ │ │ + -- 1.23522s elapsed │ │ │ + -- .748005s elapsed │ │ │ + -- .642546s elapsed │ │ │ + -- 1.09486s elapsed │ │ │ + -- 1.38895s elapsed │ │ │ + -- 1.7561s elapsed │ │ │ + -- 1.19787s elapsed │ │ │ + -- 1.13349s elapsed │ │ │ + -- 1.4072s elapsed │ │ │ + -- 1.21471s elapsed │ │ │ + -- .999531s elapsed │ │ │ + -- 1.14572s elapsed │ │ │ + -- 1.10688s elapsed │ │ │ + -- .839171s elapsed │ │ │ + -- .874115s elapsed │ │ │ + -- 1.02676s elapsed │ │ │ + -- .666072s elapsed │ │ │ + -- 1.15554s elapsed │ │ │ + -- 1.19189s elapsed │ │ │ + -- 1.29931s elapsed │ │ │ + -- .766725s elapsed │ │ │ + -- .504907s elapsed │ │ │ + -- .434476s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │  
    │ │ │        +------------------------+------------------------+
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -180,25 +180,25 @@
    │ │ │ │  
    │ │ │ │  o15 = 4
    │ │ │ │  i16 : for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .280854s elapsed
    │ │ │ │ - -- .263174s elapsed
    │ │ │ │ - -- .501439s elapsed
    │ │ │ │ - -- .231638s elapsed
    │ │ │ │ - -- .342923s elapsed
    │ │ │ │ - -- .34852s elapsed
    │ │ │ │ - -- .619954s elapsed
    │ │ │ │ - -- .456734s elapsed
    │ │ │ │ - -- .648967s elapsed
    │ │ │ │ - -- .367209s elapsed
    │ │ │ │ - -- .250328s elapsed
    │ │ │ │ + -- .260044s elapsed
    │ │ │ │ + -- .308781s elapsed
    │ │ │ │ + -- .495904s elapsed
    │ │ │ │ + -- .263177s elapsed
    │ │ │ │ + -- .320061s elapsed
    │ │ │ │ + -- .327781s elapsed
    │ │ │ │ + -- .619504s elapsed
    │ │ │ │ + -- .492191s elapsed
    │ │ │ │ + -- .525097s elapsed
    │ │ │ │ + -- .32743s elapsed
    │ │ │ │ + -- .194628s elapsed
    │ │ │ │  i17 : netList oo
    │ │ │ │  
    │ │ │ │        +---------------+---------------+
    │ │ │ │  o17 = |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │        |{3, 4, 4}      |{2, 3, 5}      |
    │ │ │ │        +---------------+---------------+
    │ │ │ │ @@ -233,75 +233,75 @@
    │ │ │ │  
    │ │ │ │  o22 = 15
    │ │ │ │  i23 : allcomps = for G in Gs list (
    │ │ │ │            IG = oscQuadrics(G, R);
    │ │ │ │            elapsedTime comps := decompose IG;
    │ │ │ │            {comps/codim, comps/degree}
    │ │ │ │            );
    │ │ │ │ - -- .536601s elapsed
    │ │ │ │ - -- .816725s elapsed
    │ │ │ │ - -- 1.00632s elapsed
    │ │ │ │ - -- 1.37164s elapsed
    │ │ │ │ - -- .718355s elapsed
    │ │ │ │ - -- 1.00236s elapsed
    │ │ │ │ - -- 1.18305s elapsed
    │ │ │ │ - -- 1.31195s elapsed
    │ │ │ │ - -- .727806s elapsed
    │ │ │ │ - -- .774958s elapsed
    │ │ │ │ - -- .333808s elapsed
    │ │ │ │ - -- .5035s elapsed
    │ │ │ │ - -- .490585s elapsed
    │ │ │ │ - -- .637754s elapsed
    │ │ │ │ - -- .880246s elapsed
    │ │ │ │ - -- 1.2462s elapsed
    │ │ │ │ - -- .940742s elapsed
    │ │ │ │ - -- 1.01084s elapsed
    │ │ │ │ - -- 1.44951s elapsed
    │ │ │ │ - -- 1.31812s elapsed
    │ │ │ │ - -- 1.00162s elapsed
    │ │ │ │ - -- 1.3528s elapsed
    │ │ │ │ - -- 1.90187s elapsed
    │ │ │ │ - -- 1.44103s elapsed
    │ │ │ │ - -- .432654s elapsed
    │ │ │ │ - -- .573037s elapsed
    │ │ │ │ - -- 1.40316s elapsed
    │ │ │ │ - -- .640916s elapsed
    │ │ │ │ - -- .945512s elapsed
    │ │ │ │ - -- .952893s elapsed
    │ │ │ │ - -- 1.08722s elapsed
    │ │ │ │ - -- .825525s elapsed
    │ │ │ │ - -- .672893s elapsed
    │ │ │ │ - -- 1.13429s elapsed
    │ │ │ │ - -- .81054s elapsed
    │ │ │ │ - -- 1.14908s elapsed
    │ │ │ │ - -- 1.49209s elapsed
    │ │ │ │ - -- 1.09431s elapsed
    │ │ │ │ - -- 1.18828s elapsed
    │ │ │ │ - -- .875916s elapsed
    │ │ │ │ - -- .6899s elapsed
    │ │ │ │ - -- 1.08621s elapsed
    │ │ │ │ - -- 1.59117s elapsed
    │ │ │ │ - -- 1.88666s elapsed
    │ │ │ │ - -- 1.39064s elapsed
    │ │ │ │ - -- 1.01948s elapsed
    │ │ │ │ - -- 1.47672s elapsed
    │ │ │ │ - -- 1.19724s elapsed
    │ │ │ │ - -- .910329s elapsed
    │ │ │ │ - -- 1.02771s elapsed
    │ │ │ │ - -- 1.06676s elapsed
    │ │ │ │ - -- .986144s elapsed
    │ │ │ │ - -- .739995s elapsed
    │ │ │ │ - -- 1.05189s elapsed
    │ │ │ │ - -- .696168s elapsed
    │ │ │ │ - -- 1.4284s elapsed
    │ │ │ │ - -- 1.25123s elapsed
    │ │ │ │ - -- 1.4209s elapsed
    │ │ │ │ - -- .786654s elapsed
    │ │ │ │ - -- .485612s elapsed
    │ │ │ │ - -- .40177s elapsed
    │ │ │ │ + -- .464157s elapsed
    │ │ │ │ + -- .463272s elapsed
    │ │ │ │ + -- .88882s elapsed
    │ │ │ │ + -- 1.2018s elapsed
    │ │ │ │ + -- .719556s elapsed
    │ │ │ │ + -- .932679s elapsed
    │ │ │ │ + -- 1.10411s elapsed
    │ │ │ │ + -- 1.1805s elapsed
    │ │ │ │ + -- .765364s elapsed
    │ │ │ │ + -- .74465s elapsed
    │ │ │ │ + -- .439888s elapsed
    │ │ │ │ + -- .453828s elapsed
    │ │ │ │ + -- .487523s elapsed
    │ │ │ │ + -- .639348s elapsed
    │ │ │ │ + -- .919797s elapsed
    │ │ │ │ + -- 1.25323s elapsed
    │ │ │ │ + -- 1.09525s elapsed
    │ │ │ │ + -- .932327s elapsed
    │ │ │ │ + -- 1.31797s elapsed
    │ │ │ │ + -- 1.00979s elapsed
    │ │ │ │ + -- .80103s elapsed
    │ │ │ │ + -- 1.0123s elapsed
    │ │ │ │ + -- 1.5049s elapsed
    │ │ │ │ + -- 1.27823s elapsed
    │ │ │ │ + -- .495556s elapsed
    │ │ │ │ + -- .68628s elapsed
    │ │ │ │ + -- 1.3505s elapsed
    │ │ │ │ + -- .673301s elapsed
    │ │ │ │ + -- .577608s elapsed
    │ │ │ │ + -- .878936s elapsed
    │ │ │ │ + -- 1.14729s elapsed
    │ │ │ │ + -- .842864s elapsed
    │ │ │ │ + -- .567596s elapsed
    │ │ │ │ + -- 1.03209s elapsed
    │ │ │ │ + -- .884374s elapsed
    │ │ │ │ + -- 1.0549s elapsed
    │ │ │ │ + -- .983969s elapsed
    │ │ │ │ + -- 1.21315s elapsed
    │ │ │ │ + -- 1.23522s elapsed
    │ │ │ │ + -- .748005s elapsed
    │ │ │ │ + -- .642546s elapsed
    │ │ │ │ + -- 1.09486s elapsed
    │ │ │ │ + -- 1.38895s elapsed
    │ │ │ │ + -- 1.7561s elapsed
    │ │ │ │ + -- 1.19787s elapsed
    │ │ │ │ + -- 1.13349s elapsed
    │ │ │ │ + -- 1.4072s elapsed
    │ │ │ │ + -- 1.21471s elapsed
    │ │ │ │ + -- .999531s elapsed
    │ │ │ │ + -- 1.14572s elapsed
    │ │ │ │ + -- 1.10688s elapsed
    │ │ │ │ + -- .839171s elapsed
    │ │ │ │ + -- .874115s elapsed
    │ │ │ │ + -- 1.02676s elapsed
    │ │ │ │ + -- .666072s elapsed
    │ │ │ │ + -- 1.15554s elapsed
    │ │ │ │ + -- 1.19189s elapsed
    │ │ │ │ + -- 1.29931s elapsed
    │ │ │ │ + -- .766725s elapsed
    │ │ │ │ + -- .504907s elapsed
    │ │ │ │ + -- .434476s elapsed
    │ │ │ │  i24 : netList ({{"codimensions", "degrees"}} | allcomps)
    │ │ │ │  
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │  o24 = |codimensions            |degrees                 |
    │ │ │ │        +------------------------+------------------------+
    │ │ │ │        |{3, 5, 5}               |{2, 4, 6}               |
    │ │ │ │        +------------------------+------------------------+
    │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___Example_sp4.2_co_spa_sp__K5_spand_sppentagon_spglued_spalong_span_spedge.html
    │ │ │ @@ -110,15 +110,15 @@
    │ │ │  
    │ │ │  o5 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime stablesolsPent = showExoticSolutions Pent
    │ │ │ - -- .662s elapsed
    │ │ │ + -- 1s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +----+-----+-----+----+-----+-----+-----+-----+
    │ │ │  |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951|
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  +---+---+---+---+
    │ │ │  |72 |144|216|288|
    │ │ │  +---+---+---+---+
    │ │ │  |288|216|144|72 |
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │ - -- .721s elapsed
    │ │ │ + -- 1.05s elapsed
    │ │ │  
    │ │ │  o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o6 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .98, .98, .101, -.98, -.298, .393, .201, .201, .201, -.995, -.201, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ .954}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : elapsedTime stablesolsPent = showExoticSolutions Pent │ │ │ │ - -- .662s elapsed │ │ │ │ + -- 1s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +----+-----+-----+----+-----+-----+-----+-----+ │ │ │ │ |.309|-.809|-.809|.309|.951 |.588 |-.588|-.951| │ │ │ │ @@ -64,15 +64,15 @@ │ │ │ │ +---+---+---+---+ │ │ │ │ |72 |144|216|288| │ │ │ │ +---+---+---+---+ │ │ │ │ |288|216|144|72 | │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ - -- .721s elapsed │ │ │ │ + -- 1.05s elapsed │ │ │ │ │ │ │ │ o6 = {{.309, -.809, -.809, .309, .951, .588, -.588, -.951}, {.309, -.809, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -.809, .309, -.951, -.588, .588, .951}, {1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o6 : List │ │ │ │ Computing the (linearly) stable solutions for K5C5 takes a minute or two: │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/___S__C__T_spgraphs_spwith_spexotic_spsolutions.html │ │ │ @@ -115,19 +115,19 @@ │ │ │ o5 = 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : for G in Gs list showExoticSolutions G;
    │ │ │  warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89}
    │ │ │ - -- .763s elapsed
    │ │ │ + -- .815s elapsed
    │ │ │  warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, 89, 90, 91, 97}
    │ │ │ - -- .659s elapsed
    │ │ │ - -- .88s elapsed
    │ │ │ - -- 1.02s elapsed
    │ │ │ + -- .788s elapsed
    │ │ │ + -- 1.03s elapsed
    │ │ │ + -- 1.26s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {2, 3}} --
    │ │ │                                                  1 => {3, 4}
    │ │ │                                                  2 => {0, 4}
    │ │ │                                                  3 => {0, 1}
    │ │ │                                                  4 => {2, 1}
    │ │ │  +-----+----+----+-----+-----+-----+-----+-----+
    │ │ │  |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588|
    │ │ │ @@ -140,25 +140,25 @@
    │ │ │  +---+---+---+---+
    │ │ │  |144|288|72 |216|
    │ │ │  +---+---+---+---+
    │ │ │  |0  |0  |0  |0  |
    │ │ │  +---+---+---+---+
    │ │ │  |216|72 |288|144|
    │ │ │  +---+---+---+---+
    │ │ │ - -- 1.3s elapsed
    │ │ │ - -- 1.31s elapsed
    │ │ │ + -- 1.47s elapsed
    │ │ │ + -- 1.57s elapsed
    │ │ │  warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, 53, 54, 56, 57, 59, 60}
    │ │ │ - -- 1.68s elapsed
    │ │ │ + -- 1.91s elapsed
    │ │ │  warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34}
    │ │ │ - -- 1.32s elapsed
    │ │ │ - -- 1.4s elapsed
    │ │ │ + -- 1.65s elapsed
    │ │ │ + -- 1.67s elapsed
    │ │ │  warning: some solutions are not regular: {26, 29, 30, 32, 33}
    │ │ │ - -- 1.79s elapsed
    │ │ │ + -- 1.71s elapsed
    │ │ │  warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, 72, 77, 78}
    │ │ │ - -- 1.59s elapsed
    │ │ │ + -- 1.56s elapsed │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -48,21 +48,21 @@ │ │ │ │ i5 : printingPrecision = 3 │ │ │ │ │ │ │ │ o5 = 3 │ │ │ │ i6 : for G in Gs list showExoticSolutions G; │ │ │ │ warning: some solutions are not regular: {37, 38, 40, 41, 42, 43, 44, 45, 46, │ │ │ │ 48, 50, 52, 53, 54, 55, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, │ │ │ │ 79, 81, 83, 85, 86, 87, 88, 89} │ │ │ │ - -- .763s elapsed │ │ │ │ + -- .815s elapsed │ │ │ │ warning: some solutions are not regular: {43, 44, 47, 49, 50, 51, 52, 53, 55, │ │ │ │ 57, 59, 61, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 79, 80, 84, 85, 87, 88, │ │ │ │ 89, 90, 91, 97} │ │ │ │ - -- .659s elapsed │ │ │ │ - -- .88s elapsed │ │ │ │ - -- 1.02s elapsed │ │ │ │ + -- .788s elapsed │ │ │ │ + -- 1.03s elapsed │ │ │ │ + -- 1.26s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {2, 3}} -- │ │ │ │ 1 => {3, 4} │ │ │ │ 2 => {0, 4} │ │ │ │ 3 => {0, 1} │ │ │ │ 4 => {2, 1} │ │ │ │ +-----+----+----+-----+-----+-----+-----+-----+ │ │ │ │ |-.809|.309|.309|-.809|.588 |-.951|.951 |-.588| │ │ │ │ @@ -75,24 +75,24 @@ │ │ │ │ +---+---+---+---+ │ │ │ │ |144|288|72 |216| │ │ │ │ +---+---+---+---+ │ │ │ │ |0 |0 |0 |0 | │ │ │ │ +---+---+---+---+ │ │ │ │ |216|72 |288|144| │ │ │ │ +---+---+---+---+ │ │ │ │ - -- 1.3s elapsed │ │ │ │ - -- 1.31s elapsed │ │ │ │ + -- 1.47s elapsed │ │ │ │ + -- 1.57s elapsed │ │ │ │ warning: some solutions are not regular: {27, 31, 32, 34, 37, 38, 44, 46, 47, │ │ │ │ 53, 54, 56, 57, 59, 60} │ │ │ │ - -- 1.68s elapsed │ │ │ │ + -- 1.91s elapsed │ │ │ │ warning: some solutions are not regular: {16, 17, 18, 19, 20, 21, 22, 23, 24, │ │ │ │ 25, 26, 27, 28, 29, 31, 34} │ │ │ │ - -- 1.32s elapsed │ │ │ │ - -- 1.4s elapsed │ │ │ │ + -- 1.65s elapsed │ │ │ │ + -- 1.67s elapsed │ │ │ │ warning: some solutions are not regular: {26, 29, 30, 32, 33} │ │ │ │ - -- 1.79s elapsed │ │ │ │ + -- 1.71s elapsed │ │ │ │ warning: some solutions are not regular: {38, 40, 42, 53, 54, 55, 62, 63, 67, │ │ │ │ 72, 77, 78} │ │ │ │ - -- 1.59s elapsed │ │ │ │ + -- 1.56s elapsed │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/Oscillators/Documentation.m2:812:0. │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_get__Linearly__Stable__Solutions.html │ │ │ @@ -77,15 +77,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : getLinearlyStableSolutions(G)
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .250068s elapsed
    │ │ │ + -- .279032s elapsed
    │ │ │  warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
    │ │ │  
    │ │ │  o2 = {{1, 1, 1, 0, 0, 0}}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ of each oscillator is given by the Kuramoto model. The linear stability of a │ │ │ │ solution is determined by the eigenvalues of the Jacobian matrix of the system │ │ │ │ evaluated at the solution. │ │ │ │ i1 : G = graph({0,1,2,3}, {{0,1},{1,2},{2,3},{0,3}}); │ │ │ │ i2 : getLinearlyStableSolutions(G) │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .250068s elapsed │ │ │ │ + -- .279032s elapsed │ │ │ │ warning: some solutions are not regular: {4, 5, 7, 9, 10, 12, 13, 14, 15, 16, │ │ │ │ 17, 18, 19, 20, 21} │ │ │ │ │ │ │ │ o2 = {{1, 1, 1, 0, 0, 0}} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/Oscillators/html/_show__Exotic__Solutions.html │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : showExoticSolutions G
    │ │ │  -- warning: experimental computation over inexact field begun
    │ │ │  --          results not reliable (one warning given per session)
    │ │ │ - -- .943746s elapsed
    │ │ │ + -- 1.09886s elapsed
    │ │ │  -- found extra exotic solutions for graph Graph{0 => {1, 4}} --
    │ │ │                                                  1 => {0, 2}
    │ │ │                                                  2 => {1, 3}
    │ │ │                                                  3 => {2, 4}
    │ │ │                                                  4 => {0, 3}
    │ │ │  +-------+--------+--------+-------+--------+--------+--------+--------+
    │ │ │  |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057|
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │  
    │ │ │  o3 : Graph
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : showExoticSolutions G
    │ │ │ - -- 1.24035s elapsed
    │ │ │ + -- 1.43774s elapsed
    │ │ │  
    │ │ │  o4 = {{1, 1, 1, 1, 0, 0, 0, 0}}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -36,15 +36,15 @@ │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ │ │ │ │ o1 : Graph │ │ │ │ i2 : showExoticSolutions G │ │ │ │ -- warning: experimental computation over inexact field begun │ │ │ │ -- results not reliable (one warning given per session) │ │ │ │ - -- .943746s elapsed │ │ │ │ + -- 1.09886s elapsed │ │ │ │ -- found extra exotic solutions for graph Graph{0 => {1, 4}} -- │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 3} │ │ │ │ +-------+--------+--------+-------+--------+--------+--------+--------+ │ │ │ │ |.309017|-.809017|-.809017|.309017|.951057 |.587785 |-.587785|-.951057| │ │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ 1 => {0, 2} │ │ │ │ 2 => {1, 3, 4} │ │ │ │ 3 => {2, 4} │ │ │ │ 4 => {0, 2, 3} │ │ │ │ │ │ │ │ o3 : Graph │ │ │ │ i4 : showExoticSolutions G │ │ │ │ - -- 1.24035s elapsed │ │ │ │ + -- 1.43774s elapsed │ │ │ │ │ │ │ │ o4 = {{1, 1, 1, 1, 0, 0, 0, 0}} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_t_L_i_n_e_a_r_l_y_S_t_a_b_l_e_S_o_l_u_t_i_o_n_s -- Compute linearly stable solutions for the │ │ │ │ Kuramoto oscillator system associated to a graph │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/example-output/___A_spfamily_spof_sppaths_spon_spa_spcone.out │ │ │ @@ -80,20 +80,20 @@ │ │ │ i19 : needsPackage "MultigradedImplicitization"; │ │ │ │ │ │ i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S); │ │ │ warning: computation begun over finite field. resulting polynomials may not lie in the ideal │ │ │ computing total degree: 1 │ │ │ number of monomials = 9 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .00892428s elapsed │ │ │ + -- .010296s elapsed │ │ │ WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation. │ │ │ computing total degree: 2 │ │ │ number of monomials = 45 │ │ │ number of distinct multidegrees = 1 │ │ │ - -- .568854s elapsed │ │ │ + -- .611969s elapsed │ │ │ │ │ │ o20 : Ideal of S │ │ │ │ │ │ i21 : dim I │ │ │ │ │ │ o21 = 5 │ │ ├── ./usr/share/doc/Macaulay2/PathSignatures/html/___A_spfamily_spof_sppaths_spon_spa_spcone.html │ │ │ @@ -208,20 +208,20 @@ │ │ │ │ │ │ │ │ │
    i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix {toList(9:1)}), S);
    │ │ │  warning: computation begun over finite field. resulting polynomials may not lie in the ideal
    │ │ │  computing total degree: 1
    │ │ │  number of monomials = 9
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .00892428s elapsed
    │ │ │ + -- .010296s elapsed
    │ │ │  WARNING: There are linear relations. You may want to reduce the number of variables to speed up the computation.
    │ │ │  computing total degree: 2
    │ │ │  number of monomials = 45
    │ │ │  number of distinct multidegrees = 1
    │ │ │ - -- .568854s elapsed
    │ │ │ + -- .611969s elapsed
    │ │ │  
    │ │ │  o20 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : dim I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -77,21 +77,21 @@
    │ │ │ │  i20 : I = sub(ideal flatten values componentsOfKernel(2, m, Grading => matrix
    │ │ │ │  {toList(9:1)}), S);
    │ │ │ │  warning: computation begun over finite field. resulting polynomials may not lie
    │ │ │ │  in the ideal
    │ │ │ │  computing total degree: 1
    │ │ │ │  number of monomials = 9
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .00892428s elapsed
    │ │ │ │ + -- .010296s elapsed
    │ │ │ │  WARNING: There are linear relations. You may want to reduce the number of
    │ │ │ │  variables to speed up the computation.
    │ │ │ │  computing total degree: 2
    │ │ │ │  number of monomials = 45
    │ │ │ │  number of distinct multidegrees = 1
    │ │ │ │ - -- .568854s elapsed
    │ │ │ │ + -- .611969s elapsed
    │ │ │ │  
    │ │ │ │  o20 : Ideal of S
    │ │ │ │  i21 : dim I
    │ │ │ │  
    │ │ │ │  o21 = 5
    │ │ │ │  i22 : isPrime I
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/___Lab__Book__Protocol.out
    │ │ │ @@ -41,15 +41,15 @@
    │ │ │  i3 : g=3
    │ │ │  
    │ │ │  o3 = 3
    │ │ │  
    │ │ │  i4 : kk= ZZ/101;
    │ │ │  
    │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.19915s elapsed
    │ │ │ + -- 1.04914s elapsed
    │ │ │  
    │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o6 : CliffordModule
    │ │ │  
    │ │ │ @@ -67,30 +67,30 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .463669s elapsed
    │ │ │ + -- .366947s elapsed
    │ │ │  
    │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │            -4: 16  .     -2: 32  .
    │ │ │            -3: 16  .     -1:  .  .
    │ │ │            -2:  .  .      0:  .  .
    │ │ │            -1:  . 16      1:  . 32
    │ │ │             0:  . 16
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │  
    │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 20.5845s elapsed
    │ │ │ + -- 14.7566s elapsed
    │ │ │  
    │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │  o14 : Matrix S   <-- S
    │ │ │  
    │ │ │  i15 : r=2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/example-output/_search__Ulrich.out
    │ │ │ @@ -46,30 +46,30 @@
    │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o11 = CliffordModule{...6...}
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │  
    │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .684809s elapsed
    │ │ │ + -- .619219s elapsed
    │ │ │  
    │ │ │  i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │  o13 = total: 8 16 8
    │ │ │            0: 8 16 8
    │ │ │  
    │ │ │  o13 : BettiTally
    │ │ │  
    │ │ │  i14 : ann Ulr == ideal qs
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.41016s elapsed
    │ │ │ + -- 1.93871s elapsed
    │ │ │  
    │ │ │  i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │  o16 = total: 12 24 12
    │ │ │            0: 12 24 12
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/___Lab__Book__Protocol.html
    │ │ │ @@ -128,15 +128,15 @@
    │ │ │              
    │ │ │                
    i4 : kk= ZZ/101;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ - -- 1.19915s elapsed
    │ │ │ + -- 1.04914s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │  
    │ │ │  o6 = CliffordModule{...6...}
    │ │ │ @@ -172,15 +172,15 @@
    │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │            V = vectorBundleOnE m12;
    │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ - -- .463669s elapsed
    │ │ │ + -- .366947s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │  
    │ │ │                 0  1          0  1
    │ │ │ @@ -193,15 +193,15 @@
    │ │ │  
    │ │ │  o12 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the actions of generators
    │ │ │ - -- 20.5845s elapsed
    │ │ │ + -- 14.7566s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │  
    │ │ │                32      32
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │              -- will give an Ulrich bundle, with betti table
    │ │ │ │              -- 16 32 16
    │ │ │ │  i3 : g=3
    │ │ │ │  
    │ │ │ │  o3 = 3
    │ │ │ │  i4 : kk= ZZ/101;
    │ │ │ │  i5 : elapsedTime (S,qq,R,u, M1,M2, Mu1, Mu2)=randomNicePencil(kk,g);
    │ │ │ │ - -- 1.19915s elapsed
    │ │ │ │ + -- 1.04914s elapsed
    │ │ │ │  i6 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o6 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o6 : CliffordModule
    │ │ │ │  i7 : Mor = vectorBundleOnE M.evenCenter;
    │ │ │ │  i8 : Mor1= vectorBundleOnE M.oddCenter;
    │ │ │ │ @@ -75,29 +75,29 @@
    │ │ │ │            m12=randomExtension(m1.yAction,m2.yAction);
    │ │ │ │            V = vectorBundleOnE m12;
    │ │ │ │            Ul=tensorProduct(Mor,V);
    │ │ │ │            Ul1=tensorProduct(Mor1,V);
    │ │ │ │            d0=unique degrees target Ul.yAction;
    │ │ │ │            d1=unique degrees target Ul1.yAction;
    │ │ │ │            #d1 >=3 or #d0 >=3) do ();
    │ │ │ │ - -- .463669s elapsed
    │ │ │ │ + -- .366947s elapsed
    │ │ │ │  i12 : betti Ul.yAction, betti Ul1.yAction
    │ │ │ │  
    │ │ │ │                 0  1          0  1
    │ │ │ │  o12 = (total: 32 32, total: 32 32)
    │ │ │ │            -4: 16  .     -2: 32  .
    │ │ │ │            -3: 16  .     -1:  .  .
    │ │ │ │            -2:  .  .      0:  .  .
    │ │ │ │            -1:  . 16      1:  . 32
    │ │ │ │             0:  . 16
    │ │ │ │  
    │ │ │ │  o12 : Sequence
    │ │ │ │  i13 : elapsedTime Ul = tensorProduct(M,V); -- the heaviest part computing the
    │ │ │ │  actions of generators
    │ │ │ │ - -- 20.5845s elapsed
    │ │ │ │ + -- 14.7566s elapsed
    │ │ │ │  i14 : M1Ul=sum(#Ul.oddOperators,i->S_i*sub(Ul.oddOperators_i,S));
    │ │ │ │  
    │ │ │ │                32      32
    │ │ │ │  o14 : Matrix S   <-- S
    │ │ │ │  i15 : r=2
    │ │ │ │  
    │ │ │ │  o15 = 2
    │ │ ├── ./usr/share/doc/Macaulay2/PencilsOfQuadrics/html/_search__Ulrich.html
    │ │ │ @@ -161,15 +161,15 @@
    │ │ │  
    │ │ │  o11 : CliffordModule
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ - -- .684809s elapsed
    │ │ │ + -- .619219s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : betti freeResolution Ulr
    │ │ │  
    │ │ │               0  1 2
    │ │ │ @@ -185,15 +185,15 @@
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ - -- 2.41016s elapsed
    │ │ │ + -- 1.93871s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : betti freeResolution Ulr3
    │ │ │  
    │ │ │                0  1  2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -64,27 +64,27 @@
    │ │ │ │  o10 : Matrix S  <-- S
    │ │ │ │  i11 : M=cliffordModule(Mu1,Mu2,R)
    │ │ │ │  
    │ │ │ │  o11 = CliffordModule{...6...}
    │ │ │ │  
    │ │ │ │  o11 : CliffordModule
    │ │ │ │  i12 : elapsedTime Ulr = searchUlrich(M,S);
    │ │ │ │ - -- .684809s elapsed
    │ │ │ │ + -- .619219s elapsed
    │ │ │ │  i13 : betti freeResolution Ulr
    │ │ │ │  
    │ │ │ │               0  1 2
    │ │ │ │  o13 = total: 8 16 8
    │ │ │ │            0: 8 16 8
    │ │ │ │  
    │ │ │ │  o13 : BettiTally
    │ │ │ │  i14 : ann Ulr == ideal qs
    │ │ │ │  
    │ │ │ │  o14 = true
    │ │ │ │  i15 : elapsedTime Ulr3 = searchUlrich(M,S,3);
    │ │ │ │ - -- 2.41016s elapsed
    │ │ │ │ + -- 1.93871s elapsed
    │ │ │ │  i16 : betti freeResolution Ulr3
    │ │ │ │  
    │ │ │ │                0  1  2
    │ │ │ │  o16 = total: 12 24 12
    │ │ │ │            0: 12 24 12
    │ │ │ │  
    │ │ │ │  o16 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/Points/example-output/_affine__Fat__Points.out
    │ │ │ @@ -66,17 +66,17 @@
    │ │ │  i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3}
    │ │ │  
    │ │ │  o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}
    │ │ │  
    │ │ │  o9 : List
    │ │ │  
    │ │ │  i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.81759s elapsed
    │ │ │ + -- 2.21897s elapsed
    │ │ │  
    │ │ │  i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.60723s elapsed
    │ │ │ + -- 4.39337s elapsed
    │ │ │  
    │ │ │  i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/Points/html/_affine__Fat__Points.html
    │ │ │ @@ -177,21 +177,21 @@
    │ │ │  
    │ │ │  o9 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R);
    │ │ │ - -- 2.81759s elapsed
    │ │ │ + -- 2.21897s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R);
    │ │ │ - -- 4.60723s elapsed
    │ │ │ + -- 4.39337s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : G==H
    │ │ │  
    │ │ │  o12 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -81,17 +81,17 @@ │ │ │ │ o8 : Matrix K <-- K │ │ │ │ i9 : mults = {1,2,3,1,2,3,1,2,3,1,2,3} │ │ │ │ │ │ │ │ o9 = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ i10 : elapsedTime (Q,inG,G) = affineFatPoints(M,mults,R); │ │ │ │ - -- 2.81759s elapsed │ │ │ │ + -- 2.21897s elapsed │ │ │ │ i11 : elapsedTime H = affineFatPointsByIntersection(M,mults,R); │ │ │ │ - -- 4.60723s elapsed │ │ │ │ + -- 4.39337s elapsed │ │ │ │ i12 : G==H │ │ │ │ │ │ │ │ o12 = true │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For reduced points, this function may be a bit slower than _a_f_f_i_n_e_P_o_i_n_t_s. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _a_f_f_i_n_e_F_a_t_P_o_i_n_t_s_B_y_I_n_t_e_r_s_e_c_t_i_o_n_(_M_a_t_r_i_x_,_L_i_s_t_,_R_i_n_g_) -- computes ideal of fat │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/___Precompute.out │ │ │ @@ -31,27 +31,27 @@ │ │ │ o5 = CacheTable{name => P} │ │ │ │ │ │ i6 : C == P │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : time isDistributive C │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc) │ │ │ + -- used 3.4059e-05s (cpu); 6.301e-06s (thread); 0s (gc) │ │ │ │ │ │ o7 = true │ │ │ │ │ │ i8 : time isDistributive P │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc) │ │ │ + -- used 8.88289s (cpu); 5.21233s (thread); 0s (gc) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ i9 : C' = dual C; │ │ │ │ │ │ i10 : time isDistributive C' │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc) │ │ │ + -- used 1.296e-05s (cpu); 2.772e-05s (thread); 0s (gc) │ │ │ │ │ │ o10 = true │ │ │ │ │ │ i11 : peek C'.cache │ │ │ │ │ │ o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} } │ │ │ coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4}, {6, 5}, {7, 6}, {8, 7}, {9, 8}} │ │ ├── ./usr/share/doc/Macaulay2/Posets/example-output/_greene__Kleitman__Partition.out │ │ │ @@ -7,22 +7,22 @@ │ │ │ o2 = Partition{4, 2} │ │ │ │ │ │ o2 : Partition │ │ │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc) │ │ │ + -- used 0.512123s (cpu); 0.275551s (thread); 0s (gc) │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ o4 : Partition │ │ │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc) │ │ │ + -- used 1.8028e-05s (cpu); 1.5785e-05s (thread); 0s (gc) │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ o5 : Partition │ │ │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/___Precompute.html │ │ │ @@ -107,23 +107,23 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time isDistributive C
    │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc)
    │ │ │ + -- used 3.4059e-05s (cpu); 6.301e-06s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time isDistributive P
    │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc)
    │ │ │ + -- used 8.88289s (cpu); 5.21233s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    We also know that the dual of a distributive lattice is again a distributive lattice. Other information is copied when possible.

    │ │ │ @@ -133,15 +133,15 @@ │ │ │ │ │ │
    i9 : C' = dual C;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time isDistributive C'
    │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc)
    │ │ │ + -- used 1.296e-05s (cpu); 2.772e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : peek C'.cache
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -41,26 +41,26 @@
    │ │ │ │  i5 : peek P.cache
    │ │ │ │  
    │ │ │ │  o5 = CacheTable{name => P}
    │ │ │ │  i6 : C == P
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  i7 : time isDistributive C
    │ │ │ │ - -- used 1.093e-05s (cpu); 7.664e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 3.4059e-05s (cpu); 6.301e-06s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 = true
    │ │ │ │  i8 : time isDistributive P
    │ │ │ │ - -- used 6.40308s (cpu); 4.11716s (thread); 0s (gc)
    │ │ │ │ + -- used 8.88289s (cpu); 5.21233s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = true
    │ │ │ │  We also know that the dual of a distributive lattice is again a distributive
    │ │ │ │  lattice. Other information is copied when possible.
    │ │ │ │  i9 : C' = dual C;
    │ │ │ │  i10 : time isDistributive C'
    │ │ │ │ - -- used 6.472e-06s (cpu); 5.841e-06s (thread); 0s (gc)
    │ │ │ │ + -- used 1.296e-05s (cpu); 2.772e-05s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  i11 : peek C'.cache
    │ │ │ │  
    │ │ │ │  o11 = CacheTable{connectedComponents => {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
    │ │ │ │  }
    │ │ │ │                   coveringRelations => {{1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4},
    │ │ ├── ./usr/share/doc/Macaulay2/Posets/html/_greene__Kleitman__Partition.html
    │ │ │ @@ -100,25 +100,25 @@
    │ │ │              
    │ │ │                
    i3 : D = dominanceLattice 6;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time greeneKleitmanPartition(D, Strategy => "antichains")
    │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc)
    │ │ │ + -- used 0.512123s (cpu); 0.275551s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Partition{9, 2}
    │ │ │  
    │ │ │  o4 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time greeneKleitmanPartition(D, Strategy => "chains")
    │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc)
    │ │ │ + -- used 1.8028e-05s (cpu); 1.5785e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = Partition{9, 2}
    │ │ │  
    │ │ │  o5 : Partition
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,21 +28,21 @@ │ │ │ │ │ │ │ │ o2 : Partition │ │ │ │ The conjugate of $l$ has the same property, but with chains replaced by │ │ │ │ _a_n_t_i_c_h_a_i_n_s. Because of this, it is often better to count via antichains instead │ │ │ │ of chains. This can be done by passing "antichains" as the Strategy. │ │ │ │ i3 : D = dominanceLattice 6; │ │ │ │ i4 : time greeneKleitmanPartition(D, Strategy => "antichains") │ │ │ │ - -- used 0.479688s (cpu); 0.280179s (thread); 0s (gc) │ │ │ │ + -- used 0.512123s (cpu); 0.275551s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = Partition{9, 2} │ │ │ │ │ │ │ │ o4 : Partition │ │ │ │ i5 : time greeneKleitmanPartition(D, Strategy => "chains") │ │ │ │ - -- used 1.3956e-05s (cpu); 1.3846e-05s (thread); 0s (gc) │ │ │ │ + -- used 1.8028e-05s (cpu); 1.5785e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = Partition{9, 2} │ │ │ │ │ │ │ │ o5 : Partition │ │ │ │ The Greene-Kleitman partition of the $n$ _c_h_a_i_n is the partition of $n$ with $1$ │ │ │ │ part. │ │ │ │ i6 : greeneKleitmanPartition chain 10 │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_associated__Primes.out │ │ │ @@ -125,24 +125,24 @@ │ │ │ ----------------------------------------------------------------------- │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ o19 : List │ │ │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o20 : Set │ │ │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ ----------------------------------------------------------------------- │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ o21 : Set │ │ │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ │ │ i23 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_kernel__Of__Localization.out │ │ │ @@ -24,35 +24,35 @@ │ │ │ | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ - -- .0780135s elapsed │ │ │ + -- .106484s elapsed │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 1 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o4 : R-module, subquotient of R │ │ │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ - -- .0175249s elapsed │ │ │ + -- .0227999s elapsed │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 0 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 1 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o5 : R-module, subquotient of R │ │ │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ - -- .126458s elapsed │ │ │ + -- .0594929s elapsed │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 0 |) │ │ │ | 0 1 | | 0 0 0 x_1^3-x_0x_2^2 0 | │ │ │ | 0 0 | | 0 0 0 0 x_1^5-x_0x_2^4 | │ │ │ │ │ │ 3 │ │ │ o6 : R-module, subquotient of R │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/example-output/_reg__Seq__In__Ideal.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ x x ) │ │ │ 0 4 │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ - -- .157633s elapsed │ │ │ + -- .0667616s elapsed │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ │ │ i4 : R = QQ[h,l,s,x,y,z] │ │ │ @@ -41,15 +41,15 @@ │ │ │ o5 : Ideal of R │ │ │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ o6 = true │ │ │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ - -- .00961892s elapsed │ │ │ + -- .0093468s elapsed │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_associated__Primes.html │ │ │ @@ -286,28 +286,28 @@ │ │ │ o19 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : M1 = set apply(L1, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a},
    │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {c, b, a}, {e, c, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o20 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : M2 = set apply(L2, I -> sort flatten entries gens I)
    │ │ │  
    │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a},
    │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {c, b, a}, {e, c, b, a}}
    │ │ │ +      b, a}, {e, d, c, b, a}}
    │ │ │  
    │ │ │  o21 : Set
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i22 : assert(M1 === M2)
    │ │ │ ├── html2text {} │ │ │ │ @@ -155,24 +155,24 @@ │ │ │ │ o19 = {ideal (a, e), ideal (a, b, c), ideal (a, b, d), ideal (a, b, c, d), │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ ideal (a, b, c, e), ideal (a, b, d, e), ideal (a, b, c, d, e)} │ │ │ │ │ │ │ │ o19 : List │ │ │ │ i20 : M1 = set apply(L1, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o20 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ │ +o20 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o20 : Set │ │ │ │ i21 : M2 = set apply(L2, I -> sort flatten entries gens I) │ │ │ │ │ │ │ │ -o21 = set {{e, d, c, b, a}, {e, a}, {d, c, b, a}, {d, b, a}, {e, d, b, a}, │ │ │ │ +o21 = set {{e, c, b, a}, {d, b, a}, {d, c, b, a}, {c, b, a}, {e, a}, {e, d, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {c, b, a}, {e, c, b, a}} │ │ │ │ + b, a}, {e, d, c, b, a}} │ │ │ │ │ │ │ │ o21 : Set │ │ │ │ i22 : assert(M1 === M2) │ │ │ │ The method using Ext modules comes from Eisenbud-Huneke-Vasconcelos, Invent. │ │ │ │ Math 110 (1992) 207-235. │ │ │ │ Original author (for ideals): _C_._ _Y_a_c_k_e_l. Updated for modules by J. Chen. │ │ │ │ ********** SSeeee aallssoo ********** │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_kernel__Of__Localization.html │ │ │ @@ -107,41 +107,41 @@ │ │ │ 3 │ │ │ o3 : R-module, quotient of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime kernelOfLocalization(M, I1)
    │ │ │ - -- .0780135s elapsed
    │ │ │ + -- .106484s elapsed
    │ │ │  
    │ │ │  o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 1 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o4 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime kernelOfLocalization(M, I2)
    │ │ │ - -- .0175249s elapsed
    │ │ │ + -- .0227999s elapsed
    │ │ │  
    │ │ │  o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 0 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 1 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o5 : R-module, subquotient of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : elapsedTime kernelOfLocalization(M, I3)
    │ │ │ - -- .126458s elapsed
    │ │ │ + -- .0594929s elapsed
    │ │ │  
    │ │ │  o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0              0              |)
    │ │ │                    | 0 1 |  | 0            0             0            x_1^3-x_0x_2^2 0              |
    │ │ │                    | 0 0 |  | 0            0             0            0              x_1^5-x_0x_2^4 |
    │ │ │  
    │ │ │                                 3
    │ │ │  o6 : R-module, subquotient of R
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,39 +41,39 @@ │ │ │ │ | │ │ │ │ | 0 0 0 0 x_1^5- │ │ │ │ x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o3 : R-module, quotient of R │ │ │ │ i4 : elapsedTime kernelOfLocalization(M, I1) │ │ │ │ - -- .0780135s elapsed │ │ │ │ + -- .106484s elapsed │ │ │ │ │ │ │ │ o4 = subquotient (| 0 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 1 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o4 : R-module, subquotient of R │ │ │ │ i5 : elapsedTime kernelOfLocalization(M, I2) │ │ │ │ - -- .0175249s elapsed │ │ │ │ + -- .0227999s elapsed │ │ │ │ │ │ │ │ o5 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 0 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 1 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ │ │ │ │ │ │ 3 │ │ │ │ o5 : R-module, subquotient of R │ │ │ │ i6 : elapsedTime kernelOfLocalization(M, I3) │ │ │ │ - -- .126458s elapsed │ │ │ │ + -- .0594929s elapsed │ │ │ │ │ │ │ │ o6 = subquotient (| 1 0 |, | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 0 │ │ │ │ 0 |) │ │ │ │ | 0 1 | | 0 0 0 x_1^3- │ │ │ │ x_0x_2^2 0 | │ │ │ │ | 0 0 | | 0 0 0 0 │ │ │ │ x_1^5-x_0x_2^4 | │ │ ├── ./usr/share/doc/Macaulay2/PrimaryDecomposition/html/_reg__Seq__In__Ideal.html │ │ │ @@ -102,15 +102,15 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime regSeqInIdeal I
    │ │ │ - -- .157633s elapsed
    │ │ │ + -- .0667616s elapsed
    │ │ │  
    │ │ │  o3 = ideal (x x , x x  + x x , x x  + x x , x x  + x x )
    │ │ │               2 7   3 6    0 7   2 5    0 7   1 4    0 7
    │ │ │  
    │ │ │  o3 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ │ o6 = true │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1)
    │ │ │ - -- .00961892s elapsed
    │ │ │ + -- .0093468s elapsed
    │ │ │  
    │ │ │                     2                3    2     2    8    3    2     2
    │ │ │  o7 = ideal (h*l - l  - 4l*s + h*y, h  + l s - h x, s  + h  + l s - h x)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ 2 7 0 7 3 6 2 6 1 6 0 6 2 5 0 5 3 4 2 4 1 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 4 │ │ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ i3 : elapsedTime regSeqInIdeal I │ │ │ │ - -- .157633s elapsed │ │ │ │ + -- .0667616s elapsed │ │ │ │ │ │ │ │ o3 = ideal (x x , x x + x x , x x + x x , x x + x x ) │ │ │ │ 2 7 3 6 0 7 2 5 0 7 1 4 0 7 │ │ │ │ │ │ │ │ o3 : Ideal of R │ │ │ │ If I is the unit ideal, then an ideal of variables of the ring is returned. │ │ │ │ If the codimension of I is already known, then one can specify this, along with │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ l , s ) │ │ │ │ │ │ │ │ o5 : Ideal of R │ │ │ │ i6 : isSubset(I, ideal(s,l,h)) -- implies codim I == 3 │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : elapsedTime regSeqInIdeal(I, 3, 3, 1) │ │ │ │ - -- .00961892s elapsed │ │ │ │ + -- .0093468s elapsed │ │ │ │ │ │ │ │ 2 3 2 2 8 3 2 2 │ │ │ │ o7 = ideal (h*l - l - 4l*s + h*y, h + l s - h x, s + h + l s - h x) │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_d_i_c_a_l -- the radical of an ideal │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_iterator_lp__Python__Object_rp.out │ │ │ @@ -10,12 +10,12 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_next_lp__Python__Object_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ -o3 = │ │ │ +o3 = │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ │ │ i4 : next i │ │ │ │ │ │ o4 = 0 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_python__Run__Script.out │ │ │ @@ -1,22 +1,22 @@ │ │ │ -- -*- M2-comint -*- hash: 447449196062331972 │ │ │ │ │ │ i1 : pyfile = temporaryFileName() | ".py" │ │ │ │ │ │ -o1 = /tmp/M2-47275-0/0.py │ │ │ +o1 = /tmp/M2-73596-0/0.py │ │ │ │ │ │ i2 : pyfile << "import math" << endl │ │ │ │ │ │ -o2 = /tmp/M2-47275-0/0.py │ │ │ +o2 = /tmp/M2-73596-0/0.py │ │ │ │ │ │ o2 : File │ │ │ │ │ │ i3 : pyfile << "x = math.sin(3.4)" << endl << close │ │ │ │ │ │ -o3 = /tmp/M2-47275-0/0.py │ │ │ +o3 = /tmp/M2-73596-0/0.py │ │ │ │ │ │ o3 : File │ │ │ │ │ │ i4 : get pyfile │ │ │ │ │ │ o4 = import math │ │ │ x = math.sin(3.4) │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_to__Python.out │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ o12 = m2sqrt │ │ │ │ │ │ o12 : FunctionClosure │ │ │ │ │ │ i13 : pysqrt = toPython m2sqrt │ │ │ │ │ │ -o13 = │ │ │ +o13 = │ │ │ │ │ │ o13 : PythonObject of class builtin_function_or_method │ │ │ │ │ │ i14 : pysqrt 2 │ │ │ calling Macaulay2 code from Python! │ │ │ │ │ │ o14 = 1.4142135623730951 │ │ ├── ./usr/share/doc/Macaulay2/Python/example-output/_use_lp__Python__Context_rp.out │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ │ │ o7 : Symbol │ │ │ │ │ │ i8 : use ctx │ │ │ │ │ │ i9 : f │ │ │ │ │ │ -o9 = at 0x7fdae521ccc0> │ │ │ +o9 = at 0x7fdc4bc9ccc0> │ │ │ │ │ │ o9 : PythonObject of class function │ │ │ │ │ │ i10 : x │ │ │ │ │ │ o10 = 5 │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_iterator_lp__Python__Object_rp.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7fdae5265860>
    │ │ │ +o3 = <range_iterator object at 0x7fdc4bce56b0>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ i2 : x = builtins@@range 3 │ │ │ │ │ │ │ │ o2 = range(0, 3) │ │ │ │ │ │ │ │ o2 : PythonObject of class range │ │ │ │ i3 : i = iterator x │ │ │ │ │ │ │ │ -o3 = │ │ │ │ +o3 = │ │ │ │ │ │ │ │ o3 : PythonObject of class range_iterator │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _n_e_x_t_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- retrieve the next item from a python iterator │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _i_t_e_r_a_t_o_r_(_P_y_t_h_o_n_O_b_j_e_c_t_) -- get iterator of iterable python object │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_next_lp__Python__Object_rp.html │ │ │ @@ -86,15 +86,15 @@ │ │ │ o2 : PythonObject of class range │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : i = iterator x
    │ │ │  
    │ │ │ -o3 = <range_iterator object at 0x7fdae5259ec0>
    │ │ │ +o3 = <range_iterator object at 0x7fdc4bcd9d70>
    │ │ │  
    │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : next i
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,15 +21,15 @@
    │ │ │ │  i2 : x = builtins@@range 3
    │ │ │ │  
    │ │ │ │  o2 = range(0, 3)
    │ │ │ │  
    │ │ │ │  o2 : PythonObject of class range
    │ │ │ │  i3 : i = iterator x
    │ │ │ │  
    │ │ │ │ -o3 = 
    │ │ │ │ +o3 = 
    │ │ │ │  
    │ │ │ │  o3 : PythonObject of class range_iterator
    │ │ │ │  i4 : next i
    │ │ │ │  
    │ │ │ │  o4 = 0
    │ │ │ │  
    │ │ │ │  o4 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_python__Run__Script.html
    │ │ │ @@ -76,31 +76,31 @@
    │ │ │            

    The return value is a Python dictionary containing all the variables defined in the global scope.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : pyfile = temporaryFileName() | ".py"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-47275-0/0.py
    │ │ │ +o1 = /tmp/M2-73596-0/0.py │ │ │
    │ │ │
    i2 : pyfile << "import math" << endl
    │ │ │  
    │ │ │ -o2 = /tmp/M2-47275-0/0.py
    │ │ │ +o2 = /tmp/M2-73596-0/0.py
    │ │ │  
    │ │ │  o2 : File
    │ │ │
    │ │ │
    i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │  
    │ │ │ -o3 = /tmp/M2-47275-0/0.py
    │ │ │ +o3 = /tmp/M2-73596-0/0.py
    │ │ │  
    │ │ │  o3 : File
    │ │ │
    │ │ │
    i4 : get pyfile
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -16,23 +16,23 @@
    │ │ │ │  Execute a sequence of statements as if they were read from a Python file. This
    │ │ │ │  is for multi-line code that might contain definitions, control structures,
    │ │ │ │  imports, etc. It is great for running Python code from a file.
    │ │ │ │  The return value is a Python dictionary containing all the variables defined in
    │ │ │ │  the global scope.
    │ │ │ │  i1 : pyfile = temporaryFileName() | ".py"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o1 = /tmp/M2-73596-0/0.py
    │ │ │ │  i2 : pyfile << "import math" << endl
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o2 = /tmp/M2-73596-0/0.py
    │ │ │ │  
    │ │ │ │  o2 : File
    │ │ │ │  i3 : pyfile << "x = math.sin(3.4)" << endl << close
    │ │ │ │  
    │ │ │ │ -o3 = /tmp/M2-47275-0/0.py
    │ │ │ │ +o3 = /tmp/M2-73596-0/0.py
    │ │ │ │  
    │ │ │ │  o3 : File
    │ │ │ │  i4 : get pyfile
    │ │ │ │  
    │ │ │ │  o4 = import math
    │ │ │ │       x = math.sin(3.4)
    │ │ │ │  i5 : pythonRunScript oo
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_to__Python.html
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │  o12 : FunctionClosure
    │ │ │
    │ │ │
    i13 : pysqrt = toPython m2sqrt
    │ │ │  
    │ │ │ -o13 = <built-in method m2sqrt of PyCapsule object at 0x7fdae523ac50>
    │ │ │ +o13 = <built-in method m2sqrt of PyCapsule object at 0x7fdc4bcbec00>
    │ │ │  
    │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │
    │ │ │
    i14 : pysqrt 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -72,15 +72,15 @@
    │ │ │ │            sqrt x)
    │ │ │ │  
    │ │ │ │  o12 = m2sqrt
    │ │ │ │  
    │ │ │ │  o12 : FunctionClosure
    │ │ │ │  i13 : pysqrt = toPython m2sqrt
    │ │ │ │  
    │ │ │ │ -o13 = 
    │ │ │ │ +o13 = 
    │ │ │ │  
    │ │ │ │  o13 : PythonObject of class builtin_function_or_method
    │ │ │ │  i14 : pysqrt 2
    │ │ │ │  calling Macaulay2 code from Python!
    │ │ │ │  
    │ │ │ │  o14 = 1.4142135623730951
    │ │ ├── ./usr/share/doc/Macaulay2/Python/html/_use_lp__Python__Context_rp.html
    │ │ │ @@ -124,15 +124,15 @@
    │ │ │                
    i8 : use ctx
    │ │ │
    │ │ │
    i9 : f
    │ │ │  
    │ │ │ -o9 = <function <lambda> at 0x7fdae521ccc0>
    │ │ │ +o9 = <function <lambda> at 0x7fdc4bc9ccc0>
    │ │ │  
    │ │ │  o9 : PythonObject of class function
    │ │ │
    │ │ │
    i10 : x
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  
    │ │ │ │  o7 = y
    │ │ │ │  
    │ │ │ │  o7 : Symbol
    │ │ │ │  i8 : use ctx
    │ │ │ │  i9 : f
    │ │ │ │  
    │ │ │ │ -o9 =  at 0x7fdae521ccc0>
    │ │ │ │ +o9 =  at 0x7fdc4bc9ccc0>
    │ │ │ │  
    │ │ │ │  o9 : PythonObject of class function
    │ │ │ │  i10 : x
    │ │ │ │  
    │ │ │ │  o10 = 5
    │ │ │ │  
    │ │ │ │  o10 : PythonObject of class int
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/example-output/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.out
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │  
    │ │ │  o21 : Ideal of T
    │ │ │  
    │ │ │  i22 : assert(dim L == 18)
    │ │ │  
    │ │ │  i23 : elapsedTime isPrime L
    │ │ │ - -- 2.78979s elapsed
    │ │ │ + -- 2.52317s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │  
    │ │ │  i24 : I = pointsIdeal randomPoints(S, 6)
    │ │ │  
    │ │ │                               2                              2   2          
    │ │ │  o24 = ideal (a*c - 7b*c - 49c  + 40a*d - 42b*d + 12c*d + 28d , b  - 36b*c -
    │ │ │ @@ -302,15 +302,15 @@
    │ │ │  o38 = true
    │ │ │  
    │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │  
    │ │ │  o39 : Ideal of T
    │ │ │  
    │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.4524s elapsed
    │ │ │ + -- 2.14045s elapsed
    │ │ │  
    │ │ │  i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │  
    │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │  
    │ │ │ @@ -320,37 +320,37 @@
    │ │ │  
    │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │  
    │ │ │  o43 = true
    │ │ │  
    │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ +o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ +      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ +              2              2                             2              
    │ │ │ +o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ +      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2                   2                            2     2  
    │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ +                   2                   2                              2     2
    │ │ │ +      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ +                     2         2       2       2    3   3                2   
    │ │ │ +      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ +          2        2        2    3
    │ │ │ +      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │  
    │ │ │  i46 : betti res Fa
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o46 = total: 1 6 8 3
    │ │ │ @@ -358,37 +358,37 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o46 : BettiTally
    │ │ │  
    │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)                                                                                                                              |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2        2      3     2                2         2        2 |
    │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o47 = |ideal (c + 19d, b - 37d, a)                                                                                                                                        |
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                             2              2                      2   3                2         2       2     3     2                2         2        2      3 |
    │ │ │ +      |ideal (a + 49b - 10c + 39d, b  + 10b*c + 15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  + 6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )|
    │ │ │ +      +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                      2  
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ +                                                                 2          
    │ │ │ +o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                      2   3                2         2  
    │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ +         2                      2   3                2         2       2  
    │ │ │ +      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2      3     2                2         2        2
    │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ +        3     2                2         2        2      3
    │ │ │ +      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │  
    │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ +o49 = a + 49b - 10c + 39d
    │ │ │  
    │ │ │  o49 : S
    │ │ │  
    │ │ │  i50 : CFa/degree
    │ │ │  
    │ │ │  o50 = {1, 5}
    │ │ │  
    │ │ │ @@ -402,37 +402,37 @@
    │ │ │  
    │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of the 5 points
    │ │ │  
    │ │ │  o52 = 5
    │ │ │  
    │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +        2                              2   2              2                  
    │ │ │ +      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                   2                              2     2          
    │ │ │ +      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +          2         2       2        2     3   3               2        2  
    │ │ │ +      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2       2      3
    │ │ │ +      47b*d  - 4c*d  + 27d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │  
    │ │ │  i55 : betti res Fb
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o55 = total: 1 6 8 3
    │ │ │ @@ -440,114 +440,80 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o55 : BettiTally
    │ │ │  
    │ │ │  i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |                                      2              2                                                                                                                                                               |
    │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )                                                                                                                                                              |
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +      |        2                             2                                 2                                   2   2                            2                                   2   2                             2 |
    │ │ │ +      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ +      +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o57 = ++
    │ │ │ +      ++
    │ │ │  
    │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ +o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ +      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │  
    │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                              2               
    │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ +              2             2                              2              
    │ │ │ +o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ +        2                            2   2              2                 
    │ │ │ +      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ +                 2                   2                             2     2  
    │ │ │ +      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2        2    3   3                2   
    │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ +                  2         2        2       2     3   3                2   
    │ │ │ +      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │             2        2        2      3
    │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ +      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │  
    │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2            2                             2               
    │ │ │ +o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +           2                  2                             2     2         
    │ │ │ +      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2       2       2      3   3                2         2
    │ │ │ +      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +             2        2      3
    │ │ │ +      + 33b*d  - 14c*d  + 33d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │  
    │ │ │  i62 : betti res I0
    │ │ │  
    │ │ │               0 1 2 3
    │ │ │  o62 = total: 1 6 8 3
    │ │ │ @@ -565,37 +531,36 @@
    │ │ │            1: . 4 4 1
    │ │ │            2: . 2 4 2
    │ │ │  
    │ │ │  o63 : BettiTally
    │ │ │  
    │ │ │  i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)                                                             |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)                                                            |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |                                  2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  - 41b*d + 35c*d - 39d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ +      +------------------------------------------------------------------------------------------------+
    │ │ │ +o64 = |ideal (c - 42d, b + 26d, a - 30d)                                                               |
    │ │ │ +      +------------------------------------------------------------------------------------------------+
    │ │ │ +      |ideal (c - 47d, b + 7d, a - 44d)                                                                |
    │ │ │ +      +------------------------------------------------------------------------------------------------+
    │ │ │ +      |                                     2                      2   2      2                      2 |
    │ │ │ +      |ideal (a + 39b - 29c - 24d, b*c - 15c  - 29b*d - 38c*d + 16d , b  - 39c  + 17b*d - 28c*d - 50d )|
    │ │ │ +      +------------------------------------------------------------------------------------------------+
    │ │ │  
    │ │ │  i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ +      +---------------------------------+
    │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ +      +---------------------------------+
    │ │ │ +      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ +      +---------------------------------+
    │ │ │  
    │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │  
    │ │ │  o66 : Ideal of T
    │ │ │  
    │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ ├── ./usr/share/doc/Macaulay2/QuaternaryQuartics/html/___Hilbert_spscheme_spof_sp6_sppoints_spin_spprojective_sp3-space.html
    │ │ │ @@ -344,15 +344,15 @@
    │ │ │              
    │ │ │
    i22 : assert(dim L == 18)
    │ │ │
    │ │ │
    i23 : elapsedTime isPrime L
    │ │ │ - -- 2.78979s elapsed
    │ │ │ + -- 2.52317s elapsed
    │ │ │  
    │ │ │  o23 = true
    │ │ │
    │ │ │
    │ │ │

    The Schreyer resolution and minimal Betti numbers

    │ │ │ @@ -556,15 +556,15 @@ │ │ │ │ │ │ o39 : Ideal of T
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ - -- 2.4524s elapsed
    │ │ │ + -- 2.14045s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i41 : #compsL441
    │ │ │  
    │ │ │  o41 = 2
    │ │ │ @@ -591,40 +591,40 @@ │ │ │

    Both components are rational, and here are random points, one on each component:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │  
    │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ +o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ +      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o44 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i45 : Fa = sub(F, (vars S) | pta)
    │ │ │  
    │ │ │ -              2              2                              2               
    │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ +              2              2                             2              
    │ │ │ +o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │        -----------------------------------------------------------------------
    │ │ │           2                              2   2              2                
    │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ +      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2                   2                            2     2  
    │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ +                   2                   2                              2     2
    │ │ │ +      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                   2         2        2        2      3   3                2 
    │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ +                     2         2       2       2    3   3                2   
    │ │ │ +      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2        2      3
    │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ +          2        2        2    3
    │ │ │ +      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │  
    │ │ │  o45 : Ideal of S
    │ │ │
    │ │ │
    i46 : betti res Fa
    │ │ │ @@ -638,43 +638,43 @@
    │ │ │  o46 : BettiTally
    │ │ │
    │ │ │
    i47 : netList decompose Fa -- this one is 5 points on a plane, and another point
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)                                                                                                                              |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                             2              2                      2   3                2         2        2      3     2                2         2        2 |
    │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ +o47 = |ideal (c + 19d, b - 37d, a) | │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 3 2 2 2 3 2 2 2 2 3 | │ │ │ + |ideal (a + 49b - 10c + 39d, b + 10b*c + 15c + 50b*d - 40c*d + 46d , c + 18b*c*d + 26c d + 30b*d - 6c*d + 6d , b*c + 37b*c*d - 32c d + 45b*d + 43c*d - 14d )| │ │ │ + +-------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i48 : CFa = minimalPrimes Fa
    │ │ │  
    │ │ │ -                                                                      2  
    │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ +                                                                 2          
    │ │ │ +o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                      2   3                2         2  
    │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ +         2                      2   3                2         2       2  
    │ │ │ +      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2      3     2                2         2        2
    │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ +        3     2                2         2        2      3
    │ │ │ +      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │  
    │ │ │  o48 : List
    │ │ │
    │ │ │
    i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │  
    │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ +o49 = a + 49b - 10c + 39d
    │ │ │  
    │ │ │  o49 : S
    │ │ │
    │ │ │
    i50 : CFa/degree
    │ │ │ @@ -702,40 +702,40 @@
    │ │ │            
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │  
    │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ +      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o53 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ +              2              2                              2               
    │ │ │ +o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2             2                 
    │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ +        2                              2   2              2                  
    │ │ │ +      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                 2                             2     2            
    │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ +         2                   2                              2     2          
    │ │ │ +      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d 
    │ │ │ +          2         2       2        2     3   3               2        2  
    │ │ │ +      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ +           2       2      3
    │ │ │ +      47b*d  - 4c*d  + 27d )
    │ │ │  
    │ │ │  o54 : Ideal of S
    │ │ │
    │ │ │
    i55 : betti res Fb
    │ │ │ @@ -749,136 +749,102 @@
    │ │ │  o55 : BettiTally
    │ │ │
    │ │ │
    i56 : netList decompose Fb --
    │ │ │  
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ -      |                                      2              2 |
    │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ -      +-------------------------------------------------------+
    │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 | │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c + 12c*d - 37d ) | │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 2 2 2 2 | │ │ │ + |ideal (c + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d , a*c + 43a*d + 44b*d - 48c*d + 24d , b - 4a*d - 40b*d - 9c*d - 39d , a*b + 16a*d + 26b*d + 37c*d - 24d , a - 25a*d + 47b*d + 34c*d + 8d )| │ │ │ + +---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │  
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                         2   2                      2                                                                                                             |
    │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d + 18d , b  + 28b*d - 32c*d + 16d )                                                                                                            |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                      2                                                                                                           |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d + 39d , b  - 20b*d + 29c*d + 38d )                                                                                                          |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                          2                      2                           2   2                     2                                                                                                            |
    │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d - 32d , b  - 8b*d - 12c*d - 46d )                                                                                                           |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     3      2         2      3                                                                                                                                                      |
    │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )                                                                                                                                                     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                      2   2      2                      2   3      2         2        2      3                                                                                |
    │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c  + 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )                                                                               |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                   2                      2   2      2                      2   3      2         2        2     3                                                                                   |
    │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  + 34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )                                                                                  |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                            2                                 2                                 2   2                              2                                  2   2                              2 |
    │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d , a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b + 3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |                                     2                     2   2      2                      2   3      2         2        2     3                                                                                  |
    │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c  + 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )                                                                                 |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                   2   2                              2                                 2   2                           2  |
    │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d , a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b - 6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ -      |        2                              2                                2                                  2   2                      2                                   2   2                              2      |
    │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d , a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d - 30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ -      +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    │ │ │ +o57 = ++ │ │ │ + ++ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │  
    │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ +o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ +      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o58 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │  
    │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ +      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │  
    │ │ │                 1       36
    │ │ │  o59 : Matrix kk  <-- kk
    │ │ │
    │ │ │
    │ │ │

    We compute the ideal of the corresponding zero dimensional scheme with length 6, corresponding to the points pt0, pt1 in Hilb.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │  
    │ │ │ -              2            2                              2               
    │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ +              2             2                              2              
    │ │ │ +o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -        2                              2   2              2                  
    │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ +        2                            2   2              2                 
    │ │ │ +      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                 2                  2                             2     2  
    │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ +                 2                   2                             2     2  
    │ │ │ +      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -                  2         2        2        2    3   3                2   
    │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ +                  2         2        2       2     3   3                2   
    │ │ │ +      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │        -----------------------------------------------------------------------
    │ │ │             2        2        2      3
    │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ +      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │  
    │ │ │  o60 : Ideal of S
    │ │ │
    │ │ │
    i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │  
    │ │ │ -              2              2                             2               
    │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ +              2            2                             2               
    │ │ │ +o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                             2   2              2                  
    │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ +         2                              2   2              2                
    │ │ │ +      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -         2                   2                              2     2         
    │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ +           2                  2                             2     2         
    │ │ │ +      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d 
    │ │ │ +           2         2       2       2      3   3                2         2
    │ │ │ +      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d 
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -             2        2     3
    │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ +             2        2      3
    │ │ │ +      + 33b*d  - 14c*d  + 33d )
    │ │ │  
    │ │ │  o61 : Ideal of S
    │ │ │
    │ │ │
    i62 : betti res I0
    │ │ │ @@ -907,40 +873,39 @@
    │ │ │            
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i64 : netList decompose I0
    │ │ │  
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)                                                             |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)                                                            |
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ -      |                                  2                      2   2      2                      2 |
    │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  - 41b*d + 35c*d - 39d )|
    │ │ │ -      +---------------------------------------------------------------------------------------------+
    │ │ │ + +------------------------------------------------------------------------------------------------+ │ │ │ +o64 = |ideal (c - 42d, b + 26d, a - 30d) | │ │ │ + +------------------------------------------------------------------------------------------------+ │ │ │ + |ideal (c - 47d, b + 7d, a - 44d) | │ │ │ + +------------------------------------------------------------------------------------------------+ │ │ │ + | 2 2 2 2 2 | │ │ │ + |ideal (a + 39b - 29c - 24d, b*c - 15c - 29b*d - 38c*d + 16d , b - 39c + 17b*d - 28c*d - 50d )| │ │ │ + +------------------------------------------------------------------------------------------------+ │ │ │
    │ │ │
    i65 : netList decompose I1
    │ │ │  
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ -      +------------------------------------------------------+
    │ │ │ -      |                                     2              2 |
    │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ -      +------------------------------------------------------+
    │ │ │ + +---------------------------------+ │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) | │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 48d, b + 11d, a - 37d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 29d, b + 46d, a + 18d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 24d, b + 46d, a + 33d)| │ │ │ + +---------------------------------+ │ │ │ + |ideal (c + 22d, b + 38d, a - 50d)| │ │ │ + +---------------------------------+ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -251,15 +251,15 @@
    │ │ │ │        |      31         33        32       34        35        36    |
    │ │ │ │        +--------------------------------------------------------------+
    │ │ │ │  i21 : L = trim groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o21 : Ideal of T
    │ │ │ │  i22 : assert(dim L == 18)
    │ │ │ │  i23 : elapsedTime isPrime L
    │ │ │ │ - -- 2.78979s elapsed
    │ │ │ │ + -- 2.52317s elapsed
    │ │ │ │  
    │ │ │ │  o23 = true
    │ │ │ │  ********** TThhee SScchhrreeyyeerr rreessoolluuttiioonn aanndd mmiinniimmaall BBeettttii nnuummbbeerrss **********
    │ │ │ │  Schreyer's construction of a nonminimal free resolution starts with a Groebner
    │ │ │ │  basis. First, one constructs the SScchhrreeyyeerr ffrraammee (see La Scala, Stillman). This
    │ │ │ │  is determined solely from the initial ideal $J$ and its minimal generators (but
    │ │ │ │  depends on some choices of ordering, but otherwise is combinatorial). This
    │ │ │ │ @@ -415,15 +415,15 @@
    │ │ │ │  We now compute the locus in $V(L)$ where the Betti diagram has no cancellation.
    │ │ │ │  This is a closed subscheme of $V(L)$, which is a closed subscheme of the
    │ │ │ │  Hilbert scheme. Notice that there are two components.
    │ │ │ │  i39 : L441 = trim(L + ideal M1);
    │ │ │ │  
    │ │ │ │  o39 : Ideal of T
    │ │ │ │  i40 : elapsedTime compsL441 = decompose L441;
    │ │ │ │ - -- 2.4524s elapsed
    │ │ │ │ + -- 2.14045s elapsed
    │ │ │ │  i41 : #compsL441
    │ │ │ │  
    │ │ │ │  o41 = 2
    │ │ │ │  i42 : compsL441/dim -- two components, of dimensions 14 and 16.
    │ │ │ │  
    │ │ │ │  o42 = {16, 14}
    │ │ │ │  
    │ │ │ │ @@ -431,36 +431,36 @@
    │ │ │ │  i43 : compsL441/dim == {16, 14}
    │ │ │ │  
    │ │ │ │  o43 = true
    │ │ │ │  Both components are rational, and here are random points, one on each
    │ │ │ │  component:
    │ │ │ │  i44 : pta = randomPointOnRationalVariety compsL441_0
    │ │ │ │  
    │ │ │ │ -o44 = | -27 -13 45 -25 3 38 -20 -30 -41 25 -26 -44 -31 5 14 2 -45 45 21 -27
    │ │ │ │ +o44 = | 22 -10 -8 -1 34 44 -21 -1 25 -41 6 -11 -50 -50 43 -28 -6 45 -28 22 42
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -23 -29 34 49 32 19 10 26 19 37 15 -28 -50 -10 -32 18 |
    │ │ │ │ +      -29 -32 -28 5 -10 34 15 19 37 26 49 19 5 10 18 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o44 : Matrix kk  <-- kk
    │ │ │ │  i45 : Fa = sub(F, (vars S) | pta)
    │ │ │ │  
    │ │ │ │ -              2              2                              2
    │ │ │ │ -o45 = ideal (a  + 14b*c + 25c  - 44a*d + 38b*d + 45c*d - 27d , a*b + 32b*c +
    │ │ │ │ +              2              2                             2
    │ │ │ │ +o45 = ideal (a  + 43b*c - 41c  - 11a*d + 44b*d - 8c*d + 22d , a*b + 5b*c -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │           2                              2   2              2
    │ │ │ │ -      21c  - 23a*d - 31b*d - 41c*d - 13d , b  - 32b*c + 26c  - 50a*d - 29b*d
    │ │ │ │ +      28c  + 42a*d - 50b*d + 25c*d - 10d , b  + 10b*c + 15c  + 19a*d - 29b*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                  2                   2                            2     2
    │ │ │ │ -      + 2c*d - 20d , a*c - 28b*c + 19c  + 19a*d - 27b*d + 5c*d + 3d , b*c  +
    │ │ │ │ +                   2                   2                              2     2
    │ │ │ │ +      - 28c*d - 21d , a*c + 49b*c - 10c  + 19a*d + 22b*d - 50c*d + 34d , b*c
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                   2         2        2        2      3   3                2
    │ │ │ │ -      37b*c*d + 34c d + 10a*d  - 45b*d  - 26c*d  - 25d , c  + 18b*c*d + 15c d
    │ │ │ │ +                     2         2       2       2    3   3                2
    │ │ │ │ +      + 37b*c*d - 32c d + 34a*d  - 6b*d  + 6c*d  - d , c  + 18b*c*d + 26c d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2        2      3
    │ │ │ │ -      - 10a*d  + 49b*d  + 45c*d  - 30d )
    │ │ │ │ +          2        2        2    3
    │ │ │ │ +      5a*d  - 28b*d  + 45c*d  - d )
    │ │ │ │  
    │ │ │ │  o45 : Ideal of S
    │ │ │ │  i46 : betti res Fa
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o46 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -469,43 +469,43 @@
    │ │ │ │  
    │ │ │ │  o46 : BettiTally
    │ │ │ │  i47 : netList decompose Fa -- this one is 5 points on a plane, and another
    │ │ │ │  point
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ -o47 = |ideal (c + 19d, b - 37d, a + 4d)
    │ │ │ │ +------------+
    │ │ │ │ +o47 = |ideal (c + 19d, b - 37d, a)
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ +------------+
    │ │ │ │        |                             2              2                      2   3
    │ │ │ │ -2         2        2      3     2                2         2        2 |
    │ │ │ │ -      |ideal (a - 28b + 19c + 48d, b  - 32b*c + 26c  - 15b*d + 43c*d - 44d , c
    │ │ │ │ -+ 18b*c*d + 15c d - 29b*d  + 33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  -
    │ │ │ │ -14c*d )|
    │ │ │ │ +2         2       2     3     2                2         2        2      3 |
    │ │ │ │ +      |ideal (a + 49b - 10c + 39d, b  + 10b*c + 15c  + 50b*d - 40c*d + 46d , c
    │ │ │ │ ++ 18b*c*d + 26c d + 30b*d  - 6c*d  + 6d , b*c  + 37b*c*d - 32c d + 45b*d  +
    │ │ │ │ +43c*d  - 14d )|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------+
    │ │ │ │ +------------+
    │ │ │ │  i48 : CFa = minimalPrimes Fa
    │ │ │ │  
    │ │ │ │ -                                                                      2
    │ │ │ │ -o48 = {ideal (c + 19d, b - 37d, a + 4d), ideal (a - 28b + 19c + 48d, b  -
    │ │ │ │ +                                                                 2
    │ │ │ │ +o48 = {ideal (c + 19d, b - 37d, a), ideal (a + 49b - 10c + 39d, b  + 10b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                 2                      2   3                2         2
    │ │ │ │ -      32b*c + 26c  - 15b*d + 43c*d - 44d , c  + 18b*c*d + 15c d - 29b*d  +
    │ │ │ │ +         2                      2   3                2         2       2
    │ │ │ │ +      15c  + 50b*d - 40c*d + 46d , c  + 18b*c*d + 26c d + 30b*d  - 6c*d  +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2      3     2                2         2        2
    │ │ │ │ -      33c*d  + 46d , b*c  + 37b*c*d + 34c d + 33b*d  - 14c*d )}
    │ │ │ │ +        3     2                2         2        2      3
    │ │ │ │ +      6d , b*c  + 37b*c*d - 32c d + 45b*d  + 43c*d  - 14d )}
    │ │ │ │  
    │ │ │ │  o48 : List
    │ │ │ │  i49 : lin = CFa_1_0 -- a linear form, defining a plane.
    │ │ │ │  
    │ │ │ │ -o49 = a - 28b + 19c + 48d
    │ │ │ │ +o49 = a + 49b - 10c + 39d
    │ │ │ │  
    │ │ │ │  o49 : S
    │ │ │ │  i50 : CFa/degree
    │ │ │ │  
    │ │ │ │  o50 = {1, 5}
    │ │ │ │  
    │ │ │ │  o50 : List
    │ │ │ │ @@ -516,206 +516,124 @@
    │ │ │ │  o51 : List
    │ │ │ │  i52 : degree(Fa : (Fa : lin))  -- somewhat simpler(?) way to see the ideal of
    │ │ │ │  the 5 points
    │ │ │ │  
    │ │ │ │  o52 = 5
    │ │ │ │  i53 : ptb = randomPointOnRationalVariety compsL441_1
    │ │ │ │  
    │ │ │ │ -o53 = | 31 42 28 25 19 3 43 -7 -3 -42 -29 -29 14 2 50 5 36 -13 -42 47 13 31
    │ │ │ │ +o53 = | 27 12 -34 9 -19 -43 -32 27 40 45 -13 29 -41 -13 22 -49 -4 -4 9 -23 43
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -37 -23 -24 -4 38 -29 -23 21 17 9 0 21 -9 -47 |
    │ │ │ │ +      18 -9 -47 43 21 38 17 -20 21 -29 47 0 2 -37 9 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o53 : Matrix kk  <-- kk
    │ │ │ │  i54 : Fb = sub(F, (vars S) | ptb)
    │ │ │ │  
    │ │ │ │ -              2              2                             2
    │ │ │ │ -o54 = ideal (a  + 50b*c - 42c  - 29a*d + 3b*d + 28c*d + 31d , a*b - 24b*c -
    │ │ │ │ +              2              2                              2
    │ │ │ │ +o54 = ideal (a  + 22b*c + 45c  + 29a*d - 43b*d - 34c*d + 27d , a*b + 43b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                             2   2             2
    │ │ │ │ -      42c  + 13a*d + 14b*d - 3c*d + 42d , b  - 9b*c - 29c  + 31b*d + 5c*d +
    │ │ │ │ +        2                              2   2              2
    │ │ │ │ +      9c  + 43a*d - 41b*d + 40c*d + 12d , b  - 37b*c + 17c  + 18b*d - 49c*d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                 2                             2     2
    │ │ │ │ -      43d , a*c + 9b*c - 4c  - 23a*d + 47b*d + 2c*d + 19d , b*c  + 21b*c*d -
    │ │ │ │ +         2                   2                              2     2
    │ │ │ │ +      32d , a*c + 47b*c + 21c  - 20a*d - 23b*d - 13c*d - 19d , b*c  + 21b*c*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2         2        2        2      3   3                2         2
    │ │ │ │ -      37c d + 38a*d  + 36b*d  - 29c*d  + 25d , c  - 47b*c*d + 17c d + 21a*d
    │ │ │ │ +          2         2       2        2     3   3               2        2
    │ │ │ │ +      - 9c d + 38a*d  - 4b*d  - 13c*d  + 9d , c  + 9b*c*d - 29c d + 2a*d  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2     3
    │ │ │ │ -      - 23b*d  - 13c*d  - 7d )
    │ │ │ │ +           2       2      3
    │ │ │ │ +      47b*d  - 4c*d  + 27d )
    │ │ │ │  
    │ │ │ │  o54 : Ideal of S
    │ │ │ │  i55 : betti res Fb
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o55 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o55 : BettiTally
    │ │ │ │  i56 : netList decompose Fb --
    │ │ │ │  
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -o56 = |ideal (c - 45d, b + 16d, a + 38d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 43d, b + 10d, a + 8d)                       |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 34d, b + 15d, a + 28d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 11d, b + 39d, a + 23d)                      |
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -      |                                      2              2 |
    │ │ │ │ -      |ideal (b - 32c + 42d, a - 19c - 16d, c  - 28c*d - 40d )|
    │ │ │ │ -      +-------------------------------------------------------+
    │ │ │ │ -i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │ │ -
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                      2
    │ │ │ │ -|
    │ │ │ │ -o57 = |ideal (a - 7b + 32c + d, c  + 42b*d + 33c*d - 10d , b*c - b*d + 13c*d +
    │ │ │ │ -18d , b  + 28b*d - 32c*d + 16d )
    │ │ │ │ -|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                      2
    │ │ │ │ +--------------------------------------------------------------+
    │ │ │ │ +      |                                      2              2
    │ │ │ │  |
    │ │ │ │ -      |ideal (a - 7b + 32c + d, c  + 40b*d - 36c*d + 33d , b*c + 45b*d - 16c*d
    │ │ │ │ -+ 39d , b  - 20b*d + 29c*d + 38d )
    │ │ │ │ +o56 = |ideal (b - 50c - 43d, a + 15c - 46d, c  + 12c*d - 37d )
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                          2                      2
    │ │ │ │ -2   2                     2
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a - 7b + 32c + d, c  - 10b*d + 17c*d - 21d , b*c - 17b*d - 23c*d
    │ │ │ │ -- 32d , b  - 8b*d - 12c*d - 46d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     3      2         2      3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (b + 23c - 11d, a - 9c + 25d, c  - 13c d - 14c*d  + 23d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     2                      2   2      2
    │ │ │ │ -2   3      2         2        2      3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a + 48b - 40c - 20d, b*c - 32c  + 43b*d - 21c*d - 12d , b  - 14c
    │ │ │ │ -+ 14b*d + 18c*d + 36d , c  + 28c d - 20b*d  + 42c*d  - 50d )
    │ │ │ │ -|
    │ │ │ │ +--------------------------------------------------------------+
    │ │ │ │ +      |        2                             2
    │ │ │ │ +2                                   2   2                            2
    │ │ │ │ +2   2                             2 |
    │ │ │ │ +      |ideal (c  + 46a*d - 39b*d + 2c*d - 24d , b*c - 9a*d + 16b*d + 2c*d + 27d
    │ │ │ │ +, a*c + 43a*d + 44b*d - 48c*d + 24d , b  - 4a*d - 40b*d - 9c*d - 39d , a*b +
    │ │ │ │ +16a*d + 26b*d + 37c*d - 24d , a  - 25a*d + 47b*d + 34c*d + 8d )|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │  -------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                   2                      2   2      2
    │ │ │ │ -2   3      2         2        2     3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a + b + 50c + 26d, b*c - 32c  + 34b*d - 36c*d + 14d , b  - 14c  +
    │ │ │ │ -34b*d - 16c*d - 33d , c  + 28c d + 39b*d  - 28c*d  + 4d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                            2                                 2
    │ │ │ │ -2   2                              2                                  2   2
    │ │ │ │ -2 |
    │ │ │ │ -      |ideal (c  - 7a*d - 19b*d + 6c*d - 19d , b*c - 5a*d + 49b*d - 4c*d + 50d
    │ │ │ │ -, a*c - 6a*d + 35b*d - 39c*d - 2d , b  - 46a*d + 22b*d + 42c*d + 43d , a*b +
    │ │ │ │ -3a*d - 12b*d - 49c*d + 40d , a  + 28a*d - 13b*d - 25c*d - 35d )|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |                                     2                     2   2      2
    │ │ │ │ -2   3      2         2        2     3
    │ │ │ │ -|
    │ │ │ │ -      |ideal (a - 46b + 39c - 29d, b*c - 32c  + 11b*d - 7c*d - 43d , b  - 14c
    │ │ │ │ -+ 29b*d + 43c*d - 41d , c  + 28c d + 46b*d  - 50c*d  - 5d )
    │ │ │ │ -|
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                              2
    │ │ │ │ -2                                   2   2                              2
    │ │ │ │ -2   2                           2  |
    │ │ │ │ -      |ideal (c  + 15a*d + 27b*d + 35c*d + 46d , b*c - 6a*d + b*d + 36c*d - 31d
    │ │ │ │ -, a*c - 10a*d + 45b*d + 20c*d - 23d , b  - 23a*d + 15b*d + 31c*d - 13d , a*b -
    │ │ │ │ -6a*d - 40b*d + 8c*d + 18d , a  - 8a*d - 24b*d + c*d - 22d ) |
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ -      |        2                              2
    │ │ │ │ -2                                  2   2                      2
    │ │ │ │ -2   2                              2      |
    │ │ │ │ -      |ideal (c  + 37a*d + 25b*d - 16c*d + 14d , b*c - 7a*d + 47b*d - 3c*d - 2d
    │ │ │ │ -, a*c - 14a*d + 27b*d - 35c*d - 8d , b  - 33b*d + 19c*d + 27d , a*b - 15a*d -
    │ │ │ │ -30b*d - 40c*d - 24d , a  - 44a*d + 16b*d + 11c*d + 12d )     |
    │ │ │ │ -      +------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------------------------
    │ │ │ │ --------------------------------------------------------------+
    │ │ │ │ +--------------------------------------------------------------+
    │ │ │ │ +i57 : netList for x in subsets(decompose Fb, 3) list intersect(x#0, x#1, x#2)
    │ │ │ │ +
    │ │ │ │ +o57 = ++
    │ │ │ │ +      ++
    │ │ │ │  i58 : pt0 = randomPointOnRationalVariety(compsL441_0)
    │ │ │ │  
    │ │ │ │ -o58 = | 13 17 -19 -1 -9 -15 -28 -39 -36 1 -47 29 37 -40 35 -31 12 -21 -8 -13
    │ │ │ │ +o58 = | 32 -46 33 -7 -2 -29 -20 10 -23 -26 5 -16 1 -18 -3 46 13 -21 5 -22 17
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      14 15 -23 39 11 8 -24 -13 -42 -2 18 46 -18 -29 -33 -22 |
    │ │ │ │ +      15 -33 46 -2 -29 -23 18 -42 -2 -13 39 8 -40 -24 -22 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o58 : Matrix kk  <-- kk
    │ │ │ │  i59 : pt1 = randomPointOnRationalVariety(compsL441_1)
    │ │ │ │  
    │ │ │ │ -o59 = | -45 18 -9 38 21 29 50 -8 -5 45 -47 -26 37 -35 -21 28 27 46 -17 -49
    │ │ │ │ +o59 = | -8 41 28 -44 50 33 -38 33 -23 1 -2 -47 32 46 30 -22 -2 -14 27 37 15
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -      -23 15 -50 37 -39 -14 21 10 -31 3 -18 32 0 3 -15 33 |
    │ │ │ │ +      -25 -15 33 -23 3 21 -18 -9 3 10 -49 0 -35 -50 32 |
    │ │ │ │  
    │ │ │ │                 1       36
    │ │ │ │  o59 : Matrix kk  <-- kk
    │ │ │ │  We compute the ideal of the corresponding zero dimensional scheme with length
    │ │ │ │  6, corresponding to the points pt0, pt1 in Hilb.
    │ │ │ │  i60 : I0 = sub(sub(F, (vars ring F) | sub(pt0, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2            2                              2
    │ │ │ │ -o60 = ideal (a  + 35b*c + c  + 29a*d - 15b*d - 19c*d + 13d , a*b + 11b*c -
    │ │ │ │ +              2             2                              2
    │ │ │ │ +o60 = ideal (a  - 3b*c - 26c  - 16a*d - 29b*d + 33c*d + 32d , a*b - 2b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -        2                              2   2              2
    │ │ │ │ -      8c  + 14a*d + 37b*d - 36c*d + 17d , b  - 33b*c - 13c  - 18a*d + 15b*d -
    │ │ │ │ +        2                            2   2              2
    │ │ │ │ +      5c  + 17a*d + b*d - 23c*d - 46d , b  - 24b*c + 18c  + 8a*d + 15b*d +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                 2                  2                             2     2
    │ │ │ │ -      31c*d - 28d , a*c + 46b*c + 8c  - 42a*d - 13b*d - 40c*d - 9d , b*c  -
    │ │ │ │ +                 2                   2                             2     2
    │ │ │ │ +      46c*d - 20d , a*c + 39b*c - 29c  - 42a*d - 22b*d - 18c*d - 2d , b*c  -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -                  2         2        2        2    3   3                2
    │ │ │ │ -      2b*c*d - 23c d - 24a*d  + 12b*d  - 47c*d  - d , c  - 22b*c*d + 18c d -
    │ │ │ │ +                  2         2        2       2     3   3                2
    │ │ │ │ +      2b*c*d - 33c d - 23a*d  + 13b*d  + 5c*d  - 7d , c  - 22b*c*d - 13c d -
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │             2        2        2      3
    │ │ │ │ -      29a*d  + 39b*d  - 21c*d  - 39d )
    │ │ │ │ +      40a*d  + 46b*d  - 21c*d  + 10d )
    │ │ │ │  
    │ │ │ │  o60 : Ideal of S
    │ │ │ │  i61 : I1 = sub(sub(F, (vars ring F) | sub(pt1, ring F)), S)
    │ │ │ │  
    │ │ │ │ -              2              2                             2
    │ │ │ │ -o61 = ideal (a  - 21b*c + 45c  - 26a*d + 29b*d - 9c*d - 45d , a*b - 39b*c -
    │ │ │ │ +              2            2                             2
    │ │ │ │ +o61 = ideal (a  + 30b*c + c  - 47a*d + 33b*d + 28c*d - 8d , a*b - 23b*c +
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                             2   2              2
    │ │ │ │ -      17c  - 23a*d + 37b*d - 5c*d + 18d , b  - 15b*c + 10c  + 15b*d + 28c*d +
    │ │ │ │ +         2                              2   2              2
    │ │ │ │ +      27c  + 15a*d + 32b*d - 23c*d + 41d , b  - 50b*c - 18c  - 25b*d - 22c*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -         2                   2                              2     2
    │ │ │ │ -      50d , a*c + 32b*c - 14c  - 31a*d - 49b*d - 35c*d + 21d , b*c  + 3b*c*d
    │ │ │ │ +           2                  2                             2     2
    │ │ │ │ +      - 38d , a*c - 49b*c + 3c  - 9a*d + 37b*d + 46c*d + 50d , b*c  + 3b*c*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -           2         2        2        2      3   3                2        2
    │ │ │ │ -      - 50c d + 21a*d  + 27b*d  - 47c*d  + 38d , c  + 33b*c*d - 18c d + 3a*d
    │ │ │ │ +           2         2       2       2      3   3                2         2
    │ │ │ │ +      - 15c d + 21a*d  - 2b*d  - 2c*d  - 44d , c  + 32b*c*d + 10c d - 35a*d
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │ -             2        2     3
    │ │ │ │ -      + 37b*d  + 46c*d  - 8d )
    │ │ │ │ +             2        2      3
    │ │ │ │ +      + 33b*d  - 14c*d  + 33d )
    │ │ │ │  
    │ │ │ │  o61 : Ideal of S
    │ │ │ │  i62 : betti res I0
    │ │ │ │  
    │ │ │ │               0 1 2 3
    │ │ │ │  o62 = total: 1 6 8 3
    │ │ │ │            0: 1 . . .
    │ │ │ │ @@ -731,43 +649,42 @@
    │ │ │ │            1: . 4 4 1
    │ │ │ │            2: . 2 4 2
    │ │ │ │  
    │ │ │ │  o63 : BettiTally
    │ │ │ │  i64 : netList decompose I0
    │ │ │ │  
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -o64 = |ideal (c - 42d, b - 6d, a + 41d)
    │ │ │ │ +------------------------+
    │ │ │ │ +o64 = |ideal (c - 42d, b + 26d, a - 30d)
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -      |ideal (c + 38d, b - 41d, a - 41d)
    │ │ │ │ +------------------------+
    │ │ │ │ +      |ideal (c - 47d, b + 7d, a - 44d)
    │ │ │ │  |
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ -      |                                  2                      2   2      2
    │ │ │ │ +------------------------+
    │ │ │ │ +      |                                     2                      2   2      2
    │ │ │ │  2 |
    │ │ │ │ -      |ideal (a + 46b + 8c - 7d, b*c - 7c  + 13b*d + 16c*d - 21d , b  - 42c  -
    │ │ │ │ -41b*d + 35c*d - 39d )|
    │ │ │ │ +      |ideal (a + 39b - 29c - 24d, b*c - 15c  - 29b*d - 38c*d + 16d , b  - 39c
    │ │ │ │ ++ 17b*d - 28c*d - 50d )|
    │ │ │ │        +------------------------------------------------------------------------
    │ │ │ │ ----------------------+
    │ │ │ │ +------------------------+
    │ │ │ │  i65 : netList decompose I1
    │ │ │ │  
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -o65 = |ideal (c + 32d, b + 18d, a - 33d)                     |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 29d, b - 8d, a + 50d)                      |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 16d, b + 39d, a - 32d)                     |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |ideal (c + 5d, b - 14d, a + 7d)                       |
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ -      |                                     2              2 |
    │ │ │ │ -      |ideal (b - 40c + 5d, a - 47c + 24d, c  - 27c*d + 15d )|
    │ │ │ │ -      +------------------------------------------------------+
    │ │ │ │ +      +---------------------------------+
    │ │ │ │ +o65 = |ideal (c - 9d, b + 15d, a + 27d) |
    │ │ │ │ +      +---------------------------------+
    │ │ │ │ +      |ideal (c + 48d, b + 11d, a - 37d)|
    │ │ │ │ +      +---------------------------------+
    │ │ │ │ +      |ideal (c + 29d, b + 46d, a + 18d)|
    │ │ │ │ +      +---------------------------------+
    │ │ │ │ +      |ideal (c + 24d, b + 46d, a + 33d)|
    │ │ │ │ +      +---------------------------------+
    │ │ │ │ +      |ideal (c + 22d, b + 38d, a - 50d)|
    │ │ │ │ +      +---------------------------------+
    │ │ │ │  i66 : L430 = (trim minors(2, M1)) + groebnerStratum F;
    │ │ │ │  
    │ │ │ │  o66 : Ideal of T
    │ │ │ │  i67 : C = res(I, FastNonminimal => true)
    │ │ │ │  
    │ │ │ │         1      4      5      2
    │ │ │ │  o67 = S  <-- S  <-- S  <-- S  <-- 0
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/example-output/_canonical__Curve.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  i2 : g=14;
    │ │ │  
    │ │ │  i3 : FF=ZZ/10007;
    │ │ │  
    │ │ │  i4 : R=FF[x_0..x_(g-1)];
    │ │ │  
    │ │ │  i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc)
    │ │ │ + -- used 8.54693s (cpu); 6.72267s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ ├── ./usr/share/doc/Macaulay2/RandomCanonicalCurves/html/_canonical__Curve.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │              
    │ │ │
    i4 : R=FF[x_0..x_(g-1)];
    │ │ │
    │ │ │
    i5 : time betti(I=(random canonicalCurve)(g,R))
    │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc)
    │ │ │ + -- used 8.54693s (cpu); 6.72267s (thread); 0s (gc)
    │ │ │  
    │ │ │              0  1
    │ │ │  o5 = total: 1 66
    │ │ │           0: 1  .
    │ │ │           1: . 66
    │ │ │  
    │ │ │  o5 : BettiTally
    │ │ │ ├── html2text {} │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ unirationality of $M_g$ by Severi, Sernesi, Chang-Ran and Verra. │ │ │ │ i1 : setRandomSeed "alpha"; │ │ │ │ -- setting random seed to 10206284518 │ │ │ │ i2 : g=14; │ │ │ │ i3 : FF=ZZ/10007; │ │ │ │ i4 : R=FF[x_0..x_(g-1)]; │ │ │ │ i5 : time betti(I=(random canonicalCurve)(g,R)) │ │ │ │ - -- used 8.79941s (cpu); 6.0168s (thread); 0s (gc) │ │ │ │ + -- used 8.54693s (cpu); 6.72267s (thread); 0s (gc) │ │ │ │ │ │ │ │ 0 1 │ │ │ │ o5 = total: 1 66 │ │ │ │ 0: 1 . │ │ │ │ 1: . 66 │ │ │ │ │ │ │ │ o5 : BettiTally │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/example-output/_test__Time__For__L__L__Lon__Syzygies.out │ │ │ @@ -7,42 +7,42 @@ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ o2 : Sequence │ │ │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731) │ │ │ +o3 = ({5, 2.91596e52, 9}, .00210843, .000915746) │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355) │ │ │ +o4 = ({50, 2.30853e454, 98}, .0066944, .0483865) │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245}, │ │ │ +o5 = {{.00920591, .0227354}, {.00965341, .00835659}, {.00954085, .0130576}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526}, │ │ │ + {.00912636, .0142172}, {.00608001, .0156866}, {.0975923, .0139544}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569}, │ │ │ + {.00465453, .00969963}, {.00518961, .00867869}, {.00413464, .00613861}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {.00753335, .00820152}} │ │ │ + {.00557352, .00934145}} │ │ │ │ │ │ o5 : List │ │ │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ -o6 = .01492759439999993 │ │ │ +o6 = .01607511159999984 │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ -o7 = .008820477599999954 │ │ │ +o7 = .01218661900000004 │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/RandomComplexes/html/_test__Time__For__L__L__Lon__Syzygies.html │ │ │ @@ -93,57 +93,57 @@ │ │ │ o2 : Sequence │ │ │
    │ │ │
    i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)
    │ │ │  
    │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731)
    │ │ │ +o3 = ({5, 2.91596e52, 9}, .00210843, .000915746)
    │ │ │  
    │ │ │  o3 : Sequence
    │ │ │
    │ │ │
    i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
    │ │ │  
    │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355)
    │ │ │ +o4 = ({50, 2.30853e454, 98}, .0066944, .0483865)
    │ │ │  
    │ │ │  o4 : Sequence
    │ │ │
    │ │ │
    i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})
    │ │ │  
    │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245},
    │ │ │ +o5 = {{.00920591, .0227354}, {.00965341, .00835659}, {.00954085, .0130576},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526},
    │ │ │ +     {.00912636, .0142172}, {.00608001, .0156866}, {.0975923, .0139544},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569},
    │ │ │ +     {.00465453, .00969963}, {.00518961, .00867869}, {.00413464, .00613861},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {.00753335, .00820152}}
    │ │ │ +     {.00557352, .00934145}}
    │ │ │  
    │ │ │  o5 : List
    │ │ │
    │ │ │
    i6 : 1/10*sum(L,t->t_0)
    │ │ │  
    │ │ │ -o6 = .01492759439999993
    │ │ │ +o6 = .01607511159999984
    │ │ │  
    │ │ │  o6 : RR (of precision 53)
    │ │ │
    │ │ │
    i7 : 1/10*sum(L,t->t_1)
    │ │ │  
    │ │ │ -o7 = .008820477599999954
    │ │ │ +o7 = .01218661900000004
    │ │ │  
    │ │ │  o7 : RR (of precision 53)
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,41 +25,41 @@ │ │ │ │ i2 : r=10,n=20 │ │ │ │ │ │ │ │ o2 = (10, 20) │ │ │ │ │ │ │ │ o2 : Sequence │ │ │ │ i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) │ │ │ │ │ │ │ │ -o3 = ({5, 2.91596e52, 9}, .00182097, .000868731) │ │ │ │ +o3 = ({5, 2.91596e52, 9}, .00210843, .000915746) │ │ │ │ │ │ │ │ o3 : Sequence │ │ │ │ i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) │ │ │ │ │ │ │ │ -o4 = ({50, 2.30853e454, 98}, .0051242, .0353355) │ │ │ │ +o4 = ({50, 2.30853e454, 98}, .0066944, .0483865) │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) │ │ │ │ │ │ │ │ -o5 = {{.00505599, .0122226}, {.00470716, .00413436}, {.00612262, .00687245}, │ │ │ │ +o5 = {{.00920591, .0227354}, {.00965341, .00835659}, {.00954085, .0130576}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00521976, .00990609}, {.00508104, .013251}, {.100364, .012526}, │ │ │ │ + {.00912636, .0142172}, {.00608001, .0156866}, {.0975923, .0139544}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00513575, .00813997}, {.00513784, .00750516}, {.00491794, .00544569}, │ │ │ │ + {.00465453, .00969963}, {.00518961, .00867869}, {.00413464, .00613861}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {.00753335, .00820152}} │ │ │ │ + {.00557352, .00934145}} │ │ │ │ │ │ │ │ o5 : List │ │ │ │ i6 : 1/10*sum(L,t->t_0) │ │ │ │ │ │ │ │ -o6 = .01492759439999993 │ │ │ │ +o6 = .01607511159999984 │ │ │ │ │ │ │ │ o6 : RR (of precision 53) │ │ │ │ i7 : 1/10*sum(L,t->t_1) │ │ │ │ │ │ │ │ -o7 = .008820477599999954 │ │ │ │ +o7 = .01218661900000004 │ │ │ │ │ │ │ │ o7 : RR (of precision 53) │ │ │ │ ********** WWaayyss ttoo uussee tteessttTTiimmeeFFoorrLLLLLLoonnSSyyzzyyggiieess:: ********** │ │ │ │ * testTimeForLLLonSyzygies(ZZ,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_T_i_m_e_F_o_r_L_L_L_o_n_S_y_z_y_g_i_e_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/example-output/_smooth__Canonical__Curve.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 11549527689790345152 │ │ │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc) │ │ │ + -- used 1.61722s (cpu); 1.31764s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ 5 0 10 │ │ │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ ├── ./usr/share/doc/Macaulay2/RandomCurvesOverVerySmallFiniteFields/html/_smooth__Canonical__Curve.html │ │ │ @@ -82,15 +82,15 @@ │ │ │

    If the option Printing is set to true then printings about the current step in the construction are displayed.

    │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ For g<=10 the curves are constructed via plane models. │ │ │ │ For g<=13 the curves are constructed via space models. │ │ │ │ For g=14 the curves are constructed by Verra's method. │ │ │ │ For g=15 the curves are constructed via matrix factorizations. │ │ │ │ If the option Printing is set to true then printings about the current step in │ │ │ │ the construction are displayed. │ │ │ │ i1 : time ICan = smoothCanonicalCurve(11,5); │ │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc) │ │ │ │ + -- used 1.61722s (cpu); 1.31764s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o1 : Ideal of --[t ..t ] │ │ │ │ 5 0 10 │ │ │ │ i2 : (dim ICan, genus ICan, degree ICan) │ │ │ │ │ │ │ │ o2 = (2, 11, 20) │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/example-output/_random__Curve__Genus14__Degree18in__P6.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ -- setting random seed to 10206284518 │ │ │ │ │ │ i2 : FF=ZZ/10007; │ │ │ │ │ │ i3 : S=FF[x_0..x_6]; │ │ │ │ │ │ i4 : time I=randomCurveGenus14Degree18inP6(S); │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc) │ │ │ + -- used 1.8755s (cpu); 1.55393s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S │ │ │ │ │ │ i5 : betti res I │ │ │ │ │ │ 0 1 2 3 4 5 │ │ │ o5 = total: 1 13 45 56 25 2 │ │ ├── ./usr/share/doc/Macaulay2/RandomGenus14Curves/html/_random__Curve__Genus14__Degree18in__P6.html │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,24 +66,24 @@ │ │ │ │ first in rings with more variables. │ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>MultiplicationTable) │ │ │ │ - -- 3.12043s elapsed │ │ │ │ + -- 2.96244s elapsed │ │ │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ │ │ o8 : List │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, │ │ │ │ DecompositionStrategy=>Decompose) │ │ │ │ - -- 2.62392s elapsed │ │ │ │ + -- 2.16267s elapsed │ │ │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ │ │ o9 : List │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommPPooiinnttss:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/example-output/_inverse__Of__Map.out │ │ │ @@ -49,15 +49,15 @@ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc) │ │ │ + -- used 0.923715s (cpu); 0.501459s (thread); 0s (gc) │ │ │ │ │ │ 125 124 120 5 124 100 25 104 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 28 90 7 32 85 8 36 80 9 40 75 10 44 70 11 48 65 12 52 60 13 56 55 14 60 50 15 64 45 16 68 40 17 72 35 18 76 30 19 80 25 20 84 20 21 88 15 22 92 10 23 96 5 24 100 25 24 100 28 95 32 90 2 36 85 3 40 80 4 44 75 5 48 70 6 52 65 7 56 60 8 60 55 9 64 50 10 68 45 11 72 40 12 76 35 13 80 30 14 84 25 15 88 20 16 92 15 17 96 10 18 100 5 19 104 20 48 75 2 52 70 2 56 65 2 2 60 60 3 2 64 55 4 2 68 50 5 2 72 45 6 2 76 40 7 2 80 35 8 2 84 30 9 2 88 25 10 2 92 20 11 2 96 15 12 2 100 10 13 2 104 5 14 2 108 15 2 72 50 3 76 45 3 80 40 2 3 84 35 3 3 88 30 4 3 92 25 5 3 96 20 6 3 100 15 7 3 104 10 8 3 108 5 9 3 112 10 3 96 25 4 100 20 4 104 15 2 4 108 10 3 4 112 5 4 4 116 5 4 120 5 124 │ │ │ o14 = Proj Q - - - > Proj Q {x , x y, - x y + x z, x y - 5x y z + 10x y z - 10x y z + 5x y z - x z + x t, - y + 25x y z - 300x y z + 2300x y z - 12650x y z + 53130x y z - 177100x y z + 480700x y z - 1081575x y z + 2042975x y z - 3268760x y z + 4457400x y z - 5200300x y z + 5200300x y z - 4457400x y z + 3268760x y z - 2042975x y z + 1081575x y z - 480700x y z + 177100x y z - 53130x y z + 12650x y z - 2300x y z + 300x y z - 25x y z + x z - 5x y t + 100x y z*t - 950x y z t + 5700x y z t - 24225x y z t + 77520x y z t - 193800x y z t + 387600x y z t - 629850x y z t + 839800x y z t - 923780x y z t + 839800x y z t - 629850x y z t + 387600x y z t - 193800x y z t + 77520x y z t - 24225x y z t + 5700x y z t - 950x y z t + 100x y z t - 5x z t - 10x y t + 150x y z*t - 1050x y z t + 4550x y z t - 13650x y z t + 30030x y z t - 50050x y z t + 64350x y z t - 64350x y z t + 50050x y z t - 30030x y z t + 13650x y z t - 4550x y z t + 1050x y z t - 150x y z t + 10x z t - 10x y t + 100x y z*t - 450x y z t + 1200x y z t - 2100x y z t + 2520x y z t - 2100x y z t + 1200x y z t - 450x y z t + 100x y z t - 10x z t - 5x y t + 25x y z*t - 50x y z t + 50x y z t - 25x y z t + 5x z t - x t + x u} │ │ │ │ │ │ o14 : RationalMapping │ │ │ │ │ │ i15 : R=QQ[x,y,z,t]/(z-2*t); │ │ ├── ./usr/share/doc/Macaulay2/RationalMaps/html/_inverse__Of__Map.html │ │ │ @@ -189,15 +189,15 @@ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ o11 : Ideal of blowUpSubvar │ │ │ │ The next example is a birational map on $\mathbb{P}^4$. │ │ │ │ i12 : Q=QQ[x,y,z,t,u]; │ │ │ │ i13 : phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}}); │ │ │ │ │ │ │ │ o13 : RingMap Q <-- Q │ │ │ │ i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0) │ │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc) │ │ │ │ + -- used 0.923715s (cpu); 0.501459s (thread); 0s (gc) │ │ │ │ │ │ │ │ 125 124 120 5 124 100 25 104 │ │ │ │ 20 108 15 2 112 10 3 116 5 4 120 5 124 125 4 120 │ │ │ │ 8 115 2 12 110 3 16 105 4 20 100 5 24 95 6 │ │ │ │ 28 90 7 32 85 8 36 80 9 40 75 10 44 70 │ │ │ │ 11 48 65 12 52 60 13 56 55 14 60 50 15 │ │ │ │ 64 45 16 68 40 17 72 35 18 76 30 19 80 25 │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/example-output/_rational__Points.out │ │ │ @@ -48,15 +48,15 @@ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ ZZ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc) │ │ │ + -- used 0.00407983s (cpu); 0.00407295s (thread); 0s (gc) │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ │ │ o16 : Ideal of QQ[x..z] │ │ │ │ │ │ @@ -142,23 +142,23 @@ │ │ │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc) │ │ │ + -- used 1.21742s (cpu); 0.954415s (thread); 0s (gc) │ │ │ │ │ │ i33 : #oo │ │ │ │ │ │ o33 = 31 │ │ │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc) │ │ │ + -- used 0.356383s (cpu); 0.256687s (thread); 0s (gc) │ │ │ │ │ │ o35 = 31 │ │ │ │ │ │ i36 : │ │ ├── ./usr/share/doc/Macaulay2/RationalPoints2/html/_rational__Points.html │ │ │ @@ -178,15 +178,15 @@ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ 101 0 10 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time ICan = smoothCanonicalCurve(11,5);
    │ │ │ - -- used 1.56147s (cpu); 1.25457s (thread); 0s (gc)
    │ │ │ + -- used 1.61722s (cpu); 1.31764s (thread); 0s (gc)
    │ │ │  
    │ │ │                ZZ
    │ │ │  o1 : Ideal of --[t ..t  ]
    │ │ │                 5  0   10
    │ │ │
    │ │ │
    i3 : S=FF[x_0..x_6];
    │ │ │
    │ │ │
    i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc)
    │ │ │ + -- used 1.8755s (cpu); 1.55393s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S
    │ │ │
    │ │ │
    i5 : betti res I
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │  fields of the chosen finite characteristic 10007, for fields of characteristic
    │ │ │ │  0 by semi-continuity, and, hence, for all but finitely many primes $p$.
    │ │ │ │  i1 : setRandomSeed("alpha");
    │ │ │ │   -- setting random seed to 10206284518
    │ │ │ │  i2 : FF=ZZ/10007;
    │ │ │ │  i3 : S=FF[x_0..x_6];
    │ │ │ │  i4 : time I=randomCurveGenus14Degree18inP6(S);
    │ │ │ │ - -- used 1.58351s (cpu); 1.29415s (thread); 0s (gc)
    │ │ │ │ + -- used 1.8755s (cpu); 1.55393s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : Ideal of S
    │ │ │ │  i5 : betti res I
    │ │ │ │  
    │ │ │ │              0  1  2  3  4 5
    │ │ │ │  o5 = total: 1 13 45 56 25 2
    │ │ │ │           0: 1  .  .  .  . .
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/___Random__Ideals.out
    │ │ │ @@ -1,24 +1,24 @@
    │ │ │  -- -*- M2-comint -*- hash: 9542801742429495161
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726966
    │ │ │ + -- setting random seed to 1767789383
    │ │ │  
    │ │ │ -o1 = 1765726966
    │ │ │ +o1 = 1767789383
    │ │ │  
    │ │ │  i2 : kk=ZZ/101;
    │ │ │  
    │ │ │  i3 : S=kk[vars(0..5)];
    │ │ │  
    │ │ │  i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc)
    │ │ │ + -- used 3.87582s (cpu); 1.82874s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Tally{4 => 50 }
    │ │ │ -           5 => 198
    │ │ │ -           6 => 177
    │ │ │ -           7 => 62
    │ │ │ -           8 => 12
    │ │ │ +           5 => 217
    │ │ │ +           6 => 160
    │ │ │ +           7 => 58
    │ │ │ +           8 => 14
    │ │ │             9 => 1
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Monomial.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 5959465567197821046
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726971
    │ │ │ + -- setting random seed to 1767789387
    │ │ │  
    │ │ │ -o1 = 1765726971
    │ │ │ +o1 = 1767789387
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -15,13 +15,12 @@
    │ │ │  
    │ │ │  o3 = S
    │ │ │  
    │ │ │  o3 : PolynomialRing
    │ │ │  
    │ │ │  i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      2
    │ │ │ -o4 = a c
    │ │ │ +o4 = a*b*c
    │ │ │  
    │ │ │  o4 : S
    │ │ │  
    │ │ │  i5 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Monomial__Ideal.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 8876340562021865447
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726980
    │ │ │ + -- setting random seed to 1767789395
    │ │ │  
    │ │ │ -o1 = 1765726980
    │ │ │ +o1 = 1767789395
    │ │ │  
    │ │ │  i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │  
    │ │ │  o2 : QuotientRing
    │ │ │  
    │ │ │ @@ -22,18 +22,18 @@
    │ │ │  o4 = {3, 5, 7}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(a*c*d)
    │ │ │ +o5 = ideal(a*c*e)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │  
    │ │ │  i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d)
    │ │ │ +o6 = ideal (b*c, a*b, a*c, d*e, b*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/example-output/_random__Square__Free__Step.out
    │ │ │ @@ -1,13 +1,13 @@
    │ │ │  -- -*- M2-comint -*- hash: 10504911213508281315
    │ │ │  
    │ │ │  i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726975
    │ │ │ + -- setting random seed to 1767789391
    │ │ │  
    │ │ │ -o1 = 1765726975
    │ │ │ +o1 = 1767789391
    │ │ │  
    │ │ │  i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │  
    │ │ │  o2 : PolynomialRing
    │ │ │  
    │ │ │ @@ -39,15 +39,15 @@
    │ │ │  i7 : J = monomialIdeal 0_S
    │ │ │  
    │ │ │  o7 = monomialIdeal ()
    │ │ │  
    │ │ │  o7 : MonomialIdeal of S
    │ │ │  
    │ │ │  i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc)
    │ │ │ + -- used 5.17442s (cpu); 3.43358s (thread); 0s (gc)
    │ │ │  
    │ │ │  i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │  
    │ │ │  i10 : T
    │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Monomial.html
    │ │ │ @@ -71,17 +71,17 @@
    │ │ │          
    │ │ │

    Chooses a random monomial.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726971
    │ │ │ + -- setting random seed to 1767789387
    │ │ │  
    │ │ │ -o1 = 1765726971
    │ │ │ +o1 = 1767789387 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -98,16 +98,15 @@
    │ │ │  o3 : PolynomialRing
    │ │ │
    │ │ │
    i4 : randomMonomial(3,S)
    │ │ │  
    │ │ │ -      2
    │ │ │ -o4 = a c
    │ │ │ +o4 = a*b*c
    │ │ │  
    │ │ │  o4 : S
    │ │ │
    │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -11,31 +11,30 @@ │ │ │ │ o d, an _i_n_t_e_g_e_r, non-negative │ │ │ │ o S, a _r_i_n_g, polynomial ring │ │ │ │ * Outputs: │ │ │ │ o m, a _r_i_n_g_ _e_l_e_m_e_n_t, monomial of S │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Chooses a random monomial. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726971 │ │ │ │ + -- setting random seed to 1767789387 │ │ │ │ │ │ │ │ -o1 = 1765726971 │ │ │ │ +o1 = 1767789387 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o3 = S │ │ │ │ │ │ │ │ o3 : PolynomialRing │ │ │ │ i4 : randomMonomial(3,S) │ │ │ │ │ │ │ │ - 2 │ │ │ │ -o4 = a c │ │ │ │ +o4 = a*b*c │ │ │ │ │ │ │ │ o4 : S │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_a_n_d_o_m_M_o_n_o_m_i_a_l_I_d_e_a_l -- random monomial ideal with given degree generators │ │ │ │ * _r_a_n_d_o_m_S_q_u_a_r_e_F_r_e_e_M_o_n_o_m_i_a_l_I_d_e_a_l -- random square-free monomial ideal with │ │ │ │ given degree generators │ │ │ │ ********** WWaayyss ttoo uussee rraannddoommMMoonnoommiiaall:: ********** │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Monomial__Ideal.html │ │ │ @@ -71,17 +71,17 @@ │ │ │
    │ │ │

    Choose a random square-free monomial ideal whose generators have the degrees specified by the list or sequence L.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726980
    │ │ │ + -- setting random seed to 1767789395
    │ │ │  
    │ │ │ -o1 = 1765726980
    │ │ │ +o1 = 1767789395 │ │ │
    │ │ │
    i2 : kk=ZZ/101
    │ │ │  
    │ │ │  o2 = kk
    │ │ │ @@ -108,24 +108,24 @@
    │ │ │              
    │ │ │
    i5 : randomSquareFreeMonomialIdeal(L, S)
    │ │ │  low degree gens generated everything
    │ │ │  
    │ │ │ -o5 = ideal(a*c*d)
    │ │ │ +o5 = ideal(a*c*e)
    │ │ │  
    │ │ │  o5 : Ideal of S
    │ │ │
    │ │ │
    i6 : randomSquareFreeMonomialIdeal(5:2, S)
    │ │ │  
    │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d)
    │ │ │ +o6 = ideal (b*c, a*b, a*c, d*e, b*d)
    │ │ │  
    │ │ │  o6 : Ideal of S
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -13,17 +13,17 @@ │ │ │ │ * Outputs: │ │ │ │ o I, an _i_d_e_a_l, square-free monomial ideal with generators of │ │ │ │ specified degrees │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ Choose a random square-free monomial ideal whose generators have the degrees │ │ │ │ specified by the list or sequence L. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726980 │ │ │ │ + -- setting random seed to 1767789395 │ │ │ │ │ │ │ │ -o1 = 1765726980 │ │ │ │ +o1 = 1767789395 │ │ │ │ i2 : kk=ZZ/101 │ │ │ │ │ │ │ │ o2 = kk │ │ │ │ │ │ │ │ o2 : QuotientRing │ │ │ │ i3 : S=kk[a..e] │ │ │ │ │ │ │ │ @@ -34,20 +34,20 @@ │ │ │ │ │ │ │ │ o4 = {3, 5, 7} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : randomSquareFreeMonomialIdeal(L, S) │ │ │ │ low degree gens generated everything │ │ │ │ │ │ │ │ -o5 = ideal(a*c*d) │ │ │ │ +o5 = ideal(a*c*e) │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : randomSquareFreeMonomialIdeal(5:2, S) │ │ │ │ │ │ │ │ -o6 = ideal (c*e, a*d, d*e, b*e, c*d) │ │ │ │ +o6 = ideal (b*c, a*b, a*c, d*e, b*d) │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ The ideal is constructed degree by degree, starting from the lowest degree │ │ │ │ specified. If there are not enough monomials of the next specified degree that │ │ │ │ are not already in the ideal, the function prints a warning and returns an │ │ │ │ ideal containing all the generators of that degree. │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/_random__Square__Free__Step.html │ │ │ @@ -79,17 +79,17 @@ │ │ │

    With probability p the routine takes the Alexander dual of I; the default value of p is .05, and it can be set with the option AlexanderProbility.

    │ │ │

    Otherwise uses the Metropolis algorithm to produce a random walk on the space of square-free ideals. Note that there are a LOT of square-free ideals; these are the Dedekind numbers, and the sequence (with 1,2,3,4,5,6,7,8 variables) begins 3,6,20,168,7581, 7828354, 2414682040998, 56130437228687557907788. (see the Online Encyclopedia of Integer Sequences for more information). Given I in a polynomial ring S, we make a list ISocgens of the square-free minimal monomial generators of the socle of S/(squares+I) and a list of minimal generators Igens of I. A candidate "next" ideal J is formed as follows: We choose randomly from the union of these lists; if a socle element is chosen, it's added to I; if a minimal generator is chosen, it's replaced by the square-free part of the maximal ideal times it. the chance of making the given move is then 1/(#ISocgens+#Igens), and the chance of making the move back would be the similar quantity for J, so we make the move or not depending on whether random RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1].

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726975
    │ │ │ + -- setting random seed to 1767789391
    │ │ │  
    │ │ │ -o1 = 1765726975
    │ │ │ +o1 = 1767789391 │ │ │
    │ │ │
    i2 : S=ZZ/2[vars(0..3)]
    │ │ │  
    │ │ │  o2 = S
    │ │ │ @@ -147,15 +147,15 @@
    │ │ │  
    │ │ │  o7 : MonomialIdeal of S
    │ │ │
    │ │ │
    i8 : time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
    │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc)
    │ │ │ + -- used 5.17442s (cpu); 3.43358s (thread); 0s (gc) │ │ │
    │ │ │
    i9 : #T
    │ │ │  
    │ │ │  o9 = 168
    │ │ │ ├── html2text {} │ │ │ │ @@ -35,17 +35,17 @@ │ │ │ │ choose randomly from the union of these lists; if a socle element is chosen, │ │ │ │ it's added to I; if a minimal generator is chosen, it's replaced by the square- │ │ │ │ free part of the maximal ideal times it. the chance of making the given move is │ │ │ │ then 1/(#ISocgens+#Igens), and the chance of making the move back would be the │ │ │ │ similar quantity for J, so we make the move or not depending on whether random │ │ │ │ RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is a random number in [0,1]. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726975 │ │ │ │ + -- setting random seed to 1767789391 │ │ │ │ │ │ │ │ -o1 = 1765726975 │ │ │ │ +o1 = 1767789391 │ │ │ │ i2 : S=ZZ/2[vars(0..3)] │ │ │ │ │ │ │ │ o2 = S │ │ │ │ │ │ │ │ o2 : PolynomialRing │ │ │ │ i3 : J = monomialIdeal"ab,ad, bcd" │ │ │ │ │ │ │ │ @@ -74,15 +74,15 @@ │ │ │ │ i7 : J = monomialIdeal 0_S │ │ │ │ │ │ │ │ o7 = monomialIdeal () │ │ │ │ │ │ │ │ o7 : MonomialIdeal of S │ │ │ │ i8 : time T=tally for t from 1 to 5000 list first (J=rsfs │ │ │ │ (J,AlexanderProbability => .01)); │ │ │ │ - -- used 4.75542s (cpu); 3.39881s (thread); 0s (gc) │ │ │ │ + -- used 5.17442s (cpu); 3.43358s (thread); 0s (gc) │ │ │ │ i9 : #T │ │ │ │ │ │ │ │ o9 = 168 │ │ │ │ i10 : T │ │ │ │ │ │ │ │ o10 = Tally{monomialIdeal () => 45 } │ │ │ │ monomialIdeal (a*b*c, a*b*d) => 33 │ │ ├── ./usr/share/doc/Macaulay2/RandomIdeals/html/index.html │ │ │ @@ -54,17 +54,17 @@ │ │ │
    │ │ │

    This package can be used to make experiments, trying many ideals, perhaps over small fields. For example...what would you expect the regularities of "typical" monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a bunch of examples -- it's fast. Here we do only 500 -- this takes about a second on a fast machine -- but with a little patience, thousands can be done conveniently.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -72,21 +72,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : setRandomSeed(currentTime())
    │ │ │ - -- setting random seed to 1765726966
    │ │ │ + -- setting random seed to 1767789383
    │ │ │  
    │ │ │ -o1 = 1765726966
    │ │ │ +o1 = 1767789383 │ │ │
    │ │ │
    i2 : kk=ZZ/101;
    │ │ │
    │ │ │
    i3 : S=kk[vars(0..5)];
    │ │ │
    │ │ │
    i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
    │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc)
    │ │ │ + -- used 3.87582s (cpu); 1.82874s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = Tally{4 => 50 }
    │ │ │ -           5 => 198
    │ │ │ -           6 => 177
    │ │ │ -           7 => 62
    │ │ │ -           8 => 12
    │ │ │ +           5 => 217
    │ │ │ +           6 => 160
    │ │ │ +           7 => 58
    │ │ │ +           8 => 14
    │ │ │             9 => 1
    │ │ │  
    │ │ │  o4 : Tally
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -9,27 +9,27 @@ │ │ │ │ This package can be used to make experiments, trying many ideals, perhaps over │ │ │ │ small fields. For example...what would you expect the regularities of "typical" │ │ │ │ monomial ideals with 10 generators of degree 3 in 6 variables to be? Try a │ │ │ │ bunch of examples -- it's fast. Here we do only 500 -- this takes about a │ │ │ │ second on a fast machine -- but with a little patience, thousands can be done │ │ │ │ conveniently. │ │ │ │ i1 : setRandomSeed(currentTime()) │ │ │ │ - -- setting random seed to 1765726966 │ │ │ │ + -- setting random seed to 1767789383 │ │ │ │ │ │ │ │ -o1 = 1765726966 │ │ │ │ +o1 = 1767789383 │ │ │ │ i2 : kk=ZZ/101; │ │ │ │ i3 : S=kk[vars(0..5)]; │ │ │ │ i4 : time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S) │ │ │ │ - -- used 2.93525s (cpu); 1.5644s (thread); 0s (gc) │ │ │ │ + -- used 3.87582s (cpu); 1.82874s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = Tally{4 => 50 } │ │ │ │ - 5 => 198 │ │ │ │ - 6 => 177 │ │ │ │ - 7 => 62 │ │ │ │ - 8 => 12 │ │ │ │ + 5 => 217 │ │ │ │ + 6 => 160 │ │ │ │ + 7 => 58 │ │ │ │ + 8 => 14 │ │ │ │ 9 => 1 │ │ │ │ │ │ │ │ o4 : Tally │ │ │ │ How does this compare with the case of binomial ideals? or pure binomial │ │ │ │ ideals? We invite the reader to experiment, replacing "randomMonomialIdeal" │ │ │ │ above with "randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger │ │ │ │ numbers of examples. Click the link "Finding Extreme Examples" below to see │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_dim__Via__Bezout.out │ │ │ @@ -5,17 +5,17 @@ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ - -- 1.63992s elapsed │ │ │ + -- 1.45654s elapsed │ │ │ │ │ │ o4 = 4 │ │ │ │ │ │ i5 : elapsedTime dim I │ │ │ - -- 3.02509s elapsed │ │ │ + -- 3.91536s elapsed │ │ │ │ │ │ o5 = 4 │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_extend__Ideal__By__Non__Zero__Minor.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ i8 : i = 0; │ │ │ │ │ │ i9 : J = I; │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ - -- 2.0239s elapsed │ │ │ + -- 1.77502s elapsed │ │ │ │ │ │ i11 : dim J │ │ │ │ │ │ o11 = 1 │ │ │ │ │ │ i12 : i │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/example-output/_random__Points.out │ │ │ @@ -27,24 +27,24 @@ │ │ │ i6 : S=ZZ/103[y_0..y_30]; │ │ │ │ │ │ i7 : I=minors(2,random(S^3,S^{3:-1})); │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable) │ │ │ - -- 3.12043s elapsed │ │ │ + -- 2.96244s elapsed │ │ │ │ │ │ o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0, │ │ │ ------------------------------------------------------------------------ │ │ │ -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}} │ │ │ │ │ │ o8 : List │ │ │ │ │ │ i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose) │ │ │ - -- 2.62392s elapsed │ │ │ + -- 2.16267s elapsed │ │ │ │ │ │ o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16, │ │ │ ------------------------------------------------------------------------ │ │ │ 11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}} │ │ │ │ │ │ o9 : List │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_dim__Via__Bezout.html │ │ │ @@ -95,23 +95,23 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │
    │ │ │
    i4 : elapsedTime dimViaBezout(I)
    │ │ │ - -- 1.63992s elapsed
    │ │ │ + -- 1.45654s elapsed
    │ │ │  
    │ │ │  o4 = 4
    │ │ │
    │ │ │
    i5 : elapsedTime dim I
    │ │ │ - -- 3.02509s elapsed
    │ │ │ + -- 3.91536s elapsed
    │ │ │  
    │ │ │  o5 = 4
    │ │ │
    │ │ │
    │ │ │

    The user may set the MinimumFieldSize to ensure that the field being worked over is big enough. For instance, there are relatively few linear spaces over a field of characteristic 2, and this can cause incorrect results to be provided. If no size is provided, the function tries to guess a good size based on ambient ring.

    │ │ │ ├── html2text {} │ │ │ │ @@ -32,19 +32,19 @@ │ │ │ │ examples, the built in dim function is much faster. │ │ │ │ i1 : kk=ZZ/101; │ │ │ │ i2 : S=kk[y_0..y_8]; │ │ │ │ i3 : I=ideal random(S^1,S^{-2,-2,-2,-2})+(ideal random(2,S))^2; │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : elapsedTime dimViaBezout(I) │ │ │ │ - -- 1.63992s elapsed │ │ │ │ + -- 1.45654s elapsed │ │ │ │ │ │ │ │ o4 = 4 │ │ │ │ i5 : elapsedTime dim I │ │ │ │ - -- 3.02509s elapsed │ │ │ │ + -- 3.91536s elapsed │ │ │ │ │ │ │ │ o5 = 4 │ │ │ │ The user may set the MinimumFieldSize to ensure that the field being worked │ │ │ │ over is big enough. For instance, there are relatively few linear spaces over a │ │ │ │ field of characteristic 2, and this can cause incorrect results to be provided. │ │ │ │ If no size is provided, the function tries to guess a good size based on │ │ │ │ ambient ring. │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_extend__Ideal__By__Non__Zero__Minor.html │ │ │ @@ -155,15 +155,15 @@ │ │ │ │ │ │ o9 : Ideal of T
    │ │ │
    │ │ │
    i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = extendIdealByNonZeroMinor(4, M, J)) );
    │ │ │ - -- 2.0239s elapsed
    │ │ │ + -- 1.77502s elapsed │ │ │
    │ │ │
    i11 : dim J
    │ │ │  
    │ │ │  o11 = 1
    │ │ │ ├── html2text {} │ │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ o7 : Matrix T <-- T │ │ │ │ i8 : i = 0; │ │ │ │ i9 : J = I; │ │ │ │ │ │ │ │ o9 : Ideal of T │ │ │ │ i10 : elapsedTime(while (i < 10) and dim J > 1 do (i = i+1; J = │ │ │ │ extendIdealByNonZeroMinor(4, M, J)) ); │ │ │ │ - -- 2.0239s elapsed │ │ │ │ + -- 1.77502s elapsed │ │ │ │ i11 : dim J │ │ │ │ │ │ │ │ o11 = 1 │ │ │ │ i12 : i │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ In this particular example, there tend to be about 5 associated primes when │ │ ├── ./usr/share/doc/Macaulay2/RandomPoints/html/_random__Points.html │ │ │ @@ -144,27 +144,27 @@ │ │ │ │ │ │ o7 : Ideal of S │ │ │
    │ │ │
    i8 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>MultiplicationTable)
    │ │ │ - -- 3.12043s elapsed
    │ │ │ + -- 2.96244s elapsed
    │ │ │  
    │ │ │  o8 = {{-4, -35, -7, 0, 0, 1, 5, -13, 0, -47, 0, 41, 0, -51, -46, 35, 0, 0,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       -47, 14, -30, 42, 30, 4, -41, 24, 0, 0, 15, 20, 1}}
    │ │ │  
    │ │ │  o8 : List
    │ │ │
    │ │ │
    i9 : elapsedTime randomPoints(I, Strategy=>LinearIntersection, DecompositionStrategy=>Decompose)
    │ │ │ - -- 2.62392s elapsed
    │ │ │ + -- 2.16267s elapsed
    │ │ │  
    │ │ │  o9 = {{11, 9, -9, -15, -7, 27, 19, -36, 48, 26, -4, 3, 29, -8, 7, -32, 16,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11, 7, 7, 25, -14, -39, 17, -16, 4, -50, -12, 21, -50, 51}}
    │ │ │  
    │ │ │  o9 : List
    │ │ │
    │ │ │
    i14 : time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0)
    │ │ │ - -- used 0.612163s (cpu); 0.416347s (thread); 0s (gc)
    │ │ │ + -- used 0.923715s (cpu); 0.501459s (thread); 0s (gc)
    │ │ │  
    │ │ │                                  125   124      120 5    124    100 25     104 20       108 15 2      112 10 3     116 5 4    120 5    124      125      4 120        8 115 2        12 110 3         16 105 4         20 100 5          24 95 6          28 90 7           32 85 8           36 80 9           40 75 10           44 70 11           48 65 12           52 60 13           56 55 14           60 50 15           64 45 16           68 40 17          72 35 18          76 30 19         80 25 20         84 20 21        88 15 22       92 10 23      96 5 24    100 25     24 100        28 95          32 90 2         36 85 3          40 80 4          44 75 5           48 70 6           52 65 7           56 60 8           60 55 9           64 50 10           68 45 11           72 40 12           76 35 13           80 30 14          84 25 15          88 20 16         92 15 17        96 10 18        100 5 19      104 20       48 75 2       52 70   2        56 65 2 2        60 60 3 2         64 55 4 2         68 50 5 2         72 45 6 2         76 40 7 2         80 35 8 2         84 30 9 2         88 25 10 2         92 20 11 2        96 15 12 2        100 10 13 2       104 5 14 2      108 15 2      72 50 3       76 45   3       80 40 2 3        84 35 3 3        88 30 4 3        92 25 5 3        96 20 6 3        100 15 7 3       104 10 8 3       108 5 9 3      112 10 3     96 25 4      100 20   4      104 15 2 4      108 10 3 4      112 5 4 4     116 5 4    120 5    124
    │ │ │  o14 = Proj Q - - - > Proj Q   {x   , x   y, - x   y  + x   z, x   y   - 5x   y  z + 10x   y  z  - 10x   y  z  + 5x   y z  - x   z  + x   t, - y    + 25x y   z - 300x y   z  + 2300x  y   z  - 12650x  y   z  + 53130x  y   z  - 177100x  y  z  + 480700x  y  z  - 1081575x  y  z  + 2042975x  y  z  - 3268760x  y  z   + 4457400x  y  z   - 5200300x  y  z   + 5200300x  y  z   - 4457400x  y  z   + 3268760x  y  z   - 2042975x  y  z   + 1081575x  y  z   - 480700x  y  z   + 177100x  y  z   - 53130x  y  z   + 12650x  y  z   - 2300x  y  z   + 300x  y  z   - 25x  y z   + x   z   - 5x  y   t + 100x  y  z*t - 950x  y  z t + 5700x  y  z t - 24225x  y  z t + 77520x  y  z t - 193800x  y  z t + 387600x  y  z t - 629850x  y  z t + 839800x  y  z t - 923780x  y  z  t + 839800x  y  z  t - 629850x  y  z  t + 387600x  y  z  t - 193800x  y  z  t + 77520x  y  z  t - 24225x  y  z  t + 5700x  y  z  t - 950x  y  z  t + 100x   y z  t - 5x   z  t - 10x  y  t  + 150x  y  z*t  - 1050x  y  z t  + 4550x  y  z t  - 13650x  y  z t  + 30030x  y  z t  - 50050x  y  z t  + 64350x  y  z t  - 64350x  y  z t  + 50050x  y  z t  - 30030x  y  z  t  + 13650x  y  z  t  - 4550x  y  z  t  + 1050x   y  z  t  - 150x   y z  t  + 10x   z  t  - 10x  y  t  + 100x  y  z*t  - 450x  y  z t  + 1200x  y  z t  - 2100x  y  z t  + 2520x  y  z t  - 2100x  y  z t  + 1200x   y  z t  - 450x   y  z t  + 100x   y z t  - 10x   z  t  - 5x  y  t  + 25x   y  z*t  - 50x   y  z t  + 50x   y  z t  - 25x   y z t  + 5x   z t  - x   t  + x   u}
    │ │ │  
    │ │ │  o14 : RationalMapping
    │ │ │
    │ │ │
    i14 : time rationalPoints(I, Amount => true)
    │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc)
    │ │ │ + -- used 0.00407983s (cpu); 0.00407295s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = 110462212541120451001
    │ │ │
    │ │ │
    │ │ │

    Over number fields

    │ │ │ @@ -348,15 +348,15 @@ │ │ │ o31 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true);
    │ │ │  -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25)
    │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc)
    │ │ │ + -- used 1.21742s (cpu); 0.954415s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : #oo
    │ │ │  
    │ │ │  o33 = 31
    │ │ │ @@ -373,15 +373,15 @@ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true)
    │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc)
    │ │ │ + -- used 0.356383s (cpu); 0.256687s (thread); 0s (gc)
    │ │ │  
    │ │ │  o35 = 31
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ o13 = ideal(u + u + u + u + u + u + u + u + u + u + u ) │ │ │ │ 0 1 2 3 4 5 6 7 8 9 10 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o13 : Ideal of ---[u ..u ] │ │ │ │ 101 0 10 │ │ │ │ i14 : time rationalPoints(I, Amount => true) │ │ │ │ - -- used 0.00322822s (cpu); 0.00322771s (thread); 0s (gc) │ │ │ │ + -- used 0.00407983s (cpu); 0.00407295s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = 110462212541120451001 │ │ │ │ ****** OOvveerr nnuummbbeerr ffiieellddss ****** │ │ │ │ Over a number field one can use the option Bound to specify a maximal │ │ │ │ multiplicative height given by $(x_0:\dots:x_n)\mapsto \prod_{v}\max_i|x_i|_v ^ │ │ │ │ {d_v/d}$ (this is also available as a method _g_l_o_b_a_l_H_e_i_g_h_t). │ │ │ │ i15 : QQ[x,y,z]; I = homogenize(ideal(y^2-x*(x-1)*(x-2)*(x-5)*(x-6)), z); │ │ │ │ @@ -197,24 +197,24 @@ │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : nodes = I + ideal jacobian I; │ │ │ │ │ │ │ │ o31 : Ideal of R │ │ │ │ i32 : time rationalPoints(variety nodes, Split=>true, Verbose=>true); │ │ │ │ -- base change to the field QQ[a]/(a^8-40*a^6+230*a^4-200*a^2+25) │ │ │ │ - -- used 0.996963s (cpu); 0.801505s (thread); 0s (gc) │ │ │ │ + -- used 1.21742s (cpu); 0.954415s (thread); 0s (gc) │ │ │ │ i33 : #oo │ │ │ │ │ │ │ │ o33 = 31 │ │ │ │ Still it runs a lot faster when reduced to a positive characteristic. │ │ │ │ i34 : nodes' = baseChange_32003 nodes; │ │ │ │ │ │ │ │ o34 : Ideal of GF 1048969271299456081[x..z, w] │ │ │ │ i35 : time #rationalPoints(variety nodes', Split=>true, Verbose=>true) │ │ │ │ - -- used 0.273936s (cpu); 0.210148s (thread); 0s (gc) │ │ │ │ + -- used 0.356383s (cpu); 0.256687s (thread); 0s (gc) │ │ │ │ │ │ │ │ o35 = 31 │ │ │ │ ********** CCaavveeaatt ********** │ │ │ │ For a number field other than QQ, the enumeration of elements with bounded │ │ │ │ height depends on an algorithm by Doyle–Krumm, which is currently only │ │ │ │ implemented in Sage. │ │ │ │ ******** MMeennuu ******** │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/___Plane__Curve__Singularities.out │ │ │ @@ -331,15 +331,15 @@ │ │ │ 2 2 2 2 2 2 2 │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc) │ │ │ + -- used 1.19034s (cpu); 0.951955s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ 32003 0 2 0 1 │ │ │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_expected__Rees__Ideal.out │ │ │ @@ -58,15 +58,15 @@ │ │ │ o5 : Matrix S <-- S │ │ │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc) │ │ │ + -- used 1.25011s (cpu); 0.937645s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ 0 4 │ │ │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ @@ -77,19 +77,19 @@ │ │ │ o10 : Matrix S <-- S │ │ │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc) │ │ │ + -- used 2.07546s (cpu); 1.62957s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc) │ │ │ + -- used 1.85611s (cpu); 1.53707s (thread); 0s (gc) │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ 0 3 │ │ │ │ │ │ i14 : │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/example-output/_rees__Ideal.out │ │ │ @@ -13,21 +13,21 @@ │ │ │ 3 2 │ │ │ - x x x , x - x x ) │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc) │ │ │ + -- used 0.307893s (cpu); 0.0529359s (thread); 0s (gc) │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc) │ │ │ + -- used 0.159495s (cpu); 0.145905s (thread); 0s (gc) │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ 0 6 │ │ │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ o6 = S │ │ │ @@ -47,21 +47,21 @@ │ │ │ │ │ │ 2 2 │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc) │ │ │ + -- used 0.164237s (cpu); 0.0400787s (thread); 0s (gc) │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc) │ │ │ + -- used 0.0230433s (cpu); 0.0110679s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ 0 2 │ │ │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/___Plane__Curve__Singularities.html │ │ │ @@ -587,15 +587,15 @@ │ │ │
    │ │ │

    We compute the singular locus once again:

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -325,15 +325,15 @@ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ │ - p w , p y - p , p w y - p p , p w - p ) │ │ │ │ 2 1 0 1 0 0 1 2 0 0 2 │ │ │ │ │ │ │ │ o47 : Ideal of B2 │ │ │ │ We compute the singular locus once again: │ │ │ │ i48 : time sing2 = ideal singularLocus strictTransform2; │ │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc) │ │ │ │ + -- used 1.19034s (cpu); 0.951955s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o48 : Ideal of -----[p ..p , w ..w , x..y] │ │ │ │ 32003 0 2 0 1 │ │ │ │ i49 : saturate(sing2, sub(irrelTot, ring sing2)) │ │ │ │ │ │ │ │ o49 = ideal 1 │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_expected__Rees__Ideal.html │ │ │ @@ -151,15 +151,15 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i48 : time sing2 = ideal singularLocus strictTransform2;
    │ │ │ - -- used 0.826819s (cpu); 0.679734s (thread); 0s (gc)
    │ │ │ + -- used 1.19034s (cpu); 0.951955s (thread); 0s (gc)
    │ │ │  
    │ │ │                   ZZ
    │ │ │  o48 : Ideal of -----[p ..p , w ..w , x..y]
    │ │ │                 32003  0   2   0   1
    │ │ │
    │ │ │
    i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec.
    │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc)
    │ │ │ + -- used 1.25011s (cpu); 0.937645s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S[w ..w ]
    │ │ │                   0   4
    │ │ │
    │ │ │ @@ -185,24 +185,24 @@ │ │ │ │ │ │ o11 : Ideal of S │ │ │
    │ │ │
    i12 : time reesIdeal (I, I_0);
    │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc)
    │ │ │ + -- used 2.07546s (cpu); 1.62957s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    i13 : time reesIdeal (I, I_0, Jacobian =>false);
    │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc)
    │ │ │ + -- used 1.85611s (cpu); 1.53707s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of S[w ..w ]
    │ │ │                    0   3
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -86,34 +86,34 @@ │ │ │ │ │ │ │ │ 5 4 │ │ │ │ o5 : Matrix S <-- S │ │ │ │ i6 : I = minors(n-1, M); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec. │ │ │ │ - -- used 1.03s (cpu); 0.739203s (thread); 0s (gc) │ │ │ │ + -- used 1.25011s (cpu); 0.937645s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S[w ..w ] │ │ │ │ 0 4 │ │ │ │ i8 : kk = ZZ/101; │ │ │ │ i9 : S = kk[x,y,z]; │ │ │ │ i10 : m = random(S^3, S^{4:-2}); │ │ │ │ │ │ │ │ 3 4 │ │ │ │ o10 : Matrix S <-- S │ │ │ │ i11 : I = minors(3,m); │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time reesIdeal (I, I_0); │ │ │ │ - -- used 1.73256s (cpu); 1.40832s (thread); 0s (gc) │ │ │ │ + -- used 2.07546s (cpu); 1.62957s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ i13 : time reesIdeal (I, I_0, Jacobian =>false); │ │ │ │ - -- used 1.5974s (cpu); 1.21866s (thread); 0s (gc) │ │ │ │ + -- used 1.85611s (cpu); 1.53707s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of S[w ..w ] │ │ │ │ 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_m_e_t_r_i_c_A_l_g_e_b_r_a_I_d_e_a_l -- Ideal of the symmetric algebra of an ideal or │ │ │ │ module │ │ │ │ * _j_a_c_o_b_i_a_n_D_u_a_l -- Computes the 'jacobian dual', part of a method of finding │ │ ├── ./usr/share/doc/Macaulay2/ReesAlgebra/html/_rees__Ideal.html │ │ │ @@ -110,24 +110,24 @@ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time V1 = reesIdeal i;
    │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc)
    │ │ │ + -- used 0.307893s (cpu); 0.0529359s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time V2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc)
    │ │ │ + -- used 0.159495s (cpu); 0.145905s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : Ideal of S[w ..w ]
    │ │ │                   0   6
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ @@ -164,24 +164,24 @@ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time I1 = reesIdeal i;
    │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc)
    │ │ │ + -- used 0.164237s (cpu); 0.0400787s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of S[w ..w ]
    │ │ │                   0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : time I2 = reesIdeal(i,i_0);
    │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc)
    │ │ │ + -- used 0.0230433s (cpu); 0.0110679s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of S[w ..w ]
    │ │ │                    0   2
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,20 +51,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 │ │ │ │ - x x x , x - x x ) │ │ │ │ 0 2 4 1 0 4 │ │ │ │ │ │ │ │ o3 : Ideal of S │ │ │ │ i4 : time V1 = reesIdeal i; │ │ │ │ - -- used 0.0275853s (cpu); 0.0256772s (thread); 0s (gc) │ │ │ │ + -- used 0.307893s (cpu); 0.0529359s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ i5 : time V2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.113109s (cpu); 0.112422s (thread); 0s (gc) │ │ │ │ + -- used 0.159495s (cpu); 0.145905s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : Ideal of S[w ..w ] │ │ │ │ 0 6 │ │ │ │ The following example shows how we handle degrees │ │ │ │ i6 : S=kk[a,b,c] │ │ │ │ │ │ │ │ o6 = S │ │ │ │ @@ -81,20 +81,20 @@ │ │ │ │ i8 : i=minors(2,m) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o8 = ideal (a , a*b, b ) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ i9 : time I1 = reesIdeal i; │ │ │ │ - -- used 0.0195203s (cpu); 0.0182383s (thread); 0s (gc) │ │ │ │ + -- used 0.164237s (cpu); 0.0400787s (thread); 0s (gc) │ │ │ │ │ │ │ │ o9 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i10 : time I2 = reesIdeal(i,i_0); │ │ │ │ - -- used 0.00761992s (cpu); 0.00733771s (thread); 0s (gc) │ │ │ │ + -- used 0.0230433s (cpu); 0.0110679s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of S[w ..w ] │ │ │ │ 0 2 │ │ │ │ i11 : transpose gens I1 │ │ │ │ │ │ │ │ o11 = {-1, -3} | aw_1-bw_2 | │ │ │ │ {-1, -3} | aw_0-bw_1 | │ │ ├── ./usr/share/doc/Macaulay2/Regularity/example-output/_m__Regularity.out │ │ │ @@ -71,15 +71,15 @@ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ -o8 = .2590714710000002 │ │ │ +o8 = .5449336249999999 │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ o9 = R │ │ │ │ │ │ @@ -87,17 +87,17 @@ │ │ │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ -o11 = .07735652088059701 │ │ │ +o11 = .1107588754181819 │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ │ │ i12 : time regularity I2 │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc) │ │ │ + -- used 0.00270185s (cpu); 0.00271108s (thread); 0s (gc) │ │ │ │ │ │ o12 = 4 │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Regularity/html/_m__Regularity.html │ │ │ @@ -176,15 +176,15 @@ │ │ │ o7 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : benchmark "mRegularity I1"
    │ │ │  
    │ │ │ -o8 = .2590714710000002
    │ │ │ +o8 = .5449336249999999
    │ │ │  
    │ │ │  o8 : RR (of precision 53)
    │ │ │ │ │ │ │ │ │ │ │ │

    This is an example where regularity is faster than mRegularity.

    │ │ │ │ │ │ @@ -204,23 +204,23 @@ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i11 : benchmark " mRegularity I2"
    │ │ │  
    │ │ │ -o11 = .07735652088059701
    │ │ │ +o11 = .1107588754181819
    │ │ │  
    │ │ │  o11 : RR (of precision 53)
    │ │ │
    │ │ │
    i12 : time regularity I2  
    │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc)
    │ │ │ + -- used 0.00270185s (cpu); 0.00271108s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 = 4
    │ │ │
    │ │ │

    This symbol is provided by the package Regularity.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -94,34 +94,34 @@ │ │ │ │ 3 2 2 3 3 2 │ │ │ │ x x x , x + x x - x x - x x x , x + x - x x ) │ │ │ │ 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 │ │ │ │ │ │ │ │ o7 : Ideal of R │ │ │ │ i8 : benchmark "mRegularity I1" │ │ │ │ │ │ │ │ -o8 = .2590714710000002 │ │ │ │ +o8 = .5449336249999999 │ │ │ │ │ │ │ │ o8 : RR (of precision 53) │ │ │ │ This is an example where regularity is faster than mRegularity. │ │ │ │ i9 : R = QQ[x_0..x_5] │ │ │ │ │ │ │ │ o9 = R │ │ │ │ │ │ │ │ o9 : PolynomialRing │ │ │ │ i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, │ │ │ │ x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : benchmark " mRegularity I2" │ │ │ │ │ │ │ │ -o11 = .07735652088059701 │ │ │ │ +o11 = .1107588754181819 │ │ │ │ │ │ │ │ o11 : RR (of precision 53) │ │ │ │ i12 : time regularity I2 │ │ │ │ - -- used 0.00237225s (cpu); 0.00237209s (thread); 0s (gc) │ │ │ │ + -- used 0.00270185s (cpu); 0.00271108s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 = 4 │ │ │ │ This symbol is provided by the package Regularity. │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _r_e_g_u_l_a_r_i_t_y -- compute the Castelnuovo-Mumford regularity │ │ │ │ ********** WWaayyss ttoo uussee mmRReegguullaarriittyy:: ********** │ │ │ │ * mRegularity(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_cayley__Trick.out │ │ │ @@ -5,18 +5,18 @@ │ │ │ o2 = ideal(x x - x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc) │ │ │ + -- used 0.141126s (cpu); 0.0820603s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc) │ │ │ + -- used 0.153371s (cpu); 0.0934494s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ @@ -37,17 +37,17 @@ │ │ │ 2 2 │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ o4 : Sequence │ │ │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc) │ │ │ + -- used 0.195631s (cpu); 0.120686s (thread); 0s (gc) │ │ │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc) │ │ │ + -- used 0.177527s (cpu); 0.118732s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Equations.out │ │ │ @@ -9,15 +9,15 @@ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ i3 : -- Chow equations of C │ │ │ time eqsC = chowEquations chowForm C │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc) │ │ │ + -- used 0.16126s (cpu); 0.0761374s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ @@ -72,15 +72,15 @@ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ │ │ i6 : -- Chow equations of D │ │ │ time eqsD = chowEquations chowForm D │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc) │ │ │ + -- used 0.157559s (cpu); 0.0697339s (thread); 0s (gc) │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ @@ -117,24 +117,24 @@ │ │ │ o9 = ideal(x x + x x ) │ │ │ 0 1 2 3 │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2)) │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc) │ │ │ + -- used 0.319342s (cpu); 0.165958s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ ----------------------------------------------------------------------- │ │ │ x x ) │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ o10 : Sequence │ │ │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2)) │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc) │ │ │ + -- used 0.179542s (cpu); 0.104182s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_chow__Form.out │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ │ ZZ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ 3331 0 5 │ │ │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian) │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc) │ │ │ + -- used 5.7443s (cpu); 5.31956s (thread); 0s (gc) │ │ │ │ │ │ 4 2 2 2 2 │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ x x - x x x + x x x x + │ │ │ @@ -143,19 +143,19 @@ │ │ │ 3331 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 0,1,5 0,2,5 1,2,5 0,3,5 1,3,5 2,3,5 0,4,5 1,4,5 2,4,5 3,4,5 │ │ │ o3 : ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x + x x - x x + x x , x x - x x + x x , x x - x x + x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x - x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x , x x - x x + x x ) │ │ │ 2,3,5 1,4,5 1,3,5 2,4,5 1,2,5 3,4,5 2,3,4 1,4,5 1,3,4 2,4,5 1,2,4 3,4,5 2,3,5 0,4,5 0,3,5 2,4,5 0,2,5 3,4,5 1,3,5 0,4,5 0,3,5 1,4,5 0,1,5 3,4,5 1,2,5 0,4,5 0,2,5 1,4,5 0,1,5 2,4,5 2,3,4 0,4,5 0,3,4 2,4,5 0,2,4 3,4,5 1,3,4 0,4,5 0,3,4 1,4,5 0,1,4 3,4,5 1,2,4 0,4,5 0,2,4 1,4,5 0,1,4 2,4,5 1,2,3 0,4,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 1,3,5 1,3,4 2,3,5 1,2,3 3,4,5 1,2,5 0,3,5 0,2,5 1,3,5 0,1,5 2,3,5 2,3,4 0,3,5 0,3,4 2,3,5 0,2,3 3,4,5 1,3,4 0,3,5 0,3,4 1,3,5 0,1,3 3,4,5 1,2,4 0,3,5 0,2,4 1,3,5 0,1,4 2,3,5 0,1,2 3,4,5 1,2,3 0,3,5 0,2,3 1,3,5 0,1,3 2,3,5 2,3,4 1,2,5 1,2,4 2,3,5 1,2,3 2,4,5 1,3,4 1,2,5 1,2,4 1,3,5 1,2,3 1,4,5 0,3,4 1,2,5 0,2,4 1,3,5 0,1,4 2,3,5 0,2,3 1,4,5 0,1,3 2,4,5 0,1,2 3,4,5 2,3,4 0,2,5 0,2,4 2,3,5 0,2,3 2,4,5 1,3,4 0,2,5 0,2,4 1,3,5 0,2,3 1,4,5 0,1,2 3,4,5 0,3,4 0,2,5 0,2,4 0,3,5 0,2,3 0,4,5 1,2,4 0,2,5 0,2,4 1,2,5 0,1,2 2,4,5 1,2,3 0,2,5 0,2,3 1,2,5 0,1,2 2,3,5 2,3,4 0,1,5 0,1,4 2,3,5 0,1,3 2,4,5 0,1,2 3,4,5 1,3,4 0,1,5 0,1,4 1,3,5 0,1,3 1,4,5 0,3,4 0,1,5 0,1,4 0,3,5 0,1,3 0,4,5 1,2,4 0,1,5 0,1,4 1,2,5 0,1,2 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ time assert(ChowV === chowForm f) │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc) │ │ │ + -- used 1.26197s (cpu); 1.18582s (thread); 0s (gc) │ │ │ │ │ │ i5 : -- X-resultant of V │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc) │ │ │ + -- used 0.347356s (cpu); 0.265667s (thread); 0s (gc) │ │ │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ 2 2 2 2 2 │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ @@ -164,12 +164,12 @@ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : -- resultant of the three forms │ │ │ time resF = resultant F; │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc) │ │ │ + -- used 0.31243s (cpu); 0.238269s (thread); 0s (gc) │ │ │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres)) │ │ │ │ │ │ i9 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_discriminant_lp__Ring__Element_rp.out │ │ │ @@ -4,30 +4,30 @@ │ │ │ │ │ │ 2 2 │ │ │ o2 = a*x + b*x*y + c*y │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ i3 : time discriminant F │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc) │ │ │ + -- used 0.0114216s (cpu); 0.0114235s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o3 = - b + 4a*c │ │ │ │ │ │ o3 : ZZ[a..c] │ │ │ │ │ │ i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3 │ │ │ │ │ │ 3 2 2 3 │ │ │ o5 = a*x + b*x y + c*x*y + d*y │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ i6 : time discriminant F │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc) │ │ │ + -- used 0.0122756s (cpu); 0.0122773s (thread); 0s (gc) │ │ │ │ │ │ 2 2 3 3 2 2 │ │ │ o6 = - b c + 4a*c + 4b d - 18a*b*c*d + 27a d │ │ │ │ │ │ o6 : ZZ[a..d] │ │ │ │ │ │ i7 : x=symbol x; R=ZZ/331[x_0..x_3] │ │ │ @@ -59,15 +59,15 @@ │ │ │ 4 3 4 4 3 4 │ │ │ o12 = (t + t )x - t x x + t x + (t - t )x + t x x + t x │ │ │ 0 1 0 1 0 1 0 1 0 1 2 1 2 3 0 3 │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ i13 : time D=discriminant pencil │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc) │ │ │ + -- used 0.508756s (cpu); 0.446603s (thread); 0s (gc) │ │ │ │ │ │ 108 106 2 102 6 100 8 98 10 96 12 │ │ │ o13 = - 62t + 19t t + 160t t + 91t t + 129t t + 117t t + │ │ │ 0 0 1 0 1 0 1 0 1 0 1 │ │ │ ----------------------------------------------------------------------- │ │ │ 94 14 92 16 90 18 88 20 86 22 84 24 │ │ │ 161t t + 124t t - 82t t - 21t t - 49t t - 123t t + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_dual__Variety.out │ │ │ @@ -9,25 +9,25 @@ │ │ │ x x ) │ │ │ 0 3 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i2 : time V' = dualVariety V │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc) │ │ │ + -- used 0.188519s (cpu); 0.129596s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 5 │ │ │ │ │ │ i3 : time V == dualVariety V' │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc) │ │ │ + -- used 0.243304s (cpu); 0.178114s (thread); 0s (gc) │ │ │ │ │ │ o3 = true │ │ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ 3 2 2 3 2 2 2 │ │ │ o4 = a x + a x x + a x x + a x + a x x + a x x x + a x x + a x x + │ │ │ @@ -38,22 +38,22 @@ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ ZZ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc) │ │ │ + -- used 0.0829479s (cpu); 0.082949s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ 3331 0 9 │ │ │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc) │ │ │ + -- used 0.760722s (cpu); 0.688474s (thread); 0s (gc) │ │ │ │ │ │ ZZ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ 3331 0 9 │ │ │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_from__Plucker__To__Stiefel.out │ │ │ @@ -6,15 +6,15 @@ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc) │ │ │ + -- used 0.141521s (cpu); 0.0732298s (thread); 0s (gc) │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 2 │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ @@ -56,15 +56,15 @@ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ 0,0 1,3 │ │ │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc) │ │ │ + -- used 0.0533498s (cpu); 0.0533558s (thread); 0s (gc) │ │ │ │ │ │ 3 2 2 │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 3 2 │ │ │ 2x x + x + x │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ │ o4 : QQ[a ..a ] │ │ │ 0,0 1,1 │ │ │ │ │ │ i5 : w = chowForm C; │ │ │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s)) │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc) │ │ │ + -- used 0.0254632s (cpu); 0.0254639s (thread); 0s (gc) │ │ │ │ │ │ 3 2 3 2 │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 3 2 │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ @@ -130,14 +130,14 @@ │ │ │ 2 3 2 │ │ │ 2x x - x + x )} │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc) │ │ │ + -- used 0.0215474s (cpu); 0.0215521s (thread); 0s (gc) │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_hurwitz__Form.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ + -p + -p p + 7p p + 6p p + -p p + --p ) │ │ │ 4 3 9 0 4 1 4 2 4 9 3 4 10 4 │ │ │ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i2 : time hurwitzForm Q │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc) │ │ │ + -- used 0.0537307s (cpu); 0.0535482s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o2 = 11966535p + 14645610p p + 11354175p + 1666980p p + │ │ │ 0,1 0,1 0,2 0,2 0,1 1,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ 4456620p p + 1127196p + 54176850p p + 20326950p p + │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__Coisotropic.out │ │ │ @@ -26,15 +26,15 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o1 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i2 : time isCoisotropic w │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc) │ │ │ + -- used 0.00983881s (cpu); 0.00983762s (thread); 0s (gc) │ │ │ │ │ │ o2 = true │ │ │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ @@ -56,12 +56,12 @@ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ o3 : -------------------------------------- │ │ │ p p - p p + p p │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : time isCoisotropic w' │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc) │ │ │ + -- used 0.00874447s (cpu); 0.00874582s (thread); 0s (gc) │ │ │ │ │ │ o4 = false │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_is__In__Coisotropic.out │ │ │ @@ -31,12 +31,12 @@ │ │ │ 4 5 │ │ │ │ │ │ ZZ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc) │ │ │ + -- used 0.0235616s (cpu); 0.0235618s (thread); 0s (gc) │ │ │ │ │ │ o4 = true │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_macaulay__Formula.out │ │ │ @@ -13,15 +13,15 @@ │ │ │ 2 2 2 3 │ │ │ c x x x + c x x + c x x + c x x + c x } │ │ │ 4 0 1 2 7 1 2 5 0 2 8 1 2 9 2 │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc) │ │ │ + -- used 0.00432433s (cpu); 0.00432479s (thread); 0s (gc) │ │ │ │ │ │ o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0 0 0 0 0 0 0 0 0 0 0 │ │ │ | 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 0 │ │ │ | 0 0 a_0 0 a_1 a_2 0 a_3 a_4 a_5 0 0 0 0 0 0 0 │ │ │ | 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 0 │ │ │ | 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 0 │ │ │ | 0 0 0 0 0 a_0 0 0 a_1 a_2 0 0 a_3 a_4 a_5 0 0 │ │ │ @@ -78,15 +78,15 @@ │ │ │ 10 2 7 2 5 3 │ │ │ --p p + -p p + -p } │ │ │ 9 0 2 8 1 2 6 2 │ │ │ │ │ │ o3 : List │ │ │ │ │ │ i4 : time (D,D') = macaulayFormula F │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc) │ │ │ + -- used 0.00289871s (cpu); 0.00289702s (thread); 0s (gc) │ │ │ │ │ │ o4 = (| 9/2 9/4 3/4 7/4 7/9 7/10 0 0 0 0 0 0 0 0 0 │ │ │ | 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 0 │ │ │ | 0 0 9/2 0 9/4 3/4 0 7/4 7/9 7/10 0 0 0 0 0 │ │ │ | 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 0 │ │ │ | 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 0 │ │ │ | 0 0 0 0 0 9/2 0 0 9/4 3/4 0 0 7/4 7/9 7/10 │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_plucker.out │ │ │ @@ -9,29 +9,29 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ │ │ i4 : time p = plucker L │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc) │ │ │ + -- used 0.00598204s (cpu); 0.00598267s (thread); 0s (gc) │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ ------------------------------------------------------------------------ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ ------------------------------------------------------------------------ │ │ │ 11804x , x + 14854x ) │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ │ │ i5 : time L' = plucker p │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc) │ │ │ + -- used 0.12953s (cpu); 0.0626089s (thread); 0s (gc) │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ 2 3 4 1 3 4 0 3 │ │ │ ------------------------------------------------------------------------ │ │ │ 664x ) │ │ │ 4 │ │ │ │ │ │ @@ -40,25 +40,25 @@ │ │ │ i6 : assert(L' == L) │ │ │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc) │ │ │ + -- used 0.0397103s (cpu); 0.0397081s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ o9 : Sequence │ │ │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc) │ │ │ + -- used 0.179115s (cpu); 0.179121s (thread); 0s (gc) │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ │ │ i12 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp..._cm__Algorithm_eq_gt..._rp.out │ │ │ @@ -35,15 +35,15 @@ │ │ │ 3 2 9 7 2 9 3 1 8 4 │ │ │ -b)y*w + (-a + -b)z*w + (-a + 2b)w , 2x + -y + -z + -w} │ │ │ 4 8 8 7 4 3 5 │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant(F,Algorithm=>"Poisson2") │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc) │ │ │ + -- used 0.381587s (cpu); 0.230058s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o3 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -56,15 +56,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o3 : QQ[a..b] │ │ │ │ │ │ i4 : time resultant(F,Algorithm=>"Macaulay2") │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc) │ │ │ + -- used 0.181192s (cpu); 0.106558s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o4 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -77,15 +77,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o4 : QQ[a..b] │ │ │ │ │ │ i5 : time resultant(F,Algorithm=>"Poisson") │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc) │ │ │ + -- used 0.4153s (cpu); 0.355085s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o5 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ │ @@ -98,15 +98,15 @@ │ │ │ 1146977327343523453866040839029 4 194441910898734675845094443 5 │ │ │ -------------------------------a*b - ---------------------------b │ │ │ 1119954511872000000000 895963609497600000 │ │ │ │ │ │ o5 : QQ[a..b] │ │ │ │ │ │ i6 : time resultant(F,Algorithm=>"Macaulay") │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc) │ │ │ + -- used 0.648333s (cpu); 0.581225s (thread); 0s (gc) │ │ │ │ │ │ 21002161660529014459938925799 5 2085933800619238998825958079203 4 │ │ │ o6 = - -----------------------------a - -------------------------------a b - │ │ │ 2222549728809984000000 12700284164628480000000 │ │ │ ------------------------------------------------------------------------ │ │ │ 348237304382147063838108483692249 3 2 │ │ │ ---------------------------------a b - │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_resultant_lp__Matrix_rp.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ o2 : List │ │ │ │ │ │ i3 : time resultant F │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc) │ │ │ + -- used 0.0278475s (cpu); 0.0278464s (thread); 0s (gc) │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ ------------------------------------------------------------------------ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -64,15 +64,15 @@ │ │ │ 3 │ │ │ + c x } │ │ │ 9 2 │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : time resultant F │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc) │ │ │ + -- used 2.6244s (cpu); 2.06772s (thread); 0s (gc) │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ @@ -1690,12 +1690,12 @@ │ │ │ 2 2 2 2 │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ o6 : List │ │ │ │ │ │ i7 : time # terms resultant F │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc) │ │ │ + -- used 0.445132s (cpu); 0.384063s (thread); 0s (gc) │ │ │ │ │ │ o7 = 21894 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/example-output/_tangential__Chow__Form.out │ │ │ @@ -8,15 +8,15 @@ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ time tangentialChowForm(S,0) │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc) │ │ │ + -- used 0.0610464s (cpu); 0.0610476s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 │ │ │ p p - 2p p p - p p p │ │ │ @@ -26,15 +26,15 @@ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 0,4 1,4 2,4 3,4 │ │ │ o3 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ time tangentialChowForm(S,1) │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc) │ │ │ + -- used 0.156243s (cpu); 0.0923681s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 3 3 │ │ │ 4p p - 4p p - 2p p + │ │ │ @@ -68,32 +68,32 @@ │ │ │ 0,1,2 0,1,3 0,2,3 1,2,3 0,1,4 0,2,4 1,2,4 0,3,4 1,3,4 2,3,4 │ │ │ o4 : ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- │ │ │ (p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p , p p - p p + p p ) │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S) │ │ │ time tangentialChowForm(S,2) │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc) │ │ │ + -- used 0.043272s (cpu); 0.0432777s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o5 = p p - p p p + p p │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc) │ │ │ + -- used 0.13669s (cpu); 0.0656883s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ i7 : -- we then can recover S │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc) │ │ │ + -- used 0.172755s (cpu); 0.115538s (thread); 0s (gc) │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_cayley__Trick.html │ │ │ @@ -86,24 +86,24 @@ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2);
    │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc)
    │ │ │ + -- used 0.141126s (cpu); 0.0820603s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we calculate the defining ideal of $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its dual variety.

    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1)
    │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc)
    │ │ │ + -- used 0.153371s (cpu); 0.0934494s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                                             
    │ │ │  o4 = (ideal (x   x    - x   x   , x   x    - x   x   , x   x    - x   x   ,
    │ │ │                0,3 1,2    0,2 1,3   1,0 1,1    1,2 1,3   0,3 1,1    0,1 1,3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                                                              
    │ │ │       x   x    - x   x   , x   x    - x   x   , x   x    - x   x   , x   x   
    │ │ │ @@ -130,26 +130,26 @@
    │ │ │            
    │ │ │

    If the option Duality is set to true, then the method applies the so-called "dual Cayley trick".

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -38,20 +38,20 @@ │ │ │ │ │ │ │ │ o2 = ideal(x x - x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i3 : time (P1xP1xP2,P1xP1xP2') = cayleyTrick(P1xP1,2); │ │ │ │ - -- used 0.127171s (cpu); 0.070403s (thread); 0s (gc) │ │ │ │ + -- used 0.141126s (cpu); 0.0820603s (thread); 0s (gc) │ │ │ │ In the next example, we calculate the defining ideal of $\mathbb │ │ │ │ {P}^1\times\mathbb{P}^1\times\mathbb{P}^1\subset\mathbb{P}^7$ and that of its │ │ │ │ dual variety. │ │ │ │ i4 : time (P1xP1xP1,P1xP1xP1') = cayleyTrick(P1xP1,1) │ │ │ │ - -- used 0.124664s (cpu); 0.0700762s (thread); 0s (gc) │ │ │ │ + -- used 0.153371s (cpu); 0.0934494s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ o4 = (ideal (x x - x x , x x - x x , x x - x x , │ │ │ │ 0,3 1,2 0,2 1,3 1,0 1,1 1,2 1,3 0,3 1,1 0,1 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ │ │ │ │ x x - x x , x x - x x , x x - x x , x x │ │ │ │ @@ -73,18 +73,18 @@ │ │ │ │ 4x x x x - 2x x x x + x x )) │ │ │ │ 0,0 0,1 1,2 1,3 0,2 0,3 1,2 1,3 0,2 1,3 │ │ │ │ │ │ │ │ o4 : Sequence │ │ │ │ If the option Duality is set to true, then the method applies the so-called │ │ │ │ "dual Cayley trick". │ │ │ │ i5 : time cayleyTrick(P1xP1,1,Duality=>true); │ │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc) │ │ │ │ + -- used 0.195631s (cpu); 0.120686s (thread); 0s (gc) │ │ │ │ i6 : assert(oo == (P1xP1xP1,P1xP1xP1')) │ │ │ │ i7 : time cayleyTrick(P1xP1,2,Duality=>true); │ │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc) │ │ │ │ + -- used 0.177527s (cpu); 0.118732s (thread); 0s (gc) │ │ │ │ i8 : assert(oo == (P1xP1xP2,P1xP1xP2')) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_u_a_l_V_a_r_i_e_t_y -- projective dual variety │ │ │ │ ********** WWaayyss ttoo uussee ccaayylleeyyTTrriicckk:: ********** │ │ │ │ * cayleyTrick(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_a_y_l_e_y_T_r_i_c_k is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Equations.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o2 : Ideal of P3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time cayleyTrick(P1xP1,1,Duality=>true);
    │ │ │ - -- used 0.153844s (cpu); 0.0993609s (thread); 0s (gc)
    │ │ │ + -- used 0.195631s (cpu); 0.120686s (thread); 0s (gc) │ │ │
    │ │ │
    i6 : assert(oo == (P1xP1xP1,P1xP1xP1'))
    │ │ │
    │ │ │
    i7 : time cayleyTrick(P1xP1,2,Duality=>true);
    │ │ │ - -- used 0.197861s (cpu); 0.13749s (thread); 0s (gc)
    │ │ │ + -- used 0.177527s (cpu); 0.118732s (thread); 0s (gc) │ │ │
    │ │ │
    i8 : assert(oo == (P1xP1xP2,P1xP1xP2'))
    │ │ │
    │ │ │
    i3 : -- Chow equations of C
    │ │ │       time eqsC = chowEquations chowForm C
    │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc)
    │ │ │ + -- used 0.16126s (cpu); 0.0761374s (thread); 0s (gc)
    │ │ │  
    │ │ │               2 2    2 2    2 2    4                2      2 2   2      
    │ │ │  o3 = ideal (x x  + x x  + x x  + x , x x x x  + x x x  + x x , x x x  +
    │ │ │               0 3    1 3    2 3    3   0 1 2 3    1 2 3    2 3   0 2 3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2        3           2         2      3   3         2          2    2 2
    │ │ │       x x x  + x x  - 2x x x  - 2x x x  - x x , x x  + 2x x x  - x x x  + x x 
    │ │ │ @@ -162,15 +162,15 @@
    │ │ │  o5 : Ideal of P3
    │ │ │
    │ │ │
    i6 : -- Chow equations of D
    │ │ │       time eqsD = chowEquations chowForm D
    │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc)
    │ │ │ + -- used 0.157559s (cpu); 0.0697339s (thread); 0s (gc)
    │ │ │  
    │ │ │               4      3 2     3        2 2     3      2   2   2 2      2   2 
    │ │ │  o6 = ideal (x x  - x x , x x x  - x x x , x x x  - x x x , x x x  - x x x ,
    │ │ │               2 3    1 3   1 2 3    0 1 3   0 2 3    0 1 3   1 2 3    0 1 3 
    │ │ │       ------------------------------------------------------------------------
    │ │ │            2      3 2   3        3 2   4         2         2 2       3    
    │ │ │       x x x x  - x x , x x x  - x x , x x  - 4x x x x  + 3x x x , x x x  -
    │ │ │ @@ -222,30 +222,30 @@
    │ │ │  o9 : Ideal of P3
    │ │ │
    │ │ │
    i10 : -- tangential Chow forms of Q
    │ │ │        time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm(Q,1),tangentialChowForm(Q,2))
    │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc)
    │ │ │ + -- used 0.319342s (cpu); 0.165958s (thread); 0s (gc)
    │ │ │  
    │ │ │                       2                              2
    │ │ │  o10 = (x x  + x x , x    - 4x   x    + 2x   x    + x   , x     x      +
    │ │ │          0 1    2 3   0,1     0,2 1,3     0,1 2,3    2,3   0,1,2 0,1,3  
    │ │ │        -----------------------------------------------------------------------
    │ │ │        x     x     )
    │ │ │         0,2,3 1,2,3
    │ │ │  
    │ │ │  o10 : Sequence
    │ │ │
    │ │ │
    i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations(W2,2))
    │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc)
    │ │ │ + -- used 0.179542s (cpu); 0.104182s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │
    │ │ │

    Note that chowEquations(W,0) is not the same as chowEquations W.

    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,15 +28,15 @@ │ │ │ │ 2 2 2 2 │ │ │ │ o2 = ideal (x + x + x + x , x x + x x + x x ) │ │ │ │ 0 1 2 3 0 1 1 2 2 3 │ │ │ │ │ │ │ │ o2 : Ideal of P3 │ │ │ │ i3 : -- Chow equations of C │ │ │ │ time eqsC = chowEquations chowForm C │ │ │ │ - -- used 0.127688s (cpu); 0.062s (thread); 0s (gc) │ │ │ │ + -- used 0.16126s (cpu); 0.0761374s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 4 2 2 2 2 │ │ │ │ o3 = ideal (x x + x x + x x + x , x x x x + x x x + x x , x x x + │ │ │ │ 0 3 1 3 2 3 3 0 1 2 3 1 2 3 2 3 0 2 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 2 3 3 2 2 2 2 │ │ │ │ x x x + x x - 2x x x - 2x x x - x x , x x + 2x x x - x x x + x x │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ 2 3 2 2 │ │ │ │ o5 = ideal (x - x x , x - x x x , x x - x x ) │ │ │ │ 1 0 2 2 0 1 3 1 2 0 3 │ │ │ │ │ │ │ │ o5 : Ideal of P3 │ │ │ │ i6 : -- Chow equations of D │ │ │ │ time eqsD = chowEquations chowForm D │ │ │ │ - -- used 0.113843s (cpu); 0.0571957s (thread); 0s (gc) │ │ │ │ + -- used 0.157559s (cpu); 0.0697339s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 3 2 3 2 2 3 2 2 2 2 2 2 │ │ │ │ o6 = ideal (x x - x x , x x x - x x x , x x x - x x x , x x x - x x x , │ │ │ │ 2 3 1 3 1 2 3 0 1 3 0 2 3 0 1 3 1 2 3 0 1 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 3 2 4 2 2 2 3 │ │ │ │ x x x x - x x , x x x - x x , x x - 4x x x x + 3x x x , x x x - │ │ │ │ @@ -135,27 +135,27 @@ │ │ │ │ o9 = ideal(x x + x x ) │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o9 : Ideal of P3 │ │ │ │ i10 : -- tangential Chow forms of Q │ │ │ │ time (W0,W1,W2) = (tangentialChowForm(Q,0),tangentialChowForm │ │ │ │ (Q,1),tangentialChowForm(Q,2)) │ │ │ │ - -- used 0.158592s (cpu); 0.109834s (thread); 0s (gc) │ │ │ │ + -- used 0.319342s (cpu); 0.165958s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o10 = (x x + x x , x - 4x x + 2x x + x , x x + │ │ │ │ 0 1 2 3 0,1 0,2 1,3 0,1 2,3 2,3 0,1,2 0,1,3 │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ x x ) │ │ │ │ 0,2,3 1,2,3 │ │ │ │ │ │ │ │ o10 : Sequence │ │ │ │ i11 : time (Q,Q,Q) == (chowEquations(W0,0),chowEquations(W1,1),chowEquations │ │ │ │ (W2,2)) │ │ │ │ - -- used 0.150222s (cpu); 0.0893773s (thread); 0s (gc) │ │ │ │ + -- used 0.179542s (cpu); 0.104182s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ Note that chowEquations(W,0) is not the same as chowEquations W. │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwEEqquuaattiioonnss:: ********** │ │ │ │ * chowEquations(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _c_h_o_w_E_q_u_a_t_i_o_n_s is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 3331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an affine chart of the Grassmannian)
    │ │ │       time ChowV = chowForm(V,AffineChartGrass=>{1,2,3})
    │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc)
    │ │ │ + -- used 5.7443s (cpu); 5.31956s (thread); 0s (gc)
    │ │ │  
    │ │ │        4               2              2     2               2            
    │ │ │  o3 = x      + 2x     x     x      + x     x      - 2x     x     x      +
    │ │ │        1,2,4     0,2,4 1,2,4 2,3,4    0,2,4 2,3,4     1,2,3 1,2,4 1,2,5  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2     2              2                                       
    │ │ │       x     x      - x     x     x      + x     x     x     x      +
    │ │ │ @@ -227,22 +227,22 @@
    │ │ │         2,3,5 1,4,5    1,3,5 2,4,5    1,2,5 3,4,5   2,3,4 1,4,5    1,3,4 2,4,5    1,2,4 3,4,5   2,3,5 0,4,5    0,3,5 2,4,5    0,2,5 3,4,5   1,3,5 0,4,5    0,3,5 1,4,5    0,1,5 3,4,5   1,2,5 0,4,5    0,2,5 1,4,5    0,1,5 2,4,5   2,3,4 0,4,5    0,3,4 2,4,5    0,2,4 3,4,5   1,3,4 0,4,5    0,3,4 1,4,5    0,1,4 3,4,5   1,2,4 0,4,5    0,2,4 1,4,5    0,1,4 2,4,5   1,2,3 0,4,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 1,3,5    1,3,4 2,3,5    1,2,3 3,4,5   1,2,5 0,3,5    0,2,5 1,3,5    0,1,5 2,3,5   2,3,4 0,3,5    0,3,4 2,3,5    0,2,3 3,4,5   1,3,4 0,3,5    0,3,4 1,3,5    0,1,3 3,4,5   1,2,4 0,3,5    0,2,4 1,3,5    0,1,4 2,3,5    0,1,2 3,4,5   1,2,3 0,3,5    0,2,3 1,3,5    0,1,3 2,3,5   2,3,4 1,2,5    1,2,4 2,3,5    1,2,3 2,4,5   1,3,4 1,2,5    1,2,4 1,3,5    1,2,3 1,4,5   0,3,4 1,2,5    0,2,4 1,3,5    0,1,4 2,3,5    0,2,3 1,4,5    0,1,3 2,4,5    0,1,2 3,4,5   2,3,4 0,2,5    0,2,4 2,3,5    0,2,3 2,4,5   1,3,4 0,2,5    0,2,4 1,3,5    0,2,3 1,4,5    0,1,2 3,4,5   0,3,4 0,2,5    0,2,4 0,3,5    0,2,3 0,4,5   1,2,4 0,2,5    0,2,4 1,2,5    0,1,2 2,4,5   1,2,3 0,2,5    0,2,3 1,2,5    0,1,2 2,3,5   2,3,4 0,1,5    0,1,4 2,3,5    0,1,3 2,4,5    0,1,2 3,4,5   1,3,4 0,1,5    0,1,4 1,3,5    0,1,3 1,4,5   0,3,4 0,1,5    0,1,4 0,3,5    0,1,3 0,4,5   1,2,4 0,1,5    0,1,4 1,2,5    0,1,2 1,4,5   0,2,4 0,1,5    0,1,4 0,2,5    0,1,2 0,4,5   1,2,3 0,1,5    0,1,3 1,2,5    0,1,2 1,3,5   0,2,3 0,1,5    0,1,3 0,2,5    0,1,2 0,3,5   1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- equivalently (but faster)...
    │ │ │       time assert(ChowV === chowForm f)
    │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc)
    │ │ │ + -- used 1.26197s (cpu); 1.18582s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- X-resultant of V
    │ │ │       time Xres = fromPluckerToStiefel dualize ChowV;
    │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc)
    │ │ │ + -- used 0.347356s (cpu); 0.265667s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- three generic ternary quadrics
    │ │ │       F = genericPolynomials({2,2,2},ZZ/3331)
    │ │ │  
    │ │ │ @@ -257,15 +257,15 @@
    │ │ │  o6 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- resultant of the three forms
    │ │ │       time resF = resultant F;
    │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc)
    │ │ │ + -- used 0.31243s (cpu); 0.238269s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring Xres))
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ │ │ │ │ ZZ │ │ │ │ o2 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 5 │ │ │ │ i3 : -- Chow form of V in Grass(2,5) (performing internal computations on an │ │ │ │ affine chart of the Grassmannian) │ │ │ │ time ChowV = chowForm(V,AffineChartGrass=>{1,2,3}) │ │ │ │ - -- used 5.31048s (cpu); 4.82715s (thread); 0s (gc) │ │ │ │ + -- used 5.7443s (cpu); 5.31956s (thread); 0s (gc) │ │ │ │ │ │ │ │ 4 2 2 2 2 │ │ │ │ o3 = x + 2x x x + x x - 2x x x + │ │ │ │ 1,2,4 0,2,4 1,2,4 2,3,4 0,2,4 2,3,4 1,2,3 1,2,4 1,2,5 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 │ │ │ │ x x - x x x + x x x x + │ │ │ │ @@ -234,33 +234,33 @@ │ │ │ │ 1,4,5 0,2,4 0,1,5 0,1,4 0,2,5 0,1,2 0,4,5 1,2,3 0,1,5 0,1,3 1,2,5 │ │ │ │ 0,1,2 1,3,5 0,2,3 0,1,5 0,1,3 0,2,5 0,1,2 0,3,5 1,2,4 0,3,4 0,2,4 │ │ │ │ 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 0,1,3 2,3,4 1,2,3 0,2,4 │ │ │ │ 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 1,2,4 0,1,2 1,3,4 0,2,3 │ │ │ │ 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i4 : -- equivalently (but faster)... │ │ │ │ time assert(ChowV === chowForm f) │ │ │ │ - -- used 1.12682s (cpu); 0.99711s (thread); 0s (gc) │ │ │ │ + -- used 1.26197s (cpu); 1.18582s (thread); 0s (gc) │ │ │ │ i5 : -- X-resultant of V │ │ │ │ time Xres = fromPluckerToStiefel dualize ChowV; │ │ │ │ - -- used 0.235111s (cpu); 0.179065s (thread); 0s (gc) │ │ │ │ + -- used 0.347356s (cpu); 0.265667s (thread); 0s (gc) │ │ │ │ i6 : -- three generic ternary quadrics │ │ │ │ F = genericPolynomials({2,2,2},ZZ/3331) │ │ │ │ │ │ │ │ 2 2 2 2 2 │ │ │ │ o6 = {a x + a x x + a x + a x x + a x x + a x , b x + b x x + b x + │ │ │ │ 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : -- resultant of the three forms │ │ │ │ time resF = resultant F; │ │ │ │ - -- used 0.285058s (cpu); 0.174585s (thread); 0s (gc) │ │ │ │ + -- used 0.31243s (cpu); 0.238269s (thread); 0s (gc) │ │ │ │ i8 : assert(resF === sub(Xres,vars ring resF) and Xres === sub(resF,vars ring │ │ │ │ Xres)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _h_u_r_w_i_t_z_F_o_r_m -- Hurwitz form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee cchhoowwFFoorrmm:: ********** │ │ │ │ * chowForm(Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_discriminant_lp__Ring__Element_rp.html │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ │ o2 : ZZ[a..c][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time discriminant F
    │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc)
    │ │ │ + -- used 0.0114216s (cpu); 0.0114235s (thread); 0s (gc)
    │ │ │  
    │ │ │          2
    │ │ │  o3 = - b  + 4a*c
    │ │ │  
    │ │ │  o3 : ZZ[a..c]
    │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o5 : ZZ[a..d][x..y] │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time discriminant F
    │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc)
    │ │ │ + -- used 0.0122756s (cpu); 0.0122773s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2       3     3                   2 2
    │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │  
    │ │ │  o6 : ZZ[a..d]
    │ │ │ │ │ │ │ │ │ @@ -165,15 +165,15 @@ │ │ │ │ │ │ o12 : R' │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time D=discriminant pencil
    │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc)
    │ │ │ + -- used 0.508756s (cpu); 0.446603s (thread); 0s (gc)
    │ │ │  
    │ │ │             108      106 2       102 6      100 8       98 10       96 12  
    │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │             0        0   1       0   1      0   1       0  1        0  1   
    │ │ │        -----------------------------------------------------------------------
    │ │ │            94 14       92 16      90 18      88 20      86 22       84 24  
    │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,28 +23,28 @@
    │ │ │ │  i1 : ZZ[a,b,c][x,y]; F = a*x^2+b*x*y+c*y^2
    │ │ │ │  
    │ │ │ │          2              2
    │ │ │ │  o2 = a*x  + b*x*y + c*y
    │ │ │ │  
    │ │ │ │  o2 : ZZ[a..c][x..y]
    │ │ │ │  i3 : time discriminant F
    │ │ │ │ - -- used 0.00807841s (cpu); 0.00807736s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0114216s (cpu); 0.0114235s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2
    │ │ │ │  o3 = - b  + 4a*c
    │ │ │ │  
    │ │ │ │  o3 : ZZ[a..c]
    │ │ │ │  i4 : ZZ[a,b,c,d][x,y]; F = a*x^3+b*x^2*y+c*x*y^2+d*y^3
    │ │ │ │  
    │ │ │ │          3      2         2      3
    │ │ │ │  o5 = a*x  + b*x y + c*x*y  + d*y
    │ │ │ │  
    │ │ │ │  o5 : ZZ[a..d][x..y]
    │ │ │ │  i6 : time discriminant F
    │ │ │ │ - -- used 0.0087506s (cpu); 0.00875122s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0122756s (cpu); 0.0122773s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2 2       3     3                   2 2
    │ │ │ │  o6 = - b c  + 4a*c  + 4b d - 18a*b*c*d + 27a d
    │ │ │ │  
    │ │ │ │  o6 : ZZ[a..d]
    │ │ │ │  The next example illustrates how computing the intersection of a pencil
    │ │ │ │  generated by two degree $d$ forms $F(x_0,\ldots,x_n), G(x_0,\ldots,x_n)$ with
    │ │ │ │ @@ -74,15 +74,15 @@
    │ │ │ │  
    │ │ │ │                  4        3      4             4        3      4
    │ │ │ │  o12 = (t  + t )x  - t x x  + t x  + (t  - t )x  + t x x  + t x
    │ │ │ │          0    1  0    1 0 1    0 1     0    1  2    1 2 3    0 3
    │ │ │ │  
    │ │ │ │  o12 : R'
    │ │ │ │  i13 : time D=discriminant pencil
    │ │ │ │ - -- used 0.461801s (cpu); 0.427218s (thread); 0s (gc)
    │ │ │ │ + -- used 0.508756s (cpu); 0.446603s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │             108      106 2       102 6      100 8       98 10       96 12
    │ │ │ │  o13 = - 62t    + 19t   t  + 160t   t  + 91t   t  + 129t  t   + 117t  t   +
    │ │ │ │             0        0   1       0   1      0   1       0  1        0  1
    │ │ │ │        -----------------------------------------------------------------------
    │ │ │ │            94 14       92 16      90 18      88 20      86 22       84 24
    │ │ │ │        161t  t   + 124t  t   - 82t  t   - 21t  t   - 49t  t   - 123t  t   +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_dual__Variety.html
    │ │ │ @@ -90,28 +90,28 @@
    │ │ │  o1 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time V' = dualVariety V
    │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc)
    │ │ │ + -- used 0.188519s (cpu); 0.129596s (thread); 0s (gc)
    │ │ │  
    │ │ │              2                 2    2
    │ │ │  o2 = ideal(x x  - x x x  + x x  + x x  - 4x x x )
    │ │ │              2 3    1 2 4    0 4    1 5     0 3 5
    │ │ │  
    │ │ │  o2 : Ideal of QQ[x ..x ]
    │ │ │                    0   5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time V == dualVariety V'
    │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc)
    │ │ │ + -- used 0.243304s (cpu); 0.178114s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = true
    │ │ │ │ │ │ │ │ │ │ │ │

    In the next example, we verify that the discriminant of a generic ternary cubic form coincides with the dual variety of the 3-th Veronese embedding of the plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$

    │ │ │ │ │ │ @@ -131,25 +131,25 @@ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ 3331 0 9 0 2 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -31,24 +31,24 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ x x ) │ │ │ │ 0 3 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i2 : time V' = dualVariety V │ │ │ │ - -- used 0.170711s (cpu); 0.119239s (thread); 0s (gc) │ │ │ │ + -- used 0.188519s (cpu); 0.129596s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 │ │ │ │ o2 = ideal(x x - x x x + x x + x x - 4x x x ) │ │ │ │ 2 3 1 2 4 0 4 1 5 0 3 5 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[x ..x ] │ │ │ │ 0 5 │ │ │ │ i3 : time V == dualVariety V' │ │ │ │ - -- used 0.204333s (cpu); 0.146742s (thread); 0s (gc) │ │ │ │ + -- used 0.243304s (cpu); 0.178114s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = true │ │ │ │ In the next example, we verify that the discriminant of a generic ternary cubic │ │ │ │ form coincides with the dual variety of the 3-th Veronese embedding of the │ │ │ │ plane, which is a hypersurface of degree 12 in $\mathbb{P}^9$ │ │ │ │ i4 : F = first genericPolynomials({3,-1,-1},ZZ/3331) │ │ │ │ │ │ │ │ @@ -60,21 +60,21 @@ │ │ │ │ a x x + a x │ │ │ │ 8 1 2 9 2 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o4 : ----[a ..a ][x ..x ] │ │ │ │ 3331 0 9 0 2 │ │ │ │ i5 : time discF = ideal discriminant F; │ │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc) │ │ │ │ + -- used 0.0829479s (cpu); 0.082949s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o5 : Ideal of ----[a ..a ] │ │ │ │ 3331 0 9 │ │ │ │ i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true); │ │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc) │ │ │ │ + -- used 0.760722s (cpu); 0.688474s (thread); 0s (gc) │ │ │ │ │ │ │ │ ZZ │ │ │ │ o6 : Ideal of ----[x ..x ] │ │ │ │ 3331 0 9 │ │ │ │ i7 : discF == sub(Z,vars ring discF) and Z == sub(discF,vars ring Z) │ │ │ │ │ │ │ │ o7 = true │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_from__Plucker__To__Stiefel.html │ │ │ @@ -85,15 +85,15 @@ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ 0 3 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : time discF = ideal discriminant F;
    │ │ │ - -- used 0.0566354s (cpu); 0.0566377s (thread); 0s (gc)
    │ │ │ + -- used 0.0829479s (cpu); 0.082949s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o5 : Ideal of ----[a ..a ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i6 : time Z = dualVariety(veronese(2,3,ZZ/3331),AssumeOrdinary=>true);
    │ │ │ - -- used 0.611958s (cpu); 0.563695s (thread); 0s (gc)
    │ │ │ + -- used 0.760722s (cpu); 0.688474s (thread); 0s (gc)
    │ │ │  
    │ │ │                 ZZ
    │ │ │  o6 : Ideal of ----[x ..x ]
    │ │ │                3331  0   9
    │ │ │
    │ │ │
    i2 : time fromPluckerToStiefel dualize chowForm C
    │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc)
    │ │ │ + -- used 0.141521s (cpu); 0.0732298s (thread); 0s (gc)
    │ │ │  
    │ │ │          3   3          2   2              2       2          2   3    
    │ │ │  o2 = - x   x    + x   x   x   x    - x   x   x   x    + x   x   x    -
    │ │ │          0,3 1,0    0,2 0,3 1,0 1,1    0,1 0,3 1,0 1,1    0,0 0,3 1,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2       2               2   2                                   
    │ │ │       x   x   x   x    + 2x   x   x   x    + x   x   x   x   x   x    -
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  o2 : QQ[x   ..x   ]
    │ │ │           0,0   1,3
    │ │ │
    │ │ │
    i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1})
    │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc)
    │ │ │ + -- used 0.0533498s (cpu); 0.0533558s (thread); 0s (gc)
    │ │ │  
    │ │ │              3          2                         2                        
    │ │ │  o3 = - x   x    + x   x   x    - x   x   x    + x   x    + 3x   x   x    -
    │ │ │          0,3 1,2    0,2 1,2 1,3    0,2 0,3 1,2    0,2 1,3     0,3 1,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │             2      3      2
    │ │ │       2x   x    + x    + x
    │ │ │ @@ -179,15 +179,15 @@
    │ │ │              
    │ │ │
    i5 : w = chowForm C;
    │ │ │
    │ │ │
    i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel(w,AffineChartGrass=>s))
    │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc)
    │ │ │ + -- used 0.0254632s (cpu); 0.0254639s (thread); 0s (gc)
    │ │ │  
    │ │ │                     3          2          3                       2        
    │ │ │  o6 = {ideal(- x   x    + x   x   x    - x    - 3x   x   x    + 2x   x    +
    │ │ │                 0,3 1,2    0,2 1,2 1,3    0,2     0,2 0,3 1,2     0,2 1,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2      2            2   3               2        
    │ │ │       x   x   x    - x   x    + x   ), ideal(x   x    - 2x   x   x   x    +
    │ │ │ @@ -227,15 +227,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time apply(U,u->dim singularLocus u)
    │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc)
    │ │ │ + -- used 0.0215474s (cpu); 0.0215521s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {2, 2, 2, 2, 2, 2}
    │ │ │  
    │ │ │  o7 : List
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ 2 2 │ │ │ │ o1 = ideal (x - x x , x x - x x , x - x x ) │ │ │ │ 2 1 3 1 2 0 3 1 0 2 │ │ │ │ │ │ │ │ o1 : Ideal of QQ[x ..x ] │ │ │ │ 0 3 │ │ │ │ i2 : time fromPluckerToStiefel dualize chowForm C │ │ │ │ - -- used 0.110649s (cpu); 0.0580797s (thread); 0s (gc) │ │ │ │ + -- used 0.141521s (cpu); 0.0732298s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 3 2 2 2 2 2 3 │ │ │ │ o2 = - x x + x x x x - x x x x + x x x - │ │ │ │ 0,3 1,0 0,2 0,3 1,0 1,1 0,1 0,3 1,0 1,1 0,0 0,3 1,1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ x x x x + 2x x x x + x x x x x x - │ │ │ │ @@ -75,15 +75,15 @@ │ │ │ │ 2 2 2 2 2 2 3 3 │ │ │ │ x x x x - 2x x x x - x x x x + x x │ │ │ │ 0,0 0,1 1,1 1,3 0,0 0,2 1,1 1,3 0,0 0,1 1,2 1,3 0,0 1,3 │ │ │ │ │ │ │ │ o2 : QQ[x ..x ] │ │ │ │ 0,0 1,3 │ │ │ │ i3 : time fromPluckerToStiefel(dualize chowForm C,AffineChartGrass=>{0,1}) │ │ │ │ - -- used 0.040301s (cpu); 0.0403043s (thread); 0s (gc) │ │ │ │ + -- used 0.0533498s (cpu); 0.0533558s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 │ │ │ │ o3 = - x x + x x x - x x x + x x + 3x x x - │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,3 1,2 0,2 1,3 0,3 1,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x + x + x │ │ │ │ @@ -105,15 +105,15 @@ │ │ │ │ o4 : QQ[a ..a ] │ │ │ │ 0,0 1,1 │ │ │ │ As another application, we check that the singular locus of the Chow form of │ │ │ │ the twisted cubic has dimension 2 (on each standard chart). │ │ │ │ i5 : w = chowForm C; │ │ │ │ i6 : time U = apply(subsets(4,2),s->ideal fromPluckerToStiefel │ │ │ │ (w,AffineChartGrass=>s)) │ │ │ │ - -- used 0.0190728s (cpu); 0.0190737s (thread); 0s (gc) │ │ │ │ + -- used 0.0254632s (cpu); 0.0254639s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 3 2 │ │ │ │ o6 = {ideal(- x x + x x x - x - 3x x x + 2x x + │ │ │ │ 0,3 1,2 0,2 1,2 1,3 0,2 0,2 0,3 1,2 0,2 1,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 3 2 │ │ │ │ x x x - x x + x ), ideal(x x - 2x x x x + │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 │ │ │ │ 2x x - x + x )} │ │ │ │ 0,0 1,1 1,1 1,0 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time apply(U,u->dim singularLocus u) │ │ │ │ - -- used 0.0170671s (cpu); 0.0170726s (thread); 0s (gc) │ │ │ │ + -- used 0.0215474s (cpu); 0.0215521s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {2, 2, 2, 2, 2, 2} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ ********** WWaayyss ttoo uussee ffrroommPPlluucckkeerrTTooSSttiieeffeell:: ********** │ │ │ │ * fromPluckerToStiefel(Ideal) │ │ │ │ * fromPluckerToStiefel(Matrix) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_hurwitz__Form.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ o1 : Ideal of QQ[p ..p ] │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time hurwitzForm Q
    │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc)
    │ │ │ + -- used 0.0537307s (cpu); 0.0535482s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                 2                      
    │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │                0,1            0,1 0,2            0,2           0,1 1,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                                 2                                          
    │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │         5 2   7                       2        3 2
    │ │ │ │       + -p  + -p p  + 7p p  + 6p p  + -p p  + --p )
    │ │ │ │         4 3   9 0 4     1 4     2 4   9 3 4   10 4
    │ │ │ │  
    │ │ │ │  o1 : Ideal of QQ[p ..p ]
    │ │ │ │                    0   4
    │ │ │ │  i2 : time hurwitzForm Q
    │ │ │ │ - -- used 0.0393717s (cpu); 0.0393716s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0537307s (cpu); 0.0535482s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                2                                 2
    │ │ │ │  o2 = 11966535p    + 14645610p   p    + 11354175p    + 1666980p   p    +
    │ │ │ │                0,1            0,1 0,2            0,2           0,1 1,2
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                                 2
    │ │ │ │       4456620p   p    + 1127196p    + 54176850p   p    + 20326950p   p    +
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__Coisotropic.html
    │ │ │ @@ -104,15 +104,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time isCoisotropic w
    │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc)
    │ │ │ + -- used 0.00983881s (cpu); 0.00983762s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- random quadric in G(1,3)
    │ │ │ @@ -140,15 +140,15 @@
    │ │ │           p   p    - p   p    + p   p
    │ │ │            1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isCoisotropic w'
    │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc)
    │ │ │ + -- used 0.00874447s (cpu); 0.00874582s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = false
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -44,15 +44,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o1 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i2 : time isCoisotropic w │ │ │ │ - -- used 0.00787565s (cpu); 0.00787232s (thread); 0s (gc) │ │ │ │ + -- used 0.00983881s (cpu); 0.00983762s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = true │ │ │ │ i3 : -- random quadric in G(1,3) │ │ │ │ w' = random(2,Grass(1,3)) │ │ │ │ │ │ │ │ 2 5 10 2 2 2 3 │ │ │ │ o3 = 6p + -p p + --p + -p p + 10p p + 5p + --p p │ │ │ │ @@ -72,15 +72,15 @@ │ │ │ │ │ │ │ │ QQ[p ..p , p , p , p , p ] │ │ │ │ 0,1 0,2 1,2 0,3 1,3 2,3 │ │ │ │ o3 : -------------------------------------- │ │ │ │ p p - p p + p p │ │ │ │ 1,2 0,3 0,2 1,3 0,1 2,3 │ │ │ │ i4 : time isCoisotropic w' │ │ │ │ - -- used 0.00654309s (cpu); 0.00654341s (thread); 0s (gc) │ │ │ │ + -- used 0.00874447s (cpu); 0.00874582s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = false │ │ │ │ ********** WWaayyss ttoo uussee iissCCooiissoottrrooppiicc:: ********** │ │ │ │ * isCoisotropic(RingElement) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_i_s_o_t_r_o_p_i_c is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_is__In__Coisotropic.html │ │ │ @@ -117,15 +117,15 @@ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ 33331 0 5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I))
    │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc)
    │ │ │ + -- used 0.0235616s (cpu); 0.0235618s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ 2380x + 9482x ) │ │ │ │ 4 5 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : Ideal of -----[x ..x ] │ │ │ │ 33331 0 5 │ │ │ │ i4 : time isInCoisotropic(L,I) -- whether L belongs to Z_1(V(I)) │ │ │ │ - -- used 0.0197451s (cpu); 0.0197449s (thread); 0s (gc) │ │ │ │ + -- used 0.0235616s (cpu); 0.0235618s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_a_n_g_e_n_t_i_a_l_C_h_o_w_F_o_r_m -- higher Chow forms of a projective variety │ │ │ │ * _p_l_u_c_k_e_r -- get the Plücker coordinates of a linear subspace │ │ │ │ ********** WWaayyss ttoo uussee iissIInnCCooiissoottrrooppiicc:: ********** │ │ │ │ * isInCoisotropic(Ideal,Ideal) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_macaulay__Formula.html │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc)
    │ │ │ + -- used 0.00432433s (cpu); 0.00432479s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0  
    │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0  
    │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0  
    │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0  
    │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0  
    │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0  
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (D,D') = macaulayFormula F
    │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc)
    │ │ │ + -- used 0.00289871s (cpu); 0.00289702s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0   
    │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0   
    │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0   
    │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0   
    │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0   
    │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -28,15 +28,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                     2          2        2      3
    │ │ │ │       c x x x  + c x x  + c x x  + c x x  + c x }
    │ │ │ │        4 0 1 2    7 1 2    5 0 2    8 1 2    9 2
    │ │ │ │  
    │ │ │ │  o1 : List
    │ │ │ │  i2 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00462514s (cpu); 0.00462065s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00432433s (cpu); 0.00432479s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o2 = (| a_0 a_1 a_2 a_3 a_4 a_5 0   0   0   0   0   0   0   0   0   0   0
    │ │ │ │        | 0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0   0
    │ │ │ │        | 0   0   a_0 0   a_1 a_2 0   a_3 a_4 a_5 0   0   0   0   0   0   0
    │ │ │ │        | 0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0   0
    │ │ │ │        | 0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0   0
    │ │ │ │        | 0   0   0   0   0   a_0 0   0   a_1 a_2 0   0   a_3 a_4 a_5 0   0
    │ │ │ │ @@ -91,15 +91,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       10   2   7   2   5 3
    │ │ │ │       --p p  + -p p  + -p }
    │ │ │ │        9 0 2   8 1 2   6 2
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : time (D,D') = macaulayFormula F
    │ │ │ │ - -- used 0.00237921s (cpu); 0.00238132s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00289871s (cpu); 0.00289702s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = (| 9/2 9/4 3/4 7/4  7/9  7/10 0    0    0    0    0   0   0    0    0
    │ │ │ │        | 0   9/2 0   9/4  3/4  0    7/4  7/9  7/10 0    0   0   0    0    0
    │ │ │ │        | 0   0   9/2 0    9/4  3/4  0    7/4  7/9  7/10 0   0   0    0    0
    │ │ │ │        | 0   0   0   9/2  0    0    9/4  3/4  0    0    7/4 7/9 7/10 0    0
    │ │ │ │        | 0   0   0   0    9/2  0    0    9/4  3/4  0    0   7/4 7/9  7/10 0
    │ │ │ │        | 0   0   0   0    0    9/2  0    0    9/4  3/4  0   0   7/4  7/9  7/10
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_plucker.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o3 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time p = plucker L
    │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc)
    │ │ │ + -- used 0.00598204s (cpu); 0.00598267s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = ideal (x    + 8480x   , x    - 6727x   , x    + 15777x   , x    +
    │ │ │               2,4        3,4   1,4        3,4   0,4         3,4   2,3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       11656x   , x    - 14853x   , x    + 664x   , x    + 13522x   , x    +
    │ │ │             3,4   1,3         3,4   0,3       3,4   1,2         3,4   0,2  
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o4 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time L' = plucker p
    │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc)
    │ │ │ + -- used 0.12953s (cpu); 0.0626089s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = ideal (x  + 8480x  - 11656x , x  - 6727x  + 14853x , x  + 15777x  -
    │ │ │               2        3         4   1        3         4   0         3  
    │ │ │       ------------------------------------------------------------------------
    │ │ │       664x )
    │ │ │           4
    │ │ │  
    │ │ │ @@ -138,15 +138,15 @@
    │ │ │  
    │ │ │  o7 : Ideal of G'1'4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time W = plucker Y; -- surface swept out by the lines of Y
    │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc)
    │ │ │ + -- used 0.0397103s (cpu); 0.0397081s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of P4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : (codim W,degree W)
    │ │ │ @@ -158,15 +158,15 @@
    │ │ │            
    │ │ │          
    │ │ │          

    In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb{P}^n)$ by computing the Fano variety of $k$-planes contained in $W$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i10 : time Y' = plucker(W,1); -- variety of lines contained in W
    │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc)
    │ │ │ + -- used 0.179115s (cpu); 0.179121s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of G'1'4
    │ │ │
    │ │ │
    i11 : assert(Y' == Y)
    │ │ │ ├── html2text {} │ │ │ │ @@ -28,28 +28,28 @@ │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ o3 : Ideal of P4 │ │ │ │ i4 : time p = plucker L │ │ │ │ - -- used 0.00452289s (cpu); 0.00452084s (thread); 0s (gc) │ │ │ │ + -- used 0.00598204s (cpu); 0.00598267s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = ideal (x + 8480x , x - 6727x , x + 15777x , x + │ │ │ │ 2,4 3,4 1,4 3,4 0,4 3,4 2,3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11656x , x - 14853x , x + 664x , x + 13522x , x + │ │ │ │ 3,4 1,3 3,4 0,3 3,4 1,2 3,4 0,2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 11804x , x + 14854x ) │ │ │ │ 3,4 0,1 3,4 │ │ │ │ │ │ │ │ o4 : Ideal of G'1'4 │ │ │ │ i5 : time L' = plucker p │ │ │ │ - -- used 0.111022s (cpu); 0.0535001s (thread); 0s (gc) │ │ │ │ + -- used 0.12953s (cpu); 0.0626089s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = ideal (x + 8480x - 11656x , x - 6727x + 14853x , x + 15777x - │ │ │ │ 2 3 4 1 3 4 0 3 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 664x ) │ │ │ │ 4 │ │ │ │ │ │ │ │ @@ -60,26 +60,26 @@ │ │ │ │ $W\subset\mathbb{P}^n$ swept out by the linear spaces corresponding to points │ │ │ │ of $Y$. As an example, we now compute a surface scroll $W\subset\mathbb{P}^4$ │ │ │ │ over an elliptic curve $Y\subset\mathbb{G}(1,\mathbb{P}^4)$. │ │ │ │ i7 : Y = ideal apply(5,i->random(1,G'1'4)); -- an elliptic curve │ │ │ │ │ │ │ │ o7 : Ideal of G'1'4 │ │ │ │ i8 : time W = plucker Y; -- surface swept out by the lines of Y │ │ │ │ - -- used 0.0361963s (cpu); 0.0361951s (thread); 0s (gc) │ │ │ │ + -- used 0.0397103s (cpu); 0.0397081s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of P4 │ │ │ │ i9 : (codim W,degree W) │ │ │ │ │ │ │ │ o9 = (2, 5) │ │ │ │ │ │ │ │ o9 : Sequence │ │ │ │ In this example, we can recover the subvariety $Y\subset\mathbb{G}(k,\mathbb │ │ │ │ {P}^n)$ by computing the Fano variety of $k$-planes contained in $W$. │ │ │ │ i10 : time Y' = plucker(W,1); -- variety of lines contained in W │ │ │ │ - -- used 0.142146s (cpu); 0.142149s (thread); 0s (gc) │ │ │ │ + -- used 0.179115s (cpu); 0.179121s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of G'1'4 │ │ │ │ i11 : assert(Y' == Y) │ │ │ │ WWaarrnniinngg: Notice that, by default, the computation is done on a randomly chosen │ │ │ │ affine chart on the Grassmannian. To change this behavior, you can use the │ │ │ │ _A_f_f_i_n_e_C_h_a_r_t_G_r_a_s_s option. │ │ │ │ ********** WWaayyss ttoo uussee pplluucckkeerr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp..._cm__Algorithm_eq_gt..._rp.html │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ │ │ o2 : List │ │ │
    │ │ │
    i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc)
    │ │ │ + -- used 0.381587s (cpu); 0.230058s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -132,15 +132,15 @@
    │ │ │  
    │ │ │  o3 : QQ[a..b]
    │ │ │
    │ │ │
    i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc)
    │ │ │ + -- used 0.181192s (cpu); 0.106558s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -156,15 +156,15 @@
    │ │ │  
    │ │ │  o4 : QQ[a..b]
    │ │ │
    │ │ │
    i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc)
    │ │ │ + -- used 0.4153s (cpu); 0.355085s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ @@ -180,15 +180,15 @@
    │ │ │  
    │ │ │  o5 : QQ[a..b]
    │ │ │
    │ │ │
    i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc)
    │ │ │ + -- used 0.648333s (cpu); 0.581225s (thread); 0s (gc)
    │ │ │  
    │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4   
    │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │             2222549728809984000000            12700284164628480000000         
    │ │ │       ------------------------------------------------------------------------
    │ │ │       348237304382147063838108483692249 3 2  
    │ │ │       ---------------------------------a b  -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -58,15 +58,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       3     2    9    7     2    9        3       1    8    4
    │ │ │ │       -b)y*w  + (-a + -b)z*w  + (-a + 2b)w , 2x + -y + -z + -w}
    │ │ │ │       4          8    8          7                4    3    5
    │ │ │ │  
    │ │ │ │  o2 : List
    │ │ │ │  i3 : time resultant(F,Algorithm=>"Poisson2")
    │ │ │ │ - -- used 0.316083s (cpu); 0.220122s (thread); 0s (gc)
    │ │ │ │ + -- used 0.381587s (cpu); 0.230058s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o3 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -78,15 +78,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o3 : QQ[a..b]
    │ │ │ │  i4 : time resultant(F,Algorithm=>"Macaulay2")
    │ │ │ │ - -- used 0.199752s (cpu); 0.138876s (thread); 0s (gc)
    │ │ │ │ + -- used 0.181192s (cpu); 0.106558s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o4 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -98,15 +98,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o4 : QQ[a..b]
    │ │ │ │  i5 : time resultant(F,Algorithm=>"Poisson")
    │ │ │ │ - -- used 0.514703s (cpu); 0.461162s (thread); 0s (gc)
    │ │ │ │ + -- used 0.4153s (cpu); 0.355085s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o5 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ │ │ @@ -118,15 +118,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       1146977327343523453866040839029   4   194441910898734675845094443 5
    │ │ │ │       -------------------------------a*b  - ---------------------------b
    │ │ │ │            1119954511872000000000                895963609497600000
    │ │ │ │  
    │ │ │ │  o5 : QQ[a..b]
    │ │ │ │  i6 : time resultant(F,Algorithm=>"Macaulay")
    │ │ │ │ - -- used 0.590923s (cpu); 0.537731s (thread); 0s (gc)
    │ │ │ │ + -- used 0.648333s (cpu); 0.581225s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │         21002161660529014459938925799 5   2085933800619238998825958079203 4
    │ │ │ │  o6 = - -----------------------------a  - -------------------------------a b -
    │ │ │ │             2222549728809984000000            12700284164628480000000
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       348237304382147063838108483692249 3 2
    │ │ │ │       ---------------------------------a b  -
    │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_resultant_lp__Matrix_rp.html
    │ │ │ @@ -92,15 +92,15 @@
    │ │ │  
    │ │ │  o2 : List
    │ │ │
    │ │ │
    i3 : time resultant F
    │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc)
    │ │ │ + -- used 0.0278475s (cpu); 0.0278464s (thread); 0s (gc)
    │ │ │  
    │ │ │            12         11 2         10 3         9 4          8 5          7 6
    │ │ │  o3 = - 81t  u - 1701t  u  - 15309t  u  - 76545t u  - 229635t u  - 413343t u 
    │ │ │       ------------------------------------------------------------------------
    │ │ │                6 7          5 8       11          10 2         9 3  
    │ │ │       - 413343t u  - 177147t u  + 567t  u + 10206t  u  + 76545t u  +
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -155,15 +155,15 @@
    │ │ │  
    │ │ │  o4 : List
    │ │ │
    │ │ │
    i5 : time resultant F
    │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc)
    │ │ │ + -- used 2.6244s (cpu); 2.06772s (thread); 0s (gc)
    │ │ │  
    │ │ │        6 3 2       5 2   2     2 4   2 2    3 3 3 2     2 4 2   2  
    │ │ │  o5 = a b c  - 3a a b b c  + 3a a b b c  - a a b c  + 3a a b b c  -
    │ │ │        2 3 0     1 2 3 4 0     1 2 3 4 0    1 2 4 0     1 2 3 5 0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │         3 3       2     4 2 2   2     4 2   2 2     5     2 2    6 3 2  
    │ │ │       6a a b b b c  + 3a a b b c  + 3a a b b c  - 3a a b b c  + a b c  -
    │ │ │ @@ -1790,15 +1790,15 @@
    │ │ │  
    │ │ │  o6 : List
    │ │ │
    │ │ │
    i7 : time # terms resultant F
    │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc)
    │ │ │ + -- used 0.445132s (cpu); 0.384063s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = 21894
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -32,15 +32,15 @@ │ │ │ │ i2 : F = {x^2+3*t*y*z-u*z^2,(t+3*u-1)*x-y,-t*x*y^3+t*x^2*y*z+u*z^4} │ │ │ │ │ │ │ │ 2 2 3 2 4 │ │ │ │ o2 = {x + 3t*y*z - u*z , (t + 3u - 1)x - y, - t*x*y + t*x y*z + u*z } │ │ │ │ │ │ │ │ o2 : List │ │ │ │ i3 : time resultant F │ │ │ │ - -- used 0.0229913s (cpu); 0.0229909s (thread); 0s (gc) │ │ │ │ + -- used 0.0278475s (cpu); 0.0278464s (thread); 0s (gc) │ │ │ │ │ │ │ │ 12 11 2 10 3 9 4 8 5 7 6 │ │ │ │ o3 = - 81t u - 1701t u - 15309t u - 76545t u - 229635t u - 413343t u │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6 7 5 8 11 10 2 9 3 │ │ │ │ - 413343t u - 177147t u + 567t u + 10206t u + 76545t u + │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 │ │ │ │ + c x } │ │ │ │ 9 2 │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : time resultant F │ │ │ │ - -- used 2.72711s (cpu); 2.06378s (thread); 0s (gc) │ │ │ │ + -- used 2.6244s (cpu); 2.06772s (thread); 0s (gc) │ │ │ │ │ │ │ │ 6 3 2 5 2 2 2 4 2 2 3 3 3 2 2 4 2 2 │ │ │ │ o5 = a b c - 3a a b b c + 3a a b b c - a a b c + 3a a b b c - │ │ │ │ 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 4 0 1 2 3 5 0 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 2 4 2 2 2 4 2 2 2 5 2 2 6 3 2 │ │ │ │ 6a a b b b c + 3a a b b c + 3a a b b c - 3a a b b c + a b c - │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 2 2 2 │ │ │ │ b x x + b x x + b x , c x + c x x + c x + c x x + c x x + c x } │ │ │ │ 2 0 2 4 1 2 5 2 0 0 1 0 1 3 1 2 0 2 4 1 2 5 2 │ │ │ │ │ │ │ │ o6 : List │ │ │ │ i7 : time # terms resultant F │ │ │ │ - -- used 0.58204s (cpu); 0.40137s (thread); 0s (gc) │ │ │ │ + -- used 0.445132s (cpu); 0.384063s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = 21894 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_R_i_n_g_E_l_e_m_e_n_t_) │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * resultant(List) │ │ ├── ./usr/share/doc/Macaulay2/Resultants/html/_tangential__Chow__Form.html │ │ │ @@ -97,15 +97,15 @@ │ │ │ 0 4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form)
    │ │ │       time tangentialChowForm(S,0)
    │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc)
    │ │ │ + -- used 0.0610464s (cpu); 0.0610476s (thread); 0s (gc)
    │ │ │  
    │ │ │        2                                                       2        
    │ │ │  o3 = p   p    - p   p   p    - p   p   p    + p   p   p    + p   p    +
    │ │ │        1,3 2,3    1,2 1,3 2,4    0,3 1,3 2,4    0,2 1,4 2,4    1,2 3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        2
    │ │ │       p   p    - 2p   p   p    - p   p   p
    │ │ │ @@ -118,15 +118,15 @@
    │ │ │         2,3 1,4    1,3 2,4    1,2 3,4   2,3 0,4    0,3 2,4    0,2 3,4   1,3 0,4    0,3 1,4    0,1 3,4   1,2 0,4    0,2 1,4    0,1 2,4   1,2 0,3    0,2 1,3    0,1 2,3
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : -- 1-th associated hypersurface of S in G(2,4)
    │ │ │       time tangentialChowForm(S,1)
    │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc)
    │ │ │ + -- used 0.156243s (cpu); 0.0923681s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2        2     2               3        2     2      
    │ │ │  o4 = p     p      + p     p      - 2p     p      + p     p      -
    │ │ │        1,2,3 1,2,4    0,2,4 1,2,4     0,2,3 1,2,4    0,2,4 0,3,4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │               3         3               3            
    │ │ │       4p     p      - 4p     p      - 2p     p      +
    │ │ │ @@ -163,43 +163,43 @@
    │ │ │         1,2,4 0,3,4    0,2,4 1,3,4    0,1,4 2,3,4   1,2,3 0,3,4    0,2,3 1,3,4    0,1,3 2,3,4   1,2,3 0,2,4    0,2,3 1,2,4    0,1,2 2,3,4   1,2,3 0,1,4    0,1,3 1,2,4    0,1,2 1,3,4   0,2,3 0,1,4    0,1,3 0,2,4    0,1,2 0,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent hyperplanes to S)
    │ │ │       time tangentialChowForm(S,2)
    │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc)
    │ │ │ + -- used 0.043272s (cpu); 0.0432777s (thread); 0s (gc)
    │ │ │  
    │ │ │                2                                             2
    │ │ │  o5 = p       p        - p       p       p        + p       p
    │ │ │        0,1,3,4 0,2,3,4    0,1,2,4 0,2,3,4 1,2,3,4    0,1,2,3 1,2,3,4
    │ │ │  
    │ │ │  o5 : QQ[p       ..p       , p       , p       , p       ]
    │ │ │           0,1,2,3   0,1,2,4   0,1,3,4   0,2,3,4   1,2,3,4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing
    │ │ │       time S' = ideal dualize tangentialChowForm(S,2)
    │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc)
    │ │ │ + -- used 0.13669s (cpu); 0.0656883s (thread); 0s (gc)
    │ │ │  
    │ │ │              2               2
    │ │ │  o6 = ideal(p p  - p p p  + p p )
    │ │ │              1 2    0 1 3    0 4
    │ │ │  
    │ │ │  o6 : Ideal of QQ[p ..p ]
    │ │ │                    0   4
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : -- we then can recover S
    │ │ │       time assert(dualize tangentialChowForm(S',3) == S)
    │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc)
    │ │ │ + -- used 0.172755s (cpu); 0.115538s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -63,15 +63,15 @@ │ │ │ │ o2 = ideal (- p p + p p , - p p + p p , - p + p p ) │ │ │ │ 1 2 0 3 1 3 0 4 3 2 4 │ │ │ │ │ │ │ │ o2 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i3 : -- 0-th associated hypersurface of S in G(1,4) (Chow form) │ │ │ │ time tangentialChowForm(S,0) │ │ │ │ - -- used 0.028783s (cpu); 0.0287839s (thread); 0s (gc) │ │ │ │ + -- used 0.0610464s (cpu); 0.0610476s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o3 = p p - p p p - p p p + p p p + p p + │ │ │ │ 1,3 2,3 1,2 1,3 2,4 0,3 1,3 2,4 0,2 1,4 2,4 1,2 3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ p p - 2p p p - p p p │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ - p p + p p , p p - p p + p p , p p - p p + p │ │ │ │ p ) │ │ │ │ 2,3 1,4 1,3 2,4 1,2 3,4 2,3 0,4 0,3 2,4 0,2 3,4 1,3 0,4 │ │ │ │ 0,3 1,4 0,1 3,4 1,2 0,4 0,2 1,4 0,1 2,4 1,2 0,3 0,2 1,3 0,1 │ │ │ │ 2,3 │ │ │ │ i4 : -- 1-th associated hypersurface of S in G(2,4) │ │ │ │ time tangentialChowForm(S,1) │ │ │ │ - -- used 0.120285s (cpu); 0.0736976s (thread); 0s (gc) │ │ │ │ + -- used 0.156243s (cpu); 0.0923681s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 3 2 2 │ │ │ │ o4 = p p + p p - 2p p + p p - │ │ │ │ 1,2,3 1,2,4 0,2,4 1,2,4 0,2,3 1,2,4 0,2,4 0,3,4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 3 3 │ │ │ │ 4p p - 4p p - 2p p + │ │ │ │ @@ -138,35 +138,35 @@ │ │ │ │ p + p p , p p - p p + p p ) │ │ │ │ 1,2,4 0,3,4 0,2,4 1,3,4 0,1,4 2,3,4 1,2,3 0,3,4 0,2,3 1,3,4 │ │ │ │ 0,1,3 2,3,4 1,2,3 0,2,4 0,2,3 1,2,4 0,1,2 2,3,4 1,2,3 0,1,4 0,1,3 │ │ │ │ 1,2,4 0,1,2 1,3,4 0,2,3 0,1,4 0,1,3 0,2,4 0,1,2 0,3,4 │ │ │ │ i5 : -- 2-th associated hypersurface of S in G(3,4) (parameterizing tangent │ │ │ │ hyperplanes to S) │ │ │ │ time tangentialChowForm(S,2) │ │ │ │ - -- used 0.0319774s (cpu); 0.0319788s (thread); 0s (gc) │ │ │ │ + -- used 0.043272s (cpu); 0.0432777s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o5 = p p - p p p + p p │ │ │ │ 0,1,3,4 0,2,3,4 0,1,2,4 0,2,3,4 1,2,3,4 0,1,2,3 1,2,3,4 │ │ │ │ │ │ │ │ o5 : QQ[p ..p , p , p , p ] │ │ │ │ 0,1,2,3 0,1,2,4 0,1,3,4 0,2,3,4 1,2,3,4 │ │ │ │ i6 : -- we get the dual hypersurface of S in G(0,4) by dualizing │ │ │ │ time S' = ideal dualize tangentialChowForm(S,2) │ │ │ │ - -- used 0.11267s (cpu); 0.0697575s (thread); 0s (gc) │ │ │ │ + -- used 0.13669s (cpu); 0.0656883s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = ideal(p p - p p p + p p ) │ │ │ │ 1 2 0 1 3 0 4 │ │ │ │ │ │ │ │ o6 : Ideal of QQ[p ..p ] │ │ │ │ 0 4 │ │ │ │ i7 : -- we then can recover S │ │ │ │ time assert(dualize tangentialChowForm(S',3) == S) │ │ │ │ - -- used 0.148995s (cpu); 0.103293s (thread); 0s (gc) │ │ │ │ + -- used 0.172755s (cpu); 0.115538s (thread); 0s (gc) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _i_s_C_o_i_s_o_t_r_o_p_i_c -- whether a hypersurface of a Grassmannian is a tangential │ │ │ │ Chow form │ │ │ │ * _c_h_o_w_F_o_r_m -- Chow form of a projective variety │ │ │ │ ********** WWaayyss ttoo uussee ttaannggeennttiiaallCChhoowwFFoorrmm:: ********** │ │ │ │ * tangentialChowForm(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_resource_splimits.out │ │ │ @@ -4,15 +4,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63811 │ │ │ +process 63520 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/example-output/_run__External__M2.out │ │ │ @@ -1,23 +1,23 @@ │ │ │ -- -*- M2-comint -*- hash: 2927978066455787395 │ │ │ │ │ │ i1 : fn=temporaryFileName()|".m2" │ │ │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2 │ │ │ +o1 = /tmp/M2-43124-0/0.m2 │ │ │ │ │ │ i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i7 : h │ │ │ │ │ │ o7 = HashTable{"answer file" => null} │ │ │ "exit code" => 0 │ │ │ "output file" => null │ │ │ @@ -33,23 +33,23 @@ │ │ │ o8 = true │ │ │ │ │ │ i9 : h#"exit code"===0 │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : h=runExternalM2(fn,"justexit",()); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i11 : h │ │ │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans} │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans} │ │ │ "exit code" => 27 │ │ │ - "output file" => /tmp/M2-29954-0/2.out │ │ │ + "output file" => /tmp/M2-43124-0/2.out │ │ │ "return code" => 6912 │ │ │ "statistics" => null │ │ │ "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o11 : HashTable │ │ │ │ │ │ @@ -58,80 +58,80 @@ │ │ │ o12 = true │ │ │ │ │ │ i13 : fileExists(h#"answer file") │ │ │ │ │ │ o13 = false │ │ │ │ │ │ i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2"); │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 )) │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 )) │ │ │ Killed │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ i15 : h │ │ │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans} │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans} │ │ │ "exit code" => 0 │ │ │ - "output file" => /tmp/M2-29954-0/3.out │ │ │ + "output file" => /tmp/M2-43124-0/3.out │ │ │ "return code" => 9 │ │ │ "statistics" => null │ │ │ "time used" => 2 │ │ │ value => null │ │ │ │ │ │ o15 : HashTable │ │ │ │ │ │ i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file") │ │ │ │ │ │ o16 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43124-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10)); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10)); │ │ │ Spinning!! │ │ │ │ │ │ │ │ │ i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file") │ │ │ │ │ │ i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true); │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 )) │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1') >"/tmp/M2-43124-0/4.stat" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i19 : h#"statistics" │ │ │ │ │ │ -o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1" │ │ │ - User time (seconds): 5.25 │ │ │ - System time (seconds): 0.12 │ │ │ - Percent of CPU this job got: 77% │ │ │ - Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97 │ │ │ +o19 = Command being timed: "sh -c /usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1" │ │ │ + User time (seconds): 5.00 │ │ │ + System time (seconds): 0.36 │ │ │ + Percent of CPU this job got: 119% │ │ │ + Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.49 │ │ │ Average shared text size (kbytes): 0 │ │ │ Average unshared data size (kbytes): 0 │ │ │ Average stack size (kbytes): 0 │ │ │ Average total size (kbytes): 0 │ │ │ - Maximum resident set size (kbytes): 251780 │ │ │ + Maximum resident set size (kbytes): 338712 │ │ │ Average resident set size (kbytes): 0 │ │ │ Major (requiring I/O) page faults: 0 │ │ │ - Minor (reclaiming a frame) page faults: 8554 │ │ │ - Voluntary context switches: 1820 │ │ │ - Involuntary context switches: 2015 │ │ │ + Minor (reclaiming a frame) page faults: 42991 │ │ │ + Voluntary context switches: 6143 │ │ │ + Involuntary context switches: 1224 │ │ │ Swaps: 0 │ │ │ File system inputs: 0 │ │ │ - File system outputs: 0 │ │ │ + File system outputs: 16 │ │ │ Socket messages sent: 0 │ │ │ Socket messages received: 0 │ │ │ Signals delivered: 0 │ │ │ Page size (bytes): 4096 │ │ │ Exit status: 0 │ │ │ │ │ │ │ │ │ i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///; │ │ │ │ │ │ i21 : (runExternalM2(fn,identity,v))#value===v │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o21 = true │ │ │ │ │ │ i22 : R=QQ[x,y]; │ │ │ │ │ │ i23 : v=coker random(R^2,R^{3:-1}) │ │ │ @@ -139,54 +139,54 @@ │ │ │ o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y | │ │ │ | 3/4x+7/4y 7/10x+7/3y 6/7x+6y | │ │ │ │ │ │ 2 │ │ │ o23 : R-module, quotient of R │ │ │ │ │ │ i24 : h=runExternalM2(fn,identity,v) │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 )) │ │ │ Finished running. │ │ │ RunExternalM2: expected answer file does not exist │ │ │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans} │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans} │ │ │ "exit code" => 1 │ │ │ - "output file" => /tmp/M2-29954-0/7.out │ │ │ + "output file" => /tmp/M2-43124-0/7.out │ │ │ "return code" => 256 │ │ │ "statistics" => null │ │ │ "time used" => 1 │ │ │ value => null │ │ │ │ │ │ o24 : HashTable │ │ │ │ │ │ i25 : get(h#"output file") │ │ │ │ │ │ o25 = │ │ │ - i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2 │ │ │ + i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by RunExternalM2 │ │ │ needsPackage("RunExternalM2",Configuration=>{"isChild"=>true}); │ │ │ │ │ │ - i2 : load "/tmp/M2-29954-0/0.m2"; │ │ │ + i2 : load "/tmp/M2-43124-0/0.m2"; │ │ │ │ │ │ - i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ + i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}})))); │ │ │ stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects: │ │ │ R (of class Symbol) │ │ │ ^ 2 (of class ZZ) │ │ │ │ │ │ │ │ │ i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ o27 = true │ │ │ │ │ │ i28 : v=R; │ │ │ │ │ │ i29 : h=runExternalM2(fn,identity,v); │ │ │ -Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 )) │ │ │ +Running (true && (/usr/bin/M2-binary --stop --no-debug --silent -q <"/tmp/M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 )) │ │ │ Finished running. │ │ │ │ │ │ i30 : h#value │ │ │ │ │ │ o30 = QQ[x..y] │ │ │ │ │ │ o30 : PolynomialRing │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_resource_splimits.html │ │ │ @@ -75,15 +75,15 @@ │ │ │ time(seconds) 700 │ │ │ file(blocks) unlimited │ │ │ data(kbytes) unlimited │ │ │ stack(kbytes) 8192 │ │ │ coredump(blocks) unlimited │ │ │ memory(kbytes) 850000 │ │ │ locked memory(kbytes) 8192 │ │ │ -process 63811 │ │ │ +process 63520 │ │ │ nofiles 512 │ │ │ vmemory(kbytes) unlimited │ │ │ locks unlimited │ │ │ rtprio 0 │ │ │ │ │ │ o1 = 0 │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ time(seconds) 700 │ │ │ │ file(blocks) unlimited │ │ │ │ data(kbytes) unlimited │ │ │ │ stack(kbytes) 8192 │ │ │ │ coredump(blocks) unlimited │ │ │ │ memory(kbytes) 850000 │ │ │ │ locked memory(kbytes) 8192 │ │ │ │ -process 63811 │ │ │ │ +process 63520 │ │ │ │ nofiles 512 │ │ │ │ vmemory(kbytes) unlimited │ │ │ │ locks unlimited │ │ │ │ rtprio 0 │ │ │ │ │ │ │ │ o1 = 0 │ │ │ │ This starts a new shell and executes the command given, which in this case │ │ ├── ./usr/share/doc/Macaulay2/RunExternalM2/html/_run__External__M2.html │ │ │ @@ -84,15 +84,15 @@ │ │ │

      For example, we can write a few functions to a temporary file:

      │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -115,15 +115,15 @@ │ │ │
    │ │ │

    and then call them:

    │ │ │
    │ │ │
    │ │ │
    i1 : fn=temporaryFileName()|".m2"
    │ │ │  
    │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ +o1 = /tmp/M2-43124-0/0.m2 │ │ │
    │ │ │
    i2 : fn<</// square = (x) -> (stderr<<"Running"<<endl; sleep(1); x^2); ///<<endl;
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -350,20 +350,20 @@ │ │ │ │ │ │
    │ │ │
    i6 : h=runExternalM2(fn,"square",(4));
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/1.m2" >"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i7 : h
    │ │ │  
    │ │ │ @@ -157,26 +157,26 @@
    │ │ │            

    │ │ │

    An abnormal program exit will have a nonzero exit code; also, the value will be null, the output file should exist, but the answer file may not exist unless the routine finished successfully.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -199,46 +199,46 @@ │ │ │
    │ │ │

    Here, we use resource limits to limit the routine to 2 seconds of computational time, while the system is asked to use 10 seconds of computational time:

    │ │ │
    │ │ │
    │ │ │
    i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i11 : h
    │ │ │  
    │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans}
    │ │ │                  "exit code" => 27
    │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/2.out
    │ │ │                  "return code" => 6912
    │ │ │                  "statistics" => null
    │ │ │                  "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o11 : HashTable
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -248,40 +248,40 @@ │ │ │

    │ │ │

    We can get quite a lot of detail on the resources used with the KeepStatistics command:

    │ │ │ │ │ │
    │ │ │
    i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ -Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ +Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 ))
    │ │ │  Killed
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │
    │ │ │
    i15 : h
    │ │ │  
    │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans}
    │ │ │                  "exit code" => 0
    │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/3.out
    │ │ │                  "return code" => 9
    │ │ │                  "statistics" => null
    │ │ │                  "time used" => 2
    │ │ │                  value => null
    │ │ │  
    │ │ │  o15 : HashTable
    │ │ │
    │ │ │
    i16 : if h#"output file" =!= null and fileExists(h#"output file") then get(h#"output file")
    │ │ │  
    │ │ │  o16 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10));
    │ │ │        Spinning!!
    │ │ │
    │ │ │
    i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get(h#"answer file")
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -295,15 +295,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ -Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1') >"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ +Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1') >"/tmp/M2-43124-0/4.stat" 2>&1 ))
    │ │ │  Finished running.
    │ │ │
    │ │ │
    i19 : h#"statistics"
    │ │ │  
    │ │ │ -o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ -              User time (seconds): 5.25
    │ │ │ -              System time (seconds): 0.12
    │ │ │ -              Percent of CPU this job got: 77%
    │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97
    │ │ │ +o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1"
    │ │ │ +              User time (seconds): 5.00
    │ │ │ +              System time (seconds): 0.36
    │ │ │ +              Percent of CPU this job got: 119%
    │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.49
    │ │ │                Average shared text size (kbytes): 0
    │ │ │                Average unshared data size (kbytes): 0
    │ │ │                Average stack size (kbytes): 0
    │ │ │                Average total size (kbytes): 0
    │ │ │ -              Maximum resident set size (kbytes): 251780
    │ │ │ +              Maximum resident set size (kbytes): 338712
    │ │ │                Average resident set size (kbytes): 0
    │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ -              Minor (reclaiming a frame) page faults: 8554
    │ │ │ -              Voluntary context switches: 1820
    │ │ │ -              Involuntary context switches: 2015
    │ │ │ +              Minor (reclaiming a frame) page faults: 42991
    │ │ │ +              Voluntary context switches: 6143
    │ │ │ +              Involuntary context switches: 1224
    │ │ │                Swaps: 0
    │ │ │                File system inputs: 0
    │ │ │ -              File system outputs: 0
    │ │ │ +              File system outputs: 16
    │ │ │                Socket messages sent: 0
    │ │ │                Socket messages received: 0
    │ │ │                Signals delivered: 0
    │ │ │                Page size (bytes): 4096
    │ │ │                Exit status: 0
    │ │ │
    │ │ │
    i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │
    │ │ │
    i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │ @@ -325,21 +325,21 @@ │ │ │ 2 │ │ │ o23 : R-module, quotient of R
    │ │ │
    │ │ │
    i24 : h=runExternalM2(fn,identity,v)
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │  
    │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans}
    │ │ │                  "exit code" => 1
    │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ +                "output file" => /tmp/M2-43124-0/7.out
    │ │ │                  "return code" => 256
    │ │ │                  "statistics" => null
    │ │ │                  "time used" => 1
    │ │ │                  value => null
    │ │ │  
    │ │ │  o24 : HashTable
    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i25 : get(h#"output file")
    │ │ │  
    │ │ │  o25 = 
    │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by RunExternalM2
    │ │ │ +      i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by RunExternalM2
    │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │  
    │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │  
    │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel(map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to objects:
    │ │ │                    R (of class Symbol)
    │ │ │              ^     2 (of class ZZ)
    │ │ │
    │ │ │
    │ │ │ @@ -374,15 +374,15 @@ │ │ │ │ │ │
    i26 : fn<<///R=QQ[x,y];///<<endl<<flush;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/8.m2" >"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │  
    │ │ │  o27 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ @@ -394,15 +394,15 @@ │ │ │ │ │ │
    i28 : v=R;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : h=runExternalM2(fn,identity,v);
    │ │ │ -Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ +Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 ))
    │ │ │  Finished running.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : h#value
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -45,25 +45,25 @@
    │ │ │ │  the output file (unless it was deleted), the name of the answer file (unless it
    │ │ │ │  was deleted), any statistics recorded about the resource usage, and the value
    │ │ │ │  returned by the function func. If the child process terminates abnormally, then
    │ │ │ │  usually the exit code is nonzero and the value returned is _n_u_l_l.
    │ │ │ │  For example, we can write a few functions to a temporary file:
    │ │ │ │  i1 : fn=temporaryFileName()|".m2"
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-29954-0/0.m2
    │ │ │ │ +o1 = /tmp/M2-43124-0/0.m2
    │ │ │ │  i2 : fn< (stderr<<"Running"< ( exit(27); ); ///< (stderr<<"Spinning!!"<"/tmp/M2-29954-0/1.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/1.m2" >"/tmp/M2-43124-0/1.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i7 : h
    │ │ │ │  
    │ │ │ │  o7 = HashTable{"answer file" => null}
    │ │ │ │                 "exit code" => 0
    │ │ │ │                 "output file" => null
    │ │ │ │                 "return code" => 0
    │ │ │ │ @@ -79,22 +79,22 @@
    │ │ │ │  
    │ │ │ │  o9 = true
    │ │ │ │  An abnormal program exit will have a nonzero exit code; also, the value will be
    │ │ │ │  null, the output file should exist, but the answer file may not exist unless
    │ │ │ │  the routine finished successfully.
    │ │ │ │  i10 : h=runExternalM2(fn,"justexit",());
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/2.m2" >"/tmp/M2-29954-0/2.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/2.m2" >"/tmp/M2-43124-0/2.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i11 : h
    │ │ │ │  
    │ │ │ │ -o11 = HashTable{"answer file" => /tmp/M2-29954-0/2.ans}
    │ │ │ │ +o11 = HashTable{"answer file" => /tmp/M2-43124-0/2.ans}
    │ │ │ │                  "exit code" => 27
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/2.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/2.out
    │ │ │ │                  "return code" => 6912
    │ │ │ │                  "statistics" => null
    │ │ │ │                  "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o11 : HashTable
    │ │ │ │  i12 : fileExists(h#"output file")
    │ │ │ │ @@ -103,143 +103,143 @@
    │ │ │ │  i13 : fileExists(h#"answer file")
    │ │ │ │  
    │ │ │ │  o13 = false
    │ │ │ │  Here, we use _r_e_s_o_u_r_c_e_ _l_i_m_i_t_s to limit the routine to 2 seconds of computational
    │ │ │ │  time, while the system is asked to use 10 seconds of computational time:
    │ │ │ │  i14 : h=runExternalM2(fn,"spin",10,PreRunScript=>"ulimit -t 2");
    │ │ │ │  Running (ulimit -t 2 && (/usr/bin/M2-binary  --stop --no-debug --silent  -
    │ │ │ │ -q  <"/tmp/M2-29954-0/3.m2" >"/tmp/M2-29954-0/3.out" 2>&1 ))
    │ │ │ │ +q  <"/tmp/M2-43124-0/3.m2" >"/tmp/M2-43124-0/3.out" 2>&1 ))
    │ │ │ │  Killed
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  i15 : h
    │ │ │ │  
    │ │ │ │ -o15 = HashTable{"answer file" => /tmp/M2-29954-0/3.ans}
    │ │ │ │ +o15 = HashTable{"answer file" => /tmp/M2-43124-0/3.ans}
    │ │ │ │                  "exit code" => 0
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/3.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/3.out
    │ │ │ │                  "return code" => 9
    │ │ │ │                  "statistics" => null
    │ │ │ │                  "time used" => 2
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o15 : HashTable
    │ │ │ │  i16 : if h#"output file" =!= null and fileExists(h#"output file") then get
    │ │ │ │  (h#"output file")
    │ │ │ │  
    │ │ │ │  o16 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/3.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43124-0/3.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/3.ans",spin (10));
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/3.ans",spin (10));
    │ │ │ │        Spinning!!
    │ │ │ │  i17 : if h#"answer file" =!= null and fileExists(h#"answer file") then get
    │ │ │ │  (h#"answer file")
    │ │ │ │  We can get quite a lot of detail on the resources used with the _K_e_e_p_S_t_a_t_i_s_t_i_c_s
    │ │ │ │  command:
    │ │ │ │  i18 : h=runExternalM2(fn,"spin",3,KeepStatistics=>true);
    │ │ │ │  Running (true && ( (/usr/bin/time --verbose sh -c '/usr/bin/M2-binary  --stop -
    │ │ │ │ --no-debug --silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1')
    │ │ │ │ ->"/tmp/M2-29954-0/4.stat" 2>&1 ))
    │ │ │ │ +-no-debug --silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1')
    │ │ │ │ +>"/tmp/M2-43124-0/4.stat" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i19 : h#"statistics"
    │ │ │ │  
    │ │ │ │  o19 =         Command being timed: "sh -c /usr/bin/M2-binary  --stop --no-debug
    │ │ │ │ ---silent  -q  <"/tmp/M2-29954-0/4.m2" >"/tmp/M2-29954-0/4.out" 2>&1"
    │ │ │ │ -              User time (seconds): 5.25
    │ │ │ │ -              System time (seconds): 0.12
    │ │ │ │ -              Percent of CPU this job got: 77%
    │ │ │ │ -              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.97
    │ │ │ │ +--silent  -q  <"/tmp/M2-43124-0/4.m2" >"/tmp/M2-43124-0/4.out" 2>&1"
    │ │ │ │ +              User time (seconds): 5.00
    │ │ │ │ +              System time (seconds): 0.36
    │ │ │ │ +              Percent of CPU this job got: 119%
    │ │ │ │ +              Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.49
    │ │ │ │                Average shared text size (kbytes): 0
    │ │ │ │                Average unshared data size (kbytes): 0
    │ │ │ │                Average stack size (kbytes): 0
    │ │ │ │                Average total size (kbytes): 0
    │ │ │ │ -              Maximum resident set size (kbytes): 251780
    │ │ │ │ +              Maximum resident set size (kbytes): 338712
    │ │ │ │                Average resident set size (kbytes): 0
    │ │ │ │                Major (requiring I/O) page faults: 0
    │ │ │ │ -              Minor (reclaiming a frame) page faults: 8554
    │ │ │ │ -              Voluntary context switches: 1820
    │ │ │ │ -              Involuntary context switches: 2015
    │ │ │ │ +              Minor (reclaiming a frame) page faults: 42991
    │ │ │ │ +              Voluntary context switches: 6143
    │ │ │ │ +              Involuntary context switches: 1224
    │ │ │ │                Swaps: 0
    │ │ │ │                File system inputs: 0
    │ │ │ │ -              File system outputs: 0
    │ │ │ │ +              File system outputs: 16
    │ │ │ │                Socket messages sent: 0
    │ │ │ │                Socket messages received: 0
    │ │ │ │                Signals delivered: 0
    │ │ │ │                Page size (bytes): 4096
    │ │ │ │                Exit status: 0
    │ │ │ │  We can handle most kinds of objects as return values, although _M_u_t_a_b_l_e_M_a_t_r_i_x
    │ │ │ │  does not work. Here, we use the built-in _i_d_e_n_t_i_t_y function:
    │ │ │ │  i20 : v=/// A complicated string^%&C@#CERQVASDFQ#BQBSDH"' ewrjwklsf///;
    │ │ │ │  i21 : (runExternalM2(fn,identity,v))#value===v
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/6.m2" >"/tmp/M2-29954-0/6.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/6.m2" >"/tmp/M2-43124-0/6.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o21 = true
    │ │ │ │  Some care is required, however:
    │ │ │ │  i22 : R=QQ[x,y];
    │ │ │ │  i23 : v=coker random(R^2,R^{3:-1})
    │ │ │ │  
    │ │ │ │  o23 = cokernel | 9/2x+9/4y 7/9x+7/10y 7x+3/7y |
    │ │ │ │                 | 3/4x+7/4y 7/10x+7/3y 6/7x+6y |
    │ │ │ │  
    │ │ │ │                               2
    │ │ │ │  o23 : R-module, quotient of R
    │ │ │ │  i24 : h=runExternalM2(fn,identity,v)
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/7.m2" >"/tmp/M2-29954-0/7.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/7.m2" >"/tmp/M2-43124-0/7.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  RunExternalM2: expected answer file does not exist
    │ │ │ │  
    │ │ │ │ -o24 = HashTable{"answer file" => /tmp/M2-29954-0/7.ans}
    │ │ │ │ +o24 = HashTable{"answer file" => /tmp/M2-43124-0/7.ans}
    │ │ │ │                  "exit code" => 1
    │ │ │ │ -                "output file" => /tmp/M2-29954-0/7.out
    │ │ │ │ +                "output file" => /tmp/M2-43124-0/7.out
    │ │ │ │                  "return code" => 256
    │ │ │ │                  "statistics" => null
    │ │ │ │                  "time used" => 1
    │ │ │ │                  value => null
    │ │ │ │  
    │ │ │ │  o24 : HashTable
    │ │ │ │  To view the error message:
    │ │ │ │  i25 : get(h#"output file")
    │ │ │ │  
    │ │ │ │  o25 =
    │ │ │ │ -      i1 : -- Script /tmp/M2-29954-0/7.m2 automatically generated by
    │ │ │ │ +      i1 : -- Script /tmp/M2-43124-0/7.m2 automatically generated by
    │ │ │ │  RunExternalM2
    │ │ │ │             needsPackage("RunExternalM2",Configuration=>{"isChild"=>true});
    │ │ │ │  
    │ │ │ │ -      i2 : load "/tmp/M2-29954-0/0.m2";
    │ │ │ │ +      i2 : load "/tmp/M2-43124-0/0.m2";
    │ │ │ │  
    │ │ │ │ -      i3 : runExternalM2ReturnAnswer("/tmp/M2-29954-0/7.ans",identity (cokernel
    │ │ │ │ +      i3 : runExternalM2ReturnAnswer("/tmp/M2-43124-0/7.ans",identity (cokernel
    │ │ │ │  (map(R^2,R^{3:{-1}},{{(9/2)*x+(9/4)*y, (7/9)*x+(7/10)*y, 7*x+(3/7)*y}, {(3/
    │ │ │ │  4)*x+(7/4)*y, (7/10)*x+(7/3)*y, (6/7)*x+6*y}}))));
    │ │ │ │        stdio:4:74:(3):[1]: error: no method for binary operator ^ applied to
    │ │ │ │  objects:
    │ │ │ │                    R (of class Symbol)
    │ │ │ │              ^     2 (of class ZZ)
    │ │ │ │  Keep in mind that the object you are passing must make sense in the context of
    │ │ │ │  the file containing your function! For instance, here we need to define the
    │ │ │ │  ring:
    │ │ │ │  i26 : fn<"/tmp/M2-29954-0/8.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/8.m2" >"/tmp/M2-43124-0/8.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  
    │ │ │ │  o27 = true
    │ │ │ │  This problem can be avoided by following some _s_u_g_g_e_s_t_i_o_n_s_ _f_o_r_ _u_s_i_n_g
    │ │ │ │  _R_u_n_E_x_t_e_r_n_a_l_M_2.
    │ │ │ │  The objects may unavoidably lose some internal references, though:
    │ │ │ │  i28 : v=R;
    │ │ │ │  i29 : h=runExternalM2(fn,identity,v);
    │ │ │ │  Running (true && (/usr/bin/M2-binary  --stop --no-debug --silent  -q  <"/tmp/
    │ │ │ │ -M2-29954-0/9.m2" >"/tmp/M2-29954-0/9.out" 2>&1 ))
    │ │ │ │ +M2-43124-0/9.m2" >"/tmp/M2-43124-0/9.out" 2>&1 ))
    │ │ │ │  Finished running.
    │ │ │ │  i30 : h#value
    │ │ │ │  
    │ │ │ │  o30 = QQ[x..y]
    │ │ │ │  
    │ │ │ │  o30 : PolynomialRing
    │ │ │ │  i31 : v===h#value
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/example-output/___S__L__Pexpressions.out
    │ │ │ @@ -30,23 +30,23 @@
    │ │ │                                              )
    │ │ │  
    │ │ │                            "variable positions" => {-1}
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │  
    │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ + -- used 0.000374163s (cpu); 0.00032314s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │  
    │ │ │  i7 : ZZ[y];
    │ │ │  
    │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ + -- used 4.47422s (cpu); 3.44734s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SLPexpressions/html/index.html
    │ │ │ @@ -104,29 +104,29 @@
    │ │ │  
    │ │ │  o5 : InterpretedSLProgram
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ + -- used 0.000374163s (cpu); 0.00032314s (thread); 0s (gc)
    │ │ │  
    │ │ │                1       1
    │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : ZZ[y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ + -- used 4.47422s (cpu); 3.44734s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -38,21 +38,21 @@
    │ │ │ │                                              output nodes: 1
    │ │ │ │                                              )
    │ │ │ │  
    │ │ │ │                            "variable positions" => {-1}
    │ │ │ │  
    │ │ │ │  o5 : InterpretedSLProgram
    │ │ │ │  i6 : time A = evaluate(slp,matrix{{1}});
    │ │ │ │ - -- used 0.000111089s (cpu); 0.000225292s (thread); 0s (gc)
    │ │ │ │ + -- used 0.000374163s (cpu); 0.00032314s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                1       1
    │ │ │ │  o6 : Matrix ZZ  <-- ZZ
    │ │ │ │  i7 : ZZ[y];
    │ │ │ │  i8 : time B = sub((y+1)^(2^n),{y=>1})
    │ │ │ │ - -- used 5.14794s (cpu); 3.65518s (thread); 0s (gc)
    │ │ │ │ + -- used 4.47422s (cpu); 3.44734s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o8 = 104438888141315250669175271071662438257996424904738378038423348328395390
    │ │ │ │       797155745684882681193499755834089010671443926283798757343818579360726323
    │ │ │ │       608785136527794595697654370999834036159013438371831442807001185594622637
    │ │ │ │       631883939771274567233468434458661749680790870580370407128404874011860911
    │ │ │ │       446797778359802900668693897688178778594690563019026094059957945343282346
    │ │ │ │       930302669644305902501597239986771421554169383555988529148631823791443449
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Complex.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={5,11,3,2}
    │ │ │  
    │ │ │  o3 = {5, 11, 3, 2}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .00628004s elapsed
    │ │ │ + -- .00744196s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -51,15 +51,15 @@
    │ │ │         53        53         53         53        53
    │ │ │                                                  
    │ │ │       -1        0          1          2         3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00224378s elapsed
    │ │ │ + -- .00304284s elapsed
    │ │ │  
    │ │ │  i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │                 0 => 3
    │ │ │                 1 => 5
    │ │ │                 2 => 2
    │ │ │ @@ -95,15 +95,15 @@
    │ │ │  i12 : maximalEntry chainComplex errors
    │ │ │  
    │ │ │  o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15}
    │ │ │  
    │ │ │  o12 : List
    │ │ │  
    │ │ │  i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00497913s elapsed
    │ │ │ + -- .00636129s elapsed
    │ │ │  
    │ │ │  i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │  
    │ │ │  i15 : SigmaL =source U;
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/___S__V__D__Homology.out
    │ │ │ @@ -15,15 +15,15 @@
    │ │ │  i3 : r={4,3,3}
    │ │ │  
    │ │ │  o3 = {4, 3, 3}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00283463s elapsed
    │ │ │ + -- .00332808s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -47,25 +47,25 @@
    │ │ │         53        53         53         53
    │ │ │                                        
    │ │ │       0         1          2          3
    │ │ │  
    │ │ │  o6 : ChainComplex
    │ │ │  
    │ │ │  i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000620476s elapsed
    │ │ │ + -- .000721423s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │  
    │ │ │  i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00139661s elapsed
    │ │ │ + -- .00154824s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_common__Entries.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,5}
    │ │ │  
    │ │ │  o4 = {4, 3, 5}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00359076s elapsed
    │ │ │ + -- .00422273s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_euclidean__Distance.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .0027493s elapsed
    │ │ │ + -- .00320249s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/example-output/_project__To__Complex.out
    │ │ │ @@ -18,15 +18,15 @@
    │ │ │  i4 : r={4,3,3}
    │ │ │  
    │ │ │  o4 = {4, 3, 3}
    │ │ │  
    │ │ │  o4 : List
    │ │ │  
    │ │ │  i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00303026s elapsed
    │ │ │ + -- .00369821s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Complex.html
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>4)
    │ │ │ - -- .00628004s elapsed
    │ │ │ + -- .00744196s elapsed
    │ │ │  
    │ │ │         6       19       19       7       3
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ  <-- ZZ
    │ │ │                                          
    │ │ │       0       1        2        3       4
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -150,15 +150,15 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,U)=SVDComplex CR;
    │ │ │ - -- .00224378s elapsed
    │ │ │ + -- .00304284s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : h
    │ │ │  
    │ │ │  o8 = HashTable{-1 => 1}
    │ │ │ @@ -212,15 +212,15 @@
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian);
    │ │ │ - -- .00497913s elapsed
    │ │ │ + -- .00636129s elapsed │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : hL === h
    │ │ │  
    │ │ │  o14 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -37,15 +37,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={5,11,3,2} │ │ │ │ │ │ │ │ o3 = {5, 11, 3, 2} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>4) │ │ │ │ - -- .00628004s elapsed │ │ │ │ + -- .00744196s elapsed │ │ │ │ │ │ │ │ 6 19 19 7 3 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 4 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -70,15 +70,15 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 53 │ │ │ │ │ │ │ │ -1 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,U)=SVDComplex CR; │ │ │ │ - -- .00224378s elapsed │ │ │ │ + -- .00304284s elapsed │ │ │ │ i8 : h │ │ │ │ │ │ │ │ o8 = HashTable{-1 => 1} │ │ │ │ 0 => 3 │ │ │ │ 1 => 5 │ │ │ │ 2 => 2 │ │ │ │ 3 => 1 │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ 1)*Sigma.dd_ell*transpose U_ell); │ │ │ │ i12 : maximalEntry chainComplex errors │ │ │ │ │ │ │ │ o12 = {8.43769e-15, 6.39488e-14, 1.06581e-13, 9.76996e-15} │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : elapsedTime (hL,U)=SVDComplex(CR,Strategy=>Laplacian); │ │ │ │ - -- .00497913s elapsed │ │ │ │ + -- .00636129s elapsed │ │ │ │ i14 : hL === h │ │ │ │ │ │ │ │ o14 = true │ │ │ │ i15 : SigmaL =source U; │ │ │ │ i16 : for i from min CR+1 to max CR list maximalEntry(SigmaL.dd_i -Sigma.dd_i) │ │ │ │ │ │ │ │ o16 = {1.77636e-14, 6.39488e-14, 8.52651e-14, 3.55271e-15} │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/___S__V__D__Homology.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ │ │ │ o3 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00283463s elapsed
    │ │ │ + -- .00332808s elapsed
    │ │ │  
    │ │ │         5       10       11       5
    │ │ │  o4 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o4 : ChainComplex
    │ │ │ @@ -148,28 +148,28 @@ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : elapsedTime (h,h1)=SVDHomology CR
    │ │ │ - -- .000620476s elapsed
    │ │ │ + -- .000721423s elapsed
    │ │ │  
    │ │ │  o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, )           })
    │ │ │                  1 => 3             2 => (37.9214, 30.3707, 1.61954e-14)
    │ │ │                  2 => 5             3 => (14.972, 8.57847, 3.90646e-15)
    │ │ │                  3 => 2
    │ │ │  
    │ │ │  o7 : Sequence
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian)
    │ │ │ - -- .00139661s elapsed
    │ │ │ + -- .00154824s elapsed
    │ │ │  
    │ │ │  o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14)      })
    │ │ │                  1 => 3             1 => (1.71747, 922.381, 2.51496e-13)
    │ │ │                  2 => 5             2 => (922.381, 73.5901, 1.81323e-13)
    │ │ │                  3 => 2             3 => (73.5901, , 2.82914e-13)
    │ │ │  
    │ │ │  o8 : Sequence
    │ │ │ ├── html2text {} │ │ │ │ @@ -40,15 +40,15 @@ │ │ │ │ o2 : List │ │ │ │ i3 : r={4,3,3} │ │ │ │ │ │ │ │ o3 = {4, 3, 3} │ │ │ │ │ │ │ │ o3 : List │ │ │ │ i4 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00283463s elapsed │ │ │ │ + -- .00332808s elapsed │ │ │ │ │ │ │ │ 5 10 11 5 │ │ │ │ o4 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o4 : ChainComplex │ │ │ │ @@ -69,24 +69,24 @@ │ │ │ │ o6 = RR <-- RR <-- RR <-- RR │ │ │ │ 53 53 53 53 │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o6 : ChainComplex │ │ │ │ i7 : elapsedTime (h,h1)=SVDHomology CR │ │ │ │ - -- .000620476s elapsed │ │ │ │ + -- .000721423s elapsed │ │ │ │ │ │ │ │ o7 = (HashTable{0 => 1}, HashTable{1 => (7.87842, 1.31052, ) }) │ │ │ │ 1 => 3 2 => (37.9214, 30.3707, 1.61954e-14) │ │ │ │ 2 => 5 3 => (14.972, 8.57847, 3.90646e-15) │ │ │ │ 3 => 2 │ │ │ │ │ │ │ │ o7 : Sequence │ │ │ │ i8 : elapsedTime (hL,hL1)=SVDHomology(CR,Strategy=>Laplacian) │ │ │ │ - -- .00139661s elapsed │ │ │ │ + -- .00154824s elapsed │ │ │ │ │ │ │ │ o8 = (HashTable{0 => 1}, HashTable{0 => (, 1.71747, -1.72291e-14) }) │ │ │ │ 1 => 3 1 => (1.71747, 922.381, 2.51496e-13) │ │ │ │ 2 => 5 2 => (922.381, 73.5901, 1.81323e-13) │ │ │ │ 3 => 2 3 => (73.5901, , 2.82914e-13) │ │ │ │ │ │ │ │ o8 : Sequence │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_common__Entries.html │ │ │ @@ -110,15 +110,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true)
    │ │ │ - -- .00359076s elapsed
    │ │ │ + -- .00422273s elapsed
    │ │ │  
    │ │ │         6       10       13       8
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -34,15 +34,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,5} │ │ │ │ │ │ │ │ o4 = {4, 3, 5} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>100,ZeroMean=>true) │ │ │ │ - -- .00359076s elapsed │ │ │ │ + -- .00422273s elapsed │ │ │ │ │ │ │ │ 6 10 13 8 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_euclidean__Distance.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .0027493s elapsed
    │ │ │ + -- .00320249s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .0027493s elapsed │ │ │ │ + -- .00320249s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SVDComplexes/html/_project__To__Complex.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o4 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
    │ │ │ - -- .00303026s elapsed
    │ │ │ + -- .00369821s elapsed
    │ │ │  
    │ │ │         6       10       11       5
    │ │ │  o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
    │ │ │                                  
    │ │ │       0       1        2        3
    │ │ │  
    │ │ │  o5 : ChainComplex
    │ │ │ ├── html2text {} │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ o3 : List │ │ │ │ i4 : r={4,3,3} │ │ │ │ │ │ │ │ o4 = {4, 3, 3} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true) │ │ │ │ - -- .00303026s elapsed │ │ │ │ + -- .00369821s elapsed │ │ │ │ │ │ │ │ 6 10 11 5 │ │ │ │ o5 = ZZ <-- ZZ <-- ZZ <-- ZZ │ │ │ │ │ │ │ │ 0 1 2 3 │ │ │ │ │ │ │ │ o5 : ChainComplex │ │ ├── ./usr/share/doc/Macaulay2/SagbiGbDetection/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=27 │ │ │ d2VpZ2h0VmVjdG9yc1JlYWxpemluZ1NBR0JJ │ │ ├── ./usr/share/doc/Macaulay2/Saturation/example-output/_quotient_lp..._cm__Strategy_eq_gt..._rp.out │ │ │ @@ -37,33 +37,33 @@ │ │ │ o5 : Ideal of S │ │ │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc) │ │ │ + -- used 0.381338s (cpu); 0.381125s (thread); 0s (gc) │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc) │ │ │ + -- used 0.747485s (cpu); 0.646083s (thread); 0s (gc) │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc) │ │ │ + -- used 0.0283667s (cpu); 0.0283726s (thread); 0s (gc) │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc) │ │ │ + -- used 0.00992101s (cpu); 0.00993252s (thread); 0s (gc) │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ │ │ i13 : │ │ ├── ./usr/share/doc/Macaulay2/Saturation/html/_quotient_lp..._cm__Strategy_eq_gt..._rp.html │ │ │ @@ -125,23 +125,23 @@ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time quotient(I^3, J^2, Strategy => Iterate);
    │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc)
    │ │ │ + -- used 0.381338s (cpu); 0.381125s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : time quotient(I^3, J^2, Strategy => Quotient);
    │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc)
    │ │ │ + -- used 0.747485s (cpu); 0.646083s (thread); 0s (gc)
    │ │ │  
    │ │ │  o8 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Strategy => Quotient is faster in other cases:

    │ │ │ @@ -158,23 +158,23 @@ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time quotient(I^5, I^3, Strategy => Iterate);
    │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc)
    │ │ │ + -- used 0.0283667s (cpu); 0.0283726s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time quotient(I^5, I^3, Strategy => Quotient);
    │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc)
    │ │ │ + -- used 0.00992101s (cpu); 0.00993252s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -56,32 +56,32 @@ │ │ │ │ i5 : I = monomialCurveIdeal(S, 1..n-1); │ │ │ │ │ │ │ │ o5 : Ideal of S │ │ │ │ i6 : J = ideal(map(S^1, S^n, (p, q) -> S_q^5)); │ │ │ │ │ │ │ │ o6 : Ideal of S │ │ │ │ i7 : time quotient(I^3, J^2, Strategy => Iterate); │ │ │ │ - -- used 0.386864s (cpu); 0.31337s (thread); 0s (gc) │ │ │ │ + -- used 0.381338s (cpu); 0.381125s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of S │ │ │ │ i8 : time quotient(I^3, J^2, Strategy => Quotient); │ │ │ │ - -- used 0.49095s (cpu); 0.490915s (thread); 0s (gc) │ │ │ │ + -- used 0.747485s (cpu); 0.646083s (thread); 0s (gc) │ │ │ │ │ │ │ │ o8 : Ideal of S │ │ │ │ Strategy => Quotient is faster in other cases: │ │ │ │ i9 : S = ZZ/101[vars(0..4)]; │ │ │ │ i10 : I = ideal vars S; │ │ │ │ │ │ │ │ o10 : Ideal of S │ │ │ │ i11 : time quotient(I^5, I^3, Strategy => Iterate); │ │ │ │ - -- used 0.0268459s (cpu); 0.0268439s (thread); 0s (gc) │ │ │ │ + -- used 0.0283667s (cpu); 0.0283726s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 : Ideal of S │ │ │ │ i12 : time quotient(I^5, I^3, Strategy => Quotient); │ │ │ │ - -- used 0.00767377s (cpu); 0.00767479s (thread); 0s (gc) │ │ │ │ + -- used 0.00992101s (cpu); 0.00993252s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of S │ │ │ │ ********** RReeffeerreenncceess ********** │ │ │ │ For further information see for example Exercise 15.41 in Eisenbud's │ │ │ │ Commutative Algebra with a View Towards Algebraic Geometry. │ │ │ │ ********** FFuunnccttiioonnss wwiitthh ooppttiioonnaall aarrgguummeenntt nnaammeedd SSttrraatteeggyy:: ********** │ │ │ │ * addHook(...,Strategy=>...) -- see _a_d_d_H_o_o_k -- add a hook function to an │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/example-output/___Lines_spon_sphypersurfaces.out │ │ │ @@ -40,23 +40,23 @@ │ │ │ ) │ │ │ │ │ │ o6 = f │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc) │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc) │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc) │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc) │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc) │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc) │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc) │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc) │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc) │ │ │ + -- used 0.00745073s (cpu); 0.00744723s (thread); 0s (gc) │ │ │ + -- used 0.00860662s (cpu); 0.00861431s (thread); 0s (gc) │ │ │ + -- used 0.012361s (cpu); 0.0123726s (thread); 0s (gc) │ │ │ + -- used 0.0205196s (cpu); 0.0205315s (thread); 0s (gc) │ │ │ + -- used 0.0386137s (cpu); 0.0386246s (thread); 0s (gc) │ │ │ + -- used 0.0770707s (cpu); 0.0770816s (thread); 0s (gc) │ │ │ + -- used 0.125028s (cpu); 0.125039s (thread); 0s (gc) │ │ │ + -- used 0.17883s (cpu); 0.178842s (thread); 0s (gc) │ │ │ + -- used 0.470664s (cpu); 0.326617s (thread); 0s (gc) │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ ------------------------------------------------------------------------ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ o7 : List │ │ ├── ./usr/share/doc/Macaulay2/Schubert2/html/___Lines_spon_sphypersurfaces.html │ │ │ @@ -126,23 +126,23 @@ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : for n from 2 to 10 list time f n
    │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc)
    │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc)
    │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc)
    │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc)
    │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc)
    │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc)
    │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc)
    │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc)
    │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc)
    │ │ │ + -- used 0.00745073s (cpu); 0.00744723s (thread); 0s (gc)
    │ │ │ + -- used 0.00860662s (cpu); 0.00861431s (thread); 0s (gc)
    │ │ │ + -- used 0.012361s (cpu); 0.0123726s (thread); 0s (gc)
    │ │ │ + -- used 0.0205196s (cpu); 0.0205315s (thread); 0s (gc)
    │ │ │ + -- used 0.0386137s (cpu); 0.0386246s (thread); 0s (gc)
    │ │ │ + -- used 0.0770707s (cpu); 0.0770816s (thread); 0s (gc)
    │ │ │ + -- used 0.125028s (cpu); 0.125039s (thread); 0s (gc)
    │ │ │ + -- used 0.17883s (cpu); 0.178842s (thread); 0s (gc)
    │ │ │ + -- used 0.470664s (cpu); 0.326617s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775,
    │ │ │       ------------------------------------------------------------------------
    │ │ │       289139638632755625, 520764738758073845321}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -56,23 +56,23 @@ │ │ │ │ integral chern symmetricPower_(2*n-3) last bundles G │ │ │ │ ) │ │ │ │ │ │ │ │ o6 = f │ │ │ │ │ │ │ │ o6 : FunctionClosure │ │ │ │ i7 : for n from 2 to 10 list time f n │ │ │ │ - -- used 0.00503697s (cpu); 0.00503317s (thread); 0s (gc) │ │ │ │ - -- used 0.00641821s (cpu); 0.0064191s (thread); 0s (gc) │ │ │ │ - -- used 0.00958149s (cpu); 0.00958239s (thread); 0s (gc) │ │ │ │ - -- used 0.016275s (cpu); 0.0162761s (thread); 0s (gc) │ │ │ │ - -- used 0.03087s (cpu); 0.0308718s (thread); 0s (gc) │ │ │ │ - -- used 0.0536082s (cpu); 0.0536137s (thread); 0s (gc) │ │ │ │ - -- used 0.0913388s (cpu); 0.0913434s (thread); 0s (gc) │ │ │ │ - -- used 0.278118s (cpu); 0.17744s (thread); 0s (gc) │ │ │ │ - -- used 0.223118s (cpu); 0.223096s (thread); 0s (gc) │ │ │ │ + -- used 0.00745073s (cpu); 0.00744723s (thread); 0s (gc) │ │ │ │ + -- used 0.00860662s (cpu); 0.00861431s (thread); 0s (gc) │ │ │ │ + -- used 0.012361s (cpu); 0.0123726s (thread); 0s (gc) │ │ │ │ + -- used 0.0205196s (cpu); 0.0205315s (thread); 0s (gc) │ │ │ │ + -- used 0.0386137s (cpu); 0.0386246s (thread); 0s (gc) │ │ │ │ + -- used 0.0770707s (cpu); 0.0770816s (thread); 0s (gc) │ │ │ │ + -- used 0.125028s (cpu); 0.125039s (thread); 0s (gc) │ │ │ │ + -- used 0.17883s (cpu); 0.178842s (thread); 0s (gc) │ │ │ │ + -- used 0.470664s (cpu); 0.326617s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = {1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 289139638632755625, 520764738758073845321} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ Note: in characteristic zero, using Bertini's theorem, the numbers computed can │ │ ├── ./usr/share/doc/Macaulay2/SchurFunctors/dump/rawdocumentation.dump │ │ │ @@ -1,8 +1,8 @@ │ │ │ -# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:54 2025 │ │ │ +# GDBM dump file created by GDBM version 1.26. 30/07/2025 on Sun Dec 14 14:09:53 2025 │ │ │ #:version=1.1 │ │ │ #:file=rawdocumentation-dcba-8.db │ │ │ #:uid=999,user=sbuild,gid=999,group=sbuild,mode=644 │ │ │ #:format=standard │ │ │ # End of header │ │ │ #:len=14 │ │ │ c3BsaXRDaGFyYWN0ZXI= │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_is__Component__Contained.out │ │ │ @@ -53,15 +53,15 @@ │ │ │ o9 : Ideal of R │ │ │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc) │ │ │ + -- used 7.70051s (cpu); 4.09959s (thread); 0s (gc) │ │ │ │ │ │ o11 = true │ │ │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ we could confirm this with the computation: │ │ │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ @@ -71,12 +71,12 @@ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ ----------------------------------------------------------------------- │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc) │ │ │ + -- used 66.7902s (cpu); 61.0194s (thread); 0s (gc) │ │ │ │ │ │ o14 = true │ │ │ │ │ │ i15 : │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/example-output/_segre__Dim__X.out │ │ │ @@ -23,24 +23,24 @@ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ o5 = A │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc) │ │ │ + -- used 0.638127s (cpu); 0.219781s (thread); 0s (gc) │ │ │ │ │ │ 2 2 │ │ │ o6 = 2H + 4H H + 2H │ │ │ 1 1 2 2 │ │ │ │ │ │ o6 : A │ │ │ │ │ │ i7 : time segre(X,Y,A) │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc) │ │ │ + -- used 0.300511s (cpu); 0.142018s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ o7 : A │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_is__Component__Contained.html │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : time isComponentContained(X,Y)
    │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc)
    │ │ │ + -- used 7.70051s (cpu); 4.09959s (thread); 0s (gc)
    │ │ │  
    │ │ │  o11 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : print "we could confirm this with the computation:"
    │ │ │ @@ -189,15 +189,15 @@
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time isSubset(saturate(Y,B),saturate(X,B))
    │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc)
    │ │ │ + -- used 66.7902s (cpu); 61.0194s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -68,30 +68,30 @@ │ │ │ │ i9 : Y=ideal (z_0*W_0-z_1*W_1)+ideal(f); │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : X=((W)*ideal(y)+ideal(f)); │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : time isComponentContained(X,Y) │ │ │ │ - -- used 4.58407s (cpu); 3.45047s (thread); 0s (gc) │ │ │ │ + -- used 7.70051s (cpu); 4.09959s (thread); 0s (gc) │ │ │ │ │ │ │ │ o11 = true │ │ │ │ i12 : print "we could confirm this with the computation:" │ │ │ │ we could confirm this with the computation: │ │ │ │ i13 : B=ideal(x)*ideal(y)*ideal(z) │ │ │ │ │ │ │ │ o13 = ideal (a*d*g, a*d*h, a*d*i, a*e*g, a*e*h, a*e*i, a*f*g, a*f*h, a*f*i, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ b*d*g, b*d*h, b*d*i, b*e*g, b*e*h, b*e*i, b*f*g, b*f*h, b*f*i, c*d*g, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ c*d*h, c*d*i, c*e*g, c*e*h, c*e*i, c*f*g, c*f*h, c*f*i) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time isSubset(saturate(Y,B),saturate(X,B)) │ │ │ │ - -- used 50.6991s (cpu); 46.8604s (thread); 0s (gc) │ │ │ │ + -- used 66.7902s (cpu); 61.0194s (thread); 0s (gc) │ │ │ │ │ │ │ │ o14 = true │ │ │ │ ********** WWaayyss ttoo uussee iissCCoommppoonneennttCCoonnttaaiinneedd:: ********** │ │ │ │ * isComponentContained(Ideal,Ideal) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _i_s_C_o_m_p_o_n_e_n_t_C_o_n_t_a_i_n_e_d is a _m_e_t_h_o_d_ _f_u_n_c_t_i_o_n_ _w_i_t_h_ _o_p_t_i_o_n_s. │ │ │ │ =============================================================================== │ │ ├── ./usr/share/doc/Macaulay2/SegreClasses/html/_segre__Dim__X.html │ │ │ @@ -118,27 +118,27 @@ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time s = segreDimX(X,Y,A)
    │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc)
    │ │ │ + -- used 0.638127s (cpu); 0.219781s (thread); 0s (gc)
    │ │ │  
    │ │ │         2             2
    │ │ │  o6 = 2H  + 4H H  + 2H
    │ │ │         1     1 2     2
    │ │ │  
    │ │ │  o6 : A
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time segre(X,Y,A)
    │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc)
    │ │ │ + -- used 0.300511s (cpu); 0.142018s (thread); 0s (gc)
    │ │ │  
    │ │ │          2 2     2         2     2             2
    │ │ │  o7 = 12H H  - 6H H  - 6H H  + 2H  + 4H H  + 2H
    │ │ │          1 2     1 2     1 2     1     1 2     2
    │ │ │  
    │ │ │  o7 : A
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -48,23 +48,23 @@ │ │ │ │ o4 : Ideal of R │ │ │ │ i5 : A = makeChowRing(R) │ │ │ │ │ │ │ │ o5 = A │ │ │ │ │ │ │ │ o5 : QuotientRing │ │ │ │ i6 : time s = segreDimX(X,Y,A) │ │ │ │ - -- used 0.374749s (cpu); 0.242963s (thread); 0s (gc) │ │ │ │ + -- used 0.638127s (cpu); 0.219781s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 │ │ │ │ o6 = 2H + 4H H + 2H │ │ │ │ 1 1 2 2 │ │ │ │ │ │ │ │ o6 : A │ │ │ │ i7 : time segre(X,Y,A) │ │ │ │ - -- used 0.16565s (cpu); 0.105524s (thread); 0s (gc) │ │ │ │ + -- used 0.300511s (cpu); 0.142018s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ │ o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H │ │ │ │ 1 2 1 2 1 2 1 1 2 2 │ │ │ │ │ │ │ │ o7 : A │ │ │ │ ********** WWaayyss ttoo uussee sseeggrreeDDiimmXX:: ********** │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/example-output/_test__Example.out │ │ │ @@ -1,6 +1,6 @@ │ │ │ -- -*- M2-comint -*- hash: 1331702921222 │ │ │ │ │ │ i1 : check SimpleDoc │ │ │ - -- capturing check(0, "SimpleDoc") -- .226545s elapsed │ │ │ + -- capturing check(0, "SimpleDoc") -- .193722s elapsed │ │ │ │ │ │ i2 : │ │ ├── ./usr/share/doc/Macaulay2/SimpleDoc/html/_test__Example.html │ │ │ @@ -74,15 +74,15 @@ │ │ │
    │ │ │

    The check method executes all package tests defined this way.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : check SimpleDoc
    │ │ │ - -- capturing check(0, "SimpleDoc")           -- .226545s elapsed
    │ │ │ + -- capturing check(0, "SimpleDoc") -- .193722s elapsed │ │ │
    │ │ │
    │ │ │
    │ │ │

    See also

    │ │ │
      │ │ │ ├── html2text {} │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ The variable testExample is a _S_t_r_i_n_g containing an example of the use of _T_E_S_T │ │ │ │ to write a test case. │ │ │ │ TEST /// -* test for simpleDocFrob *- │ │ │ │ assert(simpleDocFrob(2,matrix{{1,2}}) == matrix{{1,2,0,0},{0,0,1,2}}) │ │ │ │ /// │ │ │ │ The _c_h_e_c_k method executes all package tests defined this way. │ │ │ │ i1 : check SimpleDoc │ │ │ │ - -- capturing check(0, "SimpleDoc") -- .226545s elapsed │ │ │ │ + -- capturing check(0, "SimpleDoc") -- .193722s elapsed │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _T_E_S_T -- add a test for a package │ │ │ │ * _c_h_e_c_k -- perform tests of a package │ │ │ │ * _p_a_c_k_a_g_e_T_e_m_p_l_a_t_e -- a template for a package │ │ │ │ * _d_o_c_E_x_a_m_p_l_e -- an example of a documentation string │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ │ │ The object _t_e_s_t_E_x_a_m_p_l_e is a _s_t_r_i_n_g. │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/example-output/_rehomogenize__Polynomial.out │ │ │ @@ -9,14 +9,14 @@ │ │ │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ o5 : R │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SlackIdeals/html/_rehomogenize__Polynomial.html │ │ │ @@ -99,17 +99,17 @@ │ │ │
      i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)};
      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
      i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1)
      │ │ │  
      │ │ │ -        2 2 2 2          2 2 2 2          2 2
      │ │ │ -o5 = - x x x x x  x   + x x x x x  x   + x x x x x x x x
      │ │ │ -        1 4 6 7 10 11    2 3 5 8 10 11    2 3 5 6 7 8 9 12
      │ │ │ +      2 2 2 2          2 2 2 2                  2 2
      │ │ │ +o5 = x x x x x  x   - x x x x x  x   + x x x x x x x x
      │ │ │ +      1 4 6 7 10 11    2 3 5 8 10 11    1 2 3 4 6 7 9 12
      │ │ │  
      │ │ │  o5 : R
      │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -31,17 +31,17 @@ │ │ │ │ │ │ │ │ 6 5 │ │ │ │ o2 : Matrix R <-- R │ │ │ │ i3 : (Y, T) = setOnesForest X; │ │ │ │ i4 : remVars := flatten entries Y - set{0_(ring Y), 1_(ring Y)}; │ │ │ │ i5 : h = rehomogenizePolynomial(X, Y, T, remVars_0^2+remVars_0*remVars_1-1) │ │ │ │ │ │ │ │ - 2 2 2 2 2 2 2 2 2 2 │ │ │ │ -o5 = - x x x x x x + x x x x x x + x x x x x x x x │ │ │ │ - 1 4 6 7 10 11 2 3 5 8 10 11 2 3 5 6 7 8 9 12 │ │ │ │ + 2 2 2 2 2 2 2 2 2 2 │ │ │ │ +o5 = x x x x x x - x x x x x x + x x x x x x x x │ │ │ │ + 1 4 6 7 10 11 2 3 5 8 10 11 1 2 3 4 6 7 9 12 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_e_t_O_n_e_s_F_o_r_e_s_t -- sets to 1 variables in a symbolic slack matrix which │ │ │ │ corresponding to edges of a spanning forest │ │ │ │ * _s_l_a_c_k_I_d_e_a_l -- computes the slack ideal │ │ │ │ * _s_y_m_b_o_l_i_c_S_l_a_c_k_M_a_t_r_i_x -- computes the symbolic slack matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_degree__Determinant.out │ │ │ @@ -3,15 +3,15 @@ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ o1 : List │ │ │ │ │ │ i2 : time degreeDeterminant n │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc) │ │ │ + -- used 0.000102447s (cpu); 8.9785e-05s (thread); 0s (gc) │ │ │ │ │ │ o2 = 6 │ │ │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 1368 or with command line option --debug 1368 │ │ │ warning: clearing value of symbol x1 to allow access to subscripted variables based on it │ │ │ @@ -19,14 +19,14 @@ │ │ │ warning: clearing value of symbol x0 to allow access to subscripted variables based on it │ │ │ : debug with expression debug 6010 or with command line option --debug 6010 │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ 0,0,0 1,2,1 │ │ │ │ │ │ i4 : time degree determinant M │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc) │ │ │ + -- used 0.171905s (cpu); 0.0551066s (thread); 0s (gc) │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ o4 : List │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Discriminant.out │ │ │ @@ -1,13 +1,13 @@ │ │ │ -- -*- M2-comint -*- hash: 17130321902108223178 │ │ │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc) │ │ │ + -- used 0.579826s (cpu); 0.313864s (thread); 0s (gc) │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |) │ │ │ | 0 0 0 1 1 2 0 0 1 0 | │ │ │ | 0 1 2 0 1 0 0 1 0 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_dense__Resultant.out │ │ │ @@ -9,18 +9,18 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc) │ │ │ + -- used 0.174494s (cpu); 0.115434s (thread); 0s (gc) │ │ │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc) │ │ │ + -- used 0.379614s (cpu); 0.30724s (thread); 0s (gc) │ │ │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc) │ │ │ + -- used 0.421825s (cpu); 0.362436s (thread); 0s (gc) │ │ │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ │ │ i6 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_determinant_lp__Multidimensional__Matrix_rp.out │ │ │ @@ -5,15 +5,15 @@ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ ------------------------------------------------------------------------ │ │ │ 3}}}} │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ i2 : time det M │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc) │ │ │ + -- used 0.183683s (cpu); 0.11218s (thread); 0s (gc) │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -24,13 +24,13 @@ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ ------------------------------------------------------------------------ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ │ │ i4 : time det M │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc) │ │ │ + -- used 0.480945s (cpu); 0.480945s (thread); 0s (gc) │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ 9257139493926586400187927813888 │ │ │ │ │ │ i5 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_generic__Skew__Multidimensional__Matrix.out │ │ │ @@ -34,23 +34,23 @@ │ │ │ ZZ │ │ │ o2 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[a ..a ] │ │ │ 101 0 3 │ │ │ │ │ │ i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/101,Variable=>"b") │ │ │ │ │ │ o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0, │ │ │ - 3 2 3 0 2 0 │ │ │ + 1 0 1 2 0 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b , │ │ │ - 3 2 3 1 2 1 3 │ │ │ + 1 0 1 3 0 3 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b , │ │ │ - 0 3 1 0 1 2 0 │ │ │ + 2 1 3 2 3 0 2 │ │ │ ------------------------------------------------------------------------ │ │ │ 0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}} │ │ │ - 2 1 0 1 │ │ │ + 0 3 2 3 │ │ │ │ │ │ ZZ │ │ │ o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ] │ │ │ 101 0 3 │ │ │ │ │ │ i4 : │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Discriminant.out │ │ │ @@ -11,15 +11,15 @@ │ │ │ a x y z + a x y z + a x y z │ │ │ 1,1,1 1 1 1 1,2,0 1 2 0 1,2,1 1 2 1 │ │ │ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ i2 : time sparseDiscriminant f │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc) │ │ │ + -- used 2.97611s (cpu); 2.65251s (thread); 0s (gc) │ │ │ │ │ │ 2 │ │ │ o2 = a a a a a a - a a a a a - │ │ │ 0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0 0,1,0 0,2,1 1,0,0 1,0,1 1,1,0 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 2 │ │ │ a a a a + a a a a a - │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/example-output/_sparse__Resultant.out │ │ │ @@ -1,11 +1,11 @@ │ │ │ -- -*- M2-comint -*- hash: 16228363821945730064 │ │ │ │ │ │ i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}}) │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc) │ │ │ + -- used 0.535004s (cpu); 0.480945s (thread); 0s (gc) │ │ │ │ │ │ o1 = Res │ │ │ │ │ │ o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |}) │ │ │ | 0 0 1 1 | | 1 0 1 2 | | 0 1 0 1 | │ │ │ │ │ │ i2 : QQ[c_(1,1)..c_(3,4)][x,y]; │ │ │ @@ -18,15 +18,15 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ c x*y + c x + c y + c ) │ │ │ 3,3 3,4 3,2 3,1 │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ i4 : time Res(f,g,h) │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc) │ │ │ + -- used 0.0114584s (cpu); 0.0114583s (thread); 0s (gc) │ │ │ │ │ │ 2 4 2 2 4 │ │ │ o4 = - c c c c c c c + c c c c c c + │ │ │ 1,2 1,3 1,4 2,1 2,2 2,3 3,1 1,2 1,3 2,1 2,2 2,4 3,1 │ │ │ ------------------------------------------------------------------------ │ │ │ 3 2 3 2 3 │ │ │ c c c c c c - 2c c c c c c c c + │ │ │ @@ -730,30 +730,30 @@ │ │ │ │ │ │ o4 : QQ[c ..c ] │ │ │ 1,1 3,4 │ │ │ │ │ │ i5 : assert(Res(f,g,h) == sparseResultant(f,g,h)) │ │ │ │ │ │ i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331); │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc) │ │ │ + -- used 0.251632s (cpu); 0.0743614s (thread); 0s (gc) │ │ │ │ │ │ o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331) │ │ │ | 0 1 0 1 | │ │ │ │ │ │ i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y]; │ │ │ │ │ │ i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y, c_0 + c_1*x + c_2*y + c_3*x*y) │ │ │ │ │ │ o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c ) │ │ │ 3 1 2 0 3 1 2 0 3 1 2 0 │ │ │ │ │ │ o8 : Sequence │ │ │ │ │ │ i9 : time Res(f,g,h) │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc) │ │ │ + -- used 0.00489819s (cpu); 0.00489889s (thread); 0s (gc) │ │ │ │ │ │ 2 2 2 2 2 2 2 │ │ │ o9 = a b b c - a a b b c - a a b b c + a a b c - a b b c c - │ │ │ 3 1 2 0 2 3 1 3 0 1 3 2 3 0 1 2 3 0 3 0 2 0 1 │ │ │ ------------------------------------------------------------------------ │ │ │ 2 2 │ │ │ a a b b c c + a a b c c + a a b b c c + a b b c c - a a b b c c + │ │ │ @@ -822,15 +822,15 @@ │ │ │ 2 │ │ │ c x x + c x + c x + c x + c ) │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ o11 : Sequence │ │ │ │ │ │ i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true)); │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc) │ │ │ + -- used 0.261818s (cpu); 0.206438s (thread); 0s (gc) │ │ │ │ │ │ i13 : quotientRemainder(UnmixedRes,MixedRes) │ │ │ │ │ │ 2 2 2 2 2 2 │ │ │ o13 = (b c - b b c c + b b c + b c c - 2b b c c - b b c c + b c , 0) │ │ │ 5 2 4 5 2 4 2 5 4 4 2 5 2 5 2 5 2 4 4 5 2 5 │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_degree__Determinant.html │ │ │ @@ -76,15 +76,15 @@ │ │ │ │ │ │ o1 : List │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time degreeDeterminant n
    │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc)
    │ │ │ + -- used 0.000102447s (cpu); 8.9785e-05s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 6
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = genericMultidimensionalMatrix n;
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a     ..a     ]
    │ │ │                                                        0,0,0   1,2,1
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time degree determinant M
    │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc)
    │ │ │ + -- used 0.171905s (cpu); 0.0551066s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = {6}
    │ │ │  
    │ │ │  o4 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : n = {2,3,2} │ │ │ │ │ │ │ │ o1 = {2, 3, 2} │ │ │ │ │ │ │ │ o1 : List │ │ │ │ i2 : time degreeDeterminant n │ │ │ │ - -- used 0.000112722s (cpu); 0.000101711s (thread); 0s (gc) │ │ │ │ + -- used 0.000102447s (cpu); 8.9785e-05s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 6 │ │ │ │ i3 : M = genericMultidimensionalMatrix n; │ │ │ │ warning: clearing value of symbol x2 to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 1368 or with command line option -- │ │ │ │ debug 1368 │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ based on it │ │ │ │ : debug with expression debug 6010 or with command line option -- │ │ │ │ debug 6010 │ │ │ │ │ │ │ │ o3 : 3-dimensional matrix of shape 2 x 3 x 2 over ZZ[a ..a ] │ │ │ │ 0,0,0 1,2,1 │ │ │ │ i4 : time degree determinant M │ │ │ │ - -- used 0.0350456s (cpu); 0.0342305s (thread); 0s (gc) │ │ │ │ + -- used 0.171905s (cpu); 0.0551066s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = {6} │ │ │ │ │ │ │ │ o4 : List │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_r_m_i_n_a_n_t_(_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x_) -- hyperdeterminant of a │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Discriminant.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │
    i1 : (d,n) := (2,3);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time Disc = denseDiscriminant(d,n)
    │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc)
    │ │ │ + -- used 0.579826s (cpu); 0.313864s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = Disc
    │ │ │  
    │ │ │  o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 |)
    │ │ │                                                             | 0 0 0 1 1 2 0 0 1 0 |
    │ │ │                                                             | 0 1 2 0 1 0 0 1 0 0 |
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ * Outputs: │ │ │ │ o for (d,n), this is the same as _s_p_a_r_s_e_D_i_s_c_r_i_m_i_n_a_n_t _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x │ │ │ │ ""ggeenneerriicc ppoollyynnoommiiaall ooff ddeeggrreeee dd iinn nn vvaarriiaabblleess"";; │ │ │ │ o for f, this is the same as _a_f_f_i_n_e_D_i_s_c_r_i_m_i_n_a_n_t(f). │ │ │ │ ********** DDeessccrriippttiioonn ********** │ │ │ │ i1 : (d,n) := (2,3); │ │ │ │ i2 : time Disc = denseDiscriminant(d,n) │ │ │ │ - -- used 0.408829s (cpu); 0.223024s (thread); 0s (gc) │ │ │ │ + -- used 0.579826s (cpu); 0.313864s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = Disc │ │ │ │ │ │ │ │ o2 : SparseDiscriminant (sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 │ │ │ │ 2 |) │ │ │ │ | 0 0 0 1 1 2 0 0 1 │ │ │ │ 0 | │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_dense__Resultant.html │ │ │ @@ -90,27 +90,27 @@ │ │ │ │ │ │ o1 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time denseResultant(f0,f1,f2); -- using Poisson formula
    │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc)
    │ │ │ + -- used 0.174494s (cpu); 0.115434s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay formula
    │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc)
    │ │ │ + -- used 0.379614s (cpu); 0.30724s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant
    │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc)
    │ │ │ + -- used 0.421825s (cpu); 0.362436s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : assert(o2 == o3 and o3 == o4)
    │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -28,20 +28,20 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 │ │ │ │ c x x + c x + c x + c x + c ) │ │ │ │ 4 1 2 2 2 3 1 1 2 0 │ │ │ │ │ │ │ │ o1 : Sequence │ │ │ │ i2 : time denseResultant(f0,f1,f2); -- using Poisson formula │ │ │ │ - -- used 0.163836s (cpu); 0.123645s (thread); 0s (gc) │ │ │ │ + -- used 0.174494s (cpu); 0.115434s (thread); 0s (gc) │ │ │ │ i3 : time denseResultant(f0,f1,f2,Algorithm=>"Macaulay"); -- using Macaulay │ │ │ │ formula │ │ │ │ - -- used 0.292245s (cpu); 0.237931s (thread); 0s (gc) │ │ │ │ + -- used 0.379614s (cpu); 0.30724s (thread); 0s (gc) │ │ │ │ i4 : time (denseResultant(1,2,2)) (f0,f1,f2); -- using sparseResultant │ │ │ │ - -- used 0.365133s (cpu); 0.330814s (thread); 0s (gc) │ │ │ │ + -- used 0.421825s (cpu); 0.362436s (thread); 0s (gc) │ │ │ │ i5 : assert(o2 == o3 and o3 == o4) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_a_r_s_e_R_e_s_u_l_t_a_n_t -- sparse resultant (A-resultant) │ │ │ │ * _a_f_f_i_n_e_R_e_s_u_l_t_a_n_t -- affine resultant │ │ │ │ * _d_e_n_s_e_D_i_s_c_r_i_m_i_n_a_n_t -- dense discriminant (classical discriminant) │ │ │ │ * _e_x_p_o_n_e_n_t_s_M_a_t_r_i_x -- exponents in one or more polynomials │ │ │ │ * _g_e_n_e_r_i_c_L_a_u_r_e_n_t_P_o_l_y_n_o_m_i_a_l_s -- generic (Laurent) polynomials │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_determinant_lp__Multidimensional__Matrix_rp.html │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time det M
    │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc)
    │ │ │ + -- used 0.183683s (cpu); 0.11218s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 9698337990421512192
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : M = randomMultidimensionalMatrix(2,2,2,2,5)
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  
    │ │ │  o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time det M
    │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc)
    │ │ │ + -- used 0.480945s (cpu); 0.480945s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 912984499996938980479447727885644530753184525786986940737407301278806287
    │ │ │       9257139493926586400187927813888
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o1 = {{{{8, 1}, {3, 7}}, {{8, 3}, {3, 7}}}, {{{8, 8}, {5, 7}}, {{8, 5}, {2, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3}}}} │ │ │ │ │ │ │ │ o1 : 4-dimensional matrix of shape 2 x 2 x 2 x 2 over ZZ │ │ │ │ i2 : time det M │ │ │ │ - -- used 0.0870547s (cpu); 0.0854223s (thread); 0s (gc) │ │ │ │ + -- used 0.183683s (cpu); 0.11218s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 9698337990421512192 │ │ │ │ i3 : M = randomMultidimensionalMatrix(2,2,2,2,5) │ │ │ │ │ │ │ │ o3 = {{{{{6, 3, 6, 8, 6}, {9, 3, 7, 6, 9}}, {{6, 2, 6, 0, 2}, {6, 9, 3, 5, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 6}}}, {{{3, 5, 7, 7, 9}, {4, 5, 0, 4, 3}}, {{1, 8, 9, 1, 2}, {9, 6, 6, │ │ │ │ @@ -42,15 +42,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 7, 4, 5}}}, {{{4, 0, 1, 4, 4}, {2, 6, 1, 1, 4}}, {{5, 4, 9, 7, 4}, {6, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 4, 8, 4, 2}}}}} │ │ │ │ │ │ │ │ o3 : 5-dimensional matrix of shape 2 x 2 x 2 x 2 x 5 over ZZ │ │ │ │ i4 : time det M │ │ │ │ - -- used 0.514606s (cpu); 0.440355s (thread); 0s (gc) │ │ │ │ + -- used 0.480945s (cpu); 0.480945s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 912984499996938980479447727885644530753184525786986940737407301278806287 │ │ │ │ 9257139493926586400187927813888 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- the class of all multidimensional matrices │ │ │ │ * _d_e_g_r_e_e_D_e_t_e_r_m_i_n_a_n_t -- degree of the hyperdeterminant of a generic │ │ │ │ multidimensional matrix │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_generic__Skew__Multidimensional__Matrix.html │ │ │ @@ -116,24 +116,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/101,Variable=>"b")
    │ │ │  
    │ │ │  o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0,
    │ │ │ -                              3    2        3       0        2   0           
    │ │ │ +                              1    0        1       2        0   2           
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b ,
    │ │ │ -         3   2                    3          1      2      1              3 
    │ │ │ +         1   0                    1          3      0      3              1 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b ,
    │ │ │ -         0     3         1                    0    1                 2    0 
    │ │ │ +         2     1         3                    2    3                 0    2 
    │ │ │       ------------------------------------------------------------------------
    │ │ │       0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}}
    │ │ │ -           2       1        0   1
    │ │ │ +           0       3        2   3
    │ │ │  
    │ │ │                                                     ZZ
    │ │ │  o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ]
    │ │ │                                                    101  0   3
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -51,24 +51,24 @@ │ │ │ │ ZZ │ │ │ │ o2 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[a ..a ] │ │ │ │ 101 0 3 │ │ │ │ i3 : genericSkewMultidimensionalMatrix(3,4,CoefficientRing=>ZZ/ │ │ │ │ 101,Variable=>"b") │ │ │ │ │ │ │ │ o3 = {{{0, 0, 0, 0}, {0, 0, -b , -b }, {0, b , 0, -b }, {0, b , b , 0}}, {{0, │ │ │ │ - 3 2 3 0 2 0 │ │ │ │ + 1 0 1 2 0 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0, b , b }, {0, 0, 0, 0}, {-b , 0, 0, -b }, {-b , 0, b , 0}}, {{0, -b , │ │ │ │ - 3 2 3 1 2 1 3 │ │ │ │ + 1 0 1 3 0 3 1 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0, b }, {b , 0, 0, b }, {0, 0, 0, 0}, {-b , -b , 0, 0}}, {{0, -b , -b , │ │ │ │ - 0 3 1 0 1 2 0 │ │ │ │ + 2 1 3 2 3 0 2 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 0}, {b , 0, -b , 0}, {b , b , 0, 0}, {0, 0, 0, 0}}} │ │ │ │ - 2 1 0 1 │ │ │ │ + 0 3 2 3 │ │ │ │ │ │ │ │ ZZ │ │ │ │ o3 : 3-dimensional matrix of shape 4 x 4 x 4 over ---[b ..b ] │ │ │ │ 101 0 3 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _g_e_n_e_r_i_c_M_u_l_t_i_d_i_m_e_n_s_i_o_n_a_l_M_a_t_r_i_x -- make a generic multidimensional matrix │ │ │ │ of variables │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Discriminant.html │ │ │ @@ -90,15 +90,15 @@ │ │ │ o1 : ZZ[a ..a ][x ..x , y ..y , z ..z ] │ │ │ 0,0,0 1,2,1 0 1 0 2 0 1 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time sparseDiscriminant f
    │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc)
    │ │ │ + -- used 2.97611s (cpu); 2.65251s (thread); 0s (gc)
    │ │ │  
    │ │ │                                                     2                        
    │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0  
    │ │ │       ------------------------------------------------------------------------
    │ │ │              2     2                                2            
    │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -37,15 +37,15 @@
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       a     x y z  + a     x y z  + a     x y z
    │ │ │ │        1,1,1 1 1 1    1,2,0 1 2 0    1,2,1 1 2 1
    │ │ │ │  
    │ │ │ │  o1 : ZZ[a     ..a     ][x ..x , y ..y , z ..z ]
    │ │ │ │           0,0,0   1,2,1   0   1   0   2   0   1
    │ │ │ │  i2 : time sparseDiscriminant f
    │ │ │ │ - -- used 2.62265s (cpu); 2.22282s (thread); 0s (gc)
    │ │ │ │ + -- used 2.97611s (cpu); 2.65251s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │                                                     2
    │ │ │ │  o2 = a     a     a     a     a     a      - a     a     a     a     a      -
    │ │ │ │        0,1,1 0,2,0 0,2,1 1,0,0 1,0,1 1,1,0    0,1,0 0,2,1 1,0,0 1,0,1 1,1,0
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │              2     2                                2
    │ │ │ │       a     a     a     a      + a     a     a     a     a      -
    │ │ ├── ./usr/share/doc/Macaulay2/SparseResultants/html/_sparse__Resultant.html
    │ │ │ @@ -74,15 +74,15 @@
    │ │ │          

    Description

    │ │ │

    Alternatively, one can apply the method directly to the list of Laurent polynomials $f_0,\ldots,f_n$. In this case, the matrices $A_0,\ldots,A_n$ are automatically determined by exponentsMatrix. If you want require that $A_0=\cdots=A_n$, then use the option Unmixed=>true (this could be faster). Below we consider some examples.

    │ │ │

    In the first example, we calculate the sparse (mixed) resultant associated to the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$. Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{(1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{(2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ │ o3 : Sequence │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},{1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc)
    │ │ │ + -- used 0.535004s (cpu); 0.480945s (thread); 0s (gc)
    │ │ │  
    │ │ │  o1 = Res
    │ │ │  
    │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1 2 2 |, | 0 0 1 1 |})
    │ │ │                                                              | 0 0 1 1 |  | 1 0 1 2 |  | 0 1 0 1 |
    │ │ │
    │ │ │
    i4 : time Res(f,g,h)
    │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc)
    │ │ │ + -- used 0.0114584s (cpu); 0.0114583s (thread); 0s (gc)
    │ │ │  
    │ │ │          2                       4      2   2               4    
    │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3       2       3               2                   3        
    │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ @@ -825,15 +825,15 @@
    │ │ │            
    │ │ │

    In the second example, we calculate the sparse unmixed resultant associated to the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0 + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over $\mathbb{Z}/3331$.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -68,15 +68,15 @@ │ │ │ │ │ │ │ │ o4 = | 0 1 | │ │ │ │ | 2 3 | │ │ │ │ | 4 | │ │ │ │ │ │ │ │ o4 : YoungTableau │ │ │ │ i5 : time higherSpechtPolynomial(S,T,R) │ │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc) │ │ │ │ + -- used 0.00168223s (cpu); 0.00167838s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o5 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o5 : R │ │ │ │ i6 : time higherSpechtPolynomial(S,T,R, Robust => false) │ │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc) │ │ │ │ + -- used 0.00151835s (cpu); 0.00151628s (thread); 0s (gc) │ │ │ │ │ │ │ │ 3 2 2 3 3 2 3 2 3 2 2 3 │ │ │ │ o6 = x x x x - x x x x - x x x x + x x x x + x x x x - x x x x - │ │ │ │ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 4 0 1 2 4 │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 3 2 3 2 2 3 2 3 3 2 3 2 │ │ │ │ x x x x - x x x x + x x x x + x x x x + x x x x - x x x x - │ │ │ │ @@ -108,15 +108,15 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 2 3 2 3 2 3 2 3 2 3 2 3 │ │ │ │ x x x x - x x x x - x x x x + x x x x - x x x x + x x x x │ │ │ │ 0 1 3 4 0 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 1 2 3 4 │ │ │ │ │ │ │ │ o6 : R │ │ │ │ i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true) │ │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc) │ │ │ │ + -- used 0.00239696s (cpu); 0.00239778s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 = (- x + x )(- x + x )(- x + x )(- x + x )((x + x + x )(x )(x ) + (x ) │ │ │ │ (x )(x )) │ │ │ │ 0 2 0 4 2 4 1 3 0 2 4 3 1 4 │ │ │ │ 2 0 │ │ │ │ │ │ │ │ o7 : Expression of class Product │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_representation__Multiplicity.html │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -111,15 +111,15 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ │ o5 : ProjectiveVariety, a point in PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time Res = sparseResultant(matrix{{0,0,1,1},{0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc)
    │ │ │ + -- used 0.251632s (cpu); 0.0743614s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over ZZ/3331)
    │ │ │                                                               | 0 1 0 1 |
    │ │ │
    │ │ │ @@ -849,15 +849,15 @@ │ │ │ │ │ │ o8 : Sequence │ │ │
    │ │ │
    i9 : time Res(f,g,h)
    │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc)
    │ │ │ + -- used 0.00489819s (cpu); 0.00489889s (thread); 0s (gc)
    │ │ │  
    │ │ │        2     2            2            2        2 2    2          
    │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1  
    │ │ │       ------------------------------------------------------------------------
    │ │ │                           2                       2                         
    │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ @@ -938,15 +938,15 @@
    │ │ │  
    │ │ │  o11 : Sequence
    │ │ │
    │ │ │
    i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant(f,g,h,Unmixed=>true));
    │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc)
    │ │ │ + -- used 0.261818s (cpu); 0.206438s (thread); 0s (gc) │ │ │
    │ │ │
    i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │  
    │ │ │          2 2                   2    2                               2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -34,15 +34,15 @@
    │ │ │ │  In the first example, we calculate the sparse (mixed) resultant associated to
    │ │ │ │  the three sets of monomials $(1,x y,x^2 y,x),(y,x^2 y^2,x^2 y,x),(1,y,x y,x)$.
    │ │ │ │  Then we evaluate it at the three polynomials $f = c_{(1,1)}+c_{(1,2)} x y+c_{
    │ │ │ │  (1,3)} x^2 y+c_{(1,4)} x, g = c_{(2,1)} y+c_{(2,2)} x^2 y^2+c_{(2,3)} x^2 y+c_{
    │ │ │ │  (2,4)} x, h = c_{(3,1)}+c_{(3,2)} y+c_{(3,3)} x y+c_{(3,4)} x$.
    │ │ │ │  i1 : time Res = sparseResultant(matrix{{0,1,1,2},{0,0,1,1}},matrix{{0,1,2,2},
    │ │ │ │  {1,0,1,2}},matrix{{0,0,1,1},{0,1,0,1}})
    │ │ │ │ - -- used 0.507781s (cpu); 0.44829s (thread); 0s (gc)
    │ │ │ │ + -- used 0.535004s (cpu); 0.480945s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o1 = Res
    │ │ │ │  
    │ │ │ │  o1 : SparseResultant (sparse mixed resultant associated to {| 0 1 1 2 |, | 0 1
    │ │ │ │  2 2 |, | 0 0 1 1 |})
    │ │ │ │                                                              | 0 0 1 1 |  | 1 0
    │ │ │ │  1 2 |  | 0 1 0 1 |
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │         1,3       1,2       1,4     1,1   2,2        2,3       2,4     2,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │       c   x*y + c   x + c   y + c   )
    │ │ │ │        3,3       3,4     3,2     3,1
    │ │ │ │  
    │ │ │ │  o3 : Sequence
    │ │ │ │  i4 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00905261s (cpu); 0.00905263s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0114584s (cpu); 0.0114583s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │          2                       4      2   2               4
    │ │ │ │  o4 = - c   c   c   c   c   c   c    + c   c   c   c   c   c    +
    │ │ │ │          1,2 1,3 1,4 2,1 2,2 2,3 3,1    1,2 1,3 2,1 2,2 2,4 3,1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │        3       2       3               2                   3
    │ │ │ │       c   c   c   c   c   c    - 2c   c   c   c   c   c   c   c    +
    │ │ │ │ @@ -771,29 +771,29 @@
    │ │ │ │  In the second example, we calculate the sparse unmixed resultant associated to
    │ │ │ │  the set of monomials $(1,x,y,xy)$. Then we evaluate it at the three polynomials
    │ │ │ │  $f = a_0 + a_1 x + a_2 y + a_3 x y, g = b_0 + b_1 x + b_2 y + b_3 x y, h = c_0
    │ │ │ │  + c_1 x + c_2 y + c_3 x y$. Moreover, we perform all the computation over
    │ │ │ │  $\mathbb{Z}/3331$.
    │ │ │ │  i6 : time Res = sparseResultant(matrix{{0,0,1,1},
    │ │ │ │  {0,1,0,1}},CoefficientRing=>ZZ/3331);
    │ │ │ │ - -- used 0.0304897s (cpu); 0.0292273s (thread); 0s (gc)
    │ │ │ │ + -- used 0.251632s (cpu); 0.0743614s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : SparseResultant (sparse unmixed resultant associated to | 0 0 1 1 | over
    │ │ │ │  ZZ/3331)
    │ │ │ │                                                               | 0 1 0 1 |
    │ │ │ │  i7 : ZZ/3331[a_0..a_3,b_0..b_3,c_0..c_3][x,y];
    │ │ │ │  i8 : (f,g,h) = (a_0 + a_1*x + a_2*y + a_3*x*y, b_0 + b_1*x + b_2*y + b_3*x*y,
    │ │ │ │  c_0 + c_1*x + c_2*y + c_3*x*y)
    │ │ │ │  
    │ │ │ │  o8 = (a x*y + a x + a y + a , b x*y + b x + b y + b , c x*y + c x + c y + c )
    │ │ │ │         3       1     2     0   3       1     2     0   3       1     2     0
    │ │ │ │  
    │ │ │ │  o8 : Sequence
    │ │ │ │  i9 : time Res(f,g,h)
    │ │ │ │ - -- used 0.00316112s (cpu); 0.00316119s (thread); 0s (gc)
    │ │ │ │ + -- used 0.00489819s (cpu); 0.00489889s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │        2     2            2            2        2 2    2
    │ │ │ │  o9 = a b b c  - a a b b c  - a a b b c  + a a b c  - a b b c c  -
    │ │ │ │        3 1 2 0    2 3 1 3 0    1 3 2 3 0    1 2 3 0    3 0 2 0 1
    │ │ │ │       ------------------------------------------------------------------------
    │ │ │ │                           2                       2
    │ │ │ │       a a b b c c  + a a b c c  + a a b b c c  + a b b c c  - a a b b c c  +
    │ │ │ │ @@ -863,15 +863,15 @@
    │ │ │ │                    2
    │ │ │ │        c x x  + c x  + c x  + c x  + c )
    │ │ │ │         4 1 2    2 2    3 1    1 2    0
    │ │ │ │  
    │ │ │ │  o11 : Sequence
    │ │ │ │  i12 : time (MixedRes,UnmixedRes) = (sparseResultant(f,g,h),sparseResultant
    │ │ │ │  (f,g,h,Unmixed=>true));
    │ │ │ │ - -- used 0.260966s (cpu); 0.209622s (thread); 0s (gc)
    │ │ │ │ + -- used 0.261818s (cpu); 0.206438s (thread); 0s (gc)
    │ │ │ │  i13 : quotientRemainder(UnmixedRes,MixedRes)
    │ │ │ │  
    │ │ │ │          2 2                   2    2                               2 2
    │ │ │ │  o13 = (b c  - b b c c  + b b c  + b c c  - 2b b c c  - b b c c  + b c , 0)
    │ │ │ │          5 2    4 5 2 4    2 5 4    4 2 5     2 5 2 5    2 4 4 5    2 5
    │ │ │ │  
    │ │ │ │  o13 : Sequence
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o4 = | 0 1 |
    │ │ │       | 2 3 |
    │ │ │       | 4 |
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │  
    │ │ │  i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc)
    │ │ │ + -- used 0.00168223s (cpu); 0.00167838s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -46,15 +46,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o5 : R
    │ │ │  
    │ │ │  i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc)
    │ │ │ + -- used 0.00151835s (cpu); 0.00151628s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -67,15 +67,15 @@
    │ │ │          2   3    2     3    2     3      2   3        2 3        2 3
    │ │ │       x x x x  - x x x x  - x x x x  + x x x x  - x x x x  + x x x x
    │ │ │        0 1 3 4    0 2 3 4    1 2 3 4    0 2 3 4    0 1 3 4    1 2 3 4
    │ │ │  
    │ │ │  o6 : R
    │ │ │  
    │ │ │  i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc)
    │ │ │ + -- used 0.00239696s (cpu); 0.00239778s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │  
    │ │ │  i8 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_representation__Multiplicity.out
    │ │ │ @@ -25,15 +25,15 @@
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 : tal := tally apply (H,h->conjugacyClass h);
    │ │ │  
    │ │ │  i4 : partis = partitions 6;
    │ │ │  
    │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ + -- used 0.373484s (cpu); 0.314828s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/example-output/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.out
    │ │ │ @@ -20,15 +20,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ + -- used 0.842361s (cpu); 0.593415s (thread); 0s (gc)
    │ │ │  
    │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │  o4 = HashTable{{0, 1, 2, 3, 4, 5} => HashTable{0 => - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  + -x x x x  - -x x x x  - -x x x x  + -x x x x  - -x x x x }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        }
    │ │ │                                                        3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 4   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 5   3 1 2 3 5   3 1 2 3 5   3 1 2 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 4 5   3 1 3 4 5   3 2 3 4 5   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 3 6   3 1 2 3 6   3 1 2 3 6   3 1 2 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 4 6   3 1 3 4 6   3 2 3 4 6   3 1 2 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6   3 1 2 5 6   3 1 3 5 6   3 2 3 5 6   3 1 4 5 6   3 2 4 5 6   3 3 4 5 6
    │ │ │                                                      2 3 2 2     4 2 3 2     2 2 2 3     4 3 2   2   2 2 3   2   2 3   2 2   2   3 2 2   2 2   3 2   4   2 3 2   2 2 2   3   4 2   2 3   2   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   1 3 2 2     2 2 3 2     1 2 2 3     2 3 2 2     1 2 3 2     1 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 2 3     2 2 2 3     1 2 2 3     1 3 2 2     1 2 3 2     2 3 2 2     1 3 2 2     2 2 3 2     1 2 3 2     1 3 2 2     2 3 2 2     1 3 2 2     1 2 3 2     2 2 3 2     1 2 3 2     2 2 2 3     4 2 2 3     2 2 2 3     2 2 2 3     4 2 2 3     2 2 2 3     2 3 2   2   1 2 3   2   1 3   2 2   1   3 2 2   1 2   3 2   2   2 3 2   1 3 2   2   2 2 3   2   1 3 2   2   2 3 2   2   1 2 3   2   1 2 3   2   1 3   2 2   1   3 2 2   2 3   2 2   1 3   2 2   2   3 2 2   1   3 2 2   2 2   3 2   1   2 3 2   1 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1 3 2   2   1 2 3   2   2 3 2   2   1 3 2   2   2 2 3   2   1 2 3   2   1 3 2   2   2 3 2   2   1 3 2   2   1 2 3   2   2 2 3   2   1 2 3   2   2 3   2 2   2   3 2 2   4 3   2 2   2 3   2 2   4   3 2 2   2   3 2 2   2 3   2 2   4 3   2 2   2 3   2 2   2   3 2 2   4   3 2 2   2   3 2 2   1 2   3 2   1   2 3 2   2 2   3 2   1 2   3 2   2   2 3 2   1   2 3 2   1 2   3 2   2 2   3 2   1 2   3 2   1   2 3 2   2   2 3 2   1   2 3 2   1 2 2   3   2 2   2 3   1   2 2 3   1 2 2   3   2 2 2   3   1 2 2   3   1 2   2 3   2   2 2 3   1 2   2 3   2 2   2 3   1   2 2 3   1   2 2 3   2 2 2   3   4 2 2   3   2 2 2   3   2 2 2   3   4 2 2   3   2 2 2   3   1 2   2 3   1   2 2 3   2 2   2 3   1 2   2 3   2   2 2 3   1   2 2 3   1 2   2 3   2 2   2 3   1 2   2 3   1   2 2 3   2   2 2 3   1   2 2 3
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_higher__Specht__Polynomial_lp__Young__Tableau_cm__Young__Tableau_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -125,15 +125,15 @@
    │ │ │  
    │ │ │  o4 : YoungTableau
    │ │ │
    │ │ │
    i5 : time higherSpechtPolynomial(S,T,R)
    │ │ │ - -- used 0.0015725s (cpu); 0.00156896s (thread); 0s (gc)
    │ │ │ + -- used 0.00168223s (cpu); 0.00167838s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o5 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -149,15 +149,15 @@
    │ │ │  
    │ │ │  o5 : R
    │ │ │
    │ │ │
    i6 : time higherSpechtPolynomial(S,T,R, Robust => false)
    │ │ │ - -- used 0.00127507s (cpu); 0.00127554s (thread); 0s (gc)
    │ │ │ + -- used 0.00151835s (cpu); 0.00151628s (thread); 0s (gc)
    │ │ │  
    │ │ │        3 2          2 3      3     2        3 2    3   2      2   3    
    │ │ │  o6 = x x x x  - x x x x  - x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │        0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 3    0 1 2 4    0 1 2 4  
    │ │ │       ------------------------------------------------------------------------
    │ │ │        3 2        3 2        2 3        2 3        3   2        3 2    
    │ │ │       x x x x  - x x x x  + x x x x  + x x x x  + x x x x  - x x x x  -
    │ │ │ @@ -173,15 +173,15 @@
    │ │ │  
    │ │ │  o6 : R
    │ │ │
    │ │ │
    i7 : time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
    │ │ │ - -- used 0.00194803s (cpu); 0.00194842s (thread); 0s (gc)
    │ │ │ + -- used 0.00239696s (cpu); 0.00239778s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 = (- x  + x )(- x  + x )(- x  + x )(- x  + x )((x  + x  + x )(x )(x ) + (x )(x )(x ))
    │ │ │           0    2     0    4     2    4     1    3    0    2    4   3   1      4   2   0
    │ │ │  
    │ │ │  o7 : Expression of class Product
    │ │ │
    │ │ │
    i4 : partis = partitions 6;
    │ │ │
    │ │ │
    i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
    │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ + -- used 0.373484s (cpu); 0.314828s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │                 Partition{2, 2, 2} => 1
    │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │                 Partition{3, 2, 1} => 0
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  representations of $H$ in each irreducible representation of $S_6$. We take
    │ │ │ │  into account that there are multiple copies of each representation by
    │ │ │ │  multiplying the values with the number of copies which is given by the
    │ │ │ │  hookLengthFormula.
    │ │ │ │  i4 : partis = partitions 6;
    │ │ │ │  i5 : time multi = hashTable apply (partis, p-> p=> representationMultiplicity
    │ │ │ │  (tal,p))
    │ │ │ │ - -- used 0.344281s (cpu); 0.287215s (thread); 0s (gc)
    │ │ │ │ + -- used 0.373484s (cpu); 0.314828s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o5 = HashTable{Partition{1, 1, 1, 1, 1, 1} => 1}
    │ │ │ │                 Partition{2, 1, 1, 1, 1} => 0
    │ │ │ │                 Partition{2, 2, 1, 1} => 1
    │ │ │ │                 Partition{2, 2, 2} => 1
    │ │ │ │                 Partition{3, 1, 1, 1} => 0
    │ │ │ │                 Partition{3, 2, 1} => 0
    │ │ ├── ./usr/share/doc/Macaulay2/SpechtModule/html/_secondary__Invariants_lp__List_cm__Polynomial__Ring_rp.html
    │ │ │ @@ -109,15 +109,15 @@
    │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ + -- used 0.842361s (cpu); 0.593415s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : seco#(new Partition from {2,2,2})
    │ │ │  
    │ │ │                                                        2 2 2       4 2   2     2   2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2 2       2 2   2     1   2 2     1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2     1   2 2     1   2 2     2 2 2       4 2 2       2 2 2       2 2 2       4 2 2       2 2 2       1 2   2     1   2 2     2 2   2     1 2   2     2   2 2     1   2 2     1 2   2     2 2   2     1 2   2     1   2 2     2   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2   2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1     2 2   1 2     2   1   2   2   2 2     2   1 2     2   2   2   2   1   2   2   1 2     2   2 2     2   1 2     2   1   2   2   2   2   2   1   2   2   2     2 2   4     2 2   2     2 2   2     2 2   4     2 2   2     2 2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -56,15 +56,15 @@
    │ │ │ │  (Partition{3, 3}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{3, 2, 1}, Ambient_Dimension, 16, Rank, 0)
    │ │ │ │  (Partition{3, 1, 1, 1}, Ambient_Dimension, 10, Rank, 0)
    │ │ │ │  (Partition{2, 2, 2}, Ambient_Dimension, 5, Rank, 1)
    │ │ │ │  (Partition{2, 2, 1, 1}, Ambient_Dimension, 9, Rank, 1)
    │ │ │ │  (Partition{2, 1, 1, 1, 1}, Ambient_Dimension, 5, Rank, 0)
    │ │ │ │  (Partition{1, 1, 1, 1, 1, 1}, Ambient_Dimension, 1, Rank, 1)
    │ │ │ │ - -- used 0.68249s (cpu); 0.493249s (thread); 0s (gc)
    │ │ │ │ + -- used 0.842361s (cpu); 0.593415s (thread); 0s (gc)
    │ │ │ │  i4 : seco#(new Partition from {2,2,2})
    │ │ │ │  
    │ │ │ │                                                        2 2 2       4 2   2     2
    │ │ │ │  2 2     2 2     2   4   2   2   2     2 2   1 2 2       2 2   2     1   2 2
    │ │ │ │  1 2 2       2 2 2       1 2 2       1 2   2     2   2 2     1 2   2     2 2   2
    │ │ │ │  1   2 2     1   2 2     1 2     2   2   2   2   1     2 2   2 2     2   1   2
    │ │ │ │  2   1 2     2   1 2     2   1   2   2   2   2   2   1     2 2   2     2 2   1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__Castelnuovo__Surface.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       of discriminant 31 = det| 8 1 |
    │ │ │                               | 1 4 |
    │ │ │       containing a surface of degree 1 and sectional genus 0
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │  
    │ │ │  i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc)
    │ │ │ + -- used 2.97765s (cpu); 1.24278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -7,15 +7,15 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 14
    │ │ │       containing a (smooth) surface of degree 4 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degree 2
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc)
    │ │ │ + -- used 2.75827s (cpu); 1.21592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -10,15 +10,15 @@
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc)
    │ │ │ + -- used 8.85554s (cpu); 5.02189s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │  
    │ │ │  i4 : (mu,U,C,f) = building U';
    │ │ │  
    │ │ │  i5 : ? mu
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -8,28 +8,28 @@
    │ │ │  i2 : describe X
    │ │ │  
    │ │ │  o2 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc)
    │ │ │ + -- used 3.43085s (cpu); 2.15286s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │  
    │ │ │  i4 : p := point ambient X -- random point on P^5
    │ │ │  
    │ │ │  o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1]
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, a point in PP^5
    │ │ │  
    │ │ │  i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc)
    │ │ │ + -- used 0.36869s (cpu); 0.301226s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │  
    │ │ │  i7 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │  
    │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ + -- used 24.1013s (cpu); 8.59377s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │  
    │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ @@ -29,15 +29,15 @@
    │ │ │  i5 : p := point Y -- random point on Y
    │ │ │  
    │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937, 13402, 1]
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │  
    │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ + -- used 0.635188s (cpu); 0.325388s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │  
    │ │ │  i7 : S = surface X;
    │ │ │  
    │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1729890813579561111
    │ │ │  
    │ │ │  i1 : X = specialCubicFourfold "quintic del Pezzo surface";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc)
    │ │ │ + -- used 0.433443s (cpu); 0.138104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -1,12 +1,12 @@
    │ │ │  -- -*- M2-comint -*- hash: 1730220932418738713
    │ │ │  
    │ │ │  i1 : X = specialGushelMukaiFourfold "tau-quadric";
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i2 : time discriminant X
    │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc)
    │ │ │ + -- used 1.24279s (cpu); 0.527487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │  
    │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ + -- used 0.51251s (cpu); 0.281362s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Cubic__Fourfold_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ + -- used 0.814949s (cpu); 0.465432s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.out
    │ │ │ @@ -11,15 +11,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │  
    │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ + -- used 4.48101s (cpu); 3.22588s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_parametrize__Fano__Fourfold.out
    │ │ │ @@ -6,15 +6,15 @@
    │ │ │  
    │ │ │  i3 : ? X
    │ │ │  
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │  
    │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ + -- used 2.11458s (cpu); 0.87831s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Cubic__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_1^2*x_3+x_0*x_2*x_3-6*x_1*x_2*x_3-x_0*x_3^2-4*x_1*x_3^2-3*x_2*x_3^2+2*x_0^2*x_4-10*x_0*x_1*x_4+13*x_1^2*x_4-x_0*x_2*x_4-3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2-7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3-x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5-x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │  
    │ │ │  i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc)
    │ │ │ + -- used 0.012028s (cpu); 0.0103003s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc)
    │ │ │ + -- used 0.880125s (cpu); 0.241297s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │  
    │ │ │  i7 : assert(F == X)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_special__Gushel__Mukai__Fourfold.out
    │ │ │ @@ -7,22 +7,22 @@
    │ │ │  o3 : ProjectiveVariety, surface in PP^8
    │ │ │  
    │ │ │  i4 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8);
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc)
    │ │ │ + -- used 2.14405s (cpu); 1.73797s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc)
    │ │ │ + -- used 7.15074s (cpu); 3.68088s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = specialGushelMukaiFourfold(ideal(x_6-x_7, x_5, x_3-x_4, x_1, x_0-x_4, x_2*x_7-x_4*x_8), ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2-x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4-2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2-3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8));
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc)
    │ │ │ + -- used 5.96755s (cpu); 3.21145s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_to__Grass_lp__Embedded__Projective__Variety_rp.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  i2 : X = projectiveVariety ideal(x_4*x_6-x_3*x_7+x_1*x_8, x_4*x_5-x_2*x_7+x_0*x_8, x_3*x_5-x_2*x_6+x_0*x_8+x_1*x_8-x_5*x_8, x_1*x_5-x_0*x_6+x_0*x_7+x_1*x_7-x_5*x_7, x_1*x_2-x_0*x_3+x_0*x_4+x_1*x_4-x_2*x_7+x_0*x_8);
    │ │ │  
    │ │ │  o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8
    │ │ │  
    │ │ │  i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc)
    │ │ │ + -- used 6.18495s (cpu); 3.37309s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/example-output/_unirational__Parametrization.out
    │ │ │ @@ -5,15 +5,15 @@
    │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │  
    │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │  
    │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ + -- used 1.68429s (cpu); 0.805926s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │  
    │ │ │  i5 : degreeSequence f
    │ │ │  
    │ │ │  o5 = {[10]}
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__Castelnuovo__Surface.html
    │ │ │ @@ -106,15 +106,15 @@
    │ │ │       cut out by 5 hypersurfaces of degree 1
    │ │ │       (This is a classical example of rational fourfold)
    │ │ │
    │ │ │
    i3 : time U' = associatedCastelnuovoSurface X;
    │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc)
    │ │ │ + -- used 2.97765s (cpu); 1.24278s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, Castelnuovo surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ o2 = Complete intersection of 3 quadrics in PP^7 │ │ │ │ of discriminant 31 = det| 8 1 | │ │ │ │ | 1 4 | │ │ │ │ containing a surface of degree 1 and sectional genus 0 │ │ │ │ cut out by 5 hypersurfaces of degree 1 │ │ │ │ (This is a classical example of rational fourfold) │ │ │ │ i3 : time U' = associatedCastelnuovoSurface X; │ │ │ │ - -- used 2.39568s (cpu); 1.11189s (thread); 0s (gc) │ │ │ │ + -- used 2.97765s (cpu); 1.24278s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, Castelnuovo surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^7 cut out by 2 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Cubic__Fourfold_rp.html │ │ │ @@ -104,15 +104,15 @@ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc)
    │ │ │ + -- used 2.75827s (cpu); 1.21592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -41,15 +41,15 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 14 │ │ │ │ containing a (smooth) surface of degree 4 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degree 2 │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 1.99111s (cpu); 1.02887s (thread); 0s (gc) │ │ │ │ + -- used 2.75827s (cpu); 1.21592s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: PP^5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_associated__K3surface_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -107,15 +107,15 @@ │ │ │ Type: ordinary │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time U' = associatedK3surface X;
    │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc)
    │ │ │ + -- used 8.85554s (cpu); 5.02189s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, K3 surface associated to X
    │ │ │
    │ │ │
    i4 : (mu,U,C,f) = building U';
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ o2 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ │ │ i3 : time U' = associatedK3surface X; │ │ │ │ - -- used 7.14125s (cpu); 4.38468s (thread); 0s (gc) │ │ │ │ + -- used 8.85554s (cpu); 5.02189s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 : ProjectiveVariety, K3 surface associated to X │ │ │ │ i4 : (mu,U,C,f) = building U'; │ │ │ │ i5 : ? mu │ │ │ │ │ │ │ │ o5 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Cubic__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -91,15 +91,15 @@ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc)
    │ │ │ + -- used 3.43085s (cpu); 2.15286s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the cubic map and passing through a general point: 8
    │ │ │  number 2-secant lines = 7
    │ │ │  number 5-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 5-secant conics to surface in PP^5
    │ │ │
    │ │ │
    i5 : time C = f p; -- 5-secant conic to the surface
    │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc)
    │ │ │ + -- used 0.36869s (cpu); 0.301226s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, curve in PP^5
    │ │ │
    │ │ │
    i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree(C * surface X) == 5 and isSubset(p, C))
    │ │ │ ├── html2text {} │ │ │ │ @@ -30,28 +30,28 @@ │ │ │ │ sectional genus 0 │ │ │ │ i2 : describe X │ │ │ │ │ │ │ │ o2 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i3 : time f = detectCongruence(X,Verbose=>true); │ │ │ │ - -- used 4.03482s (cpu); 2.10467s (thread); 0s (gc) │ │ │ │ + -- used 3.43085s (cpu); 2.15286s (thread); 0s (gc) │ │ │ │ number lines contained in the image of the cubic map and passing through a │ │ │ │ general point: 8 │ │ │ │ number 2-secant lines = 7 │ │ │ │ number 5-secant conics = 1 │ │ │ │ │ │ │ │ o3 : Congruence of 5-secant conics to surface in PP^5 │ │ │ │ i4 : p := point ambient X -- random point on P^5 │ │ │ │ │ │ │ │ o4 = point of coordinates [15092, -9738, -3620, -15181, 12688, 1] │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, a point in PP^5 │ │ │ │ i5 : time C = f p; -- 5-secant conic to the surface │ │ │ │ - -- used 0.429617s (cpu); 0.294228s (thread); 0s (gc) │ │ │ │ + -- used 0.36869s (cpu); 0.301226s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, curve in PP^5 │ │ │ │ i6 : assert(dim C == 1 and degree C == 2 and dim(C * surface X) == 0 and degree │ │ │ │ (C * surface X) == 5 and isSubset(p, C)) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_e_t_e_c_t_C_o_n_g_r_u_e_n_c_e_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_,_Z_Z_) -- detect and return a │ │ │ │ congruence of (2e-1)-secant curves of degree e inside a del Pezzo │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_detect__Congruence_lp__Special__Gushel__Mukai__Fourfold_cm__Z__Z_rp.html │ │ │ @@ -94,15 +94,15 @@ │ │ │ Type: ordinary │ │ │ (case 17 of Table 1 in arXiv:2002.07026) │ │ │
    │ │ │
    i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ + -- used 24.1013s (cpu); 8.59377s (thread); 0s (gc)
    │ │ │  number lines contained in the image of the quadratic map and passing through a general point: 7
    │ │ │  number 1-secant lines = 6
    │ │ │  number 3-secant conics = 1
    │ │ │  
    │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │
    │ │ │
    i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ + -- used 0.635188s (cpu); 0.325388s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │
    │ │ │
    i7 : S = surface X;
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  o2 = Special Gushel-Mukai fourfold of discriminant 20
    │ │ │ │       containing a surface in PP^8 of degree 9 and sectional genus 2
    │ │ │ │       cut out by 19 hypersurfaces of degree 2
    │ │ │ │       and with class in G(1,4) given by 6*s_(3,1)+3*s_(2,2)
    │ │ │ │       Type: ordinary
    │ │ │ │       (case 17 of Table 1 in arXiv:2002.07026)
    │ │ │ │  i3 : time f = detectCongruence(X,Verbose=>true);
    │ │ │ │ - -- used 13.4563s (cpu); 7.009s (thread); 0s (gc)
    │ │ │ │ + -- used 24.1013s (cpu); 8.59377s (thread); 0s (gc)
    │ │ │ │  number lines contained in the image of the quadratic map and passing through a
    │ │ │ │  general point: 7
    │ │ │ │  number 1-secant lines = 6
    │ │ │ │  number 3-secant conics = 1
    │ │ │ │  
    │ │ │ │  o3 : Congruence of 3-secant conics to surface in a fivefold in PP^8
    │ │ │ │  i4 : Y = ambientFivefold X; -- del Pezzo fivefold containing X
    │ │ │ │ @@ -53,15 +53,15 @@
    │ │ │ │  i5 : p := point Y -- random point on Y
    │ │ │ │  
    │ │ │ │  o5 = point of coordinates [7214, -1460, 7057, -2440, 15907, -14345, -5937,
    │ │ │ │  13402, 1]
    │ │ │ │  
    │ │ │ │  o5 : ProjectiveVariety, a point in PP^8
    │ │ │ │  i6 : time C = f p; -- 3-secant conic to the surface
    │ │ │ │ - -- used 0.396s (cpu); 0.234093s (thread); 0s (gc)
    │ │ │ │ + -- used 0.635188s (cpu); 0.325388s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o6 : ProjectiveVariety, curve in PP^8 (subvariety of codimension 4 in Y)
    │ │ │ │  i7 : S = surface X;
    │ │ │ │  
    │ │ │ │  o7 : ProjectiveVariety, surface in PP^8 (subvariety of codimension 3 in Y)
    │ │ │ │  i8 : assert(dim C == 1 and degree C == 2 and dim(C*S) == 0 and degree(C*S) == 3
    │ │ │ │  and isSubset(p,C) and isSubset(C,Y))
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │  
    │ │ │  o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and sectional genus 1
    │ │ │
    │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc)
    │ │ │ + -- used 0.433443s (cpu); 0.138104s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 14
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ thanks to the functions _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialCubicFourfold "quintic del Pezzo surface"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, cubic fourfold containing a surface of degree 5 and │ │ │ │ sectional genus 1 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 0.420819s (cpu); 0.147554s (thread); 0s (gc) │ │ │ │ + -- used 0.433443s (cpu); 0.138104s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 14 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ │ │ Gushel-Mukai fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * discriminant(HodgeSpecialFourfold) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_discriminant_lp__Special__Gushel__Mukai__Fourfold_rp.html │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : time discriminant X
    │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc)
    │ │ │ + -- used 1.24279s (cpu); 0.527487s (thread); 0s (gc)
    │ │ │  
    │ │ │  o2 = 10
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ the functions _c_y_c_l_e_C_l_a_s_s, _E_u_l_e_r_C_h_a_r_a_c_t_e_r_i_s_t_i_c and _E_u_l_e_r (the option Algorithm │ │ │ │ allows you to select the method). │ │ │ │ i1 : X = specialGushelMukaiFourfold "tau-quadric"; │ │ │ │ │ │ │ │ o1 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i2 : time discriminant X │ │ │ │ - -- used 1.02747s (cpu); 0.458878s (thread); 0s (gc) │ │ │ │ + -- used 1.24279s (cpu); 0.527487s (thread); 0s (gc) │ │ │ │ │ │ │ │ o2 = 10 │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_) -- discriminant of a special cubic │ │ │ │ fourfold │ │ │ │ ********** WWaayyss ttoo uussee tthhiiss mmeetthhoodd:: ********** │ │ │ │ * _d_i_s_c_r_i_m_i_n_a_n_t_(_S_p_e_c_i_a_l_G_u_s_h_e_l_M_u_k_a_i_F_o_u_r_f_o_l_d_) -- discriminant of a special │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count.html │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, surface in PP^5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ + -- used 0.51251s (cpu); 0.281362s (thread); 0s (gc)
    │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3 hypersurfaces of degree 2
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ │  dim GG(2,9) = 21
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │  i1 : K = ZZ/33331; S = PP_K^(1,5);
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, curve in PP^5
    │ │ │ │  i3 : X = random({{2},{2},{2}},S);
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i4 : time parameterCount(S,X,Verbose=>true)
    │ │ │ │ - -- used 0.296112s (cpu); 0.200839s (thread); 0s (gc)
    │ │ │ │ + -- used 0.51251s (cpu); 0.281362s (thread); 0s (gc)
    │ │ │ │  S: rational normal curve of degree 5 in PP^5
    │ │ │ │  X: smooth surface of degree 8 and sectional genus 5 in PP^5 cut out by 3
    │ │ │ │  hypersurfaces of degree 2
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 32
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,P^5}(2)) = 10 = h^0(O_(P^5)(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,P^5}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Cubic__Fourfold_rp.html
    │ │ │ @@ -89,15 +89,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ + -- used 0.814949s (cpu); 0.465432s (thread); 0s (gc)
    │ │ │  S: Veronese surface in PP^5
    │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -33,15 +33,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold V;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 0.641923s (cpu); 0.367693s (thread); 0s (gc)
    │ │ │ │ + -- used 0.814949s (cpu); 0.465432s (thread); 0s (gc)
    │ │ │ │  S: Veronese surface in PP^5
    │ │ │ │  X: smooth cubic hypersurface in PP^5
    │ │ │ │  (assumption: h^1(N_{S,P^5}) = 0)
    │ │ │ │  h^0(N_{S,P^5}) = 27
    │ │ │ │  h^1(O_S(3)) = 0, and h^0(I_{S,P^5}(3)) = 28 = h^0(O_(P^5)(3)) - \chi(O_S(3));
    │ │ │ │  in particular, h^0(I_{S,P^5}(3)) is minimal
    │ │ │ │  h^0(N_{S,P^5}) + 27 = 54
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parameter__Count_lp__Special__Gushel__Mukai__Fourfold_rp.html
    │ │ │ @@ -98,15 +98,15 @@
    │ │ │  
    │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parameterCount(X,Verbose=>true)
    │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ + -- used 4.48101s (cpu); 3.22588s (thread); 0s (gc)
    │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │  X: GM fourfold containing S
    │ │ │  Y: del Pezzo fivefold containing X
    │ │ │  h^1(N_{S,Y}) = 0
    │ │ │  h^0(N_{S,Y}) = 11
    │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -35,15 +35,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^9 (subvariety of codimension 4 in G)
    │ │ │ │  i3 : X = specialGushelMukaiFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, GM fourfold containing a surface of degree 3 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time parameterCount(X,Verbose=>true)
    │ │ │ │ - -- used 3.48579s (cpu); 2.16969s (thread); 0s (gc)
    │ │ │ │ + -- used 4.48101s (cpu); 3.22588s (thread); 0s (gc)
    │ │ │ │  S: cubic surface in PP^8 cut out by 7 hypersurfaces of degrees (1,1,1,1,2,2,2)
    │ │ │ │  X: GM fourfold containing S
    │ │ │ │  Y: del Pezzo fivefold containing X
    │ │ │ │  h^1(N_{S,Y}) = 0
    │ │ │ │  h^0(N_{S,Y}) = 11
    │ │ │ │  h^1(O_S(2)) = 0, and h^0(I_{S,Y}(2)) = 28 = h^0(O_Y(2)) - \chi(O_S(2));
    │ │ │ │  in particular, h^0(I_{S,Y}(2)) is minimal
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_parametrize__Fano__Fourfold.html
    │ │ │ @@ -88,15 +88,15 @@
    │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │       1^2 2^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time parametrizeFanoFourfold X
    │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ + -- used 2.11458s (cpu); 0.87831s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │       source variety: PP^4
    │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees 1^2 2^5 
    │ │ │       dominance: true
    │ │ │       degree: 1
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -29,15 +29,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, 4-dimensional subvariety of PP^9
    │ │ │ │  i3 : ? X
    │ │ │ │  
    │ │ │ │  o3 = 4-dimensional subvariety of PP^9 cut out by 7 hypersurfaces of degrees
    │ │ │ │       1^2 2^5
    │ │ │ │  i4 : time parametrizeFanoFourfold X
    │ │ │ │ - -- used 1.79691s (cpu); 0.888229s (thread); 0s (gc)
    │ │ │ │ + -- used 2.11458s (cpu); 0.87831s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 = multi-rational map consisting of one single rational map
    │ │ │ │       source variety: PP^4
    │ │ │ │       target variety: 4-dimensional subvariety of PP^9 cut out by 7
    │ │ │ │  hypersurfaces of degrees 1^2 2^5
    │ │ │ │       dominance: true
    │ │ │ │       degree: 1
    │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Cubic__Fourfold.html
    │ │ │ @@ -95,25 +95,25 @@
    │ │ │  
    │ │ │  o4 : ProjectiveVariety, hypersurface in PP^5
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialCubicFourfold(S,X,NumNodes=>3);
    │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc)
    │ │ │ + -- used 0.012028s (cpu); 0.0103003s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc)
    │ │ │ + -- used 0.880125s (cpu); 0.241297s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special cubic fourfold of discriminant 26
    │ │ │       containing a 3-nodal surface of degree 7 and sectional genus 0
    │ │ │       cut out by 13 hypersurfaces of degree 3
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -115,24 +115,24 @@ │ │ │ │ 3*x_1*x_2*x_4+3*x_2^2*x_4+14*x_0*x_3*x_4-8*x_1*x_3*x_4-4*x_3^2*x_4+x_0*x_4^2- │ │ │ │ 7*x_1*x_4^2+4*x_2*x_4^2-2*x_3*x_4^2-2*x_4^3- │ │ │ │ x_0*x_1*x_5+x_1^2*x_5+2*x_1*x_2*x_5+3*x_0*x_3*x_5+3*x_1*x_3*x_5-x_3^2*x_5- │ │ │ │ x_0*x_4*x_5-4*x_1*x_4*x_5+3*x_2*x_4*x_5+2*x_3*x_4*x_5-x_1*x_5^2); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, hypersurface in PP^5 │ │ │ │ i5 : time F = specialCubicFourfold(S,X,NumNodes=>3); │ │ │ │ - -- used 0.0119855s (cpu); 0.00881246s (thread); 0s (gc) │ │ │ │ + -- used 0.012028s (cpu); 0.0103003s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, cubic fourfold containing a surface of degree 7 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 0.54403s (cpu); 0.233284s (thread); 0s (gc) │ │ │ │ + -- used 0.880125s (cpu); 0.241297s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special cubic fourfold of discriminant 26 │ │ │ │ containing a 3-nodal surface of degree 7 and sectional genus 0 │ │ │ │ cut out by 13 hypersurfaces of degree 3 │ │ │ │ i7 : assert(F == X) │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_p_e_c_i_a_l_C_u_b_i_c_F_o_u_r_f_o_l_d_(_E_m_b_e_d_d_e_d_P_r_o_j_e_c_t_i_v_e_V_a_r_i_e_t_y_) -- random special cubic │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_special__Gushel__Mukai__Fourfold.html │ │ │ @@ -93,25 +93,25 @@ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time F = specialGushelMukaiFourfold(S,X);
    │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc)
    │ │ │ + -- used 2.14405s (cpu); 1.73797s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and sectional genus 0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time describe F
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc)
    │ │ │ + -- used 7.15074s (cpu); 3.68088s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = Special Gushel-Mukai fourfold of discriminant 10(')
    │ │ │       containing a surface in PP^8 of degree 2 and sectional genus 0
    │ │ │       cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2)
    │ │ │       and with class in G(1,4) given by s_(3,1)+s_(2,2)
    │ │ │       Type: ordinary
    │ │ │       (case 1 of Table 1 in arXiv:2002.07026)
    │ │ │ ├── html2text {} │ │ │ │ @@ -33,24 +33,24 @@ │ │ │ │ x_2*x_7+x_0*x_8, x_0^2+x_0*x_1+x_1^2+x_0*x_2+2*x_0*x_3+x_1*x_3+x_2*x_3+x_3^2- │ │ │ │ x_0*x_4-x_1*x_4-2*x_2*x_4-x_3*x_4- │ │ │ │ 2*x_4^2+x_0*x_5+x_2*x_5+x_5^2+2*x_0*x_6+x_1*x_6+2*x_2*x_6+x_3*x_6+x_5*x_6+x_6^2- │ │ │ │ 3*x_4*x_7+2*x_5*x_7-x_7^2+x_1*x_8+x_3*x_8-3*x_4*x_8+2*x_5*x_8+x_6*x_8-x_7*x_8); │ │ │ │ │ │ │ │ o4 : ProjectiveVariety, 4-dimensional subvariety of PP^8 │ │ │ │ i5 : time F = specialGushelMukaiFourfold(S,X); │ │ │ │ - -- used 2.29841s (cpu); 1.52131s (thread); 0s (gc) │ │ │ │ + -- used 2.14405s (cpu); 1.73797s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i6 : time describe F │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 5.23566s (cpu); 3.15307s (thread); 0s (gc) │ │ │ │ + -- used 7.15074s (cpu); 3.68088s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = Special Gushel-Mukai fourfold of discriminant 10(') │ │ │ │ containing a surface in PP^8 of degree 2 and sectional genus 0 │ │ │ │ cut out by 6 hypersurfaces of degrees (1,1,1,1,1,2) │ │ │ │ and with class in G(1,4) given by s_(3,1)+s_(2,2) │ │ │ │ Type: ordinary │ │ │ │ (case 1 of Table 1 in arXiv:2002.07026) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass.html │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc)
    │ │ │ + -- used 5.96755s (cpu); 3.21145s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ o2 : ProjectiveVariety, GM fourfold containing a surface of degree 2 and │ │ │ │ sectional genus 0 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.03686s (cpu); 2.40993s (thread); 0s (gc) │ │ │ │ + -- used 5.96755s (cpu); 3.21145s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 4-dimensional subvariety of PP^8 cut out by 6 hypersurfaces │ │ │ │ of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_to__Grass_lp__Embedded__Projective__Variety_rp.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : time toGrass X
    │ │ │  warning: clearing value of symbol x to allow access to subscripted variables based on it
    │ │ │         : debug with expression   debug 9868   or with command line option   --debug 9868
    │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc)
    │ │ │ + -- used 6.18495s (cpu); 3.37309s (thread); 0s (gc)
    │ │ │  
    │ │ │  o3 = multi-rational map consisting of one single rational map
    │ │ │       source variety: 5-dimensional subvariety of PP^8 cut out by 5 hypersurfaces of degree 2
    │ │ │       target variety: GG(1,4) ⊂ PP^9
    │ │ │  
    │ │ │  o3 : MultirationalMap (rational map from X to GG(1,4))
    │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -25,15 +25,15 @@ │ │ │ │ │ │ │ │ o2 : ProjectiveVariety, 5-dimensional subvariety of PP^8 │ │ │ │ i3 : time toGrass X │ │ │ │ warning: clearing value of symbol x to allow access to subscripted variables │ │ │ │ based on it │ │ │ │ : debug with expression debug 9868 or with command line option -- │ │ │ │ debug 9868 │ │ │ │ - -- used 4.71225s (cpu); 2.71013s (thread); 0s (gc) │ │ │ │ + -- used 6.18495s (cpu); 3.37309s (thread); 0s (gc) │ │ │ │ │ │ │ │ o3 = multi-rational map consisting of one single rational map │ │ │ │ source variety: 5-dimensional subvariety of PP^8 cut out by 5 │ │ │ │ hypersurfaces of degree 2 │ │ │ │ target variety: GG(1,4) ⊂ PP^9 │ │ │ │ │ │ │ │ o3 : MultirationalMap (rational map from X to GG(1,4)) │ │ ├── ./usr/share/doc/Macaulay2/SpecialFanoFourfolds/html/_unirational__Parametrization.html │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ │ o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and sectional genus 0 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time f = unirationalParametrization X;
    │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ + -- used 1.68429s (cpu); 0.805926s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : degreeSequence f
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,15 +18,15 @@
    │ │ │ │  
    │ │ │ │  o2 : ProjectiveVariety, surface in PP^5
    │ │ │ │  i3 : X = specialCubicFourfold S;
    │ │ │ │  
    │ │ │ │  o3 : ProjectiveVariety, cubic fourfold containing a surface of degree 4 and
    │ │ │ │  sectional genus 0
    │ │ │ │  i4 : time f = unirationalParametrization X;
    │ │ │ │ - -- used 1.16218s (cpu); 0.624472s (thread); 0s (gc)
    │ │ │ │ + -- used 1.68429s (cpu); 0.805926s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o4 : MultirationalMap (rational map from PP^4 to X)
    │ │ │ │  i5 : degreeSequence f
    │ │ │ │  
    │ │ │ │  o5 = {[10]}
    │ │ │ │  
    │ │ │ │  o5 : List
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/example-output/_graph_lp__Mixed__Graph_rp.out
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │                                b => {a, c}
    │ │ │                                c => {b}
    │ │ │  
    │ │ │  o2 : HashTable
    │ │ │  
    │ │ │  i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │  
    │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │  
    │ │ │  o4 = true
    │ │ ├── ./usr/share/doc/Macaulay2/StatGraphs/html/_graph_lp__Mixed__Graph_rp.html
    │ │ │ @@ -116,15 +116,15 @@
    │ │ │  o2 : HashTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : keys (graph G)
    │ │ │  
    │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │  
    │ │ │  o3 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : (graph G)#Bigraph === bigraph G
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -46,15 +46,15 @@
    │ │ │ │                 Graph => Graph{a => {b}   }
    │ │ │ │                                b => {a, c}
    │ │ │ │                                c => {b}
    │ │ │ │  
    │ │ │ │  o2 : HashTable
    │ │ │ │  i3 : keys (graph G)
    │ │ │ │  
    │ │ │ │ -o3 = {Graph, Bigraph, Digraph}
    │ │ │ │ +o3 = {Digraph, Graph, Bigraph}
    │ │ │ │  
    │ │ │ │  o3 : List
    │ │ │ │  i4 : (graph G)#Bigraph === bigraph G
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _M_i_x_e_d_G_r_a_p_h -- a graph that has undirected, directed and bidirected edges
    │ │ ├── ./usr/share/doc/Macaulay2/Style/example-output/_generate__Grammar.out
    │ │ │ @@ -1,16 +1,16 @@
    │ │ │  -- -*- M2-comint -*- hash: 3455701143666534588
    │ │ │  
    │ │ │  i1 : outfile = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ +o1 = /tmp/M2-10109-0/0
    │ │ │  
    │ │ │  i2 : template = outfile | ".in"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ +o2 = /tmp/M2-10109-0/0.in
    │ │ │  
    │ │ │  i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │  
    │ │ │  i4 : template << "This is an example file for the generateGrammar method!";
    │ │ │  
    │ │ │  i5 : template << endl;
    │ │ │  
    │ │ │ @@ -30,15 +30,15 @@
    │ │ │        String regex: @M2STRINGS@
    │ │ │        List of keywords: {
    │ │ │            @M2KEYWORDS@
    │ │ │        }
    │ │ │  
    │ │ │  
    │ │ │  i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ + -- generating /tmp/M2-10109-0/0
    │ │ │  
    │ │ │  i12 : get outfile
    │ │ │  
    │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │  
    │ │ │        This is an example file for the generateGrammar method!
    │ │ │        String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///"
    │ │ ├── ./usr/share/doc/Macaulay2/Style/html/_generate__Grammar.html
    │ │ │ @@ -82,22 +82,22 @@
    │ │ │            

    The function demarkf indicates how the elements of each of the lists will be demarked in the resulting file. The file outfile will then be generated, replacing each of these strings as indicated above.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -143,15 +143,15 @@ │ │ │ @M2KEYWORDS@ │ │ │ } │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i1 : outfile = temporaryFileName()
    │ │ │  
    │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ +o1 = /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i2 : template = outfile | ".in"
    │ │ │  
    │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ +o2 = /tmp/M2-10109-0/0.in │ │ │
    │ │ │
    i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │
    │ │ │
    i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ + -- generating /tmp/M2-10109-0/0 │ │ │
    │ │ │
    i12 : get outfile
    │ │ │  
    │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,18 +26,18 @@
    │ │ │ │      * @M2CONSTANTS@, for a list of Macaulay2 symbols and packages.
    │ │ │ │      * @M2STRINGS@, for a regular expression that matches Macaulay2 strings.
    │ │ │ │  The function demarkf indicates how the elements of each of the lists will be
    │ │ │ │  demarked in the resulting file. The file outfile will then be generated,
    │ │ │ │  replacing each of these strings as indicated above.
    │ │ │ │  i1 : outfile = temporaryFileName()
    │ │ │ │  
    │ │ │ │ -o1 = /tmp/M2-10069-0/0
    │ │ │ │ +o1 = /tmp/M2-10109-0/0
    │ │ │ │  i2 : template = outfile | ".in"
    │ │ │ │  
    │ │ │ │ -o2 = /tmp/M2-10069-0/0.in
    │ │ │ │ +o2 = /tmp/M2-10109-0/0.in
    │ │ │ │  i3 : template << "@M2BANNER@" << endl << endl;
    │ │ │ │  i4 : template << "This is an example file for the generateGrammar method!";
    │ │ │ │  i5 : template << endl;
    │ │ │ │  i6 : template << "String regex: @M2STRINGS@" << endl;
    │ │ │ │  i7 : template << "List of keywords: {" << endl;
    │ │ │ │  i8 : template << "    @M2KEYWORDS@" << endl;
    │ │ │ │  i9 : template << "}" << endl << close;
    │ │ │ │ @@ -47,15 +47,15 @@
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: @M2STRINGS@
    │ │ │ │        List of keywords: {
    │ │ │ │            @M2KEYWORDS@
    │ │ │ │        }
    │ │ │ │  i11 : generateGrammar(template, outfile, x -> demark(",\n    ", x))
    │ │ │ │ - -- generating /tmp/M2-10069-0/0
    │ │ │ │ + -- generating /tmp/M2-10109-0/0
    │ │ │ │  i12 : get outfile
    │ │ │ │  
    │ │ │ │  o12 = Auto-generated for Macaulay2-1.25.11. Do not modify this file manually.
    │ │ │ │  
    │ │ │ │        This is an example file for the generateGrammar method!
    │ │ │ │        String regex: "///\\(/?/?[^/]\\|\\(//\\)*////[^/]\\)*\\(//\\)*///"
    │ │ │ │        List of keywords: {
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/example-output/_symbolic__Power.out
    │ │ │ @@ -31,15 +31,15 @@
    │ │ │  o5 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i6 : isHomogeneous P
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │  i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc)
    │ │ │ + -- used 0.337156s (cpu); 0.220506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │  
    │ │ │               2         3         2     2
    │ │ │  o8 = ideal (y  - x*z, x  - y*z, x y - z )
    │ │ │ @@ -47,12 +47,12 @@
    │ │ │  o8 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i9 : isHomogeneous Q
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc)
    │ │ │ + -- used 0.0491368s (cpu); 0.0491416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │  
    │ │ │  i11 :
    │ │ ├── ./usr/share/doc/Macaulay2/SymbolicPowers/html/_symbolic__Power.html
    │ │ │ @@ -141,15 +141,15 @@
    │ │ │  
    │ │ │  o6 = false
    │ │ │
    │ │ │
    i7 : time symbolicPower(P,4);
    │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc)
    │ │ │ + -- used 0.337156s (cpu); 0.220506s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})
    │ │ │ @@ -166,15 +166,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │
    │ │ │
    i10 : time symbolicPower(Q,4);
    │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc)
    │ │ │ + -- used 0.0491368s (cpu); 0.0491416s (thread); 0s (gc)
    │ │ │  
    │ │ │  o10 : Ideal of QQ[x..z]
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -59,28 +59,28 @@ │ │ │ │ o5 = ideal (y - x*z, x y - z , x - y*z) │ │ │ │ │ │ │ │ o5 : Ideal of QQ[x..z] │ │ │ │ i6 : isHomogeneous P │ │ │ │ │ │ │ │ o6 = false │ │ │ │ i7 : time symbolicPower(P,4); │ │ │ │ - -- used 0.306855s (cpu); 0.192479s (thread); 0s (gc) │ │ │ │ + -- used 0.337156s (cpu); 0.220506s (thread); 0s (gc) │ │ │ │ │ │ │ │ o7 : Ideal of QQ[x..z] │ │ │ │ i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5}) │ │ │ │ │ │ │ │ 2 3 2 2 │ │ │ │ o8 = ideal (y - x*z, x - y*z, x y - z ) │ │ │ │ │ │ │ │ o8 : Ideal of QQ[x..z] │ │ │ │ i9 : isHomogeneous Q │ │ │ │ │ │ │ │ o9 = true │ │ │ │ i10 : time symbolicPower(Q,4); │ │ │ │ - -- used 0.0330497s (cpu); 0.0330527s (thread); 0s (gc) │ │ │ │ + -- used 0.0491368s (cpu); 0.0491416s (thread); 0s (gc) │ │ │ │ │ │ │ │ o10 : Ideal of QQ[x..z] │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _s_y_m_b_P_o_w_e_r_P_r_i_m_e_P_o_s_C_h_a_r │ │ │ │ ********** WWaayyss ttoo uussee ssyymmbboolliiccPPoowweerr:: ********** │ │ │ │ * symbolicPower(Ideal,ZZ) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/example-output/_beilinson__Window.out │ │ │ @@ -10,15 +10,15 @@ │ │ │ o3 = 0 <-- E <-- 0 │ │ │ │ │ │ -1 0 1 │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ i4 : time T=tateExtension W; │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc) │ │ │ + -- used 0.147515s (cpu); 0.142527s (thread); 0s (gc) │ │ │ │ │ │ i5 : cohomologyMatrix(T,-{3,3},{3,3}) │ │ │ │ │ │ o5 = | 8h 4h 0 4 8 12 16 | │ │ │ | 6h 3h 0 3 6 9 12 | │ │ │ | 4h 2h 0 2 4 6 8 | │ │ │ | 2h h 0 1 2 3 4 | │ │ ├── ./usr/share/doc/Macaulay2/TateOnProducts/html/_beilinson__Window.html │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ │ o3 : ChainComplex │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : time T=tateExtension W;
    │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc)
    │ │ │ + -- used 0.147515s (cpu); 0.142527s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │  
    │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -23,15 +23,15 @@
    │ │ │ │               1
    │ │ │ │  o3 = 0  <-- E  <-- 0
    │ │ │ │  
    │ │ │ │       -1     0      1
    │ │ │ │  
    │ │ │ │  o3 : ChainComplex
    │ │ │ │  i4 : time T=tateExtension W;
    │ │ │ │ - -- used 0.116725s (cpu); 0.116725s (thread); 0s (gc)
    │ │ │ │ + -- used 0.147515s (cpu); 0.142527s (thread); 0s (gc)
    │ │ │ │  i5 : cohomologyMatrix(T,-{3,3},{3,3})
    │ │ │ │  
    │ │ │ │  o5 = | 8h  4h  0 4  8  12 16 |
    │ │ │ │       | 6h  3h  0 3  6  9  12 |
    │ │ │ │       | 4h  2h  0 2  4  6  8  |
    │ │ │ │       | 2h  h   0 1  2  3  4  |
    │ │ │ │       | 0   0   0 0  0  0  0  |
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_frobenius__Root.out
    │ │ │ @@ -63,20 +63,20 @@
    │ │ │  o15 : Ideal of R
    │ │ │  
    │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ + -- used 1.03689s (cpu); 0.747389s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │  
    │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ + -- used 2.93015s (cpu); 2.40038s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J1 == J2
    │ │ │  
    │ │ │  o19 = true
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__Cohen__Macaulay.out
    │ │ │ @@ -7,20 +7,20 @@
    │ │ │  i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- S
    │ │ │  
    │ │ │  i4 : R = S/(ker g);
    │ │ │  
    │ │ │  i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc)
    │ │ │ + -- used 0.00245742s (cpu); 0.00245262s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │  
    │ │ │  i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc)
    │ │ │ + -- used 0.00585104s (cpu); 0.00585798s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v);
    │ │ │  
    │ │ │  i8 : isCohenMacaulay(R)
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Injective.out
    │ │ │ @@ -60,49 +60,49 @@
    │ │ │  i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3)
    │ │ │  
    │ │ │  o19 = R
    │ │ │  
    │ │ │  o19 : QuotientRing
    │ │ │  
    │ │ │  i20 : time isFInjective(R)
    │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc)
    │ │ │ + -- used 0.0338454s (cpu); 0.0338409s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │  
    │ │ │  i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc)
    │ │ │ + -- used 2.63942s (cpu); 1.5535s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │  
    │ │ │  i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │  
    │ │ │  i23 : time isFInjective(R)
    │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc)
    │ │ │ + -- used 0.179006s (cpu); 0.110652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │  
    │ │ │  i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc)
    │ │ │ + -- used 0.222088s (cpu); 0.146203s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │  
    │ │ │  i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt];
    │ │ │  
    │ │ │  i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2);
    │ │ │  
    │ │ │  i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t});
    │ │ │  
    │ │ │  o27 : RingMap EP1 <-- S
    │ │ │  
    │ │ │  i28 : R = S/(ker f);
    │ │ │  
    │ │ │  i29 : time isFInjective(R)
    │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc)
    │ │ │ + -- used 1.08247s (cpu); 0.838226s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │  
    │ │ │  i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc)
    │ │ │ + -- used 0.445748s (cpu); 0.284877s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │  
    │ │ │  i31 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_is__F__Regular.out
    │ │ │ @@ -80,19 +80,19 @@
    │ │ │  
    │ │ │  o25 : Ideal of S
    │ │ │  
    │ │ │  i26 : debugLevel = 1;
    │ │ │  
    │ │ │  i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc)
    │ │ │ + -- used 0.154875s (cpu); 0.0831959s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │  
    │ │ │  i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc)
    │ │ │ + -- used 0.258187s (cpu); 0.19311s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │  
    │ │ │  i29 : debugLevel = 0;
    │ │ │  
    │ │ │  i30 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/example-output/_test__Ideal.out
    │ │ │ @@ -81,21 +81,21 @@
    │ │ │  i22 : testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │  
    │ │ │  o22 = ideal (y, x)
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc)
    │ │ │ + -- used 0.43677s (cpu); 0.230368s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc)
    │ │ │ + -- used 0.527536s (cpu); 0.333067s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │  
    │ │ │  i25 :
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_frobenius__Root.html
    │ │ │ @@ -226,23 +226,23 @@
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ + -- used 1.03689s (cpu); 0.747389s (thread); 0s (gc)
    │ │ │  
    │ │ │  o17 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ + -- used 2.93015s (cpu); 2.40038s (thread); 0s (gc)
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i19 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -106,19 +106,19 @@
    │ │ │ │  i15 : I2 = ideal(x^20*y^100, x + z^100);
    │ │ │ │  
    │ │ │ │  o15 : Ideal of R
    │ │ │ │  i16 : I3 = ideal(x^50*y^50*z^50);
    │ │ │ │  
    │ │ │ │  o16 : Ideal of R
    │ │ │ │  i17 : time J1 = frobeniusRoot(1, {8, 10, 12}, {I1, I2, I3});
    │ │ │ │ - -- used 0.854696s (cpu); 0.665482s (thread); 0s (gc)
    │ │ │ │ + -- used 1.03689s (cpu); 0.747389s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o17 : Ideal of R
    │ │ │ │  i18 : time J2 = frobeniusRoot(1, I1^8*I2^10*I3^12);
    │ │ │ │ - -- used 2.65944s (cpu); 2.30064s (thread); 0s (gc)
    │ │ │ │ + -- used 2.93015s (cpu); 2.40038s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o18 : Ideal of R
    │ │ │ │  i19 : J1 == J2
    │ │ │ │  
    │ │ │ │  o19 = true
    │ │ │ │  For legacy reasons, the last ideal in the list can be specified separately,
    │ │ │ │  using frobeniusRoot(e, \{a_1,\ldots,a_n\}, \{I_1,\ldots,I_n\}, I). The last
    │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__Cohen__Macaulay.html
    │ │ │ @@ -96,23 +96,23 @@
    │ │ │              
    │ │ │                
    i4 : R = S/(ker g);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : time isCohenMacaulay(R)
    │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc)
    │ │ │ + -- used 0.00245742s (cpu); 0.00245262s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : time isCohenMacaulay(R, AtOrigin => true)
    │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc)
    │ │ │ + -- used 0.00585104s (cpu); 0.00585798s (thread); 0s (gc)
    │ │ │  
    │ │ │  o6 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -23,19 +23,19 @@ │ │ │ │ i1 : T = ZZ/5[x,y]; │ │ │ │ i2 : S = ZZ/5[a,b,c,d]; │ │ │ │ i3 : g = map(T, S, {x^3, x^2*y, x*y^2, y^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- S │ │ │ │ i4 : R = S/(ker g); │ │ │ │ i5 : time isCohenMacaulay(R) │ │ │ │ - -- used 0.00209879s (cpu); 0.00209348s (thread); 0s (gc) │ │ │ │ + -- used 0.00245742s (cpu); 0.00245262s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = true │ │ │ │ i6 : time isCohenMacaulay(R, AtOrigin => true) │ │ │ │ - -- used 0.00481737s (cpu); 0.0048183s (thread); 0s (gc) │ │ │ │ + -- used 0.00585104s (cpu); 0.00585798s (thread); 0s (gc) │ │ │ │ │ │ │ │ o6 = true │ │ │ │ i7 : R = QQ[x,y,u,v]/(x*u, x*v, y*u, y*v); │ │ │ │ i8 : isCohenMacaulay(R) │ │ │ │ │ │ │ │ o8 = false │ │ │ │ The function isCohenMacaulay considers $R$ as a quotient of a polynomial ring, │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Injective.html │ │ │ @@ -214,23 +214,23 @@ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i20 : time isFInjective(R)
    │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc)
    │ │ │ + -- used 0.0338454s (cpu); 0.0338409s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 = true
    │ │ │
    │ │ │
    i21 : time isFInjective(R, CanonicalStrategy => null)
    │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc)
    │ │ │ + -- used 2.63942s (cpu); 1.5535s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 = true
    │ │ │
    │ │ │
    │ │ │

    If the option AtOrigin (default value false) is set to true, isFInjective will only check $F$-injectivity at the origin. Otherwise, it will check $F$-injectivity globally. Note that checking $F$-injectivity at the origin can be slower than checking it globally. Consider the following example of a non-$F$-injective ring.

    │ │ │ @@ -240,23 +240,23 @@ │ │ │ │ │ │
    i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time isFInjective(R)
    │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc)
    │ │ │ + -- used 0.179006s (cpu); 0.110652s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time isFInjective(R, AtOrigin => true)
    │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc)
    │ │ │ + -- used 0.222088s (cpu); 0.146203s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumeCM (default value false) is set to true, then isFInjective only checks the Frobenius action on top cohomology (which is typically much faster). Note that it can give an incorrect answer if the non-injective Frobenius occurs in a lower degree. Consider the example of the cone over a supersingular elliptic curve times $\mathbb{P}^1$.

    │ │ │ @@ -283,23 +283,23 @@ │ │ │ │ │ │
    i28 : R = S/(ker f);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : time isFInjective(R)
    │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc)
    │ │ │ + -- used 1.08247s (cpu); 0.838226s (thread); 0s (gc)
    │ │ │  
    │ │ │  o29 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : time isFInjective(R, AssumeCM => true)
    │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc)
    │ │ │ + -- used 0.445748s (cpu); 0.284877s (thread); 0s (gc)
    │ │ │  
    │ │ │  o30 = true
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    If the option AssumedReduced is set to true (its default behavior), then the bottom local cohomology is avoided (this means the Frobenius action on the top potentially nonzero Ext is not computed).

    │ │ │ ├── html2text {} │ │ │ │ @@ -81,52 +81,52 @@ │ │ │ │ much faster. │ │ │ │ i19 : R = ZZ/5[x,y,z]/(y^2*z + x*y*z-x^3) │ │ │ │ │ │ │ │ o19 = R │ │ │ │ │ │ │ │ o19 : QuotientRing │ │ │ │ i20 : time isFInjective(R) │ │ │ │ - -- used 0.0262795s (cpu); 0.0262787s (thread); 0s (gc) │ │ │ │ + -- used 0.0338454s (cpu); 0.0338409s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 = true │ │ │ │ i21 : time isFInjective(R, CanonicalStrategy => null) │ │ │ │ - -- used 2.16981s (cpu); 1.26905s (thread); 0s (gc) │ │ │ │ + -- used 2.63942s (cpu); 1.5535s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 = true │ │ │ │ If the option AtOrigin (default value false) is set to true, isFInjective will │ │ │ │ only check $F$-injectivity at the origin. Otherwise, it will check $F$- │ │ │ │ injectivity globally. Note that checking $F$-injectivity at the origin can be │ │ │ │ slower than checking it globally. Consider the following example of a non-$F$- │ │ │ │ injective ring. │ │ │ │ i22 : R = ZZ/7[x,y,z]/((x-1)^5 + (y+1)^5 + z^5); │ │ │ │ i23 : time isFInjective(R) │ │ │ │ - -- used 0.141185s (cpu); 0.0902546s (thread); 0s (gc) │ │ │ │ + -- used 0.179006s (cpu); 0.110652s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = false │ │ │ │ i24 : time isFInjective(R, AtOrigin => true) │ │ │ │ - -- used 0.144332s (cpu); 0.0902735s (thread); 0s (gc) │ │ │ │ + -- used 0.222088s (cpu); 0.146203s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = true │ │ │ │ If the option AssumeCM (default value false) is set to true, then isFInjective │ │ │ │ only checks the Frobenius action on top cohomology (which is typically much │ │ │ │ faster). Note that it can give an incorrect answer if the non-injective │ │ │ │ Frobenius occurs in a lower degree. Consider the example of the cone over a │ │ │ │ supersingular elliptic curve times $\mathbb{P}^1$. │ │ │ │ i25 : S = ZZ/3[xs, ys, zs, xt, yt, zt]; │ │ │ │ i26 : EP1 = ZZ/3[x,y,z,s,t]/(x^3 + y^2*z - x*z^2); │ │ │ │ i27 : f = map(EP1, S, {x*s, y*s, z*s, x*t, y*t, z*t}); │ │ │ │ │ │ │ │ o27 : RingMap EP1 <-- S │ │ │ │ i28 : R = S/(ker f); │ │ │ │ i29 : time isFInjective(R) │ │ │ │ - -- used 0.904683s (cpu); 0.715355s (thread); 0s (gc) │ │ │ │ + -- used 1.08247s (cpu); 0.838226s (thread); 0s (gc) │ │ │ │ │ │ │ │ o29 = false │ │ │ │ i30 : time isFInjective(R, AssumeCM => true) │ │ │ │ - -- used 0.412784s (cpu); 0.287986s (thread); 0s (gc) │ │ │ │ + -- used 0.445748s (cpu); 0.284877s (thread); 0s (gc) │ │ │ │ │ │ │ │ o30 = true │ │ │ │ If the option AssumedReduced is set to true (its default behavior), then the │ │ │ │ bottom local cohomology is avoided (this means the Frobenius action on the top │ │ │ │ potentially nonzero Ext is not computed). │ │ │ │ If the option AssumeNormal (default value false) is set to true, then the │ │ │ │ bottom two local cohomology modules (or, rather, their duals) need not be │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_is__F__Regular.html │ │ │ @@ -273,23 +273,23 @@ │ │ │
    i26 : debugLevel = 1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1)
    │ │ │  isFRegular: This ring does not appear to be F-regular.  Increasing DepthOfSearch will let the function search more deeply.
    │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc)
    │ │ │ + -- used 0.154875s (cpu); 0.0831959s (thread); 0s (gc)
    │ │ │  
    │ │ │  o27 = false
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2)
    │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc)
    │ │ │ + -- used 0.258187s (cpu); 0.19311s (thread); 0s (gc)
    │ │ │  
    │ │ │  o28 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : debugLevel = 0;
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i25 : I = minors(2, matrix {{x, y, z}, {u, v, w}}); │ │ │ │ │ │ │ │ o25 : Ideal of S │ │ │ │ i26 : debugLevel = 1; │ │ │ │ i27 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 1) │ │ │ │ isFRegular: This ring does not appear to be F-regular. Increasing │ │ │ │ DepthOfSearch will let the function search more deeply. │ │ │ │ - -- used 0.120203s (cpu); 0.0782458s (thread); 0s (gc) │ │ │ │ + -- used 0.154875s (cpu); 0.0831959s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = false │ │ │ │ i28 : time isFRegular(S/I, QGorensteinIndex => infinity, DepthOfSearch => 2) │ │ │ │ - -- used 0.228747s (cpu); 0.174944s (thread); 0s (gc) │ │ │ │ + -- used 0.258187s (cpu); 0.19311s (thread); 0s (gc) │ │ │ │ │ │ │ │ o28 = true │ │ │ │ i29 : debugLevel = 0; │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _t_e_s_t_I_d_e_a_l -- compute a test ideal in a Q-Gorenstein ring │ │ │ │ * _i_s_F_R_a_t_i_o_n_a_l -- whether a ring is F-rational │ │ │ │ ********** WWaayyss ttoo uussee iissFFRReegguullaarr:: ********** │ │ ├── ./usr/share/doc/Macaulay2/TestIdeals/html/_test__Ideal.html │ │ │ @@ -255,25 +255,25 @@ │ │ │
    │ │ │

    It is often more efficient to pass a list, as opposed to finding a common denominator and passing a single element, since testIdeal can do things in a more intelligent way for such a list.

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i23 : time testIdeal({3/4, 2/3, 3/5}, L)
    │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc)
    │ │ │ + -- used 0.43677s (cpu); 0.230368s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 = ideal (y, x)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │
    │ │ │
    i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36)
    │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc)
    │ │ │ + -- used 0.527536s (cpu); 0.333067s (thread); 0s (gc)
    │ │ │  
    │ │ │  o24 = ideal (y, x)
    │ │ │  
    │ │ │  o24 : Ideal of R
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -100,21 +100,21 @@ │ │ │ │ o22 = ideal (y, x) │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ It is often more efficient to pass a list, as opposed to finding a common │ │ │ │ denominator and passing a single element, since testIdeal can do things in a │ │ │ │ more intelligent way for such a list. │ │ │ │ i23 : time testIdeal({3/4, 2/3, 3/5}, L) │ │ │ │ - -- used 0.360889s (cpu); 0.177517s (thread); 0s (gc) │ │ │ │ + -- used 0.43677s (cpu); 0.230368s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = ideal (y, x) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time testIdeal(1/60, x^45*y^40*(x + y)^36) │ │ │ │ - -- used 0.505166s (cpu); 0.327584s (thread); 0s (gc) │ │ │ │ + -- used 0.527536s (cpu); 0.333067s (thread); 0s (gc) │ │ │ │ │ │ │ │ o24 = ideal (y, x) │ │ │ │ │ │ │ │ o24 : Ideal of R │ │ │ │ The option AssumeDomain (default value false) is used when finding a test │ │ │ │ element. The option FrobeniusRootStrategy (default value Substitution) is │ │ │ │ passed to internal _f_r_o_b_e_n_i_u_s_R_o_o_t calls. │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/___Minimal.out │ │ │ @@ -2,16 +2,16 @@ │ │ │ │ │ │ i1 : S = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true) │ │ │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ +o3 = LineageTable{((0, 1), 0) => null} │ │ │ + ((0, 2), 0) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_matrix_lp__Lineage__Table_rp.out │ │ │ @@ -2,16 +2,15 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null} │ │ │ - ((0, 1), 0) => null │ │ │ +o3 = LineageTable{((0, 2), 0) => null} │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_minimize_lp__Lineage__Table_rp.out │ │ │ @@ -2,35 +2,41 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2") │ │ │ │ │ │ + 2 │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c } │ │ │ 3 │ │ │ -o3 = LineageTable{((0, 2), 0) => -c } │ │ │ + ((0, 2), 0) => -c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ + 2 │ │ │ + (0, 1) => a c │ │ │ 2 │ │ │ (0, 2) => b*c │ │ │ (1, 2) => -a*c │ │ │ 2 │ │ │ 0 => a*b*c + c │ │ │ 3 2 │ │ │ 1 => - b c + a*b + a*c │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : minimize T │ │ │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null} │ │ │ +o4 = LineageTable{((0, 1), 0) => null} │ │ │ + ((0, 2), 0) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ + (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ │ 1 => null │ │ │ 2 │ │ │ 2 => b │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_reduce.out │ │ │ @@ -2,18 +2,16 @@ │ │ │ │ │ │ i1 : R = ZZ/101[a,b,c]; │ │ │ │ │ │ i2 : allowableThreads= 2; │ │ │ │ │ │ i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2" │ │ │ │ │ │ - 2 │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c } │ │ │ 3 │ │ │ - ((0, 2), 0) => -c │ │ │ +o3 = LineageTable{((0, 2), 0) => -c } │ │ │ 2 │ │ │ ((0, 2), 1) => a*c │ │ │ 2 │ │ │ ((1, 2), 0) => -c │ │ │ 2 │ │ │ (0, 1) => a c │ │ │ 2 │ │ │ @@ -26,16 +24,15 @@ │ │ │ 2 │ │ │ 2 => b │ │ │ │ │ │ o3 : LineageTable │ │ │ │ │ │ i4 : reduce T │ │ │ │ │ │ -o4 = LineageTable{((0, 1), 0) => null} │ │ │ - ((0, 2), 0) => null │ │ │ +o4 = LineageTable{((0, 2), 0) => null} │ │ │ ((0, 2), 1) => null │ │ │ 2 │ │ │ ((1, 2), 0) => c │ │ │ (0, 1) => null │ │ │ (0, 2) => null │ │ │ (1, 2) => a*c │ │ │ 0 => null │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/example-output/_tgb.out │ │ │ @@ -6,62 +6,38 @@ │ │ │ │ │ │ o2 : Ideal of R │ │ │ │ │ │ i3 : allowableThreads = 4; │ │ │ │ │ │ i4 : H = tgb I │ │ │ │ │ │ - 2 9 │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z } │ │ │ - 2 9 │ │ │ - (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z │ │ │ - 2 13 │ │ │ - (((((0, 1), 2), 2), 1), (0, 1)) => -22y z │ │ │ - 2 13 │ │ │ - (((((0, 1), 2), 2), 1), 2) => 16y z │ │ │ - 2 12 │ │ │ - (((((0, 1), 2), 2), 2), 2) => 16y z │ │ │ - 2 4 │ │ │ - (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), ((0, 1), 2))) => -43y z │ │ │ - 2 7 │ │ │ - (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z │ │ │ - 4 13 4 9 │ │ │ - ((((0, 1), 2), 1), 2) => 23y z + 6y z │ │ │ - 4 8 4 4 │ │ │ - ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z + 13y z │ │ │ - 4 12 4 11 │ │ │ - ((((0, 1), 2), 2), 1) => 50y z - 23y z │ │ │ - 4 11 4 6 │ │ │ - ((((0, 1), 2), 2), 2) => - 26y z + 9y z │ │ │ - 4 6 │ │ │ - ((((0, 1), 2), 2), 3) => -13y z │ │ │ - 4 6 4 5 │ │ │ - ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z + 31y z │ │ │ - 3 17 │ │ │ - ((((0, 1), 2), 3), 1) => 11y z │ │ │ - 4 5 3 16 │ │ │ - ((((0, 1), 2), 3), 2) => - 16y z + 9y z │ │ │ - 3 17 │ │ │ - ((((0, 1), 2), 3), 3) => 41y z │ │ │ - 6 4 4 6 │ │ │ - (((0, 1), 2), 1) => 19y z - 30y z │ │ │ - 5 4 4 7 │ │ │ - (((0, 1), 2), 2) => 37y z + 9y z │ │ │ - 4 14 4 11 │ │ │ - (((0, 1), 2), 3) => 27y z - 16y z │ │ │ - 5 5 4 4 │ │ │ - ((0, 1), 2) => - 24y z + 9y z │ │ │ + 4 4 3 7 │ │ │ +o4 = LineageTable{((0, 1), 2) => 9y z - 6y z } │ │ │ + 2 11 2 10 │ │ │ + ((0, 1), 3) => 44y z + 4y z │ │ │ + 2 5 2 4 │ │ │ + ((0, 2), (0, 1)) => 40y z + 22y z │ │ │ + 2 6 │ │ │ + ((0, 2), 1) => 25y z │ │ │ + 2 4 │ │ │ + ((0, 2), 3) => 10y z │ │ │ + 5 2 4 │ │ │ + ((0, 3), (0, 1)) => 46y z + 40y z │ │ │ + 2 4 │ │ │ + ((1, 2), 1) => -18y z │ │ │ 5 2 3 4 │ │ │ (0, 1) => - 25y z - 19y z │ │ │ - 3 5 2 4 │ │ │ - (0, 2) => - 24y z + 9y z │ │ │ - 5 3 4 │ │ │ - (0, 3) => 28y z - 24y z │ │ │ - 3 16 │ │ │ - (1, 2) => -19y z │ │ │ + 5 3 2 4 │ │ │ + (0, 2) => 5y z + 9y z │ │ │ + 5 2 5 │ │ │ + (0, 3) => 5y z + 28y z │ │ │ + 4 5 3 8 │ │ │ + (1, 2) => - 45y z + 30y z │ │ │ + 3 7 3 6 │ │ │ + (1, 3) => 30y z - 34y z │ │ │ 3 4 2 4 │ │ │ (2, 3) => 7y z - 9y z │ │ │ 2 │ │ │ 0 => 2x + 10y z │ │ │ 2 3 │ │ │ 1 => 8x y + 10x*y*z │ │ │ 3 2 3 │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/___Minimal.html │ │ │ @@ -73,16 +73,16 @@ │ │ │
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │  
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ +o3 = LineageTable{((0, 1), 0) => null}
    │ │ │ +                  ((0, 2), 0) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,16 +12,16 @@
    │ │ │ │  Gr\"obner basis is minimized. Lineages of non-minimal Gr\"obner basis elements
    │ │ │ │  that were added to the basis during the distributed computation are saved, with
    │ │ │ │  the corresponding entry in the table being null.
    │ │ │ │  i1 : S = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2", Minimal=>true)
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ +o3 = LineageTable{((0, 1), 0) => null}
    │ │ │ │ +                  ((0, 2), 0) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_matrix_lp__Lineage__Table_rp.html
    │ │ │ @@ -86,16 +86,15 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ -                  ((0, 1), 0) => null
    │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,16 +19,15 @@
    │ │ │ │  This simple function just returns the Gr\"obner basis computed with threaded
    │ │ │ │  Gr\"obner basis function _t_g_b in the expected Macaulay2 format, so that further
    │ │ │ │  computation are one step easier to set up.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = reduce tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ -o3 = LineageTable{(((0, 1), 0), 0) => null}
    │ │ │ │ -                  ((0, 1), 0) => null
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_minimize_lp__Lineage__Table_rp.html
    │ │ │ @@ -82,18 +82,22 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │  
    │ │ │ +                                     2
    │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │                                     3
    │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ +                  ((0, 2), 0) => -c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │ +                             2
    │ │ │ +                  (0, 1) => a c
    │ │ │                                 2
    │ │ │                    (0, 2) => b*c
    │ │ │                    (1, 2) => -a*c
    │ │ │                                  2
    │ │ │                    0 => a*b*c + c
    │ │ │                            3       2
    │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ @@ -103,17 +107,19 @@
    │ │ │  o3 : LineageTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : minimize T
    │ │ │  
    │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ +o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ +                  ((0, 2), 0) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │ +                  (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │                    1 => null
    │ │ │                          2
    │ │ │                    2 => b
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -19,34 +19,40 @@
    │ │ │ │  minimal generators of the ideal generated by the leading terms of the values of
    │ │ │ │  H. If the values of H constitute a Gr\"obner basis of the ideal they generate,
    │ │ │ │  this method returns a minimal Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb( ideal "abc+c2,ab2-b3c+ac,b2")
    │ │ │ │  
    │ │ │ │ +                                     2
    │ │ │ │ +o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │ │                                     3
    │ │ │ │ -o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │ +                  ((0, 2), 0) => -c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │ +                             2
    │ │ │ │ +                  (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │                    (0, 2) => b*c
    │ │ │ │                    (1, 2) => -a*c
    │ │ │ │                                  2
    │ │ │ │                    0 => a*b*c + c
    │ │ │ │                            3       2
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : minimize T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │ +o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ │ +                  ((0, 2), 0) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │ +                  (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ │ │                    1 => null
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_reduce.html
    │ │ │ @@ -82,18 +82,16 @@
    │ │ │                
    i2 : allowableThreads= 2;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │  
    │ │ │ -                                     2
    │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │                                     3
    │ │ │ -                  ((0, 2), 0) => -c
    │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │                                      2
    │ │ │                    ((0, 2), 1) => a*c
    │ │ │                                     2
    │ │ │                    ((1, 2), 0) => -c
    │ │ │                               2
    │ │ │                    (0, 1) => a c
    │ │ │                                 2
    │ │ │ @@ -109,16 +107,15 @@
    │ │ │  o3 : LineageTable
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : reduce T
    │ │ │  
    │ │ │ -o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ -                  ((0, 2), 0) => null
    │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │                    ((0, 2), 1) => null
    │ │ │                                    2
    │ │ │                    ((1, 2), 0) => c
    │ │ │                    (0, 1) => null
    │ │ │                    (0, 2) => null
    │ │ │                    (1, 2) => a*c
    │ │ │                    0 => null
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -20,18 +20,16 @@
    │ │ │ │  remainder on the division by the remaining values H.
    │ │ │ │  If values H constitute a Gr\"obner basis of the ideal they generate, this
    │ │ │ │  method returns a reduced Gr\"obner basis.
    │ │ │ │  i1 : R = ZZ/101[a,b,c];
    │ │ │ │  i2 : allowableThreads= 2;
    │ │ │ │  i3 : T = tgb ideal "abc+c2,ab2-b3c+ac,b2"
    │ │ │ │  
    │ │ │ │ -                                     2
    │ │ │ │ -o3 = LineageTable{((0, 1), 0) => -a*c    }
    │ │ │ │                                     3
    │ │ │ │ -                  ((0, 2), 0) => -c
    │ │ │ │ +o3 = LineageTable{((0, 2), 0) => -c      }
    │ │ │ │                                      2
    │ │ │ │                    ((0, 2), 1) => a*c
    │ │ │ │                                     2
    │ │ │ │                    ((1, 2), 0) => -c
    │ │ │ │                               2
    │ │ │ │                    (0, 1) => a c
    │ │ │ │                                 2
    │ │ │ │ @@ -43,16 +41,15 @@
    │ │ │ │                    1 => - b c + a*b  + a*c
    │ │ │ │                          2
    │ │ │ │                    2 => b
    │ │ │ │  
    │ │ │ │  o3 : LineageTable
    │ │ │ │  i4 : reduce T
    │ │ │ │  
    │ │ │ │ -o4 = LineageTable{((0, 1), 0) => null}
    │ │ │ │ -                  ((0, 2), 0) => null
    │ │ │ │ +o4 = LineageTable{((0, 2), 0) => null}
    │ │ │ │                    ((0, 2), 1) => null
    │ │ │ │                                    2
    │ │ │ │                    ((1, 2), 0) => c
    │ │ │ │                    (0, 1) => null
    │ │ │ │                    (0, 2) => null
    │ │ │ │                    (1, 2) => a*c
    │ │ │ │                    0 => null
    │ │ ├── ./usr/share/doc/Macaulay2/ThreadedGB/html/_tgb.html
    │ │ │ @@ -95,62 +95,38 @@
    │ │ │                
    i3 : allowableThreads  = 4;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : H = tgb I
    │ │ │  
    │ │ │ -                                                                   2 9
    │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z                               }
    │ │ │ -                                                             2 9
    │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z
    │ │ │ -                                                         2 13
    │ │ │ -                  (((((0, 1), 2), 2), 1), (0, 1)) => -22y z
    │ │ │ -                                                   2 13
    │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 16y z
    │ │ │ -                                                   2 12
    │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 16y z
    │ │ │ -                                                                                                 2 4
    │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), ((0, 1), 2))) => -43y z
    │ │ │ -                                                                  2 7
    │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z
    │ │ │ -                                              4 13     4 9
    │ │ │ -                  ((((0, 1), 2), 1), 2) => 23y z   + 6y z
    │ │ │ -                                                        4 8      4 4
    │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z  + 13y z
    │ │ │ -                                              4 12      4 11
    │ │ │ -                  ((((0, 1), 2), 2), 1) => 50y z   - 23y z
    │ │ │ -                                                4 11     4 6
    │ │ │ -                  ((((0, 1), 2), 2), 2) => - 26y z   + 9y z
    │ │ │ -                                               4 6
    │ │ │ -                  ((((0, 1), 2), 2), 3) => -13y z
    │ │ │ -                                                             4 6      4 5
    │ │ │ -                  ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z  + 31y z
    │ │ │ -                                              3 17
    │ │ │ -                  ((((0, 1), 2), 3), 1) => 11y z
    │ │ │ -                                                4 5     3 16
    │ │ │ -                  ((((0, 1), 2), 3), 2) => - 16y z  + 9y z
    │ │ │ -                                              3 17
    │ │ │ -                  ((((0, 1), 2), 3), 3) => 41y z
    │ │ │ -                                         6 4      4 6
    │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ -                                         5 4     4 7
    │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ -                                         4 14      4 11
    │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ -                                      5 5     4 4
    │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ +                                   4 4     3 7
    │ │ │ +o4 = LineageTable{((0, 1), 2) => 9y z  - 6y z        }
    │ │ │ +                                    2 11     2 10
    │ │ │ +                  ((0, 1), 3) => 44y z   + 4y z
    │ │ │ +                                         2 5      2 4
    │ │ │ +                  ((0, 2), (0, 1)) => 40y z  + 22y z
    │ │ │ +                                    2 6
    │ │ │ +                  ((0, 2), 1) => 25y z
    │ │ │ +                                    2 4
    │ │ │ +                  ((0, 2), 3) => 10y z
    │ │ │ +                                         5       2 4
    │ │ │ +                  ((0, 3), (0, 1)) => 46y z + 40y z
    │ │ │ +                                     2 4
    │ │ │ +                  ((1, 2), 1) => -18y z
    │ │ │                                   5 2      3 4
    │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ -                                 3 5     2 4
    │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ -                               5       3 4
    │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ -                                3 16
    │ │ │ -                  (1, 2) => -19y z
    │ │ │ +                              5 3     2 4
    │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ +                              5 2      5
    │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ +                                 4 5      3 8
    │ │ │ +                  (1, 2) => - 45y z  + 30y z
    │ │ │ +                               3 7      3 6
    │ │ │ +                  (1, 3) => 30y z  - 34y z
    │ │ │                                3 4     2 4
    │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │                                 2
    │ │ │                    0 => 2x + 10y z
    │ │ │                           2           3
    │ │ │                    1 => 8x y + 10x*y*z
    │ │ │                             3 2       3
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -26,65 +26,38 @@
    │ │ │ │  i2 : I = ideal {2*x + 10*y^2*z, 8*x^2*y + 10*x*y*z^3, 5*x*y^3*z^2 + 9*x*z^3,
    │ │ │ │  9*x*y^3*z + 10*x*y^3};
    │ │ │ │  
    │ │ │ │  o2 : Ideal of R
    │ │ │ │  i3 : allowableThreads  = 4;
    │ │ │ │  i4 : H = tgb I
    │ │ │ │  
    │ │ │ │ -                                                                   2 9
    │ │ │ │ -o4 = LineageTable{(((((0, 1), 2), 2), ((0, 1), 2)), (0, 1)) => -22y z
    │ │ │ │ -}
    │ │ │ │ -                                                             2 9
    │ │ │ │ -                  (((((0, 1), 2), 2), ((0, 1), 2)), 2) => 16y z
    │ │ │ │ -                                                         2 13
    │ │ │ │ -                  (((((0, 1), 2), 2), 1), (0, 1)) => -22y z
    │ │ │ │ -                                                   2 13
    │ │ │ │ -                  (((((0, 1), 2), 2), 1), 2) => 16y z
    │ │ │ │ -                                                   2 12
    │ │ │ │ -                  (((((0, 1), 2), 2), 2), 2) => 16y z
    │ │ │ │ -
    │ │ │ │ -2 4
    │ │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), ((((0, 1), 2), 2), (
    │ │ │ │ -(0, 1), 2))) => -43y z
    │ │ │ │ -                                                                  2 7
    │ │ │ │ -                  (((((0, 1), 2), 3), (((0, 1), 2), 2)), 2) => 16y z
    │ │ │ │ -                                              4 13     4 9
    │ │ │ │ -                  ((((0, 1), 2), 1), 2) => 23y z   + 6y z
    │ │ │ │ -                                                        4 8      4 4
    │ │ │ │ -                  ((((0, 1), 2), 2), ((0, 1), 2)) => 33y z  + 13y z
    │ │ │ │ -                                              4 12      4 11
    │ │ │ │ -                  ((((0, 1), 2), 2), 1) => 50y z   - 23y z
    │ │ │ │ -                                                4 11     4 6
    │ │ │ │ -                  ((((0, 1), 2), 2), 2) => - 26y z   + 9y z
    │ │ │ │ -                                               4 6
    │ │ │ │ -                  ((((0, 1), 2), 2), 3) => -13y z
    │ │ │ │ -                                                             4 6      4 5
    │ │ │ │ -                  ((((0, 1), 2), 3), (((0, 1), 2), 2)) => 10y z  + 31y z
    │ │ │ │ -                                              3 17
    │ │ │ │ -                  ((((0, 1), 2), 3), 1) => 11y z
    │ │ │ │ -                                                4 5     3 16
    │ │ │ │ -                  ((((0, 1), 2), 3), 2) => - 16y z  + 9y z
    │ │ │ │ -                                              3 17
    │ │ │ │ -                  ((((0, 1), 2), 3), 3) => 41y z
    │ │ │ │ -                                         6 4      4 6
    │ │ │ │ -                  (((0, 1), 2), 1) => 19y z  - 30y z
    │ │ │ │ -                                         5 4     4 7
    │ │ │ │ -                  (((0, 1), 2), 2) => 37y z  + 9y z
    │ │ │ │ -                                         4 14      4 11
    │ │ │ │ -                  (((0, 1), 2), 3) => 27y z   - 16y z
    │ │ │ │ -                                      5 5     4 4
    │ │ │ │ -                  ((0, 1), 2) => - 24y z  + 9y z
    │ │ │ │ +                                   4 4     3 7
    │ │ │ │ +o4 = LineageTable{((0, 1), 2) => 9y z  - 6y z        }
    │ │ │ │ +                                    2 11     2 10
    │ │ │ │ +                  ((0, 1), 3) => 44y z   + 4y z
    │ │ │ │ +                                         2 5      2 4
    │ │ │ │ +                  ((0, 2), (0, 1)) => 40y z  + 22y z
    │ │ │ │ +                                    2 6
    │ │ │ │ +                  ((0, 2), 1) => 25y z
    │ │ │ │ +                                    2 4
    │ │ │ │ +                  ((0, 2), 3) => 10y z
    │ │ │ │ +                                         5       2 4
    │ │ │ │ +                  ((0, 3), (0, 1)) => 46y z + 40y z
    │ │ │ │ +                                     2 4
    │ │ │ │ +                  ((1, 2), 1) => -18y z
    │ │ │ │                                   5 2      3 4
    │ │ │ │                    (0, 1) => - 25y z  - 19y z
    │ │ │ │ -                                 3 5     2 4
    │ │ │ │ -                  (0, 2) => - 24y z  + 9y z
    │ │ │ │ -                               5       3 4
    │ │ │ │ -                  (0, 3) => 28y z - 24y z
    │ │ │ │ -                                3 16
    │ │ │ │ -                  (1, 2) => -19y z
    │ │ │ │ +                              5 3     2 4
    │ │ │ │ +                  (0, 2) => 5y z  + 9y z
    │ │ │ │ +                              5 2      5
    │ │ │ │ +                  (0, 3) => 5y z  + 28y z
    │ │ │ │ +                                 4 5      3 8
    │ │ │ │ +                  (1, 2) => - 45y z  + 30y z
    │ │ │ │ +                               3 7      3 6
    │ │ │ │ +                  (1, 3) => 30y z  - 34y z
    │ │ │ │                                3 4     2 4
    │ │ │ │                    (2, 3) => 7y z  - 9y z
    │ │ │ │                                 2
    │ │ │ │                    0 => 2x + 10y z
    │ │ │ │                           2           3
    │ │ │ │                    1 => 8x y + 10x*y*z
    │ │ │ │                             3 2       3
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/example-output/_ed__Deg.out
    │ │ │ @@ -40,15 +40,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc)
    │ │ │ + -- used 1.52408s (cpu); 0.987592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │  
    │ │ │  i5 : time edDeg(A,ForceAmat=>true)
    │ │ │  
    │ │ │ @@ -56,14 +56,14 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc)
    │ │ │ + -- used 6.05469s (cpu); 3.86889s (thread); 0s (gc)
    │ │ │  
    │ │ │  o5 = 252
    │ │ │  
    │ │ │  o5 : QQ
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/ToricInvariants/html/_ed__Deg.html
    │ │ │ @@ -131,15 +131,15 @@
    │ │ │  The dual variety has degree = 45, and codimension = 1
    │ │ │  Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28}
    │ │ │  Polar Degrees: {45, 98, 81, 28}
    │ │ │  ED Degree = 252
    │ │ │  
    │ │ │                         5      4      3      2
    │ │ │  Chern-Mather Class: 20h  + 23h  + 31h  + 28h
    │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc)
    │ │ │ + -- used 1.52408s (cpu); 0.987592s (thread); 0s (gc)
    │ │ │  
    │ │ │  o4 = 252
    │ │ │  
    │ │ │  o4 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ ED Degree = 252 │ │ │ │ │ │ 5 4 3 2 │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc) │ │ │ + -- used 6.05469s (cpu); 3.86889s (thread); 0s (gc) │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ o5 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -66,30 +66,30 @@ │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 1.13366s (cpu); 0.779417s (thread); 0s (gc) │ │ │ │ + -- used 1.52408s (cpu); 0.987592s (thread); 0s (gc) │ │ │ │ │ │ │ │ o4 = 252 │ │ │ │ │ │ │ │ o4 : QQ │ │ │ │ i5 : time edDeg(A,ForceAmat=>true) │ │ │ │ │ │ │ │ The toric variety has degree = 28 │ │ │ │ The dual variety has degree = 45, and codimension = 1 │ │ │ │ Chern-Mather Volumes: (V_0,..,V_(d-1)) = {20, 23, 31, 28} │ │ │ │ Polar Degrees: {45, 98, 81, 28} │ │ │ │ ED Degree = 252 │ │ │ │ │ │ │ │ 5 4 3 2 │ │ │ │ Chern-Mather Class: 20h + 23h + 31h + 28h │ │ │ │ - -- used 4.61337s (cpu); 3.0038s (thread); 0s (gc) │ │ │ │ + -- used 6.05469s (cpu); 3.86889s (thread); 0s (gc) │ │ │ │ │ │ │ │ o5 = 252 │ │ │ │ │ │ │ │ o5 : QQ │ │ │ │ ********** WWaayyss ttoo uussee eeddDDeegg:: ********** │ │ │ │ * edDeg(Matrix) │ │ │ │ ********** FFoorr tthhee pprrooggrraammmmeerr ********** │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/___Triangulations.out │ │ │ @@ -17,15 +17,15 @@ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ - -- .0931162s elapsed │ │ │ + -- .116782s elapsed │ │ │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ ------------------------------------------------------------------------ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -50,14 +50,14 @@ │ │ │ i7 : T = regularFineTriangulation A │ │ │ │ │ │ o7 = triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, 1, 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ o7 : Triangulation │ │ │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ - -- 1.28881s elapsed │ │ │ + -- 1.09395s elapsed │ │ │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ o9 = true │ │ │ │ │ │ i10 : │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/example-output/_generate__Triangulations.out │ │ │ @@ -21,87 +21,15 @@ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ o3 : Triangulation │ │ │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ - ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ - ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -227,275 +155,275 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o4 : List │ │ │ - │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ - │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o4 : List │ │ │ + │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ + │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ - │ │ │ -o5 : List │ │ │ - │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ - │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ + │ │ │ +o5 : List │ │ │ + │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ + │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -621,93 +549,93 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ - │ │ │ -o6 : List │ │ │ - │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ - │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ + {2, 4, 6, 7}}} │ │ │ + │ │ │ +o6 : List │ │ │ + │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ + │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ ------------------------------------------------------------------------ │ │ │ @@ -833,15 +761,87 @@ │ │ │ ------------------------------------------------------------------------ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ ------------------------------------------------------------------------ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ ------------------------------------------------------------------------ │ │ │ - {2, 5, 6, 7}}} │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ + ------------------------------------------------------------------------ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ + ------------------------------------------------------------------------ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ o7 : List │ │ │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ o8 = true │ │ │ │ │ │ @@ -858,191 +858,193 @@ │ │ │ o11 = Tally{false => 66} │ │ │ true => 8 │ │ │ │ │ │ o11 : Tally │ │ │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ - ----------------------------------------------------------------------- │ │ │ - 4}} │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ + ----------------------------------------------------------------------- │ │ │ + 4 20 │ │ │ + -, --}} │ │ │ + 3 3 │ │ │ │ │ │ o12 : List │ │ │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ o13 : QQ │ │ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o14 : List │ │ │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ ----------------------------------------------------------------------- │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ ----------------------------------------------------------------------- │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ ----------------------------------------------------------------------- │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ o15 : List │ │ │ │ │ │ i16 : stars1 == stars2 │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/_generate__Triangulations.html │ │ │ @@ -117,87 +117,15 @@ │ │ │ o3 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : Ts1 = generateTriangulations A -- list of Triangulation's.
    │ │ │  
    │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ -     ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -323,281 +251,281 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o4 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ -
    │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o4 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets
    │ │ │ +
    │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6},
    │ │ │ +     {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6},
    │ │ │ +     {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6},
    │ │ │ +     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7},
    │ │ │ +     {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +     {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7},
    │ │ │ +     {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7},
    │ │ │ +     {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}},
    │ │ │ +     {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o5 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ -
    │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {1, 4, 5, 7}, {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o5 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations
    │ │ │ +
    │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -723,96 +651,96 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ -
    │ │ │ -o6 : List
    │ │ │ - │ │ │ - │ │ │ - │ │ │ - │ │ │ -
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ -
    │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7},
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5},
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7},
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7},
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7},
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6},
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6},
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5},
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}},
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7},
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4},
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6},
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6},
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5},
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │ +
    │ │ │ +o6 : List
    │ │ │ + │ │ │ + │ │ │ + │ │ │ + │ │ │ +
    i7 : Ts4 = generateTriangulations tri -- list of Triangulations
    │ │ │ +
    │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ @@ -938,15 +866,87 @@
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation
    │ │ │       ------------------------------------------------------------------------
    │ │ │       {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6},
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -     {2, 5, 6, 7}}}
    │ │ │ +     {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │ +     ------------------------------------------------------------------------
    │ │ │ +     {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o7 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : all(Ts4, isFine)
    │ │ │ @@ -978,131 +978,133 @@
    │ │ │  o11 : Tally
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : Ts4/gkzVector
    │ │ │  
    │ │ │ -        16     16  4     8  4       20     8  8     4  8          4  8     8 
    │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ -         3      3  3     3  3        3     3  3     3  3          3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20       16  16  4  16  4  4       8        4     16  4  16      
    │ │ │ -      4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4,
    │ │ │ -         3   3        3   3  3   3  3  3       3        3      3  3   3      
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20  4  4  20          16        8  16  4  4          20  4        4 
    │ │ │ -      4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -,
    │ │ │ -          3  3  3   3           3        3   3  3  3           3  3        3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20       16  16  4     4        8       4  4  16  8        16    16  4 
    │ │ │ -      --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -,
    │ │ │ -       3        3   3  3     3        3       3  3   3  3         3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16     4        8    4  16     4     16  8       8  8     8  8     8 
    │ │ │ -      --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -,
    │ │ │ -       3     3        3    3   3     3      3  3       3  3     3  3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8       8  4     20  8     8    16  4  4        16  16  4       4  16 
    │ │ │ -      -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --,
    │ │ │ -      3       3  3      3  3     3     3  3  3         3   3  3       3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  8        4    4  20              20  4    4        20  20       
    │ │ │ -      --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4,
    │ │ │ -       3  3        3    3   3               3  3    3         3   3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  16  4          4     20  20     4             4 
    │ │ │ -      -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -,
    │ │ │ -      3    3        3   3   3  3          3      3   3     3             3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  20  4          8        16     4  4  16    8        4  8  8  20 
    │ │ │ -      --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --,
    │ │ │ -       3   3  3          3         3     3  3   3    3        3  3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -           8     8  8     4  20       20  4  4  20  4  20  20  4    4  20 
    │ │ │ -      4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --,
    │ │ │ -           3     3  3     3   3        3  3  3   3  3   3   3  3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      20  4  20  4  4  20    20        4  4        20       8  4     4    
    │ │ │ -      --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4,
    │ │ │ -       3  3   3  3  3   3     3        3  3         3       3  3     3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16  16    8        4     4  16  16    4  16     16     4  8       4    
    │ │ │ -      --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4,
    │ │ │ -       3   3    3        3     3   3   3    3   3      3     3  3       3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20     8  8  8    8  8  8     20        4    4        8     8  20 
    │ │ │ -      4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --,
    │ │ │ -          3     3  3  3    3  3  3      3        3    3        3     3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    4     16  4     8  16          4  20     8     8  8    16  4  4 
    │ │ │ -      -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -,
    │ │ │ -      3    3      3  3     3   3          3   3     3     3  3     3  3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         16        8    16     4  16  4  16     4       8  20  8  4       
    │ │ │ -      8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4,
    │ │ │ -          3        3     3     3   3  3   3     3       3   3  3  3       
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8    8  8     8     20  4       4  16     4  16     4  16       20  8 
    │ │ │ -      -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -,
    │ │ │ -      3    3  3     3      3  3       3   3     3   3     3   3        3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8  4        8    20        4  8  8  8          8  8  8  4        20  
    │ │ │ -      -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --},
    │ │ │ -      3  3        3     3        3  3  3  3          3  3  3  3         3  
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -       16  16     4     4  8          8  4     8  8     20       20     4  4 
    │ │ │ -      {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -,
    │ │ │ -        3   3     3     3  3          3  3     3  3      3        3     3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         20       20  4              4  20       4  20        20  4       8 
    │ │ │ -      4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-,
    │ │ │ -          3        3  3              3   3       3   3         3  3       3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -         8  20     4  8          16  4  16  8        4    4     16  16     8 
    │ │ │ -      4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -,
    │ │ │ -         3   3     3  3           3  3   3  3        3    3      3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4          4  8     16  16     4    4     20        20     4    8  8 
    │ │ │ -      -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -,
    │ │ │ -      3          3  3      3   3     3    3      3         3     3    3  3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      8        8  8  8    8  20  8     8        4       16  8     4  16    
    │ │ │ -      -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8,
    │ │ │ -      3        3  3  3    3   3  3     3        3        3  3     3   3    
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4    4        8  16  4  16       16  4     16  4     16  4    4     16 
    │ │ │ -      -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --,
    │ │ │ -      3    3        3   3  3   3        3  3      3  3      3  3    3      3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  4     16       8  8  8  8  8  8       20  8     8     8  4     
    │ │ │ -      -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8},
    │ │ │ -      3   3  3      3       3  3  3  3  3  3        3  3     3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     4  16     16    20     4        4     20       4  4  16 
    │ │ │ -      {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --,
    │ │ │ -          3  3     3   3      3     3     3        3      3       3  3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4  16  16          8  16     4     16  4    8  8     20     8  4     
    │ │ │ -      -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4},
    │ │ │ -      3   3   3          3   3     3      3  3    3  3      3     3  3     
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -          4  8     20     8  8       8  4     16     16  4    8  8  20     8 
    │ │ │ -      {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -,
    │ │ │ -          3  3      3     3  3       3  3      3      3  3    3  3   3     3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -            4    4        8     20  8  8    8     8  8  8  8     8    4  16 
    │ │ │ -      8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --,
    │ │ │ -            3    3        3      3  3  3    3     3  3  3  3     3    3   3 
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      16        4  4  16       20  4     8  8     8    8        4  8  20  8
    │ │ │ -      --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -,
    │ │ │ -       3        3  3   3        3  3     3  3     3    3        3  3   3  3
    │ │ │ -      -----------------------------------------------------------------------
    │ │ │ -      4}}
    │ │ │ +        20        4  4        20       8  4     4     16  16    8        4 
    │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -,
    │ │ │ +         3        3  3         3       3  3     3      3   3    3        3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  16    4  16     16     4  8       4        20     8  8  8  
    │ │ │ +      4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -},
    │ │ │ +         3   3   3    3   3      3     3  3       3         3     3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  8  8     20        4    4        8     8  20  8    4     16  4    
    │ │ │ +      {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4,
    │ │ │ +       3  3  3      3        3    3        3     3   3  3    3      3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  16          4  20     8     8  8    16  4  4     16        8    16 
    │ │ │ +      -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--,
    │ │ │ +      3   3          3   3     3     3  3     3  3  3      3        3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  16  4  16     4       8  20  8  4        8    8  8     8     20 
    │ │ │ +      4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --,
    │ │ │ +         3   3  3   3     3       3   3  3  3        3    3  3     3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4       4  16     4  16     4  16       20  8  8  4        8    20    
    │ │ │ +      -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4,
    │ │ │ +      3       3   3     3   3     3   3        3  3  3  3        3     3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         4  8  8  8          8  8  8  4        20    16  16     4     4  8 
    │ │ │ +      4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -,
    │ │ │ +         3  3  3  3          3  3  3  3         3     3   3     3     3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +              8  4     8  8     20       20     4  4     20       20  4    
    │ │ │ +      8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4,
    │ │ │ +              3  3     3  3      3        3     3  3      3        3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +               4  20       4  20        20  4       8     8  20     4  8     
    │ │ │ +      4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4},
    │ │ │ +               3   3       3   3         3  3       3     3   3     3  3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  4  16  8        4    4     16  16     8  4          4  8    
    │ │ │ +      {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8,
    │ │ │ +           3  3   3  3        3    3      3   3     3  3          3  3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16  16     4    4     20        20     4    8  8  8        8  8  8  
    │ │ │ +      --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -},
    │ │ │ +       3   3     3    3      3         3     3    3  3  3        3  3  3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       8  20  8     8        4       16  8     4  16     4    4        8  16 
    │ │ │ +      {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --,
    │ │ │ +       3   3  3     3        3        3  3     3   3     3    3        3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  16       16  4     16  4     16  4    4     16  4  16  4     16  
    │ │ │ +      -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --},
    │ │ │ +      3   3        3  3      3  3      3  3    3      3  3   3  3      3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  8  8  8  8  8       20  8     8     8  4          4  8     4 
    │ │ │ +      {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -,
    │ │ │ +          3  3  3  3  3  3        3  3     3     3  3          3  3     3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16     16    20     4        4     20       4  4  16  4  16  16     
    │ │ │ +      --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4},
    │ │ │ +       3      3     3     3        3      3       3  3   3  3   3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          8  16     4     16  4    8  8     20     8  4          4  8     20 
    │ │ │ +      {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --,
    │ │ │ +          3   3     3      3  3    3  3      3     3  3          3  3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8  8       8  4     16     16  4    8  8  20     8        4    4    
    │ │ │ +      4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4,
    │ │ │ +         3  3       3  3      3      3  3    3  3   3     3        3    3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +         8     20  8  8    8     8  8  8  8     8    4  16  16        4  4 
    │ │ │ +      8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -,
    │ │ │ +         3      3  3  3    3     3  3  3  3     3    3   3   3        3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      16       20  4     8  8     8    8        4  8  20  8       16     16 
    │ │ │ +      --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --,
    │ │ │ +       3        3  3     3  3     3    3        3  3   3  3        3      3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4     8  4       20     8  8     4  8          4  8     8     8  20  
    │ │ │ +      -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --},
    │ │ │ +      3     3  3        3     3  3     3  3          3  3     3     3   3  
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +          16  16  4  16  4  4       8        4     16  4  16          20  4 
    │ │ │ +      {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -,
    │ │ │ +           3   3  3   3  3  3       3        3      3  3   3           3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20          16        8  16  4  4          20  4        4  20     
    │ │ │ +      -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4},
    │ │ │ +      3   3           3        3   3  3  3           3  3        3   3     
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +       16  16  4     4        8       4  4  16  8        16    16  4  16    
    │ │ │ +      {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4,
    │ │ │ +        3   3  3     3        3       3  3   3  3         3     3  3   3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4        8    4  16     4     16  8       8  8     8  8     8  8      
    │ │ │ +      -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4,
    │ │ │ +      3        3    3   3     3      3  3       3  3     3  3     3  3      
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  4     20  8     8    16  4  4        16  16  4       4  16  16  8 
    │ │ │ +      -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -,
    │ │ │ +      3  3      3  3     3     3  3  3         3   3  3       3   3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            4    4  20              20  4    4        20  20        4    4 
    │ │ │ +      8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-,
    │ │ │ +            3    3   3               3  3    3         3   3        3    3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +            8  16  16  4          4     20  20     4             4  20  20 
    │ │ │ +      4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --,
    │ │ │ +            3   3   3  3          3      3   3     3             3   3   3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4          8        16     4  4  16    8        4  8  8  20       8    
    │ │ │ +      -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8,
    │ │ │ +      3          3         3     3  3   3    3        3  3  3   3       3    
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      8  8     4  20       20  4  4  20  4  20  20  4    4  20  20  4  20  4 
    │ │ │ +      -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -,
    │ │ │ +      3  3     3   3        3  3  3   3  3   3   3  3    3   3   3  3   3  3 
    │ │ │ +      -----------------------------------------------------------------------
    │ │ │ +      4  20
    │ │ │ +      -, --}}
    │ │ │ +      3   3
    │ │ │  
    │ │ │  o12 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : volume convexHull A -- 8
    │ │ │ @@ -1112,66 +1114,66 @@
    │ │ │  o13 : QQ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8)
    │ │ │  
    │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o14 : List
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : stars2 = select(Ts4, isStar)
    │ │ │  
    │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │ +      {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7},
    │ │ │ +      {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │ +      {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}},
    │ │ │ +      {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7},
    │ │ │ +      triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7},
    │ │ │ +      {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation
    │ │ │ +      {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation
    │ │ │        -----------------------------------------------------------------------
    │ │ │ -      {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7},
    │ │ │ +      {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7},
    │ │ │        -----------------------------------------------------------------------
    │ │ │        {2, 4, 6, 7}}}
    │ │ │  
    │ │ │  o15 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -57,87 +57,15 @@ │ │ │ │ │ │ │ │ o3 = triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, │ │ │ │ 4, 5, 6}, {3, 5, 6, 7}} │ │ │ │ │ │ │ │ o3 : Triangulation │ │ │ │ i4 : Ts1 = generateTriangulations A -- list of Triangulation's. │ │ │ │ │ │ │ │ -o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ - ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ +o4 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -263,273 +191,273 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o4 : List │ │ │ │ -i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ - │ │ │ │ -o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 5, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o4 : List │ │ │ │ +i5 : Ts2 = generateTriangulations(A, T) -- list of list of subsets │ │ │ │ + │ │ │ │ +o5 = {{{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, │ │ │ │ + {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 5}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 2, 7}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {1, 2, 3, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 3, 4, 6}, {3, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {0, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 5, 6}, │ │ │ │ + {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 6}, │ │ │ │ + {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, {1, 2, 6, 7}, │ │ │ │ + {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 1, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 6}, {1, 3, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, │ │ │ │ + {1, 2, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {3, 4, 6, 7}}, │ │ │ │ + {0, 5, 6, 7}}, {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 6}, {0, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 5}, {2, 3, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + {3, 4, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o5 : List │ │ │ │ -i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ - │ │ │ │ -o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 4, 6, 7}}, {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 2, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {1, 4, 6, 7}}, {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 3, 6, 7}, {1, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {0, 2, 5, 6}, {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {2, 5, 6, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {3, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + {0, 2, 4, 5}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {2, 4, 5, 7}, {2, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 5, 6, 7}}, {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {0, 4, 5, 6}, {3, 5, 6, 7}}, {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {1, 4, 5, 7}, {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o5 : List │ │ │ │ +i6 : Ts3 = generateTriangulations triangulation(A, T) -- list of Triangulations │ │ │ │ + │ │ │ │ +o6 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -655,92 +583,92 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ - │ │ │ │ -o6 : List │ │ │ │ -i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ - │ │ │ │ -o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, {0, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, {1, 2, 3, 7}, │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, {0, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, {2, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, {2, 3, 5, 6}, │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 6}, │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, {3, 4, 5, 7}}, │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, {1, 3, 4, 7}, │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 4}, │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 6}, │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 6}, │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, triangulation │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ + │ │ │ │ +o6 : List │ │ │ │ +i7 : Ts4 = generateTriangulations tri -- list of Triangulations │ │ │ │ + │ │ │ │ +o7 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 5, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {0, 3, 6, 7}, {0, 4, 5, 6}, {0, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, {1, 4, 5, 7}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ @@ -866,15 +794,87 @@ │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {2, 3, 4, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {0, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 6}, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - {2, 5, 6, 7}}} │ │ │ │ + {2, 5, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 5}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}, triangulation {{0, 1, 2, 5}, {0, 2, 5, 6}, {0, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 3, 6}, {0, 1, 4, 6}, {0, 2, 3, 6}, {1, 3, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation {{0, 1, 3, 6}, {0, 1, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 6}, {0, 4, 5, 6}, {1, 3, 6, 7}, {1, 5, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 7}, {0, 3, 6, 7}, {0, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 4, 5, 6}, {2, 3, 5, 7}, {2, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 7}, {1, 2, 4, 5}, {1, 2, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {2, 3, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 5, 6}, {2, 5, 6, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 3, 4, 6}, {1, 3, 4, 5}, {3, 4, 5, 7}, {3, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {3, 4, 5, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 5, 6, 7}}, triangulation {{0, 1, 3, 5}, {0, 2, 3, 5}, {0, 2, 4, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 4}, {1, 3, 4, 5}, {2, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 6}, {3, 5, 6, 7}}, triangulation {{0, 1, 2, 4}, {1, 2, 3, 5}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 4, 5}, {2, 3, 5, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 4}, {0, 3, 4, 5}, {2, 3, 4, 7}, {2, 4, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {3, 4, 5, 7}}, triangulation {{0, 1, 3, 4}, {0, 2, 3, 6}, {0, 3, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 3, 4, 7}, {1, 4, 5, 7}, {3, 4, 6, 7}}, triangulation {{0, 1, 3, 4}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {0, 2, 3, 4}, {1, 3, 4, 7}, {1, 4, 5, 7}, {2, 3, 4, 7}, {2, 4, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, {1, 2, 3, 7}, {1, 2, 6, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 4, 5, 6}, {1, 5, 6, 7}}, triangulation {{0, 1, 2, 6}, {0, 1, 4, 6}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {1, 2, 3, 6}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}}, triangulation │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {{0, 1, 3, 5}, {0, 2, 3, 6}, {0, 3, 5, 6}, {0, 4, 5, 6}, {3, 5, 6, 7}}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + triangulation {{0, 1, 2, 4}, {1, 2, 3, 7}, {1, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ + ------------------------------------------------------------------------ │ │ │ │ + {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o7 : List │ │ │ │ i8 : all(Ts4, isFine) │ │ │ │ │ │ │ │ o8 = true │ │ │ │ i9 : all(Ts4, isStar) │ │ │ │ │ │ │ │ @@ -886,188 +886,190 @@ │ │ │ │ │ │ │ │ o11 = Tally{false => 66} │ │ │ │ true => 8 │ │ │ │ │ │ │ │ o11 : Tally │ │ │ │ i12 : Ts4/gkzVector │ │ │ │ │ │ │ │ - 16 16 4 8 4 20 8 8 4 8 4 8 8 │ │ │ │ -o12 = {{--, 4, --, -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 16 16 4 16 4 4 8 4 16 4 16 │ │ │ │ - 4, -, --}, {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 4 20 16 8 16 4 4 20 4 4 │ │ │ │ - 4, --, -, -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 16 16 4 4 8 4 4 16 8 16 16 4 │ │ │ │ - --, 4}, {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 8 4 16 4 16 8 8 8 8 8 8 │ │ │ │ - --, 4, -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 4 20 8 8 16 4 4 16 16 4 4 16 │ │ │ │ - -}, {4, -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 4 4 20 20 4 4 20 20 │ │ │ │ - --, -, 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 4 │ │ │ │ - -}, {-, 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 8 16 4 4 16 8 4 8 8 20 │ │ │ │ - --, --, -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 4 20 20 4 4 20 4 20 20 4 4 20 │ │ │ │ - 4}, {-, 8, -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 4 20 4 4 20 20 4 4 20 8 4 4 │ │ │ │ - --, -, --, -, -, --}, {--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 8 4 4 16 16 4 16 16 4 8 4 │ │ │ │ - --, --}, {-, 8, 4, -, 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 8 8 8 8 8 8 20 4 4 8 8 20 │ │ │ │ - 4, --, 8, -, -, -}, {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 16 4 8 16 4 20 8 8 8 16 4 4 │ │ │ │ - -}, {-, 8, --, -, 4, -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 8 16 4 16 4 16 4 8 20 8 4 │ │ │ │ - 8, --, 4, 4, -}, {--, 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 20 4 4 16 4 16 4 16 20 8 │ │ │ │ - -}, {-, -, 8, -, 4, --, -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 4 8 20 4 8 8 8 8 8 8 4 20 │ │ │ │ - -, -, 4, 8, -}, {--, 4, 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 16 4 4 8 8 4 8 8 20 20 4 4 │ │ │ │ - {--, --, 4, -, 4, -, -, 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 20 20 4 4 20 4 20 20 4 8 │ │ │ │ - 4, --, 4}, {--, -, 4, 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 20 4 8 16 4 16 8 4 4 16 16 8 │ │ │ │ - 4, -, --, 8, -, -, 4}, {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 16 4 4 20 20 4 8 8 │ │ │ │ - -, 4}, {4, -, -, 8, --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 8 8 8 8 8 20 8 8 4 16 8 4 16 │ │ │ │ - -, 8, 8, -, -, -}, {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 16 4 16 16 4 16 4 16 4 4 16 │ │ │ │ - -}, {-, 8, 4, -, --, -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 4 16 8 8 8 8 8 8 20 8 8 8 4 │ │ │ │ - -, --, -, 4, --}, {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 4 16 16 20 4 4 20 4 4 16 │ │ │ │ - {8, -, -, 4, -, --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 16 16 8 16 4 16 4 8 8 20 8 4 │ │ │ │ - -, --, --, 4}, {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 8 20 8 8 8 4 16 16 4 8 8 20 8 │ │ │ │ - {4, -, -, 8, --, 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4 4 8 20 8 8 8 8 8 8 8 8 4 16 │ │ │ │ - 8, 4, -}, {-, 4, 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 16 4 4 16 20 4 8 8 8 8 4 8 20 8 │ │ │ │ - --, 4, 8, -, -, --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, │ │ │ │ - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ - ----------------------------------------------------------------------- │ │ │ │ - 4}} │ │ │ │ + 20 4 4 20 8 4 4 16 16 8 4 │ │ │ │ +o12 = {{--, 4, 4, -, -, 4, 4, --}, {8, -, -, 4, -, 4, --, --}, {-, 8, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 16 4 8 4 20 8 8 8 │ │ │ │ + 4, -, --, --}, {-, --, 4, --, 8, -, -, 4}, {-, 4, 4, --, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 20 4 4 8 8 20 8 4 16 4 │ │ │ │ + {-, -, -, 8, --, 4, 4, -}, {-, 8, 4, -, 4, -, --, -}, {-, 8, --, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 20 8 8 8 16 4 4 16 8 16 │ │ │ │ + -, --, 4}, {4, -, --, 4, -, 8, -, -}, {--, -, -, 8, --, 4, 4, -}, {--, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 4 16 4 8 20 8 4 8 8 8 8 20 │ │ │ │ + 4, -, --, -, --, 8, -}, {4, -, --, -, -, 8, 4, -}, {-, -, 8, -, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 16 4 16 4 16 20 8 8 4 8 20 │ │ │ │ + -, 4}, {-, --, 8, -, --, 4, -, --}, {4, --, -, -, -, 4, 8, -}, {--, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 8 8 8 8 8 4 20 16 16 4 4 8 │ │ │ │ + 4, -, -, -, -, 8}, {8, -, -, -, -, 4, 4, --}, {--, --, 4, -, 4, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 8 8 20 20 4 4 20 20 4 │ │ │ │ + 8}, {8, -, -, 4, -, -, 4, --}, {4, --, 4, -, -, 4, --, 4}, {--, -, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 4 20 20 4 8 8 20 4 8 │ │ │ │ + 4, 4, 4, -, --}, {4, -, --, 4, 4, --, -, 4}, {-, 4, -, --, 8, -, -, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 4 16 8 4 4 16 16 8 4 4 8 │ │ │ │ + {4, --, -, --, -, 4, 8, -}, {-, 4, --, --, 8, -, -, 4}, {4, -, -, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 20 20 4 8 8 8 8 8 8 │ │ │ │ + --, --, 4, -}, {-, 4, --, 4, 4, --, 4, -}, {-, -, -, 8, 8, -, -, -}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 4 16 8 4 16 4 4 8 16 │ │ │ │ + {-, --, -, 4, -, 4, 8, -}, {4, --, -, 4, -, --, 8, -}, {-, 8, 4, -, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 16 16 4 16 4 16 4 4 16 4 16 4 16 │ │ │ │ + -, --, 4}, {--, -, 4, --, -, 8, --, -}, {-, 8, --, -, --, -, 4, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 8 8 8 20 8 8 8 4 4 8 4 │ │ │ │ + {8, -, -, -, -, -, -, 8}, {--, -, 4, -, 4, -, -, 8}, {8, -, -, 4, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 20 4 4 20 4 4 16 4 16 16 │ │ │ │ + --, 4, --}, {--, 4, -, 4, 4, -, 4, --}, {8, -, -, --, -, --, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 4 16 4 8 8 20 8 4 4 8 20 │ │ │ │ + {4, -, --, 4, -, 8, --, -}, {-, -, 4, --, 8, -, -, 4}, {4, -, -, 8, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 8 4 16 16 4 8 8 20 8 4 4 │ │ │ │ + 4, -, -}, {4, -, -, 8, --, 4, --, -}, {-, -, --, 4, -, 8, 4, -}, {-, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 20 8 8 8 8 8 8 8 8 4 16 16 4 4 │ │ │ │ + 8, -, 4, --, -, -}, {-, 8, -, -, -, -, 8, -}, {-, --, --, 4, 8, -, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 20 4 8 8 8 8 4 8 20 8 16 16 │ │ │ │ + --}, {4, --, -, 4, -, -, 8, -}, {-, 4, 8, -, -, --, -, 4}, {--, 4, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 20 8 8 4 8 4 8 8 8 20 │ │ │ │ + -, 4, -, -, 8}, {--, 4, -, -, 4, -, -, 8}, {8, -, -, 4, -, 4, -, --}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 16 4 4 8 4 16 4 16 20 4 │ │ │ │ + {4, --, --, -, --, -, -, 8}, {-, 4, 8, -, 4, --, -, --}, {4, 4, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 16 8 16 4 4 20 4 4 20 │ │ │ │ + -, --, 4, 4}, {--, 4, 4, -, --, -, -, 8}, {4, --, -, 4, 4, -, --, 4}, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 16 16 4 4 8 4 4 16 8 16 16 4 16 │ │ │ │ + {--, --, -, 4, -, 4, 8, -}, {8, -, -, --, -, 4, 4, --}, {--, -, --, 4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 4 16 4 16 8 8 8 8 8 8 8 │ │ │ │ + -, 8, 4, -}, {-, --, 8, -, 4, --, -, 4}, {-, -, 8, -, -, 8, -, -}, {4, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 4 20 8 8 16 4 4 16 16 4 4 16 16 8 │ │ │ │ + -, -, 8, --, -, 4, -}, {--, -, -, 8, 4, --, --, -}, {4, -, --, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 4 20 20 4 4 20 20 4 4 │ │ │ │ + 8, 4, -}, {-, --, 4, 4, 4, 4, --, -}, {-, 4, 4, --, --, 4, 4, -}, {-, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 16 16 4 4 20 20 4 4 20 20 │ │ │ │ + 4, 8, -, --, --, -, 4}, {4, -, 4, --, --, 4, -, 4}, {4, 4, -, --, --, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 8 16 4 4 16 8 4 8 8 20 8 │ │ │ │ + -, 4, 4}, {-, 4, 4, --, 8, -, -, --}, {-, 8, 4, -, -, -, --, 4}, {-, 8, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 8 8 4 20 20 4 4 20 4 20 20 4 4 20 20 4 20 4 │ │ │ │ + -, -, 4, -, --, 4}, {--, -, -, --, -, --, --, -}, {-, --, --, -, --, -, │ │ │ │ + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 │ │ │ │ + ----------------------------------------------------------------------- │ │ │ │ + 4 20 │ │ │ │ + -, --}} │ │ │ │ + 3 3 │ │ │ │ │ │ │ │ o12 : List │ │ │ │ i13 : volume convexHull A -- 8 │ │ │ │ │ │ │ │ o13 = 8 │ │ │ │ │ │ │ │ o13 : QQ │ │ │ │ i14 : stars1 = select(Ts4, t -> (gkzVector t)#-1 == 8) │ │ │ │ │ │ │ │ -o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o14 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o14 : List │ │ │ │ i15 : stars2 = select(Ts4, isStar) │ │ │ │ │ │ │ │ -o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ +o15 = {triangulation {{0, 1, 2, 7}, {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 2, 3, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ + {0, 2, 6, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {2, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, │ │ │ │ + {0, 4, 6, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 4, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ + {0, 2, 4, 7}, {0, 4, 5, 7}, {2, 4, 6, 7}}, triangulation {{0, 1, 2, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 1, 5, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}, {1, 2, 3, 7}}, │ │ │ │ + {0, 1, 5, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, {1, 2, 3, 7}, {2, 4, 6, 7}}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, {0, 2, 6, 7}, {0, 4, 6, 7}, │ │ │ │ + triangulation {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 6, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {1, 2, 3, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 3, 7}, {0, 1, 5, 7}, │ │ │ │ + {0, 4, 6, 7}, {1, 4, 5, 7}}, triangulation {{0, 1, 2, 7}, {0, 1, 4, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {0, 2, 3, 7}, {0, 2, 6, 7}, {0, 4, 5, 7}, {0, 4, 6, 7}}, triangulation │ │ │ │ + {0, 2, 4, 7}, {1, 2, 3, 7}, {1, 4, 5, 7}, {2, 4, 6, 7}}, triangulation │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ - {{0, 1, 3, 7}, {0, 1, 5, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {0, 4, 5, 7}, │ │ │ │ + {{0, 1, 3, 7}, {0, 1, 4, 7}, {0, 2, 3, 7}, {0, 2, 4, 7}, {1, 4, 5, 7}, │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ {2, 4, 6, 7}}} │ │ │ │ │ │ │ │ o15 : List │ │ │ │ i16 : stars1 == stars2 │ │ │ │ │ │ │ │ o16 = true │ │ ├── ./usr/share/doc/Macaulay2/Triangulations/html/index.html │ │ │ @@ -150,15 +150,15 @@ │ │ │ 4 10 │ │ │ o2 : Matrix ZZ <-- ZZ
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : elapsedTime Ts = allTriangulations(A, Fine => true);
    │ │ │ - -- .0931162s elapsed
    │ │ │ + -- .116782s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : select(Ts, T -> isStar T)
    │ │ │  
    │ │ │  o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0,
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │  
    │ │ │  o7 : Triangulation
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : elapsedTime Ts2 = generateTriangulations T;
    │ │ │ - -- 1.28881s elapsed
    │ │ │ + -- 1.09395s elapsed
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : #Ts2 == #Ts
    │ │ │  
    │ │ │  o9 = true
    │ │ │ ├── html2text {} │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ | 0 0 0 1 0 0 -1 0 0 0 | │ │ │ │ | -1 1 2 -1 -1 1 -1 1 0 0 | │ │ │ │ | 1 0 -1 0 0 0 0 0 0 0 | │ │ │ │ │ │ │ │ 4 10 │ │ │ │ o2 : Matrix ZZ <-- ZZ │ │ │ │ i3 : elapsedTime Ts = allTriangulations(A, Fine => true); │ │ │ │ - -- .0931162s elapsed │ │ │ │ + -- .116782s elapsed │ │ │ │ i4 : select(Ts, T -> isStar T) │ │ │ │ │ │ │ │ o4 = {triangulation {{0, 1, 2, 3, 9}, {0, 1, 2, 6, 9}, {0, 1, 3, 7, 9}, {0, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 1, 6, 7, 9}, {0, 2, 3, 6, 9}, {0, 3, 4, 6, 9}, {0, 3, 4, 8, 9}, {0, 3, │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ 5, 7, 9}, {0, 3, 5, 8, 9}, {0, 4, 6, 8, 9}, {0, 5, 6, 7, 9}, {0, 5, 6, │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ 6, 7, 9}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 9}, {0, 2, 4, 6, 9}, {0, 3, 4, 7, 8}, │ │ │ │ {0, 3, 4, 7, 9}, {0, 3, 5, 7, 8}, {0, 4, 6, 7, 8}, {0, 4, 6, 7, 9}, {0, 5, 6, │ │ │ │ 7, 8}, {1, 2, 3, 7, 9}, {1, 2, 6, 7, 9}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 9}, {2, │ │ │ │ 3, 5, 7, 8}, {2, 4, 6, 7, 8}, {2, 4, 6, 7, 9}, {2, 5, 6, 7, 8}} │ │ │ │ │ │ │ │ o7 : Triangulation │ │ │ │ i8 : elapsedTime Ts2 = generateTriangulations T; │ │ │ │ - -- 1.28881s elapsed │ │ │ │ + -- 1.09395s elapsed │ │ │ │ i9 : #Ts2 == #Ts │ │ │ │ │ │ │ │ o9 = true │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_o_l_y_h_e_d_r_a -- for computations with convex polyhedra, cones, and fans │ │ │ │ * _T_o_p_c_o_m -- interface to selected functions from topcom package │ │ │ │ * _R_e_f_l_e_x_i_v_e_P_o_l_y_t_o_p_e_s_D_B -- simple access to Kreuzer-Skarke database of │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/example-output/___Smart__Lift.out │ │ │ @@ -6,30 +6,30 @@ │ │ │ │ │ │ o2 = | xz yz z2 x3 | │ │ │ │ │ │ 1 4 │ │ │ o2 : Matrix S <-- S │ │ │ │ │ │ i3 : time (F,R,G,C)=localHilbertScheme(F0); │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc) │ │ │ + -- used 1.16791s (cpu); 0.705476s (thread); 0s (gc) │ │ │ │ │ │ i4 : T=ring first G; │ │ │ │ │ │ i5 : sum G │ │ │ │ │ │ o5 = | t_1t_16 | │ │ │ | t_9t_16 | │ │ │ | -t_4t_16 | │ │ │ | -2t_14t_16+t_15t_16 | │ │ │ │ │ │ 4 1 │ │ │ o5 : Matrix T <-- T │ │ │ │ │ │ i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false); │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc) │ │ │ + -- used 0.897132s (cpu); 0.508072s (thread); 0s (gc) │ │ │ │ │ │ i7 : sum G │ │ │ │ │ │ o7 = | t_1t_16 │ │ │ | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+ │ │ │ | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t │ │ │ | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2- │ │ ├── ./usr/share/doc/Macaulay2/VersalDeformations/html/___Smart__Lift.html │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ │ │ │ │ │

    With the default setting SmartLift=>true we get very nice equations for the base space:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ │
    │ │ │
    i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc)
    │ │ │ + -- used 1.16791s (cpu); 0.705476s (thread); 0s (gc) │ │ │
    │ │ │
    i4 : T=ring first G;
    │ │ │
    │ │ │

    With the setting SmartLift=>false the calculation is faster, but the equations are no longer homogeneous:

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc)
    │ │ │ + -- used 0.897132s (cpu); 0.508072s (thread); 0s (gc) │ │ │
    │ │ │
    i7 : sum G
    │ │ │  
    │ │ │  o7 = | t_1t_16
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -18,29 +18,29 @@
    │ │ │ │  o2 = | xz yz z2 x3 |
    │ │ │ │  
    │ │ │ │               1      4
    │ │ │ │  o2 : Matrix S  <-- S
    │ │ │ │  With the default setting SmartLift=>true we get very nice equations for the
    │ │ │ │  base space:
    │ │ │ │  i3 : time (F,R,G,C)=localHilbertScheme(F0);
    │ │ │ │ - -- used 0.91597s (cpu); 0.578592s (thread); 0s (gc)
    │ │ │ │ + -- used 1.16791s (cpu); 0.705476s (thread); 0s (gc)
    │ │ │ │  i4 : T=ring first G;
    │ │ │ │  i5 : sum G
    │ │ │ │  
    │ │ │ │  o5 = | t_1t_16             |
    │ │ │ │       | t_9t_16             |
    │ │ │ │       | -t_4t_16            |
    │ │ │ │       | -2t_14t_16+t_15t_16 |
    │ │ │ │  
    │ │ │ │               4      1
    │ │ │ │  o5 : Matrix T  <-- T
    │ │ │ │  With the setting SmartLift=>false the calculation is faster, but the equations
    │ │ │ │  are no longer homogeneous:
    │ │ │ │  i6 : time (F,R,G,C)=localHilbertScheme(F0,SmartLift=>false);
    │ │ │ │ - -- used 0.654992s (cpu); 0.406513s (thread); 0s (gc)
    │ │ │ │ + -- used 0.897132s (cpu); 0.508072s (thread); 0s (gc)
    │ │ │ │  i7 : sum G
    │ │ │ │  
    │ │ │ │  o7 = | t_1t_16
    │ │ │ │       | 2t_5t_10t_11t_16+t_7t_11^2t_16-2t_6t_10t_16+3t_10^2t_16-t_8t_11t_16+
    │ │ │ │       | -t_5t_10^2t_16-2t_7t_10t_11t_16-3t_2t_11^2t_16+t_8t_10t_16+2t_3t_11t
    │ │ │ │       | 2t_5t_10t_16^2+2t_7t_11t_16^2+4t_10t_12t_16+2t_11t_13t_16-t_8t_16^2-
    │ │ │ │       ------------------------------------------------------------------------
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/___Basic__Divisor.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 18380296066161043289
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i2 : D = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : H = new HashTable from D
    │ │ │  
    │ │ │  o3 = HashTable{{x} => {1}                  }
    │ │ │                 {y} => {2}
    │ │ │ @@ -16,18 +16,18 @@
    │ │ │                 cache => CacheTable{...1...}
    │ │ │                 ring => R
    │ │ │  
    │ │ │  o3 : HashTable
    │ │ │  
    │ │ │  i4 : (2/3)*D
    │ │ │  
    │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z)
    │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x)
    │ │ │  
    │ │ │  o4 : QWeilDivisor on R
    │ │ │  
    │ │ │  i5 : 0.6*D
    │ │ │  
    │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z)
    │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/___Number_sp_st_sp__Basic__Divisor.out
    │ │ │ @@ -16,21 +16,21 @@
    │ │ │  
    │ │ │  o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : 8*D
    │ │ │  
    │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : (-2/3)*D
    │ │ │  
    │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │  
    │ │ │  o6 : QWeilDivisor on R
    │ │ │  
    │ │ │  i7 : 0.0*D
    │ │ │  
    │ │ │  o7 = 0, the zero divisor
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ceiling_lp__R__Weil__Divisor_rp.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 992133077988949640
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │  
    │ │ │  i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │  
    │ │ │  i3 : ceiling( D )
    │ │ │  
    │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : floor( D )
    │ │ │  
    │ │ │  o4 = Div(y, z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │  
    │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 : ceiling( E )
    │ │ │  
    │ │ │  o6 = Div(x, z)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_divisor.out
    │ │ │ @@ -1,38 +1,38 @@
    │ │ │  -- -*- M2-comint -*- hash: 16935688116980988371
    │ │ │  
    │ │ │  i1 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = divisor(ideal(x*y^2*z^3))
    │ │ │  
    │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}})
    │ │ │  
    │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z)
    │ │ │  
    │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │  
    │ │ │  i7 : R = QQ[x,y,z]/ideal(x^2-y*z);
    │ │ │  
    │ │ │  i8 : D = divisor({2}, {ideal(x,y)})
    │ │ │  
    │ │ │ @@ -60,29 +60,29 @@
    │ │ │  
    │ │ │  o14 = 3*Div(xz2, xyz, xy2, x2z, x2y, x3)
    │ │ │  
    │ │ │  o14 : WeilDivisor on A
    │ │ │  
    │ │ │  i15 : E = divisor(y2z)
    │ │ │  
    │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z)
    │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y)
    │ │ │  
    │ │ │  o15 : WeilDivisor on A
    │ │ │  
    │ │ │  i16 : R = ZZ/7[x,y];
    │ │ │  
    │ │ │  i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ)
    │ │ │  
    │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o17 : QWeilDivisor on R
    │ │ │  
    │ │ │  i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x)
    │ │ │  
    │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o18 : QWeilDivisor on R
    │ │ │  
    │ │ │  i19 : R = ZZ/11[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i20 : D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, CoefficientType=>RR)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_dualize.out
    │ │ │ @@ -44,51 +44,51 @@
    │ │ │  i10 : J = m^9;
    │ │ │  
    │ │ │  o10 : Ideal of R
    │ │ │  
    │ │ │  i11 : M = J*R^1;
    │ │ │  
    │ │ │  i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc)
    │ │ │ + -- used 0.15575s (cpu); 0.0816305s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc)
    │ │ │ + -- used 0.548671s (cpu); 0.548681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc)
    │ │ │ + -- used 0.691125s (cpu); 0.608267s (thread); 0s (gc)
    │ │ │  
    │ │ │  i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc)
    │ │ │ + -- used 0.00346799s (cpu); 0.00347585s (thread); 0s (gc)
    │ │ │  
    │ │ │  i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc)
    │ │ │ + -- used 0.00285906s (cpu); 0.00286407s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │  
    │ │ │  i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i18 : I = ideal(x,u);
    │ │ │  
    │ │ │  o18 : Ideal of R
    │ │ │  
    │ │ │  i19 : J = I^15;
    │ │ │  
    │ │ │  o19 : Ideal of R
    │ │ │  
    │ │ │  i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc)
    │ │ │ + -- used 0.321724s (cpu); 0.151468s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │  
    │ │ │  i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc)
    │ │ │ + -- used 0.00756043s (cpu); 0.00756775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i23 : J = ideal(x,y);
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Cartier.out
    │ │ │ @@ -12,15 +12,15 @@
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │  i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : isCartier( D )
    │ │ │  
    │ │ │  o6 = false
    │ │ │  
    │ │ │ @@ -48,15 +48,15 @@
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │  i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │  
    │ │ │  i15 : isCartier(D, IsGraded => true)
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Homogeneous_lp__Basic__Divisor_rp.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 18048197335381839324
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z];
    │ │ │  
    │ │ │  i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})
    │ │ │  
    │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : isHomogeneous( D )
    │ │ │  
    │ │ │  o3 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Linear__Equivalent.out
    │ │ │ @@ -1,38 +1,38 @@
    │ │ │  -- -*- M2-comint -*- hash: 6019119347082811396
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │  
    │ │ │  i4 : isLinearEquivalent(D1, D2)
    │ │ │  
    │ │ │  o4 = true
    │ │ │  
    │ │ │  i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │  
    │ │ │  i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │  
    │ │ │  i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │  
    │ │ │  i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │  
    │ │ │  o8 = false
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Q__Cartier.out
    │ │ │ @@ -1,20 +1,20 @@
    │ │ │  -- -*- M2-comint -*- hash: 13719144060491348416
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : isQCartier(10, D1)
    │ │ │  
    │ │ │  o4 = 2
    │ │ │  
    │ │ │ @@ -44,21 +44,21 @@
    │ │ │  
    │ │ │  o10 = 0
    │ │ │  
    │ │ │  i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │  
    │ │ │  i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │  
    │ │ │  i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │  
    │ │ │  o14 = 1
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__Q__Linear__Equivalent.out
    │ │ │ @@ -36,21 +36,21 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │  
    │ │ │  i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │  
    │ │ │  i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │  
    │ │ │  i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │  
    │ │ │  o13 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_is__S__N__C.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 2360371518304120718
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : isSNC( D )
    │ │ │  
    │ │ │  o3 = false
    │ │ │  
    │ │ │ @@ -36,15 +36,15 @@
    │ │ │  
    │ │ │  o9 = true
    │ │ │  
    │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │  
    │ │ │  o11 : WeilDivisor on R
    │ │ │  
    │ │ │  i12 : isSNC( D, IsGraded => true )
    │ │ │  
    │ │ │  o12 = true
    │ │ │  
    │ │ │ @@ -60,15 +60,15 @@
    │ │ │  
    │ │ │  o15 = true
    │ │ │  
    │ │ │  i16 : R = QQ[x,y,z];
    │ │ │  
    │ │ │  i17 : D = divisor(x*y*(x+y))
    │ │ │  
    │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │  
    │ │ │  i18 : isSNC( D, IsGraded => true)
    │ │ │  
    │ │ │  o18 = false
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_map__To__Projective__Space.out
    │ │ │ @@ -16,15 +16,15 @@
    │ │ │  o3 : RingMap R <-- QQ[YY ..YY ]
    │ │ │                          1    2
    │ │ │  
    │ │ │  i4 : R = ZZ/7[x,y,z];
    │ │ │  
    │ │ │  i5 : D = divisor(x*y)
    │ │ │  
    │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ +o5 = Div(x) + Div(y)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │  
    │ │ │  i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │  
    │ │ │               ZZ            2             2        2
    │ │ │  o6 = map (R, --[Z ..Z ], {x , x*y, x*z, y , y*z, z })
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.out
    │ │ │ @@ -6,21 +6,21 @@
    │ │ │  
    │ │ │  i3 : f = map(T, R, {a^3, a^2*b, a*b^2, b^3});
    │ │ │  
    │ │ │  o3 : RingMap T <-- R
    │ │ │  
    │ │ │  i4 : D = divisor(y*z)
    │ │ │  
    │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x)
    │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │  
    │ │ │  i5 : pullback(f, D, Strategy=>Primes)
    │ │ │  
    │ │ │ -o5 = 3*Div(b) + 3*Div(a)
    │ │ │ +o5 = 3*Div(a) + 3*Div(b)
    │ │ │  
    │ │ │  o5 : WeilDivisor on T
    │ │ │  
    │ │ │  i6 : pullback(f, D, Strategy=>Sheaves)
    │ │ │  
    │ │ │  o6 = 3*Div(b) + 3*Div(a)
    │ │ │  
    │ │ │ @@ -36,18 +36,18 @@
    │ │ │  
    │ │ │  i10 : D = divisor(x*y*(x+y));
    │ │ │  
    │ │ │  o10 : WeilDivisor on R
    │ │ │  
    │ │ │  i11 : D1 = pullback(f, D)
    │ │ │  
    │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o11 : WeilDivisor on S
    │ │ │  
    │ │ │  i12 : f^* D
    │ │ │  
    │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o12 : WeilDivisor on S
    │ │ │  
    │ │ │  i13 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexify.out
    │ │ │ @@ -103,104 +103,104 @@
    │ │ │  o21 : Ideal of R
    │ │ │  
    │ │ │  i22 : J = I^21;
    │ │ │  
    │ │ │  o22 : Ideal of R
    │ │ │  
    │ │ │  i23 : time reflexify(J);
    │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc)
    │ │ │ + -- used 0.305298s (cpu); 0.234436s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │  
    │ │ │  i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc)
    │ │ │ + -- used 0.484222s (cpu); 0.39818s (thread); 0s (gc)
    │ │ │  
    │ │ │  i25 : R = ZZ/13[x,y,z]/ideal(x^3 + y^3-z^11*x*y);
    │ │ │  
    │ │ │  i26 : I = ideal(x-4*y, z);
    │ │ │  
    │ │ │  o26 : Ideal of R
    │ │ │  
    │ │ │  i27 : J = I^20;
    │ │ │  
    │ │ │  o27 : Ideal of R
    │ │ │  
    │ │ │  i28 : M = J*R^1;
    │ │ │  
    │ │ │  i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc)
    │ │ │ + -- used 0.328963s (cpu); 0.156132s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │  
    │ │ │  i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc)
    │ │ │ + -- used 6.33337s (cpu); 4.98751s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │  
    │ │ │  i31 : J1 == J2
    │ │ │  
    │ │ │  o31 = true
    │ │ │  
    │ │ │  i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc)
    │ │ │ + -- used 6.71641s (cpu); 5.39144s (thread); 0s (gc)
    │ │ │  
    │ │ │  i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc)
    │ │ │ + -- used 0.663711s (cpu); 0.45656s (thread); 0s (gc)
    │ │ │  
    │ │ │  i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v);
    │ │ │  
    │ │ │  i35 : I = ideal(x,u);
    │ │ │  
    │ │ │  o35 : Ideal of R
    │ │ │  
    │ │ │  i36 : J = I^20;
    │ │ │  
    │ │ │  o36 : Ideal of R
    │ │ │  
    │ │ │  i37 : M = I^20*R^1;
    │ │ │  
    │ │ │  i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc)
    │ │ │ + -- used 1.28401s (cpu); 0.46856s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │  
    │ │ │  i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc)
    │ │ │ + -- used 0.259904s (cpu); 0.0660955s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         19    20
    │ │ │        x  u, x  )
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │  
    │ │ │  i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc)
    │ │ │ + -- used 0.323261s (cpu); 0.106148s (thread); 0s (gc)
    │ │ │  
    │ │ │  i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc)
    │ │ │ + -- used 0.00832269s (cpu); 0.00833187s (thread); 0s (gc)
    │ │ │  
    │ │ │  i42 : R = QQ[x,y]/ideal(x*y);
    │ │ │  
    │ │ │  i43 : I = ideal(x,y);
    │ │ │  
    │ │ │  o43 : Ideal of R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_reflexive__Power.out
    │ │ │ @@ -23,44 +23,44 @@
    │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o6 : Ideal of R
    │ │ │  
    │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ + -- used 0.0477471s (cpu); 0.0477492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │  
    │ │ │  i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │  
    │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ + -- used 0.234538s (cpu); 0.159666s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │  
    │ │ │  i10 : J20a == J20b
    │ │ │  
    │ │ │  o10 = true
    │ │ │  
    │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │  
    │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │  
    │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ + -- used 0.0376128s (cpu); 0.0376168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │  
    │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ + -- used 0.188293s (cpu); 0.101737s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │  
    │ │ │  i15 : J1 == J2
    │ │ │  
    │ │ │  o15 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_ring_lp__Basic__Divisor_rp.out
    │ │ │ @@ -1,14 +1,14 @@
    │ │ │  -- -*- M2-comint -*- hash: 5006859181202351713
    │ │ │  
    │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │  
    │ │ │  i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : ring( D )
    │ │ │  
    │ │ │  o3 = R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/example-output/_to__R__Weil__Divisor.out
    │ │ │ @@ -1,32 +1,32 @@
    │ │ │  -- -*- M2-comint -*- hash: 12819564349892123361
    │ │ │  
    │ │ │  i1 : R = ZZ/5[x,y];
    │ │ │  
    │ │ │  i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │  
    │ │ │  i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │  
    │ │ │  i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │  
    │ │ │  i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │  
    │ │ │  i6 : F == 2*G
    │ │ │  
    │ │ │  o6 = true
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/___Basic__Divisor.html
    │ │ │ @@ -72,15 +72,15 @@
    │ │ │                
    i1 : R = QQ[x,y,z];
    │ │ │
    │ │ │
    i2 : D = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │
    │ │ │
    i3 : H = new HashTable from D
    │ │ │ @@ -94,24 +94,24 @@
    │ │ │  o3 : HashTable
    │ │ │
    │ │ │
    i4 : (2/3)*D
    │ │ │  
    │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z)
    │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x)
    │ │ │  
    │ │ │  o4 : QWeilDivisor on R
    │ │ │
    │ │ │
    i5 : 0.6*D
    │ │ │  
    │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z)
    │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │
    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -15,34 +15,34 @@ │ │ │ │ specifies the ambient ring. Another key is cache which points to a CacheTable. │ │ │ │ The remaining keys are a Groebner basis $L$ for each prime ideal $P$ in the │ │ │ │ support with corresponding value a list with one entry {$n$} where $n$ is the │ │ │ │ coefficient of the height one prime. │ │ │ │ i1 : R = QQ[x,y,z]; │ │ │ │ i2 : D = divisor(x*y^2*z^3) │ │ │ │ │ │ │ │ -o2 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ +o2 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : H = new HashTable from D │ │ │ │ │ │ │ │ o3 = HashTable{{x} => {1} } │ │ │ │ {y} => {2} │ │ │ │ {z} => {3} │ │ │ │ cache => CacheTable{...1...} │ │ │ │ ring => R │ │ │ │ │ │ │ │ o3 : HashTable │ │ │ │ i4 : (2/3)*D │ │ │ │ │ │ │ │ -o4 = 2/3*Div(x) + 4/3*Div(y) + 2*Div(z) │ │ │ │ +o4 = 2*Div(z) + 4/3*Div(y) + 2/3*Div(x) │ │ │ │ │ │ │ │ o4 : QWeilDivisor on R │ │ │ │ i5 : 0.6*D │ │ │ │ │ │ │ │ -o5 = .6*Div(x) + 1.2*Div(y) + 1.8*Div(z) │ │ │ │ +o5 = 1.8*Div(z) + 1.2*Div(y) + .6*Div(x) │ │ │ │ │ │ │ │ o5 : RWeilDivisor on R │ │ │ │ ********** TTyyppeess ooff BBaassiiccDDiivviissoorr:: ********** │ │ │ │ * RWeilDivisor │ │ │ │ ********** FFuunnccttiioonnss aanndd mmeetthhooddss rreettuurrnniinngg aann oobbjjeecctt ooff ccllaassss BBaassiiccDDiivviissoorr:: ********** │ │ │ │ * applyToCoefficients(BasicDivisor,Function) -- see _a_p_p_l_y_T_o_C_o_e_f_f_i_c_i_e_n_t_s - │ │ │ │ - apply a function to the coefficients of a divisor │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/___Number_sp_st_sp__Basic__Divisor.html │ │ │ @@ -103,24 +103,24 @@ │ │ │ o4 : RWeilDivisor on R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : 8*D
    │ │ │  
    │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : (-2/3)*D
    │ │ │  
    │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │  
    │ │ │  o6 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : 0.0*D
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -27,20 +27,20 @@
    │ │ │ │  CoefficientType=>RR)
    │ │ │ │  
    │ │ │ │  o4 = -3.2*Div(-y^3+x^2) + 1.5*Div(x) + 0*Div(y)
    │ │ │ │  
    │ │ │ │  o4 : RWeilDivisor on R
    │ │ │ │  i5 : 8*D
    │ │ │ │  
    │ │ │ │ -o5 = -8*Div(x+y) + 16*Div(x) + 8*Div(y)
    │ │ │ │ +o5 = -8*Div(x+y) + 8*Div(y) + 16*Div(x)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : (-2/3)*D
    │ │ │ │  
    │ │ │ │ -o6 = 2/3*Div(x+y) + -4/3*Div(x) + -2/3*Div(y)
    │ │ │ │ +o6 = 2/3*Div(x+y) + -2/3*Div(y) + -4/3*Div(x)
    │ │ │ │  
    │ │ │ │  o6 : QWeilDivisor on R
    │ │ │ │  i7 : 0.0*D
    │ │ │ │  
    │ │ │ │  o7 = 0, the zero divisor
    │ │ │ │  
    │ │ │ │  o7 : RWeilDivisor on R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_ceiling_lp__R__Weil__Divisor_rp.html
    │ │ │ @@ -78,24 +78,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │  
    │ │ │  o2 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ceiling( D )
    │ │ │  
    │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : floor( D )
    │ │ │ @@ -105,15 +105,15 @@
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │  
    │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : ceiling( E )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,30 +15,30 @@
    │ │ │ │            o an instance of the type _W_e_i_l_D_i_v_i_s_o_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Start with a rational or real Weil divisor. We form a new divisor whose
    │ │ │ │  coefficients are obtained by applying the ceiling or floor function to them.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x *y - z^2);
    │ │ │ │  i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │ │  
    │ │ │ │ -o2 = 4/3*Div(y, z) + 1/2*Div(x, z)
    │ │ │ │ +o2 = 1/2*Div(x, z) + 4/3*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : QWeilDivisor on R
    │ │ │ │  i3 : ceiling( D )
    │ │ │ │  
    │ │ │ │ -o3 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o3 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : WeilDivisor on R
    │ │ │ │  i4 : floor( D )
    │ │ │ │  
    │ │ │ │  o4 = Div(y, z)
    │ │ │ │  
    │ │ │ │  o4 : WeilDivisor on R
    │ │ │ │  i5 : E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
    │ │ │ │  
    │ │ │ │ -o5 = -.7*Div(y, z) + .3*Div(x, z)
    │ │ │ │ +o5 = .3*Div(x, z) + -.7*Div(y, z)
    │ │ │ │  
    │ │ │ │  o5 : RWeilDivisor on R
    │ │ │ │  i6 : ceiling( E )
    │ │ │ │  
    │ │ │ │  o6 = Div(x, z)
    │ │ │ │  
    │ │ │ │  o6 : WeilDivisor on R
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_divisor.html
    │ │ │ @@ -95,51 +95,51 @@
    │ │ │                
    i1 : R = QQ[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : E = divisor(x*y^2*z^3)
    │ │ │  
    │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : F = divisor(ideal(x*y^2*z^3))
    │ │ │  
    │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}})
    │ │ │  
    │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x)
    │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z)
    │ │ │  
    │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x)
    │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Next we construct the same divisor in two different ways. We are working on the quadric cone, and we are working with a divisor of a ruling of the cone. This divisor is not Cartier, but 2 times it is.

    │ │ │ @@ -204,15 +204,15 @@ │ │ │ o14 : WeilDivisor on A
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : E = divisor(y2z)
    │ │ │  
    │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z)
    │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y)
    │ │ │  
    │ │ │  o15 : WeilDivisor on A
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    We can construct a Q-divisor as well. Here are two ways to do it (we work in $A^2$ this time).

    │ │ │ @@ -223,24 +223,24 @@ │ │ │
    i16 : R = ZZ/7[x,y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ)
    │ │ │  
    │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o17 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x)
    │ │ │  
    │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x)
    │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2)
    │ │ │  
    │ │ │  o18 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Or an R-divisor. This time we work in the cone over $P^1 \times P^1$.

    │ │ │ ├── html2text {} │ │ │ │ @@ -43,35 +43,35 @@ │ │ │ │ call it. In our first example, we construct divisors on $A^3$ (which can also │ │ │ │ be viewed as divisors on $P^2$ since the ideals are homogeneous). The following │ │ │ │ creates the same Weil divisor with coefficients 1, 2 and 3 in five different │ │ │ │ ways. │ │ │ │ i1 : R = QQ[x,y,z]; │ │ │ │ i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)}) │ │ │ │ │ │ │ │ -o2 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o2 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o2 : WeilDivisor on R │ │ │ │ i3 : E = divisor(x*y^2*z^3) │ │ │ │ │ │ │ │ -o3 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o3 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o3 : WeilDivisor on R │ │ │ │ i4 : F = divisor(ideal(x*y^2*z^3)) │ │ │ │ │ │ │ │ -o4 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o4 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o4 : WeilDivisor on R │ │ │ │ i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}}) │ │ │ │ │ │ │ │ -o5 = 2*Div(y) + 3*Div(z) + Div(x) │ │ │ │ +o5 = Div(x) + 2*Div(y) + 3*Div(z) │ │ │ │ │ │ │ │ o5 : WeilDivisor on R │ │ │ │ i6 : H = divisor(x) + 2*divisor(y) + 3*divisor(z) │ │ │ │ │ │ │ │ -o6 = 3*Div(z) + 2*Div(y) + Div(x) │ │ │ │ +o6 = Div(x) + 3*Div(z) + 2*Div(y) │ │ │ │ │ │ │ │ o6 : WeilDivisor on R │ │ │ │ Next we construct the same divisor in two different ways. We are working on the │ │ │ │ quadric cone, and we are working with a divisor of a ruling of the cone. This │ │ │ │ divisor is not Cartier, but 2 times it is. │ │ │ │ i7 : R = QQ[x,y,z]/ideal(x^2-y*z); │ │ │ │ i8 : D = divisor({2}, {ideal(x,y)}) │ │ │ │ @@ -95,28 +95,28 @@ │ │ │ │ i14 : D = divisor(x3) │ │ │ │ │ │ │ │ o14 = 3*Div(xz2, xyz, xy2, x2z, x2y, x3) │ │ │ │ │ │ │ │ o14 : WeilDivisor on A │ │ │ │ i15 : E = divisor(y2z) │ │ │ │ │ │ │ │ -o15 = 2*Div(yz2, y2z, y3, xyz, xy2, x2y) + Div(z3, yz2, y2z, xz2, xyz, x2z) │ │ │ │ +o15 = Div(z3, yz2, y2z, xz2, xyz, x2z) + 2*Div(yz2, y2z, y3, xyz, xy2, x2y) │ │ │ │ │ │ │ │ o15 : WeilDivisor on A │ │ │ │ We can construct a Q-divisor as well. Here are two ways to do it (we work in │ │ │ │ $A^2$ this time). │ │ │ │ i16 : R = ZZ/7[x,y]; │ │ │ │ i17 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ) │ │ │ │ │ │ │ │ -o17 = -1/2*Div(-x^3+y^2) + 2*Div(x) │ │ │ │ +o17 = 2*Div(x) + -1/2*Div(-x^3+y^2) │ │ │ │ │ │ │ │ o17 : QWeilDivisor on R │ │ │ │ i18 : D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x) │ │ │ │ │ │ │ │ -o18 = -1/2*Div(-x^3+y^2) + 2*Div(x) │ │ │ │ +o18 = 2*Div(x) + -1/2*Div(-x^3+y^2) │ │ │ │ │ │ │ │ o18 : QWeilDivisor on R │ │ │ │ Or an R-divisor. This time we work in the cone over $P^1 \times P^1$. │ │ │ │ i19 : R = ZZ/11[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i20 : D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, │ │ │ │ CoefficientType=>RR) │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_dualize.html │ │ │ @@ -163,43 +163,43 @@ │ │ │ │ │ │
    i11 : M = J*R^1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc)
    │ │ │ + -- used 0.15575s (cpu); 0.0816305s (thread); 0s (gc)
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc)
    │ │ │ + -- used 0.548671s (cpu); 0.548681s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time dualize(M, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc)
    │ │ │ + -- used 0.691125s (cpu); 0.608267s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : time dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc)
    │ │ │ + -- used 0.00346799s (cpu); 0.00347585s (thread); 0s (gc) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc)
    │ │ │ + -- used 0.00285906s (cpu); 0.00286407s (thread); 0s (gc)
    │ │ │  
    │ │ │  o16 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    For monomial ideals in toric rings, frequently ModuleStrategy appears faster.

    │ │ │ @@ -223,23 +223,23 @@ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i20 : time dualize(J, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc)
    │ │ │ + -- used 0.321724s (cpu); 0.151468s (thread); 0s (gc)
    │ │ │  
    │ │ │  o20 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i21 : time dualize(J, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc)
    │ │ │ + -- used 0.00756043s (cpu); 0.00756775s (thread); 0s (gc)
    │ │ │  
    │ │ │  o21 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    KnownDomain is an option for dualize. If it is false (default is true), then the computer will first check whether the ring is a domain, if it is not then it will revert to ModuleStrategy. If KnownDomain is set to true for a non-domain, then the function can return an incorrect answer.

    │ │ │ ├── html2text {} │ │ │ │ @@ -60,43 +60,43 @@ │ │ │ │ │ │ │ │ o9 : Ideal of R │ │ │ │ i10 : J = m^9; │ │ │ │ │ │ │ │ o10 : Ideal of R │ │ │ │ i11 : M = J*R^1; │ │ │ │ i12 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.135013s (cpu); 0.0782845s (thread); 0s (gc) │ │ │ │ + -- used 0.15575s (cpu); 0.0816305s (thread); 0s (gc) │ │ │ │ │ │ │ │ o12 : Ideal of R │ │ │ │ i13 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.455344s (cpu); 0.455348s (thread); 0s (gc) │ │ │ │ + -- used 0.548671s (cpu); 0.548681s (thread); 0s (gc) │ │ │ │ │ │ │ │ o13 : Ideal of R │ │ │ │ i14 : time dualize(M, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.57369s (cpu); 0.498594s (thread); 0s (gc) │ │ │ │ + -- used 0.691125s (cpu); 0.608267s (thread); 0s (gc) │ │ │ │ i15 : time dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00285362s (cpu); 0.00285446s (thread); 0s (gc) │ │ │ │ + -- used 0.00346799s (cpu); 0.00347585s (thread); 0s (gc) │ │ │ │ i16 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00222665s (cpu); 0.0022275s (thread); 0s (gc) │ │ │ │ + -- used 0.00285906s (cpu); 0.00286407s (thread); 0s (gc) │ │ │ │ │ │ │ │ o16 : Ideal of R │ │ │ │ For monomial ideals in toric rings, frequently ModuleStrategy appears faster. │ │ │ │ i17 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i18 : I = ideal(x,u); │ │ │ │ │ │ │ │ o18 : Ideal of R │ │ │ │ i19 : J = I^15; │ │ │ │ │ │ │ │ o19 : Ideal of R │ │ │ │ i20 : time dualize(J, Strategy=>IdealStrategy); │ │ │ │ - -- used 0.279007s (cpu); 0.150681s (thread); 0s (gc) │ │ │ │ + -- used 0.321724s (cpu); 0.151468s (thread); 0s (gc) │ │ │ │ │ │ │ │ o20 : Ideal of R │ │ │ │ i21 : time dualize(J, Strategy=>ModuleStrategy); │ │ │ │ - -- used 0.00604243s (cpu); 0.00604328s (thread); 0s (gc) │ │ │ │ + -- used 0.00756043s (cpu); 0.00756775s (thread); 0s (gc) │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ KnownDomain is an option for dualize. If it is false (default is true), then │ │ │ │ the computer will first check whether the ring is a domain, if it is not then │ │ │ │ it will revert to ModuleStrategy. If KnownDomain is set to true for a non- │ │ │ │ domain, then the function can return an incorrect answer. │ │ │ │ i22 : R = QQ[x,y]/ideal(x*y); │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Cartier.html │ │ │ @@ -106,15 +106,15 @@ │ │ │
    i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : isCartier( D )
    │ │ │ @@ -181,15 +181,15 @@
    │ │ │                
    i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o14 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : isCartier(D, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -25,15 +25,15 @@
    │ │ │ │  i3 : isCartier( D )
    │ │ │ │  
    │ │ │ │  o3 = false
    │ │ │ │  Neither is this divisor.
    │ │ │ │  i4 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i5 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o5 = Div(x, z) + 2*Div(y, z)
    │ │ │ │ +o5 = 2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : isCartier( D )
    │ │ │ │  
    │ │ │ │  o6 = false
    │ │ │ │  Of course the next divisor is Cartier.
    │ │ │ │  i7 : R = QQ[x, y, z];
    │ │ │ │ @@ -55,15 +55,15 @@
    │ │ │ │  o11 : WeilDivisor on R
    │ │ │ │  i12 : isCartier(D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │  i14 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o14 = Div(x, z) + 2*Div(y, z)
    │ │ │ │ +o14 = 2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o14 : WeilDivisor on R
    │ │ │ │  i15 : isCartier(D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  The output value of this function is stored in the divisor's cache with the
    │ │ │ │  value of the last IsGraded option. If you change the IsGraded option, the value
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Homogeneous_lp__Basic__Divisor_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})
    │ │ │  
    │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : isHomogeneous( D )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns true if the divisor is graded (homogeneous), otherwise it
    │ │ │ │  returns false.
    │ │ │ │  i1 : R = QQ[x, y, z];
    │ │ │ │  i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x *
    │ │ │ │  z - y^2)})
    │ │ │ │  
    │ │ │ │ -o2 = 3*Div(-y^2+x*z) + Div(x*y-z^2) + 2*Div(-x^2+y*z)
    │ │ │ │ +o2 = Div(x*y-z^2) + 2*Div(-x^2+y*z) + 3*Div(-y^2+x*z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : isHomogeneous( D )
    │ │ │ │  
    │ │ │ │  o3 = true
    │ │ │ │  i4 : R = QQ[x, y, z];
    │ │ │ │  i5 : D = divisor({1, 2}, {ideal(x * y - z^2), ideal(y^2 - z^3)})
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Linear__Equivalent.html
    │ │ │ @@ -81,24 +81,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │  
    │ │ │  o3 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : isLinearEquivalent(D1, D2)
    │ │ │ @@ -116,24 +116,24 @@
    │ │ │                
    i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │  
    │ │ │  o6 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │  
    │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o7 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -17,36 +17,36 @@
    │ │ │ │            o flag, a _B_o_o_l_e_a_n_ _v_a_l_u_e,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Given two Weil divisors, this method checks whether they are linearly
    │ │ │ │  equivalent.
    │ │ │ │  i1 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │  i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ │ +o2 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │ │  
    │ │ │ │ -o3 = 8*Div(y, z) + Div(x, z)
    │ │ │ │ +o3 = Div(x, z) + 8*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : WeilDivisor on R
    │ │ │ │  i4 : isLinearEquivalent(D1, D2)
    │ │ │ │  
    │ │ │ │  o4 = true
    │ │ │ │  If IsGraded is set to true (by default it is false), then it treats the
    │ │ │ │  divisors as divisors on the $Proj$ of their ambient ring.
    │ │ │ │  i5 : R = QQ[x, y, z]/ ideal(x * y - z^2);
    │ │ │ │  i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o6 = 3*Div(x, z) + 8*Div(y, z)
    │ │ │ │ +o6 = 8*Div(y, z) + 3*Div(x, z)
    │ │ │ │  
    │ │ │ │  o6 : WeilDivisor on R
    │ │ │ │  i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
    │ │ │ │  
    │ │ │ │ -o7 = Div(x, z) + 8*Div(y, z)
    │ │ │ │ +o7 = 8*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o7 : WeilDivisor on R
    │ │ │ │  i8 : isLinearEquivalent(D1, D2, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o8 = false
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _O_O_ _R_W_e_i_l_D_i_v_i_s_o_r
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Q__Cartier.html
    │ │ │ @@ -83,24 +83,24 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : isQCartier(10, D1)
    │ │ │ @@ -164,24 +164,24 @@
    │ │ │                
    i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o12 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │  
    │ │ │  o13 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -21,21 +21,21 @@
    │ │ │ │  Check whether $m$ times a Weil or Q-divisor $D$ is Cartier for each $m$ from 1
    │ │ │ │  to a fixed positive integer n1 (if the divisor is a QWeilDivisor, it can search
    │ │ │ │  slightly higher than n1). If m * D1 is Cartier, it returns m. If it fails to
    │ │ │ │  find an m, it returns 0.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o3 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ │ +o3 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o3 : QWeilDivisor on R
    │ │ │ │  i4 : isQCartier(10, D1)
    │ │ │ │  
    │ │ │ │  o4 = 2
    │ │ │ │  i5 : isQCartier(10, D2)
    │ │ │ │  
    │ │ │ │ @@ -59,21 +59,21 @@
    │ │ │ │  
    │ │ │ │  o10 = 0
    │ │ │ │  If the option IsGraded is set to true (by default it is false), then it treats
    │ │ │ │  the divisor as a divisor on the $Proj$ of their ambient ring.
    │ │ │ │  i11 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i12 : D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o12 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o12 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o12 : WeilDivisor on R
    │ │ │ │  i13 : D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o13 = 1/2*Div(y, z) + 3/4*Div(x, z)
    │ │ │ │ +o13 = 3/4*Div(x, z) + 1/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o13 : QWeilDivisor on R
    │ │ │ │  i14 : isQCartier(10, D1, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o14 = 1
    │ │ │ │  i15 : isQCartier(10, D2, IsGraded => true)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__Q__Linear__Equivalent.html
    │ │ │ @@ -155,24 +155,24 @@
    │ │ │                
    i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │  
    │ │ │  o11 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
    │ │ │  
    │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │  
    │ │ │  o12 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -52,21 +52,21 @@
    │ │ │ │  o9 = true
    │ │ │ │  If IsGraded=>true (the default is false), then it treats the divisors as if
    │ │ │ │  they are divisors on the $Proj$ of their ambient ring.
    │ │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2);
    │ │ │ │  i11 : D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o11 = 3/4*Div(y, z) + 1/2*Div(x, z)
    │ │ │ │ +o11 = 1/2*Div(x, z) + 3/4*Div(y, z)
    │ │ │ │  
    │ │ │ │  o11 : QWeilDivisor on R
    │ │ │ │  i12 : E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType =>
    │ │ │ │  QQ)
    │ │ │ │  
    │ │ │ │ -o12 = 3/2*Div(y, z) + -1/4*Div(x, z)
    │ │ │ │ +o12 = -1/4*Div(x, z) + 3/2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o12 : QWeilDivisor on R
    │ │ │ │  i13 : isQLinearEquivalent(10, D, E, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o13 = true
    │ │ │ │  i14 : isQLinearEquivalent(10, 3*D, E, IsGraded => true)
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_is__S__N__C.html
    │ │ │ @@ -80,15 +80,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : isSNC( D )
    │ │ │ @@ -152,15 +152,15 @@
    │ │ │                
    i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │  
    │ │ │  o11 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : isSNC( D, IsGraded => true )
    │ │ │ @@ -198,15 +198,15 @@
    │ │ │                
    i16 : R = QQ[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i17 : D = divisor(x*y*(x+y))
    │ │ │  
    │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │  
    │ │ │  o17 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i18 : isSNC( D, IsGraded => true)
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,15 +15,15 @@
    │ │ │ │            o a _B_o_o_l_e_a_n_ _v_a_l_u_e,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns true if the divisor is simple normal crossings, this
    │ │ │ │  includes checking that the ambient ring is regular.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = Div(x, z) + -2*Div(y, z)
    │ │ │ │ +o2 = -2*Div(y, z) + Div(x, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : isSNC( D )
    │ │ │ │  
    │ │ │ │  o3 = false
    │ │ │ │  i4 : R = QQ[x, y];
    │ │ │ │  i5 : D = divisor(x*y*(x+y))
    │ │ │ │ @@ -45,15 +45,15 @@
    │ │ │ │  o9 = true
    │ │ │ │  If IsGraded is set to true (default false), then the divisor is treated as if
    │ │ │ │  it is on the $Proj$ of the ambient ring. In particular, non-SNC behavior at the
    │ │ │ │  origin is ignored.
    │ │ │ │  i10 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i11 : D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o11 = -2*Div(y, z) + Div(x, z)
    │ │ │ │ +o11 = Div(x, z) + -2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o11 : WeilDivisor on R
    │ │ │ │  i12 : isSNC( D, IsGraded => true )
    │ │ │ │  
    │ │ │ │  o12 = true
    │ │ │ │  i13 : R = QQ[x, y];
    │ │ │ │  i14 : D = divisor(x*y*(x+y))
    │ │ │ │ @@ -63,15 +63,15 @@
    │ │ │ │  o14 : WeilDivisor on R
    │ │ │ │  i15 : isSNC( D, IsGraded => true )
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  i16 : R = QQ[x,y,z];
    │ │ │ │  i17 : D = divisor(x*y*(x+y))
    │ │ │ │  
    │ │ │ │ -o17 = Div(x) + Div(x+y) + Div(y)
    │ │ │ │ +o17 = Div(x+y) + Div(y) + Div(x)
    │ │ │ │  
    │ │ │ │  o17 : WeilDivisor on R
    │ │ │ │  i18 : isSNC( D, IsGraded => true)
    │ │ │ │  
    │ │ │ │  o18 = false
    │ │ │ │  The output value of this function is stored in the divisor's cache with the
    │ │ │ │  value of the last IsGraded option. If you change the IsGraded option, the value
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_map__To__Projective__Space.html
    │ │ │ @@ -112,15 +112,15 @@
    │ │ │                
    i4 : R = ZZ/7[x,y,z];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : D = divisor(x*y)
    │ │ │  
    │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ +o5 = Div(x) + Div(y)
    │ │ │  
    │ │ │  o5 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -36,15 +36,15 @@
    │ │ │ │  
    │ │ │ │  o3 : RingMap R <-- QQ[YY ..YY ]
    │ │ │ │                          1    2
    │ │ │ │  The user may also specify the variable name of the new projective space.
    │ │ │ │  i4 : R = ZZ/7[x,y,z];
    │ │ │ │  i5 : D = divisor(x*y)
    │ │ │ │  
    │ │ │ │ -o5 = Div(y) + Div(x)
    │ │ │ │ +o5 = Div(x) + Div(y)
    │ │ │ │  
    │ │ │ │  o5 : WeilDivisor on R
    │ │ │ │  i6 : mapToProjectiveSpace(D, Variable=>"Z")
    │ │ │ │  
    │ │ │ │               ZZ            2             2        2
    │ │ │ │  o6 = map (R, --[Z ..Z ], {x , x*y, x*z, y , y*z, z })
    │ │ │ │                7  1   6
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_pullback_lp__Ring__Map_cm__R__Weil__Divisor_rp.html
    │ │ │ @@ -94,24 +94,24 @@
    │ │ │  o3 : RingMap T <-- R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : D = divisor(y*z)
    │ │ │  
    │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x)
    │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y)
    │ │ │  
    │ │ │  o4 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : pullback(f, D, Strategy=>Primes)
    │ │ │  
    │ │ │ -o5 = 3*Div(b) + 3*Div(a)
    │ │ │ +o5 = 3*Div(a) + 3*Div(b)
    │ │ │  
    │ │ │  o5 : WeilDivisor on T
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : pullback(f, D, Strategy=>Sheaves)
    │ │ │ @@ -150,24 +150,24 @@
    │ │ │  o10 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i11 : D1 = pullback(f, D)
    │ │ │  
    │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o11 : WeilDivisor on S
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i12 : f^* D
    │ │ │  
    │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a)
    │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1)
    │ │ │  
    │ │ │  o12 : WeilDivisor on S
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    As illustrated by the previous example, the same functionality can also be accomplished by f^* (which creates a function which sends a divisor $D$ to $f^* D$).

    │ │ │ ├── html2text {} │ │ │ │ @@ -29,20 +29,20 @@ │ │ │ │ i1 : R = QQ[x,y,z,w]/ideal(z^2-y*w,y*z-x*w,y^2-x*z); │ │ │ │ i2 : T = QQ[a,b]; │ │ │ │ i3 : f = map(T, R, {a^3, a^2*b, a*b^2, b^3}); │ │ │ │ │ │ │ │ o3 : RingMap T <-- R │ │ │ │ i4 : D = divisor(y*z) │ │ │ │ │ │ │ │ -o4 = 3*Div(w, z, y) + 3*Div(z, y, x) │ │ │ │ +o4 = 3*Div(z, y, x) + 3*Div(w, z, y) │ │ │ │ │ │ │ │ o4 : WeilDivisor on R │ │ │ │ i5 : pullback(f, D, Strategy=>Primes) │ │ │ │ │ │ │ │ -o5 = 3*Div(b) + 3*Div(a) │ │ │ │ +o5 = 3*Div(a) + 3*Div(b) │ │ │ │ │ │ │ │ o5 : WeilDivisor on T │ │ │ │ i6 : pullback(f, D, Strategy=>Sheaves) │ │ │ │ │ │ │ │ o6 = 3*Div(b) + 3*Div(a) │ │ │ │ │ │ │ │ o6 : WeilDivisor on T │ │ │ │ @@ -53,20 +53,20 @@ │ │ │ │ │ │ │ │ o9 : RingMap S <-- R │ │ │ │ i10 : D = divisor(x*y*(x+y)); │ │ │ │ │ │ │ │ o10 : WeilDivisor on R │ │ │ │ i11 : D1 = pullback(f, D) │ │ │ │ │ │ │ │ -o11 = Div(a+1) + 3*Div(b) + Div(a) │ │ │ │ +o11 = Div(a) + 3*Div(b) + Div(a+1) │ │ │ │ │ │ │ │ o11 : WeilDivisor on S │ │ │ │ i12 : f^* D │ │ │ │ │ │ │ │ -o12 = Div(a+1) + 3*Div(b) + Div(a) │ │ │ │ +o12 = Div(a) + 3*Div(b) + Div(a+1) │ │ │ │ │ │ │ │ o12 : WeilDivisor on S │ │ │ │ As illustrated by the previous example, the same functionality can also be │ │ │ │ accomplished by f^* (which creates a function which sends a divisor $D$ to $f^* │ │ │ │ D$). │ │ │ │ ********** SSeeee aallssoo ********** │ │ │ │ * _P_r_i_m_e_s -- a value for the option Strategy for the pullback method │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexify.html │ │ │ @@ -267,23 +267,23 @@ │ │ │ │ │ │ o22 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i23 : time reflexify(J);
    │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc)
    │ │ │ + -- used 0.305298s (cpu); 0.234436s (thread); 0s (gc)
    │ │ │  
    │ │ │  o23 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i24 : time reflexify(J*R^1);
    │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc)
    │ │ │ + -- used 0.484222s (cpu); 0.39818s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    Because of this, there are two strategies for computing a reflexification (at least if the module embeds as an ideal).

    │ │ │
    │ │ │
    │ │ │ @@ -319,26 +319,26 @@ │ │ │ │ │ │
    i28 : M = J*R^1;
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i29 : J1 = time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc)
    │ │ │ + -- used 0.328963s (cpu); 0.156132s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o29 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o29 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc)
    │ │ │ + -- used 6.33337s (cpu); 4.98751s (thread); 0s (gc)
    │ │ │  
    │ │ │                2            2     9       9   11
    │ │ │  o30 = ideal (x  + 5x*y + 3y , x*z  - 4y*z , z   + x - 4y)
    │ │ │  
    │ │ │  o30 : Ideal of R
    │ │ │ │ │ │ │ │ │ @@ -348,21 +348,21 @@ │ │ │ │ │ │ o31 = true
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i32 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc)
    │ │ │ + -- used 6.71641s (cpu); 5.39144s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i33 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc)
    │ │ │ + -- used 0.663711s (cpu); 0.45656s (thread); 0s (gc)
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    However, sometimes ModuleStrategy is faster, especially for Monomial ideals.

    │ │ │
    │ │ │ │ │ │ @@ -389,15 +389,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i37 : M = I^20*R^1;
    │ │ │
    │ │ │
    i38 : time reflexify( J, Strategy=>IdealStrategy )
    │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc)
    │ │ │ + -- used 1.28401s (cpu); 0.46856s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o38 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -406,15 +406,15 @@
    │ │ │  
    │ │ │  o38 : Ideal of R
    │ │ │
    │ │ │
    i39 : time reflexify( J, Strategy=>ModuleStrategy )
    │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc)
    │ │ │ + -- used 0.259904s (cpu); 0.0660955s (thread); 0s (gc)
    │ │ │  
    │ │ │                20     19   2 18   3 17   4 16   5 15   6 14   7 13   8 12 
    │ │ │  o39 = ideal (u  , x*u  , x u  , x u  , x u  , x u  , x u  , x u  , x u  ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │         9 11   10 10   11 9   12 8   13 7   14 6   15 5   16 4   17 3   18 2 
    │ │ │        x u  , x  u  , x  u , x  u , x  u , x  u , x  u , x  u , x  u , x  u ,
    │ │ │        -----------------------------------------------------------------------
    │ │ │ @@ -423,21 +423,21 @@
    │ │ │  
    │ │ │  o39 : Ideal of R
    │ │ │
    │ │ │
    i40 : time reflexify( M, Strategy=>IdealStrategy );
    │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc)
    │ │ │ + -- used 0.323261s (cpu); 0.106148s (thread); 0s (gc) │ │ │
    │ │ │
    i41 : time reflexify( M, Strategy=>ModuleStrategy );
    │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc)
    │ │ │ + -- used 0.00832269s (cpu); 0.00833187s (thread); 0s (gc) │ │ │
    │ │ │
    │ │ │

    For ideals, if KnownDomain is false (default value is true), then the function will check whether it is a domain. If it is a domain (or assumed to be a domain), it will reflexify using a strategy which can speed up computation, if not it will compute using a sometimes slower method which is essentially reflexifying it as a module.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -114,19 +114,19 @@ │ │ │ │ i21 : I = ideal(x-z,y-2*z); │ │ │ │ │ │ │ │ o21 : Ideal of R │ │ │ │ i22 : J = I^21; │ │ │ │ │ │ │ │ o22 : Ideal of R │ │ │ │ i23 : time reflexify(J); │ │ │ │ - -- used 0.260716s (cpu); 0.201186s (thread); 0s (gc) │ │ │ │ + -- used 0.305298s (cpu); 0.234436s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 : Ideal of R │ │ │ │ i24 : time reflexify(J*R^1); │ │ │ │ - -- used 0.527272s (cpu); 0.394308s (thread); 0s (gc) │ │ │ │ + -- used 0.484222s (cpu); 0.39818s (thread); 0s (gc) │ │ │ │ Because of this, there are two strategies for computing a reflexification (at │ │ │ │ least if the module embeds as an ideal). │ │ │ │ IdealStrategy. In the case that $R$ is a domain, and our module is isomorphic │ │ │ │ to an ideal $I$, then one can compute the reflexification by computing colons. │ │ │ │ ModuleStrategy. This computes the reflexification simply by computing $Hom$ │ │ │ │ twice. │ │ │ │ ModuleStrategy is the default strategy for modules, IdealStrategy is the │ │ │ │ @@ -139,73 +139,73 @@ │ │ │ │ │ │ │ │ o26 : Ideal of R │ │ │ │ i27 : J = I^20; │ │ │ │ │ │ │ │ o27 : Ideal of R │ │ │ │ i28 : M = J*R^1; │ │ │ │ i29 : J1 = time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 0.273432s (cpu); 0.158699s (thread); 0s (gc) │ │ │ │ + -- used 0.328963s (cpu); 0.156132s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o29 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o29 : Ideal of R │ │ │ │ i30 : J2 = time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 6.95165s (cpu); 4.6997s (thread); 0s (gc) │ │ │ │ + -- used 6.33337s (cpu); 4.98751s (thread); 0s (gc) │ │ │ │ │ │ │ │ 2 2 9 9 11 │ │ │ │ o30 = ideal (x + 5x*y + 3y , x*z - 4y*z , z + x - 4y) │ │ │ │ │ │ │ │ o30 : Ideal of R │ │ │ │ i31 : J1 == J2 │ │ │ │ │ │ │ │ o31 = true │ │ │ │ i32 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 5.67659s (cpu); 4.46311s (thread); 0s (gc) │ │ │ │ + -- used 6.71641s (cpu); 5.39144s (thread); 0s (gc) │ │ │ │ i33 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.775911s (cpu); 0.448237s (thread); 0s (gc) │ │ │ │ + -- used 0.663711s (cpu); 0.45656s (thread); 0s (gc) │ │ │ │ However, sometimes ModuleStrategy is faster, especially for Monomial ideals. │ │ │ │ i34 : R = QQ[x,y,u,v]/ideal(x*y-u*v); │ │ │ │ i35 : I = ideal(x,u); │ │ │ │ │ │ │ │ o35 : Ideal of R │ │ │ │ i36 : J = I^20; │ │ │ │ │ │ │ │ o36 : Ideal of R │ │ │ │ i37 : M = I^20*R^1; │ │ │ │ i38 : time reflexify( J, Strategy=>IdealStrategy ) │ │ │ │ - -- used 1.05331s (cpu); 0.384322s (thread); 0s (gc) │ │ │ │ + -- used 1.28401s (cpu); 0.46856s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o38 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o38 : Ideal of R │ │ │ │ i39 : time reflexify( J, Strategy=>ModuleStrategy ) │ │ │ │ - -- used 0.238734s (cpu); 0.0653637s (thread); 0s (gc) │ │ │ │ + -- used 0.259904s (cpu); 0.0660955s (thread); 0s (gc) │ │ │ │ │ │ │ │ 20 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 │ │ │ │ o39 = ideal (u , x*u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 9 11 10 10 11 9 12 8 13 7 14 6 15 5 16 4 17 3 18 2 │ │ │ │ x u , x u , x u , x u , x u , x u , x u , x u , x u , x u , │ │ │ │ ----------------------------------------------------------------------- │ │ │ │ 19 20 │ │ │ │ x u, x ) │ │ │ │ │ │ │ │ o39 : Ideal of R │ │ │ │ i40 : time reflexify( M, Strategy=>IdealStrategy ); │ │ │ │ - -- used 0.276556s (cpu); 0.103744s (thread); 0s (gc) │ │ │ │ + -- used 0.323261s (cpu); 0.106148s (thread); 0s (gc) │ │ │ │ i41 : time reflexify( M, Strategy=>ModuleStrategy ); │ │ │ │ - -- used 0.00801402s (cpu); 0.00801143s (thread); 0s (gc) │ │ │ │ + -- used 0.00832269s (cpu); 0.00833187s (thread); 0s (gc) │ │ │ │ For ideals, if KnownDomain is false (default value is true), then the function │ │ │ │ will check whether it is a domain. If it is a domain (or assumed to be a │ │ │ │ domain), it will reflexify using a strategy which can speed up computation, if │ │ │ │ not it will compute using a sometimes slower method which is essentially │ │ │ │ reflexifying it as a module. │ │ │ │ Consider the following example showing the importance of making the correct │ │ │ │ assumption about the ring being a domain. │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_reflexive__Power.html │ │ │ @@ -124,30 +124,30 @@ │ │ │ │ │ │ o6 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i7 : time J20a = reflexivePower(20, I);
    │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ + -- used 0.0477471s (cpu); 0.0477492s (thread); 0s (gc)
    │ │ │  
    │ │ │  o7 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i8 : I20 = I^20;
    │ │ │  
    │ │ │  o8 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i9 : time J20b = reflexify(I20);
    │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ + -- used 0.234538s (cpu); 0.159666s (thread); 0s (gc)
    │ │ │  
    │ │ │  o9 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i10 : J20a == J20b
    │ │ │ @@ -171,23 +171,23 @@
    │ │ │  
    │ │ │  o12 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ + -- used 0.0376128s (cpu); 0.0376168s (thread); 0s (gc)
    │ │ │  
    │ │ │  o13 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ + -- used 0.188293s (cpu); 0.101737s (thread); 0s (gc)
    │ │ │  
    │ │ │  o14 : Ideal of R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i15 : J1 == J2
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -40,39 +40,39 @@
    │ │ │ │  of the generators of $I$. Consider the example of a cone over a point on an
    │ │ │ │  elliptic curve.
    │ │ │ │  i5 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i6 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o6 : Ideal of R
    │ │ │ │  i7 : time J20a = reflexivePower(20, I);
    │ │ │ │ - -- used 0.0323817s (cpu); 0.0323825s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0477471s (cpu); 0.0477492s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o7 : Ideal of R
    │ │ │ │  i8 : I20 = I^20;
    │ │ │ │  
    │ │ │ │  o8 : Ideal of R
    │ │ │ │  i9 : time J20b = reflexify(I20);
    │ │ │ │ - -- used 0.204644s (cpu); 0.153031s (thread); 0s (gc)
    │ │ │ │ + -- used 0.234538s (cpu); 0.159666s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o9 : Ideal of R
    │ │ │ │  i10 : J20a == J20b
    │ │ │ │  
    │ │ │ │  o10 = true
    │ │ │ │  This passes the Strategy option to a reflexify call. Valid options are
    │ │ │ │  IdealStrategy and ModuleStrategy.
    │ │ │ │  i11 : R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
    │ │ │ │  i12 : I = ideal(x-z,y-2*z);
    │ │ │ │  
    │ │ │ │  o12 : Ideal of R
    │ │ │ │  i13 : time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
    │ │ │ │ - -- used 0.029315s (cpu); 0.0293196s (thread); 0s (gc)
    │ │ │ │ + -- used 0.0376128s (cpu); 0.0376168s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o13 : Ideal of R
    │ │ │ │  i14 : time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
    │ │ │ │ - -- used 0.143657s (cpu); 0.0818326s (thread); 0s (gc)
    │ │ │ │ + -- used 0.188293s (cpu); 0.101737s (thread); 0s (gc)
    │ │ │ │  
    │ │ │ │  o14 : Ideal of R
    │ │ │ │  i15 : J1 == J2
    │ │ │ │  
    │ │ │ │  o15 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _r_e_f_l_e_x_i_f_y -- calculate the double dual of an ideal or module Hom(Hom(M,
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_ring_lp__Basic__Divisor_rp.html
    │ │ │ @@ -77,15 +77,15 @@
    │ │ │                
    i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │  
    │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : ring( D )
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -12,15 +12,15 @@
    │ │ │ │      * Outputs:
    │ │ │ │            o a _r_i_n_g,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  This function returns the ambient ring of a divisor.
    │ │ │ │  i1 : R = QQ[x, y, z] / ideal(x * y - z^2 );
    │ │ │ │  i2 : D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
    │ │ │ │  
    │ │ │ │ -o2 = 2*Div(y, z) + Div(x, z)
    │ │ │ │ +o2 = Div(x, z) + 2*Div(y, z)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : ring( D )
    │ │ │ │  
    │ │ │ │  o3 = R
    │ │ │ │  
    │ │ │ │  o3 : QuotientRing
    │ │ ├── ./usr/share/doc/Macaulay2/WeilDivisors/html/_to__R__Weil__Divisor.html
    │ │ │ @@ -79,42 +79,42 @@
    │ │ │                
    i1 : R = ZZ/5[x,y];
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │  
    │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │  
    │ │ │  o2 : WeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i3 : E = (1/2)*D
    │ │ │  
    │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o3 : QWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i4 : F = toRWeilDivisor(D)
    │ │ │  
    │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │  
    │ │ │  o4 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i5 : G = toRWeilDivisor(E)
    │ │ │  
    │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │  
    │ │ │  o5 : RWeilDivisor on R
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i6 : F == 2*G
    │ │ │ ├── html2text {}
    │ │ │ │ @@ -15,30 +15,30 @@
    │ │ │ │            o an instance of the type _R_W_e_i_l_D_i_v_i_s_o_r,
    │ │ │ │  ********** DDeessccrriippttiioonn **********
    │ │ │ │  Turn a Weil divisor or a Q-divisor into a R-divisor (or do nothing to a R-
    │ │ │ │  divisor).
    │ │ │ │  i1 : R = ZZ/5[x,y];
    │ │ │ │  i2 : D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
    │ │ │ │  
    │ │ │ │ -o2 = -4*Div(x-y) + 2*Div(x) + 0*Div(y)
    │ │ │ │ +o2 = 2*Div(x) + 0*Div(y) + -4*Div(x-y)
    │ │ │ │  
    │ │ │ │  o2 : WeilDivisor on R
    │ │ │ │  i3 : E = (1/2)*D
    │ │ │ │  
    │ │ │ │ -o3 = -2*Div(x-y) + Div(x)
    │ │ │ │ +o3 = Div(x) + -2*Div(x-y)
    │ │ │ │  
    │ │ │ │  o3 : QWeilDivisor on R
    │ │ │ │  i4 : F = toRWeilDivisor(D)
    │ │ │ │  
    │ │ │ │ -o4 = -4*Div(x-y) + 2*Div(x)
    │ │ │ │ +o4 = 2*Div(x) + -4*Div(x-y)
    │ │ │ │  
    │ │ │ │  o4 : RWeilDivisor on R
    │ │ │ │  i5 : G = toRWeilDivisor(E)
    │ │ │ │  
    │ │ │ │ -o5 = -2*Div(x-y) + Div(x)
    │ │ │ │ +o5 = Div(x) + -2*Div(x-y)
    │ │ │ │  
    │ │ │ │  o5 : RWeilDivisor on R
    │ │ │ │  i6 : F == 2*G
    │ │ │ │  
    │ │ │ │  o6 = true
    │ │ │ │  ********** SSeeee aallssoo **********
    │ │ │ │      * _t_o_W_e_i_l_D_i_v_i_s_o_r -- create a Weil divisor from a Q or R-divisor
    │ │ ├── ./usr/share/doc/Macaulay2/WeylAlgebras/example-output/_factor__Weyl__Algebra.out
    │ │ │ @@ -4,19 +4,19 @@
    │ │ │  
    │ │ │  o1 = R
    │ │ │  
    │ │ │  o1 : PolynomialRing, 1 differential variable(s)
    │ │ │  
    │ │ │  i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx)
    │ │ │  
    │ │ │ -                                    2         3       2                  2  
    │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1), (x dx + 3x  - x*dx + 1)(dx)(x  +
    │ │ │ +        3       2                                      3                  
    │ │ │ +o2 = {(x dx + 3x  + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               3                2         3       2                         
    │ │ │ -     1), (dx)(x dx - x*dx + 2)(x  + 1), (x dx + 3x  + x*dx - 1)(dx)(x - 1)(x
    │ │ │ +                  3       2                  2             3                2
    │ │ │ +     1)(x + 1), (x dx + 3x  - x*dx + 1)(dx)(x  + 1), (dx)(x dx - x*dx + 2)(x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                 3
    │ │ │ -     + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)}
    │ │ │ +                                         2
    │ │ │ +     + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1)}
    │ │ │  
    │ │ │  o2 : List
    │ │ │  
    │ │ │  i3 :
    │ │ ├── ./usr/share/doc/Macaulay2/WeylAlgebras/html/_factor__Weyl__Algebra.html
    │ │ │ @@ -84,22 +84,22 @@
    │ │ │  o1 : PolynomialRing, 1 differential variable(s)
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx)
    │ │ │  
    │ │ │ -                                    2         3       2                  2  
    │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1), (x dx + 3x  - x*dx + 1)(dx)(x  +
    │ │ │ +        3       2                                      3                  
    │ │ │ +o2 = {(x dx + 3x  + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x -
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -               3                2         3       2                         
    │ │ │ -     1), (dx)(x dx - x*dx + 2)(x  + 1), (x dx + 3x  + x*dx - 1)(dx)(x - 1)(x
    │ │ │ +                  3       2                  2             3                2
    │ │ │ +     1)(x + 1), (x dx + 3x  - x*dx + 1)(dx)(x  + 1), (dx)(x dx - x*dx + 2)(x 
    │ │ │       ------------------------------------------------------------------------
    │ │ │ -                 3
    │ │ │ -     + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)}
    │ │ │ +                                         2
    │ │ │ +     + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x  + 1)}
    │ │ │  
    │ │ │  o2 : List
    │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │

    To reduce their number, two factorisations are considered equivalent if they can be related by (1) switching commuting irreducible factors or (2) switching monomials and degree 0 factors; a normal order is chosen where commuting factors are sorted, and monomials are pushed to the right/left if they're differential/not.

    │ │ │ ├── html2text {} │ │ │ │ @@ -20,22 +20,22 @@ │ │ │ │ i1 : R = makeWA(QQ[x]) │ │ │ │ │ │ │ │ o1 = R │ │ │ │ │ │ │ │ o1 : PolynomialRing, 1 differential variable(s) │ │ │ │ i2 : factorWA(x^5*dx^2+7*x^4*dx+8*x^3-x*dx^2+dx) │ │ │ │ │ │ │ │ - 2 3 2 2 │ │ │ │ -o2 = {(x*dx - 1)(dx)(x - 1)(x + 1)(x + 1), (x dx + 3x - x*dx + 1)(dx)(x + │ │ │ │ + 3 2 3 │ │ │ │ +o2 = {(x dx + 3x + x*dx - 1)(dx)(x - 1)(x + 1), (dx)(x dx + x*dx - 2)(x - │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3 2 3 2 │ │ │ │ - 1), (dx)(x dx - x*dx + 2)(x + 1), (x dx + 3x + x*dx - 1)(dx)(x - 1)(x │ │ │ │ + 3 2 2 3 2 │ │ │ │ + 1)(x + 1), (x dx + 3x - x*dx + 1)(dx)(x + 1), (dx)(x dx - x*dx + 2)(x │ │ │ │ ------------------------------------------------------------------------ │ │ │ │ - 3 │ │ │ │ - + 1), (dx)(x dx + x*dx - 2)(x - 1)(x + 1)} │ │ │ │ + 2 │ │ │ │ + + 1), (x*dx - 1)(dx)(x - 1)(x + 1)(x + 1)} │ │ │ │ │ │ │ │ o2 : List │ │ │ │ To reduce their number, two factorisations are considered equivalent if they │ │ │ │ can be related by (1) switching commuting irreducible factors or (2) switching │ │ │ │ monomials and degree 0 factors; a normal order is chosen where commuting │ │ │ │ factors are sorted, and monomials are pushed to the right/left if they're │ │ │ │ differential/not. │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/example-output/_map__Stratify.out │ │ │ @@ -122,15 +122,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ + -- used 2.65721s (cpu); 1.40532s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List │ │ │ │ │ │ i24 : peek last ms │ │ │ │ │ │ @@ -142,15 +142,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ + -- used 7.83092s (cpu); 3.33045s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List │ │ │ │ │ │ i26 : peek last ms │ │ │ │ │ │ @@ -162,15 +162,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ + -- used 8.275s (cpu); 3.65263s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List │ │ │ │ │ │ i28 : peek last ms │ │ ├── ./usr/share/doc/Macaulay2/WhitneyStratifications/html/_map__Stratify.html │ │ │ @@ -292,15 +292,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ + -- used 2.65721s (cpu); 1.40532s (thread); 0s (gc) │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o23 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -318,15 +318,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ + -- used 7.83092s (cpu); 3.33045s (thread); 0s (gc) │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o25 : List
    │ │ │ │ │ │ │ │ │ │ │ │ @@ -344,15 +344,15 @@ │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ for j2.... │ │ │ loop over components of JY=ideal 1 │ │ │ loop over components of JY=ideal 1 │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ + -- used 8.275s (cpu); 3.65263s (thread); 0s (gc) │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ o27 : List
    │ │ │ │ │ │ │ │ │ │ │ │ ├── html2text {} │ │ │ │ @@ -184,15 +184,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 1.9378s (cpu); 1.16676s (thread); 0s (gc) │ │ │ │ + -- used 2.65721s (cpu); 1.40532s (thread); 0s (gc) │ │ │ │ │ │ │ │ o23 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o23 : List │ │ │ │ i24 : peek last ms │ │ │ │ │ │ │ │ o24 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -202,15 +202,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 4.77653s (cpu); 2.98611s (thread); 0s (gc) │ │ │ │ + -- used 7.83092s (cpu); 3.33045s (thread); 0s (gc) │ │ │ │ │ │ │ │ o25 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o25 : List │ │ │ │ i26 : peek last ms │ │ │ │ │ │ │ │ o26 = MutableHashTable{0 => {ideal (P, M1)} } │ │ │ │ @@ -220,15 +220,15 @@ │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ for j2.... │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ loop over components of JY=ideal 1 │ │ │ │ - -- used 5.07329s (cpu); 2.97775s (thread); 0s (gc) │ │ │ │ + -- used 8.275s (cpu); 3.65263s (thread); 0s (gc) │ │ │ │ │ │ │ │ o27 = {MutableHashTable{...5...}, MutableHashTable{...3...}} │ │ │ │ │ │ │ │ o27 : List │ │ │ │ i28 : peek last ms │ │ │ │ │ │ │ │ o28 = MutableHashTable{0 => {ideal (P, M1)} } │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/example-output/___Installation_spand_sp__Configuration_spof_spgfan__Interface.out │ │ │ @@ -19,15 +19,15 @@ │ │ │ i4 : prefixDirectory | currentLayout#"programs" │ │ │ │ │ │ o4 = /usr/x86_64-Linux- │ │ │ Debian-forky/libexec/Macaulay2/bin/ │ │ │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true); │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this package │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172 │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22504-0/172 │ │ │ This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm. │ │ │ Options: │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ @@ -38,16 +38,16 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/172 │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174 │ │ │ +using temporary file /tmp/M2-22504-0/172 │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22504-0/174 │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]). │ │ │ Options: │ │ │ -w: │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read. │ │ │ │ │ │ -r: │ │ │ Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used. │ │ │ @@ -56,69 +56,69 @@ │ │ │ Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored. │ │ │ │ │ │ -g: │ │ │ Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16949-0/174 │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176 │ │ │ +using temporary file /tmp/M2-22504-0/174 │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22504-0/176 │ │ │ This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false. │ │ │ Options: │ │ │ --remainder: │ │ │ Tell the program to output the remainders of the divisions rather than outputting 0 or 1. │ │ │ --multiplier: │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division. │ │ │ -using temporary file /tmp/M2-16949-0/176 │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178 │ │ │ +using temporary file /tmp/M2-22504-0/176 │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22504-0/178 │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ --stable: │ │ │ Compute the stable intersection. │ │ │ -using temporary file /tmp/M2-16949-0/178 │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180 │ │ │ +using temporary file /tmp/M2-22504-0/178 │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22504-0/180 │ │ │ This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector. │ │ │ Options: │ │ │ -i value: │ │ │ Specify the name of the input file. │ │ │ --symmetry: │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input. │ │ │ │ │ │ --star: │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector. │ │ │ -using temporary file /tmp/M2-16949-0/180 │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182 │ │ │ +using temporary file /tmp/M2-22504-0/180 │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22504-0/182 │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the first input file. │ │ │ -i2 value: │ │ │ Specify the name of the second input file. │ │ │ -using temporary file /tmp/M2-16949-0/182 │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184 │ │ │ +using temporary file /tmp/M2-22504-0/182 │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22504-0/184 │ │ │ This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant. │ │ │ --pair: │ │ │ The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual. │ │ │ --asfan: │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed. │ │ │ --vectorinput: │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations. │ │ │ -using temporary file /tmp/M2-16949-0/184 │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186 │ │ │ +using temporary file /tmp/M2-22504-0/184 │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22504-0/186 │ │ │ This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/186 │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188 │ │ │ +using temporary file /tmp/M2-22504-0/186 │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22504-0/188 │ │ │ This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree. │ │ │ Example: │ │ │ Input: │ │ │ Q[x,y]{y-1} │ │ │ z │ │ │ Output: │ │ │ Q[x,y,z]{y-z} │ │ │ @@ -126,30 +126,30 @@ │ │ │ -i: │ │ │ Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it. │ │ │ -w: │ │ │ Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials. │ │ │ │ │ │ -H: │ │ │ Let the name of the new variable be H rather than reading in a name from the input. │ │ │ -using temporary file /tmp/M2-16949-0/188 │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190 │ │ │ +using temporary file /tmp/M2-22504-0/188 │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22504-0/190 │ │ │ This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list. │ │ │ Options: │ │ │ --ideal: │ │ │ Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program. │ │ │ │ │ │ --pair: │ │ │ Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal. │ │ │ │ │ │ --mark: │ │ │ If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector. │ │ │ --list: │ │ │ Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output. │ │ │ -using temporary file /tmp/M2-16949-0/190 │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192 │ │ │ +using temporary file /tmp/M2-22504-0/190 │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22504-0/192 │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program. │ │ │ Options: │ │ │ -L: │ │ │ Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi. │ │ │ │ │ │ -x: │ │ │ Exit immediately. │ │ │ @@ -164,57 +164,57 @@ │ │ │ Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis. │ │ │ │ │ │ -W: │ │ │ Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone. │ │ │ │ │ │ --tropical: │ │ │ Traverse a tropical variety interactively. │ │ │ -using temporary file /tmp/M2-16949-0/192 │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194 │ │ │ +using temporary file /tmp/M2-22504-0/192 │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22504-0/194 │ │ │ This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/194 │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196 │ │ │ +using temporary file /tmp/M2-22504-0/194 │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22504-0/196 │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -using temporary file /tmp/M2-16949-0/196 │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198 │ │ │ +using temporary file /tmp/M2-22504-0/196 │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22504-0/198 │ │ │ This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice. │ │ │ Options: │ │ │ -t: │ │ │ Compute the toric ideal of the matrix whose rows are given on the input instead. │ │ │ --convert: │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ -using temporary file /tmp/M2-16949-0/198 │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200 │ │ │ +using temporary file /tmp/M2-22504-0/198 │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22504-0/200 │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ Options: │ │ │ -m: │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/200 │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202 │ │ │ +using temporary file /tmp/M2-22504-0/200 │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22504-0/202 │ │ │ This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/202 │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204 │ │ │ +using temporary file /tmp/M2-22504-0/202 │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22504-0/204 │ │ │ This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials. │ │ │ Options: │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup. │ │ │ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --nocones: │ │ │ Tell the program to not list cones in the output. │ │ │ -using temporary file /tmp/M2-16949-0/204 │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206 │ │ │ +using temporary file /tmp/M2-22504-0/204 │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22504-0/206 │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ Options: │ │ │ -r value: │ │ │ Specify r. │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ @@ -229,16 +229,16 @@ │ │ │ Do nothing but produce symmetry generators for the Pluecker ideal. │ │ │ --symmetry: │ │ │ Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names). │ │ │ --parametrize: │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials. │ │ │ --ultrametric: │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ -using temporary file /tmp/M2-16949-0/206 │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208 │ │ │ +using temporary file /tmp/M2-22504-0/206 │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22504-0/208 │ │ │ This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials. │ │ │ Options: │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ --cyclic value: │ │ │ Use cyclic-n example instead of reading input. │ │ │ --noon value: │ │ │ @@ -249,44 +249,44 @@ │ │ │ Use Katsura-n example instead of reading input. │ │ │ --gaukwa value: │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ --eco value: │ │ │ Use Eco-n example instead of reading input. │ │ │ -j value: │ │ │ Number of threads │ │ │ -using temporary file /tmp/M2-16949-0/208 │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210 │ │ │ +using temporary file /tmp/M2-22504-0/208 │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22504-0/210 │ │ │ This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets. │ │ │ Options: │ │ │ -s: │ │ │ Sort output by degree. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/210 │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212 │ │ │ +using temporary file /tmp/M2-22504-0/210 │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22504-0/212 │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables. │ │ │ Options: │ │ │ -L: │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ --shiftVariables value: │ │ │ Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0. │ │ │ -using temporary file /tmp/M2-16949-0/212 │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214 │ │ │ +using temporary file /tmp/M2-22504-0/212 │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22504-0/214 │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables. │ │ │ Options: │ │ │ -m: │ │ │ Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn. │ │ │ │ │ │ -d value: │ │ │ Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8. │ │ │ │ │ │ -w value: │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/214 │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216 │ │ │ +using temporary file /tmp/M2-22504-0/214 │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22504-0/216 │ │ │ This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution. │ │ │ Options: │ │ │ --codimension: │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ @@ -299,25 +299,25 @@ │ │ │ │ │ │ --vectorinput: │ │ │ Read in a list of point configurations instead of a polynomial ring and a list of polynomials. │ │ │ │ │ │ --projection: │ │ │ Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/216 │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218 │ │ │ +using temporary file /tmp/M2-22504-0/216 │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22504-0/218 │ │ │ This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ Options: │ │ │ -h: │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous generators). │ │ │ │ │ │ --noideal: │ │ │ Do not treat input as an ideal but just factor out common monomial factors of the input polynomials. │ │ │ -using temporary file /tmp/M2-16949-0/218 │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220 │ │ │ +using temporary file /tmp/M2-22504-0/218 │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22504-0/220 │ │ │ This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ Options: │ │ │ --unimodular: │ │ │ Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan │ │ │ --scale value: │ │ │ Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future. │ │ │ --restrictingfan value: │ │ │ @@ -326,70 +326,70 @@ │ │ │ --symmetry: │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry. │ │ │ │ │ │ --nocones: │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/220 │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222 │ │ │ +using temporary file /tmp/M2-22504-0/220 │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22504-0/222 │ │ │ This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/222 │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224 │ │ │ +using temporary file /tmp/M2-22504-0/222 │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22504-0/224 │ │ │ This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring. │ │ │ Example: │ │ │ Input: │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ Output: │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/224 │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226 │ │ │ +using temporary file /tmp/M2-22504-0/224 │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22504-0/226 │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the options. │ │ │ Options: │ │ │ -h: │ │ │ Add a header to the output. Using this option the output will be LaTeXable right away. │ │ │ --polynomialset_: │ │ │ The data to be converted is a list of polynomials. │ │ │ --polynomialsetlist_: │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ -using temporary file /tmp/M2-16949-0/226 │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228 │ │ │ +using temporary file /tmp/M2-22504-0/226 │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22504-0/228 │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan. │ │ │ Options: │ │ │ --restrict: │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant. │ │ │ --symmetry: │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/228 │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230 │ │ │ +using temporary file /tmp/M2-22504-0/228 │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22504-0/230 │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used. │ │ │ Options: │ │ │ -h: │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous. │ │ │ -using temporary file /tmp/M2-16949-0/230 │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232 │ │ │ +using temporary file /tmp/M2-22504-0/230 │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22504-0/232 │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/232 │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234 │ │ │ +using temporary file /tmp/M2-22504-0/232 │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22504-0/234 │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/234 │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236 │ │ │ +using temporary file /tmp/M2-22504-0/234 │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22504-0/236 │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options: │ │ │ --exponents: │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ -using temporary file /tmp/M2-16949-0/236 │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238 │ │ │ +using temporary file /tmp/M2-22504-0/236 │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22504-0/238 │ │ │ This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options: │ │ │ -using temporary file /tmp/M2-16949-0/238 │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240 │ │ │ +using temporary file /tmp/M2-22504-0/238 │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22504-0/240 │ │ │ This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces. │ │ │ Options: │ │ │ --tropicalbasistest: │ │ │ This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.) │ │ │ │ │ │ --tplane: │ │ │ This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed. │ │ │ @@ -401,16 +401,16 @@ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used. │ │ │ --restrict: │ │ │ Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms. │ │ │ --stable: │ │ │ Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored. │ │ │ --parameters value: │ │ │ With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters. │ │ │ -using temporary file /tmp/M2-16949-0/240 │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242 │ │ │ +using temporary file /tmp/M2-22504-0/240 │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22504-0/242 │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 │ │ │ │ │ │ See also │ │ │ │ │ │ @@ -435,48 +435,48 @@ │ │ │ Options: │ │ │ --noMult: │ │ │ Disable the multiplicity computation. │ │ │ -n value: │ │ │ Number of variables that should have negative weight. │ │ │ -c: │ │ │ Only output a list of vectors being the possible choices. │ │ │ -using temporary file /tmp/M2-16949-0/242 │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244 │ │ │ +using temporary file /tmp/M2-22504-0/242 │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22504-0/244 │ │ │ This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input. │ │ │ Options: │ │ │ -d value: │ │ │ Specify d. │ │ │ -n value: │ │ │ Specify n. │ │ │ --trees: │ │ │ list the boundary trees (assumes d=3) │ │ │ -using temporary file /tmp/M2-16949-0/244 │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246 │ │ │ +using temporary file /tmp/M2-22504-0/244 │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22504-0/246 │ │ │ This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal. │ │ │ Options: │ │ │ -using temporary file /tmp/M2-16949-0/246 │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248 │ │ │ +using temporary file /tmp/M2-22504-0/246 │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22504-0/248 │ │ │ This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM. │ │ │ Options: │ │ │ --kapranov: │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ --determinant: │ │ │ Compute the tropical determinant instead. │ │ │ -using temporary file /tmp/M2-16949-0/248 │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250 │ │ │ +using temporary file /tmp/M2-22504-0/248 │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22504-0/250 │ │ │ This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex. │ │ │ Options: │ │ │ -g: │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ -d: │ │ │ Output dimension information to standard error. │ │ │ --stable: │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ -using temporary file /tmp/M2-16949-0/250 │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252 │ │ │ +using temporary file /tmp/M2-22504-0/250 │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22504-0/252 │ │ │ This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety. │ │ │ Options: │ │ │ --symmetry: │ │ │ Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster. │ │ │ --symsigns: │ │ │ Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix. │ │ │ --nocones: │ │ │ @@ -484,24 +484,24 @@ │ │ │ --disableSymmetryTest: │ │ │ When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal. │ │ │ │ │ │ --stable: │ │ │ Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric. │ │ │ --interrupt value: │ │ │ Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans). │ │ │ -using temporary file /tmp/M2-16949-0/252 │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254 │ │ │ +using temporary file /tmp/M2-22504-0/252 │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22504-0/254 │ │ │ This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information. │ │ │ Options: │ │ │ -i1 value: │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ -i2 value: │ │ │ Specify the name of the Polymake input file containing the piecewise linear function. │ │ │ -using temporary file /tmp/M2-16949-0/254 │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256 │ │ │ +using temporary file /tmp/M2-22504-0/254 │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22504-0/256 │ │ │ This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n]. │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically), │ │ │ (2) computation of an initial ideal, │ │ │ (3) computation of the Groebner fan, │ │ │ (4) computation of a single Groebner cone. │ │ │ Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive. │ │ │ @@ -521,21 +521,21 @@ │ │ │ --groebnerCone: │ │ │ Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector. │ │ │ -m: │ │ │ For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list. │ │ │ -g: │ │ │ Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow. │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/256 │ │ │ +using temporary file /tmp/M2-22504-0/256 │ │ │ │ │ │ i6 : QQ[x,y]; │ │ │ │ │ │ i7 : gfan {x,y}; │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258 │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22504-0/258 │ │ │ Q[x1,x2] │ │ │ {{ │ │ │ x2, │ │ │ x1} │ │ │ } │ │ │ -using temporary file /tmp/M2-16949-0/258 │ │ │ +using temporary file /tmp/M2-22504-0/258 │ │ │ │ │ │ i8 : │ │ ├── ./usr/share/doc/Macaulay2/gfanInterface/html/___Installation_spand_sp__Configuration_spof_spgfan__Interface.html │ │ │ @@ -109,15 +109,15 @@ │ │ │

    │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │
    i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, "verbose" => true}, Reload => true);
    │ │ │   -- warning: reloading gfanInterface; recreate instances of types from this package
    │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172
    │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22504-0/172
    │ │ │  This is a program for computing all reduced Groebner bases of a polynomial ideal. It takes the ring and a generating set for the ideal as input. By default the enumeration is done by an almost memoryless reverse search. If the ideal is symmetric the symmetry option is useful and enumeration will be done up to symmetry using a breadth first search. The program needs a starting Groebner basis to do its computations. If the -g option is not specified it will compute one using Buchberger's algorithm.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if it takes too much time to compute the starting (standard degree lexicographic) Groebner basis and the input is already a Groebner basis.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │ @@ -128,16 +128,16 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/172
    │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174
    │ │ │ +using temporary file /tmp/M2-22504-0/172
    │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22504-0/174
    │ │ │  This program computes a reduced lexicographic Groebner basis of the polynomial ideal given as input. The default behavior is to use Buchberger's algorithm. The ordering of the variables is $a>b>c...$ (assuming that the ring is Q[a,b,c,...]).
    │ │ │  Options:
    │ │ │  -w:
    │ │ │   Compute a Groebner basis with respect to a degree lexicographic order with $a>b>c...$ instead. The degrees are given by a weight vector which is read from the input after the generating set has been read.
    │ │ │  
    │ │ │  -r:
    │ │ │   Use the reverse lexicographic order (or the reverse lexicographic order as a tie breaker if -w is used). The input must be homogeneous if the pure reverse lexicographic order is chosen. Ignored if -W is used.
    │ │ │ @@ -146,69 +146,69 @@
    │ │ │   Do a Groebner walk. The input must be a minimal Groebner basis. If -W is used -w is ignored.
    │ │ │  
    │ │ │  -g:
    │ │ │   Do a generic Groebner walk. The input must be homogeneous and must be a minimal Groebner basis with respect to the reverse lexicographic term order. The target term order is always lexicographic. The -W option must be used.
    │ │ │  
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16949-0/174
    │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176
    │ │ │ +using temporary file /tmp/M2-22504-0/174
    │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22504-0/176
    │ │ │  This program takes a marked Groebner basis of an ideal I and a set of polynomials on its input and tests if the polynomial set is contained in I by applying the division algorithm for each element. The output is 1 for true and 0 for false.
    │ │ │  Options:
    │ │ │  --remainder:
    │ │ │   Tell the program to output the remainders of the divisions rather than outputting 0 or 1.
    │ │ │  --multiplier:
    │ │ │   Reads in a polynomial that will be multiplied to the polynomial to be divided before doing the division.
    │ │ │ -using temporary file /tmp/M2-16949-0/176
    │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178
    │ │ │ +using temporary file /tmp/M2-22504-0/176
    │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22504-0/178
    │ │ │  This program takes two polyhedral fans and computes their common refinement.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │  --stable:
    │ │ │   Compute the stable intersection.
    │ │ │ -using temporary file /tmp/M2-16949-0/178
    │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180
    │ │ │ +using temporary file /tmp/M2-22504-0/178
    │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22504-0/180
    │ │ │  This program takes a polyhedral fan and a vector and computes the link of the polyhedral fan around that vertex. The link will have lineality space dimension equal to the dimension of the relative open polyhedral cone of the original fan containing the vector.
    │ │ │  Options:
    │ │ │  -i value:
    │ │ │   Specify the name of the input file.
    │ │ │  --symmetry:
    │ │ │   Reads in a fan stored with symmetry. The generators of the symmetry group must be given on the standard input.
    │ │ │  
    │ │ │  --star:
    │ │ │   Computes the star instead. The star is defined as the smallest polyhedral fan containing all cones of the original fan containing the vector.
    │ │ │ -using temporary file /tmp/M2-16949-0/180
    │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182
    │ │ │ +using temporary file /tmp/M2-22504-0/180
    │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22504-0/182
    │ │ │  This program takes two polyhedral fans and computes their product.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the first input file.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the second input file.
    │ │ │ -using temporary file /tmp/M2-16949-0/182
    │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184
    │ │ │ +using temporary file /tmp/M2-22504-0/182
    │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22504-0/184
    │ │ │  This program computes a Groebner cone. Three different cases are handled. The input may be a marked reduced Groebner basis in which case its Groebner cone is computed. The input may be just a marked minimal basis in which case the cone computed is not a Groebner cone in the usual sense but smaller. (These cones are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case is that the Groebner cone is possibly lower dimensional and given by a pair of Groebner bases as it is useful to do for tropical varieties, see option --pair. The facets of the cone can be read off in section FACETS and the equations in section IMPLIED_EQUATIONS.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cone is restricted to the non-negative orthant.
    │ │ │  --pair:
    │ │ │   The Groebner cone is given by a pair of compatible Groebner bases. The first basis is for the initial ideal and the second for the ideal itself. See the tropical section of the manual.
    │ │ │  --asfan:
    │ │ │   Writes the cone as a polyhedral fan with all its faces instead. In this way the extreme rays of the cone are also computed.
    │ │ │  --vectorinput:
    │ │ │   Compute a cone given list of inequalities rather than a Groebner cone. The input is an integer which specifies the dimension of the ambient space, a list of inequalities given as vectors and a list of equations.
    │ │ │ -using temporary file /tmp/M2-16949-0/184
    │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186
    │ │ │ +using temporary file /tmp/M2-22504-0/184
    │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22504-0/186
    │ │ │  This program computes the homogeneity space of a list of polynomials - as a cone. Thus generators for the homogeneity space are found in the section LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first compute a set of homogeneous generators and call the program on these. A reduced Groebner basis will always suffice for this purpose.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/186
    │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188
    │ │ │ +using temporary file /tmp/M2-22504-0/186
    │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22504-0/188
    │ │ │  This program homogenises a list of polynomials by introducing an extra variable. The name of the variable to be introduced is read from the input after the list of polynomials. Without the -w option the homogenisation is done with respect to total degree.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[x,y]{y-1}
    │ │ │  z
    │ │ │  Output:
    │ │ │  Q[x,y,z]{y-z}
    │ │ │ @@ -216,30 +216,30 @@
    │ │ │  -i:
    │ │ │   Treat input as an ideal. This will make the program compute the homogenisation of the input ideal. This is done by computing a degree Groebner basis and homogenising it.
    │ │ │  -w:
    │ │ │   Specify a homogenisation vector. The length of the vector must be the same as the number of variables in the ring. The vector is read from the input after the list of polynomials.
    │ │ │  
    │ │ │  -H:
    │ │ │   Let the name of the new variable be H rather than reading in a name from the input.
    │ │ │ -using temporary file /tmp/M2-16949-0/188
    │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190
    │ │ │ +using temporary file /tmp/M2-22504-0/188
    │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22504-0/190
    │ │ │  This program converts a list of polynomials to a list of their initial forms with respect to the vector given after the list.
    │ │ │  Options:
    │ │ │  --ideal:
    │ │ │   Treat input as an ideal. This will make the program compute the initial ideal of the ideal generated by the input polynomials. The computation is done by computing a Groebner basis with respect to the given vector. The vector must be positive or the input polynomials must be homogeneous in a positive grading. None of these conditions are checked by the program.
    │ │ │  
    │ │ │  --pair:
    │ │ │   Produce a pair of polynomial lists. Used together with --ideal this option will also write a compatible reduced Groebner basis for the input ideal to the output. This is useful for finding the Groebner cone of a non-monomial initial ideal.
    │ │ │  
    │ │ │  --mark:
    │ │ │   If the --pair option is and the --ideal option is not used this option will still make sure that the second output basis is marked consistently with the vector.
    │ │ │  --list:
    │ │ │   Read in a list of vectors instead of a single vector and produce a list of polynomial sets as output.
    │ │ │ -using temporary file /tmp/M2-16949-0/190
    │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192
    │ │ │ +using temporary file /tmp/M2-22504-0/190
    │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22504-0/192
    │ │ │  This is a program for doing interactive walks in the Groebner fan of an ideal. The input is a Groebner basis defining the starting Groebner cone of the walk. The program will list all flippable facets of the Groebner cone and ask the user to choose one. The user types in the index (number) of the facet in the list. The program will walk through the selected facet and display the new Groebner basis and a list of new facet normals for the user to choose from. Since the program reads the user's choices through the the standard input it is recommended not to redirect the standard input for this program.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Latex mode. The program will try to show the current Groebner basis in a readable form by invoking LaTeX and xdvi.
    │ │ │  
    │ │ │  -x:
    │ │ │   Exit immediately.
    │ │ │ @@ -254,57 +254,57 @@
    │ │ │   Tell the program to list the defining set of inequalities of the non-restricted Groebner cone as a set of vectors after having listed the current Groebner basis.
    │ │ │  
    │ │ │  -W:
    │ │ │   Print weight vector. This will make the program print an interior vector of the current Groebner cone and a relative interior point for each flippable facet of the current Groebner cone.
    │ │ │  
    │ │ │  --tropical:
    │ │ │   Traverse a tropical variety interactively.
    │ │ │ -using temporary file /tmp/M2-16949-0/192
    │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194
    │ │ │ +using temporary file /tmp/M2-22504-0/192
    │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22504-0/194
    │ │ │  This program checks if a set of marked polynomials is a Groebner basis with respect to its marking. First it is checked if the markings are consistent with respect to a positive vector. Then Buchberger's S-criterion is checked. The output is boolean value.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/194
    │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196
    │ │ │ +using temporary file /tmp/M2-22504-0/194
    │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22504-0/196
    │ │ │  Takes an ideal $I$ and computes the Krull dimension of R/I where R is the polynomial ring. This is done by first computing a Groebner basis.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │ -using temporary file /tmp/M2-16949-0/196
    │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198
    │ │ │ +using temporary file /tmp/M2-22504-0/196
    │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22504-0/198
    │ │ │  This program computes the lattice ideal of a lattice. The input is a list of generators for the lattice.
    │ │ │  Options:
    │ │ │  -t:
    │ │ │   Compute the toric ideal of the matrix whose rows are given on the input instead.
    │ │ │  --convert:
    │ │ │   Does not do any computation, but just converts the vectors to binomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/198
    │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200
    │ │ │ +using temporary file /tmp/M2-22504-0/198
    │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22504-0/200
    │ │ │  This program converts a list of polynomials to a list of their leading terms.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/200
    │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202
    │ │ │ +using temporary file /tmp/M2-22504-0/200
    │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22504-0/202
    │ │ │  This program marks a set of polynomials with respect to the vector given at the end of the input, meaning that the largest terms are moved to the front. In case of a tie the lexicographic term order with $a>b>c...$ is used to break it.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/202
    │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204
    │ │ │ +using temporary file /tmp/M2-22504-0/202
    │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22504-0/204
    │ │ │  This is a program for computing the normal fan of the Minkowski sum of the Newton polytopes of a list of polynomials.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ideal. The program checks that the ideal stays fixed when permuting the variables with respect to elements in the group. The program uses breadth first search to compute the set of reduced Groebner bases up to symmetry with respect to the specified subgroup.
    │ │ │  
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tell the program to not list cones in the output.
    │ │ │ -using temporary file /tmp/M2-16949-0/204
    │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206
    │ │ │ +using temporary file /tmp/M2-22504-0/204
    │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22504-0/206
    │ │ │  This program will generate the r*r minors of a d*n matrix of indeterminates.
    │ │ │  Options:
    │ │ │  -r value:
    │ │ │   Specify r.
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │ @@ -319,16 +319,16 @@
    │ │ │   Do nothing but produce symmetry generators for the Pluecker ideal.
    │ │ │  --symmetry:
    │ │ │   Produces a list of generators for the group of symmetries keeping the set of minors fixed. (Only without --names).
    │ │ │  --parametrize:
    │ │ │   Parametrize the set of d times n matrices of Barvinok rank less than or equal to r-1 by a list of tropical polynomials.
    │ │ │  --ultrametric:
    │ │ │   Produce tropical equations cutting out the ultrametrics.
    │ │ │ -using temporary file /tmp/M2-16949-0/206
    │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208
    │ │ │ +using temporary file /tmp/M2-22504-0/206
    │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22504-0/208
    │ │ │  This program computes the mixed volume of the Newton polytopes of a list of polynomials. The ring is specified on the input. After this follows the list of polynomials.
    │ │ │  Options:
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  --cyclic value:
    │ │ │   Use cyclic-n example instead of reading input.
    │ │ │  --noon value:
    │ │ │ @@ -339,44 +339,44 @@
    │ │ │   Use Katsura-n example instead of reading input.
    │ │ │  --gaukwa value:
    │ │ │   Use Gaukwa-n example instead of reading input.
    │ │ │  --eco value:
    │ │ │   Use Eco-n example instead of reading input.
    │ │ │  -j value:
    │ │ │   Number of threads
    │ │ │ -using temporary file /tmp/M2-16949-0/208
    │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210
    │ │ │ +using temporary file /tmp/M2-22504-0/208
    │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22504-0/210
    │ │ │  This program computes the union of a list of polynomial sets given as input. The polynomials must all belong to the same ring. The ring is specified on the input. After this follows the list of polynomial sets.
    │ │ │  Options:
    │ │ │  -s:
    │ │ │   Sort output by degree.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/210
    │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212
    │ │ │ +using temporary file /tmp/M2-22504-0/210
    │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22504-0/212
    │ │ │  This program renders a Groebner fan as an xfig file. To be more precise, the input is the list of all reduced Groebner bases of an ideal. The output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring these coordinates are extended with zeros. It is possible to shift the 1 entry cyclic with the option --shiftVariables.
    │ │ │  Options:
    │ │ │  -L:
    │ │ │   Make the triangle larger so that the shape of the Groebner region appears.
    │ │ │  --shiftVariables value:
    │ │ │   Shift the positions of the variables in the drawing. For example with the value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) and top: (0,0,0,1,...). The shifting is done modulo the number of variables in the polynomial ring. The default value is 0.
    │ │ │ -using temporary file /tmp/M2-16949-0/212
    │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214
    │ │ │ +using temporary file /tmp/M2-22504-0/212
    │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22504-0/214
    │ │ │  This program renders a staircase diagram of a monomial initial ideal to an xfig file. The input is a Groebner basis of a (not necessarily monomial) polynomial ideal. The initial ideal is given by the leading terms in the Groebner basis. Using the -m option it is possible to render more than one staircase diagram. The program only works for ideals in a polynomial ring with three variables.
    │ │ │  Options:
    │ │ │  -m:
    │ │ │   Read multiple ideals from the input. The ideals are given as a list of lists of polynomials. For each polynomial list in the list a staircase diagram is drawn.
    │ │ │  
    │ │ │  -d value:
    │ │ │   Specifies the number of boxes being shown along each axis. Be sure that this number is large enough to give a correct picture of the standard monomials. The default value is 8.
    │ │ │  
    │ │ │  -w value:
    │ │ │   Width. Specifies the number of staircase diagrams per row in the xfig file. The default value is 5.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/214
    │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216
    │ │ │ +using temporary file /tmp/M2-22504-0/214
    │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22504-0/216
    │ │ │  This program computes the resultant fan as defined in "Computing Tropical Resultants" by Jensen and Yu. The input is a polynomial ring followed by polynomials, whose coefficients are ignored. The output is the fan of coefficients such that the input system has a tropical solution.
    │ │ │  Options:
    │ │ │  --codimension:
    │ │ │   Compute only the codimension of the resultant fan and return.
    │ │ │  
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program DOES NOT checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │ @@ -389,25 +389,25 @@
    │ │ │  
    │ │ │  --vectorinput:
    │ │ │   Read in a list of point configurations instead of a polynomial ring and a list of polynomials.
    │ │ │  
    │ │ │  --projection:
    │ │ │   Use the projection method to compute the resultant fan. This works only if the resultant fan is a hypersurface. If this option is combined with --special, then the output fan lives in the subspace of the non-specialized coordinates.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/216
    │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218
    │ │ │ +using temporary file /tmp/M2-22504-0/216
    │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22504-0/218
    │ │ │  This program computes the saturation of the input ideal with the product of the variables x_1,...,x_n. The ideal does not have to be homogeneous.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Tell the program that the input is a homogeneous ideal (with homogeneous generators).
    │ │ │  
    │ │ │  --noideal:
    │ │ │   Do not treat input as an ideal but just factor out common monomial factors of the input polynomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/218
    │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220
    │ │ │ +using temporary file /tmp/M2-22504-0/218
    │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22504-0/220
    │ │ │  This program computes the secondary fan of a vector configuration. The configuration is given as an ordered list of vectors. In order to compute the secondary fan of a point configuration an additional coordinate of ones must be added. For example {(1,0),(1,1),(1,2),(1,3)}.
    │ │ │  Options:
    │ │ │  --unimodular:
    │ │ │   Use heuristics to search for unimodular triangulation rather than computing the complete secondary fan
    │ │ │  --scale value:
    │ │ │   Assuming that the first coordinate of each vector is 1, this option will take the polytope in the 1 plane and scale it. The point configuration will be all lattice points in that scaled polytope. The polytope must have maximal dimension. When this option is used the vector configuration must have full rank. This option may be removed in the future.
    │ │ │  --restrictingfan value:
    │ │ │ @@ -416,70 +416,70 @@
    │ │ │  --symmetry:
    │ │ │   Tells the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the vector configuration. The program checks that the configuration stays fixed when permuting the variables with respect to elements in the group. The output is grouped according to the symmetry.
    │ │ │  
    │ │ │  --nocones:
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/220
    │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222
    │ │ │ +using temporary file /tmp/M2-22504-0/220
    │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22504-0/222
    │ │ │  This program takes a list of reduced Groebner bases for the same ideal and computes various statistics. The following information is listed: the number of bases in the input, the number of variables, the dimension of the homogeneity space, the maximal total degree of any polynomial in the input and the minimal total degree of any basis in the input, the maximal number of polynomials and terms in a basis in the input.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/222
    │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224
    │ │ │ +using temporary file /tmp/M2-22504-0/222
    │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22504-0/224
    │ │ │  This program changes the variable names of a polynomial ring. The input is a polynomial ring, a polynomial set in the ring and a new polynomial ring with the same coefficient field but different variable names. The output is the polynomial set written with the variable names of the second polynomial ring.
    │ │ │  Example:
    │ │ │  Input:
    │ │ │  Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x]
    │ │ │  Output:
    │ │ │  Q[b,a,c,x]{2*b-3*a,c+x}
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/224
    │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226
    │ │ │ +using temporary file /tmp/M2-22504-0/224
    │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22504-0/226
    │ │ │  This program converts ASCII math to TeX math. The data-type is specified by the options.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Add a header to the output. Using this option the output will be LaTeXable right away.
    │ │ │  --polynomialset_:
    │ │ │   The data to be converted is a list of polynomials.
    │ │ │  --polynomialsetlist_:
    │ │ │   The data to be converted is a list of lists of polynomials.
    │ │ │ -using temporary file /tmp/M2-16949-0/226
    │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228
    │ │ │ +using temporary file /tmp/M2-22504-0/226
    │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22504-0/228
    │ │ │  This program takes a list of reduced Groebner bases and produces the fan of all faces of these. In this way by giving the complete list of reduced Groebner bases, the Groebner fan can be computed as a polyhedral complex. The option --restrict lets the user choose between computing the Groebner fan or the restricted Groebner fan.
    │ │ │  Options:
    │ │ │  --restrict:
    │ │ │   Add an inequality for each coordinate, so that the the cones are restricted to the non-negative orthant.
    │ │ │  --symmetry:
    │ │ │   Tell the program to read in generators for a group of symmetries (subgroup of $S_n$) after having read in the ring. The output is grouped according to these symmetries. Only one representative for each orbit is needed on the input.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/228
    │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230
    │ │ │ +using temporary file /tmp/M2-22504-0/228
    │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22504-0/230
    │ │ │  This program computes a tropical basis for an ideal defining a tropical curve. Defining a tropical curve means that the Krull dimension of R/I is at most 1 + the dimension of the homogeneity space of I where R is the polynomial ring. The input is a generating set for the ideal. If the input is not homogeneous option -h must be used.
    │ │ │  Options:
    │ │ │  -h:
    │ │ │   Homogenise the input before computing a tropical basis and dehomogenise the output. This is needed if the input generators are not already homogeneous.
    │ │ │ -using temporary file /tmp/M2-16949-0/230
    │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232
    │ │ │ +using temporary file /tmp/M2-22504-0/230
    │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22504-0/232
    │ │ │  This program takes a marked reduced Groebner basis for a homogeneous ideal and computes the tropical variety of the ideal as a subfan of the Groebner fan. The program is slow but works for any homogeneous ideal. If you know that your ideal is prime over the complex numbers or you simply know that its tropical variety is pure and connected in codimension one then use gfan_tropicalstartingcone and gfan_tropicaltraverse instead.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/232
    │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234
    │ │ │ +using temporary file /tmp/M2-22504-0/232
    │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22504-0/234
    │ │ │  This program evaluates a tropical polynomial function in a given set of points.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/234
    │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236
    │ │ │ +using temporary file /tmp/M2-22504-0/234
    │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22504-0/236
    │ │ │  This program takes a polynomial and tropicalizes it. The output is piecewise linear function represented by a fan whose cones are the linear regions. Each ray of the fan gets the value of the tropical function assigned to it. In other words this program computes the normal fan of the Newton polytope of the input polynomial with additional information.Options:
    │ │ │  --exponents:
    │ │ │   Tell program to read a list of exponent vectors instead.
    │ │ │ -using temporary file /tmp/M2-16949-0/236
    │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238
    │ │ │ +using temporary file /tmp/M2-22504-0/236
    │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22504-0/238
    │ │ │  This program computes the tropical hypersurface defined by a principal ideal. The input is the polynomial ring followed by a set containing just a generator of the ideal.Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/238
    │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240
    │ │ │ +using temporary file /tmp/M2-22504-0/238
    │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22504-0/240
    │ │ │  This program computes the set theoretical intersection of a set of tropical hypersurfaces (or to be precise, their common refinement as a fan). The input is a list of polynomials with each polynomial defining a hypersurface. Considering tropical hypersurfaces as fans, the intersection can be computed as the common refinement of these. Thus the output is a fan whose support is the intersection of the tropical hypersurfaces.
    │ │ │  Options:
    │ │ │  --tropicalbasistest:
    │ │ │   This option will test that the input polynomials for a tropical basis of the ideal they generate by computing the tropical prevariety of the input polynomials and then refine each cone with the Groebner fan and testing whether each cone in the refinement has an associated monomial free initial ideal. If so, then we have a tropical basis and 1 is written as output. If not, then a zero is written to the output together with a vector in the tropical prevariety but not in the variety. The actual check is done on a homogenization of the input ideal, but this does not affect the result. (This option replaces the -t option from earlier gfan versions.)
    │ │ │  
    │ │ │  --tplane:
    │ │ │   This option intersects the resulting fan with the plane x_0=-1, where x_0 is the first variable. To simplify the implementation the output is actually the common refinement with the non-negative half space. This means that "stuff at infinity" (where x_0=0) is not removed.
    │ │ │ @@ -491,16 +491,16 @@
    │ │ │   Tells the program not to output the CONES and MAXIMAL_CONES sections, but still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is used.
    │ │ │  --restrict:
    │ │ │   Restrict the computation to a full-dimensional cone given by a list of marked polynomials. The cone is the closure of all weight vectors choosing these marked terms.
    │ │ │  --stable:
    │ │ │   Find the stable intersection of the input polynomials using tropical intersection theory. This can be slow. Most other options are ignored.
    │ │ │  --parameters value:
    │ │ │   With this option you can specify how many variables to treat as parameters instead of variables. This makes it possible to do computations where the coefficient field is the field of rational functions in the parameters.
    │ │ │ -using temporary file /tmp/M2-16949-0/240
    │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242
    │ │ │ +using temporary file /tmp/M2-22504-0/240
    │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22504-0/242
    │ │ │  This program is part of the Puiseux lifting algorithm implemented in Gfan and Singular. The Singular part of the implementation can be found in:
    │ │ │  
    │ │ │  Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig:
    │ │ │   tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, 2007 
    │ │ │  
    │ │ │  See also
    │ │ │  
    │ │ │ @@ -525,48 +525,48 @@
    │ │ │  Options:
    │ │ │  --noMult:
    │ │ │   Disable the multiplicity computation.
    │ │ │  -n value:
    │ │ │   Number of variables that should have negative weight.
    │ │ │  -c:
    │ │ │   Only output a list of vectors being the possible choices.
    │ │ │ -using temporary file /tmp/M2-16949-0/242
    │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244
    │ │ │ +using temporary file /tmp/M2-22504-0/242
    │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22504-0/244
    │ │ │  This program generates tropical equations for a tropical linear space in the Speyer sense given the tropical Pluecker coordinates as input.
    │ │ │  Options:
    │ │ │  -d value:
    │ │ │   Specify d.
    │ │ │  -n value:
    │ │ │   Specify n.
    │ │ │  --trees:
    │ │ │   list the boundary trees (assumes d=3)
    │ │ │ -using temporary file /tmp/M2-16949-0/244
    │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246
    │ │ │ +using temporary file /tmp/M2-22504-0/244
    │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22504-0/246
    │ │ │  This program computes the multiplicity of a tropical cone given a marked reduced Groebner basis for its initial ideal.
    │ │ │  Options:
    │ │ │ -using temporary file /tmp/M2-16949-0/246
    │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248
    │ │ │ +using temporary file /tmp/M2-22504-0/246
    │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22504-0/248
    │ │ │  This program will compute the tropical rank of matrix given as input. Tropical addition is MAXIMUM.
    │ │ │  Options:
    │ │ │  --kapranov:
    │ │ │   Compute Kapranov rank instead of tropical rank.
    │ │ │  --determinant:
    │ │ │   Compute the tropical determinant instead.
    │ │ │ -using temporary file /tmp/M2-16949-0/248
    │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250
    │ │ │ +using temporary file /tmp/M2-22504-0/248
    │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22504-0/250
    │ │ │  This program computes a starting pair of marked reduced Groebner bases to be used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose tropical variety is a pure d-dimensional polyhedral complex.
    │ │ │  Options:
    │ │ │  -g:
    │ │ │   Tell the program that the input is already a reduced Groebner basis.
    │ │ │  -d:
    │ │ │   Output dimension information to standard error.
    │ │ │  --stable:
    │ │ │   Find starting cone in the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │ -using temporary file /tmp/M2-16949-0/250
    │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252
    │ │ │ +using temporary file /tmp/M2-22504-0/250
    │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22504-0/252
    │ │ │  This program computes a polyhedral fan representation of the tropical variety of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let $\omega$ be a relative interior point of $d$-dimensional Groebner cone contained in the tropical variety. The input for this program is a pair of marked reduced Groebner bases with respect to the term order represented by $\omega$, tie-broken in some way. The first one is for the initial ideal $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point for a traversal of the $d$-dimensional Groebner cones contained in the tropical variety. If the ideal is not prime but with the tropical variety still being pure $d$-dimensional the program will only compute a codimension $1$ connected component of the tropical variety.
    │ │ │  Options:
    │ │ │  --symmetry:
    │ │ │   Do computations up to symmetry and group the output accordingly. If this option is used the program will read in a list of generators for a symmetry group after the pair of Groebner bases have been read. Two advantages of using this option is that the output is nicely grouped and that the computation can be done faster.
    │ │ │  --symsigns:
    │ │ │   Specify for each generator of the symmetry group an element of ${-1,+1}^n$ which by its multiplication on the variables together with the permutation will keep the ideal fixed. The vectors are given as the rows of a matrix.
    │ │ │  --nocones:
    │ │ │ @@ -574,24 +574,24 @@
    │ │ │  --disableSymmetryTest:
    │ │ │   When using --symmetry this option will disable the check that the group read off from the input actually is a symmetry group with respect to the input ideal.
    │ │ │  
    │ │ │  --stable:
    │ │ │   Traverse the stable intersection or, equivalently, pretend that the coefficients are genereric.
    │ │ │  --interrupt value:
    │ │ │   Interrupt the enumeration after a specified number of facets have been computed (works for usual symmetric traversals, but may not work in general for non-symmetric traversals or for traversals restricted to fans).
    │ │ │ -using temporary file /tmp/M2-16949-0/252
    │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254
    │ │ │ +using temporary file /tmp/M2-22504-0/252
    │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22504-0/254
    │ │ │  This program computes the tropical Weil divisor of piecewise linear (or tropical rational) function on a tropical k-cycle. See the Gfan manual for more information.
    │ │ │  Options:
    │ │ │  -i1 value:
    │ │ │   Specify the name of the Polymake input file containing the k-cycle.
    │ │ │  -i2 value:
    │ │ │   Specify the name of the Polymake input file containing the piecewise linear function.
    │ │ │ -using temporary file /tmp/M2-16949-0/254
    │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256
    │ │ │ +using temporary file /tmp/M2-22504-0/254
    │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22504-0/256
    │ │ │  This program is an experimental implementation of Groebner bases for ideals in Z[x_1,...,x_n].
    │ │ │  Several operations are supported by specifying the appropriate option:
    │ │ │   (1) computation of the reduced Groebner basis with respect to a given vector (tiebroken lexicographically),
    │ │ │   (2) computation of an initial ideal,
    │ │ │   (3) computation of the Groebner fan,
    │ │ │   (4) computation of a single Groebner cone.
    │ │ │  Since Gfan only knows polynomial rings with coefficients being elements of a field, the ideal is specified by giving a set of polynomials in the polynomial ring Q[x_1,...,x_n]. That is, by using Q instead of Z when specifying the ring. The ideal MUST BE HOMOGENEOUS (in a positive grading) for computation of the Groebner fan. Non-homogeneous ideals are allowed for the other computations if the specified weight vectors are positive.
    │ │ │ @@ -611,32 +611,32 @@
    │ │ │  --groebnerCone:
    │ │ │   Asks the program to compute a single Groebner cone containing the specified vector in its relative interior. The output is stored as a fan. The input order is: Ring ideal vector.
    │ │ │  -m:
    │ │ │   For the operations taking a vector as input, read in a list of vectors instead, and perform the operation for each vector in the list.
    │ │ │  -g:
    │ │ │   Tells the program that the input is already a Groebner basis (with the initial term of each polynomial being the first ones listed). Use this option if the usual --groebnerFan is too slow.
    │ │ │  
    │ │ │ -using temporary file /tmp/M2-16949-0/256
    │ │ │ +using temporary file /tmp/M2-22504-0/256 │ │ │
    │ │ │
    i6 : QQ[x,y];
    │ │ │
    │ │ │
    i7 : gfan {x,y};
    │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258
    │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22504-0/258
    │ │ │  Q[x1,x2]
    │ │ │  {{
    │ │ │  x2,
    │ │ │  x1}
    │ │ │  }
    │ │ │ -using temporary file /tmp/M2-16949-0/258
    │ │ │ +using temporary file /tmp/M2-22504-0/258 │ │ │
    │ │ │
    │ │ │

    Finally, if you want to be able to render Groebner fans and monomial staircases to .png files, you should install fig2dev. If it is installed in a non-standard location, then you may specify its path using programPaths.

    │ │ │
    │ │ │
    │ │ │ ├── html2text {} │ │ │ │ @@ -43,15 +43,15 @@ │ │ │ │ If you would like to see the input and output files used to communicate with │ │ │ │ gfan you can set the "keepfiles" configuration option to true. If "verbose" is │ │ │ │ set to true, gfanInterface will output the names of the temporary files used. │ │ │ │ i5 : loadPackage("gfanInterface", Configuration => { "keepfiles" => true, │ │ │ │ "verbose" => true}, Reload => true); │ │ │ │ -- warning: reloading gfanInterface; recreate instances of types from this │ │ │ │ package │ │ │ │ - -- running: /usr/bin/gfan gfan --help < /tmp/M2-16949-0/172 │ │ │ │ + -- running: /usr/bin/gfan gfan --help < /tmp/M2-22504-0/172 │ │ │ │ This is a program for computing all reduced Groebner bases of a polynomial │ │ │ │ ideal. It takes the ring and a generating set for the ideal as input. By │ │ │ │ default the enumeration is done by an almost memoryless reverse search. If the │ │ │ │ ideal is symmetric the symmetry option is useful and enumeration will be done │ │ │ │ up to symmetry using a breadth first search. The program needs a starting │ │ │ │ Groebner basis to do its computations. If the -g option is not specified it │ │ │ │ will compute one using Buchberger's algorithm. │ │ │ │ @@ -81,16 +81,16 @@ │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/172 │ │ │ │ - -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-16949-0/174 │ │ │ │ +using temporary file /tmp/M2-22504-0/172 │ │ │ │ + -- running: /usr/bin/gfan _buchberger --help < /tmp/M2-22504-0/174 │ │ │ │ This program computes a reduced lexicographic Groebner basis of the polynomial │ │ │ │ ideal given as input. The default behavior is to use Buchberger's algorithm. │ │ │ │ The ordering of the variables is $a>b>c...$ (assuming that the ring is Q │ │ │ │ [a,b,c,...]). │ │ │ │ Options: │ │ │ │ -w: │ │ │ │ Compute a Groebner basis with respect to a degree lexicographic order with │ │ │ │ @@ -111,63 +111,63 @@ │ │ │ │ minimal Groebner basis with respect to the reverse lexicographic term order. │ │ │ │ The target term order is always lexicographic. The -W option must be used. │ │ │ │ │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16949-0/174 │ │ │ │ - -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-16949-0/176 │ │ │ │ +using temporary file /tmp/M2-22504-0/174 │ │ │ │ + -- running: /usr/bin/gfan _doesidealcontain --help < /tmp/M2-22504-0/176 │ │ │ │ This program takes a marked Groebner basis of an ideal I and a set of │ │ │ │ polynomials on its input and tests if the polynomial set is contained in I by │ │ │ │ applying the division algorithm for each element. The output is 1 for true and │ │ │ │ 0 for false. │ │ │ │ Options: │ │ │ │ --remainder: │ │ │ │ Tell the program to output the remainders of the divisions rather than │ │ │ │ outputting 0 or 1. │ │ │ │ --multiplier: │ │ │ │ Reads in a polynomial that will be multiplied to the polynomial to be divided │ │ │ │ before doing the division. │ │ │ │ -using temporary file /tmp/M2-16949-0/176 │ │ │ │ - -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-16949-0/178 │ │ │ │ +using temporary file /tmp/M2-22504-0/176 │ │ │ │ + -- running: /usr/bin/gfan _fancommonrefinement --help < /tmp/M2-22504-0/178 │ │ │ │ This program takes two polyhedral fans and computes their common refinement. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ --stable: │ │ │ │ Compute the stable intersection. │ │ │ │ -using temporary file /tmp/M2-16949-0/178 │ │ │ │ - -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-16949-0/180 │ │ │ │ +using temporary file /tmp/M2-22504-0/178 │ │ │ │ + -- running: /usr/bin/gfan _fanlink --help < /tmp/M2-22504-0/180 │ │ │ │ This program takes a polyhedral fan and a vector and computes the link of the │ │ │ │ polyhedral fan around that vertex. The link will have lineality space dimension │ │ │ │ equal to the dimension of the relative open polyhedral cone of the original fan │ │ │ │ containing the vector. │ │ │ │ Options: │ │ │ │ -i value: │ │ │ │ Specify the name of the input file. │ │ │ │ --symmetry: │ │ │ │ Reads in a fan stored with symmetry. The generators of the symmetry group must │ │ │ │ be given on the standard input. │ │ │ │ │ │ │ │ --star: │ │ │ │ Computes the star instead. The star is defined as the smallest polyhedral fan │ │ │ │ containing all cones of the original fan containing the vector. │ │ │ │ -using temporary file /tmp/M2-16949-0/180 │ │ │ │ - -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-16949-0/182 │ │ │ │ +using temporary file /tmp/M2-22504-0/180 │ │ │ │ + -- running: /usr/bin/gfan _fanproduct --help < /tmp/M2-22504-0/182 │ │ │ │ This program takes two polyhedral fans and computes their product. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the first input file. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the second input file. │ │ │ │ -using temporary file /tmp/M2-16949-0/182 │ │ │ │ - -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-16949-0/184 │ │ │ │ +using temporary file /tmp/M2-22504-0/182 │ │ │ │ + -- running: /usr/bin/gfan _groebnercone --help < /tmp/M2-22504-0/184 │ │ │ │ This program computes a Groebner cone. Three different cases are handled. The │ │ │ │ input may be a marked reduced Groebner basis in which case its Groebner cone is │ │ │ │ computed. The input may be just a marked minimal basis in which case the cone │ │ │ │ computed is not a Groebner cone in the usual sense but smaller. (These cones │ │ │ │ are described in [Fukuda, Jensen, Lauritzen, Thomas]). The third possible case │ │ │ │ is that the Groebner cone is possibly lower dimensional and given by a pair of │ │ │ │ Groebner bases as it is useful to do for tropical varieties, see option --pair. │ │ │ │ @@ -184,24 +184,24 @@ │ │ │ │ --asfan: │ │ │ │ Writes the cone as a polyhedral fan with all its faces instead. In this way │ │ │ │ the extreme rays of the cone are also computed. │ │ │ │ --vectorinput: │ │ │ │ Compute a cone given list of inequalities rather than a Groebner cone. The │ │ │ │ input is an integer which specifies the dimension of the ambient space, a list │ │ │ │ of inequalities given as vectors and a list of equations. │ │ │ │ -using temporary file /tmp/M2-16949-0/184 │ │ │ │ - -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-16949-0/186 │ │ │ │ +using temporary file /tmp/M2-22504-0/184 │ │ │ │ + -- running: /usr/bin/gfan _homogeneityspace --help < /tmp/M2-22504-0/186 │ │ │ │ This program computes the homogeneity space of a list of polynomials - as a │ │ │ │ cone. Thus generators for the homogeneity space are found in the section │ │ │ │ LINEALITY_SPACE. If you wish the homogeneity space of an ideal you should first │ │ │ │ compute a set of homogeneous generators and call the program on these. A │ │ │ │ reduced Groebner basis will always suffice for this purpose. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/186 │ │ │ │ - -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-16949-0/188 │ │ │ │ +using temporary file /tmp/M2-22504-0/186 │ │ │ │ + -- running: /usr/bin/gfan _homogenize --help < /tmp/M2-22504-0/188 │ │ │ │ This program homogenises a list of polynomials by introducing an extra │ │ │ │ variable. The name of the variable to be introduced is read from the input │ │ │ │ after the list of polynomials. Without the -w option the homogenisation is done │ │ │ │ with respect to total degree. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[x,y]{y-1} │ │ │ │ @@ -217,16 +217,16 @@ │ │ │ │ Specify a homogenisation vector. The length of the vector must be the same as │ │ │ │ the number of variables in the ring. The vector is read from the input after │ │ │ │ the list of polynomials. │ │ │ │ │ │ │ │ -H: │ │ │ │ Let the name of the new variable be H rather than reading in a name from the │ │ │ │ input. │ │ │ │ -using temporary file /tmp/M2-16949-0/188 │ │ │ │ - -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-16949-0/190 │ │ │ │ +using temporary file /tmp/M2-22504-0/188 │ │ │ │ + -- running: /usr/bin/gfan _initialforms --help < /tmp/M2-22504-0/190 │ │ │ │ This program converts a list of polynomials to a list of their initial forms │ │ │ │ with respect to the vector given after the list. │ │ │ │ Options: │ │ │ │ --ideal: │ │ │ │ Treat input as an ideal. This will make the program compute the initial ideal │ │ │ │ of the ideal generated by the input polynomials. The computation is done by │ │ │ │ computing a Groebner basis with respect to the given vector. The vector must be │ │ │ │ @@ -242,16 +242,16 @@ │ │ │ │ --mark: │ │ │ │ If the --pair option is and the --ideal option is not used this option will │ │ │ │ still make sure that the second output basis is marked consistently with the │ │ │ │ vector. │ │ │ │ --list: │ │ │ │ Read in a list of vectors instead of a single vector and produce a list of │ │ │ │ polynomial sets as output. │ │ │ │ -using temporary file /tmp/M2-16949-0/190 │ │ │ │ - -- running: /usr/bin/gfan _interactive --help < /tmp/M2-16949-0/192 │ │ │ │ +using temporary file /tmp/M2-22504-0/190 │ │ │ │ + -- running: /usr/bin/gfan _interactive --help < /tmp/M2-22504-0/192 │ │ │ │ This is a program for doing interactive walks in the Groebner fan of an ideal. │ │ │ │ The input is a Groebner basis defining the starting Groebner cone of the walk. │ │ │ │ The program will list all flippable facets of the Groebner cone and ask the │ │ │ │ user to choose one. The user types in the index (number) of the facet in the │ │ │ │ list. The program will walk through the selected facet and display the new │ │ │ │ Groebner basis and a list of new facet normals for the user to choose from. │ │ │ │ Since the program reads the user's choices through the the standard input it is │ │ │ │ @@ -281,54 +281,54 @@ │ │ │ │ -W: │ │ │ │ Print weight vector. This will make the program print an interior vector of │ │ │ │ the current Groebner cone and a relative interior point for each flippable │ │ │ │ facet of the current Groebner cone. │ │ │ │ │ │ │ │ --tropical: │ │ │ │ Traverse a tropical variety interactively. │ │ │ │ -using temporary file /tmp/M2-16949-0/192 │ │ │ │ - -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-16949-0/194 │ │ │ │ +using temporary file /tmp/M2-22504-0/192 │ │ │ │ + -- running: /usr/bin/gfan _ismarkedgroebnerbasis --help < /tmp/M2-22504-0/194 │ │ │ │ This program checks if a set of marked polynomials is a Groebner basis with │ │ │ │ respect to its marking. First it is checked if the markings are consistent with │ │ │ │ respect to a positive vector. Then Buchberger's S-criterion is checked. The │ │ │ │ output is boolean value. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/194 │ │ │ │ - -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-16949-0/196 │ │ │ │ +using temporary file /tmp/M2-22504-0/194 │ │ │ │ + -- running: /usr/bin/gfan _krulldimension --help < /tmp/M2-22504-0/196 │ │ │ │ Takes an ideal $I$ and computes the Krull dimension of R/I where R is the │ │ │ │ polynomial ring. This is done by first computing a Groebner basis. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -using temporary file /tmp/M2-16949-0/196 │ │ │ │ - -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-16949-0/198 │ │ │ │ +using temporary file /tmp/M2-22504-0/196 │ │ │ │ + -- running: /usr/bin/gfan _latticeideal --help < /tmp/M2-22504-0/198 │ │ │ │ This program computes the lattice ideal of a lattice. The input is a list of │ │ │ │ generators for the lattice. │ │ │ │ Options: │ │ │ │ -t: │ │ │ │ Compute the toric ideal of the matrix whose rows are given on the input │ │ │ │ instead. │ │ │ │ --convert: │ │ │ │ Does not do any computation, but just converts the vectors to binomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/198 │ │ │ │ - -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-16949-0/200 │ │ │ │ +using temporary file /tmp/M2-22504-0/198 │ │ │ │ + -- running: /usr/bin/gfan _leadingterms --help < /tmp/M2-22504-0/200 │ │ │ │ This program converts a list of polynomials to a list of their leading terms. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ Do the same thing for a list of polynomial sets. That is, output the set of │ │ │ │ sets of leading terms. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/200 │ │ │ │ - -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-16949-0/202 │ │ │ │ +using temporary file /tmp/M2-22504-0/200 │ │ │ │ + -- running: /usr/bin/gfan _markpolynomialset --help < /tmp/M2-22504-0/202 │ │ │ │ This program marks a set of polynomials with respect to the vector given at the │ │ │ │ end of the input, meaning that the largest terms are moved to the front. In │ │ │ │ case of a tie the lexicographic term order with $a>b>c...$ is used to break it. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/202 │ │ │ │ - -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-16949-0/204 │ │ │ │ +using temporary file /tmp/M2-22504-0/202 │ │ │ │ + -- running: /usr/bin/gfan _minkowskisum --help < /tmp/M2-22504-0/204 │ │ │ │ This is a program for computing the normal fan of the Minkowski sum of the │ │ │ │ Newton polytopes of a list of polynomials. │ │ │ │ Options: │ │ │ │ --symmetry: │ │ │ │ Tells the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ideal. The program checks that the ideal stays │ │ │ │ fixed when permuting the variables with respect to elements in the group. The │ │ │ │ @@ -338,16 +338,16 @@ │ │ │ │ --disableSymmetryTest: │ │ │ │ When using --symmetry this option will disable the check that the group read │ │ │ │ off from the input actually is a symmetry group with respect to the input │ │ │ │ ideal. │ │ │ │ │ │ │ │ --nocones: │ │ │ │ Tell the program to not list cones in the output. │ │ │ │ -using temporary file /tmp/M2-16949-0/204 │ │ │ │ - -- running: /usr/bin/gfan _minors --help < /tmp/M2-16949-0/206 │ │ │ │ +using temporary file /tmp/M2-22504-0/204 │ │ │ │ + -- running: /usr/bin/gfan _minors --help < /tmp/M2-22504-0/206 │ │ │ │ This program will generate the r*r minors of a d*n matrix of indeterminates. │ │ │ │ Options: │ │ │ │ -r value: │ │ │ │ Specify r. │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ @@ -365,16 +365,16 @@ │ │ │ │ Produces a list of generators for the group of symmetries keeping the set of │ │ │ │ minors fixed. (Only without --names). │ │ │ │ --parametrize: │ │ │ │ Parametrize the set of d times n matrices of Barvinok rank less than or equal │ │ │ │ to r-1 by a list of tropical polynomials. │ │ │ │ --ultrametric: │ │ │ │ Produce tropical equations cutting out the ultrametrics. │ │ │ │ -using temporary file /tmp/M2-16949-0/206 │ │ │ │ - -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-16949-0/208 │ │ │ │ +using temporary file /tmp/M2-22504-0/206 │ │ │ │ + -- running: /usr/bin/gfan _mixedvolume --help < /tmp/M2-22504-0/208 │ │ │ │ This program computes the mixed volume of the Newton polytopes of a list of │ │ │ │ polynomials. The ring is specified on the input. After this follows the list of │ │ │ │ polynomials. │ │ │ │ Options: │ │ │ │ --vectorinput: │ │ │ │ Read in a list of point configurations instead of a polynomial ring and a list │ │ │ │ of polynomials. │ │ │ │ @@ -388,25 +388,25 @@ │ │ │ │ Use Katsura-n example instead of reading input. │ │ │ │ --gaukwa value: │ │ │ │ Use Gaukwa-n example instead of reading input. │ │ │ │ --eco value: │ │ │ │ Use Eco-n example instead of reading input. │ │ │ │ -j value: │ │ │ │ Number of threads │ │ │ │ -using temporary file /tmp/M2-16949-0/208 │ │ │ │ - -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-16949-0/210 │ │ │ │ +using temporary file /tmp/M2-22504-0/208 │ │ │ │ + -- running: /usr/bin/gfan _polynomialsetunion --help < /tmp/M2-22504-0/210 │ │ │ │ This program computes the union of a list of polynomial sets given as input. │ │ │ │ The polynomials must all belong to the same ring. The ring is specified on the │ │ │ │ input. After this follows the list of polynomial sets. │ │ │ │ Options: │ │ │ │ -s: │ │ │ │ Sort output by degree. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/210 │ │ │ │ - -- running: /usr/bin/gfan _render --help < /tmp/M2-16949-0/212 │ │ │ │ +using temporary file /tmp/M2-22504-0/210 │ │ │ │ + -- running: /usr/bin/gfan _render --help < /tmp/M2-22504-0/212 │ │ │ │ This program renders a Groebner fan as an xfig file. To be more precise, the │ │ │ │ input is the list of all reduced Groebner bases of an ideal. The output is a │ │ │ │ drawing of the Groebner fan intersected with a triangle. The corners of the │ │ │ │ triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. │ │ │ │ If there are more than three variables in the ring these coordinates are │ │ │ │ extended with zeros. It is possible to shift the 1 entry cyclic with the option │ │ │ │ --shiftVariables. │ │ │ │ @@ -414,16 +414,16 @@ │ │ │ │ -L: │ │ │ │ Make the triangle larger so that the shape of the Groebner region appears. │ │ │ │ --shiftVariables value: │ │ │ │ Shift the positions of the variables in the drawing. For example with the │ │ │ │ value equal to 1 the corners will be right: (0,1,0,0,...), left: (0,0,1,0,...) │ │ │ │ and top: (0,0,0,1,...). The shifting is done modulo the number of variables in │ │ │ │ the polynomial ring. The default value is 0. │ │ │ │ -using temporary file /tmp/M2-16949-0/212 │ │ │ │ - -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-16949-0/214 │ │ │ │ +using temporary file /tmp/M2-22504-0/212 │ │ │ │ + -- running: /usr/bin/gfan _renderstaircase --help < /tmp/M2-22504-0/214 │ │ │ │ This program renders a staircase diagram of a monomial initial ideal to an xfig │ │ │ │ file. The input is a Groebner basis of a (not necessarily monomial) polynomial │ │ │ │ ideal. The initial ideal is given by the leading terms in the Groebner basis. │ │ │ │ Using the -m option it is possible to render more than one staircase diagram. │ │ │ │ The program only works for ideals in a polynomial ring with three variables. │ │ │ │ Options: │ │ │ │ -m: │ │ │ │ @@ -436,16 +436,16 @@ │ │ │ │ number is large enough to give a correct picture of the standard monomials. The │ │ │ │ default value is 8. │ │ │ │ │ │ │ │ -w value: │ │ │ │ Width. Specifies the number of staircase diagrams per row in the xfig file. │ │ │ │ The default value is 5. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/214 │ │ │ │ - -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-16949-0/216 │ │ │ │ +using temporary file /tmp/M2-22504-0/214 │ │ │ │ + -- running: /usr/bin/gfan _resultantfan --help < /tmp/M2-22504-0/216 │ │ │ │ This program computes the resultant fan as defined in "Computing Tropical │ │ │ │ Resultants" by Jensen and Yu. The input is a polynomial ring followed by │ │ │ │ polynomials, whose coefficients are ignored. The output is the fan of │ │ │ │ coefficients such that the input system has a tropical solution. │ │ │ │ Options: │ │ │ │ --codimension: │ │ │ │ Compute only the codimension of the resultant fan and return. │ │ │ │ @@ -473,28 +473,28 @@ │ │ │ │ of polynomials. │ │ │ │ │ │ │ │ --projection: │ │ │ │ Use the projection method to compute the resultant fan. This works only if the │ │ │ │ resultant fan is a hypersurface. If this option is combined with --special, │ │ │ │ then the output fan lives in the subspace of the non-specialized coordinates. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/216 │ │ │ │ - -- running: /usr/bin/gfan _saturation --help < /tmp/M2-16949-0/218 │ │ │ │ +using temporary file /tmp/M2-22504-0/216 │ │ │ │ + -- running: /usr/bin/gfan _saturation --help < /tmp/M2-22504-0/218 │ │ │ │ This program computes the saturation of the input ideal with the product of the │ │ │ │ variables x_1,...,x_n. The ideal does not have to be homogeneous. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Tell the program that the input is a homogeneous ideal (with homogeneous │ │ │ │ generators). │ │ │ │ │ │ │ │ --noideal: │ │ │ │ Do not treat input as an ideal but just factor out common monomial factors of │ │ │ │ the input polynomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/218 │ │ │ │ - -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-16949-0/220 │ │ │ │ +using temporary file /tmp/M2-22504-0/218 │ │ │ │ + -- running: /usr/bin/gfan _secondaryfan --help < /tmp/M2-22504-0/220 │ │ │ │ This program computes the secondary fan of a vector configuration. The │ │ │ │ configuration is given as an ordered list of vectors. In order to compute the │ │ │ │ secondary fan of a point configuration an additional coordinate of ones must be │ │ │ │ added. For example {(1,0),(1,1),(1,2),(1,3)}. │ │ │ │ Options: │ │ │ │ --unimodular: │ │ │ │ Use heuristics to search for unimodular triangulation rather than computing │ │ │ │ @@ -523,103 +523,103 @@ │ │ │ │ Tells the program not to output the CONES and MAXIMAL_CONES sections, but │ │ │ │ still output CONES_COMPRESSED and MAXIMAL_CONES_COMPRESSED if --symmetry is │ │ │ │ used. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/220 │ │ │ │ - -- running: /usr/bin/gfan _stats --help < /tmp/M2-16949-0/222 │ │ │ │ +using temporary file /tmp/M2-22504-0/220 │ │ │ │ + -- running: /usr/bin/gfan _stats --help < /tmp/M2-22504-0/222 │ │ │ │ This program takes a list of reduced Groebner bases for the same ideal and │ │ │ │ computes various statistics. The following information is listed: the number of │ │ │ │ bases in the input, the number of variables, the dimension of the homogeneity │ │ │ │ space, the maximal total degree of any polynomial in the input and the minimal │ │ │ │ total degree of any basis in the input, the maximal number of polynomials and │ │ │ │ terms in a basis in the input. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/222 │ │ │ │ - -- running: /usr/bin/gfan _substitute --help < /tmp/M2-16949-0/224 │ │ │ │ +using temporary file /tmp/M2-22504-0/222 │ │ │ │ + -- running: /usr/bin/gfan _substitute --help < /tmp/M2-22504-0/224 │ │ │ │ This program changes the variable names of a polynomial ring. The input is a │ │ │ │ polynomial ring, a polynomial set in the ring and a new polynomial ring with │ │ │ │ the same coefficient field but different variable names. The output is the │ │ │ │ polynomial set written with the variable names of the second polynomial ring. │ │ │ │ Example: │ │ │ │ Input: │ │ │ │ Q[a,b,c,d]{2a-3b,c+d}Q[b,a,c,x] │ │ │ │ Output: │ │ │ │ Q[b,a,c,x]{2*b-3*a,c+x} │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/224 │ │ │ │ - -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-16949-0/226 │ │ │ │ +using temporary file /tmp/M2-22504-0/224 │ │ │ │ + -- running: /usr/bin/gfan _tolatex --help < /tmp/M2-22504-0/226 │ │ │ │ This program converts ASCII math to TeX math. The data-type is specified by the │ │ │ │ options. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Add a header to the output. Using this option the output will be LaTeXable │ │ │ │ right away. │ │ │ │ --polynomialset_: │ │ │ │ The data to be converted is a list of polynomials. │ │ │ │ --polynomialsetlist_: │ │ │ │ The data to be converted is a list of lists of polynomials. │ │ │ │ -using temporary file /tmp/M2-16949-0/226 │ │ │ │ - -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-16949-0/228 │ │ │ │ +using temporary file /tmp/M2-22504-0/226 │ │ │ │ + -- running: /usr/bin/gfan _topolyhedralfan --help < /tmp/M2-22504-0/228 │ │ │ │ This program takes a list of reduced Groebner bases and produces the fan of all │ │ │ │ faces of these. In this way by giving the complete list of reduced Groebner │ │ │ │ bases, the Groebner fan can be computed as a polyhedral complex. The option -- │ │ │ │ restrict lets the user choose between computing the Groebner fan or the │ │ │ │ restricted Groebner fan. │ │ │ │ Options: │ │ │ │ --restrict: │ │ │ │ Add an inequality for each coordinate, so that the the cones are restricted to │ │ │ │ the non-negative orthant. │ │ │ │ --symmetry: │ │ │ │ Tell the program to read in generators for a group of symmetries (subgroup of │ │ │ │ $S_n$) after having read in the ring. The output is grouped according to these │ │ │ │ symmetries. Only one representative for each orbit is needed on the input. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/228 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-16949-0/230 │ │ │ │ +using temporary file /tmp/M2-22504-0/228 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbasis --help < /tmp/M2-22504-0/230 │ │ │ │ This program computes a tropical basis for an ideal defining a tropical curve. │ │ │ │ Defining a tropical curve means that the Krull dimension of R/I is at most 1 + │ │ │ │ the dimension of the homogeneity space of I where R is the polynomial ring. The │ │ │ │ input is a generating set for the ideal. If the input is not homogeneous option │ │ │ │ -h must be used. │ │ │ │ Options: │ │ │ │ -h: │ │ │ │ Homogenise the input before computing a tropical basis and dehomogenise the │ │ │ │ output. This is needed if the input generators are not already homogeneous. │ │ │ │ -using temporary file /tmp/M2-16949-0/230 │ │ │ │ - -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-16949-0/232 │ │ │ │ +using temporary file /tmp/M2-22504-0/230 │ │ │ │ + -- running: /usr/bin/gfan _tropicalbruteforce --help < /tmp/M2-22504-0/232 │ │ │ │ This program takes a marked reduced Groebner basis for a homogeneous ideal and │ │ │ │ computes the tropical variety of the ideal as a subfan of the Groebner fan. The │ │ │ │ program is slow but works for any homogeneous ideal. If you know that your │ │ │ │ ideal is prime over the complex numbers or you simply know that its tropical │ │ │ │ variety is pure and connected in codimension one then use │ │ │ │ gfan_tropicalstartingcone and gfan_tropicaltraverse instead. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/232 │ │ │ │ - -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-16949-0/234 │ │ │ │ +using temporary file /tmp/M2-22504-0/232 │ │ │ │ + -- running: /usr/bin/gfan _tropicalevaluation --help < /tmp/M2-22504-0/234 │ │ │ │ This program evaluates a tropical polynomial function in a given set of points. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/234 │ │ │ │ - -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-16949-0/236 │ │ │ │ +using temporary file /tmp/M2-22504-0/234 │ │ │ │ + -- running: /usr/bin/gfan _tropicalfunction --help < /tmp/M2-22504-0/236 │ │ │ │ This program takes a polynomial and tropicalizes it. The output is piecewise │ │ │ │ linear function represented by a fan whose cones are the linear regions. Each │ │ │ │ ray of the fan gets the value of the tropical function assigned to it. In other │ │ │ │ words this program computes the normal fan of the Newton polytope of the input │ │ │ │ polynomial with additional information.Options: │ │ │ │ --exponents: │ │ │ │ Tell program to read a list of exponent vectors instead. │ │ │ │ -using temporary file /tmp/M2-16949-0/236 │ │ │ │ - -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-16949-0/238 │ │ │ │ +using temporary file /tmp/M2-22504-0/236 │ │ │ │ + -- running: /usr/bin/gfan _tropicalhypersurface --help < /tmp/M2-22504-0/238 │ │ │ │ This program computes the tropical hypersurface defined by a principal ideal. │ │ │ │ The input is the polynomial ring followed by a set containing just a generator │ │ │ │ of the ideal.Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/238 │ │ │ │ - -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-16949-0/240 │ │ │ │ +using temporary file /tmp/M2-22504-0/238 │ │ │ │ + -- running: /usr/bin/gfan _tropicalintersection --help < /tmp/M2-22504-0/240 │ │ │ │ This program computes the set theoretical intersection of a set of tropical │ │ │ │ hypersurfaces (or to be precise, their common refinement as a fan). The input │ │ │ │ is a list of polynomials with each polynomial defining a hypersurface. │ │ │ │ Considering tropical hypersurfaces as fans, the intersection can be computed as │ │ │ │ the common refinement of these. Thus the output is a fan whose support is the │ │ │ │ intersection of the tropical hypersurfaces. │ │ │ │ Options: │ │ │ │ @@ -656,16 +656,16 @@ │ │ │ │ --stable: │ │ │ │ Find the stable intersection of the input polynomials using tropical │ │ │ │ intersection theory. This can be slow. Most other options are ignored. │ │ │ │ --parameters value: │ │ │ │ With this option you can specify how many variables to treat as parameters │ │ │ │ instead of variables. This makes it possible to do computations where the │ │ │ │ coefficient field is the field of rational functions in the parameters. │ │ │ │ -using temporary file /tmp/M2-16949-0/240 │ │ │ │ - -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-16949-0/242 │ │ │ │ +using temporary file /tmp/M2-22504-0/240 │ │ │ │ + -- running: /usr/bin/gfan _tropicallifting --help < /tmp/M2-22504-0/242 │ │ │ │ This program is part of the Puiseux lifting algorithm implemented in Gfan and │ │ │ │ Singular. The Singular part of the implementation can be found in: │ │ │ │ │ │ │ │ Anders Nedergaard Jensen, Hannah Markwig, Thomas Markwig: │ │ │ │ tropical.lib. A SINGULAR 3.0 library for computations in tropical geometry, │ │ │ │ 2007 │ │ │ │ │ │ │ │ @@ -693,54 +693,54 @@ │ │ │ │ Options: │ │ │ │ --noMult: │ │ │ │ Disable the multiplicity computation. │ │ │ │ -n value: │ │ │ │ Number of variables that should have negative weight. │ │ │ │ -c: │ │ │ │ Only output a list of vectors being the possible choices. │ │ │ │ -using temporary file /tmp/M2-16949-0/242 │ │ │ │ - -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-16949-0/244 │ │ │ │ +using temporary file /tmp/M2-22504-0/242 │ │ │ │ + -- running: /usr/bin/gfan _tropicallinearspace --help < /tmp/M2-22504-0/244 │ │ │ │ This program generates tropical equations for a tropical linear space in the │ │ │ │ Speyer sense given the tropical Pluecker coordinates as input. │ │ │ │ Options: │ │ │ │ -d value: │ │ │ │ Specify d. │ │ │ │ -n value: │ │ │ │ Specify n. │ │ │ │ --trees: │ │ │ │ list the boundary trees (assumes d=3) │ │ │ │ -using temporary file /tmp/M2-16949-0/244 │ │ │ │ - -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-16949-0/246 │ │ │ │ +using temporary file /tmp/M2-22504-0/244 │ │ │ │ + -- running: /usr/bin/gfan _tropicalmultiplicity --help < /tmp/M2-22504-0/246 │ │ │ │ This program computes the multiplicity of a tropical cone given a marked │ │ │ │ reduced Groebner basis for its initial ideal. │ │ │ │ Options: │ │ │ │ -using temporary file /tmp/M2-16949-0/246 │ │ │ │ - -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-16949-0/248 │ │ │ │ +using temporary file /tmp/M2-22504-0/246 │ │ │ │ + -- running: /usr/bin/gfan _tropicalrank --help < /tmp/M2-22504-0/248 │ │ │ │ This program will compute the tropical rank of matrix given as input. Tropical │ │ │ │ addition is MAXIMUM. │ │ │ │ Options: │ │ │ │ --kapranov: │ │ │ │ Compute Kapranov rank instead of tropical rank. │ │ │ │ --determinant: │ │ │ │ Compute the tropical determinant instead. │ │ │ │ -using temporary file /tmp/M2-16949-0/248 │ │ │ │ - -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-16949-0/250 │ │ │ │ +using temporary file /tmp/M2-22504-0/248 │ │ │ │ + -- running: /usr/bin/gfan _tropicalstartingcone --help < /tmp/M2-22504-0/250 │ │ │ │ This program computes a starting pair of marked reduced Groebner bases to be │ │ │ │ used as input for gfan_tropicaltraverse. The input is a homogeneous ideal whose │ │ │ │ tropical variety is a pure d-dimensional polyhedral complex. │ │ │ │ Options: │ │ │ │ -g: │ │ │ │ Tell the program that the input is already a reduced Groebner basis. │ │ │ │ -d: │ │ │ │ Output dimension information to standard error. │ │ │ │ --stable: │ │ │ │ Find starting cone in the stable intersection or, equivalently, pretend that │ │ │ │ the coefficients are genereric. │ │ │ │ -using temporary file /tmp/M2-16949-0/250 │ │ │ │ - -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-16949-0/252 │ │ │ │ +using temporary file /tmp/M2-22504-0/250 │ │ │ │ + -- running: /usr/bin/gfan _tropicaltraverse --help < /tmp/M2-22504-0/252 │ │ │ │ This program computes a polyhedral fan representation of the tropical variety │ │ │ │ of a homogeneous prime ideal $I$. Let $d$ be the Krull dimension of $I$ and let │ │ │ │ $\omega$ be a relative interior point of $d$-dimensional Groebner cone │ │ │ │ contained in the tropical variety. The input for this program is a pair of │ │ │ │ marked reduced Groebner bases with respect to the term order represented by │ │ │ │ $\omega$, tie-broken in some way. The first one is for the initial ideal │ │ │ │ $in_\omega(I)$ the second one for $I$ itself. The pair is the starting point │ │ │ │ @@ -770,27 +770,27 @@ │ │ │ │ --stable: │ │ │ │ Traverse the stable intersection or, equivalently, pretend that the │ │ │ │ coefficients are genereric. │ │ │ │ --interrupt value: │ │ │ │ Interrupt the enumeration after a specified number of facets have been │ │ │ │ computed (works for usual symmetric traversals, but may not work in general for │ │ │ │ non-symmetric traversals or for traversals restricted to fans). │ │ │ │ -using temporary file /tmp/M2-16949-0/252 │ │ │ │ - -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-16949-0/254 │ │ │ │ +using temporary file /tmp/M2-22504-0/252 │ │ │ │ + -- running: /usr/bin/gfan _tropicalweildivisor --help < /tmp/M2-22504-0/254 │ │ │ │ This program computes the tropical Weil divisor of piecewise linear (or │ │ │ │ tropical rational) function on a tropical k-cycle. See the Gfan manual for more │ │ │ │ information. │ │ │ │ Options: │ │ │ │ -i1 value: │ │ │ │ Specify the name of the Polymake input file containing the k-cycle. │ │ │ │ -i2 value: │ │ │ │ Specify the name of the Polymake input file containing the piecewise linear │ │ │ │ function. │ │ │ │ -using temporary file /tmp/M2-16949-0/254 │ │ │ │ - -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-16949-0/256 │ │ │ │ +using temporary file /tmp/M2-22504-0/254 │ │ │ │ + -- running: /usr/bin/gfan _overintegers --help < /tmp/M2-22504-0/256 │ │ │ │ This program is an experimental implementation of Groebner bases for ideals in │ │ │ │ Z[x_1,...,x_n]. │ │ │ │ Several operations are supported by specifying the appropriate option: │ │ │ │ (1) computation of the reduced Groebner basis with respect to a given vector │ │ │ │ (tiebroken lexicographically), │ │ │ │ (2) computation of an initial ideal, │ │ │ │ (3) computation of the Groebner fan, │ │ │ │ @@ -825,23 +825,23 @@ │ │ │ │ For the operations taking a vector as input, read in a list of vectors │ │ │ │ instead, and perform the operation for each vector in the list. │ │ │ │ -g: │ │ │ │ Tells the program that the input is already a Groebner basis (with the initial │ │ │ │ term of each polynomial being the first ones listed). Use this option if the │ │ │ │ usual --groebnerFan is too slow. │ │ │ │ │ │ │ │ -using temporary file /tmp/M2-16949-0/256 │ │ │ │ +using temporary file /tmp/M2-22504-0/256 │ │ │ │ i6 : QQ[x,y]; │ │ │ │ i7 : gfan {x,y}; │ │ │ │ - -- running: /usr/bin/gfan _bases < /tmp/M2-16949-0/258 │ │ │ │ + -- running: /usr/bin/gfan _bases < /tmp/M2-22504-0/258 │ │ │ │ Q[x1,x2] │ │ │ │ {{ │ │ │ │ x2, │ │ │ │ x1} │ │ │ │ } │ │ │ │ -using temporary file /tmp/M2-16949-0/258 │ │ │ │ +using temporary file /tmp/M2-22504-0/258 │ │ │ │ Finally, if you want to be able to render Groebner fans and monomial staircases │ │ │ │ to .png files, you should install fig2dev. If it is installed in a non-standard │ │ │ │ location, then you may specify its path using _p_r_o_g_r_a_m_P_a_t_h_s. │ │ │ │ =============================================================================== │ │ │ │ The source of this document is in /build/reproducible-path/macaulay2- │ │ │ │ 1.25.11+ds/M2/Macaulay2/packages/gfanInterface.m2:2630:0. │ │ ├── ./usr/share/info/AInfinity.info.gz │ │ │ ├── AInfinity.info │ │ │ │ @@ -6133,16 +6133,16 @@ │ │ │ │ 00017f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017f70: 2b0a 7c69 3320 3a20 656c 6170 7365 6454 +.|i3 : elapsedT │ │ │ │ 00017f80: 696d 6520 6275 726b 6552 6573 6f6c 7574 ime burkeResolut │ │ │ │ 00017f90: 696f 6e28 4d2c 2037 2c20 4368 6563 6b20 ion(M, 7, Check │ │ │ │ 00017fa0: 3d3e 2066 616c 7365 2920 2020 2020 2020 => false) │ │ │ │ -00017fb0: 2020 2020 7c0a 7c20 2d2d 2031 2e37 3131 |.| -- 1.711 │ │ │ │ -00017fc0: 3338 7320 656c 6170 7365 6420 2020 2020 38s elapsed │ │ │ │ +00017fb0: 2020 2020 7c0a 7c20 2d2d 2031 2e35 3137 |.| -- 1.517 │ │ │ │ +00017fc0: 3273 2065 6c61 7073 6564 2020 2020 2020 2s elapsed │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ff0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ @@ -6176,16 +6176,16 @@ │ │ │ │ 000181f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018210: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ 00018220: 656c 6170 7365 6454 696d 6520 6275 726b elapsedTime burk │ │ │ │ 00018230: 6552 6573 6f6c 7574 696f 6e28 4d2c 2037 eResolution(M, 7 │ │ │ │ 00018240: 2c20 4368 6563 6b20 3d3e 2074 7275 6529 , Check => true) │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018260: 2d2d 2032 2e31 3536 3935 7320 656c 6170 -- 2.15695s elap │ │ │ │ -00018270: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ +00018260: 2d2d 2031 2e37 3834 3873 2065 6c61 7073 -- 1.7848s elaps │ │ │ │ +00018270: 6564 2020 2020 2020 2020 2020 2020 2020 ed │ │ │ │ 00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182e0: 2020 2020 7c0a 7c20 2020 2020 2031 2020 |.| 1 │ │ ├── ./usr/share/info/AdjunctionForSurfaces.info.gz │ │ │ ├── AdjunctionForSurfaces.info │ │ │ │ @@ -741,16 +741,16 @@ │ │ │ │ 00002e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00002e70: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00002e80: 6d65 2066 493d 7265 7320 4920 2020 2020 me fI=res I │ │ │ │ 00002e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3232 3837 |.| -- .02287 │ │ │ │ -00002ec0: 3931 7320 656c 6170 7365 6420 2020 2020 91s elapsed │ │ │ │ +00002eb0: 2020 207c 0a7c 202d 2d20 2e30 3330 3931 |.| -- .03091 │ │ │ │ +00002ec0: 3573 2065 6c61 7073 6564 2020 2020 2020 5s elapsed │ │ │ │ 00002ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00002f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002f30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ @@ -1596,15 +1596,15 @@ │ │ │ │ 000063b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000063d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000063e0: 7c69 3135 203a 2065 6c61 7073 6564 5469 |i15 : elapsedTi │ │ │ │ 000063f0: 6d65 2062 6574 7469 2849 273d 7472 696d me betti(I'=trim │ │ │ │ 00006400: 206b 6572 2070 6869 2920 2020 2020 2020 ker phi) │ │ │ │ 00006410: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00006420: 2e36 3730 3236 3373 2065 6c61 7073 6564 .670263s elapsed │ │ │ │ +00006420: 2e35 3833 3535 3973 2065 6c61 7073 6564 .583559s elapsed │ │ │ │ 00006430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006450: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00006460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00006490: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ @@ -1651,15 +1651,15 @@ │ │ │ │ 00006720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006750: 2d2d 2d2b 0a7c 6931 3720 3a20 656c 6170 ---+.|i17 : elap │ │ │ │ 00006760: 7365 6454 696d 6520 6261 7365 5074 733d sedTime basePts= │ │ │ │ 00006770: 7072 696d 6172 7944 6563 6f6d 706f 7369 primaryDecomposi │ │ │ │ 00006780: 7469 6f6e 2069 6465 616c 2048 3b20 7c0a tion ideal H; |. │ │ │ │ -00006790: 7c20 2d2d 2035 2e37 3737 3937 7320 656c | -- 5.77797s el │ │ │ │ +00006790: 7c20 2d2d 2035 2e35 3730 3333 7320 656c | -- 5.57033s el │ │ │ │ 000067a0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000067b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000067c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 000067d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000067f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006800: 2d2d 2d2d 2b0a 7c69 3138 203a 2074 616c ----+.|i18 : tal │ │ │ │ @@ -2608,15 +2608,15 @@ │ │ │ │ 0000a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 0000a320: 3134 203a 2065 6c61 7073 6564 5469 6d65 14 : elapsedTime │ │ │ │ 0000a330: 2073 7562 2849 2c48 2920 2020 2020 2020 sub(I,H) │ │ │ │ 0000a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a350: 2020 2020 2020 207c 0a7c 202d 2d20 2e30 |.| -- .0 │ │ │ │ -0000a360: 3133 3636 3338 7320 656c 6170 7365 6420 136638s elapsed │ │ │ │ +0000a360: 3134 3732 3431 7320 656c 6170 7365 6420 147241s elapsed │ │ │ │ 0000a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0000a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a3c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0000a3d0: 6f31 3420 3d20 6964 6561 6c20 2830 2c20 o14 = ideal (0, │ │ │ │ @@ -2648,15 +2648,15 @@ │ │ │ │ 0000a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a5a0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 656c -----+.|i16 : el │ │ │ │ 0000a5b0: 6170 7365 6454 696d 6520 6265 7474 6928 apsedTime betti( │ │ │ │ 0000a5c0: 4927 3d74 7269 6d20 6b65 7220 7068 6929 I'=trim ker phi) │ │ │ │ 0000a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000a5e0: 7c0a 7c20 2d2d 202e 3035 3633 3733 3173 |.| -- .0563731s │ │ │ │ +0000a5e0: 7c0a 7c20 2d2d 202e 3036 3836 3233 3573 |.| -- .0686235s │ │ │ │ 0000a5f0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ 0000a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a610: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ @@ -2700,15 +2700,15 @@ │ │ │ │ 0000a8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a8e0: 0a7c 6931 3820 3a20 656c 6170 7365 6454 .|i18 : elapsedT │ │ │ │ 0000a8f0: 696d 6520 6261 7365 5074 733d 7072 696d ime basePts=prim │ │ │ │ 0000a900: 6172 7944 6563 6f6d 706f 7369 7469 6f6e aryDecomposition │ │ │ │ 0000a910: 2069 6465 616c 2048 3b20 7c0a 7c20 2d2d ideal H; |.| -- │ │ │ │ -0000a920: 2031 2e38 3334 3635 7320 656c 6170 7365 1.83465s elapse │ │ │ │ +0000a920: 2031 2e36 3535 3038 7320 656c 6170 7365 1.65508s elapse │ │ │ │ 0000a930: 6420 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a950: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0000a960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a990: 2b0a 7c69 3139 203a 2074 616c 6c79 2061 +.|i19 : tally a │ │ ├── ./usr/share/info/BGG.info.gz │ │ │ ├── BGG.info │ │ │ │ @@ -4338,16 +4338,16 @@ │ │ │ │ 00010f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00010f40: 3134 203a 2074 696d 6520 6265 7474 6920 14 : time betti │ │ │ │ 00010f50: 2846 203d 2070 7572 6552 6573 6f6c 7574 (F = pureResolut │ │ │ │ 00010f60: 696f 6e28 4d2c 7b30 2c32 2c34 7d29 2920 ion(M,{0,2,4})) │ │ │ │ 00010f70: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00010f80: 302e 3434 3039 3235 7320 2863 7075 293b 0.440925s (cpu); │ │ │ │ -00010f90: 2030 2e33 3637 3030 3473 2028 7468 7265 0.367004s (thre │ │ │ │ +00010f80: 302e 3536 3035 3335 7320 2863 7075 293b 0.560535s (cpu); │ │ │ │ +00010f90: 2030 2e34 3534 3731 3273 2028 7468 7265 0.454712s (thre │ │ │ │ 00010fa0: 6164 293b 2030 7320 2867 6329 7c0a 7c20 ad); 0s (gc)|.| │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fe0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00010ff0: 2020 2020 3020 3120 3220 2020 2020 2020 0 1 2 │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4403,16 +4403,16 @@ │ │ │ │ 00011320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00011350: 0a7c 6931 3520 3a20 7469 6d65 2062 6574 .|i15 : time bet │ │ │ │ 00011360: 7469 2028 4620 3d20 7075 7265 5265 736f ti (F = pureReso │ │ │ │ 00011370: 6c75 7469 6f6e 2831 312c 342c 7b30 2c32 lution(11,4,{0,2 │ │ │ │ 00011380: 2c34 7d29 2920 207c 0a7c 202d 2d20 7573 ,4})) |.| -- us │ │ │ │ -00011390: 6564 2030 2e34 3737 3333 3473 2028 6370 ed 0.477334s (cp │ │ │ │ -000113a0: 7529 3b20 302e 3430 3035 3337 7320 2874 u); 0.400537s (t │ │ │ │ +00011390: 6564 2030 2e35 3837 3032 3873 2028 6370 ed 0.587028s (cp │ │ │ │ +000113a0: 7529 3b20 302e 3438 3438 3537 7320 2874 u); 0.484857s (t │ │ │ │ 000113b0: 6872 6561 6429 3b20 3073 2028 6763 297c hread); 0s (gc)| │ │ │ │ 000113c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00011400: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ 00011410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Benchmark.info.gz │ │ │ ├── Benchmark.info │ │ │ │ @@ -200,71 +200,76 @@ │ │ │ │ 00000c70: 2d2d 2d2d 2b0a 7c69 3120 3a20 7275 6e42 ----+.|i1 : runB │ │ │ │ 00000c80: 656e 6368 6d61 726b 7320 2272 6573 3339 enchmarks "res39 │ │ │ │ 00000c90: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ 00000ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000cc0: 2020 2020 7c0a 7c2d 2d20 6265 6769 6e6e |.|-- beginn │ │ │ │ 00000cd0: 696e 6720 636f 6d70 7574 6174 696f 6e20 ing computation │ │ │ │ -00000ce0: 5375 6e20 4465 6320 3134 2031 353a 3331 Sun Dec 14 15:31 │ │ │ │ -00000cf0: 3a34 3220 5554 4320 3230 3235 2020 2020 :42 UTC 2025 │ │ │ │ +00000ce0: 5765 6420 4a61 6e20 2037 2031 323a 3236 Wed Jan 7 12:26 │ │ │ │ +00000cf0: 3a35 3020 5554 4320 3230 3236 2020 2020 :50 UTC 2026 │ │ │ │ 00000d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000d10: 2020 2020 7c0a 7c2d 2d20 4c69 6e75 7820 |.|-- Linux │ │ │ │ 00000d20: 7362 7569 6c64 2036 2e31 322e 3537 2b64 sbuild 6.12.57+d │ │ │ │ -00000d30: 6562 3133 2d61 6d64 3634 2023 3120 534d eb13-amd64 #1 SM │ │ │ │ -00000d40: 5020 5052 4545 4d50 545f 4459 4e41 4d49 P PREEMPT_DYNAMI │ │ │ │ -00000d50: 4320 4465 6269 616e 2036 2e31 322e 3537 C Debian 6.12.57 │ │ │ │ -00000d60: 2d31 2020 7c0a 7c2d 2d20 414d 4420 4550 -1 |.|-- AMD EP │ │ │ │ -00000d70: 5943 2037 3730 3250 2036 342d 436f 7265 YC 7702P 64-Core │ │ │ │ -00000d80: 2050 726f 6365 7373 6f72 2020 4175 7468 Processor Auth │ │ │ │ -00000d90: 656e 7469 6341 4d44 2020 6370 7520 4d48 enticAMD cpu MH │ │ │ │ -00000da0: 7a20 3139 3936 2e32 3439 2020 2020 2020 z 1996.249 │ │ │ │ +00000d30: 6562 3133 2d63 6c6f 7564 2d61 6d64 3634 eb13-cloud-amd64 │ │ │ │ +00000d40: 2023 3120 534d 5020 5052 4545 4d50 545f #1 SMP PREEMPT_ │ │ │ │ +00000d50: 4459 4e41 4d49 4320 4465 6269 616e 2020 DYNAMIC Debian │ │ │ │ +00000d60: 2020 2020 7c0a 7c2d 2d20 496e 7465 6c20 |.|-- Intel │ │ │ │ +00000d70: 5865 6f6e 2050 726f 6365 7373 6f72 2028 Xeon Processor ( │ │ │ │ +00000d80: 536b 796c 616b 652c 2049 4252 5329 2020 Skylake, IBRS) │ │ │ │ +00000d90: 4765 6e75 696e 6549 6e74 656c 2020 6370 GenuineIntel cp │ │ │ │ +00000da0: 7520 4d48 7a20 3230 3939 2e39 3938 2020 u MHz 2099.998 │ │ │ │ 00000db0: 2020 2020 7c0a 7c2d 2d20 4d61 6361 756c |.|-- Macaul │ │ │ │ 00000dc0: 6179 3220 312e 3235 2e31 312c 2063 6f6d ay2 1.25.11, com │ │ │ │ 00000dd0: 7069 6c65 6420 7769 7468 2067 6363 2031 piled with gcc 1 │ │ │ │ 00000de0: 352e 322e 3020 2020 2020 2020 2020 2020 5.2.0 │ │ │ │ 00000df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000e00: 2020 2020 7c0a 7c2d 2d20 7265 7333 393a |.|-- res39: │ │ │ │ 00000e10: 2072 6573 206f 6620 6120 6765 6e65 7269 res of a generi │ │ │ │ 00000e20: 6320 3320 6279 2039 206d 6174 7269 7820 c 3 by 9 matrix │ │ │ │ -00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3135 over ZZ/101: .15 │ │ │ │ -00000e40: 3332 3135 2073 6563 6f6e 6473 2020 2020 3215 seconds │ │ │ │ +00000e30: 6f76 6572 205a 5a2f 3130 313a 202e 3137 over ZZ/101: .17 │ │ │ │ +00000e40: 3532 3234 2073 6563 6f6e 6473 2020 2020 5224 seconds │ │ │ │ 00000e50: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ 00000e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ea0: 2d2d 2d2d 7c0a 7c28 3230 3235 2d31 312d ----|.|(2025-11- │ │ │ │ -00000eb0: 3035 2920 7838 365f 3634 2047 4e55 2f4c 05) x86_64 GNU/L │ │ │ │ -00000ec0: 696e 7578 2020 2020 2020 2020 2020 2020 inux │ │ │ │ +00000ea0: 2d2d 2d2d 7c0a 7c36 2e31 322e 3537 2d31 ----|.|6.12.57-1 │ │ │ │ +00000eb0: 2028 3230 3235 2d31 312d 3035 2920 7838 (2025-11-05) x8 │ │ │ │ +00000ec0: 365f 3634 2047 4e55 2f4c 696e 7578 2020 6_64 GNU/Linux │ │ │ │ 00000ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00000ef0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00000f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000f40: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ -00000f50: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -00000f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00000f70: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00000f80: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ -00000f90: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ -00000fa0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ -00000fb0: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ -00000fc0: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ -00000fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00000ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00001010: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -00001020: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -00001030: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -00001040: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -00001050: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -00001060: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -00001070: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -00001080: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ -00001090: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ -000010a0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ -000010b0: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ -000010c0: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ -000010d0: 5461 6720 5461 626c 650a Tag Table. │ │ │ │ +00000ef0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00000f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00000f40: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00000f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00000f90: 2d2d 2d2d 2b0a 0a46 6f72 2074 6865 2070 ----+..For the p │ │ │ │ +00000fa0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00000fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00000fc0: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ +00000fd0: 756e 4265 6e63 686d 6172 6b73 3a20 7275 unBenchmarks: ru │ │ │ │ +00000fe0: 6e42 656e 6368 6d61 726b 732c 2069 7320 nBenchmarks, is │ │ │ │ +00000ff0: 6120 2a6e 6f74 6520 636f 6d6d 616e 643a a *note command: │ │ │ │ +00001000: 0a28 4d61 6361 756c 6179 3244 6f63 2943 .(Macaulay2Doc)C │ │ │ │ +00001010: 6f6d 6d61 6e64 2c2e 0a0a 2d2d 2d2d 2d2d ommand,...------ │ │ │ │ +00001020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00001060: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00001070: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00001080: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00001090: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +000010a0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000010b0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000010c0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000010d0: 2f42 656e 6368 6d61 726b 2e0a 6d32 3a32 /Benchmark..m2:2 │ │ │ │ +000010e0: 3937 3a30 2e0a 1f0a 5461 6720 5461 626c 97:0....Tag Tabl │ │ │ │ +000010f0: 653a 0a4e 6f64 653a 2054 6f70 7f32 3334 e:.Node: Top.234 │ │ │ │ +00001100: 0a4e 6f64 653a 2072 756e 4265 6e63 686d .Node: runBenchm │ │ │ │ +00001110: 6172 6b73 7f32 3033 350a 1f0a 456e 6420 arks.2035...End │ │ │ │ +00001120: 5461 6720 5461 626c 650a Tag Table. │ │ ├── ./usr/share/info/Bertini.info.gz │ │ │ ├── Bertini.info │ │ │ │ @@ -2253,16 +2253,16 @@ │ │ │ │ 00008cc0: 616c 206e 756d 6265 720a 2020 2020 2020 al number. │ │ │ │ 00008cd0: 2020 6f72 2072 616e 646f 6d20 636f 6d70 or random comp │ │ │ │ 00008ce0: 6c65 7820 6e75 6d62 6572 0a20 2020 2020 lex number. │ │ │ │ 00008cf0: 202a 202a 6e6f 7465 2054 6f70 4469 7265 * *note TopDire │ │ │ │ 00008d00: 6374 6f72 793a 2054 6f70 4469 7265 6374 ctory: TopDirect │ │ │ │ 00008d10: 6f72 792c 203d 3e20 2e2e 2e2c 2064 6566 ory, => ..., def │ │ │ │ 00008d20: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -00008d30: 2020 2022 2f74 6d70 2f4d 322d 3238 3730 "/tmp/M2-2870 │ │ │ │ -00008d40: 362d 302f 3022 2c20 4f70 7469 6f6e 2074 6-0/0", Option t │ │ │ │ +00008d30: 2020 2022 2f74 6d70 2f4d 322d 3430 3931 "/tmp/M2-4091 │ │ │ │ +00008d40: 332d 302f 3022 2c20 4f70 7469 6f6e 2074 3-0/0", Option t │ │ │ │ 00008d50: 6f20 6368 616e 6765 2064 6972 6563 746f o change directo │ │ │ │ 00008d60: 7279 2066 6f72 2066 696c 6520 7374 6f72 ry for file stor │ │ │ │ 00008d70: 6167 652e 0a20 2020 2020 202a 202a 6e6f age.. * *no │ │ │ │ 00008d80: 7465 2056 6572 626f 7365 3a20 6265 7274 te Verbose: bert │ │ │ │ 00008d90: 696e 6954 7261 636b 486f 6d6f 746f 7079 iniTrackHomotopy │ │ │ │ 00008da0: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ 00008db0: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ @@ -4971,15 +4971,15 @@ │ │ │ │ 000136a0: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ 000136b0: 2064 6566 6175 6c74 2076 616c 7565 207b default value { │ │ │ │ 000136c0: 7d2c 200a 2020 2020 2020 2a20 2a6e 6f74 }, . * *not │ │ │ │ 000136d0: 6520 546f 7044 6972 6563 746f 7279 3a20 e TopDirectory: │ │ │ │ 000136e0: 546f 7044 6972 6563 746f 7279 2c20 3d3e TopDirectory, => │ │ │ │ 000136f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ 00013700: 6c75 650a 2020 2020 2020 2020 222f 746d lue. "/tm │ │ │ │ -00013710: 702f 4d32 2d32 3837 3036 2d30 2f30 222c p/M2-28706-0/0", │ │ │ │ +00013710: 702f 4d32 2d34 3039 3133 2d30 2f30 222c p/M2-40913-0/0", │ │ │ │ 00013720: 204f 7074 696f 6e20 746f 2063 6861 6e67 Option to chang │ │ │ │ 00013730: 6520 6469 7265 6374 6f72 7920 666f 7220 e directory for │ │ │ │ 00013740: 6669 6c65 2073 746f 7261 6765 2e0a 2020 file storage.. │ │ │ │ 00013750: 2020 2020 2a20 2a6e 6f74 6520 5665 7262 * *note Verb │ │ │ │ 00013760: 6f73 653a 2062 6572 7469 6e69 5472 6163 ose: bertiniTrac │ │ │ │ 00013770: 6b48 6f6d 6f74 6f70 795f 6c70 5f70 645f kHomotopy_lp_pd_ │ │ │ │ 00013780: 7064 5f70 645f 636d 5665 7262 6f73 653d pd_pd_cmVerbose= │ │ │ │ @@ -5472,16 +5472,16 @@ │ │ │ │ 000155f0: 6561 6c20 6e75 6d62 6572 0a20 2020 2020 eal number. │ │ │ │ 00015600: 2020 206f 7220 7261 6e64 6f6d 2063 6f6d or random com │ │ │ │ 00015610: 706c 6578 206e 756d 6265 720a 2020 2020 plex number. │ │ │ │ 00015620: 2020 2a20 2a6e 6f74 6520 546f 7044 6972 * *note TopDir │ │ │ │ 00015630: 6563 746f 7279 3a20 546f 7044 6972 6563 ectory: TopDirec │ │ │ │ 00015640: 746f 7279 2c20 3d3e 202e 2e2e 2c20 6465 tory, => ..., de │ │ │ │ 00015650: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00015660: 2020 2020 222f 746d 702f 4d32 2d32 3837 "/tmp/M2-287 │ │ │ │ -00015670: 3036 2d30 2f30 222c 204f 7074 696f 6e20 06-0/0", Option │ │ │ │ +00015660: 2020 2020 222f 746d 702f 4d32 2d34 3039 "/tmp/M2-409 │ │ │ │ +00015670: 3133 2d30 2f30 222c 204f 7074 696f 6e20 13-0/0", Option │ │ │ │ 00015680: 746f 2063 6861 6e67 6520 6469 7265 6374 to change direct │ │ │ │ 00015690: 6f72 7920 666f 7220 6669 6c65 2073 746f ory for file sto │ │ │ │ 000156a0: 7261 6765 2e0a 2020 2020 2020 2a20 5573 rage.. * Us │ │ │ │ 000156b0: 6552 6567 656e 6572 6174 696f 6e20 286d eRegeneration (m │ │ │ │ 000156c0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ 000156d0: 7469 6f6e 2920 3d3e 202e 2e2e 2c20 6465 tion) => ..., de │ │ │ │ 000156e0: 6661 756c 7420 7661 6c75 6520 2d31 2c20 fault value -1, │ │ ├── ./usr/share/info/BettiCharacters.info.gz │ │ │ ├── BettiCharacters.info │ │ │ │ @@ -12972,15 +12972,15 @@ │ │ │ │ 00032ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00032ad0: 0a7c 6939 203a 2065 6c61 7073 6564 5469 .|i9 : elapsedTi │ │ │ │ 00032ae0: 6d65 2063 203d 2063 6861 7261 6374 6572 me c = character │ │ │ │ 00032af0: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00032b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00032b20: 0a7c 202d 2d20 2e35 3539 3133 3573 2065 .| -- .559135s e │ │ │ │ +00032b20: 0a7c 202d 2d20 2e34 3337 3039 3473 2065 .| -- .437094s e │ │ │ │ 00032b30: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ 00032b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00032b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -14183,15 +14183,15 @@ │ │ │ │ 00037660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037680: 2b0a 7c69 3720 3a20 656c 6170 7365 6454 +.|i7 : elapsedT │ │ │ │ 00037690: 696d 6520 633d 6368 6172 6163 7465 7220 ime c=character │ │ │ │ 000376a0: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376d0: 7c0a 7c20 2d2d 202e 3437 3439 3136 7320 |.| -- .474916s │ │ │ │ +000376d0: 7c0a 7c20 2d2d 202e 3439 3836 3533 7320 |.| -- .498653s │ │ │ │ 000376e0: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 000376f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00037730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -15614,16 +15614,16 @@ │ │ │ │ 0003cfd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 0003cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d010: 2d2b 0a7c 6932 3020 3a20 656c 6170 7365 -+.|i20 : elapse │ │ │ │ 0003d020: 6454 696d 6520 6131 203d 2063 6861 7261 dTime a1 = chara │ │ │ │ 0003d030: 6374 6572 2041 3120 2020 2020 2020 2020 cter A1 │ │ │ │ -0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3835 |.| -- .85 │ │ │ │ -0003d050: 3237 3632 7320 656c 6170 7365 6420 2020 2762s elapsed │ │ │ │ +0003d040: 2020 2020 2020 7c0a 7c20 2d2d 202e 3833 |.| -- .83 │ │ │ │ +0003d050: 3933 3135 7320 656c 6170 7365 6420 2020 9315s elapsed │ │ │ │ 0003d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0003d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d0b0: 7c0a 7c6f 3230 203d 2043 6861 7261 6374 |.|o20 = Charact │ │ │ │ 0003d0c0: 6572 206f 7665 7220 5220 2020 2020 2020 er over R │ │ │ │ @@ -15654,16 +15654,16 @@ │ │ │ │ 0003d250: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ 0003d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003d290: 6932 3120 3a20 656c 6170 7365 6454 696d i21 : elapsedTim │ │ │ │ 0003d2a0: 6520 6132 203d 2063 6861 7261 6374 6572 e a2 = character │ │ │ │ 0003d2b0: 2041 3220 2020 2020 2020 2020 2020 2020 A2 │ │ │ │ -0003d2c0: 2020 7c0a 7c20 2d2d 2033 342e 3334 3473 |.| -- 34.344s │ │ │ │ -0003d2d0: 2065 6c61 7073 6564 2020 2020 2020 2020 elapsed │ │ │ │ +0003d2c0: 2020 7c0a 7c20 2d2d 2032 372e 3132 3838 |.| -- 27.1288 │ │ │ │ +0003d2d0: 7320 656c 6170 7365 6420 2020 2020 2020 s elapsed │ │ │ │ 0003d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0003d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d320: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ 0003d330: 3231 203d 2043 6861 7261 6374 6572 206f 21 = Character o │ │ │ │ 0003d340: 7665 7220 5220 2020 2020 2020 2020 2020 ver R │ │ │ │ @@ -16112,16 +16112,16 @@ │ │ │ │ 0003eef0: 6f33 3120 3a20 4163 7469 6f6e 4f6e 4772 o31 : ActionOnGr │ │ │ │ 0003ef00: 6164 6564 4d6f 6475 6c65 2020 2020 2020 adedModule │ │ │ │ 0003ef10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 0003ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0003ef40: 6933 3220 3a20 656c 6170 7365 6454 696d i32 : elapsedTim │ │ │ │ 0003ef50: 6520 6220 3d20 6368 6172 6163 7465 7228 e b = character( │ │ │ │ -0003ef60: 422c 3231 297c 0a7c 202d 2d20 3134 2e32 B,21)|.| -- 14.2 │ │ │ │ -0003ef70: 3631 3773 2065 6c61 7073 6564 2020 2020 617s elapsed │ │ │ │ +0003ef60: 422c 3231 297c 0a7c 202d 2d20 3132 2e35 B,21)|.| -- 12.5 │ │ │ │ +0003ef70: 3239 7320 656c 6170 7365 6420 2020 2020 29s elapsed │ │ │ │ 0003ef80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003efb0: 2020 2020 207c 0a7c 6f33 3220 3d20 4368 |.|o32 = Ch │ │ │ │ 0003efc0: 6172 6163 7465 7220 6f76 6572 2052 2020 aracter over R │ │ │ │ 0003efd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0003efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/Bruns.info.gz │ │ │ ├── Bruns.info │ │ │ │ @@ -1095,18 +1095,18 @@ │ │ │ │ 00004460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00004480: 6932 3320 3a20 7469 6d65 206a 3d62 7275 i23 : time j=bru │ │ │ │ 00004490: 6e73 2046 2e64 645f 333b 2020 2020 2020 ns F.dd_3; │ │ │ │ 000044a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000044c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000044d0: 202d 2d20 7573 6564 2030 2e33 3534 3231 -- used 0.35421 │ │ │ │ -000044e0: 3873 2028 6370 7529 3b20 302e 3238 3930 8s (cpu); 0.2890 │ │ │ │ -000044f0: 3037 7320 2874 6872 6561 6429 3b20 3073 07s (thread); 0s │ │ │ │ -00004500: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000044d0: 202d 2d20 7573 6564 2030 2e33 3339 3235 -- used 0.33925 │ │ │ │ +000044e0: 7320 2863 7075 293b 2030 2e32 3532 3138 s (cpu); 0.25218 │ │ │ │ +000044f0: 3173 2028 7468 7265 6164 293b 2030 7320 1s (thread); 0s │ │ │ │ +00004500: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00004510: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004560: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00004570: 6f32 3320 3a20 4964 6561 6c20 6f66 2053 o23 : Ideal of S │ │ ├── ./usr/share/info/CellularResolutions.info.gz │ │ │ ├── CellularResolutions.info │ │ │ │ @@ -2973,23 +2973,23 @@ │ │ │ │ 0000b9c0: 2020 2020 2020 2020 207c 0a7c 6f38 203d |.|o8 = │ │ │ │ 0000b9d0: 2048 6173 6854 6162 6c65 7b30 203d 3e20 HashTable{0 => │ │ │ │ 0000b9e0: 7b78 202c 2078 2079 2c20 7820 7920 2c20 {x , x y, x y , │ │ │ │ 0000b9f0: 7820 7920 2c20 782a 7920 2c20 7820 7d20 x y , x*y , x } │ │ │ │ 0000ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ba10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000ba30: 2020 3520 2020 2033 2033 2020 2035 2032 5 3 3 5 2 │ │ │ │ -0000ba40: 2020 2032 2034 2020 2035 2033 2020 2035 2 4 5 3 5 │ │ │ │ -0000ba50: 2034 2020 2035 2020 2020 3520 3220 2020 4 5 5 2 │ │ │ │ -0000ba60: 3520 3320 2020 2020 207c 0a7c 2020 2020 5 3 |.| │ │ │ │ +0000ba30: 2020 3520 3220 2020 3220 3420 2020 3520 5 2 2 4 5 │ │ │ │ +0000ba40: 3320 2020 3520 3420 2020 3520 2020 2035 3 5 4 5 5 │ │ │ │ +0000ba50: 2032 2020 2035 2033 2020 2035 2034 2020 2 5 3 5 4 │ │ │ │ +0000ba60: 2034 2032 2020 2020 207c 0a7c 2020 2020 4 2 |.| │ │ │ │ 0000ba70: 2020 2020 2020 2020 2020 2031 203d 3e20 1 => │ │ │ │ -0000ba80: 7b78 2079 2c20 7820 7920 2c20 7820 7920 {x y, x y , x y │ │ │ │ -0000ba90: 2c20 7820 7920 2c20 7820 7920 2c20 7820 , x y , x y , x │ │ │ │ -0000baa0: 7920 2c20 7820 792c 2078 2079 202c 2078 y , x y, x y , x │ │ │ │ -0000bab0: 2079 202c 2020 2020 207c 0a7c 2020 2020 y , |.| │ │ │ │ +0000ba80: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ +0000ba90: 202c 2078 2079 202c 2078 2079 2c20 7820 , x y , x y, x │ │ │ │ +0000baa0: 7920 2c20 7820 7920 2c20 7820 7920 2c20 y , x y , x y , │ │ │ │ +0000bab0: 7820 7920 2c20 2020 207c 0a7c 2020 2020 x y , |.| │ │ │ │ 0000bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bad0: 2020 3520 3220 2020 3520 3420 2020 3520 5 2 5 4 5 │ │ │ │ 0000bae0: 3320 2020 3520 3420 2020 3520 3220 2020 3 5 4 5 2 │ │ │ │ 0000baf0: 3520 3420 2020 3520 3320 2020 3520 3420 5 4 5 3 5 4 │ │ │ │ 0000bb00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0000bb10: 2020 2020 2020 2020 2020 2032 203d 3e20 2 => │ │ │ │ 0000bb20: 7b78 2079 202c 2078 2079 202c 2078 2079 {x y , x y , x y │ │ │ │ @@ -3007,25 +3007,25 @@ │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ 0000bc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bc40: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 ---------|.| │ │ │ │ -0000bc50: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +0000bc50: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ 0000bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0000bc90: 2020 2020 2020 2020 207c 0a7c 2035 2034 |.| 5 4 │ │ │ │ -0000bca0: 2020 2034 2032 2020 2034 2034 2020 2020 4 2 4 4 │ │ │ │ +0000bc90: 2020 2020 2020 2020 207c 0a7c 2034 2034 |.| 4 4 │ │ │ │ +0000bca0: 2020 2035 2020 2020 3320 3320 2020 2020 5 3 3 │ │ │ │ 0000bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bce0: 2020 2020 2020 2020 207c 0a7c 7820 7920 |.|x y │ │ │ │ -0000bcf0: 2c20 7820 7920 2c20 7820 7920 7d20 2020 , x y , x y } │ │ │ │ +0000bcf0: 2c20 7820 792c 2078 2079 207d 2020 2020 , x y, x y } │ │ │ │ 0000bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd30: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ 0000bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -6321,22 +6321,22 @@ │ │ │ │ 00018b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00018b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00018b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018b60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018b70: 2020 2020 3520 3320 2020 2035 2034 2020 5 3 5 4 │ │ │ │ -00018b80: 2033 2035 2020 2020 3420 3520 2020 3220 3 5 4 5 2 │ │ │ │ -00018b90: 2020 2020 2020 2032 2020 2020 3420 3420 2 4 4 │ │ │ │ +00018b70: 2020 2020 3420 3420 2020 2035 2033 2020 4 4 5 3 │ │ │ │ +00018b80: 2020 3520 3420 2020 3320 3520 2020 2034 5 4 3 5 4 │ │ │ │ +00018b90: 2035 2020 2032 2020 2020 2020 2020 3220 5 2 2 │ │ │ │ 00018ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018bb0: 2020 2020 207c 0a7c 6f35 203d 207b 7820 |.|o5 = {x │ │ │ │ -00018bc0: 7920 7a2c 2078 2079 202c 2078 2079 207a y z, x y , x y z │ │ │ │ -00018bd0: 2c20 7820 7920 2c20 7820 792a 7a2c 2078 , x y , x y*z, x │ │ │ │ -00018be0: 2a79 207a 2c20 7820 7920 7a7d 2020 2020 *y z, x y z} │ │ │ │ +00018bc0: 7920 7a2c 2078 2079 207a 2c20 7820 7920 y z, x y z, x y │ │ │ │ +00018bd0: 2c20 7820 7920 7a2c 2078 2079 202c 2078 , x y z, x y , x │ │ │ │ +00018be0: 2079 2a7a 2c20 782a 7920 7a7d 2020 2020 y*z, x*y z} │ │ │ │ 00018bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c40: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ 00018c50: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ ├── ./usr/share/info/ChainComplexExtras.info.gz │ │ │ ├── ChainComplexExtras.info │ │ │ │ @@ -4819,16 +4819,16 @@ │ │ │ │ 00012d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00012d50: 3133 203a 2074 696d 6520 6d20 3d20 6d69 13 : time m = mi │ │ │ │ 00012d60: 6e69 6d69 7a65 2028 455b 315d 293b 2020 nimize (E[1]); │ │ │ │ 00012d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012d80: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00012d90: 302e 3239 3737 3232 7320 2863 7075 293b 0.297722s (cpu); │ │ │ │ -00012da0: 2030 2e32 3339 3538 3473 2028 7468 7265 0.239584s (thre │ │ │ │ +00012d90: 302e 3338 3039 3332 7320 2863 7075 293b 0.380932s (cpu); │ │ │ │ +00012da0: 2030 2e32 3932 3637 3573 2028 7468 7265 0.292675s (thre │ │ │ │ 00012db0: 6164 293b 2030 7320 2867 6329 7c0a 2b2d ad); 0s (gc)|.+- │ │ │ │ 00012dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012df0: 2d2d 2d2d 2b0a 7c69 3134 203a 2069 7351 ----+.|i14 : isQ │ │ │ │ 00012e00: 7561 7369 4973 6f6d 6f72 7068 6973 6d20 uasiIsomorphism │ │ │ │ 00012e10: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ @@ -6579,32 +6579,32 @@ │ │ │ │ 00019b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019b40: 3820 3a20 7469 6d65 206d 203d 2072 6573 8 : time m = res │ │ │ │ 00019b50: 6f6c 7574 696f 6e4f 6643 6861 696e 436f olutionOfChainCo │ │ │ │ 00019b60: 6d70 6c65 7820 433b 2020 2020 2020 2020 mplex C; │ │ │ │ 00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019b80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019b90: 2d2d 2075 7365 6420 302e 3039 3638 3333 -- used 0.096833 │ │ │ │ -00019ba0: 3673 2028 6370 7529 3b20 302e 3039 3638 6s (cpu); 0.0968 │ │ │ │ -00019bb0: 3332 3773 2028 7468 7265 6164 293b 2030 327s (thread); 0 │ │ │ │ -00019bc0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00019b90: 2d2d 2075 7365 6420 302e 3131 3037 3135 -- used 0.110715 │ │ │ │ +00019ba0: 7320 2863 7075 293b 2030 2e31 3130 3731 s (cpu); 0.11071 │ │ │ │ +00019bb0: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ +00019bc0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00019bd0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00019c30: 3920 3a20 7469 6d65 206e 203d 2063 6172 9 : time n = car │ │ │ │ 00019c40: 7461 6e45 696c 656e 6265 7267 5265 736f tanEilenbergReso │ │ │ │ 00019c50: 6c75 7469 6f6e 2043 3b20 2020 2020 2020 lution C; │ │ │ │ 00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019c80: 2d2d 2075 7365 6420 302e 3232 3630 3032 -- used 0.226002 │ │ │ │ -00019c90: 7320 2863 7075 293b 2030 2e31 3536 3739 s (cpu); 0.15679 │ │ │ │ -00019ca0: 3673 2028 7468 7265 6164 293b 2030 7320 6s (thread); 0s │ │ │ │ +00019c80: 2d2d 2075 7365 6420 302e 3238 3134 3533 -- used 0.281453 │ │ │ │ +00019c90: 7320 2863 7075 293b 2030 2e31 3932 3337 s (cpu); 0.19237 │ │ │ │ +00019ca0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ 00019cb0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ 00019cc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ 00019cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ ├── ./usr/share/info/CharacteristicClasses.info.gz │ │ │ ├── CharacteristicClasses.info │ │ │ │ @@ -1215,16 +1215,16 @@ │ │ │ │ 00004be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004bf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ 00004c00: 2074 696d 6520 4353 4d20 5520 2020 2020 time CSM U │ │ │ │ 00004c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004c40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -00004c50: 7573 6564 2030 2e32 3436 3137 3473 2028 used 0.246174s ( │ │ │ │ -00004c60: 6370 7529 3b20 302e 3136 3436 3234 7320 cpu); 0.164624s │ │ │ │ +00004c50: 7573 6564 2030 2e32 3838 3734 3573 2028 used 0.288745s ( │ │ │ │ +00004c60: 6370 7529 3b20 302e 3138 3430 3831 7320 cpu); 0.184081s │ │ │ │ 00004c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 00004c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004c90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1300,16 +1300,16 @@ │ │ │ │ 00005130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005140: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ 00005150: 2074 696d 6520 4353 4d28 552c 4368 6563 time CSM(U,Chec │ │ │ │ 00005160: 6b53 6d6f 6f74 683d 3e66 616c 7365 2920 kSmooth=>false) │ │ │ │ 00005170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005190: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000051a0: 7573 6564 2030 2e33 3734 3331 3273 2028 used 0.374312s ( │ │ │ │ -000051b0: 6370 7529 3b20 302e 3239 3531 3235 7320 cpu); 0.295125s │ │ │ │ +000051a0: 7573 6564 2030 2e34 3735 3733 3673 2028 used 0.475736s ( │ │ │ │ +000051b0: 6370 7529 3b20 302e 3337 3538 3633 7320 cpu); 0.375863s │ │ │ │ 000051c0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 000051d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000051e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000051f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4341,18 +4341,18 @@ │ │ │ │ 00010f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ 00010f70: 2074 696d 6520 4353 4d28 492c 436f 6d70 time CSM(I,Comp │ │ │ │ 00010f80: 4d65 7468 6f64 3d3e 5072 6f6a 6563 7469 Method=>Projecti │ │ │ │ 00010f90: 7665 4465 6772 6565 2920 2020 2020 2020 veDegree) │ │ │ │ 00010fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00010fb0: 2d2d 2075 7365 6420 302e 3632 3933 3032 -- used 0.629302 │ │ │ │ -00010fc0: 7320 2863 7075 293b 2030 2e33 3031 3631 s (cpu); 0.30161 │ │ │ │ -00010fd0: 3373 2028 7468 7265 6164 293b 2030 7320 3s (thread); 0s │ │ │ │ -00010fe0: 2867 6329 2020 2020 2020 2020 2020 207c (gc) | │ │ │ │ +00010fb0: 2d2d 2075 7365 6420 302e 3933 3136 3273 -- used 0.93162s │ │ │ │ +00010fc0: 2028 6370 7529 3b20 302e 3339 3031 3535 (cpu); 0.390155 │ │ │ │ +00010fd0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00010fe0: 6763 2920 2020 2020 2020 2020 2020 207c gc) | │ │ │ │ 00010ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00011000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011030: 2020 7c0a 7c20 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ 00011040: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ 00011050: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ @@ -4400,16 +4400,16 @@ │ │ │ │ 000112f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011310: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00011320: 4353 4d28 492c 436f 6d70 4d65 7468 6f64 CSM(I,CompMethod │ │ │ │ 00011330: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ 00011340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011350: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -00011360: 6420 322e 3133 3132 3773 2028 6370 7529 d 2.13127s (cpu) │ │ │ │ -00011370: 3b20 312e 3832 3435 3573 2028 7468 7265 ; 1.82455s (thre │ │ │ │ +00011360: 6420 322e 3436 3831 3773 2028 6370 7529 d 2.46817s (cpu) │ │ │ │ +00011370: 3b20 322e 3139 3030 3773 2028 7468 7265 ; 2.19007s (thre │ │ │ │ 00011380: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ 00011390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 000113a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000113d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 000113e0: 2020 2020 2020 3520 2020 2020 2034 2020 5 4 │ │ │ │ @@ -4488,16 +4488,16 @@ │ │ │ │ 00011870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011890: 2d2d 2b0a 7c69 3130 203a 2074 696d 6520 --+.|i10 : time │ │ │ │ 000118a0: 4353 4d28 4b2c 436f 6d70 4d65 7468 6f64 CSM(K,CompMethod │ │ │ │ 000118b0: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ 000118c0: 6565 2920 2020 2020 2020 2020 2020 2020 ee) │ │ │ │ 000118d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000118e0: 2030 2e32 3739 3130 3673 2028 6370 7529 0.279106s (cpu) │ │ │ │ -000118f0: 3b20 302e 3139 3532 3732 7320 2874 6872 ; 0.195272s (thr │ │ │ │ +000118e0: 2030 2e33 3231 3339 3173 2028 6370 7529 0.321391s (cpu) │ │ │ │ +000118f0: 3b20 302e 3233 3336 3537 7320 2874 6872 ; 0.233657s (thr │ │ │ │ 00011900: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00011910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00011920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00011960: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ @@ -4546,18 +4546,18 @@ │ │ │ │ 00011c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ 00011c40: 3131 203a 2074 696d 6520 4353 4d28 4b2c 11 : time CSM(K, │ │ │ │ 00011c50: 436f 6d70 4d65 7468 6f64 3d3e 506e 5265 CompMethod=>PnRe │ │ │ │ 00011c60: 7369 6475 616c 2920 2020 2020 2020 2020 sidual) │ │ │ │ 00011c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00011c80: 0a7c 202d 2d20 7573 6564 2030 2e30 3832 .| -- used 0.082 │ │ │ │ -00011c90: 3531 3433 7320 2863 7075 293b 2030 2e30 5143s (cpu); 0.0 │ │ │ │ -00011ca0: 3832 3532 3039 7320 2874 6872 6561 6429 825209s (thread) │ │ │ │ -00011cb0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00011c80: 0a7c 202d 2d20 7573 6564 2030 2e31 3032 .| -- used 0.102 │ │ │ │ +00011c90: 3938 3373 2028 6370 7529 3b20 302e 3130 983s (cpu); 0.10 │ │ │ │ +00011ca0: 3238 3632 7320 2874 6872 6561 6429 3b20 2862s (thread); │ │ │ │ +00011cb0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00011cc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00011d10: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ 00011d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -5446,6793 +5446,6790 @@ │ │ │ │ 00015450: 2072 6574 7572 6e65 6420 696e 2074 6865 returned in the │ │ │ │ 00015460: 2073 616d 6520 7269 6e67 2e20 5765 206d same ring. We m │ │ │ │ 00015470: 6179 2061 6c73 6f20 7265 7475 726e 2061 ay also return a │ │ │ │ 00015480: 0a4d 7574 6162 6c65 4861 7368 5461 626c .MutableHashTabl │ │ │ │ 00015490: 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e...+----------- │ │ │ │ 000154a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000154c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -000154d0: 203a 2052 3d4d 756c 7469 5072 6f6a 436f : R=MultiProjCo │ │ │ │ -000154e0: 6f72 6452 696e 6728 7b32 2c32 7d29 2020 ordRing({2,2}) │ │ │ │ +000154c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 ---------+.|i11 │ │ │ │ +000154d0: 3a20 523d 4d75 6c74 6950 726f 6a43 6f6f : R=MultiProjCoo │ │ │ │ +000154e0: 7264 5269 6e67 287b 322c 327d 2920 2020 rdRing({2,2}) │ │ │ │ 000154f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015500: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015500: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015530: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -00015540: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +00015530: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +00015540: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00015550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -000155b0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ -000155c0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -000155d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000155e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000155a0: 2020 2020 207c 0a7c 6f31 3120 3a20 506f |.|o11 : Po │ │ │ │ +000155b0: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +000155c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000155d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000155e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -00015620: 203a 2041 3d43 686f 7752 696e 6728 5229 : A=ChowRing(R) │ │ │ │ +00015610: 2d2d 2d2b 0a7c 6931 3220 3a20 413d 4368 ---+.|i12 : A=Ch │ │ │ │ +00015620: 6f77 5269 6e67 2852 2920 2020 2020 2020 owRing(R) │ │ │ │ 00015630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015640: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015680: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00015690: 203d 2041 2020 2020 2020 2020 2020 2020 = A │ │ │ │ +00015680: 207c 0a7c 6f31 3220 3d20 4120 2020 2020 |.|o12 = A │ │ │ │ +00015690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000156b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000156c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000156d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -00015700: 203a 2051 756f 7469 656e 7452 696e 6720 : QuotientRing │ │ │ │ +000156e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000156f0: 0a7c 6f31 3220 3a20 5175 6f74 6965 6e74 .|o12 : Quotient │ │ │ │ +00015700: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00015710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015730: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00015720: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00015730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015760: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -00015770: 203a 2072 3d67 656e 7320 5220 2020 2020 : r=gens R │ │ │ │ +00015750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00015760: 6931 3320 3a20 723d 6765 6e73 2052 2020 i13 : r=gens R │ │ │ │ +00015770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015790: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000157a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000157b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -000157e0: 203d 207b 7820 2c20 7820 2c20 7820 2c20 = {x , x , x , │ │ │ │ -000157f0: 7820 2c20 7820 2c20 7820 7d20 2020 2020 x , x , x } │ │ │ │ -00015800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015810: 2020 7c0a 7c20 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ -00015820: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -00015830: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00015840: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000157c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000157d0: 3320 3d20 7b78 202c 2078 202c 2078 202c 3 = {x , x , x , │ │ │ │ +000157e0: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ +000157f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015800: 2020 7c0a 7c20 2020 2020 2020 2030 2020 |.| 0 │ │ │ │ +00015810: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +00015820: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00015830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015880: 2020 7c0a 7c6f 3133 203a 204c 6973 7420 |.|o13 : List │ │ │ │ +00015870: 7c0a 7c6f 3133 203a 204c 6973 7420 2020 |.|o13 : List │ │ │ │ +00015880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000158a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000158b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000158c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000158f0: 2d2d 2b0a 7c69 3134 203a 204b 3d69 6465 --+.|i14 : K=ide │ │ │ │ -00015900: 616c 2872 5f30 5e32 2a72 5f33 2d72 5f34 al(r_0^2*r_3-r_4 │ │ │ │ -00015910: 2a72 5f31 2a72 5f32 2c72 5f32 5e32 2a72 *r_1*r_2,r_2^2*r │ │ │ │ -00015920: 5f35 2920 2020 2020 2020 7c0a 7c20 2020 _5) |.| │ │ │ │ +000158d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000158e0: 7c69 3134 203a 204b 3d69 6465 616c 2872 |i14 : K=ideal(r │ │ │ │ +000158f0: 5f30 5e32 2a72 5f33 2d72 5f34 2a72 5f31 _0^2*r_3-r_4*r_1 │ │ │ │ +00015900: 2a72 5f32 2c72 5f32 5e32 2a72 5f35 2920 *r_2,r_2^2*r_5) │ │ │ │ +00015910: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015970: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015980: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00015990: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -000159a0: 203d 2069 6465 616c 2028 7820 7820 202d = ideal (x x - │ │ │ │ -000159b0: 2078 2078 2078 202c 2078 2078 2029 2020 x x x , x x ) │ │ │ │ -000159c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000159e0: 2020 2030 2033 2020 2020 3120 3220 3420 0 3 1 2 4 │ │ │ │ -000159f0: 2020 3220 3520 2020 2020 2020 2020 2020 2 5 │ │ │ │ -00015a00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00015950: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00015960: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015980: 2020 207c 0a7c 6f31 3420 3d20 6964 6561 |.|o14 = idea │ │ │ │ +00015990: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ +000159a0: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ +000159b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000159c0: 2020 2020 2020 2020 2020 2030 2033 2020 0 3 │ │ │ │ +000159d0: 2020 3120 3220 3420 2020 3220 3520 2020 1 2 4 2 5 │ │ │ │ +000159e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000159f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a40: 2020 7c0a 7c6f 3134 203a 2049 6465 616c |.|o14 : Ideal │ │ │ │ -00015a50: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015a70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00015a20: 2020 2020 2020 2020 7c0a 7c6f 3134 203a |.|o14 : │ │ │ │ +00015a30: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ +00015a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00015a60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ab0: 2d2d 2b0a 7c69 3135 203a 2074 696d 6520 --+.|i15 : time │ │ │ │ -00015ac0: 6373 6d4b 3d43 534d 2841 2c4b 2920 2020 csmK=CSM(A,K) │ │ │ │ -00015ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ae0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ -00015af0: 2075 7365 6420 302e 3938 3435 3736 7320 used 0.984576s │ │ │ │ -00015b00: 2863 7075 293b 2030 2e34 3633 3332 3673 (cpu); 0.463326s │ │ │ │ -00015b10: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00015b20: 6329 7c0a 7c20 2020 2020 2020 2020 2020 c)|.| │ │ │ │ -00015b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015b50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00015b60: 2020 2020 2032 2032 2020 2020 2032 2020 2 2 2 │ │ │ │ -00015b70: 2020 2020 2020 2032 2020 2020 3220 2020 2 2 │ │ │ │ -00015b80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00015b90: 2020 7c0a 7c6f 3135 203d 2037 6820 6820 |.|o15 = 7h h │ │ │ │ -00015ba0: 202b 2035 6820 6820 202b 2034 6820 6820 + 5h h + 4h h │ │ │ │ -00015bb0: 202b 2068 2020 2b20 3368 2068 2020 2b20 + h + 3h h + │ │ │ │ -00015bc0: 6820 2020 2020 2020 2020 7c0a 7c20 2020 h |.| │ │ │ │ -00015bd0: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ -00015be0: 2020 2020 2031 2032 2020 2020 3120 2020 1 2 1 │ │ │ │ -00015bf0: 2020 3120 3220 2020 2032 2020 2020 2020 1 2 2 │ │ │ │ -00015c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c30: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -00015c40: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ -00015c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3136 ----------+.|i16 │ │ │ │ -00015cb0: 203a 2063 736d 4b48 6173 683d 2043 534d : csmKHash= CSM │ │ │ │ -00015cc0: 2841 2c4b 2c4f 7574 7075 743d 3e48 6173 (A,K,Output=>Has │ │ │ │ -00015cd0: 6846 6f72 6d29 2020 2020 2020 2020 2020 hForm) │ │ │ │ -00015ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d10: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ -00015d20: 203d 204d 7574 6162 6c65 4861 7368 5461 = MutableHashTa │ │ │ │ -00015d30: 626c 657b 2e2e 2e34 2e2e 2e7d 2020 2020 ble{...4...} │ │ │ │ +00015a90: 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a 2074 ------+.|i15 : t │ │ │ │ +00015aa0: 696d 6520 6373 6d4b 3d43 534d 2841 2c4b ime csmK=CSM(A,K │ │ │ │ +00015ab0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00015ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015ad0: 202d 2d20 7573 6564 2031 2e34 3239 3235 -- used 1.42925 │ │ │ │ +00015ae0: 7320 2863 7075 293b 2030 2e35 3130 3432 s (cpu); 0.51042 │ │ │ │ +00015af0: 3773 2028 7468 7265 6164 293b 2030 7320 7s (thread); 0s │ │ │ │ +00015b00: 2867 6329 7c0a 7c20 2020 2020 2020 2020 (gc)|.| │ │ │ │ +00015b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00015b40: 2020 2020 2020 3220 3220 2020 2020 3220 2 2 2 │ │ │ │ +00015b50: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +00015b60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00015b70: 2020 7c0a 7c6f 3135 203d 2037 6820 6820 |.|o15 = 7h h │ │ │ │ +00015b80: 202b 2035 6820 6820 202b 2034 6820 6820 + 5h h + 4h h │ │ │ │ +00015b90: 202b 2068 2020 2b20 3368 2068 2020 2b20 + h + 3h h + │ │ │ │ +00015ba0: 6820 2020 2020 2020 207c 0a7c 2020 2020 h |.| │ │ │ │ +00015bb0: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +00015bc0: 2020 2020 3120 3220 2020 2031 2020 2020 1 2 1 │ │ │ │ +00015bd0: 2031 2032 2020 2020 3220 2020 2020 2020 1 2 2 │ │ │ │ +00015be0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c10: 2020 2020 2020 207c 0a7c 6f31 3520 3a20 |.|o15 : │ │ │ │ +00015c20: 4120 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ +00015c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015c50: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00015c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015c80: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 6373 -----+.|i16 : cs │ │ │ │ +00015c90: 6d4b 4861 7368 3d20 4353 4d28 412c 4b2c mKHash= CSM(A,K, │ │ │ │ +00015ca0: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ +00015cb0: 2920 2020 2020 2020 2020 2020 7c0a 7c20 ) |.| │ │ │ │ +00015cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015cf0: 2020 207c 0a7c 6f31 3620 3d20 4d75 7461 |.|o16 = Muta │ │ │ │ +00015d00: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ +00015d10: 342e 2e2e 7d20 2020 2020 2020 2020 2020 4...} │ │ │ │ +00015d20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00015d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d80: 2020 2020 2020 2020 2020 7c0a 7c6f 3136 |.|o16 │ │ │ │ -00015d90: 203a 204d 7574 6162 6c65 4861 7368 5461 : MutableHashTa │ │ │ │ -00015da0: 626c 6520 2020 2020 2020 2020 2020 2020 ble │ │ │ │ -00015db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015dc0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 ----------+.|i17 │ │ │ │ -00015e00: 203a 2063 736d 4b3d 3d63 736d 4b48 6173 : csmK==csmKHas │ │ │ │ -00015e10: 6823 2243 534d 2220 2020 2020 2020 2020 h#"CSM" │ │ │ │ +00015d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d60: 207c 0a7c 6f31 3620 3a20 4d75 7461 626c |.|o16 : Mutabl │ │ │ │ +00015d70: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ +00015d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015d90: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00015da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00015dd0: 0a7c 6931 3720 3a20 6373 6d4b 3d3d 6373 .|i17 : csmK==cs │ │ │ │ +00015de0: 6d4b 4861 7368 2322 4353 4d22 2020 2020 mKHash#"CSM" │ │ │ │ +00015df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00015e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015e40: 6f31 3720 3d20 7472 7565 2020 2020 2020 o17 = true │ │ │ │ 00015e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e60: 2020 2020 2020 2020 2020 7c0a 7c6f 3137 |.|o17 │ │ │ │ -00015e70: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ -00015e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ea0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ -00015ee0: 203a 2043 534d 2841 2c69 6465 616c 284b : CSM(A,ideal(K │ │ │ │ -00015ef0: 5f30 2929 3d3d 6373 6d4b 4861 7368 237b _0))==csmKHash#{ │ │ │ │ -00015f00: 307d 2020 2020 2020 2020 2020 2020 2020 0} │ │ │ │ -00015f10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00015e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00015eb0: 3820 3a20 4353 4d28 412c 6964 6561 6c28 8 : CSM(A,ideal( │ │ │ │ +00015ec0: 4b5f 3029 293d 3d63 736d 4b48 6173 6823 K_0))==csmKHash# │ │ │ │ +00015ed0: 7b30 7d20 2020 2020 2020 2020 2020 2020 {0} │ │ │ │ +00015ee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f10: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +00015f20: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 00015f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f40: 2020 2020 2020 2020 2020 7c0a 7c6f 3138 |.|o18 │ │ │ │ -00015f50: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ -00015f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015f80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00015f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 7570 ----------+..Sup │ │ │ │ -00015fc0: 706f 7365 2077 6520 6861 7665 2061 6c72 pose we have alr │ │ │ │ -00015fd0: 6561 6479 2063 6f6d 7075 7465 6420 736f eady computed so │ │ │ │ -00015fe0: 6d65 206f 6620 4353 4d20 636c 6173 7365 me of CSM classe │ │ │ │ -00015ff0: 7320 6f66 2068 7970 6572 7375 7266 6163 s of hypersurfac │ │ │ │ -00016000: 6573 2069 6e76 6f6c 7665 640a 696e 2074 es involved.in t │ │ │ │ -00016010: 6865 2069 6e63 6c75 7369 6f6e 2d65 7863 he inclusion-exc │ │ │ │ -00016020: 6c75 7369 6f6e 2070 726f 6365 6475 7265 lusion procedure │ │ │ │ -00016030: 2c20 7468 656e 2077 6520 6d61 7920 696e , then we may in │ │ │ │ -00016040: 7075 7420 7468 6573 6520 746f 2062 6520 put these to be │ │ │ │ -00016050: 7573 6564 2062 7920 7468 650a 4353 4d20 used by the.CSM │ │ │ │ -00016060: 6675 6e63 7469 6f6e 2e20 496e 2074 6865 function. In the │ │ │ │ -00016070: 2065 7861 6d70 6c65 2062 656c 6f77 2077 example below w │ │ │ │ -00016080: 6520 696e 7075 7420 7468 6520 4353 4d20 e input the CSM │ │ │ │ -00016090: 636c 6173 7320 6f66 2056 284b 5f30 2920 class of V(K_0) │ │ │ │ -000160a0: 2874 6861 7420 6973 206f 660a 7468 6520 (that is of.the │ │ │ │ -000160b0: 6879 7065 7273 7572 6661 6365 2064 6566 hypersurface def │ │ │ │ -000160c0: 696e 6564 2062 7920 7468 6520 6669 7273 ined by the firs │ │ │ │ -000160d0: 7420 706f 6c79 6e6f 6d69 616c 2067 656e t polynomial gen │ │ │ │ -000160e0: 6572 6174 696e 6720 4b29 2061 6e64 2074 erating K) and t │ │ │ │ -000160f0: 6865 2043 534d 0a63 6c61 7373 206f 6620 he CSM.class of │ │ │ │ -00016100: 7468 6520 6879 7065 7273 7572 6661 6365 the hypersurface │ │ │ │ -00016110: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ -00016120: 7072 6f64 7563 7420 6f66 2074 6865 2067 product of the g │ │ │ │ -00016130: 656e 6572 6174 6f72 7320 6f66 204b 2e0a enerators of K.. │ │ │ │ -00016140: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00016150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00016180: 6931 3920 3a20 6d3d 6e65 7720 4d75 7461 i19 : m=new Muta │ │ │ │ -00016190: 626c 6548 6173 6854 6162 6c65 3b20 2020 bleHashTable; │ │ │ │ -000161a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000161b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000161c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000161f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3020 ---------+.|i20 │ │ │ │ -00016200: 3a20 6d23 7b30 7d3d 6373 6d4b 4861 7368 : m#{0}=csmKHash │ │ │ │ -00016210: 237b 307d 2020 2020 2020 2020 2020 2020 #{0} │ │ │ │ +00015f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015f50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00015f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00015f80: 2d2d 2d2d 2d2d 2d2b 0a0a 5375 7070 6f73 -------+..Suppos │ │ │ │ +00015f90: 6520 7765 2068 6176 6520 616c 7265 6164 e we have alread │ │ │ │ +00015fa0: 7920 636f 6d70 7574 6564 2073 6f6d 6520 y computed some │ │ │ │ +00015fb0: 6f66 2043 534d 2063 6c61 7373 6573 206f of CSM classes o │ │ │ │ +00015fc0: 6620 6879 7065 7273 7572 6661 6365 7320 f hypersurfaces │ │ │ │ +00015fd0: 696e 766f 6c76 6564 0a69 6e20 7468 6520 involved.in the │ │ │ │ +00015fe0: 696e 636c 7573 696f 6e2d 6578 636c 7573 inclusion-exclus │ │ │ │ +00015ff0: 696f 6e20 7072 6f63 6564 7572 652c 2074 ion procedure, t │ │ │ │ +00016000: 6865 6e20 7765 206d 6179 2069 6e70 7574 hen we may input │ │ │ │ +00016010: 2074 6865 7365 2074 6f20 6265 2075 7365 these to be use │ │ │ │ +00016020: 6420 6279 2074 6865 0a43 534d 2066 756e d by the.CSM fun │ │ │ │ +00016030: 6374 696f 6e2e 2049 6e20 7468 6520 6578 ction. In the ex │ │ │ │ +00016040: 616d 706c 6520 6265 6c6f 7720 7765 2069 ample below we i │ │ │ │ +00016050: 6e70 7574 2074 6865 2043 534d 2063 6c61 nput the CSM cla │ │ │ │ +00016060: 7373 206f 6620 5628 4b5f 3029 2028 7468 ss of V(K_0) (th │ │ │ │ +00016070: 6174 2069 7320 6f66 0a74 6865 2068 7970 at is of.the hyp │ │ │ │ +00016080: 6572 7375 7266 6163 6520 6465 6669 6e65 ersurface define │ │ │ │ +00016090: 6420 6279 2074 6865 2066 6972 7374 2070 d by the first p │ │ │ │ +000160a0: 6f6c 796e 6f6d 6961 6c20 6765 6e65 7261 olynomial genera │ │ │ │ +000160b0: 7469 6e67 204b 2920 616e 6420 7468 6520 ting K) and the │ │ │ │ +000160c0: 4353 4d0a 636c 6173 7320 6f66 2074 6865 CSM.class of the │ │ │ │ +000160d0: 2068 7970 6572 7375 7266 6163 6520 6465 hypersurface de │ │ │ │ +000160e0: 6669 6e65 6420 6279 2074 6865 2070 726f fined by the pro │ │ │ │ +000160f0: 6475 6374 206f 6620 7468 6520 6765 6e65 duct of the gene │ │ │ │ +00016100: 7261 746f 7273 206f 6620 4b2e 0a0a 2b2d rators of K...+- │ │ │ │ +00016110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016140: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3139 ----------+.|i19 │ │ │ │ +00016150: 203a 206d 3d6e 6577 204d 7574 6162 6c65 : m=new Mutable │ │ │ │ +00016160: 4861 7368 5461 626c 653b 2020 2020 2020 HashTable; │ │ │ │ +00016170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016180: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000161c0: 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a 206d ------+.|i20 : m │ │ │ │ +000161d0: 237b 307d 3d63 736d 4b48 6173 6823 7b30 #{0}=csmKHash#{0 │ │ │ │ +000161e0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000161f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016200: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016280: 3220 3220 2020 2020 3220 2020 2020 2020 2 2 2 │ │ │ │ -00016290: 2020 3220 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -000162a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000162b0: 2020 207c 0a7c 6f32 3020 3d20 3868 2068 |.|o20 = 8h h │ │ │ │ -000162c0: 2020 2b20 3768 2068 2020 2b20 3668 2068 + 7h h + 6h h │ │ │ │ -000162d0: 2020 2b20 3268 2020 2b20 3568 2068 2020 + 2h + 5h h │ │ │ │ -000162e0: 2b20 3268 2020 2b20 3268 2020 2b20 6820 + 2h + 2h + h │ │ │ │ -000162f0: 207c 0a7c 2020 2020 2020 2020 3120 3220 |.| 1 2 │ │ │ │ -00016300: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00016310: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00016320: 2020 3220 2020 2020 3120 2020 2032 207c 2 1 2 | │ │ │ │ -00016330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016240: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +00016250: 2020 2020 2032 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016260: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00016270: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00016280: 7c0a 7c6f 3230 203d 2038 6820 6820 202b |.|o20 = 8h h + │ │ │ │ +00016290: 2037 6820 6820 202b 2036 6820 6820 202b 7h h + 6h h + │ │ │ │ +000162a0: 2032 6820 202b 2035 6820 6820 202b 2032 2h + 5h h + 2 │ │ │ │ +000162b0: 6820 202b 2032 6820 202b 2068 2020 7c0a h + 2h + h |. │ │ │ │ +000162c0: 7c20 2020 2020 2020 2031 2032 2020 2020 | 1 2 │ │ │ │ +000162d0: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +000162e0: 2031 2020 2020 2031 2032 2020 2020 2032 1 1 2 2 │ │ │ │ +000162f0: 2020 2020 2031 2020 2020 3220 7c0a 7c20 1 2 |.| │ │ │ │ +00016300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016330: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ +00016340: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ 00016350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016370: 6f32 3020 3a20 4120 2020 2020 2020 2020 o20 : A │ │ │ │ -00016380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000163a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000163b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000163e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3120 ---------+.|i21 │ │ │ │ -000163f0: 3a20 6d23 7b30 2c31 7d3d 6373 6d4b 4861 : m#{0,1}=csmKHa │ │ │ │ -00016400: 7368 237b 302c 317d 2020 2020 2020 2020 sh#{0,1} │ │ │ │ +00016360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016370: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000163a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000163b0: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 206d ------+.|i21 : m │ │ │ │ +000163c0: 237b 302c 317d 3d63 736d 4b48 6173 6823 #{0,1}=csmKHash# │ │ │ │ +000163d0: 7b30 2c31 7d20 2020 2020 2020 2020 2020 {0,1} │ │ │ │ +000163e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000163f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016460: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016470: 3220 3220 2020 2020 3220 2020 2020 2020 2 2 2 │ │ │ │ -00016480: 2020 3220 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ -00016490: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000164a0: 2020 207c 0a7c 6f32 3120 3d20 3968 2068 |.|o21 = 9h h │ │ │ │ -000164b0: 2020 2b20 3968 2068 2020 2b20 3968 2068 + 9h h + 9h h │ │ │ │ -000164c0: 2020 2b20 3368 2020 2b20 3768 2068 2020 + 3h + 7h h │ │ │ │ -000164d0: 2b20 3368 2020 2b20 3368 2020 2b20 3268 + 3h + 3h + 2h │ │ │ │ -000164e0: 207c 0a7c 2020 2020 2020 2020 3120 3220 |.| 1 2 │ │ │ │ -000164f0: 2020 2020 3120 3220 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -00016500: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00016510: 2020 3220 2020 2020 3120 2020 2020 327c 2 1 2| │ │ │ │ -00016520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016430: 2020 7c0a 7c20 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +00016440: 2020 2020 2032 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016450: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00016460: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00016470: 7c0a 7c6f 3231 203d 2039 6820 6820 202b |.|o21 = 9h h + │ │ │ │ +00016480: 2039 6820 6820 202b 2039 6820 6820 202b 9h h + 9h h + │ │ │ │ +00016490: 2033 6820 202b 2037 6820 6820 202b 2033 3h + 7h h + 3 │ │ │ │ +000164a0: 6820 202b 2033 6820 202b 2032 6820 7c0a h + 3h + 2h |. │ │ │ │ +000164b0: 7c20 2020 2020 2020 2031 2032 2020 2020 | 1 2 │ │ │ │ +000164c0: 2031 2032 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +000164d0: 2031 2020 2020 2031 2032 2020 2020 2032 1 1 2 2 │ │ │ │ +000164e0: 2020 2020 2031 2020 2020 2032 7c0a 7c20 1 2|.| │ │ │ │ +000164f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016520: 2020 2020 2020 2020 2020 7c0a 7c6f 3231 |.|o21 │ │ │ │ +00016530: 203a 2041 2020 2020 2020 2020 2020 2020 : A │ │ │ │ 00016540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016560: 6f32 3120 3a20 4120 2020 2020 2020 2020 o21 : A │ │ │ │ -00016570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016590: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -000165a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000165d0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3220 ---------+.|i22 │ │ │ │ -000165e0: 3a20 7469 6d65 2043 534d 2841 2c4b 2c6d : time CSM(A,K,m │ │ │ │ -000165f0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00016600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016610: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00016620: 6564 2030 2e31 3131 3430 3373 2028 6370 ed 0.111403s (cp │ │ │ │ -00016630: 7529 3b20 302e 3035 3830 3932 3573 2028 u); 0.0580925s ( │ │ │ │ -00016640: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -00016650: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016690: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -000166a0: 3220 2020 2020 3220 2020 2020 2020 2020 2 2 │ │ │ │ -000166b0: 3220 2020 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000166c0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000166d0: 207c 0a7c 6f32 3220 3d20 3768 2068 2020 |.|o22 = 7h h │ │ │ │ -000166e0: 2b20 3568 2068 2020 2b20 3468 2068 2020 + 5h h + 4h h │ │ │ │ -000166f0: 2b20 6820 202b 2033 6820 6820 202b 2068 + h + 3h h + h │ │ │ │ -00016700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016710: 0a7c 2020 2020 2020 2020 3120 3220 2020 .| 1 2 │ │ │ │ -00016720: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ -00016730: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ -00016740: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00016750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016560: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00016570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000165a0: 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a 2074 ------+.|i22 : t │ │ │ │ +000165b0: 696d 6520 4353 4d28 412c 4b2c 6d29 2020 ime CSM(A,K,m) │ │ │ │ +000165c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000165e0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ +000165f0: 302e 3130 3537 3737 7320 2863 7075 293b 0.105777s (cpu); │ │ │ │ +00016600: 2030 2e30 3834 3136 3439 7320 2874 6872 0.0841649s (thr │ │ │ │ +00016610: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +00016620: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016660: 7c0a 7c20 2020 2020 2020 2032 2032 2020 |.| 2 2 │ │ │ │ +00016670: 2020 2032 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00016680: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00016690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000166a0: 7c6f 3232 203d 2037 6820 6820 202b 2035 |o22 = 7h h + 5 │ │ │ │ +000166b0: 6820 6820 202b 2034 6820 6820 202b 2068 h h + 4h h + h │ │ │ │ +000166c0: 2020 2b20 3368 2068 2020 2b20 6820 2020 + 3h h + h │ │ │ │ +000166d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000166e0: 2020 2020 2020 2031 2032 2020 2020 2031 1 2 1 │ │ │ │ +000166f0: 2032 2020 2020 2031 2032 2020 2020 3120 2 1 2 1 │ │ │ │ +00016700: 2020 2020 3120 3220 2020 2032 2020 2020 1 2 2 │ │ │ │ +00016710: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00016720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016750: 2020 2020 2020 2020 7c0a 7c6f 3232 203a |.|o22 : │ │ │ │ +00016760: 2041 2020 2020 2020 2020 2020 2020 2020 A │ │ │ │ 00016770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016780: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00016790: 3220 3a20 4120 2020 2020 2020 2020 2020 2 : A │ │ │ │ -000167a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000167d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000167f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016800: 2d2d 2d2d 2d2d 2d2b 0a0a 496e 2074 6865 -------+..In the │ │ │ │ -00016810: 2063 6173 6520 7768 6572 6520 7468 6520 case where the │ │ │ │ -00016820: 616d 6269 656e 7420 7370 6163 6520 6973 ambient space is │ │ │ │ -00016830: 2061 2074 6f72 6963 2076 6172 6965 7479 a toric variety │ │ │ │ -00016840: 2077 6869 6368 2069 7320 6e6f 7420 6120 which is not a │ │ │ │ -00016850: 7072 6f64 7563 740a 6f66 2070 726f 6a65 product.of proje │ │ │ │ -00016860: 6374 6976 6520 7370 6163 6573 2077 6520 ctive spaces we │ │ │ │ -00016870: 6d75 7374 206c 6f61 6420 7468 6520 4e6f must load the No │ │ │ │ -00016880: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -00016890: 6573 2070 6163 6b61 6765 2061 6e64 206d es package and m │ │ │ │ -000168a0: 7573 740a 616c 736f 2069 6e70 7574 2074 ust.also input t │ │ │ │ -000168b0: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ -000168c0: 2e20 4966 2074 6865 2074 6f72 6963 2076 . If the toric v │ │ │ │ -000168d0: 6172 6965 7479 2069 7320 6120 7072 6f64 ariety is a prod │ │ │ │ -000168e0: 7563 7420 6f66 2070 726f 6a65 6374 6976 uct of projectiv │ │ │ │ -000168f0: 650a 7370 6163 6520 6974 2069 7320 7265 e.space it is re │ │ │ │ -00016900: 636f 6d6d 656e 6420 746f 2075 7365 2074 commend to use t │ │ │ │ -00016910: 6865 2066 6f72 6d20 6162 6f76 6520 7261 he form above ra │ │ │ │ -00016920: 7468 6572 2074 6861 6e20 696e 7075 7474 ther than inputt │ │ │ │ -00016930: 696e 6720 7468 6520 746f 7269 630a 7661 ing the toric.va │ │ │ │ -00016940: 7269 6574 7920 666f 7220 6566 6669 6369 riety for effici │ │ │ │ -00016950: 656e 6379 2072 6561 736f 6e73 2e0a 0a2b ency reasons...+ │ │ │ │ +00016780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016790: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000167a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000167d0: 2d2d 2d2d 2b0a 0a49 6e20 7468 6520 6361 ----+..In the ca │ │ │ │ +000167e0: 7365 2077 6865 7265 2074 6865 2061 6d62 se where the amb │ │ │ │ +000167f0: 6965 6e74 2073 7061 6365 2069 7320 6120 ient space is a │ │ │ │ +00016800: 746f 7269 6320 7661 7269 6574 7920 7768 toric variety wh │ │ │ │ +00016810: 6963 6820 6973 206e 6f74 2061 2070 726f ich is not a pro │ │ │ │ +00016820: 6475 6374 0a6f 6620 7072 6f6a 6563 7469 duct.of projecti │ │ │ │ +00016830: 7665 2073 7061 6365 7320 7765 206d 7573 ve spaces we mus │ │ │ │ +00016840: 7420 6c6f 6164 2074 6865 204e 6f72 6d61 t load the Norma │ │ │ │ +00016850: 6c54 6f72 6963 5661 7269 6574 6965 7320 lToricVarieties │ │ │ │ +00016860: 7061 636b 6167 6520 616e 6420 6d75 7374 package and must │ │ │ │ +00016870: 0a61 6c73 6f20 696e 7075 7420 7468 6520 .also input the │ │ │ │ +00016880: 746f 7269 6320 7661 7269 6574 792e 2049 toric variety. I │ │ │ │ +00016890: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ +000168a0: 6574 7920 6973 2061 2070 726f 6475 6374 ety is a product │ │ │ │ +000168b0: 206f 6620 7072 6f6a 6563 7469 7665 0a73 of projective.s │ │ │ │ +000168c0: 7061 6365 2069 7420 6973 2072 6563 6f6d pace it is recom │ │ │ │ +000168d0: 6d65 6e64 2074 6f20 7573 6520 7468 6520 mend to use the │ │ │ │ +000168e0: 666f 726d 2061 626f 7665 2072 6174 6865 form above rathe │ │ │ │ +000168f0: 7220 7468 616e 2069 6e70 7574 7469 6e67 r than inputting │ │ │ │ +00016900: 2074 6865 2074 6f72 6963 0a76 6172 6965 the toric.varie │ │ │ │ +00016910: 7479 2066 6f72 2065 6666 6963 6965 6e63 ty for efficienc │ │ │ │ +00016920: 7920 7265 6173 6f6e 732e 0a0a 2b2d 2d2d y reasons...+--- │ │ │ │ +00016930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000169a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a --------+.|i23 : │ │ │ │ -000169b0: 206e 6565 6473 5061 636b 6167 6520 224e needsPackage "N │ │ │ │ -000169c0: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -000169d0: 6965 7322 2020 2020 2020 2020 2020 2020 ies" │ │ │ │ +00016970: 2d2d 2d2d 2d2b 0a7c 6932 3320 3a20 6e65 -----+.|i23 : ne │ │ │ │ +00016980: 6564 7350 6163 6b61 6765 2022 4e6f 726d edsPackage "Norm │ │ │ │ +00016990: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ +000169a0: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +000169b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000169c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000169d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000169e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00016a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00016a40: 7c6f 3233 203d 204e 6f72 6d61 6c54 6f72 |o23 = NormalTor │ │ │ │ -00016a50: 6963 5661 7269 6574 6965 7320 2020 2020 icVarieties │ │ │ │ +000169f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a00: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00016a10: 3320 3d20 4e6f 726d 616c 546f 7269 6356 3 = NormalToricV │ │ │ │ +00016a20: 6172 6965 7469 6573 2020 2020 2020 2020 arieties │ │ │ │ +00016a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016a50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00016a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016aa0: 207c 0a7c 6f32 3320 3a20 5061 636b 6167 |.|o23 : Packag │ │ │ │ +00016ab0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00016ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ad0: 2020 2020 7c0a 7c6f 3233 203a 2050 6163 |.|o23 : Pac │ │ │ │ -00016ae0: 6b61 6765 2020 2020 2020 2020 2020 2020 kage │ │ │ │ -00016af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016b20: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -00016b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3234 ----------+.|i24 │ │ │ │ -00016b70: 203a 2052 686f 203d 207b 7b31 2c30 2c30 : Rho = {{1,0,0 │ │ │ │ -00016b80: 7d2c 7b30 2c31 2c30 7d2c 7b30 2c30 2c31 },{0,1,0},{0,0,1 │ │ │ │ -00016b90: 7d2c 7b2d 312c 2d31 2c30 7d2c 7b30 2c30 },{-1,-1,0},{0,0 │ │ │ │ -00016ba0: 2c2d 317d 7d20 2020 2020 2020 2020 2020 ,-1}} │ │ │ │ -00016bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00016bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c00: 7c0a 7c6f 3234 203d 207b 7b31 2c20 302c |.|o24 = {{1, 0, │ │ │ │ -00016c10: 2030 7d2c 207b 302c 2031 2c20 307d 2c20 0}, {0, 1, 0}, │ │ │ │ -00016c20: 7b30 2c20 302c 2031 7d2c 207b 2d31 2c20 {0, 0, 1}, {-1, │ │ │ │ -00016c30: 2d31 2c20 307d 2c20 7b30 2c20 302c 202d -1, 0}, {0, 0, - │ │ │ │ -00016c40: 317d 7d20 2020 2020 2020 207c 0a7c 2020 1}} |.| │ │ │ │ +00016ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ae0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00016af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016b30: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3420 3a20 -------+.|i24 : │ │ │ │ +00016b40: 5268 6f20 3d20 7b7b 312c 302c 307d 2c7b Rho = {{1,0,0},{ │ │ │ │ +00016b50: 302c 312c 307d 2c7b 302c 302c 317d 2c7b 0,1,0},{0,0,1},{ │ │ │ │ +00016b60: 2d31 2c2d 312c 307d 2c7b 302c 302c 2d31 -1,-1,0},{0,0,-1 │ │ │ │ +00016b70: 7d7d 2020 2020 2020 2020 2020 2020 2020 }} │ │ │ │ +00016b80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016bc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00016bd0: 6f32 3420 3d20 7b7b 312c 2030 2c20 307d o24 = {{1, 0, 0} │ │ │ │ +00016be0: 2c20 7b30 2c20 312c 2030 7d2c 207b 302c , {0, 1, 0}, {0, │ │ │ │ +00016bf0: 2030 2c20 317d 2c20 7b2d 312c 202d 312c 0, 1}, {-1, -1, │ │ │ │ +00016c00: 2030 7d2c 207b 302c 2030 2c20 2d31 7d7d 0}, {0, 0, -1}} │ │ │ │ +00016c10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00016c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c60: 2020 207c 0a7c 6f32 3420 3a20 4c69 7374 |.|o24 : List │ │ │ │ 00016c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c90: 2020 2020 2020 7c0a 7c6f 3234 203a 204c |.|o24 : L │ │ │ │ -00016ca0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ -00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00016cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00016d30: 3235 203a 2053 6967 6d61 203d 207b 7b30 25 : Sigma = {{0 │ │ │ │ -00016d40: 2c31 2c32 7d2c 7b31 2c32 2c33 7d2c 7b30 ,1,2},{1,2,3},{0 │ │ │ │ -00016d50: 2c32 2c33 7d2c 7b30 2c31 2c34 7d2c 7b31 ,2,3},{0,1,4},{1 │ │ │ │ -00016d60: 2c33 2c34 7d2c 7b30 2c33 2c34 7d7d 2020 ,3,4},{0,3,4}} │ │ │ │ -00016d70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00016d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016dc0: 2020 7c0a 7c6f 3235 203d 207b 7b30 2c20 |.|o25 = {{0, │ │ │ │ -00016dd0: 312c 2032 7d2c 207b 312c 2032 2c20 337d 1, 2}, {1, 2, 3} │ │ │ │ -00016de0: 2c20 7b30 2c20 322c 2033 7d2c 207b 302c , {0, 2, 3}, {0, │ │ │ │ -00016df0: 2031 2c20 347d 2c20 7b31 2c20 332c 2034 1, 4}, {1, 3, 4 │ │ │ │ -00016e00: 7d2c 207b 302c 2033 2c20 347d 7d7c 0a7c }, {0, 3, 4}}|.| │ │ │ │ +00016c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016ca0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00016cb0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00016cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016cf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3520 ---------+.|i25 │ │ │ │ +00016d00: 3a20 5369 676d 6120 3d20 7b7b 302c 312c : Sigma = {{0,1, │ │ │ │ +00016d10: 327d 2c7b 312c 322c 337d 2c7b 302c 322c 2},{1,2,3},{0,2, │ │ │ │ +00016d20: 337d 2c7b 302c 312c 347d 2c7b 312c 332c 3},{0,1,4},{1,3, │ │ │ │ +00016d30: 347d 2c7b 302c 332c 347d 7d20 2020 2020 4},{0,3,4}} │ │ │ │ +00016d40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00016d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00016d90: 0a7c 6f32 3520 3d20 7b7b 302c 2031 2c20 .|o25 = {{0, 1, │ │ │ │ +00016da0: 327d 2c20 7b31 2c20 322c 2033 7d2c 207b 2}, {1, 2, 3}, { │ │ │ │ +00016db0: 302c 2032 2c20 337d 2c20 7b30 2c20 312c 0, 2, 3}, {0, 1, │ │ │ │ +00016dc0: 2034 7d2c 207b 312c 2033 2c20 347d 2c20 4}, {1, 3, 4}, │ │ │ │ +00016dd0: 7b30 2c20 332c 2034 7d7d 7c0a 7c20 2020 {0, 3, 4}}|.| │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e20: 2020 2020 207c 0a7c 6f32 3520 3a20 4c69 |.|o25 : Li │ │ │ │ +00016e30: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ 00016e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e50: 2020 2020 2020 2020 7c0a 7c6f 3235 203a |.|o25 : │ │ │ │ -00016e60: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ -00016e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ea0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00016eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00016ef0: 7c69 3236 203a 2058 203d 206e 6f72 6d61 |i26 : X = norma │ │ │ │ -00016f00: 6c54 6f72 6963 5661 7269 6574 7928 5268 lToricVariety(Rh │ │ │ │ -00016f10: 6f2c 5369 676d 612c 436f 6566 6669 6369 o,Sigma,Coeffici │ │ │ │ -00016f20: 656e 7452 696e 6720 3d3e 5a5a 2f33 3237 entRing =>ZZ/327 │ │ │ │ -00016f30: 3439 2920 2020 2020 207c 0a7c 2020 2020 49) |.| │ │ │ │ +00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016e70: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00016e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00016eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +00016ec0: 3620 3a20 5820 3d20 6e6f 726d 616c 546f 6 : X = normalTo │ │ │ │ +00016ed0: 7269 6356 6172 6965 7479 2852 686f 2c53 ricVariety(Rho,S │ │ │ │ +00016ee0: 6967 6d61 2c43 6f65 6666 6963 6965 6e74 igma,Coefficient │ │ │ │ +00016ef0: 5269 6e67 203d 3e5a 5a2f 3332 3734 3929 Ring =>ZZ/32749) │ │ │ │ +00016f00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f50: 207c 0a7c 6f32 3620 3d20 5820 2020 2020 |.|o26 = X │ │ │ │ 00016f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f80: 2020 2020 7c0a 7c6f 3236 203d 2058 2020 |.|o26 = X │ │ │ │ -00016f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016f90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00016fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00016fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017010: 2020 2020 2020 2020 2020 7c0a 7c6f 3236 |.|o26 │ │ │ │ -00017020: 203a 204e 6f72 6d61 6c54 6f72 6963 5661 : NormalToricVa │ │ │ │ -00017030: 7269 6574 7920 2020 2020 2020 2020 2020 riety │ │ │ │ -00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017060: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00017070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000170a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000170b0: 2b0a 7c69 3237 203a 2063 736d 583d 4353 +.|i27 : csmX=CS │ │ │ │ -000170c0: 4d20 5820 2020 2020 2020 2020 2020 2020 M X │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016fe0: 2020 2020 2020 207c 0a7c 6f32 3620 3a20 |.|o26 : │ │ │ │ +00016ff0: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ +00017000: 7479 2020 2020 2020 2020 2020 2020 2020 ty │ │ │ │ +00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017030: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00017040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017080: 6932 3720 3a20 6373 6d58 3d43 534d 2058 i27 : csmX=CSM X │ │ │ │ +00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000170c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000170f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017110: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +00017120: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00017150: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -00017160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 207c 0a7c 6f32 3720 3d20 3678 2078 2020 |.|o27 = 6x x │ │ │ │ -000171a0: 2b20 3378 2020 2b20 3678 2078 2020 2b20 + 3x + 6x x + │ │ │ │ -000171b0: 3378 2020 2b20 3278 2020 2b20 3120 2020 3x + 2x + 1 │ │ │ │ -000171c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000171e0: 2020 2020 2020 2033 2034 2020 2020 2033 3 4 3 │ │ │ │ -000171f0: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -00017200: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00017140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017150: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017160: 7c6f 3237 203d 2036 7820 7820 202b 2033 |o27 = 6x x + 3 │ │ │ │ +00017170: 7820 202b 2036 7820 7820 202b 2033 7820 x + 6x x + 3x │ │ │ │ +00017180: 202b 2032 7820 202b 2031 2020 2020 2020 + 2x + 1 │ │ │ │ +00017190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000171b0: 2020 2020 3320 3420 2020 2020 3320 2020 3 4 3 │ │ │ │ +000171c0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +000171d0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000171e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000171f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00017200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017270: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017280: 2020 2020 2020 2020 2020 205a 5a5b 7820 ZZ[x │ │ │ │ -00017290: 2e2e 7820 5d20 2020 2020 2020 2020 2020 ..x ] │ │ │ │ -000172a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00017240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00017250: 2020 2020 2020 2020 5a5a 5b78 202e 2e78 ZZ[x ..x │ │ │ │ +00017260: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017280: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000172a0: 2020 2020 2020 2030 2020 2034 2020 2020 0 4 │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172d0: 2020 2020 2020 2020 2020 3020 2020 3420 0 4 │ │ │ │ -000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017300: 2020 2020 2020 2020 7c0a 7c6f 3237 203a |.|o27 : │ │ │ │ -00017310: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ -00017320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017330: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ -00017340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017350: 2020 207c 0a7c 2020 2020 2020 2878 2078 |.| (x x │ │ │ │ -00017360: 202c 2078 2078 2078 202c 2078 2020 2d20 , x x x , x - │ │ │ │ -00017370: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ -00017380: 2d20 7820 2920 2020 2020 2020 2020 2020 - x ) │ │ │ │ -00017390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000173a0: 7c20 2020 2020 2020 2032 2034 2020 2030 | 2 4 0 │ │ │ │ -000173b0: 2031 2033 2020 2030 2020 2020 3320 2020 1 3 0 3 │ │ │ │ -000173c0: 3120 2020 2033 2020 2032 2020 2020 3420 1 3 2 4 │ │ │ │ -000173d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000172d0: 2020 2020 207c 0a7c 6f32 3720 3a20 2d2d |.|o27 : -- │ │ │ │ +000172e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000172f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017300: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017320: 7c0a 7c20 2020 2020 2028 7820 7820 2c20 |.| (x x , │ │ │ │ +00017330: 7820 7820 7820 2c20 7820 202d 2078 202c x x x , x - x , │ │ │ │ +00017340: 2078 2020 2d20 7820 2c20 7820 202d 2078 x - x , x - x │ │ │ │ +00017350: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017360: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017370: 2020 2020 2020 3220 3420 2020 3020 3120 2 4 0 1 │ │ │ │ +00017380: 3320 2020 3020 2020 2033 2020 2031 2020 3 0 3 1 │ │ │ │ +00017390: 2020 3320 2020 3220 2020 2034 2020 2020 3 2 4 │ │ │ │ +000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000173b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000173c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000173e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000173f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017430: 2d2d 2d2d 2b0a 7c69 3238 203a 2043 683d ----+.|i28 : Ch= │ │ │ │ -00017440: 7269 6e67 2063 736d 5820 2020 2020 2020 ring csmX │ │ │ │ +00017400: 2d2b 0a7c 6932 3820 3a20 4368 3d72 696e -+.|i28 : Ch=rin │ │ │ │ +00017410: 6720 6373 6d58 2020 2020 2020 2020 2020 g csmX │ │ │ │ +00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017490: 2020 2020 2020 207c 0a7c 6f32 3820 3d20 |.|o28 = │ │ │ │ +000174a0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 000174b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3238 |.|o28 │ │ │ │ -000174d0: 203d 2043 6820 2020 2020 2020 2020 2020 = Ch │ │ │ │ -000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000174e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00017520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017530: 6f32 3820 3a20 5175 6f74 6965 6e74 5269 o28 : QuotientRi │ │ │ │ +00017540: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ 00017550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017560: 7c0a 7c6f 3238 203a 2051 756f 7469 656e |.|o28 : Quotien │ │ │ │ -00017570: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ -00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00017560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017570: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00017580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000175a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000175b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000175f0: 2d2d 2d2d 2d2d 2b0a 7c69 3239 203a 2043 ------+.|i29 : C │ │ │ │ -00017600: 6865 636b 546f 7269 6356 6172 6965 7479 heckToricVariety │ │ │ │ -00017610: 5661 6c69 6428 5829 2020 2020 2020 2020 Valid(X) │ │ │ │ +000175c0: 2d2d 2d2b 0a7c 6932 3920 3a20 4368 6563 ---+.|i29 : Chec │ │ │ │ +000175d0: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ +000175e0: 6964 2858 2920 2020 2020 2020 2020 2020 id(X) │ │ │ │ +000175f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017610: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00017620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017650: 2020 2020 2020 2020 207c 0a7c 6f32 3920 |.|o29 │ │ │ │ +00017660: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 00017670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017680: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00017690: 3239 203d 2074 7275 6520 2020 2020 2020 29 = true │ │ │ │ -000176a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000176f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017720: 2d2d 2b0a 7c69 3330 203a 2052 3d72 696e --+.|i30 : R=rin │ │ │ │ -00017730: 6728 5829 2020 2020 2020 2020 2020 2020 g(X) │ │ │ │ +00017680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000176a0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000176b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000176e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000176f0: 0a7c 6933 3020 3a20 523d 7269 6e67 2858 .|i30 : R=ring(X │ │ │ │ +00017700: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017730: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00017740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017760: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00017760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017780: 2020 2020 207c 0a7c 6f33 3020 3d20 5220 |.|o30 = R │ │ │ │ 00017790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177b0: 2020 2020 2020 2020 7c0a 7c6f 3330 203d |.|o30 = │ │ │ │ -000177c0: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -000177d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000177d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00017850: 7c6f 3330 203a 2050 6f6c 796e 6f6d 6961 |o30 : Polynomia │ │ │ │ -00017860: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ -00017870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017890: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017810: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00017820: 3020 3a20 506f 6c79 6e6f 6d69 616c 5269 0 : PolynomialRi │ │ │ │ +00017830: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00017840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017860: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00017870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000178a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000178e0: 2d2d 2d2d 2b0a 7c69 3331 203a 2049 3d69 ----+.|i31 : I=i │ │ │ │ -000178f0: 6465 616c 2852 5f30 5e34 2a52 5f31 2c52 deal(R_0^4*R_1,R │ │ │ │ -00017900: 5f30 2a52 5f33 2a52 5f34 2a52 5f32 2d52 _0*R_3*R_4*R_2-R │ │ │ │ -00017910: 5f32 5e32 2a52 5f30 5e32 2920 2020 2020 _2^2*R_0^2) │ │ │ │ -00017920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00017940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017970: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00017980: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -00017990: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000179a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179c0: 2020 2020 207c 0a7c 6f33 3120 3d20 6964 |.|o31 = id │ │ │ │ -000179d0: 6561 6c20 2878 2078 202c 202d 2078 2078 eal (x x , - x x │ │ │ │ -000179e0: 2020 2b20 7820 7820 7820 7820 2920 2020 + x x x x ) │ │ │ │ -000179f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017a20: 2030 2031 2020 2020 2030 2032 2020 2020 0 1 0 2 │ │ │ │ -00017a30: 3020 3220 3320 3420 2020 2020 2020 2020 0 2 3 4 │ │ │ │ +000178b0: 2d2b 0a7c 6933 3120 3a20 493d 6964 6561 -+.|i31 : I=idea │ │ │ │ +000178c0: 6c28 525f 305e 342a 525f 312c 525f 302a l(R_0^4*R_1,R_0* │ │ │ │ +000178d0: 525f 332a 525f 342a 525f 322d 525f 325e R_3*R_4*R_2-R_2^ │ │ │ │ +000178e0: 322a 525f 305e 3229 2020 2020 2020 2020 2*R_0^2) │ │ │ │ +000178f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017940: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00017950: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00017960: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00017970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017990: 2020 7c0a 7c6f 3331 203d 2069 6465 616c |.|o31 = ideal │ │ │ │ +000179a0: 2028 7820 7820 2c20 2d20 7820 7820 202b (x x , - x x + │ │ │ │ +000179b0: 2078 2078 2078 2078 2029 2020 2020 2020 x x x x ) │ │ │ │ +000179c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000179d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000179e0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000179f0: 3120 2020 2020 3020 3220 2020 2030 2032 1 0 2 0 2 │ │ │ │ +00017a00: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00017a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00017a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017a70: 2020 207c 0a7c 6f33 3120 3a20 4964 6561 |.|o31 : Idea │ │ │ │ +00017a80: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ 00017a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017aa0: 2020 2020 2020 7c0a 7c6f 3331 203a 2049 |.|o31 : I │ │ │ │ -00017ab0: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ -00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017af0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -00017b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00017b40: 3332 203a 2043 534d 2858 2c49 2920 2020 32 : CSM(X,I) │ │ │ │ -00017b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017ac0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00017ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017b00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3220 ---------+.|i32 │ │ │ │ +00017b10: 3a20 4353 4d28 582c 4929 2020 2020 2020 : CSM(X,I) │ │ │ │ +00017b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00017b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00017ba0: 0a7c 2020 2020 2020 2020 3220 2020 2020 .| 2 │ │ │ │ +00017bb0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00017bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017bd0: 2020 7c0a 7c20 2020 2020 2020 2032 2020 |.| 2 │ │ │ │ -00017be0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00017bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00017c20: 6f33 3220 3d20 3578 2078 2020 2b20 3378 o32 = 5x x + 3x │ │ │ │ -00017c30: 2020 2b20 3478 2078 2020 2b20 7820 2020 + 4x x + x │ │ │ │ -00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00017c70: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ -00017c80: 2033 2034 2020 2020 3320 2020 2020 2020 3 4 3 │ │ │ │ +00017bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017be0: 2020 2020 2020 2020 2020 7c0a 7c6f 3332 |.|o32 │ │ │ │ +00017bf0: 203d 2035 7820 7820 202b 2033 7820 202b = 5x x + 3x + │ │ │ │ +00017c00: 2034 7820 7820 202b 2078 2020 2020 2020 4x x + x │ │ │ │ +00017c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00017c40: 3320 3420 2020 2020 3320 2020 2020 3320 3 4 3 3 │ │ │ │ +00017c50: 3420 2020 2033 2020 2020 2020 2020 2020 4 3 │ │ │ │ +00017c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017c80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00017cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00017cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00017d00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00017d10: 2020 2020 2020 205a 5a5b 7820 2e2e 7820 ZZ[x ..x │ │ │ │ -00017d20: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ -00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017ce0: 2020 2020 5a5a 5b78 202e 2e78 205d 2020 ZZ[x ..x ] │ │ │ │ +00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017d30: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ +00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d60: 2020 2020 2020 3020 2020 3420 2020 2020 0 4 │ │ │ │ -00017d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d90: 2020 2020 7c0a 7c6f 3332 203a 202d 2d2d |.|o32 : --- │ │ │ │ -00017da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017dc0: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ -00017dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00017de0: 0a7c 2020 2020 2020 2878 2078 202c 2078 .| (x x , x │ │ │ │ -00017df0: 2078 2078 202c 2078 2020 2d20 7820 2c20 x x , x - x , │ │ │ │ -00017e00: 7820 202d 2078 202c 2078 2020 2d20 7820 x - x , x - x │ │ │ │ -00017e10: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00017e20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00017e30: 2020 2020 2032 2034 2020 2030 2031 2033 2 4 0 1 3 │ │ │ │ -00017e40: 2020 2030 2020 2020 3320 2020 3120 2020 0 3 1 │ │ │ │ -00017e50: 2033 2020 2032 2020 2020 3420 2020 2020 3 2 4 │ │ │ │ -00017e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e70: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017ec0: 2b0a 7c69 3333 203a 2043 534d 2843 682c +.|i33 : CSM(Ch, │ │ │ │ -00017ed0: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +00017d60: 207c 0a7c 6f33 3220 3a20 2d2d 2d2d 2d2d |.|o32 : ------ │ │ │ │ +00017d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017d90: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ +00017da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017db0: 2020 2020 2028 7820 7820 2c20 7820 7820 (x x , x x │ │ │ │ +00017dc0: 7820 2c20 7820 202d 2078 202c 2078 2020 x , x - x , x │ │ │ │ +00017dd0: 2d20 7820 2c20 7820 202d 2078 2029 2020 - x , x - x ) │ │ │ │ +00017de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017df0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00017e00: 2020 3220 3420 2020 3020 3120 3320 2020 2 4 0 1 3 │ │ │ │ +00017e10: 3020 2020 2033 2020 2031 2020 2020 3320 0 3 1 3 │ │ │ │ +00017e20: 2020 3220 2020 2034 2020 2020 2020 2020 2 4 │ │ │ │ +00017e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017e40: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00017e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00017e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00017e90: 6933 3320 3a20 4353 4d28 4368 2c58 2c49 i33 : CSM(Ch,X,I │ │ │ │ +00017ea0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00017f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f20: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +00017f30: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00017f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00017f60: 2032 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -00017f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017f60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00017f70: 7c6f 3333 203d 2038 7820 7820 202b 2033 |o33 = 8x x + 3 │ │ │ │ +00017f80: 7820 202b 2035 7820 7820 202b 2078 2020 x + 5x x + x │ │ │ │ 00017f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fa0: 207c 0a7c 6f33 3320 3d20 3878 2078 2020 |.|o33 = 8x x │ │ │ │ -00017fb0: 2b20 3378 2020 2b20 3578 2078 2020 2b20 + 3x + 5x x + │ │ │ │ -00017fc0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017ff0: 2020 2020 2020 2033 2034 2020 2020 2033 3 4 3 │ │ │ │ -00018000: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ +00017fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017fb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00017fc0: 2020 2020 3320 3420 2020 2020 3320 2020 3 4 3 │ │ │ │ +00017fd0: 2020 3320 3420 2020 2033 2020 2020 2020 3 4 3 │ │ │ │ +00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00017ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018000: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00018040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018050: 0a7c 6f33 3320 3a20 4368 2020 2020 2020 .|o33 : Ch │ │ │ │ 00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018080: 2020 7c0a 7c6f 3333 203a 2043 6820 2020 |.|o33 : Ch │ │ │ │ -00018090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00018080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018090: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000180a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000180c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000180d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000180f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018110: 2d2d 2d2d 2d2d 2d2d 2b0a 0a54 6869 7320 --------+..This │ │ │ │ -00018120: 6675 6e63 7469 6f6e 206d 6179 2061 6c73 function may als │ │ │ │ -00018130: 6f20 636f 6d70 7574 6520 7468 6520 4353 o compute the CS │ │ │ │ -00018140: 4d20 636c 6173 7320 6f66 2061 206e 6f72 M class of a nor │ │ │ │ -00018150: 6d61 6c20 746f 7269 6320 7661 7269 6574 mal toric variet │ │ │ │ -00018160: 7920 6465 6669 6e65 640a 6279 2061 2066 y defined.by a f │ │ │ │ -00018170: 616e 2e20 496e 2074 6869 7320 6361 7365 an. In this case │ │ │ │ -00018180: 2061 2063 6f6d 6269 6e61 746f 7269 616c a combinatorial │ │ │ │ -00018190: 206d 6574 686f 6420 6973 2075 7365 642e method is used. │ │ │ │ -000181a0: 2054 6869 7320 6d65 7468 6f64 2069 7320 This method is │ │ │ │ -000181b0: 6163 6365 7373 6564 0a77 6974 6820 7468 accessed.with th │ │ │ │ -000181c0: 6520 7573 7561 6c20 4353 4d20 636f 6d6d e usual CSM comm │ │ │ │ -000181d0: 616e 6420 7769 7468 2065 6974 6865 7220 and with either │ │ │ │ -000181e0: 6f6e 6c79 2061 2074 6f72 6963 2076 6172 only a toric var │ │ │ │ -000181f0: 6965 7479 206f 7220 6120 746f 7269 6320 iety or a toric │ │ │ │ -00018200: 7661 7269 6574 790a 616e 6420 6120 4368 variety.and a Ch │ │ │ │ -00018210: 6f77 2072 696e 6720 6173 2069 6e70 7574 ow ring as input │ │ │ │ -00018220: 2e20 496e 2074 6869 7320 6361 7365 2077 . In this case w │ │ │ │ -00018230: 6520 6f6e 6c79 2072 6571 7569 7265 2074 e only require t │ │ │ │ -00018240: 6861 7420 7468 6520 696e 7075 7420 746f hat the input to │ │ │ │ -00018250: 7269 630a 7661 7269 6574 7920 6973 2063 ric.variety is c │ │ │ │ -00018260: 6f6d 706c 6574 6520 616e 6420 7369 6d70 omplete and simp │ │ │ │ -00018270: 6c69 6369 616c 2028 696e 2070 6172 7469 licial (in parti │ │ │ │ -00018280: 6375 6c61 7220 7765 2064 6f20 6e6f 7420 cular we do not │ │ │ │ -00018290: 6e65 6564 2069 7420 746f 2062 650a 736d need it to be.sm │ │ │ │ -000182a0: 6f6f 7468 292e 0a0a 2b2d 2d2d 2d2d 2d2d ooth)...+------- │ │ │ │ -000182b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000182d0: 2d2d 2d2b 0a7c 6933 3420 3a20 6e65 6564 ---+.|i34 : need │ │ │ │ -000182e0: 7350 6163 6b61 6765 2022 4e6f 726d 616c sPackage "Normal │ │ │ │ -000182f0: 546f 7269 6356 6172 6965 7469 6573 2220 ToricVarieties" │ │ │ │ -00018300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00018310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00018330: 6f33 3420 3d20 4e6f 726d 616c 546f 7269 o34 = NormalTori │ │ │ │ -00018340: 6356 6172 6965 7469 6573 2020 2020 2020 cVarieties │ │ │ │ -00018350: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000180e0: 2d2d 2d2d 2d2b 0a0a 5468 6973 2066 756e -----+..This fun │ │ │ │ +000180f0: 6374 696f 6e20 6d61 7920 616c 736f 2063 ction may also c │ │ │ │ +00018100: 6f6d 7075 7465 2074 6865 2043 534d 2063 ompute the CSM c │ │ │ │ +00018110: 6c61 7373 206f 6620 6120 6e6f 726d 616c lass of a normal │ │ │ │ +00018120: 2074 6f72 6963 2076 6172 6965 7479 2064 toric variety d │ │ │ │ +00018130: 6566 696e 6564 0a62 7920 6120 6661 6e2e efined.by a fan. │ │ │ │ +00018140: 2049 6e20 7468 6973 2063 6173 6520 6120 In this case a │ │ │ │ +00018150: 636f 6d62 696e 6174 6f72 6961 6c20 6d65 combinatorial me │ │ │ │ +00018160: 7468 6f64 2069 7320 7573 6564 2e20 5468 thod is used. Th │ │ │ │ +00018170: 6973 206d 6574 686f 6420 6973 2061 6363 is method is acc │ │ │ │ +00018180: 6573 7365 640a 7769 7468 2074 6865 2075 essed.with the u │ │ │ │ +00018190: 7375 616c 2043 534d 2063 6f6d 6d61 6e64 sual CSM command │ │ │ │ +000181a0: 2077 6974 6820 6569 7468 6572 206f 6e6c with either onl │ │ │ │ +000181b0: 7920 6120 746f 7269 6320 7661 7269 6574 y a toric variet │ │ │ │ +000181c0: 7920 6f72 2061 2074 6f72 6963 2076 6172 y or a toric var │ │ │ │ +000181d0: 6965 7479 0a61 6e64 2061 2043 686f 7720 iety.and a Chow │ │ │ │ +000181e0: 7269 6e67 2061 7320 696e 7075 742e 2049 ring as input. I │ │ │ │ +000181f0: 6e20 7468 6973 2063 6173 6520 7765 206f n this case we o │ │ │ │ +00018200: 6e6c 7920 7265 7175 6972 6520 7468 6174 nly require that │ │ │ │ +00018210: 2074 6865 2069 6e70 7574 2074 6f72 6963 the input toric │ │ │ │ +00018220: 0a76 6172 6965 7479 2069 7320 636f 6d70 .variety is comp │ │ │ │ +00018230: 6c65 7465 2061 6e64 2073 696d 706c 6963 lete and simplic │ │ │ │ +00018240: 6961 6c20 2869 6e20 7061 7274 6963 756c ial (in particul │ │ │ │ +00018250: 6172 2077 6520 646f 206e 6f74 206e 6565 ar we do not nee │ │ │ │ +00018260: 6420 6974 2074 6f20 6265 0a73 6d6f 6f74 d it to be.smoot │ │ │ │ +00018270: 6829 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d h)...+---------- │ │ │ │ +00018280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000182a0: 2b0a 7c69 3334 203a 206e 6565 6473 5061 +.|i34 : needsPa │ │ │ │ +000182b0: 636b 6167 6520 224e 6f72 6d61 6c54 6f72 ckage "NormalTor │ │ │ │ +000182c0: 6963 5661 7269 6574 6965 7322 207c 0a7c icVarieties" |.| │ │ │ │ +000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000182f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3334 |.|o34 │ │ │ │ +00018300: 203d 204e 6f72 6d61 6c54 6f72 6963 5661 = NormalToricVa │ │ │ │ +00018310: 7269 6574 6965 7320 2020 2020 2020 2020 rieties │ │ │ │ +00018320: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018350: 2020 2020 7c0a 7c6f 3334 203a 2050 6163 |.|o34 : Pac │ │ │ │ +00018360: 6b61 6765 2020 2020 2020 2020 2020 2020 kage │ │ │ │ 00018370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018380: 2020 2020 2020 207c 0a7c 6f33 3420 3a20 |.|o34 : │ │ │ │ -00018390: 5061 636b 6167 6520 2020 2020 2020 2020 Package │ │ │ │ -000183a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -000183c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000183d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000183e0: 2d2b 0a7c 6933 3520 3a20 5520 3d20 6869 -+.|i35 : U = hi │ │ │ │ -000183f0: 727a 6562 7275 6368 5375 7266 6163 6520 rzebruchSurface │ │ │ │ -00018400: 3720 2020 2020 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -00018410: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00018380: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00018390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000183a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000183b0: 7c69 3335 203a 2055 203d 2068 6972 7a65 |i35 : U = hirze │ │ │ │ +000183c0: 6272 7563 6853 7572 6661 6365 2037 2020 bruchSurface 7 │ │ │ │ +000183d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000183f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018400: 2020 2020 2020 2020 7c0a 7c6f 3335 203d |.|o35 = │ │ │ │ +00018410: 2055 2020 2020 2020 2020 2020 2020 2020 U │ │ │ │ 00018420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018430: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00018440: 3520 3d20 5520 2020 2020 2020 2020 2020 5 = U │ │ │ │ +00018430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00018470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018490: 2020 2020 207c 0a7c 6f33 3520 3a20 4e6f |.|o35 : No │ │ │ │ -000184a0: 726d 616c 546f 7269 6356 6172 6965 7479 rmalToricVariety │ │ │ │ -000184b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -000184d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000184e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000184f0: 0a7c 6933 3620 3a20 4368 3d54 6f72 6963 .|i36 : Ch=Toric │ │ │ │ -00018500: 4368 6f77 5269 6e67 2855 2920 2020 2020 ChowRing(U) │ │ │ │ -00018510: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00018520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018460: 2020 7c0a 7c6f 3335 203a 204e 6f72 6d61 |.|o35 : Norma │ │ │ │ +00018470: 6c54 6f72 6963 5661 7269 6574 7920 2020 lToricVariety │ │ │ │ +00018480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00018490: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000184a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000184b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +000184c0: 3336 203a 2043 683d 546f 7269 6343 686f 36 : Ch=ToricCho │ │ │ │ +000184d0: 7752 696e 6728 5529 2020 2020 2020 2020 wRing(U) │ │ │ │ +000184e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000184f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018510: 2020 2020 2020 7c0a 7c6f 3336 203d 2043 |.|o36 = C │ │ │ │ +00018520: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ 00018530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018540: 2020 2020 2020 2020 207c 0a7c 6f33 3620 |.|o36 │ │ │ │ -00018550: 3d20 4368 2020 2020 2020 2020 2020 2020 = Ch │ │ │ │ +00018540: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018570: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00018580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185a0: 2020 207c 0a7c 6f33 3620 3a20 5175 6f74 |.|o36 : Quot │ │ │ │ -000185b0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ -000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000185d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000185e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000185f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00018600: 6933 3720 3a20 4353 4d20 5520 2020 2020 i37 : CSM U │ │ │ │ +00018570: 7c0a 7c6f 3336 203a 2051 756f 7469 656e |.|o36 : Quotien │ │ │ │ +00018580: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ +00018590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000185a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000185c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3337 ----------+.|i37 │ │ │ │ +000185d0: 203a 2043 534d 2055 2020 2020 2020 2020 : CSM U │ │ │ │ +000185e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000185f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00018600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018620: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00018630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00018630: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00018640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00018660: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00018670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018680: 2020 2020 7c0a 7c6f 3337 203d 202d 2033 |.|o37 = - 3 │ │ │ │ -00018690: 7820 7820 202b 2078 2020 2d20 3578 2020 x x + x - 5x │ │ │ │ -000186a0: 2b20 3278 2020 2b20 3120 2020 2020 2020 + 2x + 1 │ │ │ │ -000186b0: 207c 0a7c 2020 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -000186c0: 3320 2020 2033 2020 2020 2032 2020 2020 3 3 2 │ │ │ │ -000186d0: 2033 2020 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -000186e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000186f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018720: 205a 5a5b 7820 2e2e 7820 5d20 2020 2020 ZZ[x ..x ] │ │ │ │ -00018730: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00018740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018750: 2020 3020 2020 3320 2020 2020 2020 2020 0 3 │ │ │ │ -00018760: 2020 2020 207c 0a7c 6f33 3720 3a20 2d2d |.|o37 : -- │ │ │ │ -00018770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018790: 2d2d 7c0a 7c20 2020 2020 2028 7820 7820 --|.| (x x │ │ │ │ -000187a0: 2c20 7820 7820 2c20 7820 202d 2078 202c , x x , x - x , │ │ │ │ -000187b0: 2078 2020 2b20 3778 2020 2d20 7820 297c x + 7x - x )| │ │ │ │ -000187c0: 0a7c 2020 2020 2020 2020 3020 3220 2020 .| 0 2 │ │ │ │ -000187d0: 3120 3320 2020 3020 2020 2032 2020 2031 1 3 0 2 1 │ │ │ │ -000187e0: 2020 2020 2032 2020 2020 3320 7c0a 2b2d 2 3 |.+- │ │ │ │ -000187f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018810: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 3820 ---------+.|i38 │ │ │ │ -00018820: 3a20 6373 6d31 3d43 534d 2843 682c 5529 : csm1=CSM(Ch,U) │ │ │ │ +00018650: 207c 0a7c 6f33 3720 3d20 2d20 3378 2078 |.|o37 = - 3x x │ │ │ │ +00018660: 2020 2b20 7820 202d 2035 7820 202b 2032 + x - 5x + 2 │ │ │ │ +00018670: 7820 202b 2031 2020 2020 2020 2020 7c0a x + 1 |. │ │ │ │ +00018680: 7c20 2020 2020 2020 2020 2032 2033 2020 | 2 3 │ │ │ │ +00018690: 2020 3320 2020 2020 3220 2020 2020 3320 3 2 3 │ │ │ │ +000186a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000186b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000186c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000186d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000186e0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000186f0: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ +00018700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00018710: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00018720: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00018730: 2020 7c0a 7c6f 3337 203a 202d 2d2d 2d2d |.|o37 : ----- │ │ │ │ +00018740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00018760: 0a7c 2020 2020 2020 2878 2078 202c 2078 .| (x x , x │ │ │ │ +00018770: 2078 202c 2078 2020 2d20 7820 2c20 7820 x , x - x , x │ │ │ │ +00018780: 202b 2037 7820 202d 2078 2029 7c0a 7c20 + 7x - x )|.| │ │ │ │ +00018790: 2020 2020 2020 2030 2032 2020 2031 2033 0 2 1 3 │ │ │ │ +000187a0: 2020 2030 2020 2020 3220 2020 3120 2020 0 2 1 │ │ │ │ +000187b0: 2020 3220 2020 2033 207c 0a2b 2d2d 2d2d 2 3 |.+---- │ │ │ │ +000187c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000187e0: 2d2d 2d2d 2d2d 2b0a 7c69 3338 203a 2063 ------+.|i38 : c │ │ │ │ +000187f0: 736d 313d 4353 4d28 4368 2c55 2920 2020 sm1=CSM(Ch,U) │ │ │ │ +00018800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018810: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018840: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00018850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018870: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00018880: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00018890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000188a0: 7c0a 7c6f 3338 203d 202d 2033 7820 7820 |.|o38 = - 3x x │ │ │ │ -000188b0: 202b 2078 2020 2d20 3578 2020 2b20 3278 + x - 5x + 2x │ │ │ │ -000188c0: 2020 2b20 3120 2020 2020 2020 207c 0a7c + 1 |.| │ │ │ │ -000188d0: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -000188e0: 2033 2020 2020 2032 2020 2020 2033 2020 3 2 3 │ │ │ │ -000188f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00018840: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00018850: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00018860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00018870: 6f33 3820 3d20 2d20 3378 2078 2020 2b20 o38 = - 3x x + │ │ │ │ +00018880: 7820 202d 2035 7820 202b 2032 7820 202b x - 5x + 2x + │ │ │ │ +00018890: 2031 2020 2020 2020 2020 7c0a 7c20 2020 1 |.| │ │ │ │ +000188a0: 2020 2020 2020 2032 2033 2020 2020 3320 2 3 3 │ │ │ │ +000188b0: 2020 2020 3220 2020 2020 3320 2020 2020 2 3 │ │ │ │ +000188c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000188d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000188e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000188f0: 2020 2020 7c0a 7c6f 3338 203a 2043 6820 |.|o38 : Ch │ │ │ │ 00018900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018920: 2020 2020 2020 207c 0a7c 6f33 3820 3a20 |.|o38 : │ │ │ │ -00018930: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ -00018940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018950: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00018960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018980: 2d2b 0a0a 416c 6c20 7468 6520 6578 616d -+..All the exam │ │ │ │ -00018990: 706c 6573 2077 6572 6520 646f 6e65 2075 ples were done u │ │ │ │ -000189a0: 7369 6e67 2073 796d 626f 6c69 6320 636f sing symbolic co │ │ │ │ -000189b0: 6d70 7574 6174 696f 6e73 2077 6974 6820 mputations with │ │ │ │ -000189c0: 4772 5c22 6f62 6e65 7220 6261 7365 732e Gr\"obner bases. │ │ │ │ -000189d0: 0a43 6861 6e67 696e 6720 7468 6520 6f70 .Changing the op │ │ │ │ -000189e0: 7469 6f6e 202a 6e6f 7465 2043 6f6d 704d tion *note CompM │ │ │ │ -000189f0: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ -00018a00: 642c 2074 6f20 6265 7274 696e 6920 7769 d, to bertini wi │ │ │ │ -00018a10: 6c6c 2064 6f20 7468 6520 6d61 696e 0a63 ll do the main.c │ │ │ │ -00018a20: 6f6d 7075 7461 7469 6f6e 7320 6e75 6d65 omputations nume │ │ │ │ -00018a30: 7269 6361 6c6c 792c 2070 726f 7669 6465 rically, provide │ │ │ │ -00018a40: 6420 4265 7274 696e 6920 6973 202a 6e6f d Bertini is *no │ │ │ │ -00018a50: 7465 2069 6e73 7461 6c6c 6564 2061 6e64 te installed and │ │ │ │ -00018a60: 2063 6f6e 6669 6775 7265 643a 0a63 6f6e configured:.con │ │ │ │ -00018a70: 6669 6775 7269 6e67 2042 6572 7469 6e69 figuring Bertini │ │ │ │ -00018a80: 2c2e 204e 6f74 6520 7468 6174 2074 6865 ,. Note that the │ │ │ │ -00018a90: 2062 6572 7469 6e69 2061 6e64 2050 6e52 bertini and PnR │ │ │ │ -00018aa0: 6573 6964 7561 6c20 6f70 7469 6f6e 7320 esidual options │ │ │ │ -00018ab0: 6d61 7920 6f6e 6c79 2062 650a 7573 6564 may only be.used │ │ │ │ -00018ac0: 2066 6f72 2073 7562 7363 6865 6d65 7320 for subschemes │ │ │ │ -00018ad0: 6f66 205c 5050 5e6e 2e0a 0a4f 6273 6572 of \PP^n...Obser │ │ │ │ -00018ae0: 7665 2074 6861 7420 7468 6520 616c 676f ve that the algo │ │ │ │ -00018af0: 7269 7468 6d20 6973 2061 2070 726f 6261 rithm is a proba │ │ │ │ -00018b00: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00018b10: 686d 2061 6e64 206d 6179 2067 6976 6520 hm and may give │ │ │ │ -00018b20: 6120 7772 6f6e 670a 616e 7377 6572 2077 a wrong.answer w │ │ │ │ -00018b30: 6974 6820 6120 736d 616c 6c20 6275 7420 ith a small but │ │ │ │ -00018b40: 6e6f 6e7a 6572 6f20 7072 6f62 6162 696c nonzero probabil │ │ │ │ -00018b50: 6974 792e 2052 6561 6420 6d6f 7265 2075 ity. Read more u │ │ │ │ -00018b60: 6e64 6572 202a 6e6f 7465 0a70 726f 6261 nder *note.proba │ │ │ │ -00018b70: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00018b80: 686d 3a20 7072 6f62 6162 696c 6973 7469 hm: probabilisti │ │ │ │ -00018b90: 6320 616c 676f 7269 7468 6d2c 2e0a 0a0a c algorithm,.... │ │ │ │ -00018ba0: 0a57 6179 7320 746f 2075 7365 2043 534d .Ways to use CSM │ │ │ │ -00018bb0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00018bc0: 3d3d 0a0a 2020 2a20 2243 534d 2849 6465 ==.. * "CSM(Ide │ │ │ │ -00018bd0: 616c 2922 0a20 202a 2022 4353 4d28 4964 al)". * "CSM(Id │ │ │ │ -00018be0: 6561 6c2c 5379 6d62 6f6c 2922 0a20 202a eal,Symbol)". * │ │ │ │ -00018bf0: 2022 4353 4d28 5175 6f74 6965 6e74 5269 "CSM(QuotientRi │ │ │ │ -00018c00: 6e67 2c49 6465 616c 2922 0a20 202a 2022 ng,Ideal)". * " │ │ │ │ -00018c10: 4353 4d28 5175 6f74 6965 6e74 5269 6e67 CSM(QuotientRing │ │ │ │ -00018c20: 2c49 6465 616c 2c4d 7574 6162 6c65 4861 ,Ideal,MutableHa │ │ │ │ -00018c30: 7368 5461 626c 6529 220a 0a46 6f72 2074 shTable)"..For t │ │ │ │ -00018c40: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ -00018c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00018c60: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ -00018c70: 7465 2043 534d 3a20 4353 4d2c 2069 7320 te CSM: CSM, is │ │ │ │ -00018c80: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -00018c90: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ -00018ca0: 696f 6e73 3a0a 284d 6163 6175 6c61 7932 ions:.(Macaulay2 │ │ │ │ -00018cb0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00018cc0: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ -00018cd0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ -00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d20: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00018d30: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00018d40: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00018d50: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00018d60: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00018d70: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00018d80: 6163 6b61 6765 732f 0a43 6861 7261 6374 ackages/.Charact │ │ │ │ -00018d90: 6572 6973 7469 6343 6c61 7373 6573 2e6d eristicClasses.m │ │ │ │ -00018da0: 323a 3232 3231 3a30 2e0a 1f0a 4669 6c65 2:2221:0....File │ │ │ │ -00018db0: 3a20 4368 6172 6163 7465 7269 7374 6963 : Characteristic │ │ │ │ -00018dc0: 436c 6173 7365 732e 696e 666f 2c20 4e6f Classes.info, No │ │ │ │ -00018dd0: 6465 3a20 4575 6c65 722c 204e 6578 743a de: Euler, Next: │ │ │ │ -00018de0: 2045 756c 6572 4166 6669 6e65 2c20 5072 EulerAffine, Pr │ │ │ │ -00018df0: 6576 3a20 4353 4d2c 2055 703a 2054 6f70 ev: CSM, Up: Top │ │ │ │ -00018e00: 0a0a 4575 6c65 7220 2d2d 2054 6865 2045 ..Euler -- The E │ │ │ │ -00018e10: 756c 6572 2043 6861 7261 6374 6572 6973 uler Characteris │ │ │ │ -00018e20: 7469 630a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a tic.************ │ │ │ │ -00018e30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00018e40: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00018e50: 3a20 0a20 2020 2020 2020 2045 756c 6572 : . Euler │ │ │ │ -00018e60: 2049 0a20 2020 2020 2020 2045 756c 6572 I. Euler │ │ │ │ -00018e70: 2858 2c4a 290a 2020 2020 2020 2020 4575 (X,J). Eu │ │ │ │ -00018e80: 6c65 7220 6373 6d0a 2020 2a20 496e 7075 ler csm. * Inpu │ │ │ │ -00018e90: 7473 3a0a 2020 2020 2020 2a20 492c 2061 ts:. * I, a │ │ │ │ -00018ea0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ -00018eb0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ -00018ec0: 616c 2c2c 2061 206d 756c 7469 2d68 6f6d al,, a multi-hom │ │ │ │ -00018ed0: 6f67 656e 656f 7573 2069 6465 616c 2069 ogeneous ideal i │ │ │ │ -00018ee0: 6e20 610a 2020 2020 2020 2020 6772 6164 n a. grad │ │ │ │ -00018ef0: 6564 2070 6f6c 796e 6f6d 6961 6c20 7269 ed polynomial ri │ │ │ │ -00018f00: 6e67 206f 7665 7220 6120 6669 656c 6420 ng over a field │ │ │ │ -00018f10: 6465 6669 6e69 6e67 2061 2063 6c6f 7365 defining a close │ │ │ │ -00018f20: 6420 7375 6273 6368 656d 6520 5620 6f66 d subscheme V of │ │ │ │ -00018f30: 0a20 2020 2020 2020 205c 5050 5e7b 6e5f . \PP^{n_ │ │ │ │ -00018f40: 317d 782e 2e2e 785c 5050 5e7b 6e5f 6d7d 1}x...x\PP^{n_m} │ │ │ │ -00018f50: 0a20 2020 2020 202a 204a 2c20 616e 202a . * J, an * │ │ │ │ -00018f60: 6e6f 7465 2069 6465 616c 3a20 284d 6163 note ideal: (Mac │ │ │ │ -00018f70: 6175 6c61 7932 446f 6329 4964 6561 6c2c aulay2Doc)Ideal, │ │ │ │ -00018f80: 2c20 616e 2069 6465 616c 2069 6e20 7468 , an ideal in th │ │ │ │ -00018f90: 6520 6772 6164 6564 0a20 2020 2020 2020 e graded. │ │ │ │ -00018fa0: 2070 6f6c 796e 6f6d 6961 6c20 7269 6e67 polynomial ring │ │ │ │ -00018fb0: 2077 6869 6368 2069 7320 636f 6f72 6469 which is coordi │ │ │ │ -00018fc0: 6e61 7465 2072 696e 6720 6f66 2074 6865 nate ring of the │ │ │ │ -00018fd0: 204e 6f72 6d61 6c20 546f 7269 6320 5661 Normal Toric Va │ │ │ │ -00018fe0: 7269 6574 7920 580a 2020 2020 2020 2a20 riety X. * │ │ │ │ -00018ff0: 582c 2061 202a 6e6f 7465 206e 6f72 6d61 X, a *note norma │ │ │ │ -00019000: 6c20 746f 7269 6320 7661 7269 6574 793a l toric variety: │ │ │ │ -00019010: 0a20 2020 2020 2020 2028 4e6f 726d 616c . (Normal │ │ │ │ -00019020: 546f 7269 6356 6172 6965 7469 6573 294e ToricVarieties)N │ │ │ │ -00019030: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -00019040: 792c 2c20 6120 6e6f 726d 616c 2074 6f72 y,, a normal tor │ │ │ │ -00019050: 6963 2076 6172 6965 7479 2077 6869 6368 ic variety which │ │ │ │ -00019060: 0a20 2020 2020 2020 2069 7320 7468 6520 . is the │ │ │ │ -00019070: 616d 6269 656e 7420 7370 6163 6520 7468 ambient space th │ │ │ │ -00019080: 6174 2077 6520 6172 6520 776f 726b 696e at we are workin │ │ │ │ -00019090: 6720 696e 0a20 2020 2020 202a 2063 736d g in. * csm │ │ │ │ -000190a0: 2c20 6120 2a6e 6f74 6520 7269 6e67 2065 , a *note ring e │ │ │ │ -000190b0: 6c65 6d65 6e74 3a20 284d 6163 6175 6c61 lement: (Macaula │ │ │ │ -000190c0: 7932 446f 6329 5269 6e67 456c 656d 656e y2Doc)RingElemen │ │ │ │ -000190d0: 742c 2c20 7468 6520 4353 4d20 636c 6173 t,, the CSM clas │ │ │ │ -000190e0: 7320 6f66 0a20 2020 2020 2020 2073 6f6d s of. som │ │ │ │ -000190f0: 6520 7661 7269 6574 7920 560a 2020 2a20 e variety V. * │ │ │ │ -00019100: 2a6e 6f74 6520 4f70 7469 6f6e 616c 2069 *note Optional i │ │ │ │ -00019110: 6e70 7574 733a 2028 4d61 6361 756c 6179 nputs: (Macaulay │ │ │ │ -00019120: 3244 6f63 2975 7369 6e67 2066 756e 6374 2Doc)using funct │ │ │ │ -00019130: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -00019140: 616c 2069 6e70 7574 732c 3a0a 2020 2020 al inputs,:. │ │ │ │ -00019150: 2020 2a20 436f 6d70 4d65 7468 6f64 2028 * CompMethod ( │ │ │ │ -00019160: 6d69 7373 696e 6720 646f 6375 6d65 6e74 missing document │ │ │ │ -00019170: 6174 696f 6e29 203d 3e20 2e2e 2e2c 2064 ation) => ..., d │ │ │ │ -00019180: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00019190: 2020 2020 2050 726f 6a65 6374 6976 6544 ProjectiveD │ │ │ │ -000191a0: 6567 7265 652c 2050 726f 6a65 6374 6976 egree, Projectiv │ │ │ │ -000191b0: 6544 6567 7265 652c 2061 7070 6c69 6361 eDegree, applica │ │ │ │ -000191c0: 626c 6520 666f 7220 616c 6c20 6361 7365 ble for all case │ │ │ │ -000191d0: 7320 7768 6572 6520 7468 650a 2020 2020 s where the. │ │ │ │ -000191e0: 2020 2020 6d65 7468 6f64 7320 696e 2074 methods in t │ │ │ │ -000191f0: 6865 2070 6163 6b61 6765 206d 6179 2062 he package may b │ │ │ │ -00019200: 6520 7573 6564 0a20 2020 2020 202a 2043 e used. * C │ │ │ │ -00019210: 6f6d 704d 6574 686f 6420 286d 6973 7369 ompMethod (missi │ │ │ │ -00019220: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00019230: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ -00019240: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ -00019250: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ -00019260: 2c20 506e 5265 7369 6475 616c 2c20 7468 , PnResidual, th │ │ │ │ -00019270: 6973 2061 6c67 6f72 6974 686d 206d 6179 is algorithm may │ │ │ │ -00019280: 2062 6520 7573 6564 2066 6f72 2073 7562 be used for sub │ │ │ │ -00019290: 7363 6865 6d65 730a 2020 2020 2020 2020 schemes. │ │ │ │ -000192a0: 6f66 205c 5050 5e6e 206f 6e6c 790a 2020 of \PP^n only. │ │ │ │ -000192b0: 2020 2020 2a20 4d65 7468 6f64 2028 6d69 * Method (mi │ │ │ │ -000192c0: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ -000192d0: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ -000192e0: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ -000192f0: 2020 2049 6e63 6c75 7369 6f6e 4578 636c InclusionExcl │ │ │ │ -00019300: 7573 696f 6e2c 2049 6e63 6c75 7369 6f6e usion, Inclusion │ │ │ │ -00019310: 4578 636c 7573 696f 6e2c 2061 7070 6c69 Exclusion, appli │ │ │ │ -00019320: 6361 626c 6520 666f 7220 616c 6c20 696e cable for all in │ │ │ │ -00019330: 7075 7473 0a20 2020 2020 202a 204d 6574 puts. * Met │ │ │ │ -00019340: 686f 6420 286d 6973 7369 6e67 2064 6f63 hod (missing doc │ │ │ │ -00019350: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -00019360: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -00019370: 650a 2020 2020 2020 2020 496e 636c 7573 e. Inclus │ │ │ │ -00019380: 696f 6e45 7863 6c75 7369 6f6e 2c20 4469 ionExclusion, Di │ │ │ │ -00019390: 7265 6374 436f 6d70 6c65 7465 496e 742c rectCompleteInt, │ │ │ │ -000193a0: 2074 6869 7320 6d65 7468 6f64 206d 6179 this method may │ │ │ │ -000193b0: 2070 726f 7669 6465 2061 0a20 2020 2020 provide a. │ │ │ │ -000193c0: 2020 2070 6572 666f 726d 616e 6365 2069 performance i │ │ │ │ -000193d0: 6d70 726f 7665 6d65 6e74 2077 6865 6e20 mprovement when │ │ │ │ -000193e0: 7468 6520 696e 7075 7420 6973 2061 2063 the input is a c │ │ │ │ -000193f0: 6f6d 706c 6574 6520 696e 7465 7273 6563 omplete intersec │ │ │ │ -00019400: 7469 6f6e 2c20 6966 0a20 2020 2020 2020 tion, if. │ │ │ │ -00019410: 2074 6865 2069 6e70 7574 2069 7320 6e6f the input is no │ │ │ │ -00019420: 7420 6120 636f 6d70 6c65 7465 2069 6e74 t a complete int │ │ │ │ -00019430: 6572 7365 6374 696f 6e20 696e 636c 7573 ersection inclus │ │ │ │ -00019440: 696f 6e2f 6578 636c 7573 696f 6e20 6974 ion/exclusion it │ │ │ │ -00019450: 2077 696c 6c0a 2020 2020 2020 2020 7265 will. re │ │ │ │ -00019460: 7475 726e 2061 6e20 6572 726f 720a 2020 turn an error. │ │ │ │ -00019470: 2020 2020 2a20 496e 7075 7449 7353 6d6f * InputIsSmo │ │ │ │ -00019480: 6f74 6820 286d 6973 7369 6e67 2064 6f63 oth (missing doc │ │ │ │ -00019490: 756d 656e 7461 7469 6f6e 2920 3d3e 202e umentation) => . │ │ │ │ -000194a0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -000194b0: 6520 6661 6c73 652c 2074 6869 730a 2020 e false, this. │ │ │ │ -000194c0: 2020 2020 2020 6f70 7469 6f6e 2068 6173 option has │ │ │ │ -000194d0: 2076 616c 7565 7320 7472 7565 2f66 616c values true/fal │ │ │ │ -000194e0: 7365 2061 6e64 2074 656c 6c73 2074 6865 se and tells the │ │ │ │ -000194f0: 206d 6574 686f 6420 7768 6574 6865 7220 method whether │ │ │ │ -00019500: 746f 2061 7373 756d 6520 7468 650a 2020 to assume the. │ │ │ │ -00019510: 2020 2020 2020 696e 7075 7420 6964 6561 input idea │ │ │ │ -00019520: 6c20 6465 6669 6e65 7320 6120 736d 6f6f l defines a smoo │ │ │ │ -00019530: 7468 2073 6368 656d 652c 2061 6e64 2068 th scheme, and h │ │ │ │ -00019540: 656e 6365 2074 6f20 6361 6c6c 2074 6865 ence to call the │ │ │ │ -00019550: 206d 6574 686f 6420 4368 6572 6e0a 2020 method Chern. │ │ │ │ -00019560: 2020 2020 2020 696e 7374 6561 6420 666f instead fo │ │ │ │ -00019570: 7220 7265 6475 6365 6420 7275 6e20 7469 r reduced run ti │ │ │ │ -00019580: 6d65 2c20 616c 7465 726e 6174 6976 656c me, alternativel │ │ │ │ -00019590: 7920 7468 6520 4368 6572 6e20 6675 6e63 y the Chern func │ │ │ │ -000195a0: 7469 6f6e 2063 616e 2062 650a 2020 2020 tion can be. │ │ │ │ -000195b0: 2020 2020 7573 6564 2064 6972 6563 746c used directl │ │ │ │ -000195c0: 790a 2020 2020 2020 2a20 4f75 7470 7574 y. * Output │ │ │ │ -000195d0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -000195e0: 2076 616c 7565 2043 686f 7752 696e 6745 value ChowRingE │ │ │ │ -000195f0: 6c65 6d65 6e74 2c20 7468 6520 7479 7065 lement, the type │ │ │ │ -00019600: 206f 6620 6f75 7470 7574 2074 6f0a 2020 of output to. │ │ │ │ -00019610: 2020 2020 2020 7265 7475 726e 2074 6865 return the │ │ │ │ -00019620: 2064 6566 6175 6c74 206f 7574 7075 7420 default output │ │ │ │ -00019630: 6973 2061 6e20 696e 7465 6765 720a 2020 is an integer. │ │ │ │ -00019640: 2020 2020 2a20 4f75 7470 7574 203d 3e20 * Output => │ │ │ │ -00019650: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00019660: 7565 2043 686f 7752 696e 6745 6c65 6d65 ue ChowRingEleme │ │ │ │ -00019670: 6e74 2c20 4861 7368 466f 726d 2c20 7468 nt, HashForm, th │ │ │ │ -00019680: 6520 7479 7065 206f 660a 2020 2020 2020 e type of. │ │ │ │ -00019690: 2020 6f75 7470 7574 2074 6f20 7265 7475 output to retu │ │ │ │ -000196a0: 726e 2c20 4861 7368 466f 726d 2072 6574 rn, HashForm ret │ │ │ │ -000196b0: 7572 6e73 2061 204d 7574 6162 6c65 4861 urns a MutableHa │ │ │ │ -000196c0: 7368 5461 626c 6520 636f 6e74 6169 6e69 shTable containi │ │ │ │ -000196d0: 6e67 2074 6865 0a20 2020 2020 2020 206b ng the. k │ │ │ │ -000196e0: 6579 2022 4353 4d22 2028 7468 6520 4353 ey "CSM" (the CS │ │ │ │ -000196f0: 4d20 636c 6173 7329 2c20 616e 6420 6b65 M class), and ke │ │ │ │ -00019700: 7973 206f 6620 7468 6520 666f 726d 0a20 ys of the form. │ │ │ │ -00019710: 2020 2020 2020 205c 7b30 5c7d 2c5c 7b31 \{0\},\{1 │ │ │ │ -00019720: 5c7d 2c5c 7b32 5c7d 2c2e 2e2e 2c5c 7b30 \},\{2\},...,\{0 │ │ │ │ -00019730: 2c31 5c7d 2c5c 7b30 2c32 5c7d 202e 2e2e ,1\},\{0,2\} ... │ │ │ │ -00019740: 2e5c 7b30 2c31 2c32 5c7d 2e2e 2e20 616e .\{0,1,2\}... an │ │ │ │ -00019750: 6420 736f 206f 6e20 7768 6963 680a 2020 d so on which. │ │ │ │ -00019760: 2020 2020 2020 636f 7272 6573 706f 6e64 correspond │ │ │ │ -00019770: 2074 6f20 7468 6520 696e 6469 6365 7320 to the indices │ │ │ │ -00019780: 6f66 2074 6865 2070 6f73 7369 626c 6520 of the possible │ │ │ │ -00019790: 7375 6273 6574 7320 6f66 2074 6865 2067 subsets of the g │ │ │ │ -000197a0: 656e 6572 6174 6f72 7320 6f66 0a20 2020 enerators of. │ │ │ │ -000197b0: 2020 2020 2074 6865 2069 6e70 7574 2069 the input i │ │ │ │ -000197c0: 6465 616c 2c20 666f 7220 6561 6368 2073 deal, for each s │ │ │ │ -000197d0: 6574 206f 6620 696e 6469 6365 7320 7468 et of indices th │ │ │ │ -000197e0: 6520 4353 4d20 636c 6173 7320 6f66 2074 e CSM class of t │ │ │ │ -000197f0: 6865 0a20 2020 2020 2020 2068 7970 6572 he. hyper │ │ │ │ -00019800: 7375 7266 6163 6520 6769 7665 6e20 6279 surface given by │ │ │ │ -00019810: 2074 6865 2070 726f 6475 6374 206f 6620 the product of │ │ │ │ -00019820: 616c 6c20 706f 6c79 6e6f 6d69 616c 7320 all polynomials │ │ │ │ -00019830: 696e 2074 6865 0a20 2020 2020 2020 2063 in the. c │ │ │ │ -00019840: 6f72 7265 7370 6f6e 6469 6e67 2073 6574 orresponding set │ │ │ │ -00019850: 206f 6620 6765 6e65 7261 746f 7273 2069 of generators i │ │ │ │ -00019860: 7320 7374 6f72 6564 2c20 7468 6572 6520 s stored, there │ │ │ │ -00019870: 6973 206e 6f20 6578 7472 6120 636f 7374 is no extra cost │ │ │ │ -00019880: 2074 6f0a 2020 2020 2020 2020 7573 696e to. usin │ │ │ │ -00019890: 6720 7468 6973 206f 7074 696f 6e0a 2020 g this option. │ │ │ │ -000198a0: 2020 2020 2a20 496e 6473 4f66 536d 6f6f * IndsOfSmoo │ │ │ │ -000198b0: 7468 2028 6d69 7373 696e 6720 646f 6375 th (missing docu │ │ │ │ -000198c0: 6d65 6e74 6174 696f 6e29 203d 3e20 2e2e mentation) => .. │ │ │ │ -000198d0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -000198e0: 207b 7d2c 2074 6869 730a 2020 2020 2020 {}, this. │ │ │ │ -000198f0: 2020 6f70 7469 6f6e 206d 6179 2073 7065 option may spe │ │ │ │ -00019900: 6564 2075 7020 7468 6520 7275 6e20 7469 ed up the run ti │ │ │ │ -00019910: 6d65 2077 6865 6e20 7573 696e 6720 7468 me when using th │ │ │ │ -00019920: 6520 4469 7265 6374 436f 6d70 6c65 7465 e DirectComplete │ │ │ │ -00019930: 496e 740a 2020 2020 2020 2020 4d65 7468 Int. Meth │ │ │ │ -00019940: 6f64 2069 6620 7468 6520 7573 6572 206b od if the user k │ │ │ │ -00019950: 6e6f 7773 2061 6464 6974 696f 6e61 6c20 nows additional │ │ │ │ -00019960: 696e 666f 726d 6174 696f 6e20 6162 6f75 information abou │ │ │ │ -00019970: 7420 7468 6520 696e 7075 7420 6964 6561 t the input idea │ │ │ │ -00019980: 6c2c 0a20 2020 2020 2020 2073 6565 202a l,. see * │ │ │ │ -00019990: 6e6f 7465 2049 6e64 734f 6653 6d6f 6f74 note IndsOfSmoot │ │ │ │ -000199a0: 683a 2049 6e64 734f 6653 6d6f 6f74 682c h: IndsOfSmooth, │ │ │ │ -000199b0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -000199c0: 2020 2020 2a20 6120 2a6e 6f74 6520 7269 * a *note ri │ │ │ │ -000199d0: 6e67 2065 6c65 6d65 6e74 3a20 284d 6163 ng element: (Mac │ │ │ │ -000199e0: 6175 6c61 7932 446f 6329 5269 6e67 456c aulay2Doc)RingEl │ │ │ │ -000199f0: 656d 656e 742c 2c20 7468 6520 4575 6c65 ement,, the Eule │ │ │ │ -00019a00: 720a 2020 2020 2020 2020 6368 6172 6163 r. charac │ │ │ │ -00019a10: 7465 7269 7374 6963 0a0a 4465 7363 7269 teristic..Descri │ │ │ │ -00019a20: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -00019a30: 3d0a 0a46 6f72 2061 2073 7562 7363 6865 =..For a subsche │ │ │ │ -00019a40: 6d65 2056 206f 6620 616e 2061 7070 6c69 me V of an appli │ │ │ │ -00019a50: 6361 626c 6520 746f 7269 6320 7661 7269 cable toric vari │ │ │ │ -00019a60: 6574 7920 582c 2074 6869 7320 636f 6d6d ety X, this comm │ │ │ │ -00019a70: 616e 6420 636f 6d70 7574 6573 2074 6865 and computes the │ │ │ │ -00019a80: 0a45 756c 6572 2063 6861 7261 6374 6572 .Euler character │ │ │ │ -00019a90: 6973 7469 630a 0a2b 2d2d 2d2d 2d2d 2d2d istic..+-------- │ │ │ │ +00018920: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00018930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00018950: 0a41 6c6c 2074 6865 2065 7861 6d70 6c65 .All the example │ │ │ │ +00018960: 7320 7765 7265 2064 6f6e 6520 7573 696e s were done usin │ │ │ │ +00018970: 6720 7379 6d62 6f6c 6963 2063 6f6d 7075 g symbolic compu │ │ │ │ +00018980: 7461 7469 6f6e 7320 7769 7468 2047 725c tations with Gr\ │ │ │ │ +00018990: 226f 626e 6572 2062 6173 6573 2e0a 4368 "obner bases..Ch │ │ │ │ +000189a0: 616e 6769 6e67 2074 6865 206f 7074 696f anging the optio │ │ │ │ +000189b0: 6e20 2a6e 6f74 6520 436f 6d70 4d65 7468 n *note CompMeth │ │ │ │ +000189c0: 6f64 3a20 436f 6d70 4d65 7468 6f64 2c20 od: CompMethod, │ │ │ │ +000189d0: 746f 2062 6572 7469 6e69 2077 696c 6c20 to bertini will │ │ │ │ +000189e0: 646f 2074 6865 206d 6169 6e0a 636f 6d70 do the main.comp │ │ │ │ +000189f0: 7574 6174 696f 6e73 206e 756d 6572 6963 utations numeric │ │ │ │ +00018a00: 616c 6c79 2c20 7072 6f76 6964 6564 2042 ally, provided B │ │ │ │ +00018a10: 6572 7469 6e69 2069 7320 2a6e 6f74 6520 ertini is *note │ │ │ │ +00018a20: 696e 7374 616c 6c65 6420 616e 6420 636f installed and co │ │ │ │ +00018a30: 6e66 6967 7572 6564 3a0a 636f 6e66 6967 nfigured:.config │ │ │ │ +00018a40: 7572 696e 6720 4265 7274 696e 692c 2e20 uring Bertini,. │ │ │ │ +00018a50: 4e6f 7465 2074 6861 7420 7468 6520 6265 Note that the be │ │ │ │ +00018a60: 7274 696e 6920 616e 6420 506e 5265 7369 rtini and PnResi │ │ │ │ +00018a70: 6475 616c 206f 7074 696f 6e73 206d 6179 dual options may │ │ │ │ +00018a80: 206f 6e6c 7920 6265 0a75 7365 6420 666f only be.used fo │ │ │ │ +00018a90: 7220 7375 6273 6368 656d 6573 206f 6620 r subschemes of │ │ │ │ +00018aa0: 5c50 505e 6e2e 0a0a 4f62 7365 7276 6520 \PP^n...Observe │ │ │ │ +00018ab0: 7468 6174 2074 6865 2061 6c67 6f72 6974 that the algorit │ │ │ │ +00018ac0: 686d 2069 7320 6120 7072 6f62 6162 696c hm is a probabil │ │ │ │ +00018ad0: 6973 7469 6320 616c 676f 7269 7468 6d20 istic algorithm │ │ │ │ +00018ae0: 616e 6420 6d61 7920 6769 7665 2061 2077 and may give a w │ │ │ │ +00018af0: 726f 6e67 0a61 6e73 7765 7220 7769 7468 rong.answer with │ │ │ │ +00018b00: 2061 2073 6d61 6c6c 2062 7574 206e 6f6e a small but non │ │ │ │ +00018b10: 7a65 726f 2070 726f 6261 6269 6c69 7479 zero probability │ │ │ │ +00018b20: 2e20 5265 6164 206d 6f72 6520 756e 6465 . Read more unde │ │ │ │ +00018b30: 7220 2a6e 6f74 650a 7072 6f62 6162 696c r *note.probabil │ │ │ │ +00018b40: 6973 7469 6320 616c 676f 7269 7468 6d3a istic algorithm: │ │ │ │ +00018b50: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ +00018b60: 6c67 6f72 6974 686d 2c2e 0a0a 0a0a 5761 lgorithm,.....Wa │ │ │ │ +00018b70: 7973 2074 6f20 7573 6520 4353 4d3a 0a3d ys to use CSM:.= │ │ │ │ +00018b80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00018b90: 0a20 202a 2022 4353 4d28 4964 6561 6c29 . * "CSM(Ideal) │ │ │ │ +00018ba0: 220a 2020 2a20 2243 534d 2849 6465 616c ". * "CSM(Ideal │ │ │ │ +00018bb0: 2c53 796d 626f 6c29 220a 2020 2a20 2243 ,Symbol)". * "C │ │ │ │ +00018bc0: 534d 2851 756f 7469 656e 7452 696e 672c SM(QuotientRing, │ │ │ │ +00018bd0: 4964 6561 6c29 220a 2020 2a20 2243 534d Ideal)". * "CSM │ │ │ │ +00018be0: 2851 756f 7469 656e 7452 696e 672c 4964 (QuotientRing,Id │ │ │ │ +00018bf0: 6561 6c2c 4d75 7461 626c 6548 6173 6854 eal,MutableHashT │ │ │ │ +00018c00: 6162 6c65 2922 0a0a 466f 7220 7468 6520 able)"..For the │ │ │ │ +00018c10: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00018c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00018c30: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00018c40: 4353 4d3a 2043 534d 2c20 6973 2061 202a CSM: CSM, is a * │ │ │ │ +00018c50: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ +00018c60: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ +00018c70: 733a 0a28 4d61 6361 756c 6179 3244 6f63 s:.(Macaulay2Doc │ │ │ │ +00018c80: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ +00018c90: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ +00018ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ +00018cf0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ +00018d00: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ +00018d10: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ +00018d20: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ +00018d30: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ +00018d40: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ +00018d50: 6167 6573 2f0a 4368 6172 6163 7465 7269 ages/.Characteri │ │ │ │ +00018d60: 7374 6963 436c 6173 7365 732e 6d32 3a32 sticClasses.m2:2 │ │ │ │ +00018d70: 3232 313a 302e 0a1f 0a46 696c 653a 2043 221:0....File: C │ │ │ │ +00018d80: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ +00018d90: 7373 6573 2e69 6e66 6f2c 204e 6f64 653a sses.info, Node: │ │ │ │ +00018da0: 2045 756c 6572 2c20 4e65 7874 3a20 4575 Euler, Next: Eu │ │ │ │ +00018db0: 6c65 7241 6666 696e 652c 2050 7265 763a lerAffine, Prev: │ │ │ │ +00018dc0: 2043 534d 2c20 5570 3a20 546f 700a 0a45 CSM, Up: Top..E │ │ │ │ +00018dd0: 756c 6572 202d 2d20 5468 6520 4575 6c65 uler -- The Eule │ │ │ │ +00018de0: 7220 4368 6172 6163 7465 7269 7374 6963 r Characteristic │ │ │ │ +00018df0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +00018e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00018e10: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00018e20: 2020 2020 2020 2020 4575 6c65 7220 490a Euler I. │ │ │ │ +00018e30: 2020 2020 2020 2020 4575 6c65 7228 582c Euler(X, │ │ │ │ +00018e40: 4a29 0a20 2020 2020 2020 2045 756c 6572 J). Euler │ │ │ │ +00018e50: 2063 736d 0a20 202a 2049 6e70 7574 733a csm. * Inputs: │ │ │ │ +00018e60: 0a20 2020 2020 202a 2049 2c20 616e 202a . * I, an * │ │ │ │ +00018e70: 6e6f 7465 2069 6465 616c 3a20 284d 6163 note ideal: (Mac │ │ │ │ +00018e80: 6175 6c61 7932 446f 6329 4964 6561 6c2c aulay2Doc)Ideal, │ │ │ │ +00018e90: 2c20 6120 6d75 6c74 692d 686f 6d6f 6765 , a multi-homoge │ │ │ │ +00018ea0: 6e65 6f75 7320 6964 6561 6c20 696e 2061 neous ideal in a │ │ │ │ +00018eb0: 0a20 2020 2020 2020 2067 7261 6465 6420 . graded │ │ │ │ +00018ec0: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ +00018ed0: 6f76 6572 2061 2066 6965 6c64 2064 6566 over a field def │ │ │ │ +00018ee0: 696e 696e 6720 6120 636c 6f73 6564 2073 ining a closed s │ │ │ │ +00018ef0: 7562 7363 6865 6d65 2056 206f 660a 2020 ubscheme V of. │ │ │ │ +00018f00: 2020 2020 2020 5c50 505e 7b6e 5f31 7d78 \PP^{n_1}x │ │ │ │ +00018f10: 2e2e 2e78 5c50 505e 7b6e 5f6d 7d0a 2020 ...x\PP^{n_m}. │ │ │ │ +00018f20: 2020 2020 2a20 4a2c 2061 6e20 2a6e 6f74 * J, an *not │ │ │ │ +00018f30: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ +00018f40: 6179 3244 6f63 2949 6465 616c 2c2c 2061 ay2Doc)Ideal,, a │ │ │ │ +00018f50: 6e20 6964 6561 6c20 696e 2074 6865 2067 n ideal in the g │ │ │ │ +00018f60: 7261 6465 640a 2020 2020 2020 2020 706f raded. po │ │ │ │ +00018f70: 6c79 6e6f 6d69 616c 2072 696e 6720 7768 lynomial ring wh │ │ │ │ +00018f80: 6963 6820 6973 2063 6f6f 7264 696e 6174 ich is coordinat │ │ │ │ +00018f90: 6520 7269 6e67 206f 6620 7468 6520 4e6f e ring of the No │ │ │ │ +00018fa0: 726d 616c 2054 6f72 6963 2056 6172 6965 rmal Toric Varie │ │ │ │ +00018fb0: 7479 2058 0a20 2020 2020 202a 2058 2c20 ty X. * X, │ │ │ │ +00018fc0: 6120 2a6e 6f74 6520 6e6f 726d 616c 2074 a *note normal t │ │ │ │ +00018fd0: 6f72 6963 2076 6172 6965 7479 3a0a 2020 oric variety:. │ │ │ │ +00018fe0: 2020 2020 2020 284e 6f72 6d61 6c54 6f72 (NormalTor │ │ │ │ +00018ff0: 6963 5661 7269 6574 6965 7329 4e6f 726d icVarieties)Norm │ │ │ │ +00019000: 616c 546f 7269 6356 6172 6965 7479 2c2c alToricVariety,, │ │ │ │ +00019010: 2061 206e 6f72 6d61 6c20 746f 7269 6320 a normal toric │ │ │ │ +00019020: 7661 7269 6574 7920 7768 6963 680a 2020 variety which. │ │ │ │ +00019030: 2020 2020 2020 6973 2074 6865 2061 6d62 is the amb │ │ │ │ +00019040: 6965 6e74 2073 7061 6365 2074 6861 7420 ient space that │ │ │ │ +00019050: 7765 2061 7265 2077 6f72 6b69 6e67 2069 we are working i │ │ │ │ +00019060: 6e0a 2020 2020 2020 2a20 6373 6d2c 2061 n. * csm, a │ │ │ │ +00019070: 202a 6e6f 7465 2072 696e 6720 656c 656d *note ring elem │ │ │ │ +00019080: 656e 743a 2028 4d61 6361 756c 6179 3244 ent: (Macaulay2D │ │ │ │ +00019090: 6f63 2952 696e 6745 6c65 6d65 6e74 2c2c oc)RingElement,, │ │ │ │ +000190a0: 2074 6865 2043 534d 2063 6c61 7373 206f the CSM class o │ │ │ │ +000190b0: 660a 2020 2020 2020 2020 736f 6d65 2076 f. some v │ │ │ │ +000190c0: 6172 6965 7479 2056 0a20 202a 202a 6e6f ariety V. * *no │ │ │ │ +000190d0: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +000190e0: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +000190f0: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +00019100: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +00019110: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +00019120: 2043 6f6d 704d 6574 686f 6420 286d 6973 CompMethod (mis │ │ │ │ +00019130: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ +00019140: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ +00019150: 756c 7420 7661 6c75 650a 2020 2020 2020 ult value. │ │ │ │ +00019160: 2020 5072 6f6a 6563 7469 7665 4465 6772 ProjectiveDegr │ │ │ │ +00019170: 6565 2c20 5072 6f6a 6563 7469 7665 4465 ee, ProjectiveDe │ │ │ │ +00019180: 6772 6565 2c20 6170 706c 6963 6162 6c65 gree, applicable │ │ │ │ +00019190: 2066 6f72 2061 6c6c 2063 6173 6573 2077 for all cases w │ │ │ │ +000191a0: 6865 7265 2074 6865 0a20 2020 2020 2020 here the. │ │ │ │ +000191b0: 206d 6574 686f 6473 2069 6e20 7468 6520 methods in the │ │ │ │ +000191c0: 7061 636b 6167 6520 6d61 7920 6265 2075 package may be u │ │ │ │ +000191d0: 7365 640a 2020 2020 2020 2a20 436f 6d70 sed. * Comp │ │ │ │ +000191e0: 4d65 7468 6f64 2028 6d69 7373 696e 6720 Method (missing │ │ │ │ +000191f0: 646f 6375 6d65 6e74 6174 696f 6e29 203d documentation) = │ │ │ │ +00019200: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00019210: 616c 7565 0a20 2020 2020 2020 2050 726f alue. Pro │ │ │ │ +00019220: 6a65 6374 6976 6544 6567 7265 652c 2050 jectiveDegree, P │ │ │ │ +00019230: 6e52 6573 6964 7561 6c2c 2074 6869 7320 nResidual, this │ │ │ │ +00019240: 616c 676f 7269 7468 6d20 6d61 7920 6265 algorithm may be │ │ │ │ +00019250: 2075 7365 6420 666f 7220 7375 6273 6368 used for subsch │ │ │ │ +00019260: 656d 6573 0a20 2020 2020 2020 206f 6620 emes. of │ │ │ │ +00019270: 5c50 505e 6e20 6f6e 6c79 0a20 2020 2020 \PP^n only. │ │ │ │ +00019280: 202a 204d 6574 686f 6420 286d 6973 7369 * Method (missi │ │ │ │ +00019290: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +000192a0: 2920 3d3e 202e 2e2e 2c20 6465 6661 756c ) => ..., defaul │ │ │ │ +000192b0: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +000192c0: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ +000192d0: 6f6e 2c20 496e 636c 7573 696f 6e45 7863 on, InclusionExc │ │ │ │ +000192e0: 6c75 7369 6f6e 2c20 6170 706c 6963 6162 lusion, applicab │ │ │ │ +000192f0: 6c65 2066 6f72 2061 6c6c 2069 6e70 7574 le for all input │ │ │ │ +00019300: 730a 2020 2020 2020 2a20 4d65 7468 6f64 s. * Method │ │ │ │ +00019310: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00019320: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00019330: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +00019340: 2020 2020 2020 2049 6e63 6c75 7369 6f6e Inclusion │ │ │ │ +00019350: 4578 636c 7573 696f 6e2c 2044 6972 6563 Exclusion, Direc │ │ │ │ +00019360: 7443 6f6d 706c 6574 6549 6e74 2c20 7468 tCompleteInt, th │ │ │ │ +00019370: 6973 206d 6574 686f 6420 6d61 7920 7072 is method may pr │ │ │ │ +00019380: 6f76 6964 6520 610a 2020 2020 2020 2020 ovide a. │ │ │ │ +00019390: 7065 7266 6f72 6d61 6e63 6520 696d 7072 performance impr │ │ │ │ +000193a0: 6f76 656d 656e 7420 7768 656e 2074 6865 ovement when the │ │ │ │ +000193b0: 2069 6e70 7574 2069 7320 6120 636f 6d70 input is a comp │ │ │ │ +000193c0: 6c65 7465 2069 6e74 6572 7365 6374 696f lete intersectio │ │ │ │ +000193d0: 6e2c 2069 660a 2020 2020 2020 2020 7468 n, if. th │ │ │ │ +000193e0: 6520 696e 7075 7420 6973 206e 6f74 2061 e input is not a │ │ │ │ +000193f0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +00019400: 6563 7469 6f6e 2069 6e63 6c75 7369 6f6e ection inclusion │ │ │ │ +00019410: 2f65 7863 6c75 7369 6f6e 2069 7420 7769 /exclusion it wi │ │ │ │ +00019420: 6c6c 0a20 2020 2020 2020 2072 6574 7572 ll. retur │ │ │ │ +00019430: 6e20 616e 2065 7272 6f72 0a20 2020 2020 n an error. │ │ │ │ +00019440: 202a 2049 6e70 7574 4973 536d 6f6f 7468 * InputIsSmooth │ │ │ │ +00019450: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ +00019460: 6e74 6174 696f 6e29 203d 3e20 2e2e 2e2c ntation) => ..., │ │ │ │ +00019470: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +00019480: 616c 7365 2c20 7468 6973 0a20 2020 2020 alse, this. │ │ │ │ +00019490: 2020 206f 7074 696f 6e20 6861 7320 7661 option has va │ │ │ │ +000194a0: 6c75 6573 2074 7275 652f 6661 6c73 6520 lues true/false │ │ │ │ +000194b0: 616e 6420 7465 6c6c 7320 7468 6520 6d65 and tells the me │ │ │ │ +000194c0: 7468 6f64 2077 6865 7468 6572 2074 6f20 thod whether to │ │ │ │ +000194d0: 6173 7375 6d65 2074 6865 0a20 2020 2020 assume the. │ │ │ │ +000194e0: 2020 2069 6e70 7574 2069 6465 616c 2064 input ideal d │ │ │ │ +000194f0: 6566 696e 6573 2061 2073 6d6f 6f74 6820 efines a smooth │ │ │ │ +00019500: 7363 6865 6d65 2c20 616e 6420 6865 6e63 scheme, and henc │ │ │ │ +00019510: 6520 746f 2063 616c 6c20 7468 6520 6d65 e to call the me │ │ │ │ +00019520: 7468 6f64 2043 6865 726e 0a20 2020 2020 thod Chern. │ │ │ │ +00019530: 2020 2069 6e73 7465 6164 2066 6f72 2072 instead for r │ │ │ │ +00019540: 6564 7563 6564 2072 756e 2074 696d 652c educed run time, │ │ │ │ +00019550: 2061 6c74 6572 6e61 7469 7665 6c79 2074 alternatively t │ │ │ │ +00019560: 6865 2043 6865 726e 2066 756e 6374 696f he Chern functio │ │ │ │ +00019570: 6e20 6361 6e20 6265 0a20 2020 2020 2020 n can be. │ │ │ │ +00019580: 2075 7365 6420 6469 7265 6374 6c79 0a20 used directly. │ │ │ │ +00019590: 2020 2020 202a 204f 7574 7075 7420 3d3e * Output => │ │ │ │ +000195a0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +000195b0: 6c75 6520 4368 6f77 5269 6e67 456c 656d lue ChowRingElem │ │ │ │ +000195c0: 656e 742c 2074 6865 2074 7970 6520 6f66 ent, the type of │ │ │ │ +000195d0: 206f 7574 7075 7420 746f 0a20 2020 2020 output to. │ │ │ │ +000195e0: 2020 2072 6574 7572 6e20 7468 6520 6465 return the de │ │ │ │ +000195f0: 6661 756c 7420 6f75 7470 7574 2069 7320 fault output is │ │ │ │ +00019600: 616e 2069 6e74 6567 6572 0a20 2020 2020 an integer. │ │ │ │ +00019610: 202a 204f 7574 7075 7420 3d3e 202e 2e2e * Output => ... │ │ │ │ +00019620: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00019630: 4368 6f77 5269 6e67 456c 656d 656e 742c ChowRingElement, │ │ │ │ +00019640: 2048 6173 6846 6f72 6d2c 2074 6865 2074 HashForm, the t │ │ │ │ +00019650: 7970 6520 6f66 0a20 2020 2020 2020 206f ype of. o │ │ │ │ +00019660: 7574 7075 7420 746f 2072 6574 7572 6e2c utput to return, │ │ │ │ +00019670: 2048 6173 6846 6f72 6d20 7265 7475 726e HashForm return │ │ │ │ +00019680: 7320 6120 4d75 7461 626c 6548 6173 6854 s a MutableHashT │ │ │ │ +00019690: 6162 6c65 2063 6f6e 7461 696e 696e 6720 able containing │ │ │ │ +000196a0: 7468 650a 2020 2020 2020 2020 6b65 7920 the. key │ │ │ │ +000196b0: 2243 534d 2220 2874 6865 2043 534d 2063 "CSM" (the CSM c │ │ │ │ +000196c0: 6c61 7373 292c 2061 6e64 206b 6579 7320 lass), and keys │ │ │ │ +000196d0: 6f66 2074 6865 2066 6f72 6d0a 2020 2020 of the form. │ │ │ │ +000196e0: 2020 2020 5c7b 305c 7d2c 5c7b 315c 7d2c \{0\},\{1\}, │ │ │ │ +000196f0: 5c7b 325c 7d2c 2e2e 2e2c 5c7b 302c 315c \{2\},...,\{0,1\ │ │ │ │ +00019700: 7d2c 5c7b 302c 325c 7d20 2e2e 2e2e 5c7b },\{0,2\} ....\{ │ │ │ │ +00019710: 302c 312c 325c 7d2e 2e2e 2061 6e64 2073 0,1,2\}... and s │ │ │ │ +00019720: 6f20 6f6e 2077 6869 6368 0a20 2020 2020 o on which. │ │ │ │ +00019730: 2020 2063 6f72 7265 7370 6f6e 6420 746f correspond to │ │ │ │ +00019740: 2074 6865 2069 6e64 6963 6573 206f 6620 the indices of │ │ │ │ +00019750: 7468 6520 706f 7373 6962 6c65 2073 7562 the possible sub │ │ │ │ +00019760: 7365 7473 206f 6620 7468 6520 6765 6e65 sets of the gene │ │ │ │ +00019770: 7261 746f 7273 206f 660a 2020 2020 2020 rators of. │ │ │ │ +00019780: 2020 7468 6520 696e 7075 7420 6964 6561 the input idea │ │ │ │ +00019790: 6c2c 2066 6f72 2065 6163 6820 7365 7420 l, for each set │ │ │ │ +000197a0: 6f66 2069 6e64 6963 6573 2074 6865 2043 of indices the C │ │ │ │ +000197b0: 534d 2063 6c61 7373 206f 6620 7468 650a SM class of the. │ │ │ │ +000197c0: 2020 2020 2020 2020 6879 7065 7273 7572 hypersur │ │ │ │ +000197d0: 6661 6365 2067 6976 656e 2062 7920 7468 face given by th │ │ │ │ +000197e0: 6520 7072 6f64 7563 7420 6f66 2061 6c6c e product of all │ │ │ │ +000197f0: 2070 6f6c 796e 6f6d 6961 6c73 2069 6e20 polynomials in │ │ │ │ +00019800: 7468 650a 2020 2020 2020 2020 636f 7272 the. corr │ │ │ │ +00019810: 6573 706f 6e64 696e 6720 7365 7420 6f66 esponding set of │ │ │ │ +00019820: 2067 656e 6572 6174 6f72 7320 6973 2073 generators is s │ │ │ │ +00019830: 746f 7265 642c 2074 6865 7265 2069 7320 tored, there is │ │ │ │ +00019840: 6e6f 2065 7874 7261 2063 6f73 7420 746f no extra cost to │ │ │ │ +00019850: 0a20 2020 2020 2020 2075 7369 6e67 2074 . using t │ │ │ │ +00019860: 6869 7320 6f70 7469 6f6e 0a20 2020 2020 his option. │ │ │ │ +00019870: 202a 2049 6e64 734f 6653 6d6f 6f74 6820 * IndsOfSmooth │ │ │ │ +00019880: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ +00019890: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ +000198a0: 6465 6661 756c 7420 7661 6c75 6520 7b7d default value {} │ │ │ │ +000198b0: 2c20 7468 6973 0a20 2020 2020 2020 206f , this. o │ │ │ │ +000198c0: 7074 696f 6e20 6d61 7920 7370 6565 6420 ption may speed │ │ │ │ +000198d0: 7570 2074 6865 2072 756e 2074 696d 6520 up the run time │ │ │ │ +000198e0: 7768 656e 2075 7369 6e67 2074 6865 2044 when using the D │ │ │ │ +000198f0: 6972 6563 7443 6f6d 706c 6574 6549 6e74 irectCompleteInt │ │ │ │ +00019900: 0a20 2020 2020 2020 204d 6574 686f 6420 . Method │ │ │ │ +00019910: 6966 2074 6865 2075 7365 7220 6b6e 6f77 if the user know │ │ │ │ +00019920: 7320 6164 6469 7469 6f6e 616c 2069 6e66 s additional inf │ │ │ │ +00019930: 6f72 6d61 7469 6f6e 2061 626f 7574 2074 ormation about t │ │ │ │ +00019940: 6865 2069 6e70 7574 2069 6465 616c 2c0a he input ideal,. │ │ │ │ +00019950: 2020 2020 2020 2020 7365 6520 2a6e 6f74 see *not │ │ │ │ +00019960: 6520 496e 6473 4f66 536d 6f6f 7468 3a20 e IndsOfSmooth: │ │ │ │ +00019970: 496e 6473 4f66 536d 6f6f 7468 2c0a 2020 IndsOfSmooth,. │ │ │ │ +00019980: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00019990: 202a 2061 202a 6e6f 7465 2072 696e 6720 * a *note ring │ │ │ │ +000199a0: 656c 656d 656e 743a 2028 4d61 6361 756c element: (Macaul │ │ │ │ +000199b0: 6179 3244 6f63 2952 696e 6745 6c65 6d65 ay2Doc)RingEleme │ │ │ │ +000199c0: 6e74 2c2c 2074 6865 2045 756c 6572 0a20 nt,, the Euler. │ │ │ │ +000199d0: 2020 2020 2020 2063 6861 7261 6374 6572 character │ │ │ │ +000199e0: 6973 7469 630a 0a44 6573 6372 6970 7469 istic..Descripti │ │ │ │ +000199f0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00019a00: 466f 7220 6120 7375 6273 6368 656d 6520 For a subscheme │ │ │ │ +00019a10: 5620 6f66 2061 6e20 6170 706c 6963 6162 V of an applicab │ │ │ │ +00019a20: 6c65 2074 6f72 6963 2076 6172 6965 7479 le toric variety │ │ │ │ +00019a30: 2058 2c20 7468 6973 2063 6f6d 6d61 6e64 X, this command │ │ │ │ +00019a40: 2063 6f6d 7075 7465 7320 7468 650a 4575 computes the.Eu │ │ │ │ +00019a50: 6c65 7220 6368 6172 6163 7465 7269 7374 ler characterist │ │ │ │ +00019a60: 6963 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ic..+----------- │ │ │ │ +00019a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ae0: 2d2d 2d2d 2d2b 0a7c 6931 203a 206b 6b3d -----+.|i1 : kk= │ │ │ │ -00019af0: 5a5a 2f33 3237 3439 3b20 2020 2020 2020 ZZ/32749; │ │ │ │ -00019b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019b30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00019ab0: 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a 5a2f --+.|i1 : kk=ZZ/ │ │ │ │ +00019ac0: 3332 3734 393b 2020 2020 2020 2020 2020 32749; │ │ │ │ +00019ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b00: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00019b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019b80: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 3d6b -----+.|i2 : R=k │ │ │ │ -00019b90: 6b5b 785f 302e 2e78 5f34 5d20 2020 2020 k[x_0..x_4] │ │ │ │ -00019ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b50: 2d2d 2b0a 7c69 3220 3a20 523d 6b6b 5b78 --+.|i2 : R=kk[x │ │ │ │ +00019b60: 5f30 2e2e 785f 345d 2020 2020 2020 2020 _0..x_4] │ │ │ │ +00019b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ba0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019bf0: 2020 7c0a 7c6f 3220 3d20 5220 2020 2020 |.|o2 = R │ │ │ │ 00019c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c20: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ +00019c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019c90: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ +00019ca0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 00019cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cc0: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -00019cd0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ -00019ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019d10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00019cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019ce0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00019cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d60: 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 3d69 -----+.|i3 : I=i │ │ │ │ -00019d70: 6465 616c 2872 616e 646f 6d28 312c 5229 deal(random(1,R) │ │ │ │ -00019d80: 2c72 616e 646f 6d28 322c 5229 2920 2020 ,random(2,R)) │ │ │ │ +00019d30: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ +00019d40: 6c28 7261 6e64 6f6d 2831 2c52 292c 7261 l(random(1,R),ra │ │ │ │ +00019d50: 6e64 6f6d 2832 2c52 2929 2020 2020 2020 ndom(2,R)) │ │ │ │ +00019d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019d80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00019db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00019de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00019e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00019e50: 2020 2020 207c 0a7c 6f33 203d 2069 6465 |.|o3 = ide │ │ │ │ -00019e60: 616c 2028 3130 3778 2020 2b20 3433 3736 al (107x + 4376 │ │ │ │ -00019e70: 7820 202d 2036 3331 3678 2020 2b20 3331 x - 6316x + 31 │ │ │ │ -00019e80: 3837 7820 202b 2033 3738 3378 202c 202d 87x + 3783x , - │ │ │ │ -00019e90: 2036 3035 3378 2020 2b20 3835 3730 7820 6053x + 8570x │ │ │ │ -00019ea0: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -00019eb0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -00019ec0: 2031 2020 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -00019ed0: 2020 2033 2020 2020 2020 2020 3420 2020 3 4 │ │ │ │ -00019ee0: 2020 2020 2020 3020 2020 2020 2020 2030 0 0 │ │ │ │ -00019ef0: 2031 2020 207c 0a7c 2020 2020 202d 2d2d 1 |.| --- │ │ │ │ +00019e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019e10: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019e20: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ +00019e30: 2831 3037 7820 202b 2034 3337 3678 2020 (107x + 4376x │ │ │ │ +00019e40: 2d20 3633 3136 7820 202b 2033 3138 3778 - 6316x + 3187x │ │ │ │ +00019e50: 2020 2b20 3337 3833 7820 2c20 2d20 3630 + 3783x , - 60 │ │ │ │ +00019e60: 3533 7820 202b 2038 3537 3078 2078 2020 53x + 8570x x │ │ │ │ +00019e70: 2b20 7c0a 7c20 2020 2020 2020 2020 2020 + |.| │ │ │ │ +00019e80: 2020 2020 2030 2020 2020 2020 2020 3120 0 1 │ │ │ │ +00019e90: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00019ea0: 3320 2020 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +00019eb0: 2020 2030 2020 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ +00019ec0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +00019ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00019ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019f40: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00019f50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f90: 2020 2020 207c 0a7c 2020 2020 2031 3033 |.| 103 │ │ │ │ -00019fa0: 3539 7820 202d 2031 3630 3930 7820 7820 59x - 16090x x │ │ │ │ -00019fb0: 202d 2038 3231 3078 2078 2020 2b20 3530 - 8210x x + 50 │ │ │ │ -00019fc0: 3731 7820 202b 2038 3434 3478 2078 2020 71x + 8444x x │ │ │ │ -00019fd0: 2d20 3839 3937 7820 7820 202d 2036 3934 - 8997x x - 694 │ │ │ │ -00019fe0: 3978 2078 207c 0a7c 2020 2020 2020 2020 9x x |.| │ │ │ │ -00019ff0: 2020 2031 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -0001a000: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -0001a010: 2020 2032 2020 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ -0001a020: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -0001a030: 2020 3220 337c 0a7c 2020 2020 202d 2d2d 2 3|.| --- │ │ │ │ +00019f10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00019f20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019f40: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019f60: 2020 7c0a 7c20 2020 2020 3130 3335 3978 |.| 10359x │ │ │ │ +00019f70: 2020 2d20 3136 3039 3078 2078 2020 2d20 - 16090x x - │ │ │ │ +00019f80: 3832 3130 7820 7820 202b 2035 3037 3178 8210x x + 5071x │ │ │ │ +00019f90: 2020 2b20 3834 3434 7820 7820 202d 2038 + 8444x x - 8 │ │ │ │ +00019fa0: 3939 3778 2078 2020 2d20 3639 3439 7820 997x x - 6949x │ │ │ │ +00019fb0: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +00019fc0: 3120 2020 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +00019fd0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00019fe0: 3220 2020 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +00019ff0: 2020 2020 3120 3320 2020 2020 2020 2032 1 3 2 │ │ │ │ +0001a000: 2033 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3|.| ------ │ │ │ │ +0001a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a080: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001a090: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001a0d0: 2020 2020 207c 0a7c 2020 2020 202d 2031 |.| - 1 │ │ │ │ -0001a0e0: 3432 3534 7820 202d 2031 3132 3236 7820 4254x - 11226x │ │ │ │ -0001a0f0: 7820 202b 2032 3635 3378 2078 2020 2b20 x + 2653x x + │ │ │ │ -0001a100: 3132 3336 3578 2078 2020 2d20 3130 3232 12365x x - 1022 │ │ │ │ -0001a110: 3678 2078 2020 2d20 3132 3639 3678 2029 6x x - 12696x ) │ │ │ │ -0001a120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a130: 2020 2020 2033 2020 2020 2020 2020 2030 3 0 │ │ │ │ -0001a140: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ -0001a150: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -0001a160: 2020 3320 3420 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ -0001a170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a050: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001a060: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a090: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001a0a0: 2020 7c0a 7c20 2020 2020 2d20 3134 3235 |.| - 1425 │ │ │ │ +0001a0b0: 3478 2020 2d20 3131 3232 3678 2078 2020 4x - 11226x x │ │ │ │ +0001a0c0: 2b20 3236 3533 7820 7820 202b 2031 3233 + 2653x x + 123 │ │ │ │ +0001a0d0: 3635 7820 7820 202d 2031 3032 3236 7820 65x x - 10226x │ │ │ │ +0001a0e0: 7820 202d 2031 3236 3936 7820 2920 2020 x - 12696x ) │ │ │ │ +0001a0f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a100: 2020 3320 2020 2020 2020 2020 3020 3420 3 0 4 │ │ │ │ +0001a110: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +0001a120: 2020 2032 2034 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ +0001a130: 2034 2020 2020 2020 2020 2034 2020 2020 4 4 │ │ │ │ +0001a140: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a190: 2020 7c0a 7c6f 3320 3a20 4964 6561 6c20 |.|o3 : Ideal │ │ │ │ +0001a1a0: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0001a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1c0: 2020 2020 207c 0a7c 6f33 203a 2049 6465 |.|o3 : Ide │ │ │ │ -0001a1d0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -0001a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a210: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a1e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a260: 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 696d -----+.|i4 : tim │ │ │ │ -0001a270: 6520 4575 6c65 7228 492c 496e 7075 7449 e Euler(I,InputI │ │ │ │ -0001a280: 7353 6d6f 6f74 683d 3e74 7275 6529 2020 sSmooth=>true) │ │ │ │ -0001a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2b0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001a2c0: 2030 2e30 3537 3639 3539 7320 2863 7075 0.0576959s (cpu │ │ │ │ -0001a2d0: 293b 2030 2e30 3335 3439 3238 7320 2874 ); 0.0354928s (t │ │ │ │ -0001a2e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0001a230: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2045 --+.|i4 : time E │ │ │ │ +0001a240: 756c 6572 2849 2c49 6e70 7574 4973 536d uler(I,InputIsSm │ │ │ │ +0001a250: 6f6f 7468 3d3e 7472 7565 2920 2020 2020 ooth=>true) │ │ │ │ +0001a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a280: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +0001a290: 3130 3432 3031 7320 2863 7075 293b 2030 104201s (cpu); 0 │ │ │ │ +0001a2a0: 2e30 3531 3433 3337 7320 2874 6872 6561 .0514337s (threa │ │ │ │ +0001a2b0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0001a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a2d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a320: 2020 7c0a 7c6f 3420 3d20 3420 2020 2020 |.|o4 = 4 │ │ │ │ 0001a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a350: 2020 2020 207c 0a7c 6f34 203d 2034 2020 |.|o4 = 4 │ │ │ │ +0001a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a3a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a370: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a3f0: 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 696d -----+.|i5 : tim │ │ │ │ -0001a400: 6520 4575 6c65 7220 4920 2020 2020 2020 e Euler I │ │ │ │ -0001a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a440: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0001a450: 2030 2e32 3534 3131 3473 2028 6370 7529 0.254114s (cpu) │ │ │ │ -0001a460: 3b20 302e 3134 3638 3333 7320 2874 6872 ; 0.146833s (thr │ │ │ │ -0001a470: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ +0001a3c0: 2d2d 2b0a 7c69 3520 3a20 7469 6d65 2045 --+.|i5 : time E │ │ │ │ +0001a3d0: 756c 6572 2049 2020 2020 2020 2020 2020 uler I │ │ │ │ +0001a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a410: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +0001a420: 3335 3935 3939 7320 2863 7075 293b 2030 359599s (cpu); 0 │ │ │ │ +0001a430: 2e32 3031 3238 3173 2028 7468 7265 6164 .201281s (thread │ │ │ │ +0001a440: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0001a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a4b0: 2020 7c0a 7c6f 3520 3d20 3420 2020 2020 |.|o5 = 4 │ │ │ │ 0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4e0: 2020 2020 207c 0a7c 6f35 203d 2034 2020 |.|o5 = 4 │ │ │ │ +0001a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a530: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a500: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a580: 2d2d 2d2d 2d2b 0a7c 6936 203a 2045 756c -----+.|i6 : Eul │ │ │ │ -0001a590: 6572 4948 6173 683d 4575 6c65 7228 492c erIHash=Euler(I, │ │ │ │ -0001a5a0: 4f75 7470 7574 3d3e 4861 7368 466f 726d Output=>HashForm │ │ │ │ -0001a5b0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -0001a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a5d0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a550: 2d2d 2b0a 7c69 3620 3a20 4575 6c65 7249 --+.|i6 : EulerI │ │ │ │ +0001a560: 4861 7368 3d45 756c 6572 2849 2c4f 7574 Hash=Euler(I,Out │ │ │ │ +0001a570: 7075 743d 3e48 6173 6846 6f72 6d29 3b20 put=>HashForm); │ │ │ │ +0001a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a5a0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a620: 2d2d 2d2d 2d2b 0a7c 6937 203a 2041 3d72 -----+.|i7 : A=r │ │ │ │ -0001a630: 696e 6720 4575 6c65 7249 4861 7368 2322 ing EulerIHash#" │ │ │ │ -0001a640: 4353 4d22 2020 2020 2020 2020 2020 2020 CSM" │ │ │ │ +0001a5f0: 2d2d 2b0a 7c69 3720 3a20 413d 7269 6e67 --+.|i7 : A=ring │ │ │ │ +0001a600: 2045 756c 6572 4948 6173 6823 2243 534d EulerIHash#"CSM │ │ │ │ +0001a610: 2220 2020 2020 2020 2020 2020 2020 2020 " │ │ │ │ +0001a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a640: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a690: 2020 7c0a 7c6f 3720 3d20 4120 2020 2020 |.|o7 = A │ │ │ │ 0001a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6c0: 2020 2020 207c 0a7c 6f37 203d 2041 2020 |.|o7 = A │ │ │ │ +0001a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a6e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a730: 2020 7c0a 7c6f 3720 3a20 5175 6f74 6965 |.|o7 : Quotie │ │ │ │ +0001a740: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ 0001a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a760: 2020 2020 207c 0a7c 6f37 203a 2051 756f |.|o7 : Quo │ │ │ │ -0001a770: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ -0001a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7b0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a780: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a800: 2d2d 2d2d 2d2b 0a7c 6938 203a 2045 756c -----+.|i8 : Eul │ │ │ │ -0001a810: 6572 4948 6173 6823 7b30 2c31 7d3d 3d43 erIHash#{0,1}==C │ │ │ │ -0001a820: 534d 2841 2c69 6465 616c 2849 5f30 2a49 SM(A,ideal(I_0*I │ │ │ │ -0001a830: 5f31 2929 2020 2020 2020 2020 2020 2020 _1)) │ │ │ │ +0001a7d0: 2d2d 2b0a 7c69 3820 3a20 4575 6c65 7249 --+.|i8 : EulerI │ │ │ │ +0001a7e0: 4861 7368 237b 302c 317d 3d3d 4353 4d28 Hash#{0,1}==CSM( │ │ │ │ +0001a7f0: 412c 6964 6561 6c28 495f 302a 495f 3129 A,ideal(I_0*I_1) │ │ │ │ +0001a800: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a820: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a850: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a870: 2020 7c0a 7c6f 3820 3d20 7472 7565 2020 |.|o8 = true │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8a0: 2020 2020 207c 0a7c 6f38 203d 2074 7275 |.|o8 = tru │ │ │ │ -0001a8b0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0001a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a8c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001a940: 2d2d 2d2d 2d2b 0a7c 6939 203a 204a 3d49 -----+.|i9 : J=I │ │ │ │ -0001a950: 2b69 6465 616c 2878 5f30 2a78 5f32 2d78 +ideal(x_0*x_2-x │ │ │ │ -0001a960: 5f33 2a78 5f30 2920 2020 2020 2020 2020 _3*x_0) │ │ │ │ +0001a910: 2d2d 2b0a 7c69 3920 3a20 4a3d 492b 6964 --+.|i9 : J=I+id │ │ │ │ +0001a920: 6561 6c28 785f 302a 785f 322d 785f 332a eal(x_0*x_2-x_3* │ │ │ │ +0001a930: 785f 3029 2020 2020 2020 2020 2020 2020 x_0) │ │ │ │ +0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a960: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001aa30: 2020 2020 207c 0a7c 6f39 203d 2069 6465 |.|o9 = ide │ │ │ │ -0001aa40: 616c 2028 3130 3778 2020 2b20 3433 3736 al (107x + 4376 │ │ │ │ -0001aa50: 7820 202d 2036 3331 3678 2020 2b20 3331 x - 6316x + 31 │ │ │ │ -0001aa60: 3837 7820 202b 2033 3738 3378 202c 202d 87x + 3783x , - │ │ │ │ -0001aa70: 2036 3035 3378 2020 2b20 3835 3730 7820 6053x + 8570x │ │ │ │ -0001aa80: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -0001aa90: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -0001aaa0: 2031 2020 2020 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0001aab0: 2020 2033 2020 2020 2020 2020 3420 2020 3 4 │ │ │ │ -0001aac0: 2020 2020 2020 3020 2020 2020 2020 2030 0 0 │ │ │ │ -0001aad0: 2031 2020 207c 0a7c 2020 2020 202d 2d2d 1 |.| --- │ │ │ │ +0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a9f0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001aa00: 2020 7c0a 7c6f 3920 3d20 6964 6561 6c20 |.|o9 = ideal │ │ │ │ +0001aa10: 2831 3037 7820 202b 2034 3337 3678 2020 (107x + 4376x │ │ │ │ +0001aa20: 2d20 3633 3136 7820 202b 2033 3138 3778 - 6316x + 3187x │ │ │ │ +0001aa30: 2020 2b20 3337 3833 7820 2c20 2d20 3630 + 3783x , - 60 │ │ │ │ +0001aa40: 3533 7820 202b 2038 3537 3078 2078 2020 53x + 8570x x │ │ │ │ +0001aa50: 2b20 7c0a 7c20 2020 2020 2020 2020 2020 + |.| │ │ │ │ +0001aa60: 2020 2020 2030 2020 2020 2020 2020 3120 0 1 │ │ │ │ +0001aa70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001aa80: 3320 2020 2020 2020 2034 2020 2020 2020 3 4 │ │ │ │ +0001aa90: 2020 2030 2020 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ +0001aaa0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ +0001aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001aaf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ab20: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001ab30: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab70: 2020 2020 207c 0a7c 2020 2020 2031 3033 |.| 103 │ │ │ │ -0001ab80: 3539 7820 202d 2031 3630 3930 7820 7820 59x - 16090x x │ │ │ │ -0001ab90: 202d 2038 3231 3078 2078 2020 2b20 3530 - 8210x x + 50 │ │ │ │ -0001aba0: 3731 7820 202b 2038 3434 3478 2078 2020 71x + 8444x x │ │ │ │ -0001abb0: 2d20 3839 3937 7820 7820 202d 2036 3934 - 8997x x - 694 │ │ │ │ -0001abc0: 3978 2078 207c 0a7c 2020 2020 2020 2020 9x x |.| │ │ │ │ -0001abd0: 2020 2031 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -0001abe0: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -0001abf0: 2020 2032 2020 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ -0001ac00: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -0001ac10: 2020 3220 337c 0a7c 2020 2020 202d 2d2d 2 3|.| --- │ │ │ │ +0001aaf0: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001ab00: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ab40: 2020 7c0a 7c20 2020 2020 3130 3335 3978 |.| 10359x │ │ │ │ +0001ab50: 2020 2d20 3136 3039 3078 2078 2020 2d20 - 16090x x - │ │ │ │ +0001ab60: 3832 3130 7820 7820 202b 2035 3037 3178 8210x x + 5071x │ │ │ │ +0001ab70: 2020 2b20 3834 3434 7820 7820 202d 2038 + 8444x x - 8 │ │ │ │ +0001ab80: 3939 3778 2078 2020 2d20 3639 3439 7820 997x x - 6949x │ │ │ │ +0001ab90: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +0001aba0: 3120 2020 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +0001abb0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0001abc0: 3220 2020 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ +0001abd0: 2020 2020 3120 3320 2020 2020 2020 2032 1 3 2 │ │ │ │ +0001abe0: 2033 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 3|.| ------ │ │ │ │ +0001abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ac10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ac20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ac60: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0001ac70: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aca0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001acb0: 2020 2020 207c 0a7c 2020 2020 202d 2031 |.| - 1 │ │ │ │ -0001acc0: 3432 3534 7820 202d 2031 3132 3236 7820 4254x - 11226x │ │ │ │ -0001acd0: 7820 202b 2032 3635 3378 2078 2020 2b20 x + 2653x x + │ │ │ │ -0001ace0: 3132 3336 3578 2078 2020 2d20 3130 3232 12365x x - 1022 │ │ │ │ -0001acf0: 3678 2078 2020 2d20 3132 3639 3678 202c 6x x - 12696x , │ │ │ │ -0001ad00: 2078 2078 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -0001ad10: 2020 2020 2033 2020 2020 2020 2020 2030 3 0 │ │ │ │ -0001ad20: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ -0001ad30: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -0001ad40: 2020 3320 3420 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ -0001ad50: 2020 3020 327c 0a7c 2020 2020 202d 2d2d 0 2|.| --- │ │ │ │ +0001ac30: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +0001ac40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ac70: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001ac80: 2020 7c0a 7c20 2020 2020 2d20 3134 3235 |.| - 1425 │ │ │ │ +0001ac90: 3478 2020 2d20 3131 3232 3678 2078 2020 4x - 11226x x │ │ │ │ +0001aca0: 2b20 3236 3533 7820 7820 202b 2031 3233 + 2653x x + 123 │ │ │ │ +0001acb0: 3635 7820 7820 202d 2031 3032 3236 7820 65x x - 10226x │ │ │ │ +0001acc0: 7820 202d 2031 3236 3936 7820 2c20 7820 x - 12696x , x │ │ │ │ +0001acd0: 7820 7c0a 7c20 2020 2020 2020 2020 2020 x |.| │ │ │ │ +0001ace0: 2020 3320 2020 2020 2020 2020 3020 3420 3 0 4 │ │ │ │ +0001acf0: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +0001ad00: 2020 2032 2034 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ +0001ad10: 2034 2020 2020 2020 2020 2034 2020 2030 4 4 0 │ │ │ │ +0001ad20: 2032 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2|.| ------ │ │ │ │ +0001ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ada0: 2d2d 2d2d 2d7c 0a7c 2020 2020 202d 2078 -----|.| - x │ │ │ │ -0001adb0: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ad70: 2d2d 7c0a 7c20 2020 2020 2d20 7820 7820 --|.| - x x │ │ │ │ +0001ad80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adc0: 2020 7c0a 7c20 2020 2020 2020 2030 2033 |.| 0 3 │ │ │ │ 0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001adf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ae00: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ae60: 2020 7c0a 7c6f 3920 3a20 4964 6561 6c20 |.|o9 : Ideal │ │ │ │ +0001ae70: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 0001ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae90: 2020 2020 207c 0a7c 6f39 203a 2049 6465 |.|o9 : Ide │ │ │ │ -0001aea0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -0001aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aee0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001aeb0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0001aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001aee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001aef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001af30: 2d2d 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 -----+..Note tha │ │ │ │ -0001af40: 7420 7468 6520 6964 6561 6c20 4a20 6162 t the ideal J ab │ │ │ │ -0001af50: 6f76 6520 6973 2061 2063 6f6d 706c 6574 ove is a complet │ │ │ │ -0001af60: 6520 696e 7465 7273 6563 7469 6f6e 2c20 e intersection, │ │ │ │ -0001af70: 7468 7573 2077 6520 6d61 7920 6368 616e thus we may chan │ │ │ │ -0001af80: 6765 2074 6865 0a6d 6574 686f 6420 6f70 ge the.method op │ │ │ │ -0001af90: 7469 6f6e 2077 6869 6368 206d 6179 2073 tion which may s │ │ │ │ -0001afa0: 7065 6564 2063 6f6d 7075 7461 7469 6f6e peed computation │ │ │ │ -0001afb0: 2069 6e20 736f 6d65 2063 6173 6573 2e20 in some cases. │ │ │ │ -0001afc0: 5765 206d 6179 2061 6c73 6f20 6e6f 7465 We may also note │ │ │ │ -0001afd0: 2074 6861 740a 7468 6520 6964 6561 6c20 that.the ideal │ │ │ │ -0001afe0: 6765 6e65 7261 7465 6420 6279 2074 6865 generated by the │ │ │ │ -0001aff0: 2066 6972 7374 2032 2067 656e 6572 6174 first 2 generat │ │ │ │ -0001b000: 6f72 7320 6f66 2049 2064 6566 696e 6573 ors of I defines │ │ │ │ -0001b010: 2061 2073 6d6f 6f74 6820 7363 6865 6d65 a smooth scheme │ │ │ │ -0001b020: 2061 6e64 0a69 6e70 7574 2074 6869 7320 and.input this │ │ │ │ -0001b030: 696e 666f 726d 6174 696f 6e20 696e 746f information into │ │ │ │ -0001b040: 2074 6865 206d 6574 686f 642e 2054 6869 the method. Thi │ │ │ │ -0001b050: 7320 6d61 7920 616c 736f 2069 6d70 726f s may also impro │ │ │ │ -0001b060: 7665 2063 6f6d 7075 7461 7469 6f6e 0a73 ve computation.s │ │ │ │ -0001b070: 7065 6564 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d peed...+-------- │ │ │ │ -0001b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b0b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 ---------+.|i10 │ │ │ │ -0001b0c0: 3a20 7469 6d65 2045 756c 6572 284a 2c4d : time Euler(J,M │ │ │ │ -0001b0d0: 6574 686f 643d 3e44 6972 6563 7443 6f6d ethod=>DirectCom │ │ │ │ -0001b0e0: 706c 6574 6549 6e74 2920 2020 2020 2020 pleteInt) │ │ │ │ -0001b0f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b100: 202d 2d20 7573 6564 2030 2e31 3832 3936 -- used 0.18296 │ │ │ │ -0001b110: 3773 2028 6370 7529 3b20 302e 3036 3930 7s (cpu); 0.0690 │ │ │ │ -0001b120: 3139 3973 2028 7468 7265 6164 293b 2030 199s (thread); 0 │ │ │ │ -0001b130: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0001b140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001af00: 2d2d 2b0a 0a4e 6f74 6520 7468 6174 2074 --+..Note that t │ │ │ │ +0001af10: 6865 2069 6465 616c 204a 2061 626f 7665 he ideal J above │ │ │ │ +0001af20: 2069 7320 6120 636f 6d70 6c65 7465 2069 is a complete i │ │ │ │ +0001af30: 6e74 6572 7365 6374 696f 6e2c 2074 6875 ntersection, thu │ │ │ │ +0001af40: 7320 7765 206d 6179 2063 6861 6e67 6520 s we may change │ │ │ │ +0001af50: 7468 650a 6d65 7468 6f64 206f 7074 696f the.method optio │ │ │ │ +0001af60: 6e20 7768 6963 6820 6d61 7920 7370 6565 n which may spee │ │ │ │ +0001af70: 6420 636f 6d70 7574 6174 696f 6e20 696e d computation in │ │ │ │ +0001af80: 2073 6f6d 6520 6361 7365 732e 2057 6520 some cases. We │ │ │ │ +0001af90: 6d61 7920 616c 736f 206e 6f74 6520 7468 may also note th │ │ │ │ +0001afa0: 6174 0a74 6865 2069 6465 616c 2067 656e at.the ideal gen │ │ │ │ +0001afb0: 6572 6174 6564 2062 7920 7468 6520 6669 erated by the fi │ │ │ │ +0001afc0: 7273 7420 3220 6765 6e65 7261 746f 7273 rst 2 generators │ │ │ │ +0001afd0: 206f 6620 4920 6465 6669 6e65 7320 6120 of I defines a │ │ │ │ +0001afe0: 736d 6f6f 7468 2073 6368 656d 6520 616e smooth scheme an │ │ │ │ +0001aff0: 640a 696e 7075 7420 7468 6973 2069 6e66 d.input this inf │ │ │ │ +0001b000: 6f72 6d61 7469 6f6e 2069 6e74 6f20 7468 ormation into th │ │ │ │ +0001b010: 6520 6d65 7468 6f64 2e20 5468 6973 206d e method. This m │ │ │ │ +0001b020: 6179 2061 6c73 6f20 696d 7072 6f76 6520 ay also improve │ │ │ │ +0001b030: 636f 6d70 7574 6174 696f 6e0a 7370 6565 computation.spee │ │ │ │ +0001b040: 642e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d d...+----------- │ │ │ │ +0001b050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b080: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2074 ------+.|i10 : t │ │ │ │ +0001b090: 696d 6520 4575 6c65 7228 4a2c 4d65 7468 ime Euler(J,Meth │ │ │ │ +0001b0a0: 6f64 3d3e 4469 7265 6374 436f 6d70 6c65 od=>DirectComple │ │ │ │ +0001b0b0: 7465 496e 7429 2020 2020 2020 2020 2020 teInt) │ │ │ │ +0001b0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +0001b0d0: 2075 7365 6420 302e 3139 3734 3339 7320 used 0.197439s │ │ │ │ +0001b0e0: 2863 7075 293b 2030 2e31 3033 3033 3373 (cpu); 0.103033s │ │ │ │ +0001b0f0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +0001b100: 6329 2020 2020 2020 2020 2020 2020 7c0a c) |. │ │ │ │ +0001b110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b150: 2020 7c0a 7c6f 3130 203d 2032 2020 2020 |.|o10 = 2 │ │ │ │ 0001b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b180: 2020 2020 207c 0a7c 6f31 3020 3d20 3220 |.|o10 = 2 │ │ │ │ -0001b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1c0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001b210: 6931 3120 3a20 7469 6d65 2045 756c 6572 i11 : time Euler │ │ │ │ -0001b220: 284a 2c4d 6574 686f 643d 3e44 6972 6563 (J,Method=>Direc │ │ │ │ -0001b230: 7443 6f6d 706c 6574 6549 6e74 2c49 6e64 tCompleteInt,Ind │ │ │ │ -0001b240: 734f 6653 6d6f 6f74 683d 3e7b 302c 317d sOfSmooth=>{0,1} │ │ │ │ -0001b250: 297c 0a7c 202d 2d20 7573 6564 2030 2e31 )|.| -- used 0.1 │ │ │ │ -0001b260: 3930 3537 3573 2028 6370 7529 3b20 302e 90575s (cpu); 0. │ │ │ │ -0001b270: 3038 3435 3639 3373 2028 7468 7265 6164 0845693s (thread │ │ │ │ -0001b280: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -0001b290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b190: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ +0001b1e0: 203a 2074 696d 6520 4575 6c65 7228 4a2c : time Euler(J, │ │ │ │ +0001b1f0: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ +0001b200: 6d70 6c65 7465 496e 742c 496e 6473 4f66 mpleteInt,IndsOf │ │ │ │ +0001b210: 536d 6f6f 7468 3d3e 7b30 2c31 7d29 7c0a Smooth=>{0,1})|. │ │ │ │ +0001b220: 7c20 2d2d 2075 7365 6420 302e 3238 3335 | -- used 0.2835 │ │ │ │ +0001b230: 3436 7320 2863 7075 293b 2030 2e31 3138 46s (cpu); 0.118 │ │ │ │ +0001b240: 3033 3573 2028 7468 7265 6164 293b 2030 035s (thread); 0 │ │ │ │ +0001b250: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +0001b260: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2a0: 2020 2020 2020 7c0a 7c6f 3131 203d 2032 |.|o11 = 2 │ │ │ │ 0001b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b2d0: 2020 2020 2020 2020 207c 0a7c 6f31 3120 |.|o11 │ │ │ │ -0001b2e0: 3d20 3220 2020 2020 2020 2020 2020 2020 = 2 │ │ │ │ -0001b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b310: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ -0001b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b360: 2d2b 0a0a 4e6f 7720 636f 6e73 6964 6572 -+..Now consider │ │ │ │ -0001b370: 2061 6e20 6578 616d 706c 6520 696e 205c an example in \ │ │ │ │ -0001b380: 5050 5e32 205c 7469 6d65 7320 5c50 505e PP^2 \times \PP^ │ │ │ │ -0001b390: 322e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2...+----------- │ │ │ │ -0001b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b3c0: 2d2d 2d2b 0a7c 6931 3220 3a20 523d 4d75 ---+.|i12 : R=Mu │ │ │ │ -0001b3d0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -0001b3e0: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ -0001b3f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b2e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0001b330: 0a4e 6f77 2063 6f6e 7369 6465 7220 616e .Now consider an │ │ │ │ +0001b340: 2065 7861 6d70 6c65 2069 6e20 5c50 505e example in \PP^ │ │ │ │ +0001b350: 3220 5c74 696d 6573 205c 5050 5e32 2e0a 2 \times \PP^2.. │ │ │ │ +0001b360: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0001b370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b390: 2b0a 7c69 3132 203a 2052 3d4d 756c 7469 +.|i12 : R=Multi │ │ │ │ +0001b3a0: 5072 6f6a 436f 6f72 6452 696e 6728 7b32 ProjCoordRing({2 │ │ │ │ +0001b3b0: 2c32 7d29 2020 2020 2020 2020 2020 2020 ,2}) │ │ │ │ +0001b3c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b3f0: 2020 7c0a 7c6f 3132 203d 2052 2020 2020 |.|o12 = R │ │ │ │ 0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b420: 2020 2020 207c 0a7c 6f31 3220 3d20 5220 |.|o12 = R │ │ │ │ +0001b420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b450: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b450: 2020 2020 7c0a 7c6f 3132 203a 2050 6f6c |.|o12 : Pol │ │ │ │ +0001b460: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ 0001b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b480: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ -0001b490: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -0001b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001b4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b4e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 ---------+.|i13 │ │ │ │ -0001b4f0: 3a20 723d 6765 6e73 2052 2020 2020 2020 : r=gens R │ │ │ │ +0001b480: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001b490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b4b0: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2072 ------+.|i13 : r │ │ │ │ +0001b4c0: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +0001b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b4e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b510: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b540: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001b550: 3320 3d20 7b78 202c 2078 202c 2078 202c 3 = {x , x , x , │ │ │ │ -0001b560: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ -0001b570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b580: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ -0001b590: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ -0001b5a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b510: 2020 2020 2020 2020 7c0a 7c6f 3133 203d |.|o13 = │ │ │ │ +0001b520: 207b 7820 2c20 7820 2c20 7820 2c20 7820 {x , x , x , x │ │ │ │ +0001b530: 2c20 7820 2c20 7820 7d20 2020 2020 2020 , x , x } │ │ │ │ +0001b540: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001b550: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ +0001b560: 3320 2020 3420 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ +0001b570: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001b5b0: 3320 3a20 4c69 7374 2020 2020 2020 2020 3 : List │ │ │ │ 0001b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b5e0: 7c6f 3133 203a 204c 6973 7420 2020 2020 |o13 : List │ │ │ │ -0001b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001b610: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001b620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b640: 2b0a 7c69 3134 203a 204b 3d69 6465 616c +.|i14 : K=ideal │ │ │ │ -0001b650: 2872 5f30 5e32 2a72 5f33 2d72 5f34 2a72 (r_0^2*r_3-r_4*r │ │ │ │ -0001b660: 5f31 2a72 5f32 2c72 5f32 5e32 2a72 5f35 _1*r_2,r_2^2*r_5 │ │ │ │ -0001b670: 297c 0a7c 2020 2020 2020 2020 2020 2020 )|.| │ │ │ │ -0001b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b5d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001b5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001b610: 6931 3420 3a20 4b3d 6964 6561 6c28 725f i14 : K=ideal(r_ │ │ │ │ +0001b620: 305e 322a 725f 332d 725f 342a 725f 312a 0^2*r_3-r_4*r_1* │ │ │ │ +0001b630: 725f 322c 725f 325e 322a 725f 3529 7c0a r_2,r_2^2*r_5)|. │ │ │ │ +0001b640: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001b680: 3220 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ 0001b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b6a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b6b0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001b6c0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001b6d0: 2020 207c 0a7c 6f31 3420 3d20 6964 6561 |.|o14 = idea │ │ │ │ -0001b6e0: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ -0001b6f0: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ -0001b700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001b710: 2020 2020 2030 2033 2020 2020 3120 3220 0 3 1 2 │ │ │ │ -0001b720: 3420 2020 3220 3520 2020 2020 2020 2020 4 2 5 │ │ │ │ -0001b730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b6a0: 7c0a 7c6f 3134 203d 2069 6465 616c 2028 |.|o14 = ideal ( │ │ │ │ +0001b6b0: 7820 7820 202d 2078 2078 2078 202c 2078 x x - x x x , x │ │ │ │ +0001b6c0: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0001b6d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b6e0: 2020 3020 3320 2020 2031 2032 2034 2020 0 3 1 2 4 │ │ │ │ +0001b6f0: 2032 2035 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0001b700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b730: 2020 207c 0a7c 6f31 3420 3a20 4964 6561 |.|o14 : Idea │ │ │ │ +0001b740: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ 0001b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b760: 2020 2020 2020 7c0a 7c6f 3134 203a 2049 |.|o14 : I │ │ │ │ -0001b770: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ -0001b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b790: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b7c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3135 203a --------+.|i15 : │ │ │ │ -0001b7d0: 2045 756c 6572 4b3d 4575 6c65 7228 4b29 EulerK=Euler(K) │ │ │ │ +0001b760: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001b770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b790: 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 4575 -----+.|i15 : Eu │ │ │ │ +0001b7a0: 6c65 724b 3d45 756c 6572 284b 2920 2020 lerK=Euler(K) │ │ │ │ +0001b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b7c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b7f0: 2020 2020 2020 207c 0a7c 6f31 3520 3d20 |.|o15 = │ │ │ │ +0001b800: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 0001b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b820: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ -0001b830: 203d 2037 2020 2020 2020 2020 2020 2020 = 7 │ │ │ │ -0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b850: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ -0001b860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001b890: 3136 203a 2063 736d 4b3d 2043 534d 284b 16 : csmK= CSM(K │ │ │ │ -0001b8a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001b8b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001b8f0: 7c20 2020 2020 2020 2032 2032 2020 2020 | 2 2 │ │ │ │ -0001b900: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0001b910: 3220 2020 2020 2020 2020 2020 2032 207c 2 2 | │ │ │ │ -0001b920: 0a7c 6f31 3620 3d20 3768 2068 2020 2b20 .|o16 = 7h h + │ │ │ │ -0001b930: 3568 2068 2020 2b20 3468 2068 2020 2b20 5h h + 4h h + │ │ │ │ -0001b940: 6820 202b 2033 6820 6820 202b 2068 2020 h + 3h h + h │ │ │ │ -0001b950: 7c0a 7c20 2020 2020 2020 2031 2032 2020 |.| 1 2 │ │ │ │ -0001b960: 2020 2031 2032 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ -0001b970: 2020 3120 2020 2020 3120 3220 2020 2032 1 1 2 2 │ │ │ │ -0001b980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b820: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001b850: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ +0001b860: 3a20 6373 6d4b 3d20 4353 4d28 4b29 2020 : csmK= CSM(K) │ │ │ │ +0001b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b880: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b8b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001b8c0: 2020 2020 2020 3220 3220 2020 2020 3220 2 2 2 │ │ │ │ +0001b8d0: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +0001b8e0: 2020 2020 2020 2020 2020 3220 7c0a 7c6f 2 |.|o │ │ │ │ +0001b8f0: 3136 203d 2037 6820 6820 202b 2035 6820 16 = 7h h + 5h │ │ │ │ +0001b900: 6820 202b 2034 6820 6820 202b 2068 2020 h + 4h h + h │ │ │ │ +0001b910: 2b20 3368 2068 2020 2b20 6820 207c 0a7c + 3h h + h |.| │ │ │ │ +0001b920: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +0001b930: 3120 3220 2020 2020 3120 3220 2020 2031 1 2 1 2 1 │ │ │ │ +0001b940: 2020 2020 2031 2032 2020 2020 3220 7c0a 1 2 2 |. │ │ │ │ +0001b950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001b980: 0a7c 2020 2020 2020 5a5a 5b68 202e 2e68 .| ZZ[h ..h │ │ │ │ +0001b990: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9b0: 2020 7c0a 7c20 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ -0001b9c0: 2e2e 6820 5d20 2020 2020 2020 2020 2020 ..h ] │ │ │ │ +0001b9b0: 7c0a 7c20 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0001b9c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001b9f0: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +0001b9e0: 207c 0a7c 6f31 3620 3a20 2d2d 2d2d 2d2d |.|o16 : ------ │ │ │ │ +0001b9f0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 0001ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba10: 2020 2020 7c0a 7c6f 3136 203a 202d 2d2d |.|o16 : --- │ │ │ │ -0001ba20: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +0001ba10: 2020 7c0a 7c20 2020 2020 2020 2020 3320 |.| 3 │ │ │ │ +0001ba20: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0001ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ba50: 2033 2020 2033 2020 2020 2020 2020 2020 3 3 │ │ │ │ +0001ba40: 2020 207c 0a7c 2020 2020 2020 2028 6820 |.| (h │ │ │ │ +0001ba50: 2c20 6820 2920 2020 2020 2020 2020 2020 , h ) │ │ │ │ 0001ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001ba80: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ +0001ba70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0001ba80: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ 0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001baa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001bab0: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ -0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bad0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001bae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001baf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bb00: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3720 ---------+.|i17 │ │ │ │ -0001bb10: 3a20 4575 6c65 724b 3d3d 4575 6c65 7228 : EulerK==Euler( │ │ │ │ -0001bb20: 6373 6d4b 2920 2020 2020 2020 2020 2020 csmK) │ │ │ │ -0001bb30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001baa0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bad0: 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a 2045 ------+.|i17 : E │ │ │ │ +0001bae0: 756c 6572 4b3d 3d45 756c 6572 2863 736d ulerK==Euler(csm │ │ │ │ +0001baf0: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +0001bb00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bb30: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ +0001bb40: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 0001bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb60: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -0001bb70: 3720 3d20 7472 7565 2020 2020 2020 2020 7 = true │ │ │ │ -0001bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -0001bbd0: 496e 2074 6865 2063 6173 6520 7768 6572 In the case wher │ │ │ │ -0001bbe0: 6520 7468 6520 616d 6269 656e 7420 7370 e the ambient sp │ │ │ │ -0001bbf0: 6163 6520 6973 2061 2074 6f72 6963 2076 ace is a toric v │ │ │ │ -0001bc00: 6172 6965 7479 2077 6869 6368 2069 7320 ariety which is │ │ │ │ -0001bc10: 6e6f 7420 6120 7072 6f64 7563 740a 6f66 not a product.of │ │ │ │ -0001bc20: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -0001bc30: 6573 2077 6520 6d75 7374 206c 6f61 6420 es we must load │ │ │ │ -0001bc40: 7468 6520 4e6f 726d 616c 546f 7269 6356 the NormalToricV │ │ │ │ -0001bc50: 6172 6965 7469 6573 2070 6163 6b61 6765 arieties package │ │ │ │ -0001bc60: 2061 6e64 206d 7573 740a 616c 736f 2069 and must.also i │ │ │ │ -0001bc70: 6e70 7574 2074 6865 2074 6f72 6963 2076 nput the toric v │ │ │ │ -0001bc80: 6172 6965 7479 2e20 4966 2074 6865 2074 ariety. If the t │ │ │ │ -0001bc90: 6f72 6963 2076 6172 6965 7479 2069 7320 oric variety is │ │ │ │ -0001bca0: 6120 7072 6f64 7563 7420 6f66 2070 726f a product of pro │ │ │ │ -0001bcb0: 6a65 6374 6976 650a 7370 6163 6520 6974 jective.space it │ │ │ │ -0001bcc0: 2069 7320 7265 636f 6d6d 656e 6465 6420 is recommended │ │ │ │ -0001bcd0: 746f 2075 7365 2074 6865 2066 6f72 6d20 to use the form │ │ │ │ -0001bce0: 6162 6f76 6520 7261 7468 6572 2074 6861 above rather tha │ │ │ │ -0001bcf0: 6e20 696e 7075 7474 696e 6720 7468 6520 n inputting the │ │ │ │ -0001bd00: 746f 7269 630a 7661 7269 6574 7920 666f toric.variety fo │ │ │ │ -0001bd10: 7220 6566 6669 6369 656e 6379 2072 6561 r efficiency rea │ │ │ │ -0001bd20: 736f 6e73 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d sons...+-------- │ │ │ │ -0001bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd70: 2b0a 7c69 3138 203a 206e 6565 6473 5061 +.|i18 : needsPa │ │ │ │ -0001bd80: 636b 6167 6520 224e 6f72 6d61 6c54 6f72 ckage "NormalTor │ │ │ │ -0001bd90: 6963 5661 7269 6574 6965 7322 2020 2020 icVarieties" │ │ │ │ +0001bb60: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 ----------+..In │ │ │ │ +0001bba0: 7468 6520 6361 7365 2077 6865 7265 2074 the case where t │ │ │ │ +0001bbb0: 6865 2061 6d62 6965 6e74 2073 7061 6365 he ambient space │ │ │ │ +0001bbc0: 2069 7320 6120 746f 7269 6320 7661 7269 is a toric vari │ │ │ │ +0001bbd0: 6574 7920 7768 6963 6820 6973 206e 6f74 ety which is not │ │ │ │ +0001bbe0: 2061 2070 726f 6475 6374 0a6f 6620 7072 a product.of pr │ │ │ │ +0001bbf0: 6f6a 6563 7469 7665 2073 7061 6365 7320 ojective spaces │ │ │ │ +0001bc00: 7765 206d 7573 7420 6c6f 6164 2074 6865 we must load the │ │ │ │ +0001bc10: 204e 6f72 6d61 6c54 6f72 6963 5661 7269 NormalToricVari │ │ │ │ +0001bc20: 6574 6965 7320 7061 636b 6167 6520 616e eties package an │ │ │ │ +0001bc30: 6420 6d75 7374 0a61 6c73 6f20 696e 7075 d must.also inpu │ │ │ │ +0001bc40: 7420 7468 6520 746f 7269 6320 7661 7269 t the toric vari │ │ │ │ +0001bc50: 6574 792e 2049 6620 7468 6520 746f 7269 ety. If the tori │ │ │ │ +0001bc60: 6320 7661 7269 6574 7920 6973 2061 2070 c variety is a p │ │ │ │ +0001bc70: 726f 6475 6374 206f 6620 7072 6f6a 6563 roduct of projec │ │ │ │ +0001bc80: 7469 7665 0a73 7061 6365 2069 7420 6973 tive.space it is │ │ │ │ +0001bc90: 2072 6563 6f6d 6d65 6e64 6564 2074 6f20 recommended to │ │ │ │ +0001bca0: 7573 6520 7468 6520 666f 726d 2061 626f use the form abo │ │ │ │ +0001bcb0: 7665 2072 6174 6865 7220 7468 616e 2069 ve rather than i │ │ │ │ +0001bcc0: 6e70 7574 7469 6e67 2074 6865 2074 6f72 nputting the tor │ │ │ │ +0001bcd0: 6963 0a76 6172 6965 7479 2066 6f72 2065 ic.variety for e │ │ │ │ +0001bce0: 6666 6963 6965 6e63 7920 7265 6173 6f6e fficiency reason │ │ │ │ +0001bcf0: 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d s...+----------- │ │ │ │ +0001bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0001bd40: 6931 3820 3a20 6e65 6564 7350 6163 6b61 i18 : needsPacka │ │ │ │ +0001bd50: 6765 2022 4e6f 726d 616c 546f 7269 6356 ge "NormalToricV │ │ │ │ +0001bd60: 6172 6965 7469 6573 2220 2020 2020 2020 arieties" │ │ │ │ +0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bd80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bdd0: 2020 207c 0a7c 6f31 3820 3d20 4e6f 726d |.|o18 = Norm │ │ │ │ +0001bde0: 616c 546f 7269 6356 6172 6965 7469 6573 alToricVarieties │ │ │ │ 0001bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be00: 2020 2020 2020 7c0a 7c6f 3138 203d 204e |.|o18 = N │ │ │ │ -0001be10: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ -0001be20: 6965 7320 2020 2020 2020 2020 2020 2020 ies │ │ │ │ +0001be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001be20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001be60: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ +0001be70: 3a20 5061 636b 6167 6520 2020 2020 2020 : Package │ │ │ │ 0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be90: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001bea0: 3138 203a 2050 6163 6b61 6765 2020 2020 18 : Package │ │ │ │ -0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bee0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bf30: 2d2d 2b0a 7c69 3139 203a 2052 686f 203d --+.|i19 : Rho = │ │ │ │ -0001bf40: 207b 7b31 2c30 2c30 7d2c 7b30 2c31 2c30 {{1,0,0},{0,1,0 │ │ │ │ -0001bf50: 7d2c 7b30 2c30 2c31 7d2c 7b2d 312c 2d31 },{0,0,1},{-1,-1 │ │ │ │ -0001bf60: 2c30 7d2c 7b30 2c30 2c2d 317d 7d20 2020 ,0},{0,0,-1}} │ │ │ │ -0001bf70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001beb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001bec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001bef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001bf00: 0a7c 6931 3920 3a20 5268 6f20 3d20 7b7b .|i19 : Rho = {{ │ │ │ │ +0001bf10: 312c 302c 307d 2c7b 302c 312c 307d 2c7b 1,0,0},{0,1,0},{ │ │ │ │ +0001bf20: 302c 302c 317d 2c7b 2d31 2c2d 312c 307d 0,0,1},{-1,-1,0} │ │ │ │ +0001bf30: 2c7b 302c 302c 2d31 7d7d 2020 2020 2020 ,{0,0,-1}} │ │ │ │ +0001bf40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfc0: 2020 2020 2020 2020 7c0a 7c6f 3139 203d |.|o19 = │ │ │ │ -0001bfd0: 207b 7b31 2c20 302c 2030 7d2c 207b 302c {{1, 0, 0}, {0, │ │ │ │ -0001bfe0: 2031 2c20 307d 2c20 7b30 2c20 302c 2031 1, 0}, {0, 0, 1 │ │ │ │ -0001bff0: 7d2c 207b 2d31 2c20 2d31 2c20 307d 2c20 }, {-1, -1, 0}, │ │ │ │ -0001c000: 7b30 2c20 302c 202d 317d 7d20 2020 2020 {0, 0, -1}} │ │ │ │ -0001c010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001bf90: 2020 2020 207c 0a7c 6f31 3920 3d20 7b7b |.|o19 = {{ │ │ │ │ +0001bfa0: 312c 2030 2c20 307d 2c20 7b30 2c20 312c 1, 0, 0}, {0, 1, │ │ │ │ +0001bfb0: 2030 7d2c 207b 302c 2030 2c20 317d 2c20 0}, {0, 0, 1}, │ │ │ │ +0001bfc0: 7b2d 312c 202d 312c 2030 7d2c 207b 302c {-1, -1, 0}, {0, │ │ │ │ +0001bfd0: 2030 2c20 2d31 7d7d 2020 2020 2020 2020 0, -1}} │ │ │ │ +0001bfe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c020: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0001c030: 3920 3a20 4c69 7374 2020 2020 2020 2020 9 : List │ │ │ │ 0001c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001c060: 7c6f 3139 203a 204c 6973 7420 2020 2020 |o19 : List │ │ │ │ -0001c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c070: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c0f0: 2d2d 2d2d 2b0a 7c69 3230 203a 2053 6967 ----+.|i20 : Sig │ │ │ │ -0001c100: 6d61 203d 207b 7b30 2c31 2c32 7d2c 7b31 ma = {{0,1,2},{1 │ │ │ │ -0001c110: 2c32 2c33 7d2c 7b30 2c32 2c33 7d2c 7b30 ,2,3},{0,2,3},{0 │ │ │ │ -0001c120: 2c31 2c34 7d2c 7b31 2c33 2c34 7d2c 7b30 ,1,4},{1,3,4},{0 │ │ │ │ -0001c130: 2c33 2c34 7d7d 2020 2020 2020 2020 207c ,3,4}} | │ │ │ │ -0001c140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c180: 2020 2020 2020 2020 2020 7c0a 7c6f 3230 |.|o20 │ │ │ │ -0001c190: 203d 207b 7b30 2c20 312c 2032 7d2c 207b = {{0, 1, 2}, { │ │ │ │ -0001c1a0: 312c 2032 2c20 337d 2c20 7b30 2c20 322c 1, 2, 3}, {0, 2, │ │ │ │ -0001c1b0: 2033 7d2c 207b 302c 2031 2c20 347d 2c20 3}, {0, 1, 4}, │ │ │ │ -0001c1c0: 7b31 2c20 332c 2034 7d2c 207b 302c 2033 {1, 3, 4}, {0, 3 │ │ │ │ -0001c1d0: 2c20 347d 7d7c 0a7c 2020 2020 2020 2020 , 4}}|.| │ │ │ │ -0001c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c0c0: 2d2b 0a7c 6932 3020 3a20 5369 676d 6120 -+.|i20 : Sigma │ │ │ │ +0001c0d0: 3d20 7b7b 302c 312c 327d 2c7b 312c 322c = {{0,1,2},{1,2, │ │ │ │ +0001c0e0: 337d 2c7b 302c 322c 337d 2c7b 302c 312c 3},{0,2,3},{0,1, │ │ │ │ +0001c0f0: 347d 2c7b 312c 332c 347d 2c7b 302c 332c 4},{1,3,4},{0,3, │ │ │ │ +0001c100: 347d 7d20 2020 2020 2020 2020 7c0a 7c20 4}} |.| │ │ │ │ +0001c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c150: 2020 2020 2020 207c 0a7c 6f32 3020 3d20 |.|o20 = │ │ │ │ +0001c160: 7b7b 302c 2031 2c20 327d 2c20 7b31 2c20 {{0, 1, 2}, {1, │ │ │ │ +0001c170: 322c 2033 7d2c 207b 302c 2032 2c20 337d 2, 3}, {0, 2, 3} │ │ │ │ +0001c180: 2c20 7b30 2c20 312c 2034 7d2c 207b 312c , {0, 1, 4}, {1, │ │ │ │ +0001c190: 2033 2c20 347d 2c20 7b30 2c20 332c 2034 3, 4}, {0, 3, 4 │ │ │ │ +0001c1a0: 7d7d 7c0a 7c20 2020 2020 2020 2020 2020 }}|.| │ │ │ │ +0001c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c1f0: 6f32 3020 3a20 4c69 7374 2020 2020 2020 o20 : List │ │ │ │ 0001c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c220: 7c0a 7c6f 3230 203a 204c 6973 7420 2020 |.|o20 : List │ │ │ │ -0001c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c260: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c230: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c2b0: 2d2d 2d2d 2d2d 2b0a 7c69 3231 203a 2058 ------+.|i21 : X │ │ │ │ -0001c2c0: 203d 206e 6f72 6d61 6c54 6f72 6963 5661 = normalToricVa │ │ │ │ -0001c2d0: 7269 6574 7928 5268 6f2c 5369 676d 612c riety(Rho,Sigma, │ │ │ │ -0001c2e0: 436f 6566 6669 6369 656e 7452 696e 6720 CoefficientRing │ │ │ │ -0001c2f0: 3d3e 5a5a 2f33 3237 3439 2920 2020 2020 =>ZZ/32749) │ │ │ │ -0001c300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c280: 2d2d 2d2b 0a7c 6932 3120 3a20 5820 3d20 ---+.|i21 : X = │ │ │ │ +0001c290: 6e6f 726d 616c 546f 7269 6356 6172 6965 normalToricVarie │ │ │ │ +0001c2a0: 7479 2852 686f 2c53 6967 6d61 2c43 6f65 ty(Rho,Sigma,Coe │ │ │ │ +0001c2b0: 6666 6963 6965 6e74 5269 6e67 203d 3e5a fficientRing =>Z │ │ │ │ +0001c2c0: 5a2f 3332 3734 3929 2020 2020 2020 7c0a Z/32749) |. │ │ │ │ +0001c2d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c310: 2020 2020 2020 2020 207c 0a7c 6f32 3120 |.|o21 │ │ │ │ +0001c320: 3d20 5820 2020 2020 2020 2020 2020 2020 = X │ │ │ │ 0001c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c340: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001c350: 3231 203d 2058 2020 2020 2020 2020 2020 21 = X │ │ │ │ -0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c360: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c3b0: 0a7c 6f32 3120 3a20 4e6f 726d 616c 546f .|o21 : NormalTo │ │ │ │ +0001c3c0: 7269 6356 6172 6965 7479 2020 2020 2020 ricVariety │ │ │ │ 0001c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3e0: 2020 7c0a 7c6f 3231 203a 204e 6f72 6d61 |.|o21 : Norma │ │ │ │ -0001c3f0: 6c54 6f72 6963 5661 7269 6574 7920 2020 lToricVariety │ │ │ │ -0001c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c420: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c3f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0001c400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c470: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3232 203a --------+.|i22 : │ │ │ │ -0001c480: 2043 6865 636b 546f 7269 6356 6172 6965 CheckToricVarie │ │ │ │ -0001c490: 7479 5661 6c69 6428 5829 2020 2020 2020 tyValid(X) │ │ │ │ +0001c440: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 4368 -----+.|i22 : Ch │ │ │ │ +0001c450: 6563 6b54 6f72 6963 5661 7269 6574 7956 eckToricVarietyV │ │ │ │ +0001c460: 616c 6964 2858 2920 2020 2020 2020 2020 alid(X) │ │ │ │ +0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c4d0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001c4e0: 3220 3d20 7472 7565 2020 2020 2020 2020 2 = true │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c500: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001c510: 7c6f 3232 203d 2074 7275 6520 2020 2020 |o22 = true │ │ │ │ -0001c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c550: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c520: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +0001c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c5a0: 2d2d 2d2d 2b0a 7c69 3233 203a 2052 3d72 ----+.|i23 : R=r │ │ │ │ -0001c5b0: 696e 6728 5829 2020 2020 2020 2020 2020 ing(X) │ │ │ │ +0001c570: 2d2b 0a7c 6932 3320 3a20 523d 7269 6e67 -+.|i23 : R=ring │ │ │ │ +0001c580: 2858 2920 2020 2020 2020 2020 2020 2020 (X) │ │ │ │ +0001c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ 0001c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001c5f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c600: 2020 2020 2020 207c 0a7c 6f32 3320 3d20 |.|o23 = │ │ │ │ +0001c610: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c630: 2020 2020 2020 2020 2020 7c0a 7c6f 3233 |.|o23 │ │ │ │ -0001c640: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ -0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c6a0: 6f32 3320 3a20 506f 6c79 6e6f 6d69 616c o23 : Polynomial │ │ │ │ +0001c6b0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0001c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6d0: 7c0a 7c6f 3233 203a 2050 6f6c 796e 6f6d |.|o23 : Polynom │ │ │ │ -0001c6e0: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -0001c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c710: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0001c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c6e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0001c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c760: 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a 2049 ------+.|i24 : I │ │ │ │ -0001c770: 3d69 6465 616c 2852 5f30 5e34 2a52 5f31 =ideal(R_0^4*R_1 │ │ │ │ -0001c780: 2c52 5f30 2a52 5f33 2a52 5f34 2a52 5f32 ,R_0*R_3*R_4*R_2 │ │ │ │ -0001c790: 2d52 5f32 5e32 2a52 5f30 5e32 2920 2020 -R_2^2*R_0^2) │ │ │ │ +0001c730: 2d2d 2d2b 0a7c 6932 3420 3a20 493d 6964 ---+.|i24 : I=id │ │ │ │ +0001c740: 6561 6c28 525f 305e 342a 525f 312c 525f eal(R_0^4*R_1,R_ │ │ │ │ +0001c750: 302a 525f 332a 525f 342a 525f 322d 525f 0*R_3*R_4*R_2-R_ │ │ │ │ +0001c760: 325e 322a 525f 305e 3229 2020 2020 2020 2^2*R_0^2) │ │ │ │ +0001c770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001c780: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c7f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001c800: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -0001c810: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c840: 2020 2020 2020 207c 0a7c 6f32 3420 3d20 |.|o24 = │ │ │ │ -0001c850: 6964 6561 6c20 2878 2078 202c 202d 2078 ideal (x x , - x │ │ │ │ -0001c860: 2078 2020 2b20 7820 7820 7820 7820 2920 x + x x x x ) │ │ │ │ -0001c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001c8a0: 2020 2030 2031 2020 2020 2030 2032 2020 0 1 0 2 │ │ │ │ -0001c8b0: 2020 3020 3220 3320 3420 2020 2020 2020 0 2 3 4 │ │ │ │ +0001c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c7c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001c7d0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +0001c7e0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0001c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c810: 2020 2020 7c0a 7c6f 3234 203d 2069 6465 |.|o24 = ide │ │ │ │ +0001c820: 616c 2028 7820 7820 2c20 2d20 7820 7820 al (x x , - x x │ │ │ │ +0001c830: 202b 2078 2078 2078 2078 2029 2020 2020 + x x x x ) │ │ │ │ +0001c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001c860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001c870: 3020 3120 2020 2020 3020 3220 2020 2030 0 1 0 2 0 │ │ │ │ +0001c880: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8f0: 2020 2020 207c 0a7c 6f32 3420 3a20 4964 |.|o24 : Id │ │ │ │ +0001c900: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ 0001c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c920: 2020 2020 2020 2020 7c0a 7c6f 3234 203a |.|o24 : │ │ │ │ -0001c930: 2049 6465 616c 206f 6620 5220 2020 2020 Ideal of R │ │ │ │ -0001c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c970: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001c9c0: 7c69 3235 203a 2063 736d 493d 4353 4d28 |i25 : csmI=CSM( │ │ │ │ -0001c9d0: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +0001c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c940: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001c990: 3520 3a20 6373 6d49 3d43 534d 2858 2c49 5 : csmI=CSM(X,I │ │ │ │ +0001c9a0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0001c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c9d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca20: 207c 0a7c 2020 2020 2020 2020 3220 2020 |.| 2 │ │ │ │ +0001ca30: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca50: 2020 2020 7c0a 7c20 2020 2020 2020 2032 |.| 2 │ │ │ │ -0001ca60: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0001ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001caa0: 0a7c 6f32 3520 3d20 3578 2078 2020 2b20 .|o25 = 5x x + │ │ │ │ -0001cab0: 3378 2020 2b20 3478 2078 2020 2b20 7820 3x + 4x x + x │ │ │ │ -0001cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001caf0: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0001cb00: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0001ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ca60: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0001ca70: 3235 203d 2035 7820 7820 202b 2033 7820 25 = 5x x + 3x │ │ │ │ +0001ca80: 202b 2034 7820 7820 202b 2078 2020 2020 + 4x x + x │ │ │ │ +0001ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001cac0: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0001cad0: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0001cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb60: 2020 2020 2020 5a5a 5b78 202e 2e78 205d ZZ[x ..x ] │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001cb90: 2020 2020 2020 2020 205a 5a5b 7820 2e2e ZZ[x .. │ │ │ │ -0001cba0: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ -0001cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cb90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cbb0: 2020 2020 2030 2020 2034 2020 2020 2020 0 4 │ │ │ │ +0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbe0: 2020 2020 2020 2020 3020 2020 3420 2020 0 4 │ │ │ │ -0001cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc10: 2020 2020 2020 7c0a 7c6f 3235 203a 202d |.|o25 : - │ │ │ │ -0001cc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cc40: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ -0001cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc60: 207c 0a7c 2020 2020 2020 2878 2078 202c |.| (x x , │ │ │ │ -0001cc70: 2078 2078 2078 202c 2078 2020 2d20 7820 x x x , x - x │ │ │ │ -0001cc80: 2c20 7820 202d 2078 202c 2078 2020 2d20 , x - x , x - │ │ │ │ -0001cc90: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ -0001cca0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ccb0: 2020 2020 2020 2032 2034 2020 2030 2031 2 4 0 1 │ │ │ │ -0001ccc0: 2033 2020 2030 2020 2020 3320 2020 3120 3 0 3 1 │ │ │ │ -0001ccd0: 2020 2033 2020 2032 2020 2020 3420 2020 3 2 4 │ │ │ │ -0001cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccf0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cd40: 2d2d 2b0a 7c69 3236 203a 2045 756c 6572 --+.|i26 : Euler │ │ │ │ -0001cd50: 493d 4575 6c65 7228 582c 4929 2020 2020 I=Euler(X,I) │ │ │ │ +0001cbe0: 2020 207c 0a7c 6f32 3520 3a20 2d2d 2d2d |.|o25 : ---- │ │ │ │ +0001cbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cc10: 2d2d 2d2d 2d20 2020 2020 2020 2020 2020 ----- │ │ │ │ +0001cc20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001cc30: 7c20 2020 2020 2028 7820 7820 2c20 7820 | (x x , x │ │ │ │ +0001cc40: 7820 7820 2c20 7820 202d 2078 202c 2078 x x , x - x , x │ │ │ │ +0001cc50: 2020 2d20 7820 2c20 7820 202d 2078 2029 - x , x - x ) │ │ │ │ +0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cc70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001cc80: 2020 2020 3220 3420 2020 3020 3120 3320 2 4 0 1 3 │ │ │ │ +0001cc90: 2020 3020 2020 2033 2020 2031 2020 2020 0 3 1 │ │ │ │ +0001cca0: 3320 2020 3220 2020 2034 2020 2020 2020 3 2 4 │ │ │ │ +0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ccc0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0001ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001cd10: 0a7c 6932 3620 3a20 4575 6c65 7249 3d45 .|i26 : EulerI=E │ │ │ │ +0001cd20: 756c 6572 2858 2c49 2920 2020 2020 2020 uler(X,I) │ │ │ │ +0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cd50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cda0: 2020 2020 207c 0a7c 6f32 3620 3d20 3520 |.|o26 = 5 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdd0: 2020 2020 2020 2020 7c0a 7c6f 3236 203d |.|o26 = │ │ │ │ -0001cde0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce20: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ce60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001ce70: 7c69 3237 203a 2045 756c 6572 2863 736d |i27 : Euler(csm │ │ │ │ -0001ce80: 4929 3d3d 4575 6c65 7249 2020 2020 2020 I)==EulerI │ │ │ │ +0001cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cdf0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0001ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +0001ce40: 3720 3a20 4575 6c65 7228 6373 6d49 293d 7 : Euler(csmI)= │ │ │ │ +0001ce50: 3d45 756c 6572 4920 2020 2020 2020 2020 =EulerI │ │ │ │ +0001ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ce80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ceb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ced0: 207c 0a7c 6f32 3720 3d20 7472 7565 2020 |.|o27 = true │ │ │ │ 0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf00: 2020 2020 7c0a 7c6f 3237 203d 2074 7275 |.|o27 = tru │ │ │ │ -0001cf10: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001cf50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ -0001cf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001cf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 6c6c ----------+..All │ │ │ │ -0001cfa0: 2074 6865 2065 7861 6d70 6c65 7320 7765 the examples we │ │ │ │ -0001cfb0: 7265 2064 6f6e 6520 7573 696e 6720 7379 re done using sy │ │ │ │ -0001cfc0: 6d62 6f6c 6963 2063 6f6d 7075 7461 7469 mbolic computati │ │ │ │ -0001cfd0: 6f6e 7320 7769 7468 2047 725c 226f 626e ons with Gr\"obn │ │ │ │ -0001cfe0: 6572 2062 6173 6573 2e0a 4368 616e 6769 er bases..Changi │ │ │ │ -0001cff0: 6e67 2074 6865 206f 7074 696f 6e20 2a6e ng the option *n │ │ │ │ -0001d000: 6f74 6520 436f 6d70 4d65 7468 6f64 3a20 ote CompMethod: │ │ │ │ -0001d010: 436f 6d70 4d65 7468 6f64 2c20 746f 2062 CompMethod, to b │ │ │ │ -0001d020: 6572 7469 6e69 2077 696c 6c20 646f 2074 ertini will do t │ │ │ │ -0001d030: 6865 206d 6169 6e0a 636f 6d70 7574 6174 he main.computat │ │ │ │ -0001d040: 696f 6e73 206e 756d 6572 6963 616c 6c79 ions numerically │ │ │ │ -0001d050: 2c20 7072 6f76 6964 6564 2042 6572 7469 , provided Berti │ │ │ │ -0001d060: 6e69 2069 7320 2a6e 6f74 6520 696e 7374 ni is *note inst │ │ │ │ -0001d070: 616c 6c65 6420 616e 6420 636f 6e66 6967 alled and config │ │ │ │ -0001d080: 7572 6564 3a0a 636f 6e66 6967 7572 696e ured:.configurin │ │ │ │ -0001d090: 6720 4265 7274 696e 692c 2e20 4e6f 7465 g Bertini,. Note │ │ │ │ -0001d0a0: 2074 6861 7420 7468 6520 6265 7274 696e that the bertin │ │ │ │ -0001d0b0: 6920 616e 6420 506e 5265 7369 6475 616c i and PnResidual │ │ │ │ -0001d0c0: 206f 7074 696f 6e73 206d 6179 206f 6e6c options may onl │ │ │ │ -0001d0d0: 7920 6265 0a75 7365 6420 666f 7220 7375 y be.used for su │ │ │ │ -0001d0e0: 6273 6368 656d 6573 206f 6620 5c50 505e bschemes of \PP^ │ │ │ │ -0001d0f0: 6e2e 0a0a 4f62 7365 7276 6520 7468 6174 n...Observe that │ │ │ │ -0001d100: 2074 6865 2061 6c67 6f72 6974 686d 2069 the algorithm i │ │ │ │ -0001d110: 7320 6120 7072 6f62 6162 696c 6973 7469 s a probabilisti │ │ │ │ -0001d120: 6320 616c 676f 7269 7468 6d20 616e 6420 c algorithm and │ │ │ │ -0001d130: 6d61 7920 6769 7665 2061 2077 726f 6e67 may give a wrong │ │ │ │ -0001d140: 0a61 6e73 7765 7220 7769 7468 2061 2073 .answer with a s │ │ │ │ -0001d150: 6d61 6c6c 2062 7574 206e 6f6e 7a65 726f mall but nonzero │ │ │ │ -0001d160: 2070 726f 6261 6269 6c69 7479 2e20 5265 probability. Re │ │ │ │ -0001d170: 6164 206d 6f72 6520 756e 6465 7220 2a6e ad more under *n │ │ │ │ -0001d180: 6f74 650a 7072 6f62 6162 696c 6973 7469 ote.probabilisti │ │ │ │ -0001d190: 6320 616c 676f 7269 7468 6d3a 2070 726f c algorithm: pro │ │ │ │ -0001d1a0: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ -0001d1b0: 6974 686d 2c2e 0a0a 5761 7973 2074 6f20 ithm,...Ways to │ │ │ │ -0001d1c0: 7573 6520 4575 6c65 723a 0a3d 3d3d 3d3d use Euler:.===== │ │ │ │ -0001d1d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ -0001d1e0: 202a 2022 4575 6c65 7228 4964 6561 6c29 * "Euler(Ideal) │ │ │ │ -0001d1f0: 220a 2020 2a20 2245 756c 6572 2852 696e ". * "Euler(Rin │ │ │ │ -0001d200: 6745 6c65 6d65 6e74 2922 0a0a 466f 7220 gElement)"..For │ │ │ │ -0001d210: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -0001d220: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001d230: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -0001d240: 6f74 6520 4575 6c65 723a 2045 756c 6572 ote Euler: Euler │ │ │ │ -0001d250: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0001d260: 686f 6420 6675 6e63 7469 6f6e 2077 6974 hod function wit │ │ │ │ -0001d270: 6820 6f70 7469 6f6e 733a 0a28 4d61 6361 h options:.(Maca │ │ │ │ -0001d280: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0001d290: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ -0001d2a0: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ +0001cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001cf10: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001cf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001cf60: 2d2d 2d2d 2d2d 2d2b 0a0a 416c 6c20 7468 -------+..All th │ │ │ │ +0001cf70: 6520 6578 616d 706c 6573 2077 6572 6520 e examples were │ │ │ │ +0001cf80: 646f 6e65 2075 7369 6e67 2073 796d 626f done using symbo │ │ │ │ +0001cf90: 6c69 6320 636f 6d70 7574 6174 696f 6e73 lic computations │ │ │ │ +0001cfa0: 2077 6974 6820 4772 5c22 6f62 6e65 7220 with Gr\"obner │ │ │ │ +0001cfb0: 6261 7365 732e 0a43 6861 6e67 696e 6720 bases..Changing │ │ │ │ +0001cfc0: 7468 6520 6f70 7469 6f6e 202a 6e6f 7465 the option *note │ │ │ │ +0001cfd0: 2043 6f6d 704d 6574 686f 643a 2043 6f6d CompMethod: Com │ │ │ │ +0001cfe0: 704d 6574 686f 642c 2074 6f20 6265 7274 pMethod, to bert │ │ │ │ +0001cff0: 696e 6920 7769 6c6c 2064 6f20 7468 6520 ini will do the │ │ │ │ +0001d000: 6d61 696e 0a63 6f6d 7075 7461 7469 6f6e main.computation │ │ │ │ +0001d010: 7320 6e75 6d65 7269 6361 6c6c 792c 2070 s numerically, p │ │ │ │ +0001d020: 726f 7669 6465 6420 4265 7274 696e 6920 rovided Bertini │ │ │ │ +0001d030: 6973 202a 6e6f 7465 2069 6e73 7461 6c6c is *note install │ │ │ │ +0001d040: 6564 2061 6e64 2063 6f6e 6669 6775 7265 ed and configure │ │ │ │ +0001d050: 643a 0a63 6f6e 6669 6775 7269 6e67 2042 d:.configuring B │ │ │ │ +0001d060: 6572 7469 6e69 2c2e 204e 6f74 6520 7468 ertini,. Note th │ │ │ │ +0001d070: 6174 2074 6865 2062 6572 7469 6e69 2061 at the bertini a │ │ │ │ +0001d080: 6e64 2050 6e52 6573 6964 7561 6c20 6f70 nd PnResidual op │ │ │ │ +0001d090: 7469 6f6e 7320 6d61 7920 6f6e 6c79 2062 tions may only b │ │ │ │ +0001d0a0: 650a 7573 6564 2066 6f72 2073 7562 7363 e.used for subsc │ │ │ │ +0001d0b0: 6865 6d65 7320 6f66 205c 5050 5e6e 2e0a hemes of \PP^n.. │ │ │ │ +0001d0c0: 0a4f 6273 6572 7665 2074 6861 7420 7468 .Observe that th │ │ │ │ +0001d0d0: 6520 616c 676f 7269 7468 6d20 6973 2061 e algorithm is a │ │ │ │ +0001d0e0: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ +0001d0f0: 6c67 6f72 6974 686d 2061 6e64 206d 6179 lgorithm and may │ │ │ │ +0001d100: 2067 6976 6520 6120 7772 6f6e 670a 616e give a wrong.an │ │ │ │ +0001d110: 7377 6572 2077 6974 6820 6120 736d 616c swer with a smal │ │ │ │ +0001d120: 6c20 6275 7420 6e6f 6e7a 6572 6f20 7072 l but nonzero pr │ │ │ │ +0001d130: 6f62 6162 696c 6974 792e 2052 6561 6420 obability. Read │ │ │ │ +0001d140: 6d6f 7265 2075 6e64 6572 202a 6e6f 7465 more under *note │ │ │ │ +0001d150: 0a70 726f 6261 6269 6c69 7374 6963 2061 .probabilistic a │ │ │ │ +0001d160: 6c67 6f72 6974 686d 3a20 7072 6f62 6162 lgorithm: probab │ │ │ │ +0001d170: 696c 6973 7469 6320 616c 676f 7269 7468 ilistic algorith │ │ │ │ +0001d180: 6d2c 2e0a 0a57 6179 7320 746f 2075 7365 m,...Ways to use │ │ │ │ +0001d190: 2045 756c 6572 3a0a 3d3d 3d3d 3d3d 3d3d Euler:.======== │ │ │ │ +0001d1a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0001d1b0: 2245 756c 6572 2849 6465 616c 2922 0a20 "Euler(Ideal)". │ │ │ │ +0001d1c0: 202a 2022 4575 6c65 7228 5269 6e67 456c * "Euler(RingEl │ │ │ │ +0001d1d0: 656d 656e 7429 220a 0a46 6f72 2074 6865 ement)"..For the │ │ │ │ +0001d1e0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +0001d1f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0001d200: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +0001d210: 2045 756c 6572 3a20 4575 6c65 722c 2069 Euler: Euler, i │ │ │ │ +0001d220: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +0001d230: 2066 756e 6374 696f 6e20 7769 7468 206f function with o │ │ │ │ +0001d240: 7074 696f 6e73 3a0a 284d 6163 6175 6c61 ptions:.(Macaula │ │ │ │ +0001d250: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0001d260: 7469 6f6e 5769 7468 4f70 7469 6f6e 732c tionWithOptions, │ │ │ │ +0001d270: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001d280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d2f0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0001d300: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0001d310: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0001d320: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0001d330: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0001d340: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0001d350: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -0001d360: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -0001d370: 7365 732e 6d32 3a32 3331 323a 302e 0a1f ses.m2:2312:0... │ │ │ │ -0001d380: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -0001d390: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -0001d3a0: 6f2c 204e 6f64 653a 2045 756c 6572 4166 o, Node: EulerAf │ │ │ │ -0001d3b0: 6669 6e65 2c20 4e65 7874 3a20 496e 6473 fine, Next: Inds │ │ │ │ -0001d3c0: 4f66 536d 6f6f 7468 2c20 5072 6576 3a20 OfSmooth, Prev: │ │ │ │ -0001d3d0: 4575 6c65 722c 2055 703a 2054 6f70 0a0a Euler, Up: Top.. │ │ │ │ -0001d3e0: 4575 6c65 7241 6666 696e 6520 2d2d 2054 EulerAffine -- T │ │ │ │ -0001d3f0: 6865 2045 756c 6572 2043 6861 7261 6374 he Euler Charact │ │ │ │ -0001d400: 6572 6973 7469 6320 6f66 2061 6e20 6166 eristic of an af │ │ │ │ -0001d410: 6669 6e65 2076 6172 6965 7479 2e0a 2a2a fine variety..** │ │ │ │ -0001d420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d430: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d440: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001d450: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0001d460: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -0001d470: 2045 756c 6572 4166 6669 6e65 2049 0a20 EulerAffine I. │ │ │ │ -0001d480: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -0001d490: 202a 2049 2c20 616e 202a 6e6f 7465 2069 * I, an *note i │ │ │ │ -0001d4a0: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -0001d4b0: 446f 6329 4964 6561 6c2c 2c20 616e 2069 Doc)Ideal,, an i │ │ │ │ -0001d4c0: 6465 616c 2069 6e20 6120 706f 6c79 6e6f deal in a polyno │ │ │ │ -0001d4d0: 6d69 616c 2072 696e 670a 2020 2020 2020 mial ring. │ │ │ │ -0001d4e0: 2020 6f76 6572 2061 2066 6965 6c64 2064 over a field d │ │ │ │ -0001d4f0: 6566 696e 696e 6720 616e 2061 6666 696e efining an affin │ │ │ │ -0001d500: 6520 7661 7269 6574 792e 0a20 202a 204f e variety.. * O │ │ │ │ -0001d510: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -0001d520: 6120 2a6e 6f74 6520 7269 6e67 2065 6c65 a *note ring ele │ │ │ │ -0001d530: 6d65 6e74 3a20 284d 6163 6175 6c61 7932 ment: (Macaulay2 │ │ │ │ -0001d540: 446f 6329 5269 6e67 456c 656d 656e 742c Doc)RingElement, │ │ │ │ -0001d550: 2c20 7468 6520 4575 6c65 720a 2020 2020 , the Euler. │ │ │ │ -0001d560: 2020 2020 6368 6172 6163 7465 7269 7374 characterist │ │ │ │ -0001d570: 6963 0a0a 4465 7363 7269 7074 696f 6e0a ic..Description. │ │ │ │ -0001d580: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -0001d590: 7320 636f 6d6d 616e 6420 636f 6d70 7574 s command comput │ │ │ │ -0001d5a0: 6573 2074 6865 2045 756c 6572 2063 6861 es the Euler cha │ │ │ │ -0001d5b0: 7261 6374 6572 6973 7469 6320 6f66 2061 racteristic of a │ │ │ │ -0001d5c0: 2063 6f6d 706c 6578 2061 6666 696e 6520 complex affine │ │ │ │ -0001d5d0: 7661 7269 6574 792e 0a0a 2b2d 2d2d 2d2d variety...+----- │ │ │ │ -0001d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d610: 2d2d 2b0a 7c69 3120 3a20 6b6b 3d5a 5a2f --+.|i1 : kk=ZZ/ │ │ │ │ -0001d620: 3332 3734 393b 2020 2020 2020 2020 2020 32749; │ │ │ │ -0001d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d640: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001d650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d680: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 523d ------+.|i2 : R= │ │ │ │ -0001d690: 6b6b 5b78 5f31 2e2e 785f 335d 2020 2020 kk[x_1..x_3] │ │ │ │ +0001d2c0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0001d2d0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0001d2e0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0001d2f0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0001d300: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0001d310: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0001d320: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +0001d330: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001d340: 2e6d 323a 3233 3132 3a30 2e0a 1f0a 4669 .m2:2312:0....Fi │ │ │ │ +0001d350: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +0001d360: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +0001d370: 4e6f 6465 3a20 4575 6c65 7241 6666 696e Node: EulerAffin │ │ │ │ +0001d380: 652c 204e 6578 743a 2049 6e64 734f 6653 e, Next: IndsOfS │ │ │ │ +0001d390: 6d6f 6f74 682c 2050 7265 763a 2045 756c mooth, Prev: Eul │ │ │ │ +0001d3a0: 6572 2c20 5570 3a20 546f 700a 0a45 756c er, Up: Top..Eul │ │ │ │ +0001d3b0: 6572 4166 6669 6e65 202d 2d20 5468 6520 erAffine -- The │ │ │ │ +0001d3c0: 4575 6c65 7220 4368 6172 6163 7465 7269 Euler Characteri │ │ │ │ +0001d3d0: 7374 6963 206f 6620 616e 2061 6666 696e stic of an affin │ │ │ │ +0001d3e0: 6520 7661 7269 6574 792e 0a2a 2a2a 2a2a e variety..***** │ │ │ │ +0001d3f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001d420: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ +0001d430: 6167 653a 200a 2020 2020 2020 2020 4575 age: . Eu │ │ │ │ +0001d440: 6c65 7241 6666 696e 6520 490a 2020 2a20 lerAffine I. * │ │ │ │ +0001d450: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0001d460: 492c 2061 6e20 2a6e 6f74 6520 6964 6561 I, an *note idea │ │ │ │ +0001d470: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0001d480: 2949 6465 616c 2c2c 2061 6e20 6964 6561 )Ideal,, an idea │ │ │ │ +0001d490: 6c20 696e 2061 2070 6f6c 796e 6f6d 6961 l in a polynomia │ │ │ │ +0001d4a0: 6c20 7269 6e67 0a20 2020 2020 2020 206f l ring. o │ │ │ │ +0001d4b0: 7665 7220 6120 6669 656c 6420 6465 6669 ver a field defi │ │ │ │ +0001d4c0: 6e69 6e67 2061 6e20 6166 6669 6e65 2076 ning an affine v │ │ │ │ +0001d4d0: 6172 6965 7479 2e0a 2020 2a20 4f75 7470 ariety.. * Outp │ │ │ │ +0001d4e0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0001d4f0: 6e6f 7465 2072 696e 6720 656c 656d 656e note ring elemen │ │ │ │ +0001d500: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ +0001d510: 2952 696e 6745 6c65 6d65 6e74 2c2c 2074 )RingElement,, t │ │ │ │ +0001d520: 6865 2045 756c 6572 0a20 2020 2020 2020 he Euler. │ │ │ │ +0001d530: 2063 6861 7261 6374 6572 6973 7469 630a characteristic. │ │ │ │ +0001d540: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0001d550: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2063 ========..This c │ │ │ │ +0001d560: 6f6d 6d61 6e64 2063 6f6d 7075 7465 7320 ommand computes │ │ │ │ +0001d570: 7468 6520 4575 6c65 7220 6368 6172 6163 the Euler charac │ │ │ │ +0001d580: 7465 7269 7374 6963 206f 6620 6120 636f teristic of a co │ │ │ │ +0001d590: 6d70 6c65 7820 6166 6669 6e65 2076 6172 mplex affine var │ │ │ │ +0001d5a0: 6965 7479 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d iety...+-------- │ │ │ │ +0001d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d5e0: 0a7c 6931 203a 206b 6b3d 5a5a 2f33 3237 .|i1 : kk=ZZ/327 │ │ │ │ +0001d5f0: 3439 3b20 2020 2020 2020 2020 2020 2020 49; │ │ │ │ +0001d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d610: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d650: 2d2d 2d2b 0a7c 6932 203a 2052 3d6b 6b5b ---+.|i2 : R=kk[ │ │ │ │ +0001d660: 785f 312e 2e78 5f33 5d20 2020 2020 2020 x_1..x_3] │ │ │ │ +0001d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d6c0: 2020 2020 2020 207c 0a7c 6f32 203d 2052 |.|o2 = R │ │ │ │ 0001d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001d700: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +0001d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d730: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001d770: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ -0001d780: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ -0001d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d7a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d7e0: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ -0001d7f0: 6c28 785f 315e 322b 785f 325e 322b 785f l(x_1^2+x_2^2+x_ │ │ │ │ -0001d800: 335e 322d 3129 2020 2020 2020 2020 2020 3^2-1) │ │ │ │ -0001d810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d730: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0001d740: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +0001d750: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ +0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d770: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d7b0: 0a7c 6933 203a 2049 3d69 6465 616c 2878 .|i3 : I=ideal(x │ │ │ │ +0001d7c0: 5f31 5e32 2b78 5f32 5e32 2b78 5f33 5e32 _1^2+x_2^2+x_3^2 │ │ │ │ +0001d7d0: 2d31 2920 2020 2020 2020 2020 2020 2020 -1) │ │ │ │ +0001d7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d820: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d830: 2020 3220 2020 2032 2020 2020 3220 2020 2 2 2 │ │ │ │ 0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d850: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001d860: 2020 2020 2032 2020 2020 3220 2020 2032 2 2 2 │ │ │ │ -0001d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d850: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001d860: 6f33 203d 2069 6465 616c 2878 2020 2b20 o3 = ideal(x + │ │ │ │ +0001d870: 7820 202b 2078 2020 2d20 3129 2020 2020 x + x - 1) │ │ │ │ 0001d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d890: 7c0a 7c6f 3320 3d20 6964 6561 6c28 7820 |.|o3 = ideal(x │ │ │ │ -0001d8a0: 202b 2078 2020 2b20 7820 202d 2031 2920 + x + x - 1) │ │ │ │ -0001d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001d8d0: 2020 2020 2020 2020 2031 2020 2020 3220 1 2 │ │ │ │ -0001d8e0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001d890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001d8a0: 2020 2020 2020 3120 2020 2032 2020 2020 1 2 │ │ │ │ +0001d8b0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0001d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d900: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0001d910: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001d940: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ -0001d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d970: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001d980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d9b0: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2045 --+.|i4 : time E │ │ │ │ -0001d9c0: 756c 6572 4166 6669 6e65 2049 2020 2020 ulerAffine I │ │ │ │ -0001d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001d9f0: 2d2d 2075 7365 6420 302e 3038 3734 3133 -- used 0.087413 │ │ │ │ -0001da00: 3173 2028 6370 7529 3b20 302e 3034 3932 1s (cpu); 0.0492 │ │ │ │ -0001da10: 3135 3973 2028 7468 7265 6164 293b 2030 159s (thread); 0 │ │ │ │ -0001da20: 7320 2867 6329 7c0a 7c20 2020 2020 2020 s (gc)|.| │ │ │ │ -0001da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d940: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001d950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001d970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001d980: 0a7c 6934 203a 2074 696d 6520 4575 6c65 .|i4 : time Eule │ │ │ │ +0001d990: 7241 6666 696e 6520 4920 2020 2020 2020 rAffine I │ │ │ │ +0001d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001d9b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +0001d9c0: 7573 6564 2030 2e30 3835 3136 3331 7320 used 0.0851631s │ │ │ │ +0001d9d0: 2863 7075 293b 2030 2e30 3638 3836 3233 (cpu); 0.0688623 │ │ │ │ +0001d9e0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0001d9f0: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ +0001da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001da20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001da30: 6f34 203d 2032 2020 2020 2020 2020 2020 o4 = 2 │ │ │ │ 0001da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da60: 7c0a 7c6f 3420 3d20 3220 2020 2020 2020 |.|o4 = 2 │ │ │ │ -0001da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ -0001daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dad0: 2d2d 2d2d 2b0a 0a4f 6273 6572 7665 2074 ----+..Observe t │ │ │ │ -0001dae0: 6861 7420 7468 6520 616c 676f 7269 7468 hat the algorith │ │ │ │ -0001daf0: 6d20 6973 2061 2070 726f 6261 6269 6c69 m is a probabili │ │ │ │ -0001db00: 7374 6963 2061 6c67 6f72 6974 686d 2061 stic algorithm a │ │ │ │ -0001db10: 6e64 206d 6179 2067 6976 6520 6120 7772 nd may give a wr │ │ │ │ -0001db20: 6f6e 670a 616e 7377 6572 2077 6974 6820 ong.answer with │ │ │ │ -0001db30: 6120 736d 616c 6c20 6275 7420 6e6f 6e7a a small but nonz │ │ │ │ -0001db40: 6572 6f20 7072 6f62 6162 696c 6974 792e ero probability. │ │ │ │ -0001db50: 2052 6561 6420 6d6f 7265 2075 6e64 6572 Read more under │ │ │ │ -0001db60: 202a 6e6f 7465 0a70 726f 6261 6269 6c69 *note.probabili │ │ │ │ -0001db70: 7374 6963 2061 6c67 6f72 6974 686d 3a20 stic algorithm: │ │ │ │ -0001db80: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ -0001db90: 676f 7269 7468 6d2c 2e0a 0a57 6179 7320 gorithm,...Ways │ │ │ │ -0001dba0: 746f 2075 7365 2045 756c 6572 4166 6669 to use EulerAffi │ │ │ │ -0001dbb0: 6e65 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ne:.============ │ │ │ │ -0001dbc0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -0001dbd0: 2a20 2245 756c 6572 4166 6669 6e65 2849 * "EulerAffine(I │ │ │ │ -0001dbe0: 6465 616c 2922 0a0a 466f 7220 7468 6520 deal)"..For the │ │ │ │ -0001dbf0: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0001dc00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0001dc10: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0001dc20: 4575 6c65 7241 6666 696e 653a 2045 756c EulerAffine: Eul │ │ │ │ -0001dc30: 6572 4166 6669 6e65 2c20 6973 2061 202a erAffine, is a * │ │ │ │ -0001dc40: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0001dc50: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -0001dc60: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -0001dc70: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +0001da60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0001da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001daa0: 2d2b 0a0a 4f62 7365 7276 6520 7468 6174 -+..Observe that │ │ │ │ +0001dab0: 2074 6865 2061 6c67 6f72 6974 686d 2069 the algorithm i │ │ │ │ +0001dac0: 7320 6120 7072 6f62 6162 696c 6973 7469 s a probabilisti │ │ │ │ +0001dad0: 6320 616c 676f 7269 7468 6d20 616e 6420 c algorithm and │ │ │ │ +0001dae0: 6d61 7920 6769 7665 2061 2077 726f 6e67 may give a wrong │ │ │ │ +0001daf0: 0a61 6e73 7765 7220 7769 7468 2061 2073 .answer with a s │ │ │ │ +0001db00: 6d61 6c6c 2062 7574 206e 6f6e 7a65 726f mall but nonzero │ │ │ │ +0001db10: 2070 726f 6261 6269 6c69 7479 2e20 5265 probability. Re │ │ │ │ +0001db20: 6164 206d 6f72 6520 756e 6465 7220 2a6e ad more under *n │ │ │ │ +0001db30: 6f74 650a 7072 6f62 6162 696c 6973 7469 ote.probabilisti │ │ │ │ +0001db40: 6320 616c 676f 7269 7468 6d3a 2070 726f c algorithm: pro │ │ │ │ +0001db50: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ +0001db60: 6974 686d 2c2e 0a0a 5761 7973 2074 6f20 ithm,...Ways to │ │ │ │ +0001db70: 7573 6520 4575 6c65 7241 6666 696e 653a use EulerAffine: │ │ │ │ +0001db80: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001db90: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +0001dba0: 4575 6c65 7241 6666 696e 6528 4964 6561 EulerAffine(Idea │ │ │ │ +0001dbb0: 6c29 220a 0a46 6f72 2074 6865 2070 726f l)"..For the pro │ │ │ │ +0001dbc0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0001dbd0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0001dbe0: 6f62 6a65 6374 202a 6e6f 7465 2045 756c object *note Eul │ │ │ │ +0001dbf0: 6572 4166 6669 6e65 3a20 4575 6c65 7241 erAffine: EulerA │ │ │ │ +0001dc00: 6666 696e 652c 2069 7320 6120 2a6e 6f74 ffine, is a *not │ │ │ │ +0001dc10: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +0001dc20: 6e3a 0a28 4d61 6361 756c 6179 3244 6f63 n:.(Macaulay2Doc │ │ │ │ +0001dc30: 294d 6574 686f 6446 756e 6374 696f 6e2c )MethodFunction, │ │ │ │ +0001dc40: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +0001dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dcc0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0001dcd0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0001dce0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0001dcf0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0001dd00: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0001dd10: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0001dd20: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -0001dd30: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -0001dd40: 7365 732e 6d32 3a32 3534 313a 302e 0a1f ses.m2:2541:0... │ │ │ │ -0001dd50: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -0001dd60: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -0001dd70: 6f2c 204e 6f64 653a 2049 6e64 734f 6653 o, Node: IndsOfS │ │ │ │ -0001dd80: 6d6f 6f74 682c 204e 6578 743a 2049 6e70 mooth, Next: Inp │ │ │ │ -0001dd90: 7574 4973 536d 6f6f 7468 2c20 5072 6576 utIsSmooth, Prev │ │ │ │ -0001dda0: 3a20 4575 6c65 7241 6666 696e 652c 2055 : EulerAffine, U │ │ │ │ -0001ddb0: 703a 2054 6f70 0a0a 496e 6473 4f66 536d p: Top..IndsOfSm │ │ │ │ -0001ddc0: 6f6f 7468 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ooth.*********** │ │ │ │ -0001ddd0: 2a0a 0a44 6573 6372 6970 7469 6f6e 0a3d *..Description.= │ │ │ │ -0001dde0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0001ddf0: 6f70 7469 6f6e 2049 6e64 734f 6653 6d6f option IndsOfSmo │ │ │ │ -0001de00: 6f74 6820 6973 206f 6e6c 7920 7573 6564 oth is only used │ │ │ │ -0001de10: 2062 7920 7468 6520 636f 6d6d 616e 6473 by the commands │ │ │ │ -0001de20: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ -0001de30: 2c20 616e 6420 2a6e 6f74 650a 4575 6c65 , and *note.Eule │ │ │ │ -0001de40: 723a 2045 756c 6572 2c20 696e 2063 6f6d r: Euler, in com │ │ │ │ -0001de50: 6269 6e61 7469 6f6e 2077 6974 6820 7468 bination with th │ │ │ │ -0001de60: 6520 6f70 7469 6f6e 204d 6574 686f 643d e option Method= │ │ │ │ -0001de70: 3e44 6972 6563 7443 6f6d 706c 6574 496e >DirectCompletIn │ │ │ │ -0001de80: 742e 2057 6865 6e0a 7573 6564 2074 6869 t. When.used thi │ │ │ │ -0001de90: 7320 6f70 7469 6f6e 206d 6179 2061 6c6c s option may all │ │ │ │ -0001dea0: 6f77 2074 6865 2075 7365 7220 746f 2073 ow the user to s │ │ │ │ -0001deb0: 7065 6564 2075 7020 7468 6520 636f 6d70 peed up the comp │ │ │ │ -0001dec0: 7574 6174 696f 6e20 6279 2074 656c 6c69 utation by telli │ │ │ │ -0001ded0: 6e67 0a67 6976 696e 6720 7468 6520 6d65 ng.giving the me │ │ │ │ -0001dee0: 7468 6f64 2061 206c 6973 7420 6f66 2069 thod a list of i │ │ │ │ -0001def0: 6e64 6963 6573 2066 6f72 2074 6865 2067 ndices for the g │ │ │ │ -0001df00: 656e 6572 6174 6f72 7320 6f66 2074 6865 enerators of the │ │ │ │ -0001df10: 2069 6e70 7574 2069 6465 616c 2074 6861 input ideal tha │ │ │ │ -0001df20: 742c 0a77 6865 6e20 7461 6b65 6e20 746f t,.when taken to │ │ │ │ -0001df30: 6765 7468 6572 2c20 6465 6669 6e65 2061 gether, define a │ │ │ │ -0001df40: 2073 6d6f 6f74 6820 7375 6273 6368 656d smooth subschem │ │ │ │ -0001df50: 6520 6f66 2074 6865 2061 6d62 6965 6e74 e of the ambient │ │ │ │ -0001df60: 2073 7061 6365 2e20 5468 6973 0a6f 7074 space. This.opt │ │ │ │ -0001df70: 696f 6e20 7769 6c6c 2062 6520 6967 6e6f ion will be igno │ │ │ │ -0001df80: 7265 6420 6f74 6865 7277 6973 652e 0a0a red otherwise... │ │ │ │ -0001df90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0001dfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001dfd0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -0001dfe0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ -0001dff0: 696e 6728 7b32 2c32 7d29 2020 2020 2020 ing({2,2}) │ │ │ │ +0001dc90: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0001dca0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0001dcb0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0001dcc0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0001dcd0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0001dce0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0001dcf0: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +0001dd00: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +0001dd10: 2e6d 323a 3235 3431 3a30 2e0a 1f0a 4669 .m2:2541:0....Fi │ │ │ │ +0001dd20: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +0001dd30: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +0001dd40: 4e6f 6465 3a20 496e 6473 4f66 536d 6f6f Node: IndsOfSmoo │ │ │ │ +0001dd50: 7468 2c20 4e65 7874 3a20 496e 7075 7449 th, Next: InputI │ │ │ │ +0001dd60: 7353 6d6f 6f74 682c 2050 7265 763a 2045 sSmooth, Prev: E │ │ │ │ +0001dd70: 756c 6572 4166 6669 6e65 2c20 5570 3a20 ulerAffine, Up: │ │ │ │ +0001dd80: 546f 700a 0a49 6e64 734f 6653 6d6f 6f74 Top..IndsOfSmoot │ │ │ │ +0001dd90: 680a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a h.************.. │ │ │ │ +0001dda0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0001ddb0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 7074 =======..The opt │ │ │ │ +0001ddc0: 696f 6e20 496e 6473 4f66 536d 6f6f 7468 ion IndsOfSmooth │ │ │ │ +0001ddd0: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ +0001dde0: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ +0001ddf0: 6f74 6520 4353 4d3a 2043 534d 2c2c 2061 ote CSM: CSM,, a │ │ │ │ +0001de00: 6e64 202a 6e6f 7465 0a45 756c 6572 3a20 nd *note.Euler: │ │ │ │ +0001de10: 4575 6c65 722c 2069 6e20 636f 6d62 696e Euler, in combin │ │ │ │ +0001de20: 6174 696f 6e20 7769 7468 2074 6865 206f ation with the o │ │ │ │ +0001de30: 7074 696f 6e20 4d65 7468 6f64 3d3e 4469 ption Method=>Di │ │ │ │ +0001de40: 7265 6374 436f 6d70 6c65 7449 6e74 2e20 rectCompletInt. │ │ │ │ +0001de50: 5768 656e 0a75 7365 6420 7468 6973 206f When.used this o │ │ │ │ +0001de60: 7074 696f 6e20 6d61 7920 616c 6c6f 7720 ption may allow │ │ │ │ +0001de70: 7468 6520 7573 6572 2074 6f20 7370 6565 the user to spee │ │ │ │ +0001de80: 6420 7570 2074 6865 2063 6f6d 7075 7461 d up the computa │ │ │ │ +0001de90: 7469 6f6e 2062 7920 7465 6c6c 696e 670a tion by telling. │ │ │ │ +0001dea0: 6769 7669 6e67 2074 6865 206d 6574 686f giving the metho │ │ │ │ +0001deb0: 6420 6120 6c69 7374 206f 6620 696e 6469 d a list of indi │ │ │ │ +0001dec0: 6365 7320 666f 7220 7468 6520 6765 6e65 ces for the gene │ │ │ │ +0001ded0: 7261 746f 7273 206f 6620 7468 6520 696e rators of the in │ │ │ │ +0001dee0: 7075 7420 6964 6561 6c20 7468 6174 2c0a put ideal that,. │ │ │ │ +0001def0: 7768 656e 2074 616b 656e 2074 6f67 6574 when taken toget │ │ │ │ +0001df00: 6865 722c 2064 6566 696e 6520 6120 736d her, define a sm │ │ │ │ +0001df10: 6f6f 7468 2073 7562 7363 6865 6d65 206f ooth subscheme o │ │ │ │ +0001df20: 6620 7468 6520 616d 6269 656e 7420 7370 f the ambient sp │ │ │ │ +0001df30: 6163 652e 2054 6869 730a 6f70 7469 6f6e ace. This.option │ │ │ │ +0001df40: 2077 696c 6c20 6265 2069 676e 6f72 6564 will be ignored │ │ │ │ +0001df50: 206f 7468 6572 7769 7365 2e0a 0a2b 2d2d otherwise...+-- │ │ │ │ +0001df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001df90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001dfa0: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 4d75 --+.|i1 : R = Mu │ │ │ │ +0001dfb0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ +0001dfc0: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ +0001dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001dfe0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e010: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e030: 7c0a 7c6f 3120 3d20 5220 2020 2020 2020 |.|o1 = R │ │ │ │ 0001e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e060: 2020 207c 0a7c 6f31 203d 2052 2020 2020 |.|o1 = R │ │ │ │ -0001e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e070: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0001e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e0c0: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +0001e0d0: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0001e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e0f0: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ -0001e100: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -0001e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e130: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001e180: 0a7c 6932 203a 2049 3d69 6465 616c 2852 .|i2 : I=ideal(R │ │ │ │ -0001e190: 5f30 2a52 5f31 2a52 5f33 2d52 5f30 5e32 _0*R_1*R_3-R_0^2 │ │ │ │ -0001e1a0: 2a52 5f33 2c72 616e 646f 6d28 7b30 2c31 *R_3,random({0,1 │ │ │ │ -0001e1b0: 7d2c 5229 2c72 616e 646f 6d28 7b31 2c32 },R),random({1,2 │ │ │ │ -0001e1c0: 7d2c 5229 293b 7c0a 7c20 2020 2020 2020 },R));|.| │ │ │ │ -0001e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e100: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001e150: 3220 3a20 493d 6964 6561 6c28 525f 302a 2 : I=ideal(R_0* │ │ │ │ +0001e160: 525f 312a 525f 332d 525f 305e 322a 525f R_1*R_3-R_0^2*R_ │ │ │ │ +0001e170: 332c 7261 6e64 6f6d 287b 302c 317d 2c52 3,random({0,1},R │ │ │ │ +0001e180: 292c 7261 6e64 6f6d 287b 312c 327d 2c52 ),random({1,2},R │ │ │ │ +0001e190: 2929 3b7c 0a7c 2020 2020 2020 2020 2020 ));|.| │ │ │ │ +0001e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e1d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +0001e1e0: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ 0001e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001e210: 6f32 203a 2049 6465 616c 206f 6620 5220 o2 : Ideal of R │ │ │ │ -0001e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e250: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -0001e2a0: 203a 2074 696d 6520 4353 4d28 492c 4d65 : time CSM(I,Me │ │ │ │ -0001e2b0: 7468 6f64 3d3e 4469 7265 6374 436f 6d70 thod=>DirectComp │ │ │ │ -0001e2c0: 6c65 7449 6e74 2920 2020 2020 2020 2020 letInt) │ │ │ │ -0001e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2e0: 2020 7c0a 7c20 2d2d 2075 7365 6420 322e |.| -- used 2. │ │ │ │ -0001e2f0: 3538 3339 3773 2028 6370 7529 3b20 312e 58397s (cpu); 1. │ │ │ │ -0001e300: 3132 3030 3373 2028 7468 7265 6164 293b 12003s (thread); │ │ │ │ -0001e310: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -0001e320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0001e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e220: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e260: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0001e270: 7469 6d65 2043 534d 2849 2c4d 6574 686f time CSM(I,Metho │ │ │ │ +0001e280: 643d 3e44 6972 6563 7443 6f6d 706c 6574 d=>DirectComplet │ │ │ │ +0001e290: 496e 7429 2020 2020 2020 2020 2020 2020 Int) │ │ │ │ +0001e2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e2b0: 0a7c 202d 2d20 7573 6564 2036 2e35 3433 .| -- used 6.543 │ │ │ │ +0001e2c0: 3837 7320 2863 7075 293b 2031 2e35 3734 87s (cpu); 1.574 │ │ │ │ +0001e2d0: 3333 7320 2874 6872 6561 6429 3b20 3073 33s (thread); 0s │ │ │ │ +0001e2e0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0001e2f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e330: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e340: 2020 2020 2020 2032 2032 2020 2020 2032 2 2 2 │ │ │ │ +0001e350: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0001e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e370: 7c0a 7c20 2020 2020 2020 3220 3220 2020 |.| 2 2 │ │ │ │ -0001e380: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0001e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e380: 2020 2020 7c0a 7c6f 3320 3d20 3268 2068 |.|o3 = 2h h │ │ │ │ +0001e390: 2020 2b20 3268 2068 2020 2b20 3568 2068 + 2h h + 5h h │ │ │ │ 0001e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3b0: 2020 2020 2020 207c 0a7c 6f33 203d 2032 |.|o3 = 2 │ │ │ │ -0001e3c0: 6820 6820 202b 2032 6820 6820 202b 2035 h h + 2h h + 5 │ │ │ │ -0001e3d0: 6820 6820 2020 2020 2020 2020 2020 2020 h h │ │ │ │ -0001e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e3f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e400: 7c20 2020 2020 2020 3120 3220 2020 2020 | 1 2 │ │ │ │ -0001e410: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ +0001e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e3c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e3d0: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +0001e3e0: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0001e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e450: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001e460: 205a 5a5b 6820 2e2e 6820 5d20 2020 2020 ZZ[h ..h ] │ │ │ │ 0001e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001e490: 2020 2020 5a5a 5b68 202e 2e68 205d 2020 ZZ[h ..h ] │ │ │ │ -0001e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4a0: 7c0a 7c20 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ +0001e4b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e4d0: 2020 207c 0a7c 2020 2020 2020 2020 2031 |.| 1 │ │ │ │ -0001e4e0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e4e0: 2020 2020 2020 207c 0a7c 6f33 203a 202d |.|o3 : - │ │ │ │ +0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 2020 --------- │ │ │ │ 0001e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e510: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0001e520: 3a20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 : ---------- │ │ │ │ -0001e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e530: 7c20 2020 2020 2020 2033 2020 2033 2020 | 3 3 │ │ │ │ 0001e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e560: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ -0001e570: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e570: 2020 2020 207c 0a7c 2020 2020 2020 2868 |.| (h │ │ │ │ +0001e580: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ 0001e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001e5b0: 2028 6820 2c20 6820 2920 2020 2020 2020 (h , h ) │ │ │ │ -0001e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001e5c0: 2020 2020 2020 2031 2020 2032 2020 2020 1 2 │ │ │ │ 0001e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001e5f0: 0a7c 2020 2020 2020 2020 3120 2020 3220 .| 1 2 │ │ │ │ -0001e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e630: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0001e680: 6934 203a 2074 696d 6520 4353 4d28 492c i4 : time CSM(I, │ │ │ │ -0001e690: 4d65 7468 6f64 3d3e 4469 7265 6374 436f Method=>DirectCo │ │ │ │ -0001e6a0: 6d70 6c65 7449 6e74 2c49 6e64 734f 6653 mpletInt,IndsOfS │ │ │ │ -0001e6b0: 6d6f 6f74 683d 3e7b 312c 327d 2920 2020 mooth=>{1,2}) │ │ │ │ -0001e6c0: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -0001e6d0: 322e 3733 3530 3573 2028 6370 7529 3b20 2.73505s (cpu); │ │ │ │ -0001e6e0: 312e 3234 3237 7320 2874 6872 6561 6429 1.2427s (thread) │ │ │ │ -0001e6f0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -0001e700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e600: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0001e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +0001e650: 3a20 7469 6d65 2043 534d 2849 2c4d 6574 : time CSM(I,Met │ │ │ │ +0001e660: 686f 643d 3e44 6972 6563 7443 6f6d 706c hod=>DirectCompl │ │ │ │ +0001e670: 6574 496e 742c 496e 6473 4f66 536d 6f6f etInt,IndsOfSmoo │ │ │ │ +0001e680: 7468 3d3e 7b31 2c32 7d29 2020 2020 2020 th=>{1,2}) │ │ │ │ +0001e690: 207c 0a7c 202d 2d20 7573 6564 2037 2e30 |.| -- used 7.0 │ │ │ │ +0001e6a0: 3935 3539 7320 2863 7075 293b 2031 2e35 9559s (cpu); 1.5 │ │ │ │ +0001e6b0: 3734 3336 7320 2874 6872 6561 6429 3b20 7436s (thread); │ │ │ │ +0001e6c0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +0001e6d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0001e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001e720: 0a7c 2020 2020 2020 2032 2032 2020 2020 .| 2 2 │ │ │ │ +0001e730: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ 0001e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e750: 2020 7c0a 7c20 2020 2020 2020 3220 3220 |.| 2 2 │ │ │ │ -0001e760: 2020 2020 3220 2020 2020 2020 2020 3220 2 2 │ │ │ │ -0001e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e790: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ -0001e7a0: 2032 6820 6820 202b 2032 6820 6820 202b 2h h + 2h h + │ │ │ │ -0001e7b0: 2035 6820 6820 2020 2020 2020 2020 2020 5h h │ │ │ │ -0001e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e760: 2020 2020 2020 7c0a 7c6f 3420 3d20 3268 |.|o4 = 2h │ │ │ │ +0001e770: 2068 2020 2b20 3268 2068 2020 2b20 3568 h + 2h h + 5h │ │ │ │ +0001e780: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001e7b0: 2020 2020 2020 2031 2032 2020 2020 2031 1 2 1 │ │ │ │ +0001e7c0: 2032 2020 2020 2031 2032 2020 2020 2020 2 1 2 │ │ │ │ 0001e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e7e0: 7c0a 7c20 2020 2020 2020 3120 3220 2020 |.| 1 2 │ │ │ │ -0001e7f0: 2020 3120 3220 2020 2020 3120 3220 2020 1 2 1 2 │ │ │ │ +0001e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e7f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0001e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001e840: 2020 205a 5a5b 6820 2e2e 6820 5d20 2020 ZZ[h ..h ] │ │ │ │ 0001e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001e870: 7c20 2020 2020 5a5a 5b68 202e 2e68 205d | ZZ[h ..h ] │ │ │ │ -0001e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e880: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0001e890: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001e8c0: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ -0001e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8c0: 2020 2020 2020 2020 207c 0a7c 6f34 203a |.|o4 : │ │ │ │ +0001e8d0: 202d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ---------- │ │ │ │ 0001e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e8f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001e900: 3420 3a20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 4 : ---------- │ │ │ │ -0001e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e910: 7c0a 7c20 2020 2020 2020 2033 2020 2033 |.| 3 3 │ │ │ │ 0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e940: 2020 207c 0a7c 2020 2020 2020 2020 3320 |.| 3 │ │ │ │ -0001e950: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0001e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001e960: 2868 202c 2068 2029 2020 2020 2020 2020 (h , h ) │ │ │ │ 0001e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001e990: 2020 2028 6820 2c20 6820 2920 2020 2020 (h , h ) │ │ │ │ -0001e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001e9a0: 7c20 2020 2020 2020 2031 2020 2032 2020 | 1 2 │ │ │ │ 0001e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e9d0: 207c 0a7c 2020 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -0001e9e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea10: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001ea60: 0a0a 4675 6e63 7469 6f6e 7320 7769 7468 ..Functions with │ │ │ │ -0001ea70: 206f 7074 696f 6e61 6c20 6172 6775 6d65 optional argume │ │ │ │ -0001ea80: 6e74 206e 616d 6564 2049 6e64 734f 6653 nt named IndsOfS │ │ │ │ -0001ea90: 6d6f 6f74 683a 0a3d 3d3d 3d3d 3d3d 3d3d mooth:.========= │ │ │ │ -0001eaa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001eab0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001eac0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0001ead0: 2022 4353 4d28 2e2e 2e2c 496e 6473 4f66 "CSM(...,IndsOf │ │ │ │ -0001eae0: 536d 6f6f 7468 3d3e 2e2e 2e29 2220 2d2d Smooth=>...)" -- │ │ │ │ -0001eaf0: 2073 6565 202a 6e6f 7465 2043 534d 3a20 see *note CSM: │ │ │ │ -0001eb00: 4353 4d2c 202d 2d20 5468 650a 2020 2020 CSM, -- The. │ │ │ │ -0001eb10: 4368 6572 6e2d 5363 6877 6172 747a 2d4d Chern-Schwartz-M │ │ │ │ -0001eb20: 6163 5068 6572 736f 6e20 636c 6173 730a acPherson class. │ │ │ │ -0001eb30: 2020 2a20 4575 6c65 7228 2e2e 2e2c 496e * Euler(...,In │ │ │ │ -0001eb40: 6473 4f66 536d 6f6f 7468 3d3e 2e2e 2e29 dsOfSmooth=>...) │ │ │ │ -0001eb50: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001eb60: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ -0001eb70: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001eb80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001eb90: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001eba0: 6520 496e 6473 4f66 536d 6f6f 7468 3a20 e IndsOfSmooth: │ │ │ │ -0001ebb0: 496e 6473 4f66 536d 6f6f 7468 2c20 6973 IndsOfSmooth, is │ │ │ │ -0001ebc0: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ -0001ebd0: 0a28 4d61 6361 756c 6179 3244 6f63 2953 .(Macaulay2Doc)S │ │ │ │ -0001ebe0: 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d ymbol,...------- │ │ │ │ +0001e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e9e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0001e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 ------------+..F │ │ │ │ +0001ea30: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +0001ea40: 7469 6f6e 616c 2061 7267 756d 656e 7420 tional argument │ │ │ │ +0001ea50: 6e61 6d65 6420 496e 6473 4f66 536d 6f6f named IndsOfSmoo │ │ │ │ +0001ea60: 7468 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d th:.============ │ │ │ │ +0001ea70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ea80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001ea90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 ========.. * "C │ │ │ │ +0001eaa0: 534d 282e 2e2e 2c49 6e64 734f 6653 6d6f SM(...,IndsOfSmo │ │ │ │ +0001eab0: 6f74 683d 3e2e 2e2e 2922 202d 2d20 7365 oth=>...)" -- se │ │ │ │ +0001eac0: 6520 2a6e 6f74 6520 4353 4d3a 2043 534d e *note CSM: CSM │ │ │ │ +0001ead0: 2c20 2d2d 2054 6865 0a20 2020 2043 6865 , -- The. Che │ │ │ │ +0001eae0: 726e 2d53 6368 7761 7274 7a2d 4d61 6350 rn-Schwartz-MacP │ │ │ │ +0001eaf0: 6865 7273 6f6e 2063 6c61 7373 0a20 202a herson class. * │ │ │ │ +0001eb00: 2045 756c 6572 282e 2e2e 2c49 6e64 734f Euler(...,IndsO │ │ │ │ +0001eb10: 6653 6d6f 6f74 683d 3e2e 2e2e 2920 286d fSmooth=>...) (m │ │ │ │ +0001eb20: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +0001eb30: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ +0001eb40: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0001eb50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0001eb60: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ +0001eb70: 6e64 734f 6653 6d6f 6f74 683a 2049 6e64 ndsOfSmooth: Ind │ │ │ │ +0001eb80: 734f 6653 6d6f 6f74 682c 2069 7320 6120 sOfSmooth, is a │ │ │ │ +0001eb90: 2a6e 6f74 6520 7379 6d62 6f6c 3a0a 284d *note symbol:.(M │ │ │ │ +0001eba0: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ +0001ebb0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ +0001ebc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ebd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ec30: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0001ec40: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0001ec50: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0001ec60: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0001ec70: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0001ec80: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0001ec90: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0001eca0: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ -0001ecb0: 6c61 7373 6573 2e6d 323a 3234 3832 3a30 lasses.m2:2482:0 │ │ │ │ -0001ecc0: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ -0001ecd0: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -0001ece0: 696e 666f 2c20 4e6f 6465 3a20 496e 7075 info, Node: Inpu │ │ │ │ -0001ecf0: 7449 7353 6d6f 6f74 682c 204e 6578 743a tIsSmooth, Next: │ │ │ │ -0001ed00: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -0001ed10: 6f75 732c 2050 7265 763a 2049 6e64 734f ous, Prev: IndsO │ │ │ │ -0001ed20: 6653 6d6f 6f74 682c 2055 703a 2054 6f70 fSmooth, Up: Top │ │ │ │ -0001ed30: 0a0a 496e 7075 7449 7353 6d6f 6f74 680a ..InputIsSmooth. │ │ │ │ -0001ed40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 *************..D │ │ │ │ -0001ed50: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -0001ed60: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f70 7469 ======..The opti │ │ │ │ -0001ed70: 6f6e 2049 6e70 7574 4973 536d 6f6f 7468 on InputIsSmooth │ │ │ │ -0001ed80: 2069 7320 6f6e 6c79 2075 7365 6420 6279 is only used by │ │ │ │ -0001ed90: 2074 6865 2063 6f6d 6d61 6e64 7320 2a6e the commands *n │ │ │ │ -0001eda0: 6f74 6520 4353 4d3a 2043 534d 2c2c 2061 ote CSM: CSM,, a │ │ │ │ -0001edb0: 6e64 0a2a 6e6f 7465 2045 756c 6572 3a20 nd.*note Euler: │ │ │ │ -0001edc0: 4575 6c65 722c 2e20 4966 2074 6865 2069 Euler,. If the i │ │ │ │ -0001edd0: 6e70 7574 2069 6465 616c 2069 7320 6b6e nput ideal is kn │ │ │ │ -0001ede0: 6f77 6e20 746f 2064 6566 696e 6520 6120 own to define a │ │ │ │ -0001edf0: 736d 6f6f 7468 2073 7562 7363 6865 6d65 smooth subscheme │ │ │ │ -0001ee00: 0a73 6574 7469 6e67 2074 6869 7320 6f70 .setting this op │ │ │ │ -0001ee10: 7469 6f6e 2074 6f20 7472 7565 2077 696c tion to true wil │ │ │ │ -0001ee20: 6c20 7370 6565 6420 7570 2063 6f6d 7075 l speed up compu │ │ │ │ -0001ee30: 7461 7469 6f6e 7320 2869 7420 6973 2073 tations (it is s │ │ │ │ -0001ee40: 6574 2074 6f20 6661 6c73 6520 6279 0a64 et to false by.d │ │ │ │ -0001ee50: 6566 6175 6c74 292e 0a0a 2b2d 2d2d 2d2d efault)...+----- │ │ │ │ -0001ee60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ee90: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 5a5a --+.|i1 : R = ZZ │ │ │ │ -0001eea0: 2f33 3237 3439 5b78 5f30 2e2e 785f 345d /32749[x_0..x_4] │ │ │ │ -0001eeb0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ -0001eec0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ef00: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 493d ------+.|i2 : I= │ │ │ │ -0001ef10: 6964 6561 6c28 7261 6e64 6f6d 2832 2c52 ideal(random(2,R │ │ │ │ -0001ef20: 292c 7261 6e64 6f6d 2832 2c52 292c 7261 ),random(2,R),ra │ │ │ │ -0001ef30: 6e64 6f6d 2831 2c52 2929 3b20 2020 2020 ndom(1,R)); │ │ │ │ -0001ef40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ec00: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +0001ec10: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +0001ec20: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +0001ec30: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +0001ec40: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +0001ec50: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +0001ec60: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ +0001ec70: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ +0001ec80: 7365 732e 6d32 3a32 3438 323a 302e 0a1f ses.m2:2482:0... │ │ │ │ +0001ec90: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ +0001eca0: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ +0001ecb0: 6f2c 204e 6f64 653a 2049 6e70 7574 4973 o, Node: InputIs │ │ │ │ +0001ecc0: 536d 6f6f 7468 2c20 4e65 7874 3a20 6973 Smooth, Next: is │ │ │ │ +0001ecd0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ +0001ece0: 2c20 5072 6576 3a20 496e 6473 4f66 536d , Prev: IndsOfSm │ │ │ │ +0001ecf0: 6f6f 7468 2c20 5570 3a20 546f 700a 0a49 ooth, Up: Top..I │ │ │ │ +0001ed00: 6e70 7574 4973 536d 6f6f 7468 0a2a 2a2a nputIsSmooth.*** │ │ │ │ +0001ed10: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 **********..Desc │ │ │ │ +0001ed20: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0001ed30: 3d3d 3d0a 0a54 6865 206f 7074 696f 6e20 ===..The option │ │ │ │ +0001ed40: 496e 7075 7449 7353 6d6f 6f74 6820 6973 InputIsSmooth is │ │ │ │ +0001ed50: 206f 6e6c 7920 7573 6564 2062 7920 7468 only used by th │ │ │ │ +0001ed60: 6520 636f 6d6d 616e 6473 202a 6e6f 7465 e commands *note │ │ │ │ +0001ed70: 2043 534d 3a20 4353 4d2c 2c20 616e 640a CSM: CSM,, and. │ │ │ │ +0001ed80: 2a6e 6f74 6520 4575 6c65 723a 2045 756c *note Euler: Eul │ │ │ │ +0001ed90: 6572 2c2e 2049 6620 7468 6520 696e 7075 er,. If the inpu │ │ │ │ +0001eda0: 7420 6964 6561 6c20 6973 206b 6e6f 776e t ideal is known │ │ │ │ +0001edb0: 2074 6f20 6465 6669 6e65 2061 2073 6d6f to define a smo │ │ │ │ +0001edc0: 6f74 6820 7375 6273 6368 656d 650a 7365 oth subscheme.se │ │ │ │ +0001edd0: 7474 696e 6720 7468 6973 206f 7074 696f tting this optio │ │ │ │ +0001ede0: 6e20 746f 2074 7275 6520 7769 6c6c 2073 n to true will s │ │ │ │ +0001edf0: 7065 6564 2075 7020 636f 6d70 7574 6174 peed up computat │ │ │ │ +0001ee00: 696f 6e73 2028 6974 2069 7320 7365 7420 ions (it is set │ │ │ │ +0001ee10: 746f 2066 616c 7365 2062 790a 6465 6661 to false by.defa │ │ │ │ +0001ee20: 756c 7429 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ult)...+-------- │ │ │ │ +0001ee30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ee40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001ee50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001ee60: 0a7c 6931 203a 2052 203d 205a 5a2f 3332 .|i1 : R = ZZ/32 │ │ │ │ +0001ee70: 3734 395b 785f 302e 2e78 5f34 5d3b 2020 749[x_0..x_4]; │ │ │ │ +0001ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ee90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001eed0: 2d2d 2d2b 0a7c 6932 203a 2049 3d69 6465 ---+.|i2 : I=ide │ │ │ │ +0001eee0: 616c 2872 616e 646f 6d28 322c 5229 2c72 al(random(2,R),r │ │ │ │ +0001eef0: 616e 646f 6d28 322c 5229 2c72 616e 646f andom(2,R),rando │ │ │ │ +0001ef00: 6d28 312c 5229 293b 2020 2020 207c 0a7c m(1,R)); |.| │ │ │ │ +0001ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef40: 2020 2020 2020 207c 0a7c 6f32 203a 2049 |.|o2 : I │ │ │ │ +0001ef50: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ 0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef70: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0001ef80: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ -0001ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001efb0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0001efc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001efe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0001eff0: 7c69 3320 3a20 7469 6d65 2043 534d 2049 |i3 : time CSM I │ │ │ │ -0001f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f020: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -0001f030: 7365 6420 302e 3835 3232 3433 7320 2863 sed 0.852243s (c │ │ │ │ -0001f040: 7075 293b 2030 2e34 3338 3333 3273 2028 pu); 0.438332s ( │ │ │ │ -0001f050: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ -0001f060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0001f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ef80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0001ef90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001efa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001efb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +0001efc0: 203a 2074 696d 6520 4353 4d20 4920 2020 : time CSM I │ │ │ │ +0001efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001eff0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +0001f000: 2031 2e30 3939 3138 7320 2863 7075 293b 1.09918s (cpu); │ │ │ │ +0001f010: 2030 2e35 3334 3834 3573 2028 7468 7265 0.534845s (thre │ │ │ │ +0001f020: 6164 293b 2030 7320 2867 6329 2020 207c ad); 0s (gc) | │ │ │ │ +0001f030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f070: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0001f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f0a0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0001f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f0a0: 2020 207c 0a7c 6f33 203d 2034 6820 2020 |.|o3 = 4h │ │ │ │ 0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0d0: 2020 2020 2020 7c0a 7c6f 3320 3d20 3468 |.|o3 = 4h │ │ │ │ -0001f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f0e0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ 0001f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f110: 7c0a 7c20 2020 2020 2020 3120 2020 2020 |.| 1 │ │ │ │ +0001f110: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0001f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f140: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f150: 207c 0a7c 2020 2020 205a 5a5b 6820 5d20 |.| ZZ[h ] │ │ │ │ 0001f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f180: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b68 |.| ZZ[h │ │ │ │ -0001f190: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0001f180: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f190: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ 0001f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f1c0: 7c20 2020 2020 2020 2020 3120 2020 2020 | 1 │ │ │ │ -0001f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f1c0: 2020 2020 207c 0a7c 6f33 203a 202d 2d2d |.|o3 : --- │ │ │ │ +0001f1d0: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ 0001f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f1f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -0001f200: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ +0001f1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f200: 0a7c 2020 2020 2020 2020 3520 2020 2020 .| 5 │ │ │ │ 0001f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f230: 2020 7c0a 7c20 2020 2020 2020 2035 2020 |.| 5 │ │ │ │ -0001f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f240: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ 0001f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f260: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f270: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ +0001f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f270: 2020 207c 0a7c 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ 0001f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f2b0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f2e0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f310: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0001f320: 3a20 7469 6d65 2043 534d 2849 2c49 6e70 : time CSM(I,Inp │ │ │ │ -0001f330: 7574 4973 536d 6f6f 7468 3d3e 7472 7565 utIsSmooth=>true │ │ │ │ -0001f340: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0001f350: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -0001f360: 302e 3039 3131 3232 3873 2028 6370 7529 0.0911228s (cpu) │ │ │ │ -0001f370: 3b20 302e 3033 3136 3439 3573 2028 7468 ; 0.0316495s (th │ │ │ │ -0001f380: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ -0001f390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0001f2a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0001f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f2e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ +0001f2f0: 696d 6520 4353 4d28 492c 496e 7075 7449 ime CSM(I,InputI │ │ │ │ +0001f300: 7353 6d6f 6f74 683d 3e74 7275 6529 2020 sSmooth=>true) │ │ │ │ +0001f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f320: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ +0001f330: 3836 3435 3837 7320 2863 7075 293b 2030 864587s (cpu); 0 │ │ │ │ +0001f340: 2e30 3437 3838 3635 7320 2874 6872 6561 .0478865s (threa │ │ │ │ +0001f350: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ +0001f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f390: 2020 2020 207c 0a7c 2020 2020 2020 2033 |.| 3 │ │ │ │ 0001f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f3c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f3d0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0001f3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f3d0: 0a7c 6f34 203d 2034 6820 2020 2020 2020 .|o4 = 4h │ │ │ │ 0001f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f400: 2020 7c0a 7c6f 3420 3d20 3468 2020 2020 |.|o4 = 4h │ │ │ │ -0001f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0001f410: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f440: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +0001f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f470: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0001f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0001f480: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ 0001f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4b0: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ -0001f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f4b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0001f4c0: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0001f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0001f4f0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +0001f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f4f0: 207c 0a7c 6f34 203a 202d 2d2d 2d2d 2d20 |.|o4 : ------ │ │ │ │ 0001f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f520: 2020 2020 7c0a 7c6f 3420 3a20 2d2d 2d2d |.|o4 : ---- │ │ │ │ -0001f530: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +0001f520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0001f530: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ 0001f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0001f560: 7c20 2020 2020 2020 2035 2020 2020 2020 | 5 │ │ │ │ +0001f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f560: 2020 2020 207c 0a7c 2020 2020 2020 2068 |.| h │ │ │ │ 0001f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f590: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0001f5a0: 2020 6820 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001f590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f5a0: 0a7c 2020 2020 2020 2020 3120 2020 2020 .| 1 │ │ │ │ 0001f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5d0: 2020 7c0a 7c20 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -0001f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f600: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ -0001f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f640: 2d2d 2d2d 2d2d 2b0a 0a4e 6f74 6520 7468 ------+..Note th │ │ │ │ -0001f650: 6174 206f 6e65 2063 6f75 6c64 2c20 6571 at one could, eq │ │ │ │ -0001f660: 7569 7661 6c65 6e74 6c79 2c20 7573 6520 uivalently, use │ │ │ │ -0001f670: 7468 6520 636f 6d6d 616e 6420 2a6e 6f74 the command *not │ │ │ │ -0001f680: 6520 4368 6572 6e3a 2043 6865 726e 2c20 e Chern: Chern, │ │ │ │ -0001f690: 696e 7374 6561 640a 696e 2074 6869 7320 instead.in this │ │ │ │ -0001f6a0: 6361 7365 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d case...+-------- │ │ │ │ -0001f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0001f6e0: 0a7c 6935 203a 2074 696d 6520 4368 6572 .|i5 : time Cher │ │ │ │ -0001f6f0: 6e20 4920 2020 2020 2020 2020 2020 2020 n I │ │ │ │ -0001f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f710: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0001f720: 7573 6564 2030 2e30 3735 3131 3431 7320 used 0.0751141s │ │ │ │ -0001f730: 2863 7075 293b 2030 2e30 3330 3936 3934 (cpu); 0.0309694 │ │ │ │ -0001f740: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -0001f750: 6763 297c 0a7c 2020 2020 2020 2020 2020 gc)|.| │ │ │ │ -0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f5d0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0001f5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f610: 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 7420 ---+..Note that │ │ │ │ +0001f620: 6f6e 6520 636f 756c 642c 2065 7175 6976 one could, equiv │ │ │ │ +0001f630: 616c 656e 746c 792c 2075 7365 2074 6865 alently, use the │ │ │ │ +0001f640: 2063 6f6d 6d61 6e64 202a 6e6f 7465 2043 command *note C │ │ │ │ +0001f650: 6865 726e 3a20 4368 6572 6e2c 2069 6e73 hern: Chern, ins │ │ │ │ +0001f660: 7465 6164 0a69 6e20 7468 6973 2063 6173 tead.in this cas │ │ │ │ +0001f670: 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d e...+----------- │ │ │ │ +0001f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0001f6b0: 3520 3a20 7469 6d65 2043 6865 726e 2049 5 : time Chern I │ │ │ │ +0001f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f6e0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +0001f6f0: 6420 302e 3036 3231 3432 3573 2028 6370 d 0.0621425s (cp │ │ │ │ +0001f700: 7529 3b20 302e 3034 3138 3637 3273 2028 u); 0.0418672s ( │ │ │ │ +0001f710: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +0001f720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0001f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f750: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f760: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f790: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f790: 2020 2020 7c0a 7c6f 3520 3d20 3468 2020 |.|o5 = 4h │ │ │ │ 0001f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7c0: 2020 2020 2020 207c 0a7c 6f35 203d 2034 |.|o5 = 4 │ │ │ │ -0001f7d0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0001f7c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f7d0: 7c20 2020 2020 2020 3120 2020 2020 2020 | 1 │ │ │ │ 0001f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f800: 207c 0a7c 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ +0001f800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ 0001f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0001f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f840: 2020 7c0a 7c20 2020 2020 5a5a 5b68 205d |.| ZZ[h ] │ │ │ │ 0001f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f870: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -0001f880: 6820 5d20 2020 2020 2020 2020 2020 2020 h ] │ │ │ │ +0001f870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f880: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ 0001f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0001f8b0: 0a7c 2020 2020 2020 2020 2031 2020 2020 .| 1 │ │ │ │ -0001f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8b0: 2020 2020 2020 7c0a 7c6f 3520 3a20 2d2d |.|o5 : -- │ │ │ │ +0001f8c0: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 0001f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f8e0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ -0001f8f0: 202d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------ │ │ │ │ +0001f8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f8f0: 7c0a 7c20 2020 2020 2020 2035 2020 2020 |.| 5 │ │ │ │ 0001f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f920: 2020 207c 0a7c 2020 2020 2020 2020 3520 |.| 5 │ │ │ │ -0001f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f920: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0001f930: 2020 2020 6820 2020 2020 2020 2020 2020 h │ │ │ │ 0001f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f950: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0001f960: 2020 2020 2020 2068 2020 2020 2020 2020 h │ │ │ │ +0001f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f960: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ 0001f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0001f9a0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ -0001f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4675 -----------+..Fu │ │ │ │ -0001fa10: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0001fa20: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ -0001fa30: 616d 6564 2049 6e70 7574 4973 536d 6f6f amed InputIsSmoo │ │ │ │ -0001fa40: 7468 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d th:.============ │ │ │ │ -0001fa50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0001fa70: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -0001fa80: 4353 4d28 2e2e 2e2c 496e 7075 7449 7353 CSM(...,InputIsS │ │ │ │ -0001fa90: 6d6f 6f74 683d 3e2e 2e2e 2922 202d 2d20 mooth=>...)" -- │ │ │ │ -0001faa0: 7365 6520 2a6e 6f74 6520 4353 4d3a 2043 see *note CSM: C │ │ │ │ -0001fab0: 534d 2c20 2d2d 2054 6865 0a20 2020 2043 SM, -- The. C │ │ │ │ -0001fac0: 6865 726e 2d53 6368 7761 7274 7a2d 4d61 hern-Schwartz-Ma │ │ │ │ -0001fad0: 6350 6865 7273 6f6e 2063 6c61 7373 0a20 cPherson class. │ │ │ │ -0001fae0: 202a 2045 756c 6572 282e 2e2e 2c49 6e70 * Euler(...,Inp │ │ │ │ -0001faf0: 7574 4973 536d 6f6f 7468 3d3e 2e2e 2e29 utIsSmooth=>...) │ │ │ │ -0001fb00: 2028 6d69 7373 696e 6720 646f 6375 6d65 (missing docume │ │ │ │ -0001fb10: 6e74 6174 696f 6e29 0a0a 466f 7220 7468 ntation)..For th │ │ │ │ -0001fb20: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ -0001fb30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0001fb40: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ -0001fb50: 6520 496e 7075 7449 7353 6d6f 6f74 683a e InputIsSmooth: │ │ │ │ -0001fb60: 2049 6e70 7574 4973 536d 6f6f 7468 2c20 InputIsSmooth, │ │ │ │ -0001fb70: 6973 2061 202a 6e6f 7465 2073 796d 626f is a *note symbo │ │ │ │ -0001fb80: 6c3a 0a28 4d61 6361 756c 6179 3244 6f63 l:.(Macaulay2Doc │ │ │ │ -0001fb90: 2953 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d )Symbol,...----- │ │ │ │ +0001f990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0001f9a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0001f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001f9d0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 756e 6374 --------+..Funct │ │ │ │ +0001f9e0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ +0001f9f0: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ +0001fa00: 6420 496e 7075 7449 7353 6d6f 6f74 683a d InputIsSmooth: │ │ │ │ +0001fa10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0001fa20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0001fa40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2243 534d ======.. * "CSM │ │ │ │ +0001fa50: 282e 2e2e 2c49 6e70 7574 4973 536d 6f6f (...,InputIsSmoo │ │ │ │ +0001fa60: 7468 3d3e 2e2e 2e29 2220 2d2d 2073 6565 th=>...)" -- see │ │ │ │ +0001fa70: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ +0001fa80: 202d 2d20 5468 650a 2020 2020 4368 6572 -- The. Cher │ │ │ │ +0001fa90: 6e2d 5363 6877 6172 747a 2d4d 6163 5068 n-Schwartz-MacPh │ │ │ │ +0001faa0: 6572 736f 6e20 636c 6173 730a 2020 2a20 erson class. * │ │ │ │ +0001fab0: 4575 6c65 7228 2e2e 2e2c 496e 7075 7449 Euler(...,InputI │ │ │ │ +0001fac0: 7353 6d6f 6f74 683d 3e2e 2e2e 2920 286d sSmooth=>...) (m │ │ │ │ +0001fad0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +0001fae0: 7469 6f6e 290a 0a46 6f72 2074 6865 2070 tion)..For the p │ │ │ │ +0001faf0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +0001fb00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +0001fb10: 6520 6f62 6a65 6374 202a 6e6f 7465 2049 e object *note I │ │ │ │ +0001fb20: 6e70 7574 4973 536d 6f6f 7468 3a20 496e nputIsSmooth: In │ │ │ │ +0001fb30: 7075 7449 7353 6d6f 6f74 682c 2069 7320 putIsSmooth, is │ │ │ │ +0001fb40: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a0a a *note symbol:. │ │ │ │ +0001fb50: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ +0001fb60: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ +0001fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0001fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -0001fbf0: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -0001fc00: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -0001fc10: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -0001fc20: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -0001fc30: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -0001fc40: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -0001fc50: 732f 0a43 6861 7261 6374 6572 6973 7469 s/.Characteristi │ │ │ │ -0001fc60: 6343 6c61 7373 6573 2e6d 323a 3235 3030 cClasses.m2:2500 │ │ │ │ -0001fc70: 3a30 2e0a 1f0a 4669 6c65 3a20 4368 6172 :0....File: Char │ │ │ │ -0001fc80: 6163 7465 7269 7374 6963 436c 6173 7365 acteristicClasse │ │ │ │ -0001fc90: 732e 696e 666f 2c20 4e6f 6465 3a20 6973 s.info, Node: is │ │ │ │ -0001fca0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -0001fcb0: 2c20 4e65 7874 3a20 4d65 7468 6f64 2c20 , Next: Method, │ │ │ │ -0001fcc0: 5072 6576 3a20 496e 7075 7449 7353 6d6f Prev: InputIsSmo │ │ │ │ -0001fcd0: 6f74 682c 2055 703a 2054 6f70 0a0a 6973 oth, Up: Top..is │ │ │ │ -0001fce0: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ -0001fcf0: 202d 2d20 4368 6563 6b73 2069 6620 616e -- Checks if an │ │ │ │ -0001fd00: 2069 6465 616c 2069 7320 686f 6d6f 6765 ideal is homoge │ │ │ │ -0001fd10: 6e65 6f75 7320 7769 7468 2072 6573 7065 neous with respe │ │ │ │ -0001fd20: 6374 2074 6f20 7468 6520 6772 6164 696e ct to the gradin │ │ │ │ -0001fd30: 6720 6f6e 2069 7473 2072 696e 6720 2869 g on its ring (i │ │ │ │ -0001fd40: 2e65 2e20 6d75 6c74 692d 686f 6d6f 6765 .e. multi-homoge │ │ │ │ -0001fd50: 6e65 6f75 7320 696e 2074 6865 206d 756c neous in the mul │ │ │ │ -0001fd60: 7469 2d67 7261 6465 6420 6361 7365 290a ti-graded case). │ │ │ │ +0001fbb0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0001fbc0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0001fbd0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0001fbe0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0001fbf0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0001fc00: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0001fc10: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ +0001fc20: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ +0001fc30: 6173 7365 732e 6d32 3a32 3530 303a 302e asses.m2:2500:0. │ │ │ │ +0001fc40: 0a1f 0a46 696c 653a 2043 6861 7261 6374 ...File: Charact │ │ │ │ +0001fc50: 6572 6973 7469 6343 6c61 7373 6573 2e69 eristicClasses.i │ │ │ │ +0001fc60: 6e66 6f2c 204e 6f64 653a 2069 734d 756c nfo, Node: isMul │ │ │ │ +0001fc70: 7469 486f 6d6f 6765 6e65 6f75 732c 204e tiHomogeneous, N │ │ │ │ +0001fc80: 6578 743a 204d 6574 686f 642c 2050 7265 ext: Method, Pre │ │ │ │ +0001fc90: 763a 2049 6e70 7574 4973 536d 6f6f 7468 v: InputIsSmooth │ │ │ │ +0001fca0: 2c20 5570 3a20 546f 700a 0a69 734d 756c , Up: Top..isMul │ │ │ │ +0001fcb0: 7469 486f 6d6f 6765 6e65 6f75 7320 2d2d tiHomogeneous -- │ │ │ │ +0001fcc0: 2043 6865 636b 7320 6966 2061 6e20 6964 Checks if an id │ │ │ │ +0001fcd0: 6561 6c20 6973 2068 6f6d 6f67 656e 656f eal is homogeneo │ │ │ │ +0001fce0: 7573 2077 6974 6820 7265 7370 6563 7420 us with respect │ │ │ │ +0001fcf0: 746f 2074 6865 2067 7261 6469 6e67 206f to the grading o │ │ │ │ +0001fd00: 6e20 6974 7320 7269 6e67 2028 692e 652e n its ring (i.e. │ │ │ │ +0001fd10: 206d 756c 7469 2d68 6f6d 6f67 656e 656f multi-homogeneo │ │ │ │ +0001fd20: 7573 2069 6e20 7468 6520 6d75 6c74 692d us in the multi- │ │ │ │ +0001fd30: 6772 6164 6564 2063 6173 6529 0a2a 2a2a graded case).*** │ │ │ │ +0001fd40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0001fd60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fd90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0001fdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fde0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fdf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0001fe00: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ -0001fe10: 2020 2020 2020 2069 734d 756c 7469 486f isMultiHo │ │ │ │ -0001fe20: 6d6f 6765 6e65 6f75 7320 490a 2020 2020 mogeneous I. │ │ │ │ -0001fe30: 2020 2020 6973 4d75 6c74 6948 6f6d 6f67 isMultiHomog │ │ │ │ -0001fe40: 656e 656f 7573 2066 0a20 202a 2049 6e70 eneous f. * Inp │ │ │ │ -0001fe50: 7574 733a 0a20 2020 2020 202a 2049 2c20 uts:. * I, │ │ │ │ -0001fe60: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ -0001fe70: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ -0001fe80: 6561 6c2c 2c20 616e 2069 6465 616c 2069 eal,, an ideal i │ │ │ │ -0001fe90: 6e20 6120 6772 6164 6564 206f 720a 2020 n a graded or. │ │ │ │ -0001fea0: 2020 2020 2020 6d75 6c74 692d 6772 6164 multi-grad │ │ │ │ -0001feb0: 6564 2072 696e 670a 2020 2020 2020 2a20 ed ring. * │ │ │ │ -0001fec0: 662c 2061 202a 6e6f 7465 2072 696e 6720 f, a *note ring │ │ │ │ -0001fed0: 656c 656d 656e 743a 2028 4d61 6361 756c element: (Macaul │ │ │ │ -0001fee0: 6179 3244 6f63 2952 696e 6745 6c65 6d65 ay2Doc)RingEleme │ │ │ │ -0001fef0: 6e74 2c2c 2061 2065 6c65 6d65 6e74 2069 nt,, a element i │ │ │ │ -0001ff00: 6e20 610a 2020 2020 2020 2020 6772 6164 n a. grad │ │ │ │ -0001ff10: 6564 206f 7220 6d75 6c74 692d 6772 6164 ed or multi-grad │ │ │ │ -0001ff20: 6564 2072 696e 670a 2020 2a20 4f75 7470 ed ring. * Outp │ │ │ │ -0001ff30: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -0001ff40: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -0001ff50: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ -0001ff60: 6329 426f 6f6c 6561 6e2c 2c20 0a0a 4465 c)Boolean,, ..De │ │ │ │ -0001ff70: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -0001ff80: 3d3d 3d3d 3d0a 0a54 6573 7473 2069 6620 =====..Tests if │ │ │ │ -0001ff90: 7468 6520 696e 7075 7420 4964 6561 6c20 the input Ideal │ │ │ │ -0001ffa0: 6f72 2052 696e 6745 6c65 6d65 6e74 2069 or RingElement i │ │ │ │ -0001ffb0: 7320 486f 6d6f 6765 6e65 6f75 7320 7769 s Homogeneous wi │ │ │ │ -0001ffc0: 7468 2072 6573 7065 6374 2074 6f20 7468 th respect to th │ │ │ │ -0001ffd0: 650a 6772 6164 696e 6720 6f6e 2074 6865 e.grading on the │ │ │ │ -0001ffe0: 2072 696e 672e 2048 6f6d 6f67 656e 656f ring. Homogeneo │ │ │ │ -0001fff0: 7573 2069 6e70 7574 2069 7320 7265 7175 us input is requ │ │ │ │ -00020000: 6972 6564 2066 6f72 2061 6c6c 206d 6574 ired for all met │ │ │ │ -00020010: 686f 6473 2074 6f20 636f 6d70 7574 650a hods to compute. │ │ │ │ -00020020: 6368 6172 6163 7465 7269 7374 6963 2063 characteristic c │ │ │ │ -00020030: 6c61 7373 6573 2e0a 0a54 6869 7320 6d65 lasses...This me │ │ │ │ -00020040: 7468 6f64 2077 6f72 6b73 2066 6f72 2069 thod works for i │ │ │ │ -00020050: 6465 616c 7320 696e 2074 6865 2067 7261 deals in the gra │ │ │ │ -00020060: 6465 6420 636f 6f72 6469 6e61 7465 2072 ded coordinate r │ │ │ │ -00020070: 696e 6773 206f 6620 746f 7269 6320 7661 ings of toric va │ │ │ │ -00020080: 7269 6574 6965 732c 0a61 6e64 2068 656e rieties,.and hen │ │ │ │ -00020090: 6365 2066 6f72 2070 726f 6475 6374 7320 ce for products │ │ │ │ -000200a0: 6f66 2070 726f 6a65 6374 6976 6520 7370 of projective sp │ │ │ │ -000200b0: 6163 6573 2e20 5468 6573 6520 6361 6e20 aces. These can │ │ │ │ -000200c0: 6265 2063 7265 6174 6564 2064 6972 6563 be created direc │ │ │ │ -000200d0: 746c 792c 206f 720a 7573 696e 6720 6d65 tly, or.using me │ │ │ │ -000200e0: 7468 6f64 7320 7468 6520 2a6e 6f74 6520 thods the *note │ │ │ │ -000200f0: 4d75 6c74 6950 726f 6a43 6f6f 7264 5269 MultiProjCoordRi │ │ │ │ -00020100: 6e67 3a20 4d75 6c74 6950 726f 6a43 6f6f ng: MultiProjCoo │ │ │ │ -00020110: 7264 5269 6e67 2c20 6d65 7468 6f64 206f rdRing, method o │ │ │ │ -00020120: 6620 7468 6973 0a70 6163 6b61 6765 2c20 f this.package, │ │ │ │ -00020130: 6f72 2077 6974 6820 6d65 7468 6f64 7320 or with methods │ │ │ │ -00020140: 6672 6f6d 2074 6865 204e 6f72 6d61 6c54 from the NormalT │ │ │ │ -00020150: 6f72 6963 5661 7269 6574 6965 7320 5061 oricVarieties Pa │ │ │ │ -00020160: 636b 6167 652e 0a0a 2b2d 2d2d 2d2d 2d2d ckage...+------- │ │ │ │ -00020170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000201a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -000201b0: 523d 4d75 6c74 6950 726f 6a43 6f6f 7264 R=MultiProjCoord │ │ │ │ -000201c0: 5269 6e67 287b 312c 322c 317d 2920 2020 Ring({1,2,1}) │ │ │ │ +0001fdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +0001fdd0: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +0001fde0: 2020 2020 6973 4d75 6c74 6948 6f6d 6f67 isMultiHomog │ │ │ │ +0001fdf0: 656e 656f 7573 2049 0a20 2020 2020 2020 eneous I. │ │ │ │ +0001fe00: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ +0001fe10: 6f75 7320 660a 2020 2a20 496e 7075 7473 ous f. * Inputs │ │ │ │ +0001fe20: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ +0001fe30: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ +0001fe40: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ +0001fe50: 2c2c 2061 6e20 6964 6561 6c20 696e 2061 ,, an ideal in a │ │ │ │ +0001fe60: 2067 7261 6465 6420 6f72 0a20 2020 2020 graded or. │ │ │ │ +0001fe70: 2020 206d 756c 7469 2d67 7261 6465 6420 multi-graded │ │ │ │ +0001fe80: 7269 6e67 0a20 2020 2020 202a 2066 2c20 ring. * f, │ │ │ │ +0001fe90: 6120 2a6e 6f74 6520 7269 6e67 2065 6c65 a *note ring ele │ │ │ │ +0001fea0: 6d65 6e74 3a20 284d 6163 6175 6c61 7932 ment: (Macaulay2 │ │ │ │ +0001feb0: 446f 6329 5269 6e67 456c 656d 656e 742c Doc)RingElement, │ │ │ │ +0001fec0: 2c20 6120 656c 656d 656e 7420 696e 2061 , a element in a │ │ │ │ +0001fed0: 0a20 2020 2020 2020 2067 7261 6465 6420 . graded │ │ │ │ +0001fee0: 6f72 206d 756c 7469 2d67 7261 6465 6420 or multi-graded │ │ │ │ +0001fef0: 7269 6e67 0a20 202a 204f 7574 7075 7473 ring. * Outputs │ │ │ │ +0001ff00: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ +0001ff10: 6520 426f 6f6c 6561 6e20 7661 6c75 653a e Boolean value: │ │ │ │ +0001ff20: 2028 4d61 6361 756c 6179 3244 6f63 2942 (Macaulay2Doc)B │ │ │ │ +0001ff30: 6f6f 6c65 616e 2c2c 200a 0a44 6573 6372 oolean,, ..Descr │ │ │ │ +0001ff40: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +0001ff50: 3d3d 0a0a 5465 7374 7320 6966 2074 6865 ==..Tests if the │ │ │ │ +0001ff60: 2069 6e70 7574 2049 6465 616c 206f 7220 input Ideal or │ │ │ │ +0001ff70: 5269 6e67 456c 656d 656e 7420 6973 2048 RingElement is H │ │ │ │ +0001ff80: 6f6d 6f67 656e 656f 7573 2077 6974 6820 omogeneous with │ │ │ │ +0001ff90: 7265 7370 6563 7420 746f 2074 6865 0a67 respect to the.g │ │ │ │ +0001ffa0: 7261 6469 6e67 206f 6e20 7468 6520 7269 rading on the ri │ │ │ │ +0001ffb0: 6e67 2e20 486f 6d6f 6765 6e65 6f75 7320 ng. Homogeneous │ │ │ │ +0001ffc0: 696e 7075 7420 6973 2072 6571 7569 7265 input is require │ │ │ │ +0001ffd0: 6420 666f 7220 616c 6c20 6d65 7468 6f64 d for all method │ │ │ │ +0001ffe0: 7320 746f 2063 6f6d 7075 7465 0a63 6861 s to compute.cha │ │ │ │ +0001fff0: 7261 6374 6572 6973 7469 6320 636c 6173 racteristic clas │ │ │ │ +00020000: 7365 732e 0a0a 5468 6973 206d 6574 686f ses...This metho │ │ │ │ +00020010: 6420 776f 726b 7320 666f 7220 6964 6561 d works for idea │ │ │ │ +00020020: 6c73 2069 6e20 7468 6520 6772 6164 6564 ls in the graded │ │ │ │ +00020030: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ +00020040: 7320 6f66 2074 6f72 6963 2076 6172 6965 s of toric varie │ │ │ │ +00020050: 7469 6573 2c0a 616e 6420 6865 6e63 6520 ties,.and hence │ │ │ │ +00020060: 666f 7220 7072 6f64 7563 7473 206f 6620 for products of │ │ │ │ +00020070: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ +00020080: 732e 2054 6865 7365 2063 616e 2062 6520 s. These can be │ │ │ │ +00020090: 6372 6561 7465 6420 6469 7265 6374 6c79 created directly │ │ │ │ +000200a0: 2c20 6f72 0a75 7369 6e67 206d 6574 686f , or.using metho │ │ │ │ +000200b0: 6473 2074 6865 202a 6e6f 7465 204d 756c ds the *note Mul │ │ │ │ +000200c0: 7469 5072 6f6a 436f 6f72 6452 696e 673a tiProjCoordRing: │ │ │ │ +000200d0: 204d 756c 7469 5072 6f6a 436f 6f72 6452 MultiProjCoordR │ │ │ │ +000200e0: 696e 672c 206d 6574 686f 6420 6f66 2074 ing, method of t │ │ │ │ +000200f0: 6869 730a 7061 636b 6167 652c 206f 7220 his.package, or │ │ │ │ +00020100: 7769 7468 206d 6574 686f 6473 2066 726f with methods fro │ │ │ │ +00020110: 6d20 7468 6520 4e6f 726d 616c 546f 7269 m the NormalTori │ │ │ │ +00020120: 6356 6172 6965 7469 6573 2050 6163 6b61 cVarieties Packa │ │ │ │ +00020130: 6765 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ge...+---------- │ │ │ │ +00020140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020170: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 3d4d -----+.|i1 : R=M │ │ │ │ +00020180: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00020190: 6728 7b31 2c32 2c31 7d29 2020 2020 2020 g({1,2,1}) │ │ │ │ +000201a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000201c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000201f0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +00020200: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 00020210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020220: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00020230: 3120 3d20 5220 2020 2020 2020 2020 2020 1 = R │ │ │ │ +00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020230: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00020240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020270: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00020280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020270: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00020280: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ +00020290: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ 000202a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202b0: 7c0a 7c6f 3120 3a20 506f 6c79 6e6f 6d69 |.|o1 : Polynomi │ │ │ │ -000202c0: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ -000202d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202f0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00020300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020330: 2d2d 2d2d 2b0a 7c69 3220 3a20 783d 6765 ----+.|i2 : x=ge │ │ │ │ -00020340: 6e73 2852 2920 2020 2020 2020 2020 2020 ns(R) │ │ │ │ +000202b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000202c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000202d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000202f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020300: 2d2b 0a7c 6932 203a 2078 3d67 656e 7328 -+.|i2 : x=gens( │ │ │ │ +00020310: 5229 2020 2020 2020 2020 2020 2020 2020 R) │ │ │ │ +00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203b0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -000203c0: 7b78 202c 2078 202c 2078 202c 2078 202c {x , x , x , x , │ │ │ │ -000203d0: 2078 202c 2078 202c 2078 207d 2020 2020 x , x , x } │ │ │ │ -000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020400: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ -00020410: 3320 2020 3420 2020 3520 2020 3620 2020 3 4 5 6 │ │ │ │ +00020370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020380: 2020 2020 207c 0a7c 6f32 203d 207b 7820 |.|o2 = {x │ │ │ │ +00020390: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +000203a0: 2c20 7820 2c20 7820 7d20 2020 2020 2020 , x , x } │ │ │ │ +000203b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000203c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000203d0: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ +000203e0: 2034 2020 2035 2020 2036 2020 2020 2020 4 5 6 │ │ │ │ +000203f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020400: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00020440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020440: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +00020450: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 00020460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020480: 7c6f 3220 3a20 4c69 7374 2020 2020 2020 |o2 : List │ │ │ │ -00020490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204c0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000204d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000204f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020500: 2d2d 2b0a 7c69 3320 3a20 493d 6964 6561 --+.|i3 : I=idea │ │ │ │ -00020510: 6c28 785f 305e 322a 785f 332d 785f 312a l(x_0^2*x_3-x_1* │ │ │ │ -00020520: 785f 302a 785f 342c 785f 365e 3329 2020 x_0*x_4,x_6^3) │ │ │ │ +00020470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020480: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00020490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000204a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000204b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000204c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000204d0: 0a7c 6933 203a 2049 3d69 6465 616c 2878 .|i3 : I=ideal(x │ │ │ │ +000204e0: 5f30 5e32 2a78 5f33 2d78 5f31 2a78 5f30 _0^2*x_3-x_1*x_0 │ │ │ │ +000204f0: 2a78 5f34 2c78 5f36 5e33 2920 2020 2020 *x_4,x_6^3) │ │ │ │ +00020500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020540: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00020550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020580: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00020590: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000205a0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -000205b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205c0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -000205d0: 6964 6561 6c20 2878 2078 2020 2d20 7820 ideal (x x - x │ │ │ │ -000205e0: 7820 7820 2c20 7820 2920 2020 2020 2020 x x , x ) │ │ │ │ -000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020600: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00020610: 2020 2020 2020 2020 2020 3020 3320 2020 0 3 │ │ │ │ -00020620: 2030 2031 2034 2020 2036 2020 2020 2020 0 1 4 6 │ │ │ │ +00020540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020550: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020560: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00020570: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00020580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020590: 2020 2020 207c 0a7c 6f33 203d 2069 6465 |.|o3 = ide │ │ │ │ +000205a0: 616c 2028 7820 7820 202d 2078 2078 2078 al (x x - x x x │ │ │ │ +000205b0: 202c 2078 2029 2020 2020 2020 2020 2020 , x ) │ │ │ │ +000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000205d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000205e0: 2020 2020 2020 2030 2033 2020 2020 3020 0 3 0 │ │ │ │ +000205f0: 3120 3420 2020 3620 2020 2020 2020 2020 1 4 6 │ │ │ │ +00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00020620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020650: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +00020660: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ 00020670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00020690: 7c6f 3320 3a20 4964 6561 6c20 6f66 2052 |o3 : Ideal of R │ │ │ │ -000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -000206e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000206f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020710: 2d2d 2b0a 7c69 3420 3a20 6973 4d75 6c74 --+.|i4 : isMult │ │ │ │ -00020720: 6948 6f6d 6f67 656e 656f 7573 2049 2020 iHomogeneous I │ │ │ │ +00020680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020690: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000206a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000206d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +000206e0: 0a7c 6934 203a 2069 734d 756c 7469 486f .|i4 : isMultiHo │ │ │ │ +000206f0: 6d6f 6765 6e65 6f75 7320 4920 2020 2020 mogeneous I │ │ │ │ +00020700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00020730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00020760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020760: 2020 207c 0a7c 6f34 203d 2074 7275 6520 |.|o4 = true │ │ │ │ 00020770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020790: 2020 2020 2020 7c0a 7c6f 3420 3d20 7472 |.|o4 = tr │ │ │ │ -000207a0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -000207b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207d0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -000207e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000207f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020810: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00020820: 3a20 6973 4d75 6c74 6948 6f6d 6f67 656e : isMultiHomogen │ │ │ │ -00020830: 656f 7573 2069 6465 616c 2878 5f30 2a78 eous ideal(x_0*x │ │ │ │ -00020840: 5f33 2d78 5f31 2a78 5f30 2a78 5f34 2c78 _3-x_1*x_0*x_4,x │ │ │ │ -00020850: 5f36 5e33 2920 2020 2020 2020 7c0a 7c49 _6^3) |.|I │ │ │ │ -00020860: 6e70 7574 2074 6572 6d20 6265 6c6f 7720 nput term below │ │ │ │ -00020870: 6973 206e 6f74 2068 6f6d 6f67 656e 656f is not homogeneo │ │ │ │ -00020880: 7573 2077 6974 6820 7265 7370 6563 7420 us with respect │ │ │ │ -00020890: 746f 2074 6865 2067 7261 6469 6e67 7c0a to the grading|. │ │ │ │ -000208a0: 7c2d 2078 2078 2078 2020 2b20 7820 7820 |- x x x + x x │ │ │ │ -000208b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000207a0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000207b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000207e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2069 -------+.|i5 : i │ │ │ │ +000207f0: 734d 756c 7469 486f 6d6f 6765 6e65 6f75 sMultiHomogeneou │ │ │ │ +00020800: 7320 6964 6561 6c28 785f 302a 785f 332d s ideal(x_0*x_3- │ │ │ │ +00020810: 785f 312a 785f 302a 785f 342c 785f 365e x_1*x_0*x_4,x_6^ │ │ │ │ +00020820: 3329 2020 2020 2020 207c 0a7c 496e 7075 3) |.|Inpu │ │ │ │ +00020830: 7420 7465 726d 2062 656c 6f77 2069 7320 t term below is │ │ │ │ +00020840: 6e6f 7420 686f 6d6f 6765 6e65 6f75 7320 not homogeneous │ │ │ │ +00020850: 7769 7468 2072 6573 7065 6374 2074 6f20 with respect to │ │ │ │ +00020860: 7468 6520 6772 6164 696e 677c 0a7c 2d20 the grading|.|- │ │ │ │ +00020870: 7820 7820 7820 202b 2078 2078 2020 2020 x x x + x x │ │ │ │ +00020880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000208b0: 2020 2030 2031 2034 2020 2020 3020 3320 0 1 4 0 3 │ │ │ │ 000208c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000208d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208e0: 7c0a 7c20 2020 3020 3120 3420 2020 2030 |.| 0 1 4 0 │ │ │ │ -000208f0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000208e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000208f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020930: 207c 0a7c 6f35 203d 2066 616c 7365 2020 |.|o5 = false │ │ │ │ 00020940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020960: 2020 2020 7c0a 7c6f 3520 3d20 6661 6c73 |.|o5 = fals │ │ │ │ -00020970: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ -000209b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000209e0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a4e 6f74 6520 --------+..Note │ │ │ │ -000209f0: 7468 6174 2066 6f72 2061 6e20 6964 6561 that for an idea │ │ │ │ -00020a00: 6c20 746f 2062 6520 6d75 6c74 692d 686f l to be multi-ho │ │ │ │ -00020a10: 6d6f 6765 6e65 6f75 7320 7468 6520 6465 mogeneous the de │ │ │ │ -00020a20: 6772 6565 2076 6563 746f 7220 6f66 2061 gree vector of a │ │ │ │ -00020a30: 6c6c 0a6d 6f6e 6f6d 6961 6c73 2069 6e20 ll.monomials in │ │ │ │ -00020a40: 6120 6769 7665 6e20 6765 6e65 7261 746f a given generato │ │ │ │ -00020a50: 7220 6d75 7374 2062 6520 7468 6520 7361 r must be the sa │ │ │ │ -00020a60: 6d65 2e0a 0a57 6179 7320 746f 2075 7365 me...Ways to use │ │ │ │ -00020a70: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ -00020a80: 6f75 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d ous:.=========== │ │ │ │ -00020a90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00020aa0: 3d3d 3d3d 0a0a 2020 2a20 2269 734d 756c ====.. * "isMul │ │ │ │ -00020ab0: 7469 486f 6d6f 6765 6e65 6f75 7328 4964 tiHomogeneous(Id │ │ │ │ -00020ac0: 6561 6c29 220a 2020 2a20 2269 734d 756c eal)". * "isMul │ │ │ │ -00020ad0: 7469 486f 6d6f 6765 6e65 6f75 7328 5269 tiHomogeneous(Ri │ │ │ │ -00020ae0: 6e67 456c 656d 656e 7429 220a 0a46 6f72 ngElement)"..For │ │ │ │ -00020af0: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00020b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00020b10: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00020b20: 6e6f 7465 2069 734d 756c 7469 486f 6d6f note isMultiHomo │ │ │ │ -00020b30: 6765 6e65 6f75 733a 2069 734d 756c 7469 geneous: isMulti │ │ │ │ -00020b40: 486f 6d6f 6765 6e65 6f75 732c 2069 7320 Homogeneous, is │ │ │ │ -00020b50: 6120 2a6e 6f74 6520 6d65 7468 6f64 0a66 a *note method.f │ │ │ │ -00020b60: 756e 6374 696f 6e3a 2028 4d61 6361 756c unction: (Macaul │ │ │ │ -00020b70: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ -00020b80: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ +00020960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020970: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00020980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000209a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000209b0: 2d2d 2d2d 2d2b 0a0a 4e6f 7465 2074 6861 -----+..Note tha │ │ │ │ +000209c0: 7420 666f 7220 616e 2069 6465 616c 2074 t for an ideal t │ │ │ │ +000209d0: 6f20 6265 206d 756c 7469 2d68 6f6d 6f67 o be multi-homog │ │ │ │ +000209e0: 656e 656f 7573 2074 6865 2064 6567 7265 eneous the degre │ │ │ │ +000209f0: 6520 7665 6374 6f72 206f 6620 616c 6c0a e vector of all. │ │ │ │ +00020a00: 6d6f 6e6f 6d69 616c 7320 696e 2061 2067 monomials in a g │ │ │ │ +00020a10: 6976 656e 2067 656e 6572 6174 6f72 206d iven generator m │ │ │ │ +00020a20: 7573 7420 6265 2074 6865 2073 616d 652e ust be the same. │ │ │ │ +00020a30: 0a0a 5761 7973 2074 6f20 7573 6520 6973 ..Ways to use is │ │ │ │ +00020a40: 4d75 6c74 6948 6f6d 6f67 656e 656f 7573 MultiHomogeneous │ │ │ │ +00020a50: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +00020a60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00020a70: 3d0a 0a20 202a 2022 6973 4d75 6c74 6948 =.. * "isMultiH │ │ │ │ +00020a80: 6f6d 6f67 656e 656f 7573 2849 6465 616c omogeneous(Ideal │ │ │ │ +00020a90: 2922 0a20 202a 2022 6973 4d75 6c74 6948 )". * "isMultiH │ │ │ │ +00020aa0: 6f6d 6f67 656e 656f 7573 2852 696e 6745 omogeneous(RingE │ │ │ │ +00020ab0: 6c65 6d65 6e74 2922 0a0a 466f 7220 7468 lement)"..For th │ │ │ │ +00020ac0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +00020ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00020ae0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +00020af0: 6520 6973 4d75 6c74 6948 6f6d 6f67 656e e isMultiHomogen │ │ │ │ +00020b00: 656f 7573 3a20 6973 4d75 6c74 6948 6f6d eous: isMultiHom │ │ │ │ +00020b10: 6f67 656e 656f 7573 2c20 6973 2061 202a ogeneous, is a * │ │ │ │ +00020b20: 6e6f 7465 206d 6574 686f 640a 6675 6e63 note method.func │ │ │ │ +00020b30: 7469 6f6e 3a20 284d 6163 6175 6c61 7932 tion: (Macaulay2 │ │ │ │ +00020b40: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00020b50: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +00020b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020bd0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00020be0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00020bf0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00020c00: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00020c10: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00020c20: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00020c30: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00020c40: 0a43 6861 7261 6374 6572 6973 7469 6343 .CharacteristicC │ │ │ │ -00020c50: 6c61 7373 6573 2e6d 323a 3230 3132 3a30 lasses.m2:2012:0 │ │ │ │ -00020c60: 2e0a 1f0a 4669 6c65 3a20 4368 6172 6163 ....File: Charac │ │ │ │ -00020c70: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -00020c80: 696e 666f 2c20 4e6f 6465 3a20 4d65 7468 info, Node: Meth │ │ │ │ -00020c90: 6f64 2c20 4e65 7874 3a20 4d75 6c74 6950 od, Next: MultiP │ │ │ │ -00020ca0: 726f 6a43 6f6f 7264 5269 6e67 2c20 5072 rojCoordRing, Pr │ │ │ │ -00020cb0: 6576 3a20 6973 4d75 6c74 6948 6f6d 6f67 ev: isMultiHomog │ │ │ │ -00020cc0: 656e 656f 7573 2c20 5570 3a20 546f 700a eneous, Up: Top. │ │ │ │ -00020cd0: 0a4d 6574 686f 640a 2a2a 2a2a 2a2a 0a0a .Method.******.. │ │ │ │ -00020ce0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -00020cf0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 7074 =======..The opt │ │ │ │ -00020d00: 696f 6e20 4d65 7468 6f64 2069 7320 6f6e ion Method is on │ │ │ │ -00020d10: 6c79 2075 7365 6420 6279 2074 6865 2063 ly used by the c │ │ │ │ -00020d20: 6f6d 6d61 6e64 7320 2a6e 6f74 6520 4353 ommands *note CS │ │ │ │ -00020d30: 4d3a 2043 534d 2c20 616e 6420 2a6e 6f74 M: CSM, and *not │ │ │ │ -00020d40: 6520 4575 6c65 723a 0a45 756c 6572 2c20 e Euler:.Euler, │ │ │ │ -00020d50: 616e 6420 6f6e 6c79 2069 6e20 636f 6d62 and only in comb │ │ │ │ -00020d60: 696e 6174 696f 6e20 7769 7468 202a 6e6f ination with *no │ │ │ │ -00020d70: 7465 2043 6f6d 704d 6574 686f 643a 0a43 te CompMethod:.C │ │ │ │ -00020d80: 6f6d 704d 6574 686f 642c 3d3e 5072 6f6a ompMethod,=>Proj │ │ │ │ -00020d90: 6563 7469 7665 4465 6772 6565 2e20 5468 ectiveDegree. Th │ │ │ │ -00020da0: 6520 4d65 7468 6f64 2049 6e63 6c75 7369 e Method Inclusi │ │ │ │ -00020db0: 6f6e 4578 636c 7573 696f 6e20 7769 6c6c onExclusion will │ │ │ │ -00020dc0: 2061 6c77 6179 7320 6265 0a75 7365 6420 always be.used │ │ │ │ -00020dd0: 7769 7468 202a 6e6f 7465 2043 6f6d 704d with *note CompM │ │ │ │ -00020de0: 6574 686f 643a 2043 6f6d 704d 6574 686f ethod: CompMetho │ │ │ │ -00020df0: 642c 2050 6e52 6573 6964 7561 6c20 6f72 d, PnResidual or │ │ │ │ -00020e00: 2062 6572 7469 6e69 2e20 5768 656e 2074 bertini. When t │ │ │ │ -00020e10: 6865 2069 6e70 7574 0a69 6465 616c 2069 he input.ideal i │ │ │ │ -00020e20: 7320 6120 636f 6d70 6c65 7465 2069 6e74 s a complete int │ │ │ │ -00020e30: 6572 7365 6374 696f 6e20 6f6e 6520 6d61 ersection one ma │ │ │ │ -00020e40: 792c 2070 6f74 656e 7469 616c 6c79 2c20 y, potentially, │ │ │ │ -00020e50: 7370 6565 6420 7570 2074 6865 2063 6f6d speed up the com │ │ │ │ -00020e60: 7075 7461 7469 6f6e 0a62 7920 7365 7474 putation.by sett │ │ │ │ -00020e70: 696e 6720 4d65 7468 6f64 3d3e 2044 6972 ing Method=> Dir │ │ │ │ -00020e80: 6563 7443 6f6d 706c 6574 6549 6e74 2e20 ectCompleteInt. │ │ │ │ -00020e90: 5468 6520 6f70 7469 6f6e 204d 6574 686f The option Metho │ │ │ │ -00020ea0: 6420 6973 206f 6e6c 7920 7573 6564 2062 d is only used b │ │ │ │ -00020eb0: 7920 7468 650a 636f 6d6d 616e 6473 202a y the.commands * │ │ │ │ -00020ec0: 6e6f 7465 2043 534d 3a20 4353 4d2c 2061 note CSM: CSM, a │ │ │ │ -00020ed0: 6e64 202a 6e6f 7465 2045 756c 6572 3a20 nd *note Euler: │ │ │ │ -00020ee0: 4575 6c65 722c 2061 6e64 206f 6e6c 7920 Euler, and only │ │ │ │ -00020ef0: 696e 2063 6f6d 6269 6e61 7469 6f6e 2077 in combination w │ │ │ │ -00020f00: 6974 680a 2a6e 6f74 6520 436f 6d70 4d65 ith.*note CompMe │ │ │ │ -00020f10: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ -00020f20: 2c3d 3e50 726f 6a65 6374 6976 6544 6567 ,=>ProjectiveDeg │ │ │ │ -00020f30: 7265 652e 2054 6865 204d 6574 686f 6420 ree. The Method │ │ │ │ -00020f40: 496e 636c 7573 696f 6e45 7863 6c75 7369 InclusionExclusi │ │ │ │ -00020f50: 6f6e 0a77 696c 6c20 616c 7761 7973 2062 on.will always b │ │ │ │ -00020f60: 6520 7573 6564 2077 6974 6820 2a6e 6f74 e used with *not │ │ │ │ -00020f70: 6520 436f 6d70 4d65 7468 6f64 3a20 436f e CompMethod: Co │ │ │ │ -00020f80: 6d70 4d65 7468 6f64 2c20 506e 5265 7369 mpMethod, PnResi │ │ │ │ -00020f90: 6475 616c 206f 7220 6265 7274 696e 692e dual or bertini. │ │ │ │ -00020fa0: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ -00020fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00020fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00020fe0: 203a 2052 203d 205a 5a2f 3332 3734 395b : R = ZZ/32749[ │ │ │ │ -00020ff0: 785f 302e 2e78 5f36 5d20 2020 2020 2020 x_0..x_6] │ │ │ │ +00020ba0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00020bb0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00020bc0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00020bd0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00020be0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00020bf0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00020c00: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ +00020c10: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ +00020c20: 7365 732e 6d32 3a32 3031 323a 302e 0a1f ses.m2:2012:0... │ │ │ │ +00020c30: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ +00020c40: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ +00020c50: 6f2c 204e 6f64 653a 204d 6574 686f 642c o, Node: Method, │ │ │ │ +00020c60: 204e 6578 743a 204d 756c 7469 5072 6f6a Next: MultiProj │ │ │ │ +00020c70: 436f 6f72 6452 696e 672c 2050 7265 763a CoordRing, Prev: │ │ │ │ +00020c80: 2069 734d 756c 7469 486f 6d6f 6765 6e65 isMultiHomogene │ │ │ │ +00020c90: 6f75 732c 2055 703a 2054 6f70 0a0a 4d65 ous, Up: Top..Me │ │ │ │ +00020ca0: 7468 6f64 0a2a 2a2a 2a2a 2a0a 0a44 6573 thod.******..Des │ │ │ │ +00020cb0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00020cc0: 3d3d 3d3d 0a0a 5468 6520 6f70 7469 6f6e ====..The option │ │ │ │ +00020cd0: 204d 6574 686f 6420 6973 206f 6e6c 7920 Method is only │ │ │ │ +00020ce0: 7573 6564 2062 7920 7468 6520 636f 6d6d used by the comm │ │ │ │ +00020cf0: 616e 6473 202a 6e6f 7465 2043 534d 3a20 ands *note CSM: │ │ │ │ +00020d00: 4353 4d2c 2061 6e64 202a 6e6f 7465 2045 CSM, and *note E │ │ │ │ +00020d10: 756c 6572 3a0a 4575 6c65 722c 2061 6e64 uler:.Euler, and │ │ │ │ +00020d20: 206f 6e6c 7920 696e 2063 6f6d 6269 6e61 only in combina │ │ │ │ +00020d30: 7469 6f6e 2077 6974 6820 2a6e 6f74 6520 tion with *note │ │ │ │ +00020d40: 436f 6d70 4d65 7468 6f64 3a0a 436f 6d70 CompMethod:.Comp │ │ │ │ +00020d50: 4d65 7468 6f64 2c3d 3e50 726f 6a65 6374 Method,=>Project │ │ │ │ +00020d60: 6976 6544 6567 7265 652e 2054 6865 204d iveDegree. The M │ │ │ │ +00020d70: 6574 686f 6420 496e 636c 7573 696f 6e45 ethod InclusionE │ │ │ │ +00020d80: 7863 6c75 7369 6f6e 2077 696c 6c20 616c xclusion will al │ │ │ │ +00020d90: 7761 7973 2062 650a 7573 6564 2077 6974 ways be.used wit │ │ │ │ +00020da0: 6820 2a6e 6f74 6520 436f 6d70 4d65 7468 h *note CompMeth │ │ │ │ +00020db0: 6f64 3a20 436f 6d70 4d65 7468 6f64 2c20 od: CompMethod, │ │ │ │ +00020dc0: 506e 5265 7369 6475 616c 206f 7220 6265 PnResidual or be │ │ │ │ +00020dd0: 7274 696e 692e 2057 6865 6e20 7468 6520 rtini. When the │ │ │ │ +00020de0: 696e 7075 740a 6964 6561 6c20 6973 2061 input.ideal is a │ │ │ │ +00020df0: 2063 6f6d 706c 6574 6520 696e 7465 7273 complete inters │ │ │ │ +00020e00: 6563 7469 6f6e 206f 6e65 206d 6179 2c20 ection one may, │ │ │ │ +00020e10: 706f 7465 6e74 6961 6c6c 792c 2073 7065 potentially, spe │ │ │ │ +00020e20: 6564 2075 7020 7468 6520 636f 6d70 7574 ed up the comput │ │ │ │ +00020e30: 6174 696f 6e0a 6279 2073 6574 7469 6e67 ation.by setting │ │ │ │ +00020e40: 204d 6574 686f 643d 3e20 4469 7265 6374 Method=> Direct │ │ │ │ +00020e50: 436f 6d70 6c65 7465 496e 742e 2054 6865 CompleteInt. The │ │ │ │ +00020e60: 206f 7074 696f 6e20 4d65 7468 6f64 2069 option Method i │ │ │ │ +00020e70: 7320 6f6e 6c79 2075 7365 6420 6279 2074 s only used by t │ │ │ │ +00020e80: 6865 0a63 6f6d 6d61 6e64 7320 2a6e 6f74 he.commands *not │ │ │ │ +00020e90: 6520 4353 4d3a 2043 534d 2c20 616e 6420 e CSM: CSM, and │ │ │ │ +00020ea0: 2a6e 6f74 6520 4575 6c65 723a 2045 756c *note Euler: Eul │ │ │ │ +00020eb0: 6572 2c20 616e 6420 6f6e 6c79 2069 6e20 er, and only in │ │ │ │ +00020ec0: 636f 6d62 696e 6174 696f 6e20 7769 7468 combination with │ │ │ │ +00020ed0: 0a2a 6e6f 7465 2043 6f6d 704d 6574 686f .*note CompMetho │ │ │ │ +00020ee0: 643a 2043 6f6d 704d 6574 686f 642c 3d3e d: CompMethod,=> │ │ │ │ +00020ef0: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ +00020f00: 2e20 5468 6520 4d65 7468 6f64 2049 6e63 . The Method Inc │ │ │ │ +00020f10: 6c75 7369 6f6e 4578 636c 7573 696f 6e0a lusionExclusion. │ │ │ │ +00020f20: 7769 6c6c 2061 6c77 6179 7320 6265 2075 will always be u │ │ │ │ +00020f30: 7365 6420 7769 7468 202a 6e6f 7465 2043 sed with *note C │ │ │ │ +00020f40: 6f6d 704d 6574 686f 643a 2043 6f6d 704d ompMethod: CompM │ │ │ │ +00020f50: 6574 686f 642c 2050 6e52 6573 6964 7561 ethod, PnResidua │ │ │ │ +00020f60: 6c20 6f72 2062 6572 7469 6e69 2e0a 0a2b l or bertini...+ │ │ │ │ +00020f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00020fa0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +00020fb0: 5220 3d20 5a5a 2f33 3237 3439 5b78 5f30 R = ZZ/32749[x_0 │ │ │ │ +00020fc0: 2e2e 785f 365d 2020 2020 2020 2020 2020 ..x_6] │ │ │ │ +00020fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020fe0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00020ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021010: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00021020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021020: 7c6f 3120 3d20 5220 2020 2020 2020 2020 |o1 = R │ │ │ │ 00021030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021050: 207c 0a7c 6f31 203d 2052 2020 2020 2020 |.|o1 = R │ │ │ │ +00021050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00021060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021080: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00021090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021090: 2020 2020 7c0a 7c6f 3120 3a20 506f 6c79 |.|o1 : Poly │ │ │ │ +000210a0: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ 000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ -000210d0: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ -000210e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021100: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00021110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00021140: 6932 203a 2049 3d69 6465 616c 2872 616e i2 : I=ideal(ran │ │ │ │ -00021150: 646f 6d28 322c 5229 2c72 616e 646f 6d28 dom(2,R),random( │ │ │ │ -00021160: 312c 5229 2c52 5f30 2a52 5f31 2a52 5f36 1,R),R_0*R_1*R_6 │ │ │ │ -00021170: 2d52 5f30 5e33 293b 7c0a 7c20 2020 2020 -R_0^3);|.| │ │ │ │ -00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000210c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000210d0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000210e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000210f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021100: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00021110: 3a20 493d 6964 6561 6c28 7261 6e64 6f6d : I=ideal(random │ │ │ │ +00021120: 2832 2c52 292c 7261 6e64 6f6d 2831 2c52 (2,R),random(1,R │ │ │ │ +00021130: 292c 525f 302a 525f 312a 525f 362d 525f ),R_0*R_1*R_6-R_ │ │ │ │ +00021140: 305e 3329 3b7c 0a7c 2020 2020 2020 2020 0^3);|.| │ │ │ │ +00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021180: 7c0a 7c6f 3220 3a20 4964 6561 6c20 6f66 |.|o2 : Ideal of │ │ │ │ +00021190: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 207c 0a7c 6f32 203a 2049 6465 616c |.|o2 : Ideal │ │ │ │ -000211c0: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ -000211d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000211f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -00021200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021220: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -00021230: 2074 696d 6520 4353 4d20 4920 2020 2020 time CSM I │ │ │ │ -00021240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021260: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00021270: 312e 3731 3030 3273 2028 6370 7529 3b20 1.71002s (cpu); │ │ │ │ -00021280: 302e 3938 3437 3132 7320 2874 6872 6561 0.984712s (threa │ │ │ │ -00021290: 6429 3b20 3073 2028 6763 2920 2020 207c d); 0s (gc) | │ │ │ │ -000212a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000212b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000211b0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000211c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000211f0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7469 ------+.|i3 : ti │ │ │ │ +00021200: 6d65 2043 534d 2049 2020 2020 2020 2020 me CSM I │ │ │ │ +00021210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021230: 207c 0a7c 202d 2d20 7573 6564 2034 2e30 |.| -- used 4.0 │ │ │ │ +00021240: 3833 3237 7320 2863 7075 293b 2031 2e33 8327s (cpu); 1.3 │ │ │ │ +00021250: 3738 3932 7320 2874 6872 6561 6429 3b20 7892s (thread); │ │ │ │ +00021260: 3073 2028 6763 2920 2020 2020 7c0a 7c20 0s (gc) |.| │ │ │ │ +00021270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000212b0: 2020 3520 2020 2020 2034 2020 2020 2033 5 4 3 │ │ │ │ 000212c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000212e0: 2020 2020 2035 2020 2020 2020 3420 2020 5 4 │ │ │ │ -000212f0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000212d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212e0: 2020 7c0a 7c6f 3320 3d20 3132 6820 202b |.|o3 = 12h + │ │ │ │ +000212f0: 2031 3068 2020 2b20 3668 2020 2020 2020 10h + 6h │ │ │ │ 00021300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021310: 2020 2020 207c 0a7c 6f33 203d 2031 3268 |.|o3 = 12h │ │ │ │ -00021320: 2020 2b20 3130 6820 202b 2036 6820 2020 + 10h + 6h │ │ │ │ -00021330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021310: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00021320: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ +00021330: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ 00021340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021350: 7c0a 7c20 2020 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ -00021360: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00021350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00021390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021390: 2020 207c 0a7c 2020 2020 205a 5a5b 6820 |.| ZZ[h │ │ │ │ +000213a0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 000213b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000213c0: 2020 2020 2020 7c0a 7c20 2020 2020 5a5a |.| ZZ │ │ │ │ -000213d0: 5b68 205d 2020 2020 2020 2020 2020 2020 [h ] │ │ │ │ +000213c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000213d0: 7c20 2020 2020 2020 2020 3120 2020 2020 | 1 │ │ │ │ 000213e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000213f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021400: 207c 0a7c 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -00021410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021400: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00021410: 202d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------ │ │ │ │ 00021420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021430: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00021440: 3320 3a20 2d2d 2d2d 2d2d 2020 2020 2020 3 : ------ │ │ │ │ +00021430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021440: 2020 2020 7c0a 7c20 2020 2020 2020 2037 |.| 7 │ │ │ │ 00021450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00021480: 2020 3720 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +00021470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021480: 0a7c 2020 2020 2020 2068 2020 2020 2020 .| h │ │ │ │ 00021490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214b0: 2020 7c0a 7c20 2020 2020 2020 6820 2020 |.| h │ │ │ │ -000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000214c0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ 000214d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000214f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00021500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021520: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ -00021530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021560: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ -00021570: 4353 4d28 492c 4d65 7468 6f64 3d3e 4469 CSM(I,Method=>Di │ │ │ │ -00021580: 7265 6374 436f 6d70 6c65 7465 496e 7429 rectCompleteInt) │ │ │ │ -00021590: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000215a0: 7c20 2d2d 2075 7365 6420 302e 3433 3836 | -- used 0.4386 │ │ │ │ -000215b0: 3032 7320 2863 7075 293b 2030 2e32 3039 02s (cpu); 0.209 │ │ │ │ -000215c0: 3233 3273 2028 7468 7265 6164 293b 2030 232s (thread); 0 │ │ │ │ -000215d0: 7320 2867 6329 2020 207c 0a7c 2020 2020 s (gc) |.| │ │ │ │ -000215e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000214f0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00021500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021530: 2b0a 7c69 3420 3a20 7469 6d65 2043 534d +.|i4 : time CSM │ │ │ │ +00021540: 2849 2c4d 6574 686f 643d 3e44 6972 6563 (I,Method=>Direc │ │ │ │ +00021550: 7443 6f6d 706c 6574 6549 6e74 2920 2020 tCompleteInt) │ │ │ │ +00021560: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +00021570: 2d20 7573 6564 2030 2e38 3633 3435 3673 - used 0.863456s │ │ │ │ +00021580: 2028 6370 7529 3b20 302e 3332 3733 3633 (cpu); 0.327363 │ │ │ │ +00021590: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000215a0: 6763 2920 2020 7c0a 7c20 2020 2020 2020 gc) |.| │ │ │ │ +000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000215e0: 207c 0a7c 2020 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ +000215f0: 2020 2034 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ 00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021610: 2020 2020 7c0a 7c20 2020 2020 2020 2035 |.| 5 │ │ │ │ -00021620: 2020 2020 2020 3420 2020 2020 3320 2020 4 3 │ │ │ │ -00021630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00021650: 0a7c 6f34 203d 2031 3268 2020 2b20 3130 .|o4 = 12h + 10 │ │ │ │ -00021660: 6820 202b 2036 6820 2020 2020 2020 2020 h + 6h │ │ │ │ +00021610: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00021620: 3420 3d20 3132 6820 202b 2031 3068 2020 4 = 12h + 10h │ │ │ │ +00021630: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ +00021640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00021660: 2020 3120 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ 00021670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021680: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00021690: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -000216a0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00021680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000216a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000216c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000216d0: 2020 2020 205a 5a5b 6820 5d20 2020 2020 ZZ[h ] │ │ │ │ 000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021700: 7c0a 7c20 2020 2020 5a5a 5b68 205d 2020 |.| ZZ[h ] │ │ │ │ -00021710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00021710: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021730: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00021740: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ -00021750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00021740: 2020 207c 0a7c 6f34 203a 202d 2d2d 2d2d |.|o4 : ----- │ │ │ │ +00021750: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ 00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021770: 2020 2020 2020 7c0a 7c6f 3420 3a20 2d2d |.|o4 : -- │ │ │ │ -00021780: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ +00021770: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00021780: 7c20 2020 2020 2020 2037 2020 2020 2020 | 7 │ │ │ │ 00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000217a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217b0: 207c 0a7c 2020 2020 2020 2020 3720 2020 |.| 7 │ │ │ │ -000217c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000217c0: 2020 2068 2020 2020 2020 2020 2020 2020 h │ │ │ │ 000217d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000217f0: 2020 2020 2020 6820 2020 2020 2020 2020 h │ │ │ │ +000217e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000217f0: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ 00021800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00021830: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00021840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021860: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00021870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -000218a0: 5768 656e 2075 7369 6e67 2074 6865 2044 When using the D │ │ │ │ -000218b0: 6972 6563 7443 6f6d 706c 6574 6549 6e74 irectCompleteInt │ │ │ │ -000218c0: 206d 6574 686f 6420 6f6e 6520 6d61 7920 method one may │ │ │ │ -000218d0: 706f 7465 6e74 6961 6c6c 7920 6675 7274 potentially furt │ │ │ │ -000218e0: 6865 7220 7370 6565 6420 7570 0a63 6f6d her speed up.com │ │ │ │ -000218f0: 7075 7461 7469 6f6e 2074 696d 6520 6279 putation time by │ │ │ │ -00021900: 2073 7065 6369 6679 696e 6720 7768 6174 specifying what │ │ │ │ -00021910: 2073 7562 7365 7420 6f66 2074 6865 2067 subset of the g │ │ │ │ -00021920: 656e 6572 6174 6f72 7320 6f66 2074 6865 enerators of the │ │ │ │ -00021930: 2069 6e70 7574 2069 6465 616c 0a64 6566 input ideal.def │ │ │ │ -00021940: 696e 6520 6120 736d 6f6f 7468 2073 7562 ine a smooth sub │ │ │ │ -00021950: 7363 6865 6d65 2028 6966 2074 6869 7320 scheme (if this │ │ │ │ -00021960: 6973 206b 6e6f 776e 292c 2073 6565 202a is known), see * │ │ │ │ -00021970: 6e6f 7465 2049 6e64 734f 6653 6d6f 6f74 note IndsOfSmoot │ │ │ │ -00021980: 683a 0a49 6e64 734f 6653 6d6f 6f74 682c h:.IndsOfSmooth, │ │ │ │ -00021990: 2e0a 0a46 756e 6374 696f 6e73 2077 6974 ...Functions wit │ │ │ │ -000219a0: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ -000219b0: 656e 7420 6e61 6d65 6420 4d65 7468 6f64 ent named Method │ │ │ │ -000219c0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -000219d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000219f0: 0a0a 2020 2a20 2243 534d 282e 2e2e 2c4d .. * "CSM(...,M │ │ │ │ -00021a00: 6574 686f 643d 3e2e 2e2e 2922 202d 2d20 ethod=>...)" -- │ │ │ │ -00021a10: 7365 6520 2a6e 6f74 6520 4353 4d3a 2043 see *note CSM: C │ │ │ │ -00021a20: 534d 2c20 2d2d 2054 6865 0a20 2020 2043 SM, -- The. C │ │ │ │ -00021a30: 6865 726e 2d53 6368 7761 7274 7a2d 4d61 hern-Schwartz-Ma │ │ │ │ -00021a40: 6350 6865 7273 6f6e 2063 6c61 7373 0a20 cPherson class. │ │ │ │ -00021a50: 202a 2045 756c 6572 282e 2e2e 2c4d 6574 * Euler(...,Met │ │ │ │ -00021a60: 686f 643d 3e2e 2e2e 2920 286d 6973 7369 hod=>...) (missi │ │ │ │ -00021a70: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ -00021a80: 290a 0a46 6f72 2074 6865 2070 726f 6772 )..For the progr │ │ │ │ -00021a90: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ -00021aa0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ -00021ab0: 6a65 6374 202a 6e6f 7465 204d 6574 686f ject *note Metho │ │ │ │ -00021ac0: 643a 204d 6574 686f 642c 2069 7320 6120 d: Method, is a │ │ │ │ -00021ad0: 2a6e 6f74 6520 7379 6d62 6f6c 3a20 284d *note symbol: (M │ │ │ │ -00021ae0: 6163 6175 6c61 7932 446f 6329 5379 6d62 acaulay2Doc)Symb │ │ │ │ -00021af0: 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ol,...---------- │ │ │ │ +00021820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021830: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00021840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021860: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6865 ----------+..Whe │ │ │ │ +00021870: 6e20 7573 696e 6720 7468 6520 4469 7265 n using the Dire │ │ │ │ +00021880: 6374 436f 6d70 6c65 7465 496e 7420 6d65 ctCompleteInt me │ │ │ │ +00021890: 7468 6f64 206f 6e65 206d 6179 2070 6f74 thod one may pot │ │ │ │ +000218a0: 656e 7469 616c 6c79 2066 7572 7468 6572 entially further │ │ │ │ +000218b0: 2073 7065 6564 2075 700a 636f 6d70 7574 speed up.comput │ │ │ │ +000218c0: 6174 696f 6e20 7469 6d65 2062 7920 7370 ation time by sp │ │ │ │ +000218d0: 6563 6966 7969 6e67 2077 6861 7420 7375 ecifying what su │ │ │ │ +000218e0: 6273 6574 206f 6620 7468 6520 6765 6e65 bset of the gene │ │ │ │ +000218f0: 7261 746f 7273 206f 6620 7468 6520 696e rators of the in │ │ │ │ +00021900: 7075 7420 6964 6561 6c0a 6465 6669 6e65 put ideal.define │ │ │ │ +00021910: 2061 2073 6d6f 6f74 6820 7375 6273 6368 a smooth subsch │ │ │ │ +00021920: 656d 6520 2869 6620 7468 6973 2069 7320 eme (if this is │ │ │ │ +00021930: 6b6e 6f77 6e29 2c20 7365 6520 2a6e 6f74 known), see *not │ │ │ │ +00021940: 6520 496e 6473 4f66 536d 6f6f 7468 3a0a e IndsOfSmooth:. │ │ │ │ +00021950: 496e 6473 4f66 536d 6f6f 7468 2c2e 0a0a IndsOfSmooth,... │ │ │ │ +00021960: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ +00021970: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ +00021980: 206e 616d 6564 204d 6574 686f 643a 0a3d named Method:.= │ │ │ │ +00021990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000219a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000219b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +000219c0: 202a 2022 4353 4d28 2e2e 2e2c 4d65 7468 * "CSM(...,Meth │ │ │ │ +000219d0: 6f64 3d3e 2e2e 2e29 2220 2d2d 2073 6565 od=>...)" -- see │ │ │ │ +000219e0: 202a 6e6f 7465 2043 534d 3a20 4353 4d2c *note CSM: CSM, │ │ │ │ +000219f0: 202d 2d20 5468 650a 2020 2020 4368 6572 -- The. Cher │ │ │ │ +00021a00: 6e2d 5363 6877 6172 747a 2d4d 6163 5068 n-Schwartz-MacPh │ │ │ │ +00021a10: 6572 736f 6e20 636c 6173 730a 2020 2a20 erson class. * │ │ │ │ +00021a20: 4575 6c65 7228 2e2e 2e2c 4d65 7468 6f64 Euler(...,Method │ │ │ │ +00021a30: 3d3e 2e2e 2e29 2028 6d69 7373 696e 6720 =>...) (missing │ │ │ │ +00021a40: 646f 6375 6d65 6e74 6174 696f 6e29 0a0a documentation).. │ │ │ │ +00021a50: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ +00021a60: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ +00021a70: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ +00021a80: 7420 2a6e 6f74 6520 4d65 7468 6f64 3a20 t *note Method: │ │ │ │ +00021a90: 4d65 7468 6f64 2c20 6973 2061 202a 6e6f Method, is a *no │ │ │ │ +00021aa0: 7465 2073 796d 626f 6c3a 2028 4d61 6361 te symbol: (Maca │ │ │ │ +00021ab0: 756c 6179 3244 6f63 2953 796d 626f 6c2c ulay2Doc)Symbol, │ │ │ │ +00021ac0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +00021ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00021af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021b40: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -00021b50: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -00021b60: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -00021b70: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -00021b80: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -00021b90: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00021ba0: 6179 322f 7061 636b 6167 6573 2f0a 4368 ay2/packages/.Ch │ │ │ │ -00021bb0: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -00021bc0: 7365 732e 6d32 3a32 3433 323a 302e 0a1f ses.m2:2432:0... │ │ │ │ -00021bd0: 0a46 696c 653a 2043 6861 7261 6374 6572 .File: Character │ │ │ │ -00021be0: 6973 7469 6343 6c61 7373 6573 2e69 6e66 isticClasses.inf │ │ │ │ -00021bf0: 6f2c 204e 6f64 653a 204d 756c 7469 5072 o, Node: MultiPr │ │ │ │ -00021c00: 6f6a 436f 6f72 6452 696e 672c 204e 6578 ojCoordRing, Nex │ │ │ │ -00021c10: 743a 204f 7574 7075 742c 2050 7265 763a t: Output, Prev: │ │ │ │ -00021c20: 204d 6574 686f 642c 2055 703a 2054 6f70 Method, Up: Top │ │ │ │ -00021c30: 0a0a 4d75 6c74 6950 726f 6a43 6f6f 7264 ..MultiProjCoord │ │ │ │ -00021c40: 5269 6e67 202d 2d20 4120 7175 6963 6b20 Ring -- A quick │ │ │ │ -00021c50: 7761 7920 746f 2062 7569 6c64 2074 6865 way to build the │ │ │ │ -00021c60: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ -00021c70: 206f 6620 6120 7072 6f64 7563 7420 6f66 of a product of │ │ │ │ -00021c80: 2070 726f 6a65 6374 6976 6520 7370 6163 projective spac │ │ │ │ -00021c90: 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a es.************* │ │ │ │ +00021b10: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00021b20: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00021b30: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00021b40: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00021b50: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00021b60: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00021b70: 2f70 6163 6b61 6765 732f 0a43 6861 7261 /packages/.Chara │ │ │ │ +00021b80: 6374 6572 6973 7469 6343 6c61 7373 6573 cteristicClasses │ │ │ │ +00021b90: 2e6d 323a 3234 3332 3a30 2e0a 1f0a 4669 .m2:2432:0....Fi │ │ │ │ +00021ba0: 6c65 3a20 4368 6172 6163 7465 7269 7374 le: Characterist │ │ │ │ +00021bb0: 6963 436c 6173 7365 732e 696e 666f 2c20 icClasses.info, │ │ │ │ +00021bc0: 4e6f 6465 3a20 4d75 6c74 6950 726f 6a43 Node: MultiProjC │ │ │ │ +00021bd0: 6f6f 7264 5269 6e67 2c20 4e65 7874 3a20 oordRing, Next: │ │ │ │ +00021be0: 4f75 7470 7574 2c20 5072 6576 3a20 4d65 Output, Prev: Me │ │ │ │ +00021bf0: 7468 6f64 2c20 5570 3a20 546f 700a 0a4d thod, Up: Top..M │ │ │ │ +00021c00: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00021c10: 6720 2d2d 2041 2071 7569 636b 2077 6179 g -- A quick way │ │ │ │ +00021c20: 2074 6f20 6275 696c 6420 7468 6520 636f to build the co │ │ │ │ +00021c30: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ +00021c40: 2061 2070 726f 6475 6374 206f 6620 7072 a product of pr │ │ │ │ +00021c50: 6f6a 6563 7469 7665 2073 7061 6365 730a ojective spaces. │ │ │ │ +00021c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00021c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00021cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00021cf0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00021d00: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -00021d10: 6f6a 436f 6f72 6452 696e 6720 4469 6d73 ojCoordRing Dims │ │ │ │ -00021d20: 0a20 2020 2020 2020 204d 756c 7469 5072 . MultiPr │ │ │ │ -00021d30: 6f6a 436f 6f72 6452 696e 6720 2843 6f65 ojCoordRing (Coe │ │ │ │ -00021d40: 6666 5269 6e67 2c44 696d 7329 0a20 2020 ffRing,Dims). │ │ │ │ -00021d50: 2020 2020 204d 756c 7469 5072 6f6a 436f MultiProjCo │ │ │ │ -00021d60: 6f72 6452 696e 6720 2876 6172 2c44 696d ordRing (var,Dim │ │ │ │ -00021d70: 7329 0a20 2020 2020 2020 204d 756c 7469 s). Multi │ │ │ │ -00021d80: 5072 6f6a 436f 6f72 6452 696e 6720 2843 ProjCoordRing (C │ │ │ │ -00021d90: 6f65 6666 5269 6e67 2c76 6172 2c44 696d oeffRing,var,Dim │ │ │ │ -00021da0: 7329 0a20 202a 2049 6e70 7574 733a 0a20 s). * Inputs:. │ │ │ │ -00021db0: 2020 2020 202a 2044 696d 732c 2061 202a * Dims, a * │ │ │ │ -00021dc0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00021dd0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00021de0: 7265 7072 6573 656e 7469 6e67 2074 6865 representing the │ │ │ │ -00021df0: 2064 696d 656e 7369 6f6e 7320 6f66 0a20 dimensions of. │ │ │ │ -00021e00: 2020 2020 2020 2074 6865 2070 726f 6a65 the proje │ │ │ │ -00021e10: 6374 6976 6520 7370 6163 6573 2c20 692e ctive spaces, i. │ │ │ │ -00021e20: 652e 207b 6e5f 312c 2e2e 2e2c 6e5f 6d7d e. {n_1,...,n_m} │ │ │ │ -00021e30: 2063 6f72 7265 7370 6f6e 6473 2074 6f20 corresponds to │ │ │ │ -00021e40: 5c50 505e 7b6e 5f31 7d0a 2020 2020 2020 \PP^{n_1}. │ │ │ │ -00021e50: 2020 782e 2e2e 2e20 7820 5c50 505e 7b6e x.... x \PP^{n │ │ │ │ -00021e60: 5f6d 7d0a 2020 2020 2020 2a20 436f 6566 _m}. * Coef │ │ │ │ -00021e70: 6652 696e 672c 2061 202a 6e6f 7465 2072 fRing, a *note r │ │ │ │ -00021e80: 696e 673a 2028 4d61 6361 756c 6179 3244 ing: (Macaulay2D │ │ │ │ -00021e90: 6f63 2952 696e 672c 2c20 7468 6520 636f oc)Ring,, the co │ │ │ │ -00021ea0: 6566 6669 6369 656e 7420 7269 6e67 206f efficient ring o │ │ │ │ -00021eb0: 660a 2020 2020 2020 2020 7468 6520 6772 f. the gr │ │ │ │ -00021ec0: 6164 6564 2070 6f6c 796e 6f6d 6961 6c20 aded polynomial │ │ │ │ -00021ed0: 7269 6e67 2074 6f20 6265 2062 7569 6c74 ring to be built │ │ │ │ -00021ee0: 2062 7920 7468 6520 6d65 7468 6f64 2c20 by the method, │ │ │ │ -00021ef0: 6279 2064 6566 6175 6c74 2074 6869 730a by default this. │ │ │ │ -00021f00: 2020 2020 2020 2020 6973 205c 5a5a 2f33 is \ZZ/3 │ │ │ │ -00021f10: 3237 3439 0a20 2020 2020 202a 2076 6172 2749. * var │ │ │ │ -00021f20: 2c20 6120 2a6e 6f74 6520 7379 6d62 6f6c , a *note symbol │ │ │ │ -00021f30: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00021f40: 5379 6d62 6f6c 2c2c 2074 6f20 6265 2075 Symbol,, to be u │ │ │ │ -00021f50: 7365 6420 666f 7220 7468 650a 2020 2020 sed for the. │ │ │ │ -00021f60: 2020 2020 696e 7465 726d 6564 6961 7465 intermediate │ │ │ │ -00021f70: 7320 6f66 2074 6865 2067 7261 6465 6420 s of the graded │ │ │ │ -00021f80: 706f 6c79 6e6f 6d69 616c 2072 696e 6720 polynomial ring │ │ │ │ -00021f90: 746f 2062 6520 6275 696c 7420 6279 2074 to be built by t │ │ │ │ -00021fa0: 6865 206d 6574 686f 640a 2020 2a20 4f75 he method. * Ou │ │ │ │ -00021fb0: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ -00021fc0: 202a 6e6f 7465 2072 696e 673a 2028 4d61 *note ring: (Ma │ │ │ │ -00021fd0: 6361 756c 6179 3244 6f63 2952 696e 672c caulay2Doc)Ring, │ │ │ │ -00021fe0: 2c20 7468 6520 6772 6164 6564 2063 6f6f , the graded coo │ │ │ │ -00021ff0: 7264 696e 6174 6520 7269 6e67 206f 6620 rdinate ring of │ │ │ │ -00022000: 7468 650a 2020 2020 2020 2020 5c50 505e the. \PP^ │ │ │ │ -00022010: 7b6e 5f31 7d20 782e 2e2e 2e20 7820 5c50 {n_1} x.... x \P │ │ │ │ -00022020: 505e 7b6e 5f6d 7d20 7768 6572 6520 7b6e P^{n_m} where {n │ │ │ │ -00022030: 5f31 2c2e 2e2e 2c6e 5f6d 7d20 6973 2074 _1,...,n_m} is t │ │ │ │ -00022040: 6865 2069 6e70 7574 206c 6973 7420 6f66 he input list of │ │ │ │ -00022050: 0a20 2020 2020 2020 2064 696d 656e 7369 . dimensi │ │ │ │ -00022060: 6f6e 730a 0a44 6573 6372 6970 7469 6f6e ons..Description │ │ │ │ -00022070: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 436f .===========..Co │ │ │ │ -00022080: 6d70 7574 6573 2074 6865 2067 7261 6465 mputes the grade │ │ │ │ -00022090: 6420 636f 6f72 6469 6e61 7465 2072 696e d coordinate rin │ │ │ │ -000220a0: 6720 6f66 2074 6865 205c 5050 5e7b 6e5f g of the \PP^{n_ │ │ │ │ -000220b0: 317d 2078 2e2e 2e2e 2078 205c 5050 5e7b 1} x.... x \PP^{ │ │ │ │ -000220c0: 6e5f 6d7d 2077 6865 7265 0a7b 6e5f 312c n_m} where.{n_1, │ │ │ │ -000220d0: 2e2e 2e2c 6e5f 6d7d 2069 7320 7468 6520 ...,n_m} is the │ │ │ │ -000220e0: 696e 7075 7420 6c69 7374 206f 6620 6469 input list of di │ │ │ │ -000220f0: 6d65 6e73 696f 6e73 2e20 5468 6973 206d mensions. This m │ │ │ │ -00022100: 6574 686f 6420 6973 2075 7365 6420 746f ethod is used to │ │ │ │ -00022110: 2071 7569 636b 6c79 0a62 7569 6c64 2074 quickly.build t │ │ │ │ -00022120: 6865 2063 6f6f 7264 696e 6174 6520 7269 he coordinate ri │ │ │ │ -00022130: 6e67 206f 6620 6120 7072 6f64 7563 7420 ng of a product │ │ │ │ -00022140: 6f66 2070 726f 6a65 6374 6976 6520 7370 of projective sp │ │ │ │ -00022150: 6163 6573 2066 6f72 2075 7365 2069 6e0a aces for use in. │ │ │ │ -00022160: 636f 6d70 7574 6174 696f 6e73 2e0a 0a2b computations...+ │ │ │ │ +00021cc0: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ +00021cd0: 2020 2020 2020 4d75 6c74 6950 726f 6a43 MultiProjC │ │ │ │ +00021ce0: 6f6f 7264 5269 6e67 2044 696d 730a 2020 oordRing Dims. │ │ │ │ +00021cf0: 2020 2020 2020 4d75 6c74 6950 726f 6a43 MultiProjC │ │ │ │ +00021d00: 6f6f 7264 5269 6e67 2028 436f 6566 6652 oordRing (CoeffR │ │ │ │ +00021d10: 696e 672c 4469 6d73 290a 2020 2020 2020 ing,Dims). │ │ │ │ +00021d20: 2020 4d75 6c74 6950 726f 6a43 6f6f 7264 MultiProjCoord │ │ │ │ +00021d30: 5269 6e67 2028 7661 722c 4469 6d73 290a Ring (var,Dims). │ │ │ │ +00021d40: 2020 2020 2020 2020 4d75 6c74 6950 726f MultiPro │ │ │ │ +00021d50: 6a43 6f6f 7264 5269 6e67 2028 436f 6566 jCoordRing (Coef │ │ │ │ +00021d60: 6652 696e 672c 7661 722c 4469 6d73 290a fRing,var,Dims). │ │ │ │ +00021d70: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00021d80: 2020 2a20 4469 6d73 2c20 6120 2a6e 6f74 * Dims, a *not │ │ │ │ +00021d90: 6520 6c69 7374 3a20 284d 6163 6175 6c61 e list: (Macaula │ │ │ │ +00021da0: 7932 446f 6329 4c69 7374 2c2c 2072 6570 y2Doc)List,, rep │ │ │ │ +00021db0: 7265 7365 6e74 696e 6720 7468 6520 6469 resenting the di │ │ │ │ +00021dc0: 6d65 6e73 696f 6e73 206f 660a 2020 2020 mensions of. │ │ │ │ +00021dd0: 2020 2020 7468 6520 7072 6f6a 6563 7469 the projecti │ │ │ │ +00021de0: 7665 2073 7061 6365 732c 2069 2e65 2e20 ve spaces, i.e. │ │ │ │ +00021df0: 7b6e 5f31 2c2e 2e2e 2c6e 5f6d 7d20 636f {n_1,...,n_m} co │ │ │ │ +00021e00: 7272 6573 706f 6e64 7320 746f 205c 5050 rresponds to \PP │ │ │ │ +00021e10: 5e7b 6e5f 317d 0a20 2020 2020 2020 2078 ^{n_1}. x │ │ │ │ +00021e20: 2e2e 2e2e 2078 205c 5050 5e7b 6e5f 6d7d .... x \PP^{n_m} │ │ │ │ +00021e30: 0a20 2020 2020 202a 2043 6f65 6666 5269 . * CoeffRi │ │ │ │ +00021e40: 6e67 2c20 6120 2a6e 6f74 6520 7269 6e67 ng, a *note ring │ │ │ │ +00021e50: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00021e60: 5269 6e67 2c2c 2074 6865 2063 6f65 6666 Ring,, the coeff │ │ │ │ +00021e70: 6963 6965 6e74 2072 696e 6720 6f66 0a20 icient ring of. │ │ │ │ +00021e80: 2020 2020 2020 2074 6865 2067 7261 6465 the grade │ │ │ │ +00021e90: 6420 706f 6c79 6e6f 6d69 616c 2072 696e d polynomial rin │ │ │ │ +00021ea0: 6720 746f 2062 6520 6275 696c 7420 6279 g to be built by │ │ │ │ +00021eb0: 2074 6865 206d 6574 686f 642c 2062 7920 the method, by │ │ │ │ +00021ec0: 6465 6661 756c 7420 7468 6973 0a20 2020 default this. │ │ │ │ +00021ed0: 2020 2020 2069 7320 5c5a 5a2f 3332 3734 is \ZZ/3274 │ │ │ │ +00021ee0: 390a 2020 2020 2020 2a20 7661 722c 2061 9. * var, a │ │ │ │ +00021ef0: 202a 6e6f 7465 2073 796d 626f 6c3a 2028 *note symbol: ( │ │ │ │ +00021f00: 4d61 6361 756c 6179 3244 6f63 2953 796d Macaulay2Doc)Sym │ │ │ │ +00021f10: 626f 6c2c 2c20 746f 2062 6520 7573 6564 bol,, to be used │ │ │ │ +00021f20: 2066 6f72 2074 6865 0a20 2020 2020 2020 for the. │ │ │ │ +00021f30: 2069 6e74 6572 6d65 6469 6174 6573 206f intermediates o │ │ │ │ +00021f40: 6620 7468 6520 6772 6164 6564 2070 6f6c f the graded pol │ │ │ │ +00021f50: 796e 6f6d 6961 6c20 7269 6e67 2074 6f20 ynomial ring to │ │ │ │ +00021f60: 6265 2062 7569 6c74 2062 7920 7468 6520 be built by the │ │ │ │ +00021f70: 6d65 7468 6f64 0a20 202a 204f 7574 7075 method. * Outpu │ │ │ │ +00021f80: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ +00021f90: 6f74 6520 7269 6e67 3a20 284d 6163 6175 ote ring: (Macau │ │ │ │ +00021fa0: 6c61 7932 446f 6329 5269 6e67 2c2c 2074 lay2Doc)Ring,, t │ │ │ │ +00021fb0: 6865 2067 7261 6465 6420 636f 6f72 6469 he graded coordi │ │ │ │ +00021fc0: 6e61 7465 2072 696e 6720 6f66 2074 6865 nate ring of the │ │ │ │ +00021fd0: 0a20 2020 2020 2020 205c 5050 5e7b 6e5f . \PP^{n_ │ │ │ │ +00021fe0: 317d 2078 2e2e 2e2e 2078 205c 5050 5e7b 1} x.... x \PP^{ │ │ │ │ +00021ff0: 6e5f 6d7d 2077 6865 7265 207b 6e5f 312c n_m} where {n_1, │ │ │ │ +00022000: 2e2e 2e2c 6e5f 6d7d 2069 7320 7468 6520 ...,n_m} is the │ │ │ │ +00022010: 696e 7075 7420 6c69 7374 206f 660a 2020 input list of. │ │ │ │ +00022020: 2020 2020 2020 6469 6d65 6e73 696f 6e73 dimensions │ │ │ │ +00022030: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00022040: 3d3d 3d3d 3d3d 3d3d 3d0a 0a43 6f6d 7075 =========..Compu │ │ │ │ +00022050: 7465 7320 7468 6520 6772 6164 6564 2063 tes the graded c │ │ │ │ +00022060: 6f6f 7264 696e 6174 6520 7269 6e67 206f oordinate ring o │ │ │ │ +00022070: 6620 7468 6520 5c50 505e 7b6e 5f31 7d20 f the \PP^{n_1} │ │ │ │ +00022080: 782e 2e2e 2e20 7820 5c50 505e 7b6e 5f6d x.... x \PP^{n_m │ │ │ │ +00022090: 7d20 7768 6572 650a 7b6e 5f31 2c2e 2e2e } where.{n_1,... │ │ │ │ +000220a0: 2c6e 5f6d 7d20 6973 2074 6865 2069 6e70 ,n_m} is the inp │ │ │ │ +000220b0: 7574 206c 6973 7420 6f66 2064 696d 656e ut list of dimen │ │ │ │ +000220c0: 7369 6f6e 732e 2054 6869 7320 6d65 7468 sions. This meth │ │ │ │ +000220d0: 6f64 2069 7320 7573 6564 2074 6f20 7175 od is used to qu │ │ │ │ +000220e0: 6963 6b6c 790a 6275 696c 6420 7468 6520 ickly.build the │ │ │ │ +000220f0: 636f 6f72 6469 6e61 7465 2072 696e 6720 coordinate ring │ │ │ │ +00022100: 6f66 2061 2070 726f 6475 6374 206f 6620 of a product of │ │ │ │ +00022110: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ +00022120: 7320 666f 7220 7573 6520 696e 0a63 6f6d s for use in.com │ │ │ │ +00022130: 7075 7461 7469 6f6e 732e 0a0a 2b2d 2d2d putations...+--- │ │ │ │ +00022140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000221b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000221c0: 6931 203a 2053 3d4d 756c 7469 5072 6f6a i1 : S=MultiProj │ │ │ │ -000221d0: 436f 6f72 6452 696e 6728 5151 2c73 796d CoordRing(QQ,sym │ │ │ │ -000221e0: 626f 6c20 7a2c 7b31 2c33 2c33 7d29 2020 bol z,{1,3,3}) │ │ │ │ +00022180: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +00022190: 3a20 533d 4d75 6c74 6950 726f 6a43 6f6f : S=MultiProjCoo │ │ │ │ +000221a0: 7264 5269 6e67 2851 512c 7379 6d62 6f6c rdRing(QQ,symbol │ │ │ │ +000221b0: 207a 2c7b 312c 332c 337d 2920 2020 2020 z,{1,3,3}) │ │ │ │ +000221c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000221d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000221e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000221f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022200: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022220: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00022230: 3d20 5320 2020 2020 2020 2020 2020 2020 = S │ │ │ │ 00022240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022250: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022260: 6f31 203d 2053 2020 2020 2020 2020 2020 o1 = S │ │ │ │ -00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022270: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000222a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000222b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000222c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +000222d0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ 000222e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000222f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022300: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ -00022310: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00022320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022340: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000222f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022310: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000223a0: 6932 203a 2064 6567 7265 6573 2053 2020 i2 : degrees S │ │ │ │ -000223b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022360: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00022370: 3a20 6465 6772 6565 7320 5320 2020 2020 : degrees S │ │ │ │ +00022380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000223a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000223b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000223c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000223e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000223e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000223f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022440: 6f32 203d 207b 7b31 2c20 302c 2030 7d2c o2 = {{1, 0, 0}, │ │ │ │ -00022450: 207b 312c 2030 2c20 307d 2c20 7b30 2c20 {1, 0, 0}, {0, │ │ │ │ -00022460: 312c 2030 7d2c 207b 302c 2031 2c20 307d 1, 0}, {0, 1, 0} │ │ │ │ -00022470: 2c20 7b30 2c20 312c 2030 7d2c 207b 302c , {0, 1, 0}, {0, │ │ │ │ -00022480: 2031 2c20 307d 2c20 7b30 2c20 207c 0a7c 1, 0}, {0, |.| │ │ │ │ -00022490: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ -000224a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000224d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -000224e0: 2020 2020 2030 2c20 317d 2c20 7b30 2c20 0, 1}, {0, │ │ │ │ -000224f0: 302c 2031 7d2c 207b 302c 2030 2c20 317d 0, 1}, {0, 0, 1} │ │ │ │ -00022500: 2c20 7b30 2c20 302c 2031 7d7d 2020 2020 , {0, 0, 1}} │ │ │ │ +00022400: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00022410: 3d20 7b7b 312c 2030 2c20 307d 2c20 7b31 = {{1, 0, 0}, {1 │ │ │ │ +00022420: 2c20 302c 2030 7d2c 207b 302c 2031 2c20 , 0, 0}, {0, 1, │ │ │ │ +00022430: 307d 2c20 7b30 2c20 312c 2030 7d2c 207b 0}, {0, 1, 0}, { │ │ │ │ +00022440: 302c 2031 2c20 307d 2c20 7b30 2c20 312c 0, 1, 0}, {0, 1, │ │ │ │ +00022450: 2030 7d2c 207b 302c 2020 7c0a 7c20 2020 0}, {0, |.| │ │ │ │ +00022460: 2020 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d -------------- │ │ │ │ +00022470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000224a0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 ----------|.| │ │ │ │ +000224b0: 2020 302c 2031 7d2c 207b 302c 2030 2c20 0, 1}, {0, 0, │ │ │ │ +000224c0: 317d 2c20 7b30 2c20 302c 2031 7d2c 207b 1}, {0, 0, 1}, { │ │ │ │ +000224d0: 302c 2030 2c20 317d 7d20 2020 2020 2020 0, 0, 1}} │ │ │ │ +000224e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022520: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022540: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00022550: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ 00022560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022570: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022580: 6f32 203a 204c 6973 7420 2020 2020 2020 o2 : List │ │ │ │ -00022590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225c0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022590: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000225a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000225b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000225c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000225d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000225f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022620: 6933 203a 2052 3d4d 756c 7469 5072 6f6a i3 : R=MultiProj │ │ │ │ -00022630: 436f 6f72 6452 696e 6720 7b32 2c33 7d20 CoordRing {2,3} │ │ │ │ +000225e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +000225f0: 3a20 523d 4d75 6c74 6950 726f 6a43 6f6f : R=MultiProjCoo │ │ │ │ +00022600: 7264 5269 6e67 207b 322c 337d 2020 2020 rdRing {2,3} │ │ │ │ +00022610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022630: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022660: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022680: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +00022690: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ 000226a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000226c0: 6f33 203d 2052 2020 2020 2020 2020 2020 o3 = R │ │ │ │ -000226d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000226f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022700: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022720: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +00022730: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ 00022740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022750: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022760: 6f33 203a 2050 6f6c 796e 6f6d 6961 6c52 o3 : PolynomialR │ │ │ │ -00022770: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ -00022780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022770: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000227a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000227b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000227f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022800: 6934 203a 2063 6f65 6666 6963 6965 6e74 i4 : coefficient │ │ │ │ -00022810: 5269 6e67 2052 2020 2020 2020 2020 2020 Ring R │ │ │ │ +000227c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +000227d0: 3a20 636f 6566 6669 6369 656e 7452 696e : coefficientRin │ │ │ │ +000227e0: 6720 5220 2020 2020 2020 2020 2020 2020 g R │ │ │ │ +000227f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022810: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022840: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022860: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022870: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00022880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022890: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000228a0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ -000228b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000228a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000228b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +000228c0: 3d20 2d2d 2d2d 2d20 2020 2020 2020 2020 = ----- │ │ │ │ 000228d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000228f0: 6f34 203d 202d 2d2d 2d2d 2020 2020 2020 o4 = ----- │ │ │ │ -00022900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000228f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022900: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022910: 2020 3332 3734 3920 2020 2020 2020 2020 32749 │ │ │ │ 00022920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022930: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022940: 2020 2020 2033 3237 3439 2020 2020 2020 32749 │ │ │ │ -00022950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022950: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022980: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000229a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +000229b0: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ 000229c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000229e0: 6f34 203a 2051 756f 7469 656e 7452 696e o4 : QuotientRin │ │ │ │ -000229f0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a20: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000229e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000229f0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022a80: 6935 203a 2064 6573 6372 6962 6520 5220 i5 : describe R │ │ │ │ -00022a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +00022a50: 3a20 6465 7363 7269 6265 2052 2020 2020 : describe R │ │ │ │ +00022a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ac0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ae0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022af0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00022b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022b20: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ -00022b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022b70: 6f35 203d 202d 2d2d 2d2d 5b78 202e 2e78 o5 = -----[x ..x │ │ │ │ -00022b80: 202c 2044 6567 7265 6573 203d 3e20 7b33 , Degrees => {3 │ │ │ │ -00022b90: 3a7b 317d 2c20 343a 7b30 7d7d 2c20 4865 :{1}, 4:{0}}, He │ │ │ │ -00022ba0: 6674 203d 3e20 7b32 3a31 7d5d 2020 2020 ft => {2:1}] │ │ │ │ -00022bb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022bc0: 2020 2020 2033 3237 3439 2020 3020 2020 32749 0 │ │ │ │ -00022bd0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00022be0: 207b 307d 2020 2020 7b31 7d20 2020 2020 {0} {1} │ │ │ │ -00022bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c00: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022b30: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00022b40: 3d20 2d2d 2d2d 2d5b 7820 2e2e 7820 2c20 = -----[x ..x , │ │ │ │ +00022b50: 4465 6772 6565 7320 3d3e 207b 333a 7b31 Degrees => {3:{1 │ │ │ │ +00022b60: 7d2c 2034 3a7b 307d 7d2c 2048 6566 7420 }, 4:{0}}, Heft │ │ │ │ +00022b70: 3d3e 207b 323a 317d 5d20 2020 2020 2020 => {2:1}] │ │ │ │ +00022b80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022b90: 2020 3332 3734 3920 2030 2020 2036 2020 32749 0 6 │ │ │ │ +00022ba0: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ +00022bb0: 7d20 2020 207b 317d 2020 2020 2020 2020 } {1} │ │ │ │ +00022bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022bd0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022c60: 6936 203a 2041 3d43 686f 7752 696e 6720 i6 : A=ChowRing │ │ │ │ -00022c70: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +00022c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ +00022c30: 3a20 413d 4368 6f77 5269 6e67 2052 2020 : A=ChowRing R │ │ │ │ +00022c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022c70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +00022cd0: 3d20 4120 2020 2020 2020 2020 2020 2020 = A │ │ │ │ 00022ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022cf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022d00: 6f36 203d 2041 2020 2020 2020 2020 2020 o6 = A │ │ │ │ -00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d60: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +00022d70: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ 00022d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022da0: 6f36 203a 2051 756f 7469 656e 7452 696e o6 : QuotientRin │ │ │ │ -00022db0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ -00022dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022de0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022db0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00022dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00022de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00022e40: 6937 203a 2064 6573 6372 6962 6520 4120 i7 : describe A │ │ │ │ -00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ +00022e10: 3a20 6465 7363 7269 6265 2041 2020 2020 : describe A │ │ │ │ +00022e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ 00022e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00022e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022eb0: 2020 5a5a 5b68 202e 2e68 205d 2020 2020 ZZ[h ..h ] │ │ │ │ 00022ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ed0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022ee0: 2020 2020 205a 5a5b 6820 2e2e 6820 5d20 ZZ[h ..h ] │ │ │ │ -00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022ef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022f00: 2020 2020 2020 3120 2020 3220 2020 2020 1 2 │ │ │ │ 00022f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022f30: 2020 2020 2020 2020 2031 2020 2032 2020 1 2 │ │ │ │ -00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f40: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +00022f50: 3d20 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 = ---------- │ │ │ │ 00022f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022f80: 6f37 203d 202d 2d2d 2d2d 2d2d 2d2d 2d20 o7 = ---------- │ │ │ │ -00022f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022f90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022fa0: 2020 2020 2033 2020 2034 2020 2020 2020 3 4 │ │ │ │ 00022fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fc0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00022fd0: 2020 2020 2020 2020 3320 2020 3420 2020 3 4 │ │ │ │ -00022fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fe0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00022ff0: 2020 2028 6820 2c20 6820 2920 2020 2020 (h , h ) │ │ │ │ 00023000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023010: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023020: 2020 2020 2020 2868 202c 2068 2029 2020 (h , h ) │ │ │ │ -00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023030: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023040: 2020 2020 2031 2020 2032 2020 2020 2020 1 2 │ │ │ │ 00023050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023060: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00023070: 2020 2020 2020 2020 3120 2020 3220 2020 1 2 │ │ │ │ -00023080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023080: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00023090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000230a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000230b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000230c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000230f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00023110: 6938 203a 2053 6567 7265 2841 2c69 6465 i8 : Segre(A,ide │ │ │ │ -00023120: 616c 2072 616e 646f 6d28 7b31 2c31 7d2c al random({1,1}, │ │ │ │ -00023130: 5229 2920 2020 2020 2020 2020 2020 2020 R)) │ │ │ │ +000230d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ +000230e0: 3a20 5365 6772 6528 412c 6964 6561 6c20 : Segre(A,ideal │ │ │ │ +000230f0: 7261 6e64 6f6d 287b 312c 317d 2c52 2929 random({1,1},R)) │ │ │ │ +00023100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023120: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023150: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000231a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000231b0: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ -000231c0: 3220 3220 2020 2020 2020 3320 2020 2020 2 2 3 │ │ │ │ -000231d0: 3220 2020 2020 2020 2020 3220 2020 2033 2 2 3 │ │ │ │ -000231e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000231f0: 2032 2020 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ -00023200: 6f38 203d 2031 3068 2068 2020 2d20 3668 o8 = 10h h - 6h │ │ │ │ -00023210: 2068 2020 2d20 3468 2068 2020 2b20 3368 h - 4h h + 3h │ │ │ │ -00023220: 2068 2020 2b20 3368 2068 2020 2b20 6820 h + 3h h + h │ │ │ │ -00023230: 202d 2068 2020 2d20 3268 2068 2020 2d20 - h - 2h h - │ │ │ │ -00023240: 6820 202b 2068 2020 2b20 6820 207c 0a7c h + h + h |.| │ │ │ │ -00023250: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00023260: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ -00023270: 3120 3220 2020 2020 3120 3220 2020 2032 1 2 1 2 2 │ │ │ │ -00023280: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -00023290: 2032 2020 2020 3120 2020 2032 207c 0a7c 2 1 2 |.| │ │ │ │ +00023170: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00023180: 2020 2020 2032 2033 2020 2020 2032 2032 2 3 2 2 │ │ │ │ +00023190: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ +000231a0: 2020 2020 2020 2032 2020 2020 3320 2020 2 3 │ │ │ │ +000231b0: 2032 2020 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +000231c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +000231d0: 3d20 3130 6820 6820 202d 2036 6820 6820 = 10h h - 6h h │ │ │ │ +000231e0: 202d 2034 6820 6820 202b 2033 6820 6820 - 4h h + 3h h │ │ │ │ +000231f0: 202b 2033 6820 6820 202b 2068 2020 2d20 + 3h h + h - │ │ │ │ +00023200: 6820 202d 2032 6820 6820 202d 2068 2020 h - 2h h - h │ │ │ │ +00023210: 2b20 6820 202b 2068 2020 7c0a 7c20 2020 + h + h |.| │ │ │ │ +00023220: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +00023230: 2020 2020 2031 2032 2020 2020 2031 2032 1 2 1 2 │ │ │ │ +00023240: 2020 2020 2031 2032 2020 2020 3220 2020 1 2 2 │ │ │ │ +00023250: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ +00023260: 2020 2031 2020 2020 3220 7c0a 7c20 2020 1 2 |.| │ │ │ │ +00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000232b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +000232c0: 3a20 4120 2020 2020 2020 2020 2020 2020 : A │ │ │ │ 000232d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000232f0: 6f38 203a 2041 2020 2020 2020 2020 2020 o8 : A │ │ │ │ -00023300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023330: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000232f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023300: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00023310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00023390: 5761 7973 2074 6f20 7573 6520 4d75 6c74 Ways to use Mult │ │ │ │ -000233a0: 6950 726f 6a43 6f6f 7264 5269 6e67 3a0a iProjCoordRing:. │ │ │ │ -000233b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000233c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000233d0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ -000233e0: 6f6f 7264 5269 6e67 284c 6973 7429 220a oordRing(List)". │ │ │ │ -000233f0: 2020 2a20 224d 756c 7469 5072 6f6a 436f * "MultiProjCo │ │ │ │ -00023400: 6f72 6452 696e 6728 5269 6e67 2c4c 6973 ordRing(Ring,Lis │ │ │ │ -00023410: 7429 220a 2020 2a20 224d 756c 7469 5072 t)". * "MultiPr │ │ │ │ -00023420: 6f6a 436f 6f72 6452 696e 6728 5269 6e67 ojCoordRing(Ring │ │ │ │ -00023430: 2c53 796d 626f 6c2c 4c69 7374 2922 0a20 ,Symbol,List)". │ │ │ │ -00023440: 202a 2022 4d75 6c74 6950 726f 6a43 6f6f * "MultiProjCoo │ │ │ │ -00023450: 7264 5269 6e67 2853 796d 626f 6c2c 4c69 rdRing(Symbol,Li │ │ │ │ -00023460: 7374 2922 0a0a 466f 7220 7468 6520 7072 st)"..For the pr │ │ │ │ -00023470: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ -00023480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ -00023490: 206f 626a 6563 7420 2a6e 6f74 6520 4d75 object *note Mu │ │ │ │ -000234a0: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -000234b0: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ -000234c0: 5269 6e67 2c20 6973 2061 202a 6e6f 7465 Ring, is a *note │ │ │ │ -000234d0: 206d 6574 686f 640a 6675 6e63 7469 6f6e method.function │ │ │ │ -000234e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000234f0: 4d65 7468 6f64 4675 6e63 7469 6f6e 2c2e MethodFunction,. │ │ │ │ -00023500: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -00023510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023550: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00023560: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00023570: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00023580: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00023590: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -000235a0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -000235b0: 7061 636b 6167 6573 2f0a 4368 6172 6163 packages/.Charac │ │ │ │ -000235c0: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -000235d0: 6d32 3a32 3035 303a 302e 0a1f 0a46 696c m2:2050:0....Fil │ │ │ │ -000235e0: 653a 2043 6861 7261 6374 6572 6973 7469 e: Characteristi │ │ │ │ -000235f0: 6343 6c61 7373 6573 2e69 6e66 6f2c 204e cClasses.info, N │ │ │ │ -00023600: 6f64 653a 204f 7574 7075 742c 204e 6578 ode: Output, Nex │ │ │ │ -00023610: 743a 2070 726f 6261 6269 6c69 7374 6963 t: probabilistic │ │ │ │ -00023620: 2061 6c67 6f72 6974 686d 2c20 5072 6576 algorithm, Prev │ │ │ │ -00023630: 3a20 4d75 6c74 6950 726f 6a43 6f6f 7264 : MultiProjCoord │ │ │ │ -00023640: 5269 6e67 2c20 5570 3a20 546f 700a 0a4f Ring, Up: Top..O │ │ │ │ -00023650: 7574 7075 740a 2a2a 2a2a 2a2a 0a0a 4465 utput.******..De │ │ │ │ -00023660: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00023670: 3d3d 3d3d 3d0a 0a54 6865 206f 7074 696f =====..The optio │ │ │ │ -00023680: 6e20 4f75 7470 7574 2069 7320 6f6e 6c79 n Output is only │ │ │ │ -00023690: 2075 7365 6420 6279 2074 6865 2063 6f6d used by the com │ │ │ │ -000236a0: 6d61 6e64 7320 2a6e 6f74 6520 4353 4d3a mands *note CSM: │ │ │ │ -000236b0: 2043 534d 2c2c 202a 6e6f 7465 2053 6567 CSM,, *note Seg │ │ │ │ -000236c0: 7265 3a0a 5365 6772 652c 2c20 2a6e 6f74 re:.Segre,, *not │ │ │ │ -000236d0: 6520 4368 6572 6e3a 2043 6865 726e 2c20 e Chern: Chern, │ │ │ │ -000236e0: 616e 6420 2a6e 6f74 6520 4575 6c65 723a and *note Euler: │ │ │ │ -000236f0: 2045 756c 6572 2c20 746f 2073 7065 6369 Euler, to speci │ │ │ │ -00023700: 6679 2074 6865 2074 7970 6520 6f66 0a6f fy the type of.o │ │ │ │ -00023710: 7574 7075 7420 746f 2062 6520 7265 7475 utput to be retu │ │ │ │ -00023720: 726e 6564 2074 6f20 7468 6520 7573 6564 rned to the used │ │ │ │ -00023730: 2e20 5468 6973 206f 7074 696f 6e20 7769 . This option wi │ │ │ │ -00023740: 6c6c 2062 6520 6967 6e6f 7265 6420 7768 ll be ignored wh │ │ │ │ -00023750: 656e 2075 7365 6420 7769 7468 0a2a 6e6f en used with.*no │ │ │ │ -00023760: 7465 2043 6f6d 704d 6574 686f 643a 2043 te CompMethod: C │ │ │ │ -00023770: 6f6d 704d 6574 686f 642c 2050 6e52 6573 ompMethod, PnRes │ │ │ │ -00023780: 6964 7561 6c20 6f72 2062 6572 7469 6e69 idual or bertini │ │ │ │ -00023790: 2e20 5468 6520 6f70 7469 6f6e 2077 696c . The option wil │ │ │ │ -000237a0: 6c20 616c 736f 2062 650a 6967 6e6f 7265 l also be.ignore │ │ │ │ -000237b0: 2077 6865 6e20 2a6e 6f74 6520 4d65 7468 when *note Meth │ │ │ │ -000237c0: 6f64 3a20 4d65 7468 6f64 2c3d 3e44 6972 od: Method,=>Dir │ │ │ │ -000237d0: 6563 7443 6f6d 706c 6574 6549 6e74 2069 ectCompleteInt i │ │ │ │ -000237e0: 7320 7573 6564 2e20 5468 6520 6465 6661 s used. The defa │ │ │ │ -000237f0: 756c 740a 6f75 7470 7574 2066 6f72 2061 ult.output for a │ │ │ │ -00023800: 6c6c 2074 6865 7365 206d 6574 686f 6473 ll these methods │ │ │ │ -00023810: 2069 7320 4368 6f77 5269 6e67 456c 656c is ChowRingElel │ │ │ │ -00023820: 6d65 6e74 2077 6869 6368 2077 696c 6c20 ment which will │ │ │ │ -00023830: 7265 7475 726e 2061 6e20 656c 656d 656e return an elemen │ │ │ │ -00023840: 740a 6f66 2074 6865 2061 7070 726f 7072 t.of the appropr │ │ │ │ -00023850: 6961 7465 2043 686f 7720 7269 6e67 2e20 iate Chow ring. │ │ │ │ -00023860: 416c 6c20 6d65 7468 6f64 7320 616c 736f All methods also │ │ │ │ -00023870: 2068 6176 6520 616e 206f 7074 696f 6e20 have an option │ │ │ │ -00023880: 4861 7368 466f 726d 2077 6869 6368 0a72 HashForm which.r │ │ │ │ -00023890: 6574 7572 6e73 2061 6464 6974 696f 6e61 eturns additiona │ │ │ │ -000238a0: 6c20 696e 666f 726d 6174 696f 6e20 636f l information co │ │ │ │ -000238b0: 6d70 7574 6564 2062 7920 7468 6520 6d65 mputed by the me │ │ │ │ -000238c0: 7468 6f64 7320 6475 7269 6e67 2074 6865 thods during the │ │ │ │ -000238d0: 6972 2073 7461 6e64 6172 640a 6f70 6572 ir standard.oper │ │ │ │ -000238e0: 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ation...+------- │ │ │ │ +00023350: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 ----------+..Way │ │ │ │ +00023360: 7320 746f 2075 7365 204d 756c 7469 5072 s to use MultiPr │ │ │ │ +00023370: 6f6a 436f 6f72 6452 696e 673a 0a3d 3d3d ojCoordRing:.=== │ │ │ │ +00023380: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00023390: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +000233a0: 2a20 224d 756c 7469 5072 6f6a 436f 6f72 * "MultiProjCoor │ │ │ │ +000233b0: 6452 696e 6728 4c69 7374 2922 0a20 202a dRing(List)". * │ │ │ │ +000233c0: 2022 4d75 6c74 6950 726f 6a43 6f6f 7264 "MultiProjCoord │ │ │ │ +000233d0: 5269 6e67 2852 696e 672c 4c69 7374 2922 Ring(Ring,List)" │ │ │ │ +000233e0: 0a20 202a 2022 4d75 6c74 6950 726f 6a43 . * "MultiProjC │ │ │ │ +000233f0: 6f6f 7264 5269 6e67 2852 696e 672c 5379 oordRing(Ring,Sy │ │ │ │ +00023400: 6d62 6f6c 2c4c 6973 7429 220a 2020 2a20 mbol,List)". * │ │ │ │ +00023410: 224d 756c 7469 5072 6f6a 436f 6f72 6452 "MultiProjCoordR │ │ │ │ +00023420: 696e 6728 5379 6d62 6f6c 2c4c 6973 7429 ing(Symbol,List) │ │ │ │ +00023430: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00023440: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00023450: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00023460: 6a65 6374 202a 6e6f 7465 204d 756c 7469 ject *note Multi │ │ │ │ +00023470: 5072 6f6a 436f 6f72 6452 696e 673a 204d ProjCoordRing: M │ │ │ │ +00023480: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00023490: 672c 2069 7320 6120 2a6e 6f74 6520 6d65 g, is a *note me │ │ │ │ +000234a0: 7468 6f64 0a66 756e 6374 696f 6e3a 2028 thod.function: ( │ │ │ │ +000234b0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ +000234c0: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +000234d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000234f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00023520: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00023530: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00023540: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00023550: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00023560: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00023570: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00023580: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ +00023590: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ +000235a0: 3230 3530 3a30 2e0a 1f0a 4669 6c65 3a20 2050:0....File: │ │ │ │ +000235b0: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ +000235c0: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ +000235d0: 3a20 4f75 7470 7574 2c20 4e65 7874 3a20 : Output, Next: │ │ │ │ +000235e0: 7072 6f62 6162 696c 6973 7469 6320 616c probabilistic al │ │ │ │ +000235f0: 676f 7269 7468 6d2c 2050 7265 763a 204d gorithm, Prev: M │ │ │ │ +00023600: 756c 7469 5072 6f6a 436f 6f72 6452 696e ultiProjCoordRin │ │ │ │ +00023610: 672c 2055 703a 2054 6f70 0a0a 4f75 7470 g, Up: Top..Outp │ │ │ │ +00023620: 7574 0a2a 2a2a 2a2a 2a0a 0a44 6573 6372 ut.******..Descr │ │ │ │ +00023630: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00023640: 3d3d 0a0a 5468 6520 6f70 7469 6f6e 204f ==..The option O │ │ │ │ +00023650: 7574 7075 7420 6973 206f 6e6c 7920 7573 utput is only us │ │ │ │ +00023660: 6564 2062 7920 7468 6520 636f 6d6d 616e ed by the comman │ │ │ │ +00023670: 6473 202a 6e6f 7465 2043 534d 3a20 4353 ds *note CSM: CS │ │ │ │ +00023680: 4d2c 2c20 2a6e 6f74 6520 5365 6772 653a M,, *note Segre: │ │ │ │ +00023690: 0a53 6567 7265 2c2c 202a 6e6f 7465 2043 .Segre,, *note C │ │ │ │ +000236a0: 6865 726e 3a20 4368 6572 6e2c 2061 6e64 hern: Chern, and │ │ │ │ +000236b0: 202a 6e6f 7465 2045 756c 6572 3a20 4575 *note Euler: Eu │ │ │ │ +000236c0: 6c65 722c 2074 6f20 7370 6563 6966 7920 ler, to specify │ │ │ │ +000236d0: 7468 6520 7479 7065 206f 660a 6f75 7470 the type of.outp │ │ │ │ +000236e0: 7574 2074 6f20 6265 2072 6574 7572 6e65 ut to be returne │ │ │ │ +000236f0: 6420 746f 2074 6865 2075 7365 642e 2054 d to the used. T │ │ │ │ +00023700: 6869 7320 6f70 7469 6f6e 2077 696c 6c20 his option will │ │ │ │ +00023710: 6265 2069 676e 6f72 6564 2077 6865 6e20 be ignored when │ │ │ │ +00023720: 7573 6564 2077 6974 680a 2a6e 6f74 6520 used with.*note │ │ │ │ +00023730: 436f 6d70 4d65 7468 6f64 3a20 436f 6d70 CompMethod: Comp │ │ │ │ +00023740: 4d65 7468 6f64 2c20 506e 5265 7369 6475 Method, PnResidu │ │ │ │ +00023750: 616c 206f 7220 6265 7274 696e 692e 2054 al or bertini. T │ │ │ │ +00023760: 6865 206f 7074 696f 6e20 7769 6c6c 2061 he option will a │ │ │ │ +00023770: 6c73 6f20 6265 0a69 676e 6f72 6520 7768 lso be.ignore wh │ │ │ │ +00023780: 656e 202a 6e6f 7465 204d 6574 686f 643a en *note Method: │ │ │ │ +00023790: 204d 6574 686f 642c 3d3e 4469 7265 6374 Method,=>Direct │ │ │ │ +000237a0: 436f 6d70 6c65 7465 496e 7420 6973 2075 CompleteInt is u │ │ │ │ +000237b0: 7365 642e 2054 6865 2064 6566 6175 6c74 sed. The default │ │ │ │ +000237c0: 0a6f 7574 7075 7420 666f 7220 616c 6c20 .output for all │ │ │ │ +000237d0: 7468 6573 6520 6d65 7468 6f64 7320 6973 these methods is │ │ │ │ +000237e0: 2043 686f 7752 696e 6745 6c65 6c6d 656e ChowRingElelmen │ │ │ │ +000237f0: 7420 7768 6963 6820 7769 6c6c 2072 6574 t which will ret │ │ │ │ +00023800: 7572 6e20 616e 2065 6c65 6d65 6e74 0a6f urn an element.o │ │ │ │ +00023810: 6620 7468 6520 6170 7072 6f70 7269 6174 f the appropriat │ │ │ │ +00023820: 6520 4368 6f77 2072 696e 672e 2041 6c6c e Chow ring. All │ │ │ │ +00023830: 206d 6574 686f 6473 2061 6c73 6f20 6861 methods also ha │ │ │ │ +00023840: 7665 2061 6e20 6f70 7469 6f6e 2048 6173 ve an option Has │ │ │ │ +00023850: 6846 6f72 6d20 7768 6963 680a 7265 7475 hForm which.retu │ │ │ │ +00023860: 726e 7320 6164 6469 7469 6f6e 616c 2069 rns additional i │ │ │ │ +00023870: 6e66 6f72 6d61 7469 6f6e 2063 6f6d 7075 nformation compu │ │ │ │ +00023880: 7465 6420 6279 2074 6865 206d 6574 686f ted by the metho │ │ │ │ +00023890: 6473 2064 7572 696e 6720 7468 6569 7220 ds during their │ │ │ │ +000238a0: 7374 616e 6461 7264 0a6f 7065 7261 7469 standard.operati │ │ │ │ +000238b0: 6f6e 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d on...+---------- │ │ │ │ +000238c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000238e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000238f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023930: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5220 ------+.|i1 : R │ │ │ │ -00023940: 3d20 5a5a 2f33 3237 3439 5b78 5f30 2e2e = ZZ/32749[x_0.. │ │ │ │ -00023950: 785f 365d 2020 2020 2020 2020 2020 2020 x_6] │ │ │ │ +00023900: 2d2d 2d2b 0a7c 6931 203a 2052 203d 205a ---+.|i1 : R = Z │ │ │ │ +00023910: 5a2f 3332 3734 395b 785f 302e 2e78 5f36 Z/32749[x_0..x_6 │ │ │ │ +00023920: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00023930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000239a0: 2020 207c 0a7c 6f31 203d 2052 2020 2020 |.|o1 = R │ │ │ │ 000239b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239d0: 2020 2020 2020 7c0a 7c6f 3120 3d20 5220 |.|o1 = R │ │ │ │ +000239d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000239f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a40: 2020 207c 0a7c 6f31 203a 2050 6f6c 796e |.|o1 : Polyn │ │ │ │ +00023a50: 6f6d 6961 6c52 696e 6720 2020 2020 2020 omialRing │ │ │ │ 00023a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a70: 2020 2020 2020 7c0a 7c6f 3120 3a20 506f |.|o1 : Po │ │ │ │ -00023a80: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ -00023a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ac0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023a90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023b10: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 413d ------+.|i2 : A= │ │ │ │ -00023b20: 4368 6f77 5269 6e67 2852 2920 2020 2020 ChowRing(R) │ │ │ │ -00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ae0: 2d2d 2d2b 0a7c 6932 203a 2041 3d43 686f ---+.|i2 : A=Cho │ │ │ │ +00023af0: 7752 696e 6728 5229 2020 2020 2020 2020 wRing(R) │ │ │ │ +00023b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b80: 2020 207c 0a7c 6f32 203d 2041 2020 2020 |.|o2 = A │ │ │ │ 00023b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bb0: 2020 2020 2020 7c0a 7c6f 3220 3d20 4120 |.|o2 = A │ │ │ │ +00023bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023bd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c20: 2020 207c 0a7c 6f32 203a 2051 756f 7469 |.|o2 : Quoti │ │ │ │ +00023c30: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ 00023c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c50: 2020 2020 2020 7c0a 7c6f 3220 3a20 5175 |.|o2 : Qu │ │ │ │ -00023c60: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ -00023c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ca0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023c70: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023cf0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 493d ------+.|i3 : I= │ │ │ │ -00023d00: 6964 6561 6c28 7261 6e64 6f6d 2832 2c52 ideal(random(2,R │ │ │ │ -00023d10: 292c 525f 302a 525f 312a 525f 362d 525f ),R_0*R_1*R_6-R_ │ │ │ │ -00023d20: 305e 3329 3b20 2020 2020 2020 2020 2020 0^3); │ │ │ │ +00023cc0: 2d2d 2d2b 0a7c 6933 203a 2049 3d69 6465 ---+.|i3 : I=ide │ │ │ │ +00023cd0: 616c 2872 616e 646f 6d28 322c 5229 2c52 al(random(2,R),R │ │ │ │ +00023ce0: 5f30 2a52 5f31 2a52 5f36 2d52 5f30 5e33 _0*R_1*R_6-R_0^3 │ │ │ │ +00023cf0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ +00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00023d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023d60: 2020 207c 0a7c 6f33 203a 2049 6465 616c |.|o3 : Ideal │ │ │ │ +00023d70: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ 00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d90: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ -00023da0: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ -00023db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023de0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023db0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023e30: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6373 ------+.|i4 : cs │ │ │ │ -00023e40: 6d3d 4353 4d28 412c 492c 4f75 7470 7574 m=CSM(A,I,Output │ │ │ │ -00023e50: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ +00023e00: 2d2d 2d2b 0a7c 6934 203a 2063 736d 3d43 ---+.|i4 : csm=C │ │ │ │ +00023e10: 534d 2841 2c49 2c4f 7574 7075 743d 3e48 SM(A,I,Output=>H │ │ │ │ +00023e20: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ +00023e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023e50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ed0: 2020 2020 2020 7c0a 7c6f 3420 3d20 4d75 |.|o4 = Mu │ │ │ │ -00023ee0: 7461 626c 6548 6173 6854 6162 6c65 7b2e tableHashTable{. │ │ │ │ -00023ef0: 2e2e 342e 2e2e 7d20 2020 2020 2020 2020 ..4...} │ │ │ │ +00023ea0: 2020 207c 0a7c 6f34 203d 204d 7574 6162 |.|o4 = Mutab │ │ │ │ +00023eb0: 6c65 4861 7368 5461 626c 657b 2e2e 2e34 leHashTable{...4 │ │ │ │ +00023ec0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ +00023ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023ef0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00023f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00023f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f40: 2020 207c 0a7c 6f34 203a 204d 7574 6162 |.|o4 : Mutab │ │ │ │ +00023f50: 6c65 4861 7368 5461 626c 6520 2020 2020 leHashTable │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f70: 2020 2020 2020 7c0a 7c6f 3420 3a20 4d75 |.|o4 : Mu │ │ │ │ -00023f80: 7461 626c 6548 6173 6854 6162 6c65 2020 tableHashTable │ │ │ │ -00023f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00023f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023f90: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00023fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00023fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024010: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7065 ------+.|i5 : pe │ │ │ │ -00024020: 656b 2063 736d 2020 2020 2020 2020 2020 ek csm │ │ │ │ -00024030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023fe0: 2d2d 2d2b 0a7c 6935 203a 2070 6565 6b20 ---+.|i5 : peek │ │ │ │ +00023ff0: 6373 6d20 2020 2020 2020 2020 2020 2020 csm │ │ │ │ +00024000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024030: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024060: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024080: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000240c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240d0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -000240e0: 2020 3520 2020 2020 2034 2020 2020 2020 5 4 │ │ │ │ -000240f0: 3320 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ -00024100: 2020 2020 2020 7c0a 7c6f 3520 3d20 4d75 |.|o5 = Mu │ │ │ │ -00024110: 7461 626c 6548 6173 6854 6162 6c65 7b7b tableHashTable{{ │ │ │ │ -00024120: 302c 2031 7d20 3d3e 2032 6820 202b 2032 0, 1} => 2h + 2 │ │ │ │ -00024130: 3368 2020 2b20 3332 6820 202b 2033 3368 3h + 32h + 33h │ │ │ │ -00024140: 2020 2b20 3138 6820 202b 2035 6820 7d20 + 18h + 5h } │ │ │ │ -00024150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024170: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00024180: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024190: 3120 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ -000241a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000241b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000241c0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -000241d0: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -000241e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000241f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024200: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024210: 534d 203d 3e20 3130 6820 202b 2031 3268 SM => 10h + 12h │ │ │ │ -00024220: 2020 2b20 3232 6820 202b 2031 3668 2020 + 22h + 16h │ │ │ │ -00024230: 2b20 3668 2020 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00024240: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024260: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00024270: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00024280: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00024290: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000242a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000242b0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -000242c0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -000242d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000242e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000242f0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -00024300: 307d 203d 3e20 3668 2020 2b20 3138 6820 0} => 6h + 18h │ │ │ │ -00024310: 202b 2032 3668 2020 2b20 3232 6820 202b + 26h + 22h + │ │ │ │ -00024320: 2031 3068 2020 2b20 3268 2020 2020 2020 10h + 2h │ │ │ │ -00024330: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024350: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024360: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024370: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024380: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000243a0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -000243b0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -000243c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000243d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000243e0: 2020 2020 2020 2020 2020 2020 2020 207b { │ │ │ │ -000243f0: 317d 203d 3e20 3668 2020 2b20 3137 6820 1} => 6h + 17h │ │ │ │ -00024400: 202b 2032 3868 2020 2b20 3237 6820 202b + 28h + 27h + │ │ │ │ -00024410: 2031 3468 2020 2b20 3368 2020 2020 2020 14h + 3h │ │ │ │ -00024420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024440: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024450: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024460: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024470: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000240a0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ +000240b0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ +000240c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000240d0: 2020 207c 0a7c 6f35 203d 204d 7574 6162 |.|o5 = Mutab │ │ │ │ +000240e0: 6c65 4861 7368 5461 626c 657b 7b30 2c20 leHashTable{{0, │ │ │ │ +000240f0: 317d 203d 3e20 3268 2020 2b20 3233 6820 1} => 2h + 23h │ │ │ │ +00024100: 202b 2033 3268 2020 2b20 3333 6820 202b + 32h + 33h + │ │ │ │ +00024110: 2031 3868 2020 2b20 3568 207d 2020 2020 18h + 5h } │ │ │ │ +00024120: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024140: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ +00024150: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024160: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024170: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024190: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ +000241a0: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ +000241b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000241c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000241d0: 2020 2020 2020 2020 2020 2020 4353 4d20 CSM │ │ │ │ +000241e0: 3d3e 2031 3068 2020 2b20 3132 6820 202b => 10h + 12h + │ │ │ │ +000241f0: 2032 3268 2020 2b20 3136 6820 202b 2036 22h + 16h + 6 │ │ │ │ +00024200: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +00024210: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024230: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024240: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00024250: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024260: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024280: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00024290: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +000242a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000242b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000242c0: 2020 2020 2020 2020 2020 2020 7b30 7d20 {0} │ │ │ │ +000242d0: 3d3e 2036 6820 202b 2031 3868 2020 2b20 => 6h + 18h + │ │ │ │ +000242e0: 3236 6820 202b 2032 3268 2020 2b20 3130 26h + 22h + 10 │ │ │ │ +000242f0: 6820 202b 2032 6820 2020 2020 2020 2020 h + 2h │ │ │ │ +00024300: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024320: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024330: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024340: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00024350: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024370: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00024380: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +00024390: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000243a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000243b0: 2020 2020 2020 2020 2020 2020 7b31 7d20 {1} │ │ │ │ +000243c0: 3d3e 2036 6820 202b 2031 3768 2020 2b20 => 6h + 17h + │ │ │ │ +000243d0: 3238 6820 202b 2032 3768 2020 2b20 3134 28h + 27h + 14 │ │ │ │ +000243e0: 6820 202b 2033 6820 2020 2020 2020 2020 h + 3h │ │ │ │ +000243f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024410: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024420: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024430: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00024440: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000244c0: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 4353 ------+.|i6 : CS │ │ │ │ -000244d0: 4d28 412c 6964 6561 6c20 495f 3029 3d3d M(A,ideal I_0)== │ │ │ │ -000244e0: 6373 6d23 7b30 7d20 2020 2020 2020 2020 csm#{0} │ │ │ │ +00024490: 2d2d 2d2b 0a7c 6936 203a 2043 534d 2841 ---+.|i6 : CSM(A │ │ │ │ +000244a0: 2c69 6465 616c 2049 5f30 293d 3d63 736d ,ideal I_0)==csm │ │ │ │ +000244b0: 237b 307d 2020 2020 2020 2020 2020 2020 #{0} │ │ │ │ +000244c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000244e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000244f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024510: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024530: 2020 207c 0a7c 6f36 203d 2074 7275 6520 |.|o6 = true │ │ │ │ 00024540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024560: 2020 2020 2020 7c0a 7c6f 3620 3d20 7472 |.|o6 = tr │ │ │ │ -00024570: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -00024580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00024560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024580: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000245b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000245c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000245f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024600: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 4353 ------+.|i7 : CS │ │ │ │ -00024610: 4d28 412c 6964 6561 6c28 495f 302a 495f M(A,ideal(I_0*I_ │ │ │ │ -00024620: 3129 293d 3d63 736d 237b 302c 317d 2020 1))==csm#{0,1} │ │ │ │ +000245d0: 2d2d 2d2b 0a7c 6937 203a 2043 534d 2841 ---+.|i7 : CSM(A │ │ │ │ +000245e0: 2c69 6465 616c 2849 5f30 2a49 5f31 2929 ,ideal(I_0*I_1)) │ │ │ │ +000245f0: 3d3d 6373 6d23 7b30 2c31 7d20 2020 2020 ==csm#{0,1} │ │ │ │ +00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024620: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024670: 2020 207c 0a7c 6f37 203d 2074 7275 6520 |.|o7 = true │ │ │ │ 00024680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246a0: 2020 2020 2020 7c0a 7c6f 3720 3d20 7472 |.|o7 = tr │ │ │ │ -000246b0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -000246c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000246a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000246b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000246c0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000246d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000246f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024740: 2d2d 2d2d 2d2d 2b0a 7c69 3820 3a20 633d ------+.|i8 : c= │ │ │ │ -00024750: 4368 6572 6e28 2049 2c20 4f75 7470 7574 Chern( I, Output │ │ │ │ -00024760: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ +00024710: 2d2d 2d2b 0a7c 6938 203a 2063 3d43 6865 ---+.|i8 : c=Che │ │ │ │ +00024720: 726e 2820 492c 204f 7574 7075 743d 3e48 rn( I, Output=>H │ │ │ │ +00024730: 6173 6846 6f72 6d29 2020 2020 2020 2020 ashForm) │ │ │ │ +00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024790: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247e0: 2020 2020 2020 7c0a 7c6f 3820 3d20 4d75 |.|o8 = Mu │ │ │ │ -000247f0: 7461 626c 6548 6173 6854 6162 6c65 7b2e tableHashTable{. │ │ │ │ -00024800: 2e2e 362e 2e2e 7d20 2020 2020 2020 2020 ..6...} │ │ │ │ +000247b0: 2020 207c 0a7c 6f38 203d 204d 7574 6162 |.|o8 = Mutab │ │ │ │ +000247c0: 6c65 4861 7368 5461 626c 657b 2e2e 2e36 leHashTable{...6 │ │ │ │ +000247d0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ +000247e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024850: 2020 207c 0a7c 6f38 203a 204d 7574 6162 |.|o8 : Mutab │ │ │ │ +00024860: 6c65 4861 7368 5461 626c 6520 2020 2020 leHashTable │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024880: 2020 2020 2020 7c0a 7c6f 3820 3a20 4d75 |.|o8 : Mu │ │ │ │ -00024890: 7461 626c 6548 6173 6854 6162 6c65 2020 tableHashTable │ │ │ │ -000248a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00024880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000248b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000248d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000248e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000248f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024920: 2d2d 2d2d 2d2d 2b0a 7c69 3920 3a20 7065 ------+.|i9 : pe │ │ │ │ -00024930: 656b 2063 2020 2020 2020 2020 2020 2020 ek c │ │ │ │ -00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000248f0: 2d2d 2d2b 0a7c 6939 203a 2070 6565 6b20 ---+.|i9 : peek │ │ │ │ +00024900: 6320 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ +00024910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00024970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000249a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000249b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000249d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249f0: 2020 2020 2032 2020 2020 2020 3320 2020 2 3 │ │ │ │ -00024a00: 2020 2034 2020 2020 2020 2035 2020 2020 4 5 │ │ │ │ -00024a10: 2020 2036 2020 7c0a 7c6f 3920 3d20 4d75 6 |.|o9 = Mu │ │ │ │ -00024a20: 7461 626c 6548 6173 6854 6162 6c65 7b53 tableHashTable{S │ │ │ │ -00024a30: 6567 7265 4c69 7374 203d 3e20 7b30 2c20 egreList => {0, │ │ │ │ -00024a40: 302c 2036 6820 2c20 2d33 3068 202c 2031 0, 6h , -30h , 1 │ │ │ │ -00024a50: 3134 6820 2c20 2d33 3930 6820 2c20 3132 14h , -390h , 12 │ │ │ │ -00024a60: 3636 6820 7d7d 7c0a 7c20 2020 2020 2020 66h }}|.| │ │ │ │ -00024a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a90: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00024aa0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00024ab0: 2020 2031 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ -00024ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ae0: 2020 2032 2020 2020 3320 2020 2034 2020 2 3 4 │ │ │ │ -00024af0: 2020 3520 2020 2036 2020 2020 2020 2020 5 6 │ │ │ │ -00024b00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024b10: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ -00024b20: 6c69 7374 203d 3e20 7b31 2c20 3368 202c list => {1, 3h , │ │ │ │ -00024b30: 2033 6820 2c20 3368 202c 2033 6820 2c20 3h , 3h , 3h , │ │ │ │ -00024b40: 3368 202c 2033 6820 7d20 2020 2020 2020 3h , 3h } │ │ │ │ -00024b50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b70: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00024b80: 2020 2031 2020 2020 3120 2020 2031 2020 1 1 1 │ │ │ │ -00024b90: 2020 3120 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ -00024ba0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bc0: 2020 2020 2020 2020 2020 2020 2036 2020 6 │ │ │ │ -00024bd0: 2020 2020 2035 2020 2020 2020 2034 2020 5 4 │ │ │ │ -00024be0: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ -00024bf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024c00: 2020 2020 2020 2020 2020 2020 2020 2053 S │ │ │ │ -00024c10: 6567 7265 203d 3e20 3132 3636 6820 202d egre => 1266h - │ │ │ │ -00024c20: 2033 3930 6820 202b 2031 3134 6820 202d 390h + 114h - │ │ │ │ -00024c30: 2033 3068 2020 2b20 3668 2020 2020 2020 30h + 6h │ │ │ │ -00024c40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c60: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00024c70: 2020 2020 2031 2020 2020 2020 2031 2020 1 1 │ │ │ │ -00024c80: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00024c90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024cb0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -00024cc0: 2020 3520 2020 2020 2034 2020 2020 2020 5 4 │ │ │ │ -00024cd0: 3320 2020 2020 3220 2020 2020 2020 2020 3 2 │ │ │ │ -00024ce0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024cf0: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024d00: 6865 726e 203d 3e20 3930 6820 202d 2031 hern => 90h - 1 │ │ │ │ -00024d10: 3268 2020 2b20 3330 6820 202b 2031 3268 2h + 30h + 12h │ │ │ │ -00024d20: 2020 2b20 3668 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00024d30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d50: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00024d60: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00024d70: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ -00024d80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024da0: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -00024db0: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -00024dc0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00024dd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024de0: 2020 2020 2020 2020 2020 2020 2020 2043 C │ │ │ │ -00024df0: 4620 3d3e 2039 3068 2020 2d20 3132 6820 F => 90h - 12h │ │ │ │ -00024e00: 202b 2033 3068 2020 2b20 3132 6820 202b + 30h + 12h + │ │ │ │ -00024e10: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00024e20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e40: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00024e50: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00024e60: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00024e70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000249c0: 2020 3220 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ +000249d0: 3420 2020 2020 2020 3520 2020 2020 2020 4 5 │ │ │ │ +000249e0: 3620 207c 0a7c 6f39 203d 204d 7574 6162 6 |.|o9 = Mutab │ │ │ │ +000249f0: 6c65 4861 7368 5461 626c 657b 5365 6772 leHashTable{Segr │ │ │ │ +00024a00: 654c 6973 7420 3d3e 207b 302c 2030 2c20 eList => {0, 0, │ │ │ │ +00024a10: 3668 202c 202d 3330 6820 2c20 3131 3468 6h , -30h , 114h │ │ │ │ +00024a20: 202c 202d 3339 3068 202c 2031 3236 3668 , -390h , 1266h │ │ │ │ +00024a30: 207d 7d7c 0a7c 2020 2020 2020 2020 2020 }}|.| │ │ │ │ +00024a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024a60: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00024a70: 3120 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00024a80: 3120 207c 0a7c 2020 2020 2020 2020 2020 1 |.| │ │ │ │ +00024a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024ab0: 3220 2020 2033 2020 2020 3420 2020 2035 2 3 4 5 │ │ │ │ +00024ac0: 2020 2020 3620 2020 2020 2020 2020 2020 6 │ │ │ │ +00024ad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ae0: 2020 2020 2020 2020 2020 2020 476c 6973 Glis │ │ │ │ +00024af0: 7420 3d3e 207b 312c 2033 6820 2c20 3368 t => {1, 3h , 3h │ │ │ │ +00024b00: 202c 2033 6820 2c20 3368 202c 2033 6820 , 3h , 3h , 3h │ │ │ │ +00024b10: 2c20 3368 207d 2020 2020 2020 2020 2020 , 3h } │ │ │ │ +00024b20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b40: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +00024b50: 3120 2020 2031 2020 2020 3120 2020 2031 1 1 1 1 │ │ │ │ +00024b60: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ +00024b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024b90: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ +00024ba0: 2020 3520 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ +00024bb0: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ +00024bc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024bd0: 2020 2020 2020 2020 2020 2020 5365 6772 Segr │ │ │ │ +00024be0: 6520 3d3e 2031 3236 3668 2020 2d20 3339 e => 1266h - 39 │ │ │ │ +00024bf0: 3068 2020 2b20 3131 3468 2020 2d20 3330 0h + 114h - 30 │ │ │ │ +00024c00: 6820 202b 2036 6820 2020 2020 2020 2020 h + 6h │ │ │ │ +00024c10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c30: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00024c40: 2020 3120 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024c50: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +00024c60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024c80: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ +00024c90: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ +00024ca0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00024cb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024cc0: 2020 2020 2020 2020 2020 2020 4368 6572 Cher │ │ │ │ +00024cd0: 6e20 3d3e 2039 3068 2020 2d20 3132 6820 n => 90h - 12h │ │ │ │ +00024ce0: 202b 2033 3068 2020 2b20 3132 6820 202b + 30h + 12h + │ │ │ │ +00024cf0: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ +00024d00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d20: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ +00024d30: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00024d40: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024d50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024d70: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00024d80: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +00024d90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00024da0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024db0: 2020 2020 2020 2020 2020 2020 4346 203d CF = │ │ │ │ +00024dc0: 3e20 3930 6820 202d 2031 3268 2020 2b20 > 90h - 12h + │ │ │ │ +00024dd0: 3330 6820 202b 2031 3268 2020 2b20 3668 30h + 12h + 6h │ │ │ │ +00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024df0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e10: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00024e20: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00024e30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024e40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024e60: 2020 2036 2020 2020 2035 2020 2020 2034 6 5 4 │ │ │ │ +00024e70: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ 00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e90: 2020 2020 2020 3620 2020 2020 3520 2020 6 5 │ │ │ │ -00024ea0: 2020 3420 2020 2020 3320 2020 2020 3220 4 3 2 │ │ │ │ -00024eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024ed0: 2020 2020 2020 2020 2020 2020 2020 2047 G │ │ │ │ -00024ee0: 203d 3e20 3368 2020 2b20 3368 2020 2b20 => 3h + 3h + │ │ │ │ -00024ef0: 3368 2020 2b20 3368 2020 2b20 3368 2020 3h + 3h + 3h │ │ │ │ -00024f00: 2b20 3368 2020 2b20 3120 2020 2020 2020 + 3h + 1 │ │ │ │ -00024f10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00024f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f30: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ -00024f40: 2020 3120 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ -00024f50: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -00024f60: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00024e90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ea0: 2020 2020 2020 2020 2020 2020 4720 3d3e G => │ │ │ │ +00024eb0: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ +00024ec0: 202b 2033 6820 202b 2033 6820 202b 2033 + 3h + 3h + 3 │ │ │ │ +00024ed0: 6820 202b 2031 2020 2020 2020 2020 2020 h + 1 │ │ │ │ +00024ee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00024ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024f00: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ +00024f10: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00024f20: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00024f30: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00024f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00024f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00024f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00024fb0: 2d2d 2d2d 2d2d 2b0a 7c69 3130 203a 2073 ------+.|i10 : s │ │ │ │ -00024fc0: 6567 3d53 6567 7265 2820 492c 204f 7574 eg=Segre( I, Out │ │ │ │ -00024fd0: 7075 743d 3e48 6173 6846 6f72 6d29 2020 put=>HashForm) │ │ │ │ +00024f80: 2d2d 2d2b 0a7c 6931 3020 3a20 7365 673d ---+.|i10 : seg= │ │ │ │ +00024f90: 5365 6772 6528 2049 2c20 4f75 7470 7574 Segre( I, Output │ │ │ │ +00024fa0: 3d3e 4861 7368 466f 726d 2920 2020 2020 =>HashForm) │ │ │ │ +00024fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00024fd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00024fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025050: 2020 2020 2020 7c0a 7c6f 3130 203d 204d |.|o10 = M │ │ │ │ -00025060: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025070: 2e2e 2e34 2e2e 2e7d 2020 2020 2020 2020 ...4...} │ │ │ │ +00025020: 2020 207c 0a7c 6f31 3020 3d20 4d75 7461 |.|o10 = Muta │ │ │ │ +00025030: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ +00025040: 342e 2e2e 7d20 2020 2020 2020 2020 2020 4...} │ │ │ │ +00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000250c0: 2020 207c 0a7c 6f31 3020 3a20 4d75 7461 |.|o10 : Muta │ │ │ │ +000250d0: 626c 6548 6173 6854 6162 6c65 2020 2020 bleHashTable │ │ │ │ 000250e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250f0: 2020 2020 2020 7c0a 7c6f 3130 203a 204d |.|o10 : M │ │ │ │ -00025100: 7574 6162 6c65 4861 7368 5461 626c 6520 utableHashTable │ │ │ │ -00025110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025140: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000250f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025110: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00025120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025190: 2d2d 2d2d 2d2d 2b0a 7c69 3131 203a 2070 ------+.|i11 : p │ │ │ │ -000251a0: 6565 6b20 7365 6720 2020 2020 2020 2020 eek seg │ │ │ │ -000251b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025160: 2d2d 2d2b 0a7c 6931 3120 3a20 7065 656b ---+.|i11 : peek │ │ │ │ +00025170: 2073 6567 2020 2020 2020 2020 2020 2020 seg │ │ │ │ +00025180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000251a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000251b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000251c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000251e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000251e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000251f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025230: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025260: 2020 2020 2020 3220 2020 2020 2033 2020 2 3 │ │ │ │ -00025270: 2020 2020 3420 2020 2020 2020 3520 2020 4 5 │ │ │ │ -00025280: 2020 2020 2020 7c0a 7c6f 3131 203d 204d |.|o11 = M │ │ │ │ -00025290: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -000252a0: 5365 6772 654c 6973 7420 3d3e 207b 302c SegreList => {0, │ │ │ │ -000252b0: 2030 2c20 3668 202c 202d 3330 6820 2c20 0, 6h , -30h , │ │ │ │ -000252c0: 3131 3468 202c 202d 3339 3068 202c 2020 114h , -390h , │ │ │ │ -000252d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000252e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025300: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00025310: 2020 2020 3120 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00025320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025350: 2020 2020 3220 2020 2033 2020 2020 3420 2 3 4 │ │ │ │ -00025360: 2020 2035 2020 2020 3620 2020 2020 2020 5 6 │ │ │ │ -00025370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025390: 476c 6973 7420 3d3e 207b 312c 2033 6820 Glist => {1, 3h │ │ │ │ -000253a0: 2c20 3368 202c 2033 6820 2c20 3368 202c , 3h , 3h , 3h , │ │ │ │ -000253b0: 2033 6820 2c20 3368 207d 2020 2020 2020 3h , 3h } │ │ │ │ -000253c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253e0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000253f0: 2020 2020 3120 2020 2031 2020 2020 3120 1 1 1 │ │ │ │ -00025400: 2020 2031 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00025410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025430: 2020 2020 2020 2020 2020 2020 2020 3620 6 │ │ │ │ -00025440: 2020 2020 2020 3520 2020 2020 2020 3420 5 4 │ │ │ │ -00025450: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ -00025460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025480: 5365 6772 6520 3d3e 2031 3236 3668 2020 Segre => 1266h │ │ │ │ -00025490: 2d20 3339 3068 2020 2b20 3131 3468 2020 - 390h + 114h │ │ │ │ -000254a0: 2d20 3330 6820 202b 2036 6820 2020 2020 - 30h + 6h │ │ │ │ -000254b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254d0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -000254e0: 2020 2020 2020 3120 2020 2020 2020 3120 1 1 │ │ │ │ -000254f0: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025500: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025230: 2020 2032 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ +00025240: 2034 2020 2020 2020 2035 2020 2020 2020 4 5 │ │ │ │ +00025250: 2020 207c 0a7c 6f31 3120 3d20 4d75 7461 |.|o11 = Muta │ │ │ │ +00025260: 626c 6548 6173 6854 6162 6c65 7b53 6567 bleHashTable{Seg │ │ │ │ +00025270: 7265 4c69 7374 203d 3e20 7b30 2c20 302c reList => {0, 0, │ │ │ │ +00025280: 2036 6820 2c20 2d33 3068 202c 2031 3134 6h , -30h , 114 │ │ │ │ +00025290: 6820 2c20 2d33 3930 6820 2c20 2020 2020 h , -390h , │ │ │ │ +000252a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000252b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000252d0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +000252e0: 2031 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +000252f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025320: 2032 2020 2020 3320 2020 2034 2020 2020 2 3 4 │ │ │ │ +00025330: 3520 2020 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ +00025340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025350: 2020 2020 2020 2020 2020 2020 2047 6c69 Gli │ │ │ │ +00025360: 7374 203d 3e20 7b31 2c20 3368 202c 2033 st => {1, 3h , 3 │ │ │ │ +00025370: 6820 2c20 3368 202c 2033 6820 2c20 3368 h , 3h , 3h , 3h │ │ │ │ +00025380: 202c 2033 6820 7d20 2020 2020 2020 2020 , 3h } │ │ │ │ +00025390: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000253a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000253b0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +000253c0: 2031 2020 2020 3120 2020 2031 2020 2020 1 1 1 │ │ │ │ +000253d0: 3120 2020 2031 2020 2020 2020 2020 2020 1 1 │ │ │ │ +000253e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000253f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025400: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ +00025410: 2020 2035 2020 2020 2020 2034 2020 2020 5 4 │ │ │ │ +00025420: 2020 3320 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ +00025430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025440: 2020 2020 2020 2020 2020 2020 2053 6567 Seg │ │ │ │ +00025450: 7265 203d 3e20 3132 3636 6820 202d 2033 re => 1266h - 3 │ │ │ │ +00025460: 3930 6820 202b 2031 3134 6820 202d 2033 90h + 114h - 3 │ │ │ │ +00025470: 3068 2020 2b20 3668 2020 2020 2020 2020 0h + 6h │ │ │ │ +00025480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000254a0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +000254b0: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ +000254c0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +000254d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000254e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000254f0: 2020 2020 3620 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00025500: 3420 2020 2020 3320 2020 2020 3220 2020 4 3 2 │ │ │ │ 00025510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025520: 2020 2020 2020 2036 2020 2020 2035 2020 6 5 │ │ │ │ -00025530: 2020 2034 2020 2020 2033 2020 2020 2032 4 3 2 │ │ │ │ -00025540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025570: 4720 3d3e 2033 6820 202b 2033 6820 202b G => 3h + 3h + │ │ │ │ -00025580: 2033 6820 202b 2033 6820 202b 2033 6820 3h + 3h + 3h │ │ │ │ -00025590: 202b 2033 6820 202b 2031 2020 2020 2020 + 3h + 1 │ │ │ │ -000255a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000255b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000255c0: 2020 2020 2020 2031 2020 2020 2031 2020 1 1 │ │ │ │ -000255d0: 2020 2031 2020 2020 2031 2020 2020 2031 1 1 1 │ │ │ │ -000255e0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -000255f0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +00025520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025530: 2020 2020 2020 2020 2020 2020 2047 203d G = │ │ │ │ +00025540: 3e20 3368 2020 2b20 3368 2020 2b20 3368 > 3h + 3h + 3h │ │ │ │ +00025550: 2020 2b20 3368 2020 2b20 3368 2020 2b20 + 3h + 3h + │ │ │ │ +00025560: 3368 2020 2b20 3120 2020 2020 2020 2020 3h + 1 │ │ │ │ +00025570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025590: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +000255a0: 3120 2020 2020 3120 2020 2020 3120 2020 1 1 1 │ │ │ │ +000255b0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000255c0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000255d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000255f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025640: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3620 ------|.| 6 │ │ │ │ +00025610: 2d2d 2d7c 0a7c 2020 2020 2036 2020 2020 ---|.| 6 │ │ │ │ +00025620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025660: 2020 207c 0a7c 3132 3636 6820 7d7d 2020 |.|1266h }} │ │ │ │ 00025670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025690: 2020 2020 2020 7c0a 7c31 3236 3668 207d |.|1266h } │ │ │ │ -000256a0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -000256b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000256a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000256b0: 2020 207c 0a7c 2020 2020 2031 2020 2020 |.| 1 │ │ │ │ 000256c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000256e0: 2020 2020 2020 7c0a 7c20 2020 2020 3120 |.| 1 │ │ │ │ +000256e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000256f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025730: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00025700: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00025710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025780: 2d2d 2d2d 2d2d 2b0a 7c69 3132 203a 2065 ------+.|i12 : e │ │ │ │ -00025790: 753d 4575 6c65 7228 2049 2c20 4f75 7470 u=Euler( I, Outp │ │ │ │ -000257a0: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +00025750: 2d2d 2d2b 0a7c 6931 3220 3a20 6575 3d45 ---+.|i12 : eu=E │ │ │ │ +00025760: 756c 6572 2820 492c 204f 7574 7075 743d uler( I, Output= │ │ │ │ +00025770: 3e48 6173 6846 6f72 6d29 2020 2020 2020 >HashForm) │ │ │ │ +00025780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000257a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000257b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000257d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000257e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025820: 2020 2020 2020 7c0a 7c6f 3132 203d 204d |.|o12 = M │ │ │ │ -00025830: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025840: 2e2e 2e35 2e2e 2e7d 2020 2020 2020 2020 ...5...} │ │ │ │ +000257f0: 2020 207c 0a7c 6f31 3220 3d20 4d75 7461 |.|o12 = Muta │ │ │ │ +00025800: 626c 6548 6173 6854 6162 6c65 7b2e 2e2e bleHashTable{... │ │ │ │ +00025810: 352e 2e2e 7d20 2020 2020 2020 2020 2020 5...} │ │ │ │ +00025820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00025870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025890: 2020 207c 0a7c 6f31 3220 3a20 4d75 7461 |.|o12 : Muta │ │ │ │ +000258a0: 626c 6548 6173 6854 6162 6c65 2020 2020 bleHashTable │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258c0: 2020 2020 2020 7c0a 7c6f 3132 203a 204d |.|o12 : M │ │ │ │ -000258d0: 7574 6162 6c65 4861 7368 5461 626c 6520 utableHashTable │ │ │ │ -000258e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025910: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000258c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000258d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000258e0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000258f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025960: 2d2d 2d2d 2d2d 2b0a 7c69 3133 203a 2070 ------+.|i13 : p │ │ │ │ -00025970: 6565 6b20 6575 2020 2020 2020 2020 2020 eek eu │ │ │ │ -00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025930: 2d2d 2d2b 0a7c 6931 3320 3a20 7065 656b ---+.|i13 : peek │ │ │ │ +00025940: 2065 7520 2020 2020 2020 2020 2020 2020 eu │ │ │ │ +00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a00: 2020 2020 2020 7c0a 7c6f 3133 203d 204d |.|o13 = M │ │ │ │ -00025a10: 7574 6162 6c65 4861 7368 5461 626c 657b utableHashTable{ │ │ │ │ -00025a20: 4575 6c65 7220 3d3e 2031 3020 2020 2020 Euler => 10 │ │ │ │ +000259d0: 2020 207c 0a7c 6f31 3320 3d20 4d75 7461 |.|o13 = Muta │ │ │ │ +000259e0: 626c 6548 6173 6854 6162 6c65 7b45 756c bleHashTable{Eul │ │ │ │ +000259f0: 6572 203d 3e20 3130 2020 2020 2020 2020 er => 10 │ │ │ │ +00025a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025a10: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +00025a20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00025a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a40: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ -00025a50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a70: 2020 2020 2020 2020 2020 2020 3620 2020 6 │ │ │ │ -00025a80: 2020 2035 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ -00025a90: 2033 2020 2020 2020 3220 2020 2020 2020 3 2 │ │ │ │ -00025aa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ac0: 7b30 2c20 317d 203d 3e20 3268 2020 2b20 {0, 1} => 2h + │ │ │ │ -00025ad0: 3233 6820 202b 2033 3268 2020 2b20 3333 23h + 32h + 33 │ │ │ │ -00025ae0: 6820 202b 2031 3868 2020 2b20 3568 2020 h + 18h + 5h │ │ │ │ -00025af0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b10: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00025b20: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -00025b30: 2031 2020 2020 2020 3120 2020 2020 3120 1 1 1 │ │ │ │ -00025b40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b60: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -00025b70: 2035 2020 2020 2020 3420 2020 2020 2033 5 4 3 │ │ │ │ -00025b80: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025bb0: 4353 4d20 3d3e 2031 3068 2020 2b20 3132 CSM => 10h + 12 │ │ │ │ -00025bc0: 6820 202b 2032 3268 2020 2b20 3136 6820 h + 22h + 16h │ │ │ │ -00025bd0: 202b 2036 6820 2020 2020 2020 2020 2020 + 6h │ │ │ │ -00025be0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c00: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00025c10: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -00025c20: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ -00025c30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c50: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -00025c60: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -00025c70: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025c80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ca0: 7b30 7d20 3d3e 2036 6820 202b 2031 3868 {0} => 6h + 18h │ │ │ │ -00025cb0: 2020 2b20 3236 6820 202b 2032 3268 2020 + 26h + 22h │ │ │ │ -00025cc0: 2b20 3130 6820 202b 2032 6820 2020 2020 + 10h + 2h │ │ │ │ -00025cd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cf0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00025d00: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00025d10: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025d20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d40: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ -00025d50: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ -00025d60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00025d70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d90: 7b31 7d20 3d3e 2036 6820 202b 2031 3768 {1} => 6h + 17h │ │ │ │ -00025da0: 2020 2b20 3238 6820 202b 2032 3768 2020 + 28h + 27h │ │ │ │ -00025db0: 2b20 3134 6820 202b 2033 6820 2020 2020 + 14h + 3h │ │ │ │ -00025dc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00025dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025de0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00025df0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ -00025e00: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00025e10: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00025a40: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +00025a50: 3520 2020 2020 2034 2020 2020 2020 3320 5 4 3 │ │ │ │ +00025a60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00025a70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025a80: 2020 2020 2020 2020 2020 2020 207b 302c {0, │ │ │ │ +00025a90: 2031 7d20 3d3e 2032 6820 202b 2032 3368 1} => 2h + 23h │ │ │ │ +00025aa0: 2020 2b20 3332 6820 202b 2033 3368 2020 + 32h + 33h │ │ │ │ +00025ab0: 2b20 3138 6820 202b 2035 6820 2020 2020 + 18h + 5h │ │ │ │ +00025ac0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025ae0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +00025af0: 3120 2020 2020 2031 2020 2020 2020 3120 1 1 1 │ │ │ │ +00025b00: 2020 2020 2031 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025b10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025b30: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ +00025b40: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00025b50: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025b60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025b70: 2020 2020 2020 2020 2020 2020 2043 534d CSM │ │ │ │ +00025b80: 203d 3e20 3130 6820 202b 2031 3268 2020 => 10h + 12h │ │ │ │ +00025b90: 2b20 3232 6820 202b 2031 3668 2020 2b20 + 22h + 16h + │ │ │ │ +00025ba0: 3668 2020 2020 2020 2020 2020 2020 2020 6h │ │ │ │ +00025bb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025bd0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +00025be0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00025bf0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00025c00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025c20: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ +00025c30: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ +00025c40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025c50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025c60: 2020 2020 2020 2020 2020 2020 207b 307d {0} │ │ │ │ +00025c70: 203d 3e20 3668 2020 2b20 3138 6820 202b => 6h + 18h + │ │ │ │ +00025c80: 2032 3668 2020 2b20 3232 6820 202b 2031 26h + 22h + 1 │ │ │ │ +00025c90: 3068 2020 2b20 3268 2020 2020 2020 2020 0h + 2h │ │ │ │ +00025ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025cc0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00025cd0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025ce0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00025cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025d10: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ +00025d20: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ +00025d30: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00025d40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025d50: 2020 2020 2020 2020 2020 2020 207b 317d {1} │ │ │ │ +00025d60: 203d 3e20 3668 2020 2b20 3137 6820 202b => 6h + 17h + │ │ │ │ +00025d70: 2032 3868 2020 2b20 3237 6820 202b 2031 28h + 27h + 1 │ │ │ │ +00025d80: 3468 2020 2b20 3368 2020 2020 2020 2020 4h + 3h │ │ │ │ +00025d90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00025da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00025db0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ +00025dc0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00025dd0: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00025de0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00025df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00025e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00025e60: 2d2d 2d2d 2d2d 2b0a 0a54 6865 204d 7574 ------+..The Mut │ │ │ │ -00025e70: 6162 6c65 4861 7368 5461 626c 6520 7265 ableHashTable re │ │ │ │ -00025e80: 7475 726e 6564 2077 6974 6820 7468 6520 turned with the │ │ │ │ -00025e90: 6f70 7469 6f6e 204f 7574 7075 743d 3e48 option Output=>H │ │ │ │ -00025ea0: 6173 6846 6f72 6d20 636f 6e74 6169 6e73 ashForm contains │ │ │ │ -00025eb0: 0a64 6966 6665 7265 6e74 2069 6e66 6f72 .different infor │ │ │ │ -00025ec0: 6d61 7469 6f6e 2064 6570 656e 6469 6e67 mation depending │ │ │ │ -00025ed0: 206f 6e20 7468 6520 6d65 7468 6f64 2077 on the method w │ │ │ │ -00025ee0: 6974 6820 7768 6963 6820 6974 2069 7320 ith which it is │ │ │ │ -00025ef0: 7573 6564 2e0a 4164 6469 7469 6f6e 616c used..Additional │ │ │ │ -00025f00: 6c79 2069 6620 7468 6520 6f70 7469 6f6e ly if the option │ │ │ │ -00025f10: 202a 6e6f 7465 2049 6e70 7574 4973 536d *note InputIsSm │ │ │ │ -00025f20: 6f6f 7468 3a20 496e 7075 7449 7353 6d6f ooth: InputIsSmo │ │ │ │ -00025f30: 6f74 682c 2069 7320 7573 6564 2074 6865 oth, is used the │ │ │ │ -00025f40: 6e20 7468 650a 6861 7368 2074 6162 6c65 n the.hash table │ │ │ │ -00025f50: 2072 6574 7572 6e65 6420 6279 2074 6865 returned by the │ │ │ │ -00025f60: 206d 6574 686f 6473 2045 756c 6572 2061 methods Euler a │ │ │ │ -00025f70: 6e64 2043 534d 2077 696c 6c20 6265 2074 nd CSM will be t │ │ │ │ -00025f80: 6865 2073 616d 6520 6173 2074 6861 740a he same as that. │ │ │ │ -00025f90: 7265 7475 726e 6564 2062 7920 4368 6572 returned by Cher │ │ │ │ -00025fa0: 6e2e 2057 6865 6e20 7573 696e 6720 7468 n. When using th │ │ │ │ -00025fb0: 6520 2a6e 6f74 6520 4353 4d3a 2043 534d e *note CSM: CSM │ │ │ │ -00025fc0: 2c20 2063 6f6d 6d61 6e64 2069 6e20 7468 , command in th │ │ │ │ -00025fd0: 6520 6465 6661 756c 740a 636f 6e66 6967 e default.config │ │ │ │ -00025fe0: 7572 6174 696f 6e73 2028 7468 6174 2069 urations (that i │ │ │ │ -00025ff0: 7320 2a6e 6f74 6520 4d65 7468 6f64 3a20 s *note Method: │ │ │ │ -00026000: 4d65 7468 6f64 2c3d 3e49 6e63 6c75 7369 Method,=>Inclusi │ │ │ │ -00026010: 6f6e 4578 636c 7573 696f 6e2c 202a 6e6f onExclusion, *no │ │ │ │ -00026020: 7465 0a43 6f6d 704d 6574 686f 643a 2043 te.CompMethod: C │ │ │ │ -00026030: 6f6d 704d 6574 686f 642c 3d3e 5072 6f6a ompMethod,=>Proj │ │ │ │ -00026040: 6563 7469 7665 4465 6772 6565 2920 7468 ectiveDegree) th │ │ │ │ -00026050: 6572 6520 6973 2074 6865 2061 6464 6974 ere is the addit │ │ │ │ -00026060: 696f 6e61 6c20 6f70 7469 6f6e 2074 6f0a ional option to. │ │ │ │ -00026070: 7365 7420 4f75 7470 7574 3d3e 4861 7368 set Output=>Hash │ │ │ │ -00026080: 466f 726d 584c 2e20 5468 6973 2072 6574 FormXL. This ret │ │ │ │ -00026090: 7572 6e73 2061 6c6c 2074 6865 2075 7375 urns all the usu │ │ │ │ -000260a0: 616c 2069 6e66 6f72 6d61 7469 6f6e 2074 al information t │ │ │ │ -000260b0: 6861 740a 4f75 7470 7574 3d3e 4861 7368 hat.Output=>Hash │ │ │ │ -000260c0: 466f 726d 2077 6f75 6c64 2066 6f72 2074 Form would for t │ │ │ │ -000260d0: 6869 7320 636f 6e66 6967 7572 6174 696f his configuratio │ │ │ │ -000260e0: 6e20 7769 7468 2074 6865 2061 6464 6974 n with the addit │ │ │ │ -000260f0: 696f 6e20 6f66 2074 6865 0a70 726f 6a65 ion of the.proje │ │ │ │ -00026100: 6374 6976 6520 6465 6772 6565 7320 616e ctive degrees an │ │ │ │ -00026110: 6420 5365 6772 6520 636c 6173 7365 7320 d Segre classes │ │ │ │ -00026120: 6f66 2073 696e 6775 6c61 7269 7479 2073 of singularity s │ │ │ │ -00026130: 7562 7363 6865 6d65 7320 6765 6e65 7261 ubschemes genera │ │ │ │ -00026140: 7465 6420 6279 2074 6865 0a68 7970 6572 ted by the.hyper │ │ │ │ -00026150: 7375 7266 6163 6573 2063 6f6e 7369 6465 surfaces conside │ │ │ │ -00026160: 7265 6420 696e 2074 6865 2069 6e63 6c75 red in the inclu │ │ │ │ -00026170: 7369 6f6e 2f65 7863 6c75 7369 6f6e 2070 sion/exclusion p │ │ │ │ -00026180: 726f 6365 6475 7265 2c20 7468 6174 2069 rocedure, that i │ │ │ │ -00026190: 7320 696e 0a66 696e 6469 6e67 2074 6865 s in.finding the │ │ │ │ -000261a0: 2043 534d 2063 6c61 7373 206f 6620 616c CSM class of al │ │ │ │ -000261b0: 6c20 6879 7065 7273 7572 6661 6365 7320 l hypersurfaces │ │ │ │ -000261c0: 6765 6e65 7261 7465 6420 6279 2074 616b generated by tak │ │ │ │ -000261d0: 696e 6720 6120 7072 6f64 7563 7420 6f66 ing a product of │ │ │ │ -000261e0: 0a73 6f6d 6520 7375 6273 6574 7320 6f66 .some subsets of │ │ │ │ -000261f0: 2067 656e 6572 6174 6f72 7320 6f66 2074 generators of t │ │ │ │ -00026200: 6865 2069 6e70 7574 2069 6465 616c 2e20 he input ideal. │ │ │ │ -00026210: 4e6f 7465 2074 6861 742c 2073 696e 6365 Note that, since │ │ │ │ -00026220: 2074 6865 2043 534d 2063 6c61 7373 0a6f the CSM class.o │ │ │ │ -00026230: 6620 6120 7375 6273 6368 656d 6520 6571 f a subscheme eq │ │ │ │ -00026240: 7561 6c73 2074 6865 2043 534d 2063 6c61 uals the CSM cla │ │ │ │ -00026250: 7373 206f 6620 6974 7320 7265 6475 6365 ss of its reduce │ │ │ │ -00026260: 6420 7363 6865 6d65 2c20 6f72 2065 7175 d scheme, or equ │ │ │ │ -00026270: 6976 616c 656e 746c 7920 666f 720a 7573 ivalently for.us │ │ │ │ -00026280: 2074 6865 2043 534d 2063 6c61 7373 2063 the CSM class c │ │ │ │ -00026290: 6f72 7265 7370 6f6e 6469 6e67 2074 6f20 orresponding to │ │ │ │ -000262a0: 616e 2069 6465 616c 2049 2065 7175 616c an ideal I equal │ │ │ │ -000262b0: 7320 7468 6520 4353 4d20 636c 6173 7320 s the CSM class │ │ │ │ -000262c0: 6f66 2074 6865 0a72 6164 6963 616c 206f of the.radical o │ │ │ │ -000262d0: 6620 492c 2074 6865 6e20 696e 7465 726e f I, then intern │ │ │ │ -000262e0: 616c 6c79 2077 6520 616c 7761 7973 2077 ally we always w │ │ │ │ -000262f0: 6f72 6b20 7769 7468 2072 6164 6963 616c ork with radical │ │ │ │ -00026300: 2069 6465 616c 7320 2866 6f72 0a65 6666 ideals (for.eff │ │ │ │ -00026310: 6963 6965 6e63 7920 7265 6173 6f6e 7329 iciency reasons) │ │ │ │ -00026320: 2e20 4865 6e63 6520 7468 6520 7072 6f6a . Hence the proj │ │ │ │ -00026330: 6563 7469 7665 2064 6567 7265 6573 2061 ective degrees a │ │ │ │ -00026340: 6e64 2053 6567 7265 2063 6c61 7373 6573 nd Segre classes │ │ │ │ -00026350: 2063 6f6d 7075 7465 640a 696e 7465 726e computed.intern │ │ │ │ -00026360: 616c 6c79 2077 696c 6c20 6265 2074 686f ally will be tho │ │ │ │ -00026370: 7365 206f 6620 7468 6520 7261 6469 6361 se of the radica │ │ │ │ -00026380: 6c20 6f66 2061 6e20 6964 6561 6c20 6465 l of an ideal de │ │ │ │ -00026390: 6669 6e65 6420 6279 2061 2070 6f6c 796e fined by a polyn │ │ │ │ -000263a0: 6f6d 6961 6c0a 7768 6963 6820 6973 2061 omial.which is a │ │ │ │ -000263b0: 2070 726f 6475 6374 206f 6620 736f 6d65 product of some │ │ │ │ -000263c0: 2073 7562 7365 7420 6f66 2074 6865 2067 subset of the g │ │ │ │ -000263d0: 656e 6572 6174 6f72 732e 2057 6520 696c enerators. We il │ │ │ │ -000263e0: 6c75 7374 7261 7465 2074 6869 7320 7769 lustrate this wi │ │ │ │ -000263f0: 7468 2061 6e0a 6578 616d 706c 6520 6265 th an.example be │ │ │ │ -00026400: 6c6f 772e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d low...+--------- │ │ │ │ +00025e30: 2d2d 2d2b 0a0a 5468 6520 4d75 7461 626c ---+..The Mutabl │ │ │ │ +00025e40: 6548 6173 6854 6162 6c65 2072 6574 7572 eHashTable retur │ │ │ │ +00025e50: 6e65 6420 7769 7468 2074 6865 206f 7074 ned with the opt │ │ │ │ +00025e60: 696f 6e20 4f75 7470 7574 3d3e 4861 7368 ion Output=>Hash │ │ │ │ +00025e70: 466f 726d 2063 6f6e 7461 696e 730a 6469 Form contains.di │ │ │ │ +00025e80: 6666 6572 656e 7420 696e 666f 726d 6174 fferent informat │ │ │ │ +00025e90: 696f 6e20 6465 7065 6e64 696e 6720 6f6e ion depending on │ │ │ │ +00025ea0: 2074 6865 206d 6574 686f 6420 7769 7468 the method with │ │ │ │ +00025eb0: 2077 6869 6368 2069 7420 6973 2075 7365 which it is use │ │ │ │ +00025ec0: 642e 0a41 6464 6974 696f 6e61 6c6c 7920 d..Additionally │ │ │ │ +00025ed0: 6966 2074 6865 206f 7074 696f 6e20 2a6e if the option *n │ │ │ │ +00025ee0: 6f74 6520 496e 7075 7449 7353 6d6f 6f74 ote InputIsSmoot │ │ │ │ +00025ef0: 683a 2049 6e70 7574 4973 536d 6f6f 7468 h: InputIsSmooth │ │ │ │ +00025f00: 2c20 6973 2075 7365 6420 7468 656e 2074 , is used then t │ │ │ │ +00025f10: 6865 0a68 6173 6820 7461 626c 6520 7265 he.hash table re │ │ │ │ +00025f20: 7475 726e 6564 2062 7920 7468 6520 6d65 turned by the me │ │ │ │ +00025f30: 7468 6f64 7320 4575 6c65 7220 616e 6420 thods Euler and │ │ │ │ +00025f40: 4353 4d20 7769 6c6c 2062 6520 7468 6520 CSM will be the │ │ │ │ +00025f50: 7361 6d65 2061 7320 7468 6174 0a72 6574 same as that.ret │ │ │ │ +00025f60: 7572 6e65 6420 6279 2043 6865 726e 2e20 urned by Chern. │ │ │ │ +00025f70: 5768 656e 2075 7369 6e67 2074 6865 202a When using the * │ │ │ │ +00025f80: 6e6f 7465 2043 534d 3a20 4353 4d2c 2020 note CSM: CSM, │ │ │ │ +00025f90: 636f 6d6d 616e 6420 696e 2074 6865 2064 command in the d │ │ │ │ +00025fa0: 6566 6175 6c74 0a63 6f6e 6669 6775 7261 efault.configura │ │ │ │ +00025fb0: 7469 6f6e 7320 2874 6861 7420 6973 202a tions (that is * │ │ │ │ +00025fc0: 6e6f 7465 204d 6574 686f 643a 204d 6574 note Method: Met │ │ │ │ +00025fd0: 686f 642c 3d3e 496e 636c 7573 696f 6e45 hod,=>InclusionE │ │ │ │ +00025fe0: 7863 6c75 7369 6f6e 2c20 2a6e 6f74 650a xclusion, *note. │ │ │ │ +00025ff0: 436f 6d70 4d65 7468 6f64 3a20 436f 6d70 CompMethod: Comp │ │ │ │ +00026000: 4d65 7468 6f64 2c3d 3e50 726f 6a65 6374 Method,=>Project │ │ │ │ +00026010: 6976 6544 6567 7265 6529 2074 6865 7265 iveDegree) there │ │ │ │ +00026020: 2069 7320 7468 6520 6164 6469 7469 6f6e is the addition │ │ │ │ +00026030: 616c 206f 7074 696f 6e20 746f 0a73 6574 al option to.set │ │ │ │ +00026040: 204f 7574 7075 743d 3e48 6173 6846 6f72 Output=>HashFor │ │ │ │ +00026050: 6d58 4c2e 2054 6869 7320 7265 7475 726e mXL. This return │ │ │ │ +00026060: 7320 616c 6c20 7468 6520 7573 7561 6c20 s all the usual │ │ │ │ +00026070: 696e 666f 726d 6174 696f 6e20 7468 6174 information that │ │ │ │ +00026080: 0a4f 7574 7075 743d 3e48 6173 6846 6f72 .Output=>HashFor │ │ │ │ +00026090: 6d20 776f 756c 6420 666f 7220 7468 6973 m would for this │ │ │ │ +000260a0: 2063 6f6e 6669 6775 7261 7469 6f6e 2077 configuration w │ │ │ │ +000260b0: 6974 6820 7468 6520 6164 6469 7469 6f6e ith the addition │ │ │ │ +000260c0: 206f 6620 7468 650a 7072 6f6a 6563 7469 of the.projecti │ │ │ │ +000260d0: 7665 2064 6567 7265 6573 2061 6e64 2053 ve degrees and S │ │ │ │ +000260e0: 6567 7265 2063 6c61 7373 6573 206f 6620 egre classes of │ │ │ │ +000260f0: 7369 6e67 756c 6172 6974 7920 7375 6273 singularity subs │ │ │ │ +00026100: 6368 656d 6573 2067 656e 6572 6174 6564 chemes generated │ │ │ │ +00026110: 2062 7920 7468 650a 6879 7065 7273 7572 by the.hypersur │ │ │ │ +00026120: 6661 6365 7320 636f 6e73 6964 6572 6564 faces considered │ │ │ │ +00026130: 2069 6e20 7468 6520 696e 636c 7573 696f in the inclusio │ │ │ │ +00026140: 6e2f 6578 636c 7573 696f 6e20 7072 6f63 n/exclusion proc │ │ │ │ +00026150: 6564 7572 652c 2074 6861 7420 6973 2069 edure, that is i │ │ │ │ +00026160: 6e0a 6669 6e64 696e 6720 7468 6520 4353 n.finding the CS │ │ │ │ +00026170: 4d20 636c 6173 7320 6f66 2061 6c6c 2068 M class of all h │ │ │ │ +00026180: 7970 6572 7375 7266 6163 6573 2067 656e ypersurfaces gen │ │ │ │ +00026190: 6572 6174 6564 2062 7920 7461 6b69 6e67 erated by taking │ │ │ │ +000261a0: 2061 2070 726f 6475 6374 206f 660a 736f a product of.so │ │ │ │ +000261b0: 6d65 2073 7562 7365 7473 206f 6620 6765 me subsets of ge │ │ │ │ +000261c0: 6e65 7261 746f 7273 206f 6620 7468 6520 nerators of the │ │ │ │ +000261d0: 696e 7075 7420 6964 6561 6c2e 204e 6f74 input ideal. Not │ │ │ │ +000261e0: 6520 7468 6174 2c20 7369 6e63 6520 7468 e that, since th │ │ │ │ +000261f0: 6520 4353 4d20 636c 6173 730a 6f66 2061 e CSM class.of a │ │ │ │ +00026200: 2073 7562 7363 6865 6d65 2065 7175 616c subscheme equal │ │ │ │ +00026210: 7320 7468 6520 4353 4d20 636c 6173 7320 s the CSM class │ │ │ │ +00026220: 6f66 2069 7473 2072 6564 7563 6564 2073 of its reduced s │ │ │ │ +00026230: 6368 656d 652c 206f 7220 6571 7569 7661 cheme, or equiva │ │ │ │ +00026240: 6c65 6e74 6c79 2066 6f72 0a75 7320 7468 lently for.us th │ │ │ │ +00026250: 6520 4353 4d20 636c 6173 7320 636f 7272 e CSM class corr │ │ │ │ +00026260: 6573 706f 6e64 696e 6720 746f 2061 6e20 esponding to an │ │ │ │ +00026270: 6964 6561 6c20 4920 6571 7561 6c73 2074 ideal I equals t │ │ │ │ +00026280: 6865 2043 534d 2063 6c61 7373 206f 6620 he CSM class of │ │ │ │ +00026290: 7468 650a 7261 6469 6361 6c20 6f66 2049 the.radical of I │ │ │ │ +000262a0: 2c20 7468 656e 2069 6e74 6572 6e61 6c6c , then internall │ │ │ │ +000262b0: 7920 7765 2061 6c77 6179 7320 776f 726b y we always work │ │ │ │ +000262c0: 2077 6974 6820 7261 6469 6361 6c20 6964 with radical id │ │ │ │ +000262d0: 6561 6c73 2028 666f 720a 6566 6669 6369 eals (for.effici │ │ │ │ +000262e0: 656e 6379 2072 6561 736f 6e73 292e 2048 ency reasons). H │ │ │ │ +000262f0: 656e 6365 2074 6865 2070 726f 6a65 6374 ence the project │ │ │ │ +00026300: 6976 6520 6465 6772 6565 7320 616e 6420 ive degrees and │ │ │ │ +00026310: 5365 6772 6520 636c 6173 7365 7320 636f Segre classes co │ │ │ │ +00026320: 6d70 7574 6564 0a69 6e74 6572 6e61 6c6c mputed.internall │ │ │ │ +00026330: 7920 7769 6c6c 2062 6520 7468 6f73 6520 y will be those │ │ │ │ +00026340: 6f66 2074 6865 2072 6164 6963 616c 206f of the radical o │ │ │ │ +00026350: 6620 616e 2069 6465 616c 2064 6566 696e f an ideal defin │ │ │ │ +00026360: 6564 2062 7920 6120 706f 6c79 6e6f 6d69 ed by a polynomi │ │ │ │ +00026370: 616c 0a77 6869 6368 2069 7320 6120 7072 al.which is a pr │ │ │ │ +00026380: 6f64 7563 7420 6f66 2073 6f6d 6520 7375 oduct of some su │ │ │ │ +00026390: 6273 6574 206f 6620 7468 6520 6765 6e65 bset of the gene │ │ │ │ +000263a0: 7261 746f 7273 2e20 5765 2069 6c6c 7573 rators. We illus │ │ │ │ +000263b0: 7472 6174 6520 7468 6973 2077 6974 6820 trate this with │ │ │ │ +000263c0: 616e 0a65 7861 6d70 6c65 2062 656c 6f77 an.example below │ │ │ │ +000263d0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +000263e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000263f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026450: 2d2d 2d2d 2b0a 7c69 3134 203a 2063 736d ----+.|i14 : csm │ │ │ │ -00026460: 584c 6861 7368 3d43 534d 2841 2c49 2c4f XLhash=CSM(A,I,O │ │ │ │ -00026470: 7574 7075 743d 3e48 6173 6846 6f72 6d58 utput=>HashFormX │ │ │ │ -00026480: 4c29 2020 2020 2020 2020 2020 2020 2020 L) │ │ │ │ +00026420: 2d2b 0a7c 6931 3420 3a20 6373 6d58 4c68 -+.|i14 : csmXLh │ │ │ │ +00026430: 6173 683d 4353 4d28 412c 492c 4f75 7470 ash=CSM(A,I,Outp │ │ │ │ +00026440: 7574 3d3e 4861 7368 466f 726d 584c 2920 ut=>HashFormXL) │ │ │ │ +00026450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000264a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264f0: 2020 2020 7c0a 7c6f 3134 203d 204d 7574 |.|o14 = Mut │ │ │ │ -00026500: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -00026510: 2e31 302e 2e2e 7d20 2020 2020 2020 2020 .10...} │ │ │ │ +000264c0: 207c 0a7c 6f31 3420 3d20 4d75 7461 626c |.|o14 = Mutabl │ │ │ │ +000264d0: 6548 6173 6854 6162 6c65 7b2e 2e2e 3130 eHashTable{...10 │ │ │ │ +000264e0: 2e2e 2e7d 2020 2020 2020 2020 2020 2020 ...} │ │ │ │ +000264f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026540: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026560: 207c 0a7c 6f31 3420 3a20 4d75 7461 626c |.|o14 : Mutabl │ │ │ │ +00026570: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ 00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026590: 2020 2020 7c0a 7c6f 3134 203a 204d 7574 |.|o14 : Mut │ │ │ │ -000265a0: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -000265b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00026590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000265a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000265b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000265c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000265e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000265f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026630: 2d2d 2d2d 2b0a 7c69 3135 203a 2070 6565 ----+.|i15 : pee │ │ │ │ -00026640: 6b20 6373 6d58 4c68 6173 6820 2020 2020 k csmXLhash │ │ │ │ -00026650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026600: 2d2b 0a7c 6931 3520 3a20 7065 656b 2063 -+.|i15 : peek c │ │ │ │ +00026610: 736d 584c 6861 7368 2020 2020 2020 2020 smXLhash │ │ │ │ +00026620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026680: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266d0: 2020 2020 7c0a 7c6f 3135 203d 204d 7574 |.|o15 = Mut │ │ │ │ -000266e0: 6162 6c65 4861 7368 5461 626c 657b 4728 ableHashTable{G( │ │ │ │ -000266f0: 4a61 636f 6269 616e 297b 307d 203d 3e20 Jacobian){0} => │ │ │ │ -00026700: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00026710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026720: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026730: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -00026740: 6772 6528 4a61 636f 6269 616e 297b 307d gre(Jacobian){0} │ │ │ │ -00026750: 203d 3e20 3020 2020 2020 2020 2020 2020 => 0 │ │ │ │ +000266a0: 207c 0a7c 6f31 3520 3d20 4d75 7461 626c |.|o15 = Mutabl │ │ │ │ +000266b0: 6548 6173 6854 6162 6c65 7b47 284a 6163 eHashTable{G(Jac │ │ │ │ +000266c0: 6f62 6961 6e29 7b30 7d20 3d3e 2030 2020 obian){0} => 0 │ │ │ │ +000266d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000266e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000266f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026700: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ +00026710: 284a 6163 6f62 6961 6e29 7b30 7d20 3d3e (Jacobian){0} => │ │ │ │ +00026720: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00026730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026770: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267a0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ -000267b0: 2020 2035 2020 2020 2020 2034 2020 2020 5 4 │ │ │ │ -000267c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000267d0: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -000267e0: 6772 6528 4a61 636f 6269 616e 297b 302c gre(Jacobian){0, │ │ │ │ -000267f0: 2031 7d20 3d3e 2033 3930 6820 202d 2033 1} => 390h - 3 │ │ │ │ -00026800: 3836 6820 202b 2031 3530 6820 202d 2020 86h + 150h - │ │ │ │ -00026810: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026840: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00026850: 2020 2031 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026860: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026890: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -000268a0: 2035 2020 2020 2033 2020 2020 2032 2020 5 3 2 │ │ │ │ -000268b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000268c0: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -000268d0: 6772 6528 4a61 636f 6269 616e 297b 317d gre(Jacobian){1} │ │ │ │ -000268e0: 203d 3e20 2d20 3136 3068 2020 2b20 3332 => - 160h + 32 │ │ │ │ -000268f0: 6820 202d 2034 6820 202b 2032 6820 2020 h - 4h + 2h │ │ │ │ -00026900: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026930: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00026940: 2031 2020 2020 2031 2020 2020 2031 2020 1 1 1 │ │ │ │ -00026950: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026980: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ -00026990: 2020 2020 3420 2020 2020 2033 2020 2020 4 3 │ │ │ │ -000269a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000269b0: 2020 2020 2020 2020 2020 2020 2020 4728 G( │ │ │ │ -000269c0: 4a61 636f 6269 616e 297b 302c 2031 7d20 Jacobian){0, 1} │ │ │ │ -000269d0: 3d3e 2031 3068 2020 2b20 3130 6820 202b => 10h + 10h + │ │ │ │ -000269e0: 2031 3068 2020 2b20 3130 6820 202b 2020 10h + 10h + │ │ │ │ -000269f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a20: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00026a30: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ -00026a40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026770: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ +00026780: 3520 2020 2020 2020 3420 2020 2020 2020 5 4 │ │ │ │ +00026790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000267a0: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ +000267b0: 284a 6163 6f62 6961 6e29 7b30 2c20 317d (Jacobian){0, 1} │ │ │ │ +000267c0: 203d 3e20 3339 3068 2020 2d20 3338 3668 => 390h - 386h │ │ │ │ +000267d0: 2020 2b20 3135 3068 2020 2d20 2020 2020 + 150h - │ │ │ │ +000267e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000267f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026810: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00026820: 3120 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00026830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026860: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ +00026870: 2020 2020 3320 2020 2020 3220 2020 2020 3 2 │ │ │ │ +00026880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026890: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ +000268a0: 284a 6163 6f62 6961 6e29 7b31 7d20 3d3e (Jacobian){1} => │ │ │ │ +000268b0: 202d 2031 3630 6820 202b 2033 3268 2020 - 160h + 32h │ │ │ │ +000268c0: 2d20 3468 2020 2b20 3268 2020 2020 2020 - 4h + 2h │ │ │ │ +000268d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000268e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026900: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +00026910: 2020 2020 3120 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00026920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026950: 2020 2036 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ +00026960: 2034 2020 2020 2020 3320 2020 2020 2020 4 3 │ │ │ │ +00026970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026980: 2020 2020 2020 2020 2020 2047 284a 6163 G(Jac │ │ │ │ +00026990: 6f62 6961 6e29 7b30 2c20 317d 203d 3e20 obian){0, 1} => │ │ │ │ +000269a0: 3130 6820 202b 2031 3068 2020 2b20 3130 10h + 10h + 10 │ │ │ │ +000269b0: 6820 202b 2031 3068 2020 2b20 2020 2020 h + 10h + │ │ │ │ +000269c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000269d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000269f0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00026a00: 2031 2020 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ +00026a10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026a30: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00026a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a70: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026aa0: 2020 2020 2020 2020 2020 2020 2020 4728 G( │ │ │ │ -00026ab0: 4a61 636f 6269 616e 297b 317d 203d 3e20 Jacobian){1} => │ │ │ │ -00026ac0: 3268 2020 2b20 3268 2020 2b20 3120 2020 2h + 2h + 1 │ │ │ │ -00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026a60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026a70: 2020 2020 2020 2020 2020 2047 284a 6163 G(Jac │ │ │ │ +00026a80: 6f62 6961 6e29 7b31 7d20 3d3e 2032 6820 obian){1} => 2h │ │ │ │ +00026a90: 202b 2032 6820 202b 2031 2020 2020 2020 + 2h + 1 │ │ │ │ +00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ab0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ad0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00026ae0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b10: 2020 3120 2020 2020 3120 2020 2020 2020 1 1 │ │ │ │ -00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b50: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ -00026b60: 2035 2020 2020 2020 3420 2020 2020 2033 5 4 3 │ │ │ │ -00026b70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00026b80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026b90: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ -00026ba0: 2c20 317d 203d 3e20 3268 2020 2b20 3233 , 1} => 2h + 23 │ │ │ │ -00026bb0: 6820 202b 2033 3268 2020 2b20 3333 6820 h + 32h + 33h │ │ │ │ -00026bc0: 202b 2031 3868 2020 2b20 3568 2020 2020 + 18h + 5h │ │ │ │ -00026bd0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bf0: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00026c00: 2031 2020 2020 2020 3120 2020 2020 2031 1 1 1 │ │ │ │ -00026c10: 2020 2020 2020 3120 2020 2020 3120 2020 1 1 │ │ │ │ -00026c20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c40: 2020 2020 2020 2020 3620 2020 2020 2035 6 5 │ │ │ │ -00026c50: 2020 2020 2020 3420 2020 2020 2033 2020 4 3 │ │ │ │ -00026c60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026c70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026c80: 2020 2020 2020 2020 2020 2020 2020 4353 CS │ │ │ │ -00026c90: 4d20 3d3e 2031 3068 2020 2b20 3132 6820 M => 10h + 12h │ │ │ │ -00026ca0: 202b 2032 3268 2020 2b20 3136 6820 202b + 22h + 16h + │ │ │ │ -00026cb0: 2036 6820 2020 2020 2020 2020 2020 2020 6h │ │ │ │ -00026cc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ce0: 2020 2020 2020 2020 3120 2020 2020 2031 1 1 │ │ │ │ -00026cf0: 2020 2020 2020 3120 2020 2020 2031 2020 1 1 │ │ │ │ -00026d00: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00026d10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d30: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026d40: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00026d50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026d70: 2020 2020 2020 2020 2020 2020 2020 7b30 {0 │ │ │ │ -00026d80: 7d20 3d3e 2036 6820 202b 2031 3868 2020 } => 6h + 18h │ │ │ │ -00026d90: 2b20 3236 6820 202b 2032 3268 2020 2b20 + 26h + 22h + │ │ │ │ -00026da0: 3130 6820 202b 2032 6820 2020 2020 2020 10h + 2h │ │ │ │ -00026db0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026dd0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026de0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026df0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026e00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026e20: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ -00026e30: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ -00026e40: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00026e50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026e60: 2020 2020 2020 2020 2020 2020 2020 7b31 {1 │ │ │ │ -00026e70: 7d20 3d3e 2036 6820 202b 2031 3768 2020 } => 6h + 17h │ │ │ │ -00026e80: 2b20 3238 6820 202b 2032 3768 2020 2b20 + 28h + 27h + │ │ │ │ -00026e90: 3134 6820 202b 2033 6820 2020 2020 2020 14h + 3h │ │ │ │ -00026ea0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00026eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ec0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ -00026ed0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ -00026ee0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00026ef0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00026b00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026b20: 2020 2020 2020 2036 2020 2020 2020 3520 6 5 │ │ │ │ +00026b30: 2020 2020 2034 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00026b40: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026b50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026b60: 2020 2020 2020 2020 2020 207b 302c 2031 {0, 1 │ │ │ │ +00026b70: 7d20 3d3e 2032 6820 202b 2032 3368 2020 } => 2h + 23h │ │ │ │ +00026b80: 2b20 3332 6820 202b 2033 3368 2020 2b20 + 32h + 33h + │ │ │ │ +00026b90: 3138 6820 202b 2035 6820 2020 2020 2020 18h + 5h │ │ │ │ +00026ba0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026bc0: 2020 2020 2020 2031 2020 2020 2020 3120 1 1 │ │ │ │ +00026bd0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00026be0: 2020 2031 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026bf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c10: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00026c20: 2020 2034 2020 2020 2020 3320 2020 2020 4 3 │ │ │ │ +00026c30: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026c40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026c50: 2020 2020 2020 2020 2020 2043 534d 203d CSM = │ │ │ │ +00026c60: 3e20 3130 6820 202b 2031 3268 2020 2b20 > 10h + 12h + │ │ │ │ +00026c70: 3232 6820 202b 2031 3668 2020 2b20 3668 22h + 16h + 6h │ │ │ │ +00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026c90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026cb0: 2020 2020 2031 2020 2020 2020 3120 2020 1 1 │ │ │ │ +00026cc0: 2020 2031 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +00026cd0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00026ce0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026d00: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00026d10: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ +00026d20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026d30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026d40: 2020 2020 2020 2020 2020 207b 307d 203d {0} = │ │ │ │ +00026d50: 3e20 3668 2020 2b20 3138 6820 202b 2032 > 6h + 18h + 2 │ │ │ │ +00026d60: 3668 2020 2b20 3232 6820 202b 2031 3068 6h + 22h + 10h │ │ │ │ +00026d70: 2020 2b20 3268 2020 2020 2020 2020 2020 + 2h │ │ │ │ +00026d80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026da0: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026db0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026dc0: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ +00026dd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026df0: 2020 2020 3620 2020 2020 2035 2020 2020 6 5 │ │ │ │ +00026e00: 2020 3420 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ +00026e10: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00026e20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026e30: 2020 2020 2020 2020 2020 207b 317d 203d {1} = │ │ │ │ +00026e40: 3e20 3668 2020 2b20 3137 6820 202b 2032 > 6h + 17h + 2 │ │ │ │ +00026e50: 3868 2020 2b20 3237 6820 202b 2031 3468 8h + 27h + 14h │ │ │ │ +00026e60: 2020 2b20 3368 2020 2020 2020 2020 2020 + 3h │ │ │ │ +00026e70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00026e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026e90: 2020 2020 3120 2020 2020 2031 2020 2020 1 1 │ │ │ │ +00026ea0: 2020 3120 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00026eb0: 3120 2020 2020 3120 2020 2020 2020 2020 1 1 │ │ │ │ +00026ec0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00026ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00026ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f40: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -00026f50: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ -00026f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f10: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00026f20: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00026f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026f60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00026f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026f90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00026f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026fb0: 207c 0a7c 2020 2033 2020 2020 2032 2020 |.| 3 2 │ │ │ │ 00026fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026fe0: 2020 2020 7c0a 7c20 2020 3320 2020 2020 |.| 3 │ │ │ │ -00026ff0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00027000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00026ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027000: 207c 0a7c 3432 6820 202b 2038 6820 2020 |.|42h + 8h │ │ │ │ 00027010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027030: 2020 2020 7c0a 7c34 3268 2020 2b20 3868 |.|42h + 8h │ │ │ │ +00027030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027050: 207c 0a7c 2020 2031 2020 2020 2031 2020 |.| 1 1 │ │ │ │ 00027060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027080: 2020 2020 7c0a 7c20 2020 3120 2020 2020 |.| 1 │ │ │ │ -00027090: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000270a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000270a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000270b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000270d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000270e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000270f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000270f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027170: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027190: 207c 0a7c 2020 3220 2020 2020 2020 2020 |.| 2 │ │ │ │ 000271a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271c0: 2020 2020 7c0a 7c20 2032 2020 2020 2020 |.| 2 │ │ │ │ +000271c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000271d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000271f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000271e0: 207c 0a7c 3868 2020 2b20 3468 2020 2b20 |.|8h + 4h + │ │ │ │ +000271f0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00027200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027210: 2020 2020 7c0a 7c38 6820 202b 2034 6820 |.|8h + 4h │ │ │ │ -00027220: 202b 2031 2020 2020 2020 2020 2020 2020 + 1 │ │ │ │ -00027230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027230: 207c 0a7c 2020 3120 2020 2020 3120 2020 |.| 1 1 │ │ │ │ 00027240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027260: 2020 2020 7c0a 7c20 2031 2020 2020 2031 |.| 1 1 │ │ │ │ +00027260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000272a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000272b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027280: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000272a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000272b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000272c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000272f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027300: 2d2d 2d2d 2b0a 7c69 3136 203a 204b 3d69 ----+.|i16 : K=i │ │ │ │ -00027310: 6465 616c 2049 5f30 2a49 5f31 3b20 2020 deal I_0*I_1; │ │ │ │ -00027320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000272d0: 2d2b 0a7c 6931 3620 3a20 4b3d 6964 6561 -+.|i16 : K=idea │ │ │ │ +000272e0: 6c20 495f 302a 495f 313b 2020 2020 2020 l I_0*I_1; │ │ │ │ +000272f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027350: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027370: 207c 0a7c 6f31 3620 3a20 4964 6561 6c20 |.|o16 : Ideal │ │ │ │ +00027380: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 00027390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273a0: 2020 2020 7c0a 7c6f 3136 203a 2049 6465 |.|o16 : Ide │ │ │ │ -000273b0: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -000273c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000273f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000273a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000273b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000273c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000273d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000273f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027440: 2d2d 2d2d 2b0a 7c69 3137 203a 2043 534d ----+.|i17 : CSM │ │ │ │ -00027450: 2841 2c72 6164 6963 616c 204b 293d 3d43 (A,radical K)==C │ │ │ │ -00027460: 534d 2841 2c4b 2920 2020 2020 2020 2020 SM(A,K) │ │ │ │ +00027410: 2d2b 0a7c 6931 3720 3a20 4353 4d28 412c -+.|i17 : CSM(A, │ │ │ │ +00027420: 7261 6469 6361 6c20 4b29 3d3d 4353 4d28 radical K)==CSM( │ │ │ │ +00027430: 412c 4b29 2020 2020 2020 2020 2020 2020 A,K) │ │ │ │ +00027440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027490: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000274b0: 207c 0a7c 6f31 3720 3d20 7472 7565 2020 |.|o17 = true │ │ │ │ 000274c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000274d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000274e0: 2020 2020 7c0a 7c6f 3137 203d 2074 7275 |.|o17 = tru │ │ │ │ -000274f0: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027530: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000274e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000274f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027500: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027580: 2d2d 2d2d 2b0a 7c69 3138 203a 204a 3d69 ----+.|i18 : J=i │ │ │ │ -00027590: 6465 616c 206a 6163 6f62 6961 6e20 7261 deal jacobian ra │ │ │ │ -000275a0: 6469 6361 6c20 4b3b 2020 2020 2020 2020 dical K; │ │ │ │ +00027550: 2d2b 0a7c 6931 3820 3a20 4a3d 6964 6561 -+.|i18 : J=idea │ │ │ │ +00027560: 6c20 6a61 636f 6269 616e 2072 6164 6963 l jacobian radic │ │ │ │ +00027570: 616c 204b 3b20 2020 2020 2020 2020 2020 al K; │ │ │ │ +00027580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000275a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000275b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000275d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000275e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000275f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000275f0: 207c 0a7c 6f31 3820 3a20 4964 6561 6c20 |.|o18 : Ideal │ │ │ │ +00027600: 6f66 2052 2020 2020 2020 2020 2020 2020 of R │ │ │ │ 00027610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027620: 2020 2020 7c0a 7c6f 3138 203a 2049 6465 |.|o18 : Ide │ │ │ │ -00027630: 616c 206f 6620 5220 2020 2020 2020 2020 al of R │ │ │ │ -00027640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027670: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027640: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276c0: 2d2d 2d2d 2b0a 7c69 3139 203a 2073 6567 ----+.|i19 : seg │ │ │ │ -000276d0: 4a3d 5365 6772 6528 412c 4a2c 4f75 7470 J=Segre(A,J,Outp │ │ │ │ -000276e0: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +00027690: 2d2b 0a7c 6931 3920 3a20 7365 674a 3d53 -+.|i19 : segJ=S │ │ │ │ +000276a0: 6567 7265 2841 2c4a 2c4f 7574 7075 743d egre(A,J,Output= │ │ │ │ +000276b0: 3e48 6173 6846 6f72 6d29 2020 2020 2020 >HashForm) │ │ │ │ +000276c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000276e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000276f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027710: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00027710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027760: 2020 2020 7c0a 7c6f 3139 203d 204d 7574 |.|o19 = Mut │ │ │ │ -00027770: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -00027780: 2e34 2e2e 2e7d 2020 2020 2020 2020 2020 .4...} │ │ │ │ +00027730: 207c 0a7c 6f31 3920 3d20 4d75 7461 626c |.|o19 = Mutabl │ │ │ │ +00027740: 6548 6173 6854 6162 6c65 7b2e 2e2e 342e eHashTable{...4. │ │ │ │ +00027750: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +00027760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00027790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000277b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000277c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000277e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000277d0: 207c 0a7c 6f31 3920 3a20 4d75 7461 626c |.|o19 : Mutabl │ │ │ │ +000277e0: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ 000277f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027800: 2020 2020 7c0a 7c6f 3139 203a 204d 7574 |.|o19 : Mut │ │ │ │ -00027810: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -00027820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027850: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027820: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000278a0: 2d2d 2d2d 2b0a 7c69 3230 203a 2063 736d ----+.|i20 : csm │ │ │ │ -000278b0: 584c 6861 7368 2328 2247 284a 6163 6f62 XLhash#("G(Jacob │ │ │ │ -000278c0: 6961 6e29 227c 746f 5374 7269 6e67 287b ian)"|toString({ │ │ │ │ -000278d0: 302c 317d 2929 3d3d 7365 674a 2322 4722 0,1}))==segJ#"G" │ │ │ │ +00027870: 2d2b 0a7c 6932 3020 3a20 6373 6d58 4c68 -+.|i20 : csmXLh │ │ │ │ +00027880: 6173 6823 2822 4728 4a61 636f 6269 616e ash#("G(Jacobian │ │ │ │ +00027890: 2922 7c74 6f53 7472 696e 6728 7b30 2c31 )"|toString({0,1 │ │ │ │ +000278a0: 7d29 293d 3d73 6567 4a23 2247 2220 2020 }))==segJ#"G" │ │ │ │ +000278b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000278c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000278d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000278e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000278f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000278f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027910: 207c 0a7c 6f32 3020 3d20 7472 7565 2020 |.|o20 = true │ │ │ │ 00027920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027940: 2020 2020 7c0a 7c6f 3230 203d 2074 7275 |.|o20 = tru │ │ │ │ -00027950: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027990: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027960: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000279a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000279e0: 2d2d 2d2d 2b0a 7c69 3231 203a 2063 736d ----+.|i21 : csm │ │ │ │ -000279f0: 584c 6861 7368 2328 2253 6567 7265 284a XLhash#("Segre(J │ │ │ │ -00027a00: 6163 6f62 6961 6e29 227c 746f 5374 7269 acobian)"|toStri │ │ │ │ -00027a10: 6e67 287b 302c 317d 2929 3d3d 7365 674a ng({0,1}))==segJ │ │ │ │ -00027a20: 2322 5365 6772 6522 2020 2020 2020 2020 #"Segre" │ │ │ │ -00027a30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000279b0: 2d2b 0a7c 6932 3120 3a20 6373 6d58 4c68 -+.|i21 : csmXLh │ │ │ │ +000279c0: 6173 6823 2822 5365 6772 6528 4a61 636f ash#("Segre(Jaco │ │ │ │ +000279d0: 6269 616e 2922 7c74 6f53 7472 696e 6728 bian)"|toString( │ │ │ │ +000279e0: 7b30 2c31 7d29 293d 3d73 6567 4a23 2253 {0,1}))==segJ#"S │ │ │ │ +000279f0: 6567 7265 2220 2020 2020 2020 2020 2020 egre" │ │ │ │ +00027a00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00027a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a50: 207c 0a7c 6f32 3120 3d20 7472 7565 2020 |.|o21 = true │ │ │ │ 00027a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00027a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027a80: 2020 2020 7c0a 7c6f 3231 203d 2074 7275 |.|o21 = tru │ │ │ │ -00027a90: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -00027aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00027ad0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00027a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00027aa0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00027ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b20: 2d2d 2d2d 2b0a 0a46 756e 6374 696f 6e73 ----+..Functions │ │ │ │ -00027b30: 2077 6974 6820 6f70 7469 6f6e 616c 2061 with optional a │ │ │ │ -00027b40: 7267 756d 656e 7420 6e61 6d65 6420 4f75 rgument named Ou │ │ │ │ -00027b50: 7470 7574 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d tput:.========== │ │ │ │ -00027b60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00027b80: 3d3d 3d3d 0a0a 2020 2a20 2243 6865 726e ====.. * "Chern │ │ │ │ -00027b90: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ -00027ba0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00027bb0: 4368 6572 6e3a 2043 6865 726e 2c20 2d2d Chern: Chern, -- │ │ │ │ -00027bc0: 2054 6865 2043 6865 726e 2063 6c61 7373 The Chern class │ │ │ │ -00027bd0: 0a20 202a 2022 4353 4d28 2e2e 2e2c 4f75 . * "CSM(...,Ou │ │ │ │ -00027be0: 7470 7574 3d3e 2e2e 2e29 2220 2d2d 2073 tput=>...)" -- s │ │ │ │ -00027bf0: 6565 202a 6e6f 7465 2043 534d 3a20 4353 ee *note CSM: CS │ │ │ │ -00027c00: 4d2c 202d 2d20 5468 650a 2020 2020 4368 M, -- The. Ch │ │ │ │ -00027c10: 6572 6e2d 5363 6877 6172 747a 2d4d 6163 ern-Schwartz-Mac │ │ │ │ -00027c20: 5068 6572 736f 6e20 636c 6173 730a 2020 Pherson class. │ │ │ │ -00027c30: 2a20 2245 756c 6572 282e 2e2e 2c4f 7574 * "Euler(...,Out │ │ │ │ -00027c40: 7075 743d 3e2e 2e2e 2922 202d 2d20 7365 put=>...)" -- se │ │ │ │ -00027c50: 6520 2a6e 6f74 6520 4575 6c65 723a 2045 e *note Euler: E │ │ │ │ -00027c60: 756c 6572 2c20 2d2d 2054 6865 2045 756c uler, -- The Eul │ │ │ │ -00027c70: 6572 0a20 2020 2043 6861 7261 6374 6572 er. Character │ │ │ │ -00027c80: 6973 7469 630a 2020 2a20 2253 6567 7265 istic. * "Segre │ │ │ │ -00027c90: 282e 2e2e 2c4f 7574 7075 743d 3e2e 2e2e (...,Output=>... │ │ │ │ -00027ca0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -00027cb0: 5365 6772 653a 2053 6567 7265 2c20 2d2d Segre: Segre, -- │ │ │ │ -00027cc0: 2054 6865 2053 6567 7265 2063 6c61 7373 The Segre class │ │ │ │ -00027cd0: 206f 6620 610a 2020 2020 7375 6273 6368 of a. subsch │ │ │ │ -00027ce0: 656d 650a 0a46 6f72 2074 6865 2070 726f eme..For the pro │ │ │ │ -00027cf0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00027d00: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00027d10: 6f62 6a65 6374 202a 6e6f 7465 204f 7574 object *note Out │ │ │ │ -00027d20: 7075 743a 204f 7574 7075 742c 2069 7320 put: Output, is │ │ │ │ -00027d30: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -00027d40: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ -00027d50: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ +00027af0: 2d2b 0a0a 4675 6e63 7469 6f6e 7320 7769 -+..Functions wi │ │ │ │ +00027b00: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ +00027b10: 6d65 6e74 206e 616d 6564 204f 7574 7075 ment named Outpu │ │ │ │ +00027b20: 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d t:.============= │ │ │ │ +00027b30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00027b50: 3d0a 0a20 202a 2022 4368 6572 6e28 2e2e =.. * "Chern(.. │ │ │ │ +00027b60: 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 2220 .,Output=>...)" │ │ │ │ +00027b70: 2d2d 2073 6565 202a 6e6f 7465 2043 6865 -- see *note Che │ │ │ │ +00027b80: 726e 3a20 4368 6572 6e2c 202d 2d20 5468 rn: Chern, -- Th │ │ │ │ +00027b90: 6520 4368 6572 6e20 636c 6173 730a 2020 e Chern class. │ │ │ │ +00027ba0: 2a20 2243 534d 282e 2e2e 2c4f 7574 7075 * "CSM(...,Outpu │ │ │ │ +00027bb0: 743d 3e2e 2e2e 2922 202d 2d20 7365 6520 t=>...)" -- see │ │ │ │ +00027bc0: 2a6e 6f74 6520 4353 4d3a 2043 534d 2c20 *note CSM: CSM, │ │ │ │ +00027bd0: 2d2d 2054 6865 0a20 2020 2043 6865 726e -- The. Chern │ │ │ │ +00027be0: 2d53 6368 7761 7274 7a2d 4d61 6350 6865 -Schwartz-MacPhe │ │ │ │ +00027bf0: 7273 6f6e 2063 6c61 7373 0a20 202a 2022 rson class. * " │ │ │ │ +00027c00: 4575 6c65 7228 2e2e 2e2c 4f75 7470 7574 Euler(...,Output │ │ │ │ +00027c10: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +00027c20: 6e6f 7465 2045 756c 6572 3a20 4575 6c65 note Euler: Eule │ │ │ │ +00027c30: 722c 202d 2d20 5468 6520 4575 6c65 720a r, -- The Euler. │ │ │ │ +00027c40: 2020 2020 4368 6172 6163 7465 7269 7374 Characterist │ │ │ │ +00027c50: 6963 0a20 202a 2022 5365 6772 6528 2e2e ic. * "Segre(.. │ │ │ │ +00027c60: 2e2c 4f75 7470 7574 3d3e 2e2e 2e29 2220 .,Output=>...)" │ │ │ │ +00027c70: 2d2d 2073 6565 202a 6e6f 7465 2053 6567 -- see *note Seg │ │ │ │ +00027c80: 7265 3a20 5365 6772 652c 202d 2d20 5468 re: Segre, -- Th │ │ │ │ +00027c90: 6520 5365 6772 6520 636c 6173 7320 6f66 e Segre class of │ │ │ │ +00027ca0: 2061 0a20 2020 2073 7562 7363 6865 6d65 a. subscheme │ │ │ │ +00027cb0: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ +00027cc0: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ +00027cd0: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ +00027ce0: 6563 7420 2a6e 6f74 6520 4f75 7470 7574 ect *note Output │ │ │ │ +00027cf0: 3a20 4f75 7470 7574 2c20 6973 2061 202a : Output, is a * │ │ │ │ +00027d00: 6e6f 7465 2073 796d 626f 6c3a 2028 4d61 note symbol: (Ma │ │ │ │ +00027d10: 6361 756c 6179 3244 6f63 2953 796d 626f caulay2Doc)Symbo │ │ │ │ +00027d20: 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d l,...----------- │ │ │ │ +00027d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00027d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027da0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00027db0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00027dc0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00027dd0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00027de0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00027df0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00027e00: 756c 6179 322f 7061 636b 6167 6573 2f0a ulay2/packages/. │ │ │ │ -00027e10: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -00027e20: 6173 7365 732e 6d32 3a32 3436 393a 302e asses.m2:2469:0. │ │ │ │ -00027e30: 0a1f 0a46 696c 653a 2043 6861 7261 6374 ...File: Charact │ │ │ │ -00027e40: 6572 6973 7469 6343 6c61 7373 6573 2e69 eristicClasses.i │ │ │ │ -00027e50: 6e66 6f2c 204e 6f64 653a 2070 726f 6261 nfo, Node: proba │ │ │ │ -00027e60: 6269 6c69 7374 6963 2061 6c67 6f72 6974 bilistic algorit │ │ │ │ -00027e70: 686d 2c20 4e65 7874 3a20 5365 6772 652c hm, Next: Segre, │ │ │ │ -00027e80: 2050 7265 763a 204f 7574 7075 742c 2055 Prev: Output, U │ │ │ │ -00027e90: 703a 2054 6f70 0a0a 7072 6f62 6162 696c p: Top..probabil │ │ │ │ -00027ea0: 6973 7469 6320 616c 676f 7269 7468 6d0a istic algorithm. │ │ │ │ -00027eb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00027ec0: 2a2a 2a2a 2a2a 2a0a 0a54 6865 2061 6c67 *******..The alg │ │ │ │ -00027ed0: 6f72 6974 686d 7320 7573 6564 2066 6f72 orithms used for │ │ │ │ -00027ee0: 2074 6865 2063 6f6d 7075 7461 7469 6f6e the computation │ │ │ │ -00027ef0: 206f 6620 6368 6172 6163 7465 7269 7374 of characterist │ │ │ │ -00027f00: 6963 2063 6c61 7373 6573 2061 7265 0a70 ic classes are.p │ │ │ │ -00027f10: 726f 6261 6269 6c69 7374 6963 2e20 5468 robabilistic. Th │ │ │ │ -00027f20: 656f 7265 7469 6361 6c6c 792c 2074 6865 eoretically, the │ │ │ │ -00027f30: 7920 6361 6c63 756c 6174 6520 7468 6520 y calculate the │ │ │ │ -00027f40: 636c 6173 7365 7320 636f 7272 6563 746c classes correctl │ │ │ │ -00027f50: 7920 666f 7220 610a 6765 6e65 7261 6c20 y for a.general │ │ │ │ -00027f60: 6368 6f69 6365 206f 6620 6365 7274 6169 choice of certai │ │ │ │ -00027f70: 6e20 706f 6c79 6e6f 6d69 616c 732e 2054 n polynomials. T │ │ │ │ -00027f80: 6861 7420 6973 2c20 7468 6572 6520 6973 hat is, there is │ │ │ │ -00027f90: 2061 6e20 6f70 656e 2064 656e 7365 205a an open dense Z │ │ │ │ -00027fa0: 6172 6973 6b69 0a73 6574 2066 6f72 2077 ariski.set for w │ │ │ │ -00027fb0: 6869 6368 2074 6865 2061 6c67 6f72 6974 hich the algorit │ │ │ │ -00027fc0: 686d 2079 6965 6c64 7320 7468 6520 636f hm yields the co │ │ │ │ -00027fd0: 7272 6563 7420 636c 6173 732c 2069 2e65 rrect class, i.e │ │ │ │ -00027fe0: 2e2c 2074 6865 2063 6f72 7265 6374 2063 ., the correct c │ │ │ │ -00027ff0: 6c61 7373 0a69 7320 6361 6c63 756c 6174 lass.is calculat │ │ │ │ -00028000: 6564 2077 6974 6820 7072 6f62 6162 696c ed with probabil │ │ │ │ -00028010: 6974 7920 312e 2048 6f77 6576 6572 2c20 ity 1. However, │ │ │ │ -00028020: 7369 6e63 6520 7468 6520 696d 706c 656d since the implem │ │ │ │ -00028030: 656e 7461 7469 6f6e 2077 6f72 6b73 206f entation works o │ │ │ │ -00028040: 7665 720a 6120 6469 7363 7265 7465 2070 ver.a discrete p │ │ │ │ -00028050: 726f 6261 6269 6c69 7479 2073 7061 6365 robability space │ │ │ │ -00028060: 2074 6865 7265 2069 7320 6120 7665 7279 there is a very │ │ │ │ -00028070: 2073 6d61 6c6c 2c20 6275 7420 6e6f 6e2d small, but non- │ │ │ │ -00028080: 7a65 726f 2c20 7072 6f62 6162 696c 6974 zero, probabilit │ │ │ │ -00028090: 790a 6f66 206e 6f74 2063 6f6d 7075 7469 y.of not computi │ │ │ │ -000280a0: 6e67 2074 6865 2063 6f72 7265 6374 2063 ng the correct c │ │ │ │ -000280b0: 6c61 7373 2e20 536b 6570 7469 6361 6c20 lass. Skeptical │ │ │ │ -000280c0: 7573 6572 7320 7368 6f75 6c64 2072 6570 users should rep │ │ │ │ -000280d0: 6561 7420 6361 6c63 756c 6174 696f 6e73 eat calculations │ │ │ │ -000280e0: 0a73 6576 6572 616c 2074 696d 6573 2074 .several times t │ │ │ │ -000280f0: 6f20 696e 6372 6561 7365 2074 6865 2070 o increase the p │ │ │ │ -00028100: 726f 6261 6269 6c69 7479 206f 6620 636f robability of co │ │ │ │ -00028110: 6d70 7574 696e 6720 7468 6520 636f 7272 mputing the corr │ │ │ │ -00028120: 6563 7420 636c 6173 732e 0a0a 496e 2074 ect class...In t │ │ │ │ -00028130: 6865 2063 6173 6520 6f66 2074 6865 2073 he case of the s │ │ │ │ -00028140: 796d 626f 6c69 6320 696d 706c 656d 656e ymbolic implemen │ │ │ │ -00028150: 7461 7469 6f6e 206f 6620 7468 6520 5072 tation of the Pr │ │ │ │ -00028160: 6f6a 6563 7469 7665 4465 6772 6565 206d ojectiveDegree m │ │ │ │ -00028170: 6574 686f 640a 7072 6163 7469 6361 6c20 ethod.practical │ │ │ │ -00028180: 6578 7065 7269 656e 6365 2061 6e64 2061 experience and a │ │ │ │ -00028190: 6c67 6f72 6974 686d 2074 6573 7469 6e67 lgorithm testing │ │ │ │ -000281a0: 2069 6e64 6963 6174 6520 7468 6174 2061 indicate that a │ │ │ │ -000281b0: 2066 696e 6974 6520 6669 656c 6420 7769 finite field wi │ │ │ │ -000281c0: 7468 0a6f 7665 7220 3235 3030 3020 656c th.over 25000 el │ │ │ │ -000281d0: 656d 656e 7473 2069 7320 6d6f 7265 2074 ements is more t │ │ │ │ -000281e0: 6861 6e20 7375 6666 6963 6965 6e74 2074 han sufficient t │ │ │ │ -000281f0: 6f20 6578 7065 6374 2061 2063 6f72 7265 o expect a corre │ │ │ │ -00028200: 6374 2072 6573 756c 7420 7769 7468 0a68 ct result with.h │ │ │ │ -00028210: 6967 6820 7072 6f62 6162 696c 6974 792c igh probability, │ │ │ │ -00028220: 2069 2e65 2e20 7573 696e 6720 7468 6520 i.e. using the │ │ │ │ -00028230: 6669 6e69 7465 2066 6965 6c64 206b 6b3d finite field kk= │ │ │ │ -00028240: 5a5a 2f32 3530 3733 2074 6865 2065 7870 ZZ/25073 the exp │ │ │ │ -00028250: 6572 696d 656e 7461 6c0a 6368 616e 6365 erimental.chance │ │ │ │ -00028260: 206f 6620 6661 696c 7572 6520 7769 7468 of failure with │ │ │ │ -00028270: 2074 6865 2050 726f 6a65 6374 6976 6544 the ProjectiveD │ │ │ │ -00028280: 6567 7265 6520 616c 676f 7269 7468 6d20 egree algorithm │ │ │ │ -00028290: 6f6e 2061 2076 6172 6965 7479 206f 6620 on a variety of │ │ │ │ -000282a0: 6578 616d 706c 6573 0a77 6173 206c 6573 examples.was les │ │ │ │ -000282b0: 7320 7468 616e 2031 2f32 3030 302e 2055 s than 1/2000. U │ │ │ │ -000282c0: 7369 6e67 2074 6865 2066 696e 6974 6520 sing the finite │ │ │ │ -000282d0: 6669 656c 6420 6b6b 3d5a 5a2f 3332 3734 field kk=ZZ/3274 │ │ │ │ -000282e0: 3920 7265 7375 6c74 6564 2069 6e20 6e6f 9 resulted in no │ │ │ │ -000282f0: 0a66 6169 6c75 7265 7320 696e 206f 7665 .failures in ove │ │ │ │ -00028300: 7220 3130 3030 3020 6174 7465 6d70 7473 r 10000 attempts │ │ │ │ -00028310: 206f 6620 7365 7665 7261 6c20 6469 6666 of several diff │ │ │ │ -00028320: 6572 656e 7420 6578 616d 706c 6573 2e0a erent examples.. │ │ │ │ -00028330: 0a57 6520 696c 6c75 7374 7261 7465 2074 .We illustrate t │ │ │ │ -00028340: 6865 2070 726f 6261 6269 6c69 7374 6963 he probabilistic │ │ │ │ -00028350: 2062 6568 6176 696f 7572 2077 6974 6820 behaviour with │ │ │ │ -00028360: 616e 2065 7861 6d70 6c65 2077 6865 7265 an example where │ │ │ │ -00028370: 2074 6865 2063 686f 7365 6e0a 7261 6e64 the chosen.rand │ │ │ │ -00028380: 6f6d 2073 6565 6420 6c65 6164 7320 746f om seed leads to │ │ │ │ -00028390: 2061 2077 726f 6e67 2072 6573 756c 7420 a wrong result │ │ │ │ -000283a0: 696e 2074 6865 2066 6972 7374 2063 616c in the first cal │ │ │ │ -000283b0: 6375 6c61 7469 6f6e 2e0a 0a2b 2d2d 2d2d culation...+---- │ │ │ │ -000283c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000283e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000283f0: 3120 3a20 7365 7452 616e 646f 6d53 6565 1 : setRandomSee │ │ │ │ -00028400: 6420 3132 313b 2020 2020 2020 2020 2020 d 121; │ │ │ │ +00027d70: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00027d80: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00027d90: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00027da0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00027db0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00027dc0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00027dd0: 7932 2f70 6163 6b61 6765 732f 0a43 6861 y2/packages/.Cha │ │ │ │ +00027de0: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +00027df0: 6573 2e6d 323a 3234 3639 3a30 2e0a 1f0a es.m2:2469:0.... │ │ │ │ +00027e00: 4669 6c65 3a20 4368 6172 6163 7465 7269 File: Characteri │ │ │ │ +00027e10: 7374 6963 436c 6173 7365 732e 696e 666f sticClasses.info │ │ │ │ +00027e20: 2c20 4e6f 6465 3a20 7072 6f62 6162 696c , Node: probabil │ │ │ │ +00027e30: 6973 7469 6320 616c 676f 7269 7468 6d2c istic algorithm, │ │ │ │ +00027e40: 204e 6578 743a 2053 6567 7265 2c20 5072 Next: Segre, Pr │ │ │ │ +00027e50: 6576 3a20 4f75 7470 7574 2c20 5570 3a20 ev: Output, Up: │ │ │ │ +00027e60: 546f 700a 0a70 726f 6261 6269 6c69 7374 Top..probabilist │ │ │ │ +00027e70: 6963 2061 6c67 6f72 6974 686d 0a2a 2a2a ic algorithm.*** │ │ │ │ +00027e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00027e90: 2a2a 2a2a 0a0a 5468 6520 616c 676f 7269 ****..The algori │ │ │ │ +00027ea0: 7468 6d73 2075 7365 6420 666f 7220 7468 thms used for th │ │ │ │ +00027eb0: 6520 636f 6d70 7574 6174 696f 6e20 6f66 e computation of │ │ │ │ +00027ec0: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ +00027ed0: 636c 6173 7365 7320 6172 650a 7072 6f62 classes are.prob │ │ │ │ +00027ee0: 6162 696c 6973 7469 632e 2054 6865 6f72 abilistic. Theor │ │ │ │ +00027ef0: 6574 6963 616c 6c79 2c20 7468 6579 2063 etically, they c │ │ │ │ +00027f00: 616c 6375 6c61 7465 2074 6865 2063 6c61 alculate the cla │ │ │ │ +00027f10: 7373 6573 2063 6f72 7265 6374 6c79 2066 sses correctly f │ │ │ │ +00027f20: 6f72 2061 0a67 656e 6572 616c 2063 686f or a.general cho │ │ │ │ +00027f30: 6963 6520 6f66 2063 6572 7461 696e 2070 ice of certain p │ │ │ │ +00027f40: 6f6c 796e 6f6d 6961 6c73 2e20 5468 6174 olynomials. That │ │ │ │ +00027f50: 2069 732c 2074 6865 7265 2069 7320 616e is, there is an │ │ │ │ +00027f60: 206f 7065 6e20 6465 6e73 6520 5a61 7269 open dense Zari │ │ │ │ +00027f70: 736b 690a 7365 7420 666f 7220 7768 6963 ski.set for whic │ │ │ │ +00027f80: 6820 7468 6520 616c 676f 7269 7468 6d20 h the algorithm │ │ │ │ +00027f90: 7969 656c 6473 2074 6865 2063 6f72 7265 yields the corre │ │ │ │ +00027fa0: 6374 2063 6c61 7373 2c20 692e 652e 2c20 ct class, i.e., │ │ │ │ +00027fb0: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ +00027fc0: 730a 6973 2063 616c 6375 6c61 7465 6420 s.is calculated │ │ │ │ +00027fd0: 7769 7468 2070 726f 6261 6269 6c69 7479 with probability │ │ │ │ +00027fe0: 2031 2e20 486f 7765 7665 722c 2073 696e 1. However, sin │ │ │ │ +00027ff0: 6365 2074 6865 2069 6d70 6c65 6d65 6e74 ce the implement │ │ │ │ +00028000: 6174 696f 6e20 776f 726b 7320 6f76 6572 ation works over │ │ │ │ +00028010: 0a61 2064 6973 6372 6574 6520 7072 6f62 .a discrete prob │ │ │ │ +00028020: 6162 696c 6974 7920 7370 6163 6520 7468 ability space th │ │ │ │ +00028030: 6572 6520 6973 2061 2076 6572 7920 736d ere is a very sm │ │ │ │ +00028040: 616c 6c2c 2062 7574 206e 6f6e 2d7a 6572 all, but non-zer │ │ │ │ +00028050: 6f2c 2070 726f 6261 6269 6c69 7479 0a6f o, probability.o │ │ │ │ +00028060: 6620 6e6f 7420 636f 6d70 7574 696e 6720 f not computing │ │ │ │ +00028070: 7468 6520 636f 7272 6563 7420 636c 6173 the correct clas │ │ │ │ +00028080: 732e 2053 6b65 7074 6963 616c 2075 7365 s. Skeptical use │ │ │ │ +00028090: 7273 2073 686f 756c 6420 7265 7065 6174 rs should repeat │ │ │ │ +000280a0: 2063 616c 6375 6c61 7469 6f6e 730a 7365 calculations.se │ │ │ │ +000280b0: 7665 7261 6c20 7469 6d65 7320 746f 2069 veral times to i │ │ │ │ +000280c0: 6e63 7265 6173 6520 7468 6520 7072 6f62 ncrease the prob │ │ │ │ +000280d0: 6162 696c 6974 7920 6f66 2063 6f6d 7075 ability of compu │ │ │ │ +000280e0: 7469 6e67 2074 6865 2063 6f72 7265 6374 ting the correct │ │ │ │ +000280f0: 2063 6c61 7373 2e0a 0a49 6e20 7468 6520 class...In the │ │ │ │ +00028100: 6361 7365 206f 6620 7468 6520 7379 6d62 case of the symb │ │ │ │ +00028110: 6f6c 6963 2069 6d70 6c65 6d65 6e74 6174 olic implementat │ │ │ │ +00028120: 696f 6e20 6f66 2074 6865 2050 726f 6a65 ion of the Proje │ │ │ │ +00028130: 6374 6976 6544 6567 7265 6520 6d65 7468 ctiveDegree meth │ │ │ │ +00028140: 6f64 0a70 7261 6374 6963 616c 2065 7870 od.practical exp │ │ │ │ +00028150: 6572 6965 6e63 6520 616e 6420 616c 676f erience and algo │ │ │ │ +00028160: 7269 7468 6d20 7465 7374 696e 6720 696e rithm testing in │ │ │ │ +00028170: 6469 6361 7465 2074 6861 7420 6120 6669 dicate that a fi │ │ │ │ +00028180: 6e69 7465 2066 6965 6c64 2077 6974 680a nite field with. │ │ │ │ +00028190: 6f76 6572 2032 3530 3030 2065 6c65 6d65 over 25000 eleme │ │ │ │ +000281a0: 6e74 7320 6973 206d 6f72 6520 7468 616e nts is more than │ │ │ │ +000281b0: 2073 7566 6669 6369 656e 7420 746f 2065 sufficient to e │ │ │ │ +000281c0: 7870 6563 7420 6120 636f 7272 6563 7420 xpect a correct │ │ │ │ +000281d0: 7265 7375 6c74 2077 6974 680a 6869 6768 result with.high │ │ │ │ +000281e0: 2070 726f 6261 6269 6c69 7479 2c20 692e probability, i. │ │ │ │ +000281f0: 652e 2075 7369 6e67 2074 6865 2066 696e e. using the fin │ │ │ │ +00028200: 6974 6520 6669 656c 6420 6b6b 3d5a 5a2f ite field kk=ZZ/ │ │ │ │ +00028210: 3235 3037 3320 7468 6520 6578 7065 7269 25073 the experi │ │ │ │ +00028220: 6d65 6e74 616c 0a63 6861 6e63 6520 6f66 mental.chance of │ │ │ │ +00028230: 2066 6169 6c75 7265 2077 6974 6820 7468 failure with th │ │ │ │ +00028240: 6520 5072 6f6a 6563 7469 7665 4465 6772 e ProjectiveDegr │ │ │ │ +00028250: 6565 2061 6c67 6f72 6974 686d 206f 6e20 ee algorithm on │ │ │ │ +00028260: 6120 7661 7269 6574 7920 6f66 2065 7861 a variety of exa │ │ │ │ +00028270: 6d70 6c65 730a 7761 7320 6c65 7373 2074 mples.was less t │ │ │ │ +00028280: 6861 6e20 312f 3230 3030 2e20 5573 696e han 1/2000. Usin │ │ │ │ +00028290: 6720 7468 6520 6669 6e69 7465 2066 6965 g the finite fie │ │ │ │ +000282a0: 6c64 206b 6b3d 5a5a 2f33 3237 3439 2072 ld kk=ZZ/32749 r │ │ │ │ +000282b0: 6573 756c 7465 6420 696e 206e 6f0a 6661 esulted in no.fa │ │ │ │ +000282c0: 696c 7572 6573 2069 6e20 6f76 6572 2031 ilures in over 1 │ │ │ │ +000282d0: 3030 3030 2061 7474 656d 7074 7320 6f66 0000 attempts of │ │ │ │ +000282e0: 2073 6576 6572 616c 2064 6966 6665 7265 several differe │ │ │ │ +000282f0: 6e74 2065 7861 6d70 6c65 732e 0a0a 5765 nt examples...We │ │ │ │ +00028300: 2069 6c6c 7573 7472 6174 6520 7468 6520 illustrate the │ │ │ │ +00028310: 7072 6f62 6162 696c 6973 7469 6320 6265 probabilistic be │ │ │ │ +00028320: 6861 7669 6f75 7220 7769 7468 2061 6e20 haviour with an │ │ │ │ +00028330: 6578 616d 706c 6520 7768 6572 6520 7468 example where th │ │ │ │ +00028340: 6520 6368 6f73 656e 0a72 616e 646f 6d20 e chosen.random │ │ │ │ +00028350: 7365 6564 206c 6561 6473 2074 6f20 6120 seed leads to a │ │ │ │ +00028360: 7772 6f6e 6720 7265 7375 6c74 2069 6e20 wrong result in │ │ │ │ +00028370: 7468 6520 6669 7273 7420 6361 6c63 756c the first calcul │ │ │ │ +00028380: 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d ation...+------- │ │ │ │ +00028390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000283a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000283b0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +000283c0: 2073 6574 5261 6e64 6f6d 5365 6564 2031 setRandomSeed 1 │ │ │ │ +000283d0: 3231 3b20 2020 2020 2020 2020 2020 2020 21; │ │ │ │ +000283e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000283f0: 2d2d 2073 6574 7469 6e67 2072 616e 646f -- setting rando │ │ │ │ +00028400: 6d20 7365 6564 2074 6f20 3132 3120 2020 m seed to 121 │ │ │ │ 00028410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028420: 0a7c 202d 2d20 7365 7474 696e 6720 7261 .| -- setting ra │ │ │ │ -00028430: 6e64 6f6d 2073 6565 6420 746f 2031 3231 ndom seed to 121 │ │ │ │ -00028440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028450: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -00028460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028480: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 203d -----+.|i2 : R = │ │ │ │ -00028490: 2051 515b 782c 792c 7a2c 775d 2020 2020 QQ[x,y,z,w] │ │ │ │ +00028420: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00028430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028450: 2d2d 2b0a 7c69 3220 3a20 5220 3d20 5151 --+.|i2 : R = QQ │ │ │ │ +00028460: 5b78 2c79 2c7a 2c77 5d20 2020 2020 2020 [x,y,z,w] │ │ │ │ +00028470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000284a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000284c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000284b0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +000284c0: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ 000284d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000284e0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -000284f0: 203d 2052 2020 2020 2020 2020 2020 2020 = R │ │ │ │ +000284e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000284f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028520: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00028530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028520: 7c6f 3220 3a20 506f 6c79 6e6f 6d69 616c |o2 : Polynomial │ │ │ │ +00028530: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 00028540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028550: 207c 0a7c 6f32 203a 2050 6f6c 796e 6f6d |.|o2 : Polynom │ │ │ │ -00028560: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ -00028570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028580: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -00028590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2049 -------+.|i3 : I │ │ │ │ -000285c0: 203d 206d 696e 6f72 7328 322c 6d61 7472 = minors(2,matr │ │ │ │ -000285d0: 6978 7b7b 782c 792c 7a7d 2c7b 792c 7a2c ix{{x,y,z},{y,z, │ │ │ │ -000285e0: 777d 7d29 2020 2020 2020 7c0a 7c20 2020 w}}) |.| │ │ │ │ -000285f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028550: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00028560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028580: 2d2d 2d2d 2b0a 7c69 3320 3a20 4920 3d20 ----+.|i3 : I = │ │ │ │ +00028590: 6d69 6e6f 7273 2832 2c6d 6174 7269 787b minors(2,matrix{ │ │ │ │ +000285a0: 7b78 2c79 2c7a 7d2c 7b79 2c7a 2c77 7d7d {x,y,z},{y,z,w}} │ │ │ │ +000285b0: 2920 2020 2020 207c 0a7c 2020 2020 2020 ) |.| │ │ │ │ +000285c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000285e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000285f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ 00028600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028620: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00028630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028640: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00028650: 7c0a 7c6f 3320 3d20 6964 6561 6c20 282d |.|o3 = ideal (- │ │ │ │ -00028660: 2079 2020 2b20 782a 7a2c 202d 2079 2a7a y + x*z, - y*z │ │ │ │ -00028670: 202b 2078 2a77 2c20 2d20 7a20 202b 2079 + x*w, - z + y │ │ │ │ -00028680: 2a77 297c 0a7c 2020 2020 2020 2020 2020 *w)|.| │ │ │ │ -00028690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028610: 2020 2020 2032 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ +00028620: 6f33 203d 2069 6465 616c 2028 2d20 7920 o3 = ideal (- y │ │ │ │ +00028630: 202b 2078 2a7a 2c20 2d20 792a 7a20 2b20 + x*z, - y*z + │ │ │ │ +00028640: 782a 772c 202d 207a 2020 2b20 792a 7729 x*w, - z + y*w) │ │ │ │ +00028650: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028680: 2020 207c 0a7c 6f33 203a 2049 6465 616c |.|o3 : Ideal │ │ │ │ +00028690: 206f 6620 5220 2020 2020 2020 2020 2020 of R │ │ │ │ 000286a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286b0: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ -000286c0: 6561 6c20 6f66 2052 2020 2020 2020 2020 eal of R │ │ │ │ -000286d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000286e0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ -000286f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00028720: 3420 3a20 4368 6572 6e20 2849 2c43 6f6d 4 : Chern (I,Com │ │ │ │ -00028730: 704d 6574 686f 643d 3e50 6e52 6573 6964 pMethod=>PnResid │ │ │ │ -00028740: 7561 6c29 2020 2020 2020 2020 2020 207c ual) | │ │ │ │ -00028750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000286b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000286c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000286e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +000286f0: 2043 6865 726e 2028 492c 436f 6d70 4d65 Chern (I,CompMe │ │ │ │ +00028700: 7468 6f64 3d3e 506e 5265 7369 6475 616c thod=>PnResidual │ │ │ │ +00028710: 2920 2020 2020 2020 2020 2020 7c0a 7c20 ) |.| │ │ │ │ +00028720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028750: 0a7c 2020 2020 2020 2033 2020 2020 2032 .| 3 2 │ │ │ │ 00028760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028780: 2020 7c0a 7c20 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ -00028790: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00028780: 2020 7c0a 7c6f 3420 3d20 3248 2020 2b20 |.|o4 = 2H + │ │ │ │ +00028790: 3348 2020 2020 2020 2020 2020 2020 2020 3H │ │ │ │ 000287a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000287b0: 2020 2020 207c 0a7c 6f34 203d 2032 4820 |.|o4 = 2H │ │ │ │ -000287c0: 202b 2033 4820 2020 2020 2020 2020 2020 + 3H │ │ │ │ +000287b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000287c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000287e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000287f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000287f0: 5a5a 5b48 5d20 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ 00028800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028820: 2020 205a 5a5b 485d 2020 2020 2020 2020 ZZ[H] │ │ │ │ +00028810: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +00028820: 203a 202d 2d2d 2d2d 2020 2020 2020 2020 : ----- │ │ │ │ 00028830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028850: 7c6f 3420 3a20 2d2d 2d2d 2d20 2020 2020 |o4 : ----- │ │ │ │ +00028850: 7c20 2020 2020 2020 2034 2020 2020 2020 | 4 │ │ │ │ 00028860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028880: 207c 0a7c 2020 2020 2020 2020 3420 2020 |.| 4 │ │ │ │ +00028880: 207c 0a7c 2020 2020 2020 2048 2020 2020 |.| H │ │ │ │ 00028890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000288a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288b0: 2020 2020 7c0a 7c20 2020 2020 2020 4820 |.| H │ │ │ │ -000288c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000288e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ -000288f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028910: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00028920: 3a20 4368 6572 6e20 2849 2c43 6f6d 704d : Chern (I,CompM │ │ │ │ -00028930: 6574 686f 643d 3e50 6e52 6573 6964 7561 ethod=>PnResidua │ │ │ │ -00028940: 6c29 2020 2020 2020 2020 2020 207c 0a7c l) |.| │ │ │ │ -00028950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000288b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000288c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +000288e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2043 -------+.|i5 : C │ │ │ │ +000288f0: 6865 726e 2028 492c 436f 6d70 4d65 7468 hern (I,CompMeth │ │ │ │ +00028900: 6f64 3d3e 506e 5265 7369 6475 616c 2920 od=>PnResidual) │ │ │ │ +00028910: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028940: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00028950: 2020 2020 2020 2033 2020 2020 2032 2020 3 2 │ │ │ │ 00028960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028980: 7c0a 7c20 2020 2020 2020 3320 2020 2020 |.| 3 │ │ │ │ -00028990: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00028980: 7c0a 7c6f 3520 3d20 3248 2020 2b20 3348 |.|o5 = 2H + 3H │ │ │ │ +00028990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289b0: 2020 207c 0a7c 6f35 203d 2032 4820 202b |.|o5 = 2H + │ │ │ │ -000289c0: 2033 4820 2020 2020 2020 2020 2020 2020 3H │ │ │ │ +000289b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000289c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000289d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000289f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000289e0: 2020 2020 2020 7c0a 7c20 2020 2020 5a5a |.| ZZ │ │ │ │ +000289f0: 5b48 5d20 2020 2020 2020 2020 2020 2020 [H] │ │ │ │ 00028a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00028a20: 205a 5a5b 485d 2020 2020 2020 2020 2020 ZZ[H] │ │ │ │ +00028a10: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +00028a20: 202d 2d2d 2d2d 2020 2020 2020 2020 2020 ----- │ │ │ │ 00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a40: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00028a50: 3520 3a20 2d2d 2d2d 2d20 2020 2020 2020 5 : ----- │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00028a50: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ 00028a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028a80: 0a7c 2020 2020 2020 2020 3420 2020 2020 .| 4 │ │ │ │ +00028a80: 0a7c 2020 2020 2020 2048 2020 2020 2020 .| H │ │ │ │ 00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ab0: 2020 7c0a 7c20 2020 2020 2020 4820 2020 |.| H │ │ │ │ -00028ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ae0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00028af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028b10: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -00028b20: 4368 6572 6e20 2849 2c43 6f6d 704d 6574 Chern (I,CompMet │ │ │ │ -00028b30: 686f 643d 3e50 6e52 6573 6964 7561 6c29 hod=>PnResidual) │ │ │ │ +00028ab0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00028ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ae0: 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 6865 -----+.|i6 : Che │ │ │ │ +00028af0: 726e 2028 492c 436f 6d70 4d65 7468 6f64 rn (I,CompMethod │ │ │ │ +00028b00: 3d3e 506e 5265 7369 6475 616c 2920 2020 =>PnResidual) │ │ │ │ +00028b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028b50: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ 00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028b80: 7c20 2020 2020 2020 3320 2020 2020 3220 | 3 2 │ │ │ │ +00028b80: 7c6f 3620 3d20 3248 2020 2b20 3348 2020 |o6 = 2H + 3H │ │ │ │ 00028b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bb0: 207c 0a7c 6f36 203d 2032 4820 202b 2033 |.|o6 = 2H + 3 │ │ │ │ -00028bc0: 4820 2020 2020 2020 2020 2020 2020 2020 H │ │ │ │ +00028bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028be0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00028bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028be0: 2020 2020 7c0a 7c20 2020 2020 5a5a 5b48 |.| ZZ[H │ │ │ │ +00028bf0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00028c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c10: 2020 2020 2020 207c 0a7c 2020 2020 205a |.| Z │ │ │ │ -00028c20: 5a5b 485d 2020 2020 2020 2020 2020 2020 Z[H] │ │ │ │ +00028c10: 2020 2020 2020 207c 0a7c 6f36 203a 202d |.|o6 : - │ │ │ │ +00028c20: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 00028c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c40: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -00028c50: 3a20 2d2d 2d2d 2d20 2020 2020 2020 2020 : ----- │ │ │ │ +00028c40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00028c50: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ 00028c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00028c80: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00028c80: 2020 2020 2020 2048 2020 2020 2020 2020 H │ │ │ │ 00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cb0: 7c0a 7c20 2020 2020 2020 4820 2020 2020 |.| H │ │ │ │ -00028cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ce0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ -00028cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028d10: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 4368 ------+.|i7 : Ch │ │ │ │ -00028d20: 6572 6e28 492c 436f 6d70 4d65 7468 6f64 ern(I,CompMethod │ │ │ │ -00028d30: 3d3e 5072 6f6a 6563 7469 7665 4465 6772 =>ProjectiveDegr │ │ │ │ -00028d40: 6565 2920 2020 2020 207c 0a7c 2020 2020 ee) |.| │ │ │ │ -00028d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028cb0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00028cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028ce0: 2d2d 2d2b 0a7c 6937 203a 2043 6865 726e ---+.|i7 : Chern │ │ │ │ +00028cf0: 2849 2c43 6f6d 704d 6574 686f 643d 3e50 (I,CompMethod=>P │ │ │ │ +00028d00: 726f 6a65 6374 6976 6544 6567 7265 6529 rojectiveDegree) │ │ │ │ +00028d10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00028d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028d40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00028d50: 2020 2033 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ 00028d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00028d80: 2020 2020 2020 3320 2020 2020 3220 2020 3 2 │ │ │ │ +00028d70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00028d80: 3720 3d20 3268 2020 2b20 3368 2020 2020 7 = 2h + 3h │ │ │ │ 00028d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00028db0: 0a7c 6f37 203d 2032 6820 202b 2033 6820 .|o7 = 2h + 3h │ │ │ │ +00028db0: 0a7c 2020 2020 2020 2031 2020 2020 2031 .| 1 1 │ │ │ │ 00028dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028de0: 2020 7c0a 7c20 2020 2020 2020 3120 2020 |.| 1 │ │ │ │ -00028df0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00028de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00028e10: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +00028e20: 6820 5d20 2020 2020 2020 2020 2020 2020 h ] │ │ │ │ 00028e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00028e50: 5a5a 5b68 205d 2020 2020 2020 2020 2020 ZZ[h ] │ │ │ │ +00028e50: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 00028e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00028e80: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +00028e70: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +00028e80: 203a 202d 2d2d 2d2d 2d20 2020 2020 2020 : ------ │ │ │ │ 00028e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00028eb0: 7c6f 3720 3a20 2d2d 2d2d 2d2d 2020 2020 |o7 : ------ │ │ │ │ +00028eb0: 7c20 2020 2020 2020 2034 2020 2020 2020 | 4 │ │ │ │ 00028ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028ee0: 207c 0a7c 2020 2020 2020 2020 3420 2020 |.| 4 │ │ │ │ +00028ee0: 207c 0a7c 2020 2020 2020 2068 2020 2020 |.| h │ │ │ │ 00028ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f10: 2020 2020 7c0a 7c20 2020 2020 2020 6820 |.| h │ │ │ │ +00028f10: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ 00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00028f50: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00028f40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00028f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00028f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 2d2d 2d2d ----------+.---- │ │ │ │ 00028f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2d -------------+.- │ │ │ │ +00028fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00029000: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00029010: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00029020: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00029030: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00029040: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00029050: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00029060: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -00029070: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -00029080: 3233 3738 3a30 2e0a 1f0a 4669 6c65 3a20 2378:0....File: │ │ │ │ -00029090: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ -000290a0: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ -000290b0: 3a20 5365 6772 652c 204e 6578 743a 2054 : Segre, Next: T │ │ │ │ -000290c0: 6f72 6963 4368 6f77 5269 6e67 2c20 5072 oricChowRing, Pr │ │ │ │ -000290d0: 6576 3a20 7072 6f62 6162 696c 6973 7469 ev: probabilisti │ │ │ │ -000290e0: 6320 616c 676f 7269 7468 6d2c 2055 703a c algorithm, Up: │ │ │ │ -000290f0: 2054 6f70 0a0a 5365 6772 6520 2d2d 2054 Top..Segre -- T │ │ │ │ -00029100: 6865 2053 6567 7265 2063 6c61 7373 206f he Segre class o │ │ │ │ -00029110: 6620 6120 7375 6273 6368 656d 650a 2a2a f a subscheme.** │ │ │ │ -00029120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00029140: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -00029150: 3a20 0a20 2020 2020 2020 2053 6567 7265 : . Segre │ │ │ │ -00029160: 2049 0a20 2020 2020 2020 2053 6567 7265 I. Segre │ │ │ │ -00029170: 2841 2c49 290a 2020 2020 2020 2020 5365 (A,I). Se │ │ │ │ -00029180: 6772 6528 582c 4a29 0a20 2020 2020 2020 gre(X,J). │ │ │ │ -00029190: 2053 6567 7265 2843 682c 582c 4a29 0a20 Segre(Ch,X,J). │ │ │ │ -000291a0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -000291b0: 202a 2049 2c20 616e 202a 6e6f 7465 2069 * I, an *note i │ │ │ │ -000291c0: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -000291d0: 446f 6329 4964 6561 6c2c 2c20 6120 6d75 Doc)Ideal,, a mu │ │ │ │ -000291e0: 6c74 692d 686f 6d6f 6765 6e65 6f75 7320 lti-homogeneous │ │ │ │ -000291f0: 6964 6561 6c20 696e 2061 0a20 2020 2020 ideal in a. │ │ │ │ -00029200: 2020 2067 7261 6465 6420 706f 6c79 6e6f graded polyno │ │ │ │ -00029210: 6d69 616c 2072 696e 6720 6f76 6572 2061 mial ring over a │ │ │ │ -00029220: 2066 6965 6c64 2064 6566 696e 696e 6720 field defining │ │ │ │ -00029230: 6120 636c 6f73 6564 2073 7562 7363 6865 a closed subsche │ │ │ │ -00029240: 6d65 2056 206f 660a 2020 2020 2020 2020 me V of. │ │ │ │ -00029250: 5c50 505e 7b6e 5f31 7d78 2e2e 2e78 5c50 \PP^{n_1}x...x\P │ │ │ │ -00029260: 505e 7b6e 5f6d 7d0a 2020 2020 2020 2a20 P^{n_m}. * │ │ │ │ -00029270: 412c 2061 202a 6e6f 7465 2071 756f 7469 A, a *note quoti │ │ │ │ -00029280: 656e 7420 7269 6e67 3a20 284d 6163 6175 ent ring: (Macau │ │ │ │ -00029290: 6c61 7932 446f 6329 5175 6f74 6965 6e74 lay2Doc)Quotient │ │ │ │ -000292a0: 5269 6e67 2c2c 0a20 2020 2020 2020 2041 Ring,,. A │ │ │ │ -000292b0: 3d5c 5a5a 5b68 5f31 2c2e 2e2e 2c68 5f6d =\ZZ[h_1,...,h_m │ │ │ │ -000292c0: 5d2f 2868 5f31 5e7b 6e5f 312b 317d 2c2e ]/(h_1^{n_1+1},. │ │ │ │ -000292d0: 2e2e 2c68 5f6d 5e7b 6e5f 6d2b 317d 2920 ..,h_m^{n_m+1}) │ │ │ │ -000292e0: 7175 6f74 6965 6e74 2072 696e 670a 2020 quotient ring. │ │ │ │ -000292f0: 2020 2020 2020 7265 7072 6573 656e 7469 representi │ │ │ │ -00029300: 6e67 2074 6865 2043 686f 7720 7269 6e67 ng the Chow ring │ │ │ │ -00029310: 206f 6620 5c50 505e 7b6e 5f31 7d78 2e2e of \PP^{n_1}x.. │ │ │ │ -00029320: 2e78 5c50 505e 7b6e 5f6d 7d2c 2074 6869 .x\PP^{n_m}, thi │ │ │ │ -00029330: 7320 7269 6e67 2073 686f 756c 640a 2020 s ring should. │ │ │ │ -00029340: 2020 2020 2020 6265 2062 7569 6c74 2075 be built u │ │ │ │ -00029350: 7369 6e67 2074 6865 202a 6e6f 7465 2043 sing the *note C │ │ │ │ -00029360: 686f 7752 696e 673a 2043 686f 7752 696e howRing: ChowRin │ │ │ │ -00029370: 672c 2063 6f6d 6d61 6e64 0a20 2020 2020 g, command. │ │ │ │ -00029380: 202a 204a 2c20 616e 202a 6e6f 7465 2069 * J, an *note i │ │ │ │ -00029390: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -000293a0: 446f 6329 4964 6561 6c2c 2c20 696e 2074 Doc)Ideal,, in t │ │ │ │ -000293b0: 6865 2067 7261 6465 6420 706f 6c79 6e6f he graded polyno │ │ │ │ -000293c0: 6d69 616c 2072 696e 670a 2020 2020 2020 mial ring. │ │ │ │ -000293d0: 2020 7768 6963 6820 6973 2063 6f6f 7264 which is coord │ │ │ │ -000293e0: 696e 6174 6520 7269 6e67 206f 6620 7468 inate ring of th │ │ │ │ -000293f0: 6520 4e6f 726d 616c 2054 6f72 6963 2056 e Normal Toric V │ │ │ │ -00029400: 6172 6965 7479 2058 0a20 2020 2020 202a ariety X. * │ │ │ │ -00029410: 2058 2c20 6120 2a6e 6f74 6520 6e6f 726d X, a *note norm │ │ │ │ -00029420: 616c 2074 6f72 6963 2076 6172 6965 7479 al toric variety │ │ │ │ -00029430: 3a0a 2020 2020 2020 2020 284e 6f72 6d61 :. (Norma │ │ │ │ -00029440: 6c54 6f72 6963 5661 7269 6574 6965 7329 lToricVarieties) │ │ │ │ -00029450: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ -00029460: 7479 2c2c 2077 6869 6368 2069 7320 7468 ty,, which is th │ │ │ │ -00029470: 6520 616d 6269 656e 7420 7370 6163 650a e ambient space. │ │ │ │ -00029480: 2020 2020 2020 2020 7768 6963 6820 636f which co │ │ │ │ -00029490: 6e74 6169 6e73 2056 284a 290a 2020 2020 ntains V(J). │ │ │ │ -000294a0: 2020 2a20 4368 2c20 6120 2a6e 6f74 6520 * Ch, a *note │ │ │ │ -000294b0: 7175 6f74 6965 6e74 2072 696e 673a 2028 quotient ring: ( │ │ │ │ -000294c0: 4d61 6361 756c 6179 3244 6f63 2951 756f Macaulay2Doc)Quo │ │ │ │ -000294d0: 7469 656e 7452 696e 672c 2c20 7468 6520 tientRing,, the │ │ │ │ -000294e0: 4368 6f77 2072 696e 670a 2020 2020 2020 Chow ring. │ │ │ │ -000294f0: 2020 6f66 2074 6865 2074 6f72 6963 2076 of the toric v │ │ │ │ -00029500: 6172 6965 7479 2058 2c20 4368 3d28 7269 ariety X, Ch=(ri │ │ │ │ -00029510: 6e67 204a 292f 2853 522b 4c52 2920 7768 ng J)/(SR+LR) wh │ │ │ │ -00029520: 6572 6520 5352 2069 7320 7468 650a 2020 ere SR is the. │ │ │ │ -00029530: 2020 2020 2020 5374 616e 6c65 792d 5265 Stanley-Re │ │ │ │ -00029540: 6973 6e65 7220 6964 6561 6c20 6f66 2074 isner ideal of t │ │ │ │ -00029550: 6865 2066 616e 2064 6566 696e 696e 6720 he fan defining │ │ │ │ -00029560: 5820 616e 6420 4c52 2069 7320 7468 6520 X and LR is the │ │ │ │ -00029570: 6c69 6e65 6172 0a20 2020 2020 2020 2072 linear. r │ │ │ │ -00029580: 656c 6174 696f 6e73 2069 6465 616c 2c20 elations ideal, │ │ │ │ -00029590: 7468 6973 2072 696e 6720 7368 6f75 6c64 this ring should │ │ │ │ -000295a0: 2062 6520 6275 696c 7420 7573 696e 6720 be built using │ │ │ │ -000295b0: 7468 6520 2a6e 6f74 650a 2020 2020 2020 the *note. │ │ │ │ -000295c0: 2020 546f 7269 6343 686f 7752 696e 673a ToricChowRing: │ │ │ │ -000295d0: 2054 6f72 6963 4368 6f77 5269 6e67 2c20 ToricChowRing, │ │ │ │ -000295e0: 636f 6d6d 616e 640a 2020 2a20 2a6e 6f74 command. * *not │ │ │ │ -000295f0: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -00029600: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -00029610: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -00029620: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -00029630: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -00029640: 436f 6d70 4d65 7468 6f64 2028 6d69 7373 CompMethod (miss │ │ │ │ -00029650: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -00029660: 6e29 203d 3e20 2e2e 2e2c 2064 6566 6175 n) => ..., defau │ │ │ │ -00029670: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ -00029680: 2050 726f 6a65 6374 6976 6544 6567 7265 ProjectiveDegre │ │ │ │ -00029690: 652c 2050 726f 6a65 6374 6976 6544 6567 e, ProjectiveDeg │ │ │ │ -000296a0: 7265 652c 2074 6869 7320 616c 676f 7269 ree, this algori │ │ │ │ -000296b0: 7468 6d20 6d61 7920 6265 2075 7365 6420 thm may be used │ │ │ │ -000296c0: 666f 720a 2020 2020 2020 2020 7375 6273 for. subs │ │ │ │ -000296d0: 6368 656d 6573 206f 6620 616e 7920 6170 chemes of any ap │ │ │ │ -000296e0: 706c 6963 6162 6c65 2074 6f72 6963 2076 plicable toric v │ │ │ │ -000296f0: 6172 6965 7479 2028 7468 6973 206d 6179 ariety (this may │ │ │ │ -00029700: 2062 6520 6368 6563 6b65 6420 7573 696e be checked usin │ │ │ │ -00029710: 670a 2020 2020 2020 2020 7468 6520 2a6e g. the *n │ │ │ │ -00029720: 6f74 6520 4368 6563 6b54 6f72 6963 5661 ote CheckToricVa │ │ │ │ -00029730: 7269 6574 7956 616c 6964 3a20 4368 6563 rietyValid: Chec │ │ │ │ -00029740: 6b54 6f72 6963 5661 7269 6574 7956 616c kToricVarietyVal │ │ │ │ -00029750: 6964 2c20 636f 6d6d 616e 6429 0a20 2020 id, command). │ │ │ │ -00029760: 2020 202a 2043 6f6d 704d 6574 686f 6420 * CompMethod │ │ │ │ -00029770: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ -00029780: 7461 7469 6f6e 2920 3d3e 202e 2e2e 2c20 tation) => ..., │ │ │ │ -00029790: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ -000297a0: 2020 2020 2020 5072 6f6a 6563 7469 7665 Projective │ │ │ │ -000297b0: 4465 6772 6565 2c20 506e 5265 7369 6475 Degree, PnResidu │ │ │ │ -000297c0: 616c 2c20 7468 6973 2061 6c67 6f72 6974 al, this algorit │ │ │ │ -000297d0: 686d 206d 6179 2062 6520 7573 6564 2066 hm may be used f │ │ │ │ -000297e0: 6f72 2073 7562 7363 6865 6d65 730a 2020 or subschemes. │ │ │ │ -000297f0: 2020 2020 2020 6f66 205c 5050 5e6e 206f of \PP^n o │ │ │ │ -00029800: 6e6c 790a 2020 2020 2020 2a20 4f75 7470 nly. * Outp │ │ │ │ -00029810: 7574 203d 3e20 2e2e 2e2c 2064 6566 6175 ut => ..., defau │ │ │ │ -00029820: 6c74 2076 616c 7565 2043 686f 7752 696e lt value ChowRin │ │ │ │ -00029830: 6745 6c65 6d65 6e74 2c20 4368 6f77 5269 gElement, ChowRi │ │ │ │ -00029840: 6e67 456c 656d 656e 742c 2072 6574 7572 ngElement, retur │ │ │ │ -00029850: 6e73 0a20 2020 2020 2020 2061 2052 696e ns. a Rin │ │ │ │ -00029860: 6745 6c65 6d65 6e74 2069 6e20 7468 6520 gElement in the │ │ │ │ -00029870: 4368 6f77 2072 696e 6720 6f66 2074 6865 Chow ring of the │ │ │ │ -00029880: 2061 7070 726f 7072 6961 7465 2061 6d62 appropriate amb │ │ │ │ -00029890: 6965 6e74 2073 7061 6365 0a20 2020 2020 ient space. │ │ │ │ -000298a0: 202a 204f 7574 7075 7420 3d3e 202e 2e2e * Output => ... │ │ │ │ -000298b0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -000298c0: 4368 6f77 5269 6e67 456c 656d 656e 742c ChowRingElement, │ │ │ │ -000298d0: 2048 6173 6846 6f72 6d2c 2048 6173 6846 HashForm, HashF │ │ │ │ -000298e0: 6f72 6d0a 2020 2020 2020 2020 7265 7475 orm. retu │ │ │ │ -000298f0: 726e 7320 6120 4d75 7461 626c 6548 6173 rns a MutableHas │ │ │ │ -00029900: 6854 6162 6c65 2063 6f6e 7461 696e 696e hTable containin │ │ │ │ -00029910: 6720 7468 6520 666f 6c6c 6f77 696e 6720 g the following │ │ │ │ -00029920: 6b65 7973 3a20 2247 2220 2874 6865 0a20 keys: "G" (the. │ │ │ │ -00029930: 2020 2020 2020 2070 6f6c 796e 6f6d 6961 polynomia │ │ │ │ -00029940: 6c20 7769 7468 2063 6f65 6666 6963 6965 l with coefficie │ │ │ │ -00029950: 6e74 7320 6f66 2074 6865 2068 7970 6572 nts of the hyper │ │ │ │ -00029960: 706c 616e 6520 636c 6173 7365 7320 7265 plane classes re │ │ │ │ -00029970: 7072 6573 656e 7469 6e67 2074 6865 0a20 presenting the. │ │ │ │ -00029980: 2020 2020 2020 2070 726f 6a65 6374 6976 projectiv │ │ │ │ -00029990: 6520 6465 6772 6565 7329 2c20 2247 6c69 e degrees), "Gli │ │ │ │ -000299a0: 7374 2220 2874 6865 206c 6973 7420 666f st" (the list fo │ │ │ │ -000299b0: 726d 206f 6620 2247 2229 202c 2022 5365 rm of "G") , "Se │ │ │ │ -000299c0: 6772 6522 2028 7468 650a 2020 2020 2020 gre" (the. │ │ │ │ -000299d0: 2020 746f 7461 6c20 5365 6772 6520 636c total Segre cl │ │ │ │ -000299e0: 6173 7320 6f66 2074 6865 2069 6e70 7574 ass of the input │ │ │ │ -000299f0: 292c 2253 6567 7265 4c69 7374 2220 2874 ),"SegreList" (t │ │ │ │ -00029a00: 6865 206c 6973 7420 666f 726d 206f 6620 he list form of │ │ │ │ -00029a10: 2253 6567 7265 2229 0a20 202a 204f 7574 "Segre"). * Out │ │ │ │ -00029a20: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ -00029a30: 2a6e 6f74 6520 7269 6e67 2065 6c65 6d65 *note ring eleme │ │ │ │ -00029a40: 6e74 3a20 284d 6163 6175 6c61 7932 446f nt: (Macaulay2Do │ │ │ │ -00029a50: 6329 5269 6e67 456c 656d 656e 742c 2c20 c)RingElement,, │ │ │ │ -00029a60: 7468 6520 7075 7368 666f 7277 6172 6420 the pushforward │ │ │ │ -00029a70: 6f66 0a20 2020 2020 2020 2074 6865 2074 of. the t │ │ │ │ -00029a80: 6f74 616c 2053 6567 7265 2063 6c61 7373 otal Segre class │ │ │ │ -00029a90: 206f 6620 7468 6520 7363 6865 6d65 2056 of the scheme V │ │ │ │ -00029aa0: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ -00029ab0: 696e 7075 7420 6964 6561 6c20 746f 2074 input ideal to t │ │ │ │ -00029ac0: 6865 0a20 2020 2020 2020 2061 7070 726f he. appro │ │ │ │ -00029ad0: 7072 6961 7465 2043 686f 7720 7269 6e67 priate Chow ring │ │ │ │ -00029ae0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00029af0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a46 6f72 2061 =========..For a │ │ │ │ -00029b00: 2073 7562 7363 6865 6d65 2056 206f 6620 subscheme V of │ │ │ │ -00029b10: 616e 2061 7070 6c69 6361 626c 6520 746f an applicable to │ │ │ │ -00029b20: 7269 6320 7661 7269 6574 7920 5820 7468 ric variety X th │ │ │ │ -00029b30: 6973 2063 6f6d 6d61 6e64 2063 6f6d 7075 is command compu │ │ │ │ -00029b40: 7465 7320 7468 650a 7075 7368 2d66 6f72 tes the.push-for │ │ │ │ -00029b50: 7761 7264 206f 6620 7468 6520 746f 7461 ward of the tota │ │ │ │ -00029b60: 6c20 5365 6772 6520 636c 6173 7320 7328 l Segre class s( │ │ │ │ -00029b70: 562c 5829 206f 6620 5620 696e 2058 2074 V,X) of V in X t │ │ │ │ -00029b80: 6f20 7468 6520 4368 6f77 2072 696e 6720 o the Chow ring │ │ │ │ -00029b90: 6f66 2058 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d of X...+-------- │ │ │ │ -00029ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bc0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2073 6574 -----+.|i1 : set │ │ │ │ -00029bd0: 5261 6e64 6f6d 5365 6564 2037 323b 2020 RandomSeed 72; │ │ │ │ -00029be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029bf0: 2020 2020 207c 0a7c 202d 2d20 7365 7474 |.| -- sett │ │ │ │ -00029c00: 696e 6720 7261 6e64 6f6d 2073 6565 6420 ing random seed │ │ │ │ -00029c10: 746f 2037 3220 2020 2020 2020 2020 2020 to 72 │ │ │ │ -00029c20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029c50: 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 203d -----+.|i2 : R = │ │ │ │ -00029c60: 205a 5a2f 3332 3734 395b 772c 792c 7a5d ZZ/32749[w,y,z] │ │ │ │ +00028fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00028fd0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00028fe0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00028ff0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00029000: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00029010: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00029020: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00029030: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ +00029040: 6963 436c 6173 7365 732e 6d32 3a32 3337 icClasses.m2:237 │ │ │ │ +00029050: 383a 302e 0a1f 0a46 696c 653a 2043 6861 8:0....File: Cha │ │ │ │ +00029060: 7261 6374 6572 6973 7469 6343 6c61 7373 racteristicClass │ │ │ │ +00029070: 6573 2e69 6e66 6f2c 204e 6f64 653a 2053 es.info, Node: S │ │ │ │ +00029080: 6567 7265 2c20 4e65 7874 3a20 546f 7269 egre, Next: Tori │ │ │ │ +00029090: 6343 686f 7752 696e 672c 2050 7265 763a cChowRing, Prev: │ │ │ │ +000290a0: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ +000290b0: 6c67 6f72 6974 686d 2c20 5570 3a20 546f lgorithm, Up: To │ │ │ │ +000290c0: 700a 0a53 6567 7265 202d 2d20 5468 6520 p..Segre -- The │ │ │ │ +000290d0: 5365 6772 6520 636c 6173 7320 6f66 2061 Segre class of a │ │ │ │ +000290e0: 2073 7562 7363 6865 6d65 0a2a 2a2a 2a2a subscheme.***** │ │ │ │ +000290f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00029100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +00029110: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +00029120: 2020 2020 2020 2020 5365 6772 6520 490a Segre I. │ │ │ │ +00029130: 2020 2020 2020 2020 5365 6772 6528 412c Segre(A, │ │ │ │ +00029140: 4929 0a20 2020 2020 2020 2053 6567 7265 I). Segre │ │ │ │ +00029150: 2858 2c4a 290a 2020 2020 2020 2020 5365 (X,J). Se │ │ │ │ +00029160: 6772 6528 4368 2c58 2c4a 290a 2020 2a20 gre(Ch,X,J). * │ │ │ │ +00029170: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00029180: 492c 2061 6e20 2a6e 6f74 6520 6964 6561 I, an *note idea │ │ │ │ +00029190: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +000291a0: 2949 6465 616c 2c2c 2061 206d 756c 7469 )Ideal,, a multi │ │ │ │ +000291b0: 2d68 6f6d 6f67 656e 656f 7573 2069 6465 -homogeneous ide │ │ │ │ +000291c0: 616c 2069 6e20 610a 2020 2020 2020 2020 al in a. │ │ │ │ +000291d0: 6772 6164 6564 2070 6f6c 796e 6f6d 6961 graded polynomia │ │ │ │ +000291e0: 6c20 7269 6e67 206f 7665 7220 6120 6669 l ring over a fi │ │ │ │ +000291f0: 656c 6420 6465 6669 6e69 6e67 2061 2063 eld defining a c │ │ │ │ +00029200: 6c6f 7365 6420 7375 6273 6368 656d 6520 losed subscheme │ │ │ │ +00029210: 5620 6f66 0a20 2020 2020 2020 205c 5050 V of. \PP │ │ │ │ +00029220: 5e7b 6e5f 317d 782e 2e2e 785c 5050 5e7b ^{n_1}x...x\PP^{ │ │ │ │ +00029230: 6e5f 6d7d 0a20 2020 2020 202a 2041 2c20 n_m}. * A, │ │ │ │ +00029240: 6120 2a6e 6f74 6520 7175 6f74 6965 6e74 a *note quotient │ │ │ │ +00029250: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ +00029260: 3244 6f63 2951 756f 7469 656e 7452 696e 2Doc)QuotientRin │ │ │ │ +00029270: 672c 2c0a 2020 2020 2020 2020 413d 5c5a g,,. A=\Z │ │ │ │ +00029280: 5a5b 685f 312c 2e2e 2e2c 685f 6d5d 2f28 Z[h_1,...,h_m]/( │ │ │ │ +00029290: 685f 315e 7b6e 5f31 2b31 7d2c 2e2e 2e2c h_1^{n_1+1},..., │ │ │ │ +000292a0: 685f 6d5e 7b6e 5f6d 2b31 7d29 2071 756f h_m^{n_m+1}) quo │ │ │ │ +000292b0: 7469 656e 7420 7269 6e67 0a20 2020 2020 tient ring. │ │ │ │ +000292c0: 2020 2072 6570 7265 7365 6e74 696e 6720 representing │ │ │ │ +000292d0: 7468 6520 4368 6f77 2072 696e 6720 6f66 the Chow ring of │ │ │ │ +000292e0: 205c 5050 5e7b 6e5f 317d 782e 2e2e 785c \PP^{n_1}x...x\ │ │ │ │ +000292f0: 5050 5e7b 6e5f 6d7d 2c20 7468 6973 2072 PP^{n_m}, this r │ │ │ │ +00029300: 696e 6720 7368 6f75 6c64 0a20 2020 2020 ing should. │ │ │ │ +00029310: 2020 2062 6520 6275 696c 7420 7573 696e be built usin │ │ │ │ +00029320: 6720 7468 6520 2a6e 6f74 6520 4368 6f77 g the *note Chow │ │ │ │ +00029330: 5269 6e67 3a20 4368 6f77 5269 6e67 2c20 Ring: ChowRing, │ │ │ │ +00029340: 636f 6d6d 616e 640a 2020 2020 2020 2a20 command. * │ │ │ │ +00029350: 4a2c 2061 6e20 2a6e 6f74 6520 6964 6561 J, an *note idea │ │ │ │ +00029360: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +00029370: 2949 6465 616c 2c2c 2069 6e20 7468 6520 )Ideal,, in the │ │ │ │ +00029380: 6772 6164 6564 2070 6f6c 796e 6f6d 6961 graded polynomia │ │ │ │ +00029390: 6c20 7269 6e67 0a20 2020 2020 2020 2077 l ring. w │ │ │ │ +000293a0: 6869 6368 2069 7320 636f 6f72 6469 6e61 hich is coordina │ │ │ │ +000293b0: 7465 2072 696e 6720 6f66 2074 6865 204e te ring of the N │ │ │ │ +000293c0: 6f72 6d61 6c20 546f 7269 6320 5661 7269 ormal Toric Vari │ │ │ │ +000293d0: 6574 7920 580a 2020 2020 2020 2a20 582c ety X. * X, │ │ │ │ +000293e0: 2061 202a 6e6f 7465 206e 6f72 6d61 6c20 a *note normal │ │ │ │ +000293f0: 746f 7269 6320 7661 7269 6574 793a 0a20 toric variety:. │ │ │ │ +00029400: 2020 2020 2020 2028 4e6f 726d 616c 546f (NormalTo │ │ │ │ +00029410: 7269 6356 6172 6965 7469 6573 294e 6f72 ricVarieties)Nor │ │ │ │ +00029420: 6d61 6c54 6f72 6963 5661 7269 6574 792c malToricVariety, │ │ │ │ +00029430: 2c20 7768 6963 6820 6973 2074 6865 2061 , which is the a │ │ │ │ +00029440: 6d62 6965 6e74 2073 7061 6365 0a20 2020 mbient space. │ │ │ │ +00029450: 2020 2020 2077 6869 6368 2063 6f6e 7461 which conta │ │ │ │ +00029460: 696e 7320 5628 4a29 0a20 2020 2020 202a ins V(J). * │ │ │ │ +00029470: 2043 682c 2061 202a 6e6f 7465 2071 756f Ch, a *note quo │ │ │ │ +00029480: 7469 656e 7420 7269 6e67 3a20 284d 6163 tient ring: (Mac │ │ │ │ +00029490: 6175 6c61 7932 446f 6329 5175 6f74 6965 aulay2Doc)Quotie │ │ │ │ +000294a0: 6e74 5269 6e67 2c2c 2074 6865 2043 686f ntRing,, the Cho │ │ │ │ +000294b0: 7720 7269 6e67 0a20 2020 2020 2020 206f w ring. o │ │ │ │ +000294c0: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ +000294d0: 6574 7920 582c 2043 683d 2872 696e 6720 ety X, Ch=(ring │ │ │ │ +000294e0: 4a29 2f28 5352 2b4c 5229 2077 6865 7265 J)/(SR+LR) where │ │ │ │ +000294f0: 2053 5220 6973 2074 6865 0a20 2020 2020 SR is the. │ │ │ │ +00029500: 2020 2053 7461 6e6c 6579 2d52 6569 736e Stanley-Reisn │ │ │ │ +00029510: 6572 2069 6465 616c 206f 6620 7468 6520 er ideal of the │ │ │ │ +00029520: 6661 6e20 6465 6669 6e69 6e67 2058 2061 fan defining X a │ │ │ │ +00029530: 6e64 204c 5220 6973 2074 6865 206c 696e nd LR is the lin │ │ │ │ +00029540: 6561 720a 2020 2020 2020 2020 7265 6c61 ear. rela │ │ │ │ +00029550: 7469 6f6e 7320 6964 6561 6c2c 2074 6869 tions ideal, thi │ │ │ │ +00029560: 7320 7269 6e67 2073 686f 756c 6420 6265 s ring should be │ │ │ │ +00029570: 2062 7569 6c74 2075 7369 6e67 2074 6865 built using the │ │ │ │ +00029580: 202a 6e6f 7465 0a20 2020 2020 2020 2054 *note. T │ │ │ │ +00029590: 6f72 6963 4368 6f77 5269 6e67 3a20 546f oricChowRing: To │ │ │ │ +000295a0: 7269 6343 686f 7752 696e 672c 2063 6f6d ricChowRing, com │ │ │ │ +000295b0: 6d61 6e64 0a20 202a 202a 6e6f 7465 204f mand. * *note O │ │ │ │ +000295c0: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ +000295d0: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ +000295e0: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ +000295f0: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ +00029600: 7473 2c3a 0a20 2020 2020 202a 2043 6f6d ts,:. * Com │ │ │ │ +00029610: 704d 6574 686f 6420 286d 6973 7369 6e67 pMethod (missing │ │ │ │ +00029620: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ +00029630: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00029640: 7661 6c75 650a 2020 2020 2020 2020 5072 value. Pr │ │ │ │ +00029650: 6f6a 6563 7469 7665 4465 6772 6565 2c20 ojectiveDegree, │ │ │ │ +00029660: 5072 6f6a 6563 7469 7665 4465 6772 6565 ProjectiveDegree │ │ │ │ +00029670: 2c20 7468 6973 2061 6c67 6f72 6974 686d , this algorithm │ │ │ │ +00029680: 206d 6179 2062 6520 7573 6564 2066 6f72 may be used for │ │ │ │ +00029690: 0a20 2020 2020 2020 2073 7562 7363 6865 . subsche │ │ │ │ +000296a0: 6d65 7320 6f66 2061 6e79 2061 7070 6c69 mes of any appli │ │ │ │ +000296b0: 6361 626c 6520 746f 7269 6320 7661 7269 cable toric vari │ │ │ │ +000296c0: 6574 7920 2874 6869 7320 6d61 7920 6265 ety (this may be │ │ │ │ +000296d0: 2063 6865 636b 6564 2075 7369 6e67 0a20 checked using. │ │ │ │ +000296e0: 2020 2020 2020 2074 6865 202a 6e6f 7465 the *note │ │ │ │ +000296f0: 2043 6865 636b 546f 7269 6356 6172 6965 CheckToricVarie │ │ │ │ +00029700: 7479 5661 6c69 643a 2043 6865 636b 546f tyValid: CheckTo │ │ │ │ +00029710: 7269 6356 6172 6965 7479 5661 6c69 642c ricVarietyValid, │ │ │ │ +00029720: 2063 6f6d 6d61 6e64 290a 2020 2020 2020 command). │ │ │ │ +00029730: 2a20 436f 6d70 4d65 7468 6f64 2028 6d69 * CompMethod (mi │ │ │ │ +00029740: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +00029750: 696f 6e29 203d 3e20 2e2e 2e2c 2064 6566 ion) => ..., def │ │ │ │ +00029760: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ +00029770: 2020 2050 726f 6a65 6374 6976 6544 6567 ProjectiveDeg │ │ │ │ +00029780: 7265 652c 2050 6e52 6573 6964 7561 6c2c ree, PnResidual, │ │ │ │ +00029790: 2074 6869 7320 616c 676f 7269 7468 6d20 this algorithm │ │ │ │ +000297a0: 6d61 7920 6265 2075 7365 6420 666f 7220 may be used for │ │ │ │ +000297b0: 7375 6273 6368 656d 6573 0a20 2020 2020 subschemes. │ │ │ │ +000297c0: 2020 206f 6620 5c50 505e 6e20 6f6e 6c79 of \PP^n only │ │ │ │ +000297d0: 0a20 2020 2020 202a 204f 7574 7075 7420 . * Output │ │ │ │ +000297e0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +000297f0: 7661 6c75 6520 4368 6f77 5269 6e67 456c value ChowRingEl │ │ │ │ +00029800: 656d 656e 742c 2043 686f 7752 696e 6745 ement, ChowRingE │ │ │ │ +00029810: 6c65 6d65 6e74 2c20 7265 7475 726e 730a lement, returns. │ │ │ │ +00029820: 2020 2020 2020 2020 6120 5269 6e67 456c a RingEl │ │ │ │ +00029830: 656d 656e 7420 696e 2074 6865 2043 686f ement in the Cho │ │ │ │ +00029840: 7720 7269 6e67 206f 6620 7468 6520 6170 w ring of the ap │ │ │ │ +00029850: 7072 6f70 7269 6174 6520 616d 6269 656e propriate ambien │ │ │ │ +00029860: 7420 7370 6163 650a 2020 2020 2020 2a20 t space. * │ │ │ │ +00029870: 4f75 7470 7574 203d 3e20 2e2e 2e2c 2064 Output => ..., d │ │ │ │ +00029880: 6566 6175 6c74 2076 616c 7565 2043 686f efault value Cho │ │ │ │ +00029890: 7752 696e 6745 6c65 6d65 6e74 2c20 4861 wRingElement, Ha │ │ │ │ +000298a0: 7368 466f 726d 2c20 4861 7368 466f 726d shForm, HashForm │ │ │ │ +000298b0: 0a20 2020 2020 2020 2072 6574 7572 6e73 . returns │ │ │ │ +000298c0: 2061 204d 7574 6162 6c65 4861 7368 5461 a MutableHashTa │ │ │ │ +000298d0: 626c 6520 636f 6e74 6169 6e69 6e67 2074 ble containing t │ │ │ │ +000298e0: 6865 2066 6f6c 6c6f 7769 6e67 206b 6579 he following key │ │ │ │ +000298f0: 733a 2022 4722 2028 7468 650a 2020 2020 s: "G" (the. │ │ │ │ +00029900: 2020 2020 706f 6c79 6e6f 6d69 616c 2077 polynomial w │ │ │ │ +00029910: 6974 6820 636f 6566 6669 6369 656e 7473 ith coefficients │ │ │ │ +00029920: 206f 6620 7468 6520 6879 7065 7270 6c61 of the hyperpla │ │ │ │ +00029930: 6e65 2063 6c61 7373 6573 2072 6570 7265 ne classes repre │ │ │ │ +00029940: 7365 6e74 696e 6720 7468 650a 2020 2020 senting the. │ │ │ │ +00029950: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +00029960: 6567 7265 6573 292c 2022 476c 6973 7422 egrees), "Glist" │ │ │ │ +00029970: 2028 7468 6520 6c69 7374 2066 6f72 6d20 (the list form │ │ │ │ +00029980: 6f66 2022 4722 2920 2c20 2253 6567 7265 of "G") , "Segre │ │ │ │ +00029990: 2220 2874 6865 0a20 2020 2020 2020 2074 " (the. t │ │ │ │ +000299a0: 6f74 616c 2053 6567 7265 2063 6c61 7373 otal Segre class │ │ │ │ +000299b0: 206f 6620 7468 6520 696e 7075 7429 2c22 of the input)," │ │ │ │ +000299c0: 5365 6772 654c 6973 7422 2028 7468 6520 SegreList" (the │ │ │ │ +000299d0: 6c69 7374 2066 6f72 6d20 6f66 2022 5365 list form of "Se │ │ │ │ +000299e0: 6772 6522 290a 2020 2a20 4f75 7470 7574 gre"). * Output │ │ │ │ +000299f0: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ +00029a00: 7465 2072 696e 6720 656c 656d 656e 743a te ring element: │ │ │ │ +00029a10: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ +00029a20: 696e 6745 6c65 6d65 6e74 2c2c 2074 6865 ingElement,, the │ │ │ │ +00029a30: 2070 7573 6866 6f72 7761 7264 206f 660a pushforward of. │ │ │ │ +00029a40: 2020 2020 2020 2020 7468 6520 746f 7461 the tota │ │ │ │ +00029a50: 6c20 5365 6772 6520 636c 6173 7320 6f66 l Segre class of │ │ │ │ +00029a60: 2074 6865 2073 6368 656d 6520 5620 6465 the scheme V de │ │ │ │ +00029a70: 6669 6e65 6420 6279 2074 6865 2069 6e70 fined by the inp │ │ │ │ +00029a80: 7574 2069 6465 616c 2074 6f20 7468 650a ut ideal to the. │ │ │ │ +00029a90: 2020 2020 2020 2020 6170 7072 6f70 7269 appropri │ │ │ │ +00029aa0: 6174 6520 4368 6f77 2072 696e 670a 0a44 ate Chow ring..D │ │ │ │ +00029ab0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00029ac0: 3d3d 3d3d 3d3d 0a0a 466f 7220 6120 7375 ======..For a su │ │ │ │ +00029ad0: 6273 6368 656d 6520 5620 6f66 2061 6e20 bscheme V of an │ │ │ │ +00029ae0: 6170 706c 6963 6162 6c65 2074 6f72 6963 applicable toric │ │ │ │ +00029af0: 2076 6172 6965 7479 2058 2074 6869 7320 variety X this │ │ │ │ +00029b00: 636f 6d6d 616e 6420 636f 6d70 7574 6573 command computes │ │ │ │ +00029b10: 2074 6865 0a70 7573 682d 666f 7277 6172 the.push-forwar │ │ │ │ +00029b20: 6420 6f66 2074 6865 2074 6f74 616c 2053 d of the total S │ │ │ │ +00029b30: 6567 7265 2063 6c61 7373 2073 2856 2c58 egre class s(V,X │ │ │ │ +00029b40: 2920 6f66 2056 2069 6e20 5820 746f 2074 ) of V in X to t │ │ │ │ +00029b50: 6865 2043 686f 7720 7269 6e67 206f 6620 he Chow ring of │ │ │ │ +00029b60: 582e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d X...+----------- │ │ │ │ +00029b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029b90: 2d2d 2b0a 7c69 3120 3a20 7365 7452 616e --+.|i1 : setRan │ │ │ │ +00029ba0: 646f 6d53 6565 6420 3732 3b20 2020 2020 domSeed 72; │ │ │ │ +00029bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029bc0: 2020 7c0a 7c20 2d2d 2073 6574 7469 6e67 |.| -- setting │ │ │ │ +00029bd0: 2072 616e 646f 6d20 7365 6564 2074 6f20 random seed to │ │ │ │ +00029be0: 3732 2020 2020 2020 2020 2020 2020 2020 72 │ │ │ │ +00029bf0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00029c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029c20: 2d2d 2b0a 7c69 3220 3a20 5220 3d20 5a5a --+.|i2 : R = ZZ │ │ │ │ +00029c30: 2f33 3237 3439 5b77 2c79 2c7a 5d20 2020 /32749[w,y,z] │ │ │ │ +00029c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029c50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029c80: 2020 7c0a 7c6f 3220 3d20 5220 2020 2020 |.|o2 = R │ │ │ │ 00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 2020 207c 0a7c 6f32 203d 2052 2020 |.|o2 = R │ │ │ │ +00029cb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00029cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ce0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029ce0: 2020 7c0a 7c6f 3220 3a20 506f 6c79 6e6f |.|o2 : Polyno │ │ │ │ +00029cf0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d10: 2020 2020 207c 0a7c 6f32 203a 2050 6f6c |.|o2 : Pol │ │ │ │ -00029d20: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ -00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d40: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029d70: 2d2d 2d2d 2d2b 0a7c 6933 203a 2053 6567 -----+.|i3 : Seg │ │ │ │ -00029d80: 7265 2869 6465 616c 2877 2a79 292c 436f re(ideal(w*y),Co │ │ │ │ -00029d90: 6d70 4d65 7468 6f64 3d3e 506e 5265 7369 mpMethod=>PnResi │ │ │ │ -00029da0: 6475 616c 297c 0a7c 2020 2020 2020 2020 dual)|.| │ │ │ │ +00029d10: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00029d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029d40: 2d2d 2b0a 7c69 3320 3a20 5365 6772 6528 --+.|i3 : Segre( │ │ │ │ +00029d50: 6964 6561 6c28 772a 7929 2c43 6f6d 704d ideal(w*y),CompM │ │ │ │ +00029d60: 6574 686f 643d 3e50 6e52 6573 6964 7561 ethod=>PnResidua │ │ │ │ +00029d70: 6c29 7c0a 7c20 2020 2020 2020 2020 2020 l)|.| │ │ │ │ +00029d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029da0: 2020 7c0a 7c20 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ 00029db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029de0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00029dd0: 2020 7c0a 7c6f 3320 3d20 2d20 3448 2020 |.|o3 = - 4H │ │ │ │ +00029de0: 2b20 3248 2020 2020 2020 2020 2020 2020 + 2H │ │ │ │ 00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 2020 2020 207c 0a7c 6f33 203d 202d 2034 |.|o3 = - 4 │ │ │ │ -00029e10: 4820 202b 2032 4820 2020 2020 2020 2020 H + 2H │ │ │ │ +00029e00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029e30: 2020 7c0a 7c20 2020 2020 5a5a 5b48 5d20 |.| ZZ[H] │ │ │ │ 00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e60: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -00029e70: 485d 2020 2020 2020 2020 2020 2020 2020 H] │ │ │ │ +00029e60: 2020 7c0a 7c6f 3320 3a20 2d2d 2d2d 2d20 |.|o3 : ----- │ │ │ │ +00029e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e90: 2020 2020 207c 0a7c 6f33 203a 202d 2d2d |.|o3 : --- │ │ │ │ -00029ea0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00029e90: 2020 7c0a 7c20 2020 2020 2020 2033 2020 |.| 3 │ │ │ │ +00029ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029ed0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00029ec0: 2020 7c0a 7c20 2020 2020 2020 4820 2020 |.| H │ │ │ │ +00029ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ef0: 2020 2020 207c 0a7c 2020 2020 2020 2048 |.| H │ │ │ │ -00029f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f20: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -00029f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029f50: 2d2d 2d2d 2d2b 0a7c 6934 203a 2041 3d43 -----+.|i4 : A=C │ │ │ │ -00029f60: 686f 7752 696e 6728 5229 2020 2020 2020 howRing(R) │ │ │ │ +00029ef0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00029f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00029f20: 2d2d 2b0a 7c69 3420 3a20 413d 4368 6f77 --+.|i4 : A=Chow │ │ │ │ +00029f30: 5269 6e67 2852 2920 2020 2020 2020 2020 Ring(R) │ │ │ │ +00029f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029f50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00029f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029f80: 2020 7c0a 7c6f 3420 3d20 4120 2020 2020 |.|o4 = A │ │ │ │ 00029f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fb0: 2020 2020 207c 0a7c 6f34 203d 2041 2020 |.|o4 = A │ │ │ │ +00029fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00029fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00029fe0: 2020 7c0a 7c6f 3420 3a20 5175 6f74 6965 |.|o4 : Quotie │ │ │ │ +00029ff0: 6e74 5269 6e67 2020 2020 2020 2020 2020 ntRing │ │ │ │ 0002a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a010: 2020 2020 207c 0a7c 6f34 203a 2051 756f |.|o4 : Quo │ │ │ │ -0002a020: 7469 656e 7452 696e 6720 2020 2020 2020 tientRing │ │ │ │ -0002a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a040: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a070: 2d2d 2d2d 2d2b 0a7c 6935 203a 2053 6567 -----+.|i5 : Seg │ │ │ │ -0002a080: 7265 2841 2c69 6465 616c 2877 5e32 2a79 re(A,ideal(w^2*y │ │ │ │ -0002a090: 2c77 2a79 5e32 2929 2020 2020 2020 2020 ,w*y^2)) │ │ │ │ -0002a0a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a010: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a040: 2d2d 2b0a 7c69 3520 3a20 5365 6772 6528 --+.|i5 : Segre( │ │ │ │ +0002a050: 412c 6964 6561 6c28 775e 322a 792c 772a A,ideal(w^2*y,w* │ │ │ │ +0002a060: 795e 3229 2920 2020 2020 2020 2020 2020 y^2)) │ │ │ │ +0002a070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a0a0: 2020 7c0a 7c20 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ 0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a0e0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a0d0: 2020 7c0a 7c6f 3520 3d20 2d20 3368 2020 |.|o5 = - 3h │ │ │ │ +0002a0e0: 2b20 3268 2020 2020 2020 2020 2020 2020 + 2h │ │ │ │ 0002a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a100: 2020 2020 207c 0a7c 6f35 203d 202d 2033 |.|o5 = - 3 │ │ │ │ -0002a110: 6820 202b 2032 6820 2020 2020 2020 2020 h + 2h │ │ │ │ +0002a100: 2020 7c0a 7c20 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0002a110: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ 0002a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002a140: 2031 2020 2020 2031 2020 2020 2020 2020 1 1 │ │ │ │ +0002a130: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a160: 2020 7c0a 7c6f 3520 3a20 4120 2020 2020 |.|o5 : A │ │ │ │ 0002a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a190: 2020 2020 207c 0a7c 6f35 203a 2041 2020 |.|o5 : A │ │ │ │ -0002a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a1c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ -0002a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a1f0: 2d2d 2d2d 2d2b 0a0a 4e6f 7720 636f 6e73 -----+..Now cons │ │ │ │ -0002a200: 6964 6572 2061 6e20 6578 616d 706c 6520 ider an example │ │ │ │ -0002a210: 696e 205c 5050 5e32 205c 7469 6d65 7320 in \PP^2 \times │ │ │ │ -0002a220: 5c50 505e 322c 2069 6620 7765 2069 6e70 \PP^2, if we inp │ │ │ │ -0002a230: 7574 2074 6865 2043 686f 7720 7269 6e67 ut the Chow ring │ │ │ │ -0002a240: 2041 2074 6865 0a6f 7574 7075 7420 7769 A the.output wi │ │ │ │ -0002a250: 6c6c 2062 6520 7265 7475 726e 6564 2069 ll be returned i │ │ │ │ -0002a260: 6e20 7468 6520 7361 6d65 2072 696e 672e n the same ring. │ │ │ │ -0002a270: 2054 6f20 656e 7375 7265 2070 726f 7065 To ensure prope │ │ │ │ -0002a280: 7220 6675 6e63 7469 6f6e 206f 6620 7468 r function of th │ │ │ │ -0002a290: 650a 6d65 7468 6f64 7320 7765 2062 7569 e.methods we bui │ │ │ │ -0002a2a0: 6c64 2074 6865 2043 686f 7720 7269 6e67 ld the Chow ring │ │ │ │ -0002a2b0: 2075 7369 6e67 2074 6865 202a 6e6f 7465 using the *note │ │ │ │ -0002a2c0: 2043 686f 7752 696e 673a 2043 686f 7752 ChowRing: ChowR │ │ │ │ -0002a2d0: 696e 672c 2063 6f6d 6d61 6e64 2e20 5765 ing, command. We │ │ │ │ -0002a2e0: 0a6d 6179 2061 6c73 6f20 7265 7475 726e .may also return │ │ │ │ -0002a2f0: 2061 204d 7574 6162 6c65 4861 7368 5461 a MutableHashTa │ │ │ │ -0002a300: 626c 652e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ble...+--------- │ │ │ │ +0002a190: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +0002a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a1c0: 2d2d 2b0a 0a4e 6f77 2063 6f6e 7369 6465 --+..Now conside │ │ │ │ +0002a1d0: 7220 616e 2065 7861 6d70 6c65 2069 6e20 r an example in │ │ │ │ +0002a1e0: 5c50 505e 3220 5c74 696d 6573 205c 5050 \PP^2 \times \PP │ │ │ │ +0002a1f0: 5e32 2c20 6966 2077 6520 696e 7075 7420 ^2, if we input │ │ │ │ +0002a200: 7468 6520 4368 6f77 2072 696e 6720 4120 the Chow ring A │ │ │ │ +0002a210: 7468 650a 6f75 7470 7574 2077 696c 6c20 the.output will │ │ │ │ +0002a220: 6265 2072 6574 7572 6e65 6420 696e 2074 be returned in t │ │ │ │ +0002a230: 6865 2073 616d 6520 7269 6e67 2e20 546f he same ring. To │ │ │ │ +0002a240: 2065 6e73 7572 6520 7072 6f70 6572 2066 ensure proper f │ │ │ │ +0002a250: 756e 6374 696f 6e20 6f66 2074 6865 0a6d unction of the.m │ │ │ │ +0002a260: 6574 686f 6473 2077 6520 6275 696c 6420 ethods we build │ │ │ │ +0002a270: 7468 6520 4368 6f77 2072 696e 6720 7573 the Chow ring us │ │ │ │ +0002a280: 696e 6720 7468 6520 2a6e 6f74 6520 4368 ing the *note Ch │ │ │ │ +0002a290: 6f77 5269 6e67 3a20 4368 6f77 5269 6e67 owRing: ChowRing │ │ │ │ +0002a2a0: 2c20 636f 6d6d 616e 642e 2057 650a 6d61 , command. We.ma │ │ │ │ +0002a2b0: 7920 616c 736f 2072 6574 7572 6e20 6120 y also return a │ │ │ │ +0002a2c0: 4d75 7461 626c 6548 6173 6854 6162 6c65 MutableHashTable │ │ │ │ +0002a2d0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0002a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a350: 2d2d 2d2d 2b0a 7c69 3620 3a20 523d 4d75 ----+.|i6 : R=Mu │ │ │ │ -0002a360: 6c74 6950 726f 6a43 6f6f 7264 5269 6e67 ltiProjCoordRing │ │ │ │ -0002a370: 287b 322c 327d 2920 2020 2020 2020 2020 ({2,2}) │ │ │ │ +0002a320: 2d2b 0a7c 6936 203a 2052 3d4d 756c 7469 -+.|i6 : R=Multi │ │ │ │ +0002a330: 5072 6f6a 436f 6f72 6452 696e 6728 7b32 ProjCoordRing({2 │ │ │ │ +0002a340: 2c32 7d29 2020 2020 2020 2020 2020 2020 ,2}) │ │ │ │ +0002a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a3c0: 207c 0a7c 6f36 203d 2052 2020 2020 2020 |.|o6 = R │ │ │ │ 0002a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3f0: 2020 2020 7c0a 7c6f 3620 3d20 5220 2020 |.|o6 = R │ │ │ │ +0002a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a440: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a460: 207c 0a7c 6f36 203a 2050 6f6c 796e 6f6d |.|o6 : Polynom │ │ │ │ +0002a470: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ 0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a490: 2020 2020 7c0a 7c6f 3620 3a20 506f 6c79 |.|o6 : Poly │ │ │ │ -0002a4a0: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ -0002a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a4e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a4b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a530: 2d2d 2d2d 2b0a 7c69 3720 3a20 723d 6765 ----+.|i7 : r=ge │ │ │ │ -0002a540: 6e73 2052 2020 2020 2020 2020 2020 2020 ns R │ │ │ │ -0002a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a500: 2d2b 0a7c 6937 203a 2072 3d67 656e 7320 -+.|i7 : r=gens │ │ │ │ +0002a510: 5220 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ +0002a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a580: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a5d0: 2020 2020 7c0a 7c6f 3720 3d20 7b78 202c |.|o7 = {x , │ │ │ │ -0002a5e0: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -0002a5f0: 2078 207d 2020 2020 2020 2020 2020 2020 x } │ │ │ │ -0002a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a5a0: 207c 0a7c 6f37 203d 207b 7820 2c20 7820 |.|o7 = {x , x │ │ │ │ +0002a5b0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +0002a5c0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a5f0: 207c 0a7c 2020 2020 2020 2030 2020 2031 |.| 0 1 │ │ │ │ +0002a600: 2020 2032 2020 2033 2020 2034 2020 2035 2 3 4 5 │ │ │ │ 0002a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a620: 2020 2020 7c0a 7c20 2020 2020 2020 3020 |.| 0 │ │ │ │ -0002a630: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -0002a640: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0002a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a670: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a690: 207c 0a7c 6f37 203a 204c 6973 7420 2020 |.|o7 : List │ │ │ │ 0002a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6c0: 2020 2020 7c0a 7c6f 3720 3a20 4c69 7374 |.|o7 : List │ │ │ │ +0002a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a710: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a6e0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a760: 2d2d 2d2d 2b0a 7c69 3820 3a20 413d 4368 ----+.|i8 : A=Ch │ │ │ │ -0002a770: 6f77 5269 6e67 2852 2920 2020 2020 2020 owRing(R) │ │ │ │ -0002a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a730: 2d2b 0a7c 6938 203a 2041 3d43 686f 7752 -+.|i8 : A=ChowR │ │ │ │ +0002a740: 696e 6728 5229 2020 2020 2020 2020 2020 ing(R) │ │ │ │ +0002a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a7d0: 207c 0a7c 6f38 203d 2041 2020 2020 2020 |.|o8 = A │ │ │ │ 0002a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a800: 2020 2020 7c0a 7c6f 3820 3d20 4120 2020 |.|o8 = A │ │ │ │ +0002a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a850: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a870: 207c 0a7c 6f38 203a 2051 756f 7469 656e |.|o8 : Quotien │ │ │ │ +0002a880: 7452 696e 6720 2020 2020 2020 2020 2020 tRing │ │ │ │ 0002a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8a0: 2020 2020 7c0a 7c6f 3820 3a20 5175 6f74 |.|o8 : Quot │ │ │ │ -0002a8b0: 6965 6e74 5269 6e67 2020 2020 2020 2020 ientRing │ │ │ │ -0002a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a8f0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a8c0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002a940: 2d2d 2d2d 2b0a 7c69 3920 3a20 493d 6964 ----+.|i9 : I=id │ │ │ │ -0002a950: 6561 6c28 725f 305e 322a 725f 332d 725f eal(r_0^2*r_3-r_ │ │ │ │ -0002a960: 342a 725f 312a 725f 322c 725f 325e 322a 4*r_1*r_2,r_2^2* │ │ │ │ -0002a970: 725f 3529 2020 2020 2020 2020 2020 2020 r_5) │ │ │ │ +0002a910: 2d2b 0a7c 6939 203a 2049 3d69 6465 616c -+.|i9 : I=ideal │ │ │ │ +0002a920: 2872 5f30 5e32 2a72 5f33 2d72 5f34 2a72 (r_0^2*r_3-r_4*r │ │ │ │ +0002a930: 5f31 2a72 5f32 2c72 5f32 5e32 2a72 5f35 _1*r_2,r_2^2*r_5 │ │ │ │ +0002a940: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a990: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a9e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002a9f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002aa00: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa30: 2020 2020 7c0a 7c6f 3920 3d20 6964 6561 |.|o9 = idea │ │ │ │ -0002aa40: 6c20 2878 2078 2020 2d20 7820 7820 7820 l (x x - x x x │ │ │ │ -0002aa50: 2c20 7820 7820 2920 2020 2020 2020 2020 , x x ) │ │ │ │ -0002aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa80: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002aa90: 2020 2020 3020 3320 2020 2031 2032 2034 0 3 1 2 4 │ │ │ │ -0002aaa0: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0002a9b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002a9c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a9d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa00: 207c 0a7c 6f39 203d 2069 6465 616c 2028 |.|o9 = ideal ( │ │ │ │ +0002aa10: 7820 7820 202d 2078 2078 2078 202c 2078 x x - x x x , x │ │ │ │ +0002aa20: 2078 2029 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0002aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002aa60: 2030 2033 2020 2020 3120 3220 3420 2020 0 3 1 2 4 │ │ │ │ +0002aa70: 3220 3520 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ +0002aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aaa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aad0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aaf0: 207c 0a7c 6f39 203a 2049 6465 616c 206f |.|o9 : Ideal o │ │ │ │ +0002ab00: 6620 5220 2020 2020 2020 2020 2020 2020 f R │ │ │ │ 0002ab10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab20: 2020 2020 7c0a 7c6f 3920 3a20 4964 6561 |.|o9 : Idea │ │ │ │ -0002ab30: 6c20 6f66 2052 2020 2020 2020 2020 2020 l of R │ │ │ │ -0002ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab70: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002ab50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002abc0: 2d2d 2d2d 2b0a 7c69 3130 203a 2053 6567 ----+.|i10 : Seg │ │ │ │ -0002abd0: 7265 2049 2020 2020 2020 2020 2020 2020 re I │ │ │ │ -0002abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ab90: 2d2b 0a7c 6931 3020 3a20 5365 6772 6520 -+.|i10 : Segre │ │ │ │ +0002aba0: 4920 2020 2020 2020 2020 2020 2020 2020 I │ │ │ │ +0002abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002abe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ac60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ac70: 3220 3220 2020 2020 2032 2020 2020 2020 2 2 2 │ │ │ │ -0002ac80: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0002ac90: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002acb0: 2020 2020 7c0a 7c6f 3130 203d 2037 3268 |.|o10 = 72h │ │ │ │ -0002acc0: 2068 2020 2d20 3234 6820 6820 202d 2031 h - 24h h - 1 │ │ │ │ -0002acd0: 3268 2068 2020 2b20 3468 2020 2b20 3468 2h h + 4h + 4h │ │ │ │ -0002ace0: 2068 2020 2b20 6820 2020 2020 2020 2020 h + h │ │ │ │ -0002acf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ad10: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ -0002ad20: 2020 3120 3220 2020 2020 3120 2020 2020 1 2 1 │ │ │ │ -0002ad30: 3120 3220 2020 2032 2020 2020 2020 2020 1 2 2 │ │ │ │ +0002ac30: 207c 0a7c 2020 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +0002ac40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0002ac50: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +0002ac60: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ac80: 207c 0a7c 6f31 3020 3d20 3732 6820 6820 |.|o10 = 72h h │ │ │ │ +0002ac90: 202d 2032 3468 2068 2020 2d20 3132 6820 - 24h h - 12h │ │ │ │ +0002aca0: 6820 202b 2034 6820 202b 2034 6820 6820 h + 4h + 4h h │ │ │ │ +0002acb0: 202b 2068 2020 2020 2020 2020 2020 2020 + h │ │ │ │ +0002acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002acd0: 207c 0a7c 2020 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ +0002ace0: 2020 2020 2020 3120 3220 2020 2020 2031 1 2 1 │ │ │ │ +0002acf0: 2032 2020 2020 2031 2020 2020 2031 2032 2 1 1 2 │ │ │ │ +0002ad00: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002ad10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ad70: 207c 0a7c 2020 2020 2020 5a5a 5b68 202e |.| ZZ[h . │ │ │ │ +0002ad80: 2e68 205d 2020 2020 2020 2020 2020 2020 .h ] │ │ │ │ 0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ada0: 2020 2020 7c0a 7c20 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ -0002adb0: 6820 2e2e 6820 5d20 2020 2020 2020 2020 h ..h ] │ │ │ │ -0002adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002adc0: 207c 0a7c 2020 2020 2020 2020 2020 3120 |.| 1 │ │ │ │ +0002add0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adf0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ae00: 2031 2020 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ -0002ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae10: 207c 0a7c 6f31 3020 3a20 2d2d 2d2d 2d2d |.|o10 : ------ │ │ │ │ +0002ae20: 2d2d 2d2d 2020 2020 2020 2020 2020 2020 ---- │ │ │ │ 0002ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae40: 2020 2020 7c0a 7c6f 3130 203a 202d 2d2d |.|o10 : --- │ │ │ │ -0002ae50: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ -0002ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae60: 207c 0a7c 2020 2020 2020 2020 2033 2020 |.| 3 │ │ │ │ +0002ae70: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0002ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae90: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002aea0: 3320 2020 3320 2020 2020 2020 2020 2020 3 3 │ │ │ │ -0002aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aeb0: 207c 0a7c 2020 2020 2020 2028 6820 2c20 |.| (h , │ │ │ │ +0002aec0: 6820 2920 2020 2020 2020 2020 2020 2020 h ) │ │ │ │ 0002aed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aee0: 2020 2020 7c0a 7c20 2020 2020 2020 2868 |.| (h │ │ │ │ -0002aef0: 202c 2068 2029 2020 2020 2020 2020 2020 , h ) │ │ │ │ -0002af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af00: 207c 0a7c 2020 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ +0002af10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002af20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af30: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002af40: 3120 2020 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ -0002af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002af50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002afd0: 2d2d 2d2d 2b0a 7c69 3131 203a 2073 313d ----+.|i11 : s1= │ │ │ │ -0002afe0: 5365 6772 6528 412c 4929 2020 2020 2020 Segre(A,I) │ │ │ │ -0002aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afa0: 2d2b 0a7c 6931 3120 3a20 7331 3d53 6567 -+.|i11 : s1=Seg │ │ │ │ +0002afb0: 7265 2841 2c49 2920 2020 2020 2020 2020 re(A,I) │ │ │ │ +0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002aff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b020: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b070: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b080: 3220 3220 2020 2020 2032 2020 2020 2020 2 2 2 │ │ │ │ -0002b090: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0002b0a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0c0: 2020 2020 7c0a 7c6f 3131 203d 2037 3268 |.|o11 = 72h │ │ │ │ -0002b0d0: 2068 2020 2d20 3234 6820 6820 202d 2031 h - 24h h - 1 │ │ │ │ -0002b0e0: 3268 2068 2020 2b20 3468 2020 2b20 3468 2h h + 4h + 4h │ │ │ │ -0002b0f0: 2068 2020 2b20 6820 2020 2020 2020 2020 h + h │ │ │ │ -0002b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b110: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b120: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ -0002b130: 2020 3120 3220 2020 2020 3120 2020 2020 1 2 1 │ │ │ │ -0002b140: 3120 3220 2020 2032 2020 2020 2020 2020 1 2 2 │ │ │ │ +0002b040: 207c 0a7c 2020 2020 2020 2020 2032 2032 |.| 2 2 │ │ │ │ +0002b050: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0002b060: 2032 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ +0002b070: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b090: 207c 0a7c 6f31 3120 3d20 3732 6820 6820 |.|o11 = 72h h │ │ │ │ +0002b0a0: 202d 2032 3468 2068 2020 2d20 3132 6820 - 24h h - 12h │ │ │ │ +0002b0b0: 6820 202b 2034 6820 202b 2034 6820 6820 h + 4h + 4h h │ │ │ │ +0002b0c0: 202b 2068 2020 2020 2020 2020 2020 2020 + h │ │ │ │ +0002b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b0e0: 207c 0a7c 2020 2020 2020 2020 2031 2032 |.| 1 2 │ │ │ │ +0002b0f0: 2020 2020 2020 3120 3220 2020 2020 2031 1 2 1 │ │ │ │ +0002b100: 2032 2020 2020 2031 2020 2020 2031 2032 2 1 1 2 │ │ │ │ +0002b110: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b160: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b180: 207c 0a7c 6f31 3120 3a20 4120 2020 2020 |.|o11 : A │ │ │ │ 0002b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1b0: 2020 2020 7c0a 7c6f 3131 203a 2041 2020 |.|o11 : A │ │ │ │ +0002b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b200: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002b1d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b250: 2d2d 2d2d 2b0a 7c69 3132 203a 2053 6567 ----+.|i12 : Seg │ │ │ │ -0002b260: 4861 7368 3d53 6567 7265 2841 2c49 2c4f Hash=Segre(A,I,O │ │ │ │ -0002b270: 7574 7075 743d 3e48 6173 6846 6f72 6d29 utput=>HashForm) │ │ │ │ +0002b220: 2d2b 0a7c 6931 3220 3a20 5365 6748 6173 -+.|i12 : SegHas │ │ │ │ +0002b230: 683d 5365 6772 6528 412c 492c 4f75 7470 h=Segre(A,I,Outp │ │ │ │ +0002b240: 7574 3d3e 4861 7368 466f 726d 2920 2020 ut=>HashForm) │ │ │ │ +0002b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2f0: 2020 2020 7c0a 7c6f 3132 203d 204d 7574 |.|o12 = Mut │ │ │ │ -0002b300: 6162 6c65 4861 7368 5461 626c 657b 2e2e ableHashTable{.. │ │ │ │ -0002b310: 2e34 2e2e 2e7d 2020 2020 2020 2020 2020 .4...} │ │ │ │ +0002b2c0: 207c 0a7c 6f31 3220 3d20 4d75 7461 626c |.|o12 = Mutabl │ │ │ │ +0002b2d0: 6548 6173 6854 6162 6c65 7b2e 2e2e 342e eHashTable{...4. │ │ │ │ +0002b2e0: 2e2e 7d20 2020 2020 2020 2020 2020 2020 ..} │ │ │ │ +0002b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b340: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b360: 207c 0a7c 6f31 3220 3a20 4d75 7461 626c |.|o12 : Mutabl │ │ │ │ +0002b370: 6548 6173 6854 6162 6c65 2020 2020 2020 eHashTable │ │ │ │ 0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 7c0a 7c6f 3132 203a 204d 7574 |.|o12 : Mut │ │ │ │ -0002b3a0: 6162 6c65 4861 7368 5461 626c 6520 2020 ableHashTable │ │ │ │ -0002b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3e0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b3b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b430: 2d2d 2d2d 2b0a 7c69 3133 203a 2070 6565 ----+.|i13 : pee │ │ │ │ -0002b440: 6b20 5365 6748 6173 6820 2020 2020 2020 k SegHash │ │ │ │ -0002b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b400: 2d2b 0a7c 6931 3320 3a20 7065 656b 2053 -+.|i13 : peek S │ │ │ │ +0002b410: 6567 4861 7368 2020 2020 2020 2020 2020 egHash │ │ │ │ +0002b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b480: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4d0: 2020 2020 7c0a 7c6f 3133 203d 204d 7574 |.|o13 = Mut │ │ │ │ -0002b4e0: 6162 6c65 4861 7368 5461 626c 657b 4720 ableHashTable{G │ │ │ │ -0002b4f0: 3d3e 2032 6820 202b 2068 2020 2b20 3120 => 2h + h + 1 │ │ │ │ +0002b4a0: 207c 0a7c 6f31 3320 3d20 4d75 7461 626c |.|o13 = Mutabl │ │ │ │ +0002b4b0: 6548 6173 6854 6162 6c65 7b47 203d 3e20 eHashTable{G => │ │ │ │ +0002b4c0: 3268 2020 2b20 6820 202b 2031 2020 2020 2h + h + 1 │ │ │ │ +0002b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b4f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b520: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b510: 2020 3120 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +0002b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b540: 2020 2020 2031 2020 2020 3220 2020 2020 1 2 │ │ │ │ -0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b580: 2020 2020 2020 2020 2020 2020 2020 476c Gl │ │ │ │ -0002b590: 6973 7420 3d3e 207b 312c 2032 6820 202b ist => {1, 2h + │ │ │ │ -0002b5a0: 2068 202c 2030 2c20 302c 2030 7d20 2020 h , 0, 0, 0} │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b550: 2020 2020 2020 2020 2020 2047 6c69 7374 Glist │ │ │ │ +0002b560: 203d 3e20 7b31 2c20 3268 2020 2b20 6820 => {1, 2h + h │ │ │ │ +0002b570: 2c20 302c 2030 2c20 307d 2020 2020 2020 , 0, 0, 0} │ │ │ │ +0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b590: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b5b0: 2020 2020 2020 2020 2020 3120 2020 2032 1 2 │ │ │ │ +0002b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5e0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -0002b5f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b5e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b610: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b610: 2032 2020 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ 0002b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b640: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b650: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b670: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -0002b680: 6772 654c 6973 7420 3d3e 207b 302c 2030 greList => {0, 0 │ │ │ │ -0002b690: 2c20 3468 2020 2b20 3468 2068 2020 2b20 , 4h + 4h h + │ │ │ │ -0002b6a0: 6820 2c20 2d20 2020 2020 2020 2020 2020 h , - │ │ │ │ -0002b6b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b630: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b640: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ +0002b650: 4c69 7374 203d 3e20 7b30 2c20 302c 2034 List => {0, 0, 4 │ │ │ │ +0002b660: 6820 202b 2034 6820 6820 202b 2068 202c h + 4h h + h , │ │ │ │ +0002b670: 202d 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0002b680: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b6b0: 2031 2020 2020 2031 2032 2020 2020 3220 1 1 2 2 │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6e0: 2020 2020 3120 2020 2020 3120 3220 2020 1 1 2 │ │ │ │ -0002b6f0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b720: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ -0002b730: 2020 2032 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ -0002b740: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002b750: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b760: 2020 2020 2020 2020 2020 2020 2020 5365 Se │ │ │ │ -0002b770: 6772 6520 3d3e 2037 3268 2068 2020 2d20 gre => 72h h - │ │ │ │ -0002b780: 3234 6820 6820 202d 2031 3268 2068 2020 24h h - 12h h │ │ │ │ -0002b790: 2b20 3468 2020 2020 2020 2020 2020 2020 + 4h │ │ │ │ -0002b7a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7c0: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ -0002b7d0: 2020 2031 2032 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ -0002b7e0: 2020 2020 3120 2020 2020 2020 2020 2020 1 │ │ │ │ -0002b7f0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +0002b6d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b6f0: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ +0002b700: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0002b710: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002b720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b730: 2020 2020 2020 2020 2020 2053 6567 7265 Segre │ │ │ │ +0002b740: 203d 3e20 3732 6820 6820 202d 2032 3468 => 72h h - 24h │ │ │ │ +0002b750: 2068 2020 2d20 3132 6820 6820 202b 2034 h - 12h h + 4 │ │ │ │ +0002b760: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ +0002b770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b790: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ +0002b7a0: 3120 3220 2020 2020 2031 2032 2020 2020 1 2 1 2 │ │ │ │ +0002b7b0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0002b7c0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0002b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002b840: 2d2d 2d2d 7c0a 7c20 2020 2020 2020 2020 ----|.| │ │ │ │ -0002b850: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ -0002b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b810: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0002b820: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +0002b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b890: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b8b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b8e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b950: 207c 0a7c 2020 2032 2020 2020 2020 2020 |.| 2 │ │ │ │ +0002b960: 2020 3220 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ 0002b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b980: 2020 2020 7c0a 7c20 2020 3220 2020 2020 |.| 2 │ │ │ │ -0002b990: 2020 2020 2032 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ -0002b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9a0: 207c 0a7c 3234 6820 6820 202d 2031 3268 |.|24h h - 12h │ │ │ │ +0002b9b0: 2068 202c 2037 3268 2068 207d 2020 2020 h , 72h h } │ │ │ │ 0002b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b9d0: 2020 2020 7c0a 7c32 3468 2068 2020 2d20 |.|24h h - │ │ │ │ -0002b9e0: 3132 6820 6820 2c20 3732 6820 6820 7d20 12h h , 72h h } │ │ │ │ -0002b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002b9f0: 207c 0a7c 2020 2031 2032 2020 2020 2020 |.| 1 2 │ │ │ │ +0002ba00: 3120 3220 2020 2020 3120 3220 2020 2020 1 2 1 2 │ │ │ │ 0002ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba20: 2020 2020 7c0a 7c20 2020 3120 3220 2020 |.| 1 2 │ │ │ │ -0002ba30: 2020 2031 2032 2020 2020 2031 2032 2020 1 2 1 2 │ │ │ │ -0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba40: 207c 0a7c 2020 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ 0002ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ba80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ba90: 207c 0a7c 2b20 3468 2068 2020 2b20 6820 |.|+ 4h h + h │ │ │ │ 0002baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bac0: 2020 2020 7c0a 7c2b 2034 6820 6820 202b |.|+ 4h h + │ │ │ │ -0002bad0: 2068 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ -0002bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bae0: 207c 0a7c 2020 2020 3120 3220 2020 2032 |.| 1 2 2 │ │ │ │ 0002baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb10: 2020 2020 7c0a 7c20 2020 2031 2032 2020 |.| 1 2 │ │ │ │ -0002bb20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb30: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002bb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bbb0: 2d2d 2d2d 2b0a 7c69 3134 203a 2073 313d ----+.|i14 : s1= │ │ │ │ -0002bbc0: 3d53 6567 4861 7368 2322 5365 6772 6522 =SegHash#"Segre" │ │ │ │ -0002bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bb80: 2d2b 0a7c 6931 3420 3a20 7331 3d3d 5365 -+.|i14 : s1==Se │ │ │ │ +0002bb90: 6748 6173 6823 2253 6567 7265 2220 2020 gHash#"Segre" │ │ │ │ +0002bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bbd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc20: 207c 0a7c 6f31 3420 3d20 7472 7565 2020 |.|o14 = true │ │ │ │ 0002bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc50: 2020 2020 7c0a 7c6f 3134 203d 2074 7275 |.|o14 = tru │ │ │ │ -0002bc60: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0002bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bca0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0002bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bc70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002bc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bcf0: 2d2d 2d2d 2b0a 0a49 6e20 7468 6520 6361 ----+..In the ca │ │ │ │ -0002bd00: 7365 2077 6865 7265 2074 6865 2061 6d62 se where the amb │ │ │ │ -0002bd10: 6965 6e74 2073 7061 6365 2069 7320 6120 ient space is a │ │ │ │ -0002bd20: 746f 7269 6320 7661 7269 6574 7920 7768 toric variety wh │ │ │ │ -0002bd30: 6963 6820 6973 206e 6f74 2061 2070 726f ich is not a pro │ │ │ │ -0002bd40: 6475 6374 0a6f 6620 7072 6f6a 6563 7469 duct.of projecti │ │ │ │ -0002bd50: 7665 2073 7061 6365 7320 7765 206d 7573 ve spaces we mus │ │ │ │ -0002bd60: 7420 6c6f 6164 2074 6865 204e 6f72 6d61 t load the Norma │ │ │ │ -0002bd70: 6c54 6f72 6963 5661 7269 6574 6965 7320 lToricVarieties │ │ │ │ -0002bd80: 7061 636b 6167 6520 616e 6420 6d75 7374 package and must │ │ │ │ -0002bd90: 0a61 6c73 6f20 696e 7075 7420 7468 6520 .also input the │ │ │ │ -0002bda0: 746f 7269 6320 7661 7269 6574 792e 2049 toric variety. I │ │ │ │ -0002bdb0: 6620 7468 6520 746f 7269 6320 7661 7269 f the toric vari │ │ │ │ -0002bdc0: 6574 7920 6973 2061 2070 726f 6475 6374 ety is a product │ │ │ │ -0002bdd0: 206f 6620 7072 6f6a 6563 7469 7665 0a73 of projective.s │ │ │ │ -0002bde0: 7061 6365 2069 7420 6973 2072 6563 6f6d pace it is recom │ │ │ │ -0002bdf0: 6d65 6e64 6564 2074 6f20 7573 6520 7468 mended to use th │ │ │ │ -0002be00: 6520 666f 726d 2061 626f 7665 2072 6174 e form above rat │ │ │ │ -0002be10: 6865 7220 7468 616e 2069 6e70 7574 7469 her than inputti │ │ │ │ -0002be20: 6e67 2074 6865 2074 6f72 6963 0a76 6172 ng the toric.var │ │ │ │ -0002be30: 6965 7479 2066 6f72 2065 6666 6963 6965 iety for efficie │ │ │ │ -0002be40: 6e63 7920 7265 6173 6f6e 732e 0a0a 2b2d ncy reasons...+- │ │ │ │ +0002bcc0: 2d2b 0a0a 496e 2074 6865 2063 6173 6520 -+..In the case │ │ │ │ +0002bcd0: 7768 6572 6520 7468 6520 616d 6269 656e where the ambien │ │ │ │ +0002bce0: 7420 7370 6163 6520 6973 2061 2074 6f72 t space is a tor │ │ │ │ +0002bcf0: 6963 2076 6172 6965 7479 2077 6869 6368 ic variety which │ │ │ │ +0002bd00: 2069 7320 6e6f 7420 6120 7072 6f64 7563 is not a produc │ │ │ │ +0002bd10: 740a 6f66 2070 726f 6a65 6374 6976 6520 t.of projective │ │ │ │ +0002bd20: 7370 6163 6573 2077 6520 6d75 7374 206c spaces we must l │ │ │ │ +0002bd30: 6f61 6420 7468 6520 4e6f 726d 616c 546f oad the NormalTo │ │ │ │ +0002bd40: 7269 6356 6172 6965 7469 6573 2070 6163 ricVarieties pac │ │ │ │ +0002bd50: 6b61 6765 2061 6e64 206d 7573 740a 616c kage and must.al │ │ │ │ +0002bd60: 736f 2069 6e70 7574 2074 6865 2074 6f72 so input the tor │ │ │ │ +0002bd70: 6963 2076 6172 6965 7479 2e20 4966 2074 ic variety. If t │ │ │ │ +0002bd80: 6865 2074 6f72 6963 2076 6172 6965 7479 he toric variety │ │ │ │ +0002bd90: 2069 7320 6120 7072 6f64 7563 7420 6f66 is a product of │ │ │ │ +0002bda0: 2070 726f 6a65 6374 6976 650a 7370 6163 projective.spac │ │ │ │ +0002bdb0: 6520 6974 2069 7320 7265 636f 6d6d 656e e it is recommen │ │ │ │ +0002bdc0: 6465 6420 746f 2075 7365 2074 6865 2066 ded to use the f │ │ │ │ +0002bdd0: 6f72 6d20 6162 6f76 6520 7261 7468 6572 orm above rather │ │ │ │ +0002bde0: 2074 6861 6e20 696e 7075 7474 696e 6720 than inputting │ │ │ │ +0002bdf0: 7468 6520 746f 7269 630a 7661 7269 6574 the toric.variet │ │ │ │ +0002be00: 7920 666f 7220 6566 6669 6369 656e 6379 y for efficiency │ │ │ │ +0002be10: 2072 6561 736f 6e73 2e0a 0a2b 2d2d 2d2d reasons...+---- │ │ │ │ +0002be20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002be40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002be50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002be90: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3520 3a20 -------+.|i15 : │ │ │ │ -0002bea0: 6e65 6564 7350 6163 6b61 6765 2022 4e6f needsPackage "No │ │ │ │ -0002beb0: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ -0002bec0: 6573 2220 2020 2020 2020 2020 2020 2020 es" │ │ │ │ +0002be60: 2d2d 2d2d 2b0a 7c69 3135 203a 206e 6565 ----+.|i15 : nee │ │ │ │ +0002be70: 6473 5061 636b 6167 6520 224e 6f72 6d61 dsPackage "Norma │ │ │ │ +0002be80: 6c54 6f72 6963 5661 7269 6574 6965 7322 lToricVarieties" │ │ │ │ +0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002beb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002bf30: 6f31 3520 3d20 4e6f 726d 616c 546f 7269 o15 = NormalTori │ │ │ │ -0002bf40: 6356 6172 6965 7469 6573 2020 2020 2020 cVarieties │ │ │ │ +0002bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bef0: 2020 2020 2020 2020 2020 7c0a 7c6f 3135 |.|o15 │ │ │ │ +0002bf00: 203d 204e 6f72 6d61 6c54 6f72 6963 5661 = NormalToricVa │ │ │ │ +0002bf10: 7269 6574 6965 7320 2020 2020 2020 2020 rieties │ │ │ │ +0002bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0002bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bf90: 7c0a 7c6f 3135 203a 2050 6163 6b61 6765 |.|o15 : Package │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfc0: 2020 207c 0a7c 6f31 3520 3a20 5061 636b |.|o15 : Pack │ │ │ │ -0002bfd0: 6167 6520 2020 2020 2020 2020 2020 2020 age │ │ │ │ -0002bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c010: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002c020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c050: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3620 ---------+.|i16 │ │ │ │ -0002c060: 3a20 5268 6f20 3d20 7b7b 312c 302c 307d : Rho = {{1,0,0} │ │ │ │ -0002c070: 2c7b 302c 312c 307d 2c7b 302c 302c 317d ,{0,1,0},{0,0,1} │ │ │ │ -0002c080: 2c7b 2d31 2c2d 312c 307d 2c7b 302c 302c ,{-1,-1,0},{0,0, │ │ │ │ -0002c090: 2d31 7d7d 2020 2020 2020 2020 2020 2020 -1}} │ │ │ │ -0002c0a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002c0f0: 0a7c 6f31 3620 3d20 7b7b 312c 2030 2c20 .|o16 = {{1, 0, │ │ │ │ -0002c100: 307d 2c20 7b30 2c20 312c 2030 7d2c 207b 0}, {0, 1, 0}, { │ │ │ │ -0002c110: 302c 2030 2c20 317d 2c20 7b2d 312c 202d 0, 0, 1}, {-1, - │ │ │ │ -0002c120: 312c 2030 7d2c 207b 302c 2030 2c20 2d31 1, 0}, {0, 0, -1 │ │ │ │ -0002c130: 7d7d 2020 2020 2020 2020 7c0a 7c20 2020 }} |.| │ │ │ │ +0002bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002bfd0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002bfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002bff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c020: 2d2d 2d2d 2d2d 2b0a 7c69 3136 203a 2052 ------+.|i16 : R │ │ │ │ +0002c030: 686f 203d 207b 7b31 2c30 2c30 7d2c 7b30 ho = {{1,0,0},{0 │ │ │ │ +0002c040: 2c31 2c30 7d2c 7b30 2c30 2c31 7d2c 7b2d ,1,0},{0,0,1},{- │ │ │ │ +0002c050: 312c 2d31 2c30 7d2c 7b30 2c30 2c2d 317d 1,-1,0},{0,0,-1} │ │ │ │ +0002c060: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002c070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c0b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002c0c0: 3136 203d 207b 7b31 2c20 302c 2030 7d2c 16 = {{1, 0, 0}, │ │ │ │ +0002c0d0: 207b 302c 2031 2c20 307d 2c20 7b30 2c20 {0, 1, 0}, {0, │ │ │ │ +0002c0e0: 302c 2031 7d2c 207b 2d31 2c20 2d31 2c20 0, 1}, {-1, -1, │ │ │ │ +0002c0f0: 307d 2c20 7b30 2c20 302c 202d 317d 7d20 0}, {0, 0, -1}} │ │ │ │ +0002c100: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c150: 2020 7c0a 7c6f 3136 203a 204c 6973 7420 |.|o16 : List │ │ │ │ 0002c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c180: 2020 2020 207c 0a7c 6f31 3620 3a20 4c69 |.|o16 : Li │ │ │ │ -0002c190: 7374 2020 2020 2020 2020 2020 2020 2020 st │ │ │ │ -0002c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1d0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -0002c220: 3720 3a20 5369 676d 6120 3d20 7b7b 302c 7 : Sigma = {{0, │ │ │ │ -0002c230: 312c 327d 2c7b 312c 322c 337d 2c7b 302c 1,2},{1,2,3},{0, │ │ │ │ -0002c240: 322c 337d 2c7b 302c 312c 347d 2c7b 312c 2,3},{0,1,4},{1, │ │ │ │ -0002c250: 332c 347d 2c7b 302c 332c 347d 7d20 2020 3,4},{0,3,4}} │ │ │ │ -0002c260: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2b0: 207c 0a7c 6f31 3720 3d20 7b7b 302c 2031 |.|o17 = {{0, 1 │ │ │ │ -0002c2c0: 2c20 327d 2c20 7b31 2c20 322c 2033 7d2c , 2}, {1, 2, 3}, │ │ │ │ -0002c2d0: 207b 302c 2032 2c20 337d 2c20 7b30 2c20 {0, 2, 3}, {0, │ │ │ │ -0002c2e0: 312c 2034 7d2c 207b 312c 2033 2c20 347d 1, 4}, {1, 3, 4} │ │ │ │ -0002c2f0: 2c20 7b30 2c20 332c 2034 7d7d 7c0a 7c20 , {0, 3, 4}}|.| │ │ │ │ +0002c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c190: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c1e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3137 203a --------+.|i17 : │ │ │ │ +0002c1f0: 2053 6967 6d61 203d 207b 7b30 2c31 2c32 Sigma = {{0,1,2 │ │ │ │ +0002c200: 7d2c 7b31 2c32 2c33 7d2c 7b30 2c32 2c33 },{1,2,3},{0,2,3 │ │ │ │ +0002c210: 7d2c 7b30 2c31 2c34 7d2c 7b31 2c33 2c34 },{0,1,4},{1,3,4 │ │ │ │ +0002c220: 7d2c 7b30 2c33 2c34 7d7d 2020 2020 2020 },{0,3,4}} │ │ │ │ +0002c230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c270: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c280: 7c6f 3137 203d 207b 7b30 2c20 312c 2032 |o17 = {{0, 1, 2 │ │ │ │ +0002c290: 7d2c 207b 312c 2032 2c20 337d 2c20 7b30 }, {1, 2, 3}, {0 │ │ │ │ +0002c2a0: 2c20 322c 2033 7d2c 207b 302c 2031 2c20 , 2, 3}, {0, 1, │ │ │ │ +0002c2b0: 347d 2c20 7b31 2c20 332c 2034 7d2c 207b 4}, {1, 3, 4}, { │ │ │ │ +0002c2c0: 302c 2033 2c20 347d 7d7c 0a7c 2020 2020 0, 3, 4}}|.| │ │ │ │ +0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c310: 2020 2020 7c0a 7c6f 3137 203a 204c 6973 |.|o17 : Lis │ │ │ │ +0002c320: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0002c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c340: 2020 2020 2020 207c 0a7c 6f31 3720 3a20 |.|o17 : │ │ │ │ -0002c350: 4c69 7374 2020 2020 2020 2020 2020 2020 List │ │ │ │ -0002c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c390: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002c3e0: 6931 3820 3a20 5820 3d20 6e6f 726d 616c i18 : X = normal │ │ │ │ -0002c3f0: 546f 7269 6356 6172 6965 7479 2852 686f ToricVariety(Rho │ │ │ │ -0002c400: 2c53 6967 6d61 2c43 6f65 6666 6963 6965 ,Sigma,Coefficie │ │ │ │ -0002c410: 6e74 5269 6e67 203d 3e5a 5a2f 3332 3734 ntRing =>ZZ/3274 │ │ │ │ -0002c420: 3929 2020 2020 2020 7c0a 7c20 2020 2020 9) |.| │ │ │ │ +0002c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c360: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 ----------+.|i18 │ │ │ │ +0002c3b0: 203a 2058 203d 206e 6f72 6d61 6c54 6f72 : X = normalTor │ │ │ │ +0002c3c0: 6963 5661 7269 6574 7928 5268 6f2c 5369 icVariety(Rho,Si │ │ │ │ +0002c3d0: 676d 612c 436f 6566 6669 6369 656e 7452 gma,CoefficientR │ │ │ │ +0002c3e0: 696e 6720 3d3e 5a5a 2f33 3237 3439 2920 ing =>ZZ/32749) │ │ │ │ +0002c3f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c440: 7c0a 7c6f 3138 203d 2058 2020 2020 2020 |.|o18 = X │ │ │ │ 0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c470: 2020 207c 0a7c 6f31 3820 3d20 5820 2020 |.|o18 = X │ │ │ │ -0002c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0002c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c4c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0002c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c500: 2020 2020 2020 2020 207c 0a7c 6f31 3820 |.|o18 │ │ │ │ -0002c510: 3a20 4e6f 726d 616c 546f 7269 6356 6172 : NormalToricVar │ │ │ │ -0002c520: 6965 7479 2020 2020 2020 2020 2020 2020 iety │ │ │ │ -0002c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c550: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ -0002c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -0002c5a0: 0a7c 6931 3920 3a20 4368 6563 6b54 6f72 .|i19 : CheckTor │ │ │ │ -0002c5b0: 6963 5661 7269 6574 7956 616c 6964 2858 icVarietyValid(X │ │ │ │ -0002c5c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c4d0: 2020 2020 2020 7c0a 7c6f 3138 203a 204e |.|o18 : N │ │ │ │ +0002c4e0: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +0002c4f0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +0002c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c520: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0002c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +0002c570: 3139 203a 2043 6865 636b 546f 7269 6356 19 : CheckToricV │ │ │ │ +0002c580: 6172 6965 7479 5661 6c69 6428 5829 2020 arietyValid(X) │ │ │ │ +0002c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c600: 2020 7c0a 7c6f 3139 203d 2074 7275 6520 |.|o19 = true │ │ │ │ 0002c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c630: 2020 2020 207c 0a7c 6f31 3920 3d20 7472 |.|o19 = tr │ │ │ │ -0002c640: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ -0002c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c680: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002c690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0002c6d0: 3020 3a20 523d 7269 6e67 2858 2920 2020 0 : R=ring(X) │ │ │ │ -0002c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c640: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c690: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 203a --------+.|i20 : │ │ │ │ +0002c6a0: 2052 3d72 696e 6728 5829 2020 2020 2020 R=ring(X) │ │ │ │ +0002c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c6e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c720: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002c730: 7c6f 3230 203d 2052 2020 2020 2020 2020 |o20 = R │ │ │ │ 0002c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c760: 207c 0a7c 6f32 3020 3d20 5220 2020 2020 |.|o20 = R │ │ │ │ -0002c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 0002c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c7c0: 2020 2020 7c0a 7c6f 3230 203a 2050 6f6c |.|o20 : Pol │ │ │ │ +0002c7d0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ 0002c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7f0: 2020 2020 2020 207c 0a7c 6f32 3020 3a20 |.|o20 : │ │ │ │ -0002c800: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ -0002c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c840: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ -0002c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002c880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0002c890: 6932 3120 3a20 493d 6964 6561 6c28 525f i21 : I=ideal(R_ │ │ │ │ -0002c8a0: 305e 342a 525f 312c 525f 302a 525f 332a 0^4*R_1,R_0*R_3* │ │ │ │ -0002c8b0: 525f 342a 525f 322d 525f 325e 322a 525f R_4*R_2-R_2^2*R_ │ │ │ │ -0002c8c0: 305e 3229 2020 2020 2020 2020 2020 2020 0^2) │ │ │ │ -0002c8d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c810: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0002c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3231 ----------+.|i21 │ │ │ │ +0002c860: 203a 2049 3d69 6465 616c 2852 5f30 5e34 : I=ideal(R_0^4 │ │ │ │ +0002c870: 2a52 5f31 2c52 5f30 2a52 5f33 2a52 5f34 *R_1,R_0*R_3*R_4 │ │ │ │ +0002c880: 2a52 5f32 2d52 5f32 5e32 2a52 5f30 5e32 *R_2-R_2^2*R_0^2 │ │ │ │ +0002c890: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002c8a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c8f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0002c900: 2034 2020 2020 2020 2032 2032 2020 2020 4 2 2 │ │ │ │ 0002c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002c930: 2020 2020 3420 2020 2020 2020 3220 3220 4 2 2 │ │ │ │ -0002c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002c970: 7c6f 3231 203d 2069 6465 616c 2028 7820 |o21 = ideal (x │ │ │ │ -0002c980: 7820 2c20 2d20 7820 7820 202b 2078 2078 x , - x x + x x │ │ │ │ -0002c990: 2078 2078 2029 2020 2020 2020 2020 2020 x x ) │ │ │ │ -0002c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c9b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0002c9c0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -0002c9d0: 2020 3020 3220 2020 2030 2032 2033 2034 0 2 0 2 3 4 │ │ │ │ +0002c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c930: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0002c940: 3120 3d20 6964 6561 6c20 2878 2078 202c 1 = ideal (x x , │ │ │ │ +0002c950: 202d 2078 2078 2020 2b20 7820 7820 7820 - x x + x x x │ │ │ │ +0002c960: 7820 2920 2020 2020 2020 2020 2020 2020 x ) │ │ │ │ +0002c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0002c990: 2020 2020 2020 2030 2031 2020 2020 2030 0 1 0 │ │ │ │ +0002c9a0: 2032 2020 2020 3020 3220 3320 3420 2020 2 0 2 3 4 │ │ │ │ +0002c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002c9d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca00: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002ca20: 3231 203a 2049 6465 616c 206f 6620 5220 21 : Ideal of R │ │ │ │ 0002ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002ca50: 0a7c 6f32 3120 3a20 4964 6561 6c20 6f66 .|o21 : Ideal of │ │ │ │ -0002ca60: 2052 2020 2020 2020 2020 2020 2020 2020 R │ │ │ │ -0002ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca90: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ca60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ca70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cae0: 2d2d 2d2d 2d2b 0a7c 6932 3220 3a20 5365 -----+.|i22 : Se │ │ │ │ -0002caf0: 6772 6528 582c 4929 2020 2020 2020 2020 gre(X,I) │ │ │ │ +0002cab0: 2d2d 2b0a 7c69 3232 203a 2053 6567 7265 --+.|i22 : Segre │ │ │ │ +0002cac0: 2858 2c49 2920 2020 2020 2020 2020 2020 (X,I) │ │ │ │ +0002cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002caf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0002cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0002cb50: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ 0002cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0002cb80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0002cb90: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbc0: 2020 2020 2020 7c0a 7c6f 3232 203d 202d |.|o22 = - │ │ │ │ -0002cbd0: 2037 3278 2078 2020 2b20 3378 2020 2b20 72x x + 3x + │ │ │ │ -0002cbe0: 3878 2078 2020 2b20 7820 2020 2020 2020 8x x + x │ │ │ │ -0002cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc10: 207c 0a7c 2020 2020 2020 2020 2020 2033 |.| 3 │ │ │ │ -0002cc20: 2034 2020 2020 2033 2020 2020 2033 2034 4 3 3 4 │ │ │ │ -0002cc30: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +0002cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cb90: 2020 207c 0a7c 6f32 3220 3d20 2d20 3732 |.|o22 = - 72 │ │ │ │ +0002cba0: 7820 7820 202b 2033 7820 202b 2038 7820 x x + 3x + 8x │ │ │ │ +0002cbb0: 7820 202b 2078 2020 2020 2020 2020 2020 x + x │ │ │ │ +0002cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cbd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002cbe0: 7c20 2020 2020 2020 2020 2020 3320 3420 | 3 4 │ │ │ │ +0002cbf0: 2020 2020 3320 2020 2020 3320 3420 2020 3 3 4 │ │ │ │ +0002cc00: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cc20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0002cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0002cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cca0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccc0: 5a5a 5b78 202e 2e78 205d 2020 2020 2020 ZZ[x ..x ] │ │ │ │ -0002ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002cd00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -0002cd10: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002cd40: 6f32 3220 3a20 2d2d 2d2d 2d2d 2d2d 2d2d o22 : ---------- │ │ │ │ -0002cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002cd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 --------------- │ │ │ │ -0002cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0002cd90: 2028 7820 7820 2c20 7820 7820 7820 2c20 (x x , x x x , │ │ │ │ -0002cda0: 7820 202d 2078 202c 2078 2020 2d20 7820 x - x , x - x │ │ │ │ -0002cdb0: 2c20 7820 202d 2078 2029 2020 2020 2020 , x - x ) │ │ │ │ -0002cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdd0: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ -0002cde0: 3420 2020 3020 3120 3320 2020 3020 2020 4 0 1 3 0 │ │ │ │ -0002cdf0: 2033 2020 2031 2020 2020 3320 2020 3220 3 1 3 2 │ │ │ │ -0002ce00: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0002ce10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0002ce20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ -0002ce30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ce60: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 3320 ---------+.|i23 │ │ │ │ -0002ce70: 3a20 4368 3d54 6f72 6963 4368 6f77 5269 : Ch=ToricChowRi │ │ │ │ -0002ce80: 6e67 2858 2920 2020 2020 2020 2020 2020 ng(X) │ │ │ │ +0002cc70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002cc80: 2020 2020 2020 2020 2020 2020 205a 5a5b ZZ[ │ │ │ │ +0002cc90: 7820 2e2e 7820 5d20 2020 2020 2020 2020 x ..x ] │ │ │ │ +0002cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ccb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ccc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ccd0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0002cce0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cd00: 2020 2020 2020 2020 2020 7c0a 7c6f 3232 |.|o22 │ │ │ │ +0002cd10: 203a 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d : ------------- │ │ │ │ +0002cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 ------------ │ │ │ │ +0002cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cd50: 2020 2020 207c 0a7c 2020 2020 2020 2878 |.| (x │ │ │ │ +0002cd60: 2078 202c 2078 2078 2078 202c 2078 2020 x , x x x , x │ │ │ │ +0002cd70: 2d20 7820 2c20 7820 202d 2078 202c 2078 - x , x - x , x │ │ │ │ +0002cd80: 2020 2d20 7820 2920 2020 2020 2020 2020 - x ) │ │ │ │ +0002cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cda0: 7c0a 7c20 2020 2020 2020 2032 2034 2020 |.| 2 4 │ │ │ │ +0002cdb0: 2030 2031 2033 2020 2030 2020 2020 3320 0 1 3 0 3 │ │ │ │ +0002cdc0: 2020 3120 2020 2033 2020 2032 2020 2020 1 3 2 │ │ │ │ +0002cdd0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002cde0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0002cdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ce30: 2d2d 2d2d 2d2d 2b0a 7c69 3233 203a 2043 ------+.|i23 : C │ │ │ │ +0002ce40: 683d 546f 7269 6343 686f 7752 696e 6728 h=ToricChowRing( │ │ │ │ +0002ce50: 5829 2020 2020 2020 2020 2020 2020 2020 X) │ │ │ │ +0002ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ce80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ceb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0002cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cec0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +0002ced0: 3233 203d 2043 6820 2020 2020 2020 2020 23 = Ch │ │ │ │ 0002cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0002cf00: 0a7c 6f32 3320 3d20 4368 2020 2020 2020 .|o23 = Ch │ │ │ │ -0002cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cf60: 2020 7c0a 7c6f 3233 203a 2051 756f 7469 |.|o23 : Quoti │ │ │ │ +0002cf70: 656e 7452 696e 6720 2020 2020 2020 2020 entRing │ │ │ │ 0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf90: 2020 2020 207c 0a7c 6f32 3320 3a20 5175 |.|o23 : Qu │ │ │ │ -0002cfa0: 6f74 6965 6e74 5269 6e67 2020 2020 2020 otientRing │ │ │ │ -0002cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfe0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ -0002cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -0002d030: 3420 3a20 7333 3d53 6567 7265 2843 682c 4 : s3=Segre(Ch, │ │ │ │ -0002d040: 582c 4929 2020 2020 2020 2020 2020 2020 X,I) │ │ │ │ +0002cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002cfa0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0002cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002cff0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3234 203a --------+.|i24 : │ │ │ │ +0002d000: 2073 333d 5365 6772 6528 4368 2c58 2c49 s3=Segre(Ch,X,I │ │ │ │ +0002d010: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0002d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d040: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0002d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d070: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0002d090: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ +0002d0a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0002d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0c0: 207c 0a7c 2020 2020 2020 2020 2020 2032 |.| 2 │ │ │ │ -0002d0d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d100: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0002d110: 3234 203d 202d 2037 3278 2078 2020 2b20 24 = - 72x x + │ │ │ │ -0002d120: 3378 2020 2b20 3878 2078 2020 2b20 7820 3x + 8x x + x │ │ │ │ -0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0002d160: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0002d170: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d0d0: 2020 2020 2020 2020 207c 0a7c 6f32 3420 |.|o24 │ │ │ │ +0002d0e0: 3d20 2d20 3732 7820 7820 202b 2033 7820 = - 72x x + 3x │ │ │ │ +0002d0f0: 202b 2038 7820 7820 202b 2078 2020 2020 + 8x x + x │ │ │ │ +0002d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d120: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0002d130: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002d140: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0002d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d1b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3234 |.|o24 │ │ │ │ +0002d1c0: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ 0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0002d1f0: 6f32 3420 3a20 4368 2020 2020 2020 2020 o24 : Ch │ │ │ │ -0002d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d230: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0002d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002d200: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d280: 2d2d 2d2b 0a0a 416c 6c20 7468 6520 6578 ---+..All the ex │ │ │ │ -0002d290: 616d 706c 6573 2077 6572 6520 646f 6e65 amples were done │ │ │ │ -0002d2a0: 2075 7369 6e67 2073 796d 626f 6c69 6320 using symbolic │ │ │ │ -0002d2b0: 636f 6d70 7574 6174 696f 6e73 2077 6974 computations wit │ │ │ │ -0002d2c0: 6820 4772 5c22 6f62 6e65 7220 6261 7365 h Gr\"obner base │ │ │ │ -0002d2d0: 732e 0a43 6861 6e67 696e 6720 7468 6520 s..Changing the │ │ │ │ -0002d2e0: 6f70 7469 6f6e 202a 6e6f 7465 2043 6f6d option *note Com │ │ │ │ -0002d2f0: 704d 6574 686f 643a 2043 6f6d 704d 6574 pMethod: CompMet │ │ │ │ -0002d300: 686f 642c 2074 6f20 6265 7274 696e 6920 hod, to bertini │ │ │ │ -0002d310: 7769 6c6c 2064 6f20 7468 6520 6d61 696e will do the main │ │ │ │ -0002d320: 0a63 6f6d 7075 7461 7469 6f6e 7320 6e75 .computations nu │ │ │ │ -0002d330: 6d65 7269 6361 6c6c 792c 2070 726f 7669 merically, provi │ │ │ │ -0002d340: 6465 6420 4265 7274 696e 6920 6973 2020 ded Bertini is │ │ │ │ -0002d350: 2a6e 6f74 6520 696e 7374 616c 6c65 6420 *note installed │ │ │ │ -0002d360: 616e 6420 636f 6e66 6967 7572 6564 3a0a and configured:. │ │ │ │ -0002d370: 636f 6e66 6967 7572 696e 6720 4265 7274 configuring Bert │ │ │ │ -0002d380: 696e 692c 2e20 4e6f 7465 2074 6861 7420 ini,. Note that │ │ │ │ -0002d390: 7468 6520 6265 7274 696e 6920 6f70 7469 the bertini opti │ │ │ │ -0002d3a0: 6f6e 2069 7320 6f6e 6c79 2061 7661 696c on is only avail │ │ │ │ -0002d3b0: 6162 6c65 2066 6f72 0a73 7562 7363 6865 able for.subsche │ │ │ │ -0002d3c0: 6d65 7320 6f66 205c 5050 5e6e 2e0a 0a4f mes of \PP^n...O │ │ │ │ -0002d3d0: 6273 6572 7665 2074 6861 7420 7468 6520 bserve that the │ │ │ │ -0002d3e0: 616c 676f 7269 7468 6d20 6973 2061 2070 algorithm is a p │ │ │ │ -0002d3f0: 726f 6261 6269 6c69 7374 6963 2061 6c67 robabilistic alg │ │ │ │ -0002d400: 6f72 6974 686d 2061 6e64 206d 6179 2067 orithm and may g │ │ │ │ -0002d410: 6976 6520 6120 7772 6f6e 670a 616e 7377 ive a wrong.answ │ │ │ │ -0002d420: 6572 2077 6974 6820 6120 736d 616c 6c20 er with a small │ │ │ │ -0002d430: 6275 7420 6e6f 6e7a 6572 6f20 7072 6f62 but nonzero prob │ │ │ │ -0002d440: 6162 696c 6974 792e 2052 6561 6420 6d6f ability. Read mo │ │ │ │ -0002d450: 7265 2075 6e64 6572 202a 6e6f 7465 0a70 re under *note.p │ │ │ │ -0002d460: 726f 6261 6269 6c69 7374 6963 2061 6c67 robabilistic alg │ │ │ │ -0002d470: 6f72 6974 686d 3a20 7072 6f62 6162 696c orithm: probabil │ │ │ │ -0002d480: 6973 7469 6320 616c 676f 7269 7468 6d2c istic algorithm, │ │ │ │ -0002d490: 2e0a 0a57 6179 7320 746f 2075 7365 2053 ...Ways to use S │ │ │ │ -0002d4a0: 6567 7265 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d egre:.========== │ │ │ │ -0002d4b0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2253 ========.. * "S │ │ │ │ -0002d4c0: 6567 7265 2849 6465 616c 2922 0a20 202a egre(Ideal)". * │ │ │ │ -0002d4d0: 2022 5365 6772 6528 4964 6561 6c2c 5379 "Segre(Ideal,Sy │ │ │ │ -0002d4e0: 6d62 6f6c 2922 0a20 202a 2022 5365 6772 mbol)". * "Segr │ │ │ │ -0002d4f0: 6528 5175 6f74 6965 6e74 5269 6e67 2c49 e(QuotientRing,I │ │ │ │ -0002d500: 6465 616c 2922 0a0a 466f 7220 7468 6520 deal)"..For the │ │ │ │ -0002d510: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ -0002d520: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ -0002d530: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ -0002d540: 5365 6772 653a 2053 6567 7265 2c20 6973 Segre: Segre, is │ │ │ │ -0002d550: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0002d560: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ -0002d570: 7469 6f6e 733a 0a28 4d61 6361 756c 6179 tions:.(Macaulay │ │ │ │ -0002d580: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -0002d590: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -0002d5a0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ -0002d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d5f0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0002d600: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0002d610: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0002d620: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0002d630: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0002d640: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0002d650: 7061 636b 6167 6573 2f0a 4368 6172 6163 packages/.Charac │ │ │ │ -0002d660: 7465 7269 7374 6963 436c 6173 7365 732e teristicClasses. │ │ │ │ -0002d670: 6d32 3a31 3736 333a 302e 0a1f 0a46 696c m2:1763:0....Fil │ │ │ │ -0002d680: 653a 2043 6861 7261 6374 6572 6973 7469 e: Characteristi │ │ │ │ -0002d690: 6343 6c61 7373 6573 2e69 6e66 6f2c 204e cClasses.info, N │ │ │ │ -0002d6a0: 6f64 653a 2054 6f72 6963 4368 6f77 5269 ode: ToricChowRi │ │ │ │ -0002d6b0: 6e67 2c20 5072 6576 3a20 5365 6772 652c ng, Prev: Segre, │ │ │ │ -0002d6c0: 2055 703a 2054 6f70 0a0a 546f 7269 6343 Up: Top..ToricC │ │ │ │ -0002d6d0: 686f 7752 696e 6720 2d2d 2043 6f6d 7075 howRing -- Compu │ │ │ │ -0002d6e0: 7465 7320 7468 6520 4368 6f77 2072 696e tes the Chow rin │ │ │ │ -0002d6f0: 6720 6f66 2061 206e 6f72 6d61 6c20 746f g of a normal to │ │ │ │ -0002d700: 7269 6320 7661 7269 6574 790a 2a2a 2a2a ric variety.**** │ │ │ │ -0002d710: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d720: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d730: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0002d740: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -0002d750: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ -0002d760: 2020 2054 6f72 6963 4368 6f77 5269 6e67 ToricChowRing │ │ │ │ -0002d770: 2058 0a20 202a 2049 6e70 7574 733a 0a20 X. * Inputs:. │ │ │ │ -0002d780: 2020 2020 202a 2052 2c20 6120 2a6e 6f74 * R, a *not │ │ │ │ -0002d790: 6520 6e6f 726d 616c 2074 6f72 6963 2076 e normal toric v │ │ │ │ -0002d7a0: 6172 6965 7479 3a0a 2020 2020 2020 2020 ariety:. │ │ │ │ -0002d7b0: 284e 6f72 6d61 6c54 6f72 6963 5661 7269 (NormalToricVari │ │ │ │ -0002d7c0: 6574 6965 7329 4e6f 726d 616c 546f 7269 eties)NormalTori │ │ │ │ -0002d7d0: 6356 6172 6965 7479 2c2c 2041 206e 6f72 cVariety,, A nor │ │ │ │ -0002d7e0: 6d61 6c20 746f 7269 6320 7661 7269 6574 mal toric variet │ │ │ │ -0002d7f0: 790a 2020 2a20 4f75 7470 7574 733a 0a20 y. * Outputs:. │ │ │ │ -0002d800: 2020 2020 202a 2061 202a 6e6f 7465 2071 * a *note q │ │ │ │ -0002d810: 756f 7469 656e 7420 7269 6e67 3a20 284d uotient ring: (M │ │ │ │ -0002d820: 6163 6175 6c61 7932 446f 6329 5175 6f74 acaulay2Doc)Quot │ │ │ │ -0002d830: 6965 6e74 5269 6e67 2c2c 200a 0a44 6573 ientRing,, ..Des │ │ │ │ -0002d840: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0002d850: 3d3d 3d3d 0a0a 4c65 7420 5820 6265 2061 ====..Let X be a │ │ │ │ -0002d860: 2074 6f72 6963 2076 6172 6965 7479 2077 toric variety w │ │ │ │ -0002d870: 6974 6820 746f 7461 6c20 636f 6f72 6469 ith total coordi │ │ │ │ -0002d880: 6e61 7465 2072 696e 6720 2843 6f78 2072 nate ring (Cox r │ │ │ │ -0002d890: 696e 6729 2052 2e20 5468 6973 206d 6574 ing) R. This met │ │ │ │ -0002d8a0: 686f 640a 636f 6d70 7574 6573 2074 6865 hod.computes the │ │ │ │ -0002d8b0: 2043 686f 7720 7269 6e67 2020 4368 6f77 Chow ring Chow │ │ │ │ -0002d8c0: 2072 696e 6720 4368 3d52 2f28 5352 2b4c ring Ch=R/(SR+L │ │ │ │ -0002d8d0: 5229 206f 6620 583b 2068 6572 6520 5352 R) of X; here SR │ │ │ │ -0002d8e0: 2069 7320 7468 650a 5374 616e 6c65 792d is the.Stanley- │ │ │ │ -0002d8f0: 5265 6973 6e65 7220 6964 6561 6c20 6f66 Reisner ideal of │ │ │ │ -0002d900: 2074 6865 2063 6f72 7265 7370 6f6e 6469 the correspondi │ │ │ │ -0002d910: 6e67 2066 616e 2061 6e64 204c 5220 6973 ng fan and LR is │ │ │ │ -0002d920: 2074 6865 2069 6465 616c 206f 6620 6c69 the ideal of li │ │ │ │ -0002d930: 6e65 6172 0a72 656c 6174 696f 6e73 2061 near.relations a │ │ │ │ -0002d940: 6d6f 756e 7420 7468 6520 7261 7973 2e20 mount the rays. │ │ │ │ -0002d950: 4974 2069 7320 6e65 6564 6564 2066 6f72 It is needed for │ │ │ │ -0002d960: 2069 6e70 7574 2069 6e74 6f20 7468 6520 input into the │ │ │ │ -0002d970: 6d65 7468 6f64 7320 2a6e 6f74 6520 5365 methods *note Se │ │ │ │ -0002d980: 6772 653a 0a53 6567 7265 2c2c 202a 6e6f gre:.Segre,, *no │ │ │ │ -0002d990: 7465 2043 6865 726e 3a20 4368 6572 6e2c te Chern: Chern, │ │ │ │ -0002d9a0: 2061 6e64 202a 6e6f 7465 2043 534d 3a20 and *note CSM: │ │ │ │ -0002d9b0: 4353 4d2c 2069 6e20 7468 6520 6361 7365 CSM, in the case │ │ │ │ -0002d9c0: 7320 7768 6572 6520 6120 746f 7269 630a s where a toric. │ │ │ │ -0002d9d0: 7661 7269 6574 7920 6973 2061 6c73 6f20 variety is also │ │ │ │ -0002d9e0: 696e 7075 7420 746f 2065 6e73 7572 6520 input to ensure │ │ │ │ -0002d9f0: 7468 6174 2074 6865 7365 206d 6574 686f that these metho │ │ │ │ -0002da00: 6473 2072 6574 7572 6e20 7265 7375 6c74 ds return result │ │ │ │ -0002da10: 7320 696e 2074 6865 2073 616d 650a 7269 s in the same.ri │ │ │ │ -0002da20: 6e67 2e20 5765 2067 6976 6520 616e 2065 ng. We give an e │ │ │ │ -0002da30: 7861 6d70 6c65 206f 6620 7468 6520 7573 xample of the us │ │ │ │ -0002da40: 6520 6f66 2074 6869 7320 6d65 7468 6f64 e of this method │ │ │ │ -0002da50: 2074 6f20 776f 726b 2077 6974 6820 656c to work with el │ │ │ │ -0002da60: 656d 656e 7473 206f 6620 7468 650a 4368 ements of the.Ch │ │ │ │ -0002da70: 6f77 2072 696e 6720 6f66 2061 2074 6f72 ow ring of a tor │ │ │ │ -0002da80: 6963 2076 6172 6965 7479 0a0a 2b2d 2d2d ic variety..+--- │ │ │ │ +0002d250: 2b0a 0a41 6c6c 2074 6865 2065 7861 6d70 +..All the examp │ │ │ │ +0002d260: 6c65 7320 7765 7265 2064 6f6e 6520 7573 les were done us │ │ │ │ +0002d270: 696e 6720 7379 6d62 6f6c 6963 2063 6f6d ing symbolic com │ │ │ │ +0002d280: 7075 7461 7469 6f6e 7320 7769 7468 2047 putations with G │ │ │ │ +0002d290: 725c 226f 626e 6572 2062 6173 6573 2e0a r\"obner bases.. │ │ │ │ +0002d2a0: 4368 616e 6769 6e67 2074 6865 206f 7074 Changing the opt │ │ │ │ +0002d2b0: 696f 6e20 2a6e 6f74 6520 436f 6d70 4d65 ion *note CompMe │ │ │ │ +0002d2c0: 7468 6f64 3a20 436f 6d70 4d65 7468 6f64 thod: CompMethod │ │ │ │ +0002d2d0: 2c20 746f 2062 6572 7469 6e69 2077 696c , to bertini wil │ │ │ │ +0002d2e0: 6c20 646f 2074 6865 206d 6169 6e0a 636f l do the main.co │ │ │ │ +0002d2f0: 6d70 7574 6174 696f 6e73 206e 756d 6572 mputations numer │ │ │ │ +0002d300: 6963 616c 6c79 2c20 7072 6f76 6964 6564 ically, provided │ │ │ │ +0002d310: 2042 6572 7469 6e69 2069 7320 202a 6e6f Bertini is *no │ │ │ │ +0002d320: 7465 2069 6e73 7461 6c6c 6564 2061 6e64 te installed and │ │ │ │ +0002d330: 2063 6f6e 6669 6775 7265 643a 0a63 6f6e configured:.con │ │ │ │ +0002d340: 6669 6775 7269 6e67 2042 6572 7469 6e69 figuring Bertini │ │ │ │ +0002d350: 2c2e 204e 6f74 6520 7468 6174 2074 6865 ,. Note that the │ │ │ │ +0002d360: 2062 6572 7469 6e69 206f 7074 696f 6e20 bertini option │ │ │ │ +0002d370: 6973 206f 6e6c 7920 6176 6169 6c61 626c is only availabl │ │ │ │ +0002d380: 6520 666f 720a 7375 6273 6368 656d 6573 e for.subschemes │ │ │ │ +0002d390: 206f 6620 5c50 505e 6e2e 0a0a 4f62 7365 of \PP^n...Obse │ │ │ │ +0002d3a0: 7276 6520 7468 6174 2074 6865 2061 6c67 rve that the alg │ │ │ │ +0002d3b0: 6f72 6974 686d 2069 7320 6120 7072 6f62 orithm is a prob │ │ │ │ +0002d3c0: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ +0002d3d0: 7468 6d20 616e 6420 6d61 7920 6769 7665 thm and may give │ │ │ │ +0002d3e0: 2061 2077 726f 6e67 0a61 6e73 7765 7220 a wrong.answer │ │ │ │ +0002d3f0: 7769 7468 2061 2073 6d61 6c6c 2062 7574 with a small but │ │ │ │ +0002d400: 206e 6f6e 7a65 726f 2070 726f 6261 6269 nonzero probabi │ │ │ │ +0002d410: 6c69 7479 2e20 5265 6164 206d 6f72 6520 lity. Read more │ │ │ │ +0002d420: 756e 6465 7220 2a6e 6f74 650a 7072 6f62 under *note.prob │ │ │ │ +0002d430: 6162 696c 6973 7469 6320 616c 676f 7269 abilistic algori │ │ │ │ +0002d440: 7468 6d3a 2070 726f 6261 6269 6c69 7374 thm: probabilist │ │ │ │ +0002d450: 6963 2061 6c67 6f72 6974 686d 2c2e 0a0a ic algorithm,... │ │ │ │ +0002d460: 5761 7973 2074 6f20 7573 6520 5365 6772 Ways to use Segr │ │ │ │ +0002d470: 653a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d e:.============= │ │ │ │ +0002d480: 3d3d 3d3d 3d0a 0a20 202a 2022 5365 6772 =====.. * "Segr │ │ │ │ +0002d490: 6528 4964 6561 6c29 220a 2020 2a20 2253 e(Ideal)". * "S │ │ │ │ +0002d4a0: 6567 7265 2849 6465 616c 2c53 796d 626f egre(Ideal,Symbo │ │ │ │ +0002d4b0: 6c29 220a 2020 2a20 2253 6567 7265 2851 l)". * "Segre(Q │ │ │ │ +0002d4c0: 756f 7469 656e 7452 696e 672c 4964 6561 uotientRing,Idea │ │ │ │ +0002d4d0: 6c29 220a 0a46 6f72 2074 6865 2070 726f l)"..For the pro │ │ │ │ +0002d4e0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ +0002d4f0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ +0002d500: 6f62 6a65 6374 202a 6e6f 7465 2053 6567 object *note Seg │ │ │ │ +0002d510: 7265 3a20 5365 6772 652c 2069 7320 6120 re: Segre, is a │ │ │ │ +0002d520: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ +0002d530: 6374 696f 6e20 7769 7468 206f 7074 696f ction with optio │ │ │ │ +0002d540: 6e73 3a0a 284d 6163 6175 6c61 7932 446f ns:.(Macaulay2Do │ │ │ │ +0002d550: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +0002d560: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +0002d570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002d5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +0002d5c0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +0002d5d0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +0002d5e0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +0002d5f0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +0002d600: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +0002d610: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +0002d620: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ +0002d630: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ +0002d640: 3137 3633 3a30 2e0a 1f0a 4669 6c65 3a20 1763:0....File: │ │ │ │ +0002d650: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ +0002d660: 6173 7365 732e 696e 666f 2c20 4e6f 6465 asses.info, Node │ │ │ │ +0002d670: 3a20 546f 7269 6343 686f 7752 696e 672c : ToricChowRing, │ │ │ │ +0002d680: 2050 7265 763a 2053 6567 7265 2c20 5570 Prev: Segre, Up │ │ │ │ +0002d690: 3a20 546f 700a 0a54 6f72 6963 4368 6f77 : Top..ToricChow │ │ │ │ +0002d6a0: 5269 6e67 202d 2d20 436f 6d70 7574 6573 Ring -- Computes │ │ │ │ +0002d6b0: 2074 6865 2043 686f 7720 7269 6e67 206f the Chow ring o │ │ │ │ +0002d6c0: 6620 6120 6e6f 726d 616c 2074 6f72 6963 f a normal toric │ │ │ │ +0002d6d0: 2076 6172 6965 7479 0a2a 2a2a 2a2a 2a2a variety.******* │ │ │ │ +0002d6e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d6f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d700: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0002d710: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +0002d720: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0002d730: 546f 7269 6343 686f 7752 696e 6720 580a ToricChowRing X. │ │ │ │ +0002d740: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +0002d750: 2020 2a20 522c 2061 202a 6e6f 7465 206e * R, a *note n │ │ │ │ +0002d760: 6f72 6d61 6c20 746f 7269 6320 7661 7269 ormal toric vari │ │ │ │ +0002d770: 6574 793a 0a20 2020 2020 2020 2028 4e6f ety:. (No │ │ │ │ +0002d780: 726d 616c 546f 7269 6356 6172 6965 7469 rmalToricVarieti │ │ │ │ +0002d790: 6573 294e 6f72 6d61 6c54 6f72 6963 5661 es)NormalToricVa │ │ │ │ +0002d7a0: 7269 6574 792c 2c20 4120 6e6f 726d 616c riety,, A normal │ │ │ │ +0002d7b0: 2074 6f72 6963 2076 6172 6965 7479 0a20 toric variety. │ │ │ │ +0002d7c0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0002d7d0: 2020 2a20 6120 2a6e 6f74 6520 7175 6f74 * a *note quot │ │ │ │ +0002d7e0: 6965 6e74 2072 696e 673a 2028 4d61 6361 ient ring: (Maca │ │ │ │ +0002d7f0: 756c 6179 3244 6f63 2951 756f 7469 656e ulay2Doc)Quotien │ │ │ │ +0002d800: 7452 696e 672c 2c20 0a0a 4465 7363 7269 tRing,, ..Descri │ │ │ │ +0002d810: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0002d820: 3d0a 0a4c 6574 2058 2062 6520 6120 746f =..Let X be a to │ │ │ │ +0002d830: 7269 6320 7661 7269 6574 7920 7769 7468 ric variety with │ │ │ │ +0002d840: 2074 6f74 616c 2063 6f6f 7264 696e 6174 total coordinat │ │ │ │ +0002d850: 6520 7269 6e67 2028 436f 7820 7269 6e67 e ring (Cox ring │ │ │ │ +0002d860: 2920 522e 2054 6869 7320 6d65 7468 6f64 ) R. This method │ │ │ │ +0002d870: 0a63 6f6d 7075 7465 7320 7468 6520 4368 .computes the Ch │ │ │ │ +0002d880: 6f77 2072 696e 6720 2043 686f 7720 7269 ow ring Chow ri │ │ │ │ +0002d890: 6e67 2043 683d 522f 2853 522b 4c52 2920 ng Ch=R/(SR+LR) │ │ │ │ +0002d8a0: 6f66 2058 3b20 6865 7265 2053 5220 6973 of X; here SR is │ │ │ │ +0002d8b0: 2074 6865 0a53 7461 6e6c 6579 2d52 6569 the.Stanley-Rei │ │ │ │ +0002d8c0: 736e 6572 2069 6465 616c 206f 6620 7468 sner ideal of th │ │ │ │ +0002d8d0: 6520 636f 7272 6573 706f 6e64 696e 6720 e corresponding │ │ │ │ +0002d8e0: 6661 6e20 616e 6420 4c52 2069 7320 7468 fan and LR is th │ │ │ │ +0002d8f0: 6520 6964 6561 6c20 6f66 206c 696e 6561 e ideal of linea │ │ │ │ +0002d900: 720a 7265 6c61 7469 6f6e 7320 616d 6f75 r.relations amou │ │ │ │ +0002d910: 6e74 2074 6865 2072 6179 732e 2049 7420 nt the rays. It │ │ │ │ +0002d920: 6973 206e 6565 6465 6420 666f 7220 696e is needed for in │ │ │ │ +0002d930: 7075 7420 696e 746f 2074 6865 206d 6574 put into the met │ │ │ │ +0002d940: 686f 6473 202a 6e6f 7465 2053 6567 7265 hods *note Segre │ │ │ │ +0002d950: 3a0a 5365 6772 652c 2c20 2a6e 6f74 6520 :.Segre,, *note │ │ │ │ +0002d960: 4368 6572 6e3a 2043 6865 726e 2c20 616e Chern: Chern, an │ │ │ │ +0002d970: 6420 2a6e 6f74 6520 4353 4d3a 2043 534d d *note CSM: CSM │ │ │ │ +0002d980: 2c20 696e 2074 6865 2063 6173 6573 2077 , in the cases w │ │ │ │ +0002d990: 6865 7265 2061 2074 6f72 6963 0a76 6172 here a toric.var │ │ │ │ +0002d9a0: 6965 7479 2069 7320 616c 736f 2069 6e70 iety is also inp │ │ │ │ +0002d9b0: 7574 2074 6f20 656e 7375 7265 2074 6861 ut to ensure tha │ │ │ │ +0002d9c0: 7420 7468 6573 6520 6d65 7468 6f64 7320 t these methods │ │ │ │ +0002d9d0: 7265 7475 726e 2072 6573 756c 7473 2069 return results i │ │ │ │ +0002d9e0: 6e20 7468 6520 7361 6d65 0a72 696e 672e n the same.ring. │ │ │ │ +0002d9f0: 2057 6520 6769 7665 2061 6e20 6578 616d We give an exam │ │ │ │ +0002da00: 706c 6520 6f66 2074 6865 2075 7365 206f ple of the use o │ │ │ │ +0002da10: 6620 7468 6973 206d 6574 686f 6420 746f f this method to │ │ │ │ +0002da20: 2077 6f72 6b20 7769 7468 2065 6c65 6d65 work with eleme │ │ │ │ +0002da30: 6e74 7320 6f66 2074 6865 0a43 686f 7720 nts of the.Chow │ │ │ │ +0002da40: 7269 6e67 206f 6620 6120 746f 7269 6320 ring of a toric │ │ │ │ +0002da50: 7661 7269 6574 790a 0a2b 2d2d 2d2d 2d2d variety..+------ │ │ │ │ +0002da60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002da80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002daa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -0002dae0: 3a20 6e65 6564 7350 6163 6b61 6765 2022 : needsPackage " │ │ │ │ -0002daf0: 4e6f 726d 616c 546f 7269 6356 6172 6965 NormalToricVarie │ │ │ │ -0002db00: 7469 6573 2220 2020 2020 2020 2020 2020 ties" │ │ │ │ +0002daa0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 206e -------+.|i1 : n │ │ │ │ +0002dab0: 6565 6473 5061 636b 6167 6520 224e 6f72 eedsPackage "Nor │ │ │ │ +0002dac0: 6d61 6c54 6f72 6963 5661 7269 6574 6965 malToricVarietie │ │ │ │ +0002dad0: 7322 2020 2020 2020 2020 2020 2020 2020 s" │ │ │ │ +0002dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002daf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db70: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0002db80: 3d20 4e6f 726d 616c 546f 7269 6356 6172 = NormalToricVar │ │ │ │ -0002db90: 6965 7469 6573 2020 2020 2020 2020 2020 ieties │ │ │ │ +0002db40: 2020 2020 2020 207c 0a7c 6f31 203d 204e |.|o1 = N │ │ │ │ +0002db50: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +0002db60: 6965 7320 2020 2020 2020 2020 2020 2020 ies │ │ │ │ +0002db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002db90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dbe0: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ +0002dbf0: 6163 6b61 6765 2020 2020 2020 2020 2020 ackage │ │ │ │ 0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc10: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0002dc20: 3a20 5061 636b 6167 6520 2020 2020 2020 : Package │ │ │ │ -0002dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc60: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dc30: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002dcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ -0002dcc0: 3a20 5268 6f20 3d20 7b7b 312c 302c 307d : Rho = {{1,0,0} │ │ │ │ -0002dcd0: 2c7b 302c 312c 307d 2c7b 302c 302c 317d ,{0,1,0},{0,0,1} │ │ │ │ -0002dce0: 2c7b 2d31 2c2d 312c 307d 2c7b 302c 302c ,{-1,-1,0},{0,0, │ │ │ │ -0002dcf0: 2d31 7d7d 2020 2020 2020 2020 2020 2020 -1}} │ │ │ │ -0002dd00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002dc80: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2052 -------+.|i2 : R │ │ │ │ +0002dc90: 686f 203d 207b 7b31 2c30 2c30 7d2c 7b30 ho = {{1,0,0},{0 │ │ │ │ +0002dca0: 2c31 2c30 7d2c 7b30 2c30 2c31 7d2c 7b2d ,1,0},{0,0,1},{- │ │ │ │ +0002dcb0: 312c 2d31 2c30 7d2c 7b30 2c30 2c2d 317d 1,-1,0},{0,0,-1} │ │ │ │ +0002dcc0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0002dcd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd50: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0002dd60: 3d20 7b7b 312c 2030 2c20 307d 2c20 7b30 = {{1, 0, 0}, {0 │ │ │ │ -0002dd70: 2c20 312c 2030 7d2c 207b 302c 2030 2c20 , 1, 0}, {0, 0, │ │ │ │ -0002dd80: 317d 2c20 7b2d 312c 202d 312c 2030 7d2c 1}, {-1, -1, 0}, │ │ │ │ -0002dd90: 207b 302c 2030 2c20 2d31 7d7d 2020 2020 {0, 0, -1}} │ │ │ │ -0002dda0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002dd20: 2020 2020 2020 207c 0a7c 6f32 203d 207b |.|o2 = { │ │ │ │ +0002dd30: 7b31 2c20 302c 2030 7d2c 207b 302c 2031 {1, 0, 0}, {0, 1 │ │ │ │ +0002dd40: 2c20 307d 2c20 7b30 2c20 302c 2031 7d2c , 0}, {0, 0, 1}, │ │ │ │ +0002dd50: 207b 2d31 2c20 2d31 2c20 307d 2c20 7b30 {-1, -1, 0}, {0 │ │ │ │ +0002dd60: 2c20 302c 202d 317d 7d20 2020 2020 2020 , 0, -1}} │ │ │ │ +0002dd70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ddc0: 2020 2020 2020 207c 0a7c 6f32 203a 204c |.|o2 : L │ │ │ │ +0002ddd0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0002dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ddf0: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -0002de00: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002de10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002de40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002de50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002de90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ -0002dea0: 3a20 5369 676d 6120 3d20 7b7b 302c 312c : Sigma = {{0,1, │ │ │ │ -0002deb0: 327d 2c7b 312c 322c 337d 2c7b 302c 322c 2},{1,2,3},{0,2, │ │ │ │ -0002dec0: 337d 2c7b 302c 312c 347d 2c7b 312c 332c 3},{0,1,4},{1,3, │ │ │ │ -0002ded0: 347d 2c7b 302c 332c 347d 7d20 2020 2020 4},{0,3,4}} │ │ │ │ -0002dee0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002de60: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2053 -------+.|i3 : S │ │ │ │ +0002de70: 6967 6d61 203d 207b 7b30 2c31 2c32 7d2c igma = {{0,1,2}, │ │ │ │ +0002de80: 7b31 2c32 2c33 7d2c 7b30 2c32 2c33 7d2c {1,2,3},{0,2,3}, │ │ │ │ +0002de90: 7b30 2c31 2c34 7d2c 7b31 2c33 2c34 7d2c {0,1,4},{1,3,4}, │ │ │ │ +0002dea0: 7b30 2c33 2c34 7d7d 2020 2020 2020 2020 {0,3,4}} │ │ │ │ +0002deb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df30: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0002df40: 3d20 7b7b 302c 2031 2c20 327d 2c20 7b31 = {{0, 1, 2}, {1 │ │ │ │ -0002df50: 2c20 322c 2033 7d2c 207b 302c 2032 2c20 , 2, 3}, {0, 2, │ │ │ │ -0002df60: 337d 2c20 7b30 2c20 312c 2034 7d2c 207b 3}, {0, 1, 4}, { │ │ │ │ -0002df70: 312c 2033 2c20 347d 2c20 7b30 2c20 332c 1, 3, 4}, {0, 3, │ │ │ │ -0002df80: 2034 7d7d 2020 2020 2020 7c0a 7c20 2020 4}} |.| │ │ │ │ +0002df00: 2020 2020 2020 207c 0a7c 6f33 203d 207b |.|o3 = { │ │ │ │ +0002df10: 7b30 2c20 312c 2032 7d2c 207b 312c 2032 {0, 1, 2}, {1, 2 │ │ │ │ +0002df20: 2c20 337d 2c20 7b30 2c20 322c 2033 7d2c , 3}, {0, 2, 3}, │ │ │ │ +0002df30: 207b 302c 2031 2c20 347d 2c20 7b31 2c20 {0, 1, 4}, {1, │ │ │ │ +0002df40: 332c 2034 7d2c 207b 302c 2033 2c20 347d 3, 4}, {0, 3, 4} │ │ │ │ +0002df50: 7d20 2020 2020 207c 0a7c 2020 2020 2020 } |.| │ │ │ │ +0002df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dfa0: 2020 2020 2020 207c 0a7c 6f33 203a 204c |.|o3 : L │ │ │ │ +0002dfb0: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0002dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfd0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0002dfe0: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e020: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002dff0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e070: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ -0002e080: 3a20 5820 3d20 6e6f 726d 616c 546f 7269 : X = normalTori │ │ │ │ -0002e090: 6356 6172 6965 7479 2852 686f 2c53 6967 cVariety(Rho,Sig │ │ │ │ -0002e0a0: 6d61 2c43 6f65 6666 6963 6965 6e74 5269 ma,CoefficientRi │ │ │ │ -0002e0b0: 6e67 203d 3e5a 5a2f 3332 3734 3929 2020 ng =>ZZ/32749) │ │ │ │ -0002e0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e040: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2058 -------+.|i4 : X │ │ │ │ +0002e050: 203d 206e 6f72 6d61 6c54 6f72 6963 5661 = normalToricVa │ │ │ │ +0002e060: 7269 6574 7928 5268 6f2c 5369 676d 612c riety(Rho,Sigma, │ │ │ │ +0002e070: 436f 6566 6669 6369 656e 7452 696e 6720 CoefficientRing │ │ │ │ +0002e080: 3d3e 5a5a 2f33 3237 3439 2920 2020 2020 =>ZZ/32749) │ │ │ │ +0002e090: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e0e0: 2020 2020 2020 207c 0a7c 6f34 203d 2058 |.|o4 = X │ │ │ │ 0002e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e110: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0002e120: 3d20 5820 2020 2020 2020 2020 2020 2020 = X │ │ │ │ -0002e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e130: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e160: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -0002e1c0: 3a20 4e6f 726d 616c 546f 7269 6356 6172 : NormalToricVar │ │ │ │ -0002e1d0: 6965 7479 2020 2020 2020 2020 2020 2020 iety │ │ │ │ -0002e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e200: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002e180: 2020 2020 2020 207c 0a7c 6f34 203a 204e |.|o4 : N │ │ │ │ +0002e190: 6f72 6d61 6c54 6f72 6963 5661 7269 6574 ormalToricVariet │ │ │ │ +0002e1a0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +0002e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e1d0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -0002e260: 3a20 523d 7269 6e67 2058 2020 2020 2020 : R=ring X │ │ │ │ -0002e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e220: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2052 -------+.|i5 : R │ │ │ │ +0002e230: 3d72 696e 6720 5820 2020 2020 2020 2020 =ring X │ │ │ │ +0002e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e2c0: 2020 2020 2020 207c 0a7c 6f35 203d 2052 |.|o5 = R │ │ │ │ 0002e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e2f0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0002e300: 3d20 5220 2020 2020 2020 2020 2020 2020 = R │ │ │ │ -0002e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e340: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e360: 2020 2020 2020 207c 0a7c 6f35 203a 2050 |.|o5 : P │ │ │ │ +0002e370: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ 0002e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e390: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ -0002e3a0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ -0002e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3e0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e3b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -0002e440: 3a20 4368 3d54 6f72 6963 4368 6f77 5269 : Ch=ToricChowRi │ │ │ │ -0002e450: 6e67 2858 2920 2020 2020 2020 2020 2020 ng(X) │ │ │ │ +0002e400: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 -------+.|i6 : C │ │ │ │ +0002e410: 683d 546f 7269 6343 686f 7752 696e 6728 h=ToricChowRing( │ │ │ │ +0002e420: 5829 2020 2020 2020 2020 2020 2020 2020 X) │ │ │ │ +0002e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4a0: 2020 2020 2020 207c 0a7c 6f36 203d 2043 |.|o6 = C │ │ │ │ +0002e4b0: 6820 2020 2020 2020 2020 2020 2020 2020 h │ │ │ │ 0002e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4d0: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -0002e4e0: 3d20 4368 2020 2020 2020 2020 2020 2020 = Ch │ │ │ │ -0002e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e4f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e540: 2020 2020 2020 207c 0a7c 6f36 203a 2051 |.|o6 : Q │ │ │ │ +0002e550: 756f 7469 656e 7452 696e 6720 2020 2020 uotientRing │ │ │ │ 0002e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e570: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ -0002e580: 3a20 5175 6f74 6965 6e74 5269 6e67 2020 : QuotientRing │ │ │ │ -0002e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e5c0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e590: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e610: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 ----------+.|i7 │ │ │ │ -0002e620: 3a20 6465 7363 7269 6265 2043 6820 2020 : describe Ch │ │ │ │ -0002e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e5e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 -------+.|i7 : d │ │ │ │ +0002e5f0: 6573 6372 6962 6520 4368 2020 2020 2020 escribe Ch │ │ │ │ +0002e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e630: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e660: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e690: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ +0002e6a0: 5a5b 7820 2e2e 7820 5d20 2020 2020 2020 Z[x ..x ] │ │ │ │ +0002e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6d0: 2020 5a5a 5b78 202e 2e78 205d 2020 2020 ZZ[x ..x ] │ │ │ │ +0002e6d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e700: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e6f0: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ +0002e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e720: 2020 2020 2020 3020 2020 3420 2020 2020 0 4 │ │ │ │ -0002e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e750: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ -0002e760: 3d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d = -------------- │ │ │ │ -0002e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 2020 2020 ----------- │ │ │ │ -0002e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e7b0: 2020 2878 2078 202c 2078 2078 2078 202c (x x , x x x , │ │ │ │ -0002e7c0: 2078 2020 2d20 7820 2c20 7820 202d 2078 x - x , x - x │ │ │ │ -0002e7d0: 202c 2078 2020 2d20 7820 2920 2020 2020 , x - x ) │ │ │ │ -0002e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e800: 2020 2020 3220 3420 2020 3020 3120 3320 2 4 0 1 3 │ │ │ │ -0002e810: 2020 3020 2020 2033 2020 2031 2020 2020 0 3 1 │ │ │ │ -0002e820: 3320 2020 3220 2020 2034 2020 2020 2020 3 2 4 │ │ │ │ -0002e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e840: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002e720: 2020 2020 2020 207c 0a7c 6f37 203d 202d |.|o7 = - │ │ │ │ +0002e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e750: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ +0002e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e770: 2020 2020 2020 207c 0a7c 2020 2020 2028 |.| ( │ │ │ │ +0002e780: 7820 7820 2c20 7820 7820 7820 2c20 7820 x x , x x x , x │ │ │ │ +0002e790: 202d 2078 202c 2078 2020 2d20 7820 2c20 - x , x - x , │ │ │ │ +0002e7a0: 7820 202d 2078 2029 2020 2020 2020 2020 x - x ) │ │ │ │ +0002e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e7c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e7d0: 2032 2034 2020 2030 2031 2033 2020 2030 2 4 0 1 3 0 │ │ │ │ +0002e7e0: 2020 2020 3320 2020 3120 2020 2033 2020 3 1 3 │ │ │ │ +0002e7f0: 2032 2020 2020 3420 2020 2020 2020 2020 2 4 │ │ │ │ +0002e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e810: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002e890: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ -0002e8a0: 3a20 723d 6765 6e73 2052 2020 2020 2020 : r=gens R │ │ │ │ -0002e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e860: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2072 -------+.|i8 : r │ │ │ │ +0002e870: 3d67 656e 7320 5220 2020 2020 2020 2020 =gens R │ │ │ │ +0002e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e8b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e930: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -0002e940: 3d20 7b78 202c 2078 202c 2078 202c 2078 = {x , x , x , x │ │ │ │ -0002e950: 202c 2078 207d 2020 2020 2020 2020 2020 , x } │ │ │ │ -0002e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e980: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002e990: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ -0002e9a0: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0002e900: 2020 2020 2020 207c 0a7c 6f38 203d 207b |.|o8 = { │ │ │ │ +0002e910: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +0002e920: 7820 7d20 2020 2020 2020 2020 2020 2020 x } │ │ │ │ +0002e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002e960: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ +0002e970: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e9a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e9f0: 2020 2020 2020 207c 0a7c 6f38 203a 204c |.|o8 : L │ │ │ │ +0002ea00: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ 0002ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea20: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ -0002ea30: 3a20 4c69 7374 2020 2020 2020 2020 2020 : List │ │ │ │ -0002ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea70: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ea40: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ -0002ead0: 3a20 493d 6964 6561 6c28 7261 6e64 6f6d : I=ideal(random │ │ │ │ -0002eae0: 287b 312c 307d 2c52 2929 2020 2020 2020 ({1,0},R)) │ │ │ │ +0002ea90: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2049 -------+.|i9 : I │ │ │ │ +0002eaa0: 3d69 6465 616c 2872 616e 646f 6d28 7b31 =ideal(random({1 │ │ │ │ +0002eab0: 2c30 7d2c 5229 2920 2020 2020 2020 2020 ,0},R)) │ │ │ │ +0002eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eae0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb60: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0002eb70: 3d20 6964 6561 6c28 3130 3778 2020 2b20 = ideal(107x + │ │ │ │ -0002eb80: 3433 3736 7820 202d 2036 3331 3678 2029 4376x - 6316x ) │ │ │ │ -0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002ebc0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -0002ebd0: 2020 2020 2031 2020 2020 2020 2020 3320 1 3 │ │ │ │ +0002eb30: 2020 2020 2020 207c 0a7c 6f39 203d 2069 |.|o9 = i │ │ │ │ +0002eb40: 6465 616c 2831 3037 7820 202b 2034 3337 deal(107x + 437 │ │ │ │ +0002eb50: 3678 2020 2d20 3633 3136 7820 2920 2020 6x - 6316x ) │ │ │ │ +0002eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eb80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002eb90: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0002eba0: 2020 3120 2020 2020 2020 2033 2020 2020 1 3 │ │ │ │ +0002ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ebd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec20: 2020 2020 2020 207c 0a7c 6f39 203a 2049 |.|o9 : I │ │ │ │ +0002ec30: 6465 616c 206f 6620 5220 2020 2020 2020 deal of R │ │ │ │ 0002ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec50: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ -0002ec60: 3a20 4964 6561 6c20 6f66 2052 2020 2020 : Ideal of R │ │ │ │ -0002ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eca0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ec70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ece0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ecf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ -0002ed00: 203a 204b 3d69 6465 616c 2872 616e 646f : K=ideal(rando │ │ │ │ -0002ed10: 6d28 7b31 2c31 7d2c 5229 2920 2020 2020 m({1,1},R)) │ │ │ │ +0002ecc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ +0002ecd0: 4b3d 6964 6561 6c28 7261 6e64 6f6d 287b K=ideal(random({ │ │ │ │ +0002ece0: 312c 317d 2c52 2929 2020 2020 2020 2020 1,1},R)) │ │ │ │ +0002ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ed10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed90: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -0002eda0: 203d 2069 6465 616c 2833 3138 3778 2078 = ideal(3187x x │ │ │ │ -0002edb0: 2020 2d20 3630 3533 7820 7820 202d 2031 - 6053x x - 1 │ │ │ │ -0002edc0: 3630 3930 7820 7820 202b 2033 3738 3378 6090x x + 3783x │ │ │ │ -0002edd0: 2078 2020 2b20 3835 3730 7820 7820 202b x + 8570x x + │ │ │ │ -0002ede0: 2038 3434 3478 2078 2029 7c0a 7c20 2020 8444x x )|.| │ │ │ │ -0002edf0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0002ee00: 3220 2020 2020 2020 2031 2032 2020 2020 2 1 2 │ │ │ │ -0002ee10: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ -0002ee20: 3020 3420 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ -0002ee30: 2020 2020 2020 3320 3420 7c0a 7c20 2020 3 4 |.| │ │ │ │ +0002ed60: 2020 2020 2020 207c 0a7c 6f31 3020 3d20 |.|o10 = │ │ │ │ +0002ed70: 6964 6561 6c28 3331 3837 7820 7820 202d ideal(3187x x - │ │ │ │ +0002ed80: 2036 3035 3378 2078 2020 2d20 3136 3039 6053x x - 1609 │ │ │ │ +0002ed90: 3078 2078 2020 2b20 3337 3833 7820 7820 0x x + 3783x x │ │ │ │ +0002eda0: 202b 2038 3537 3078 2078 2020 2b20 3834 + 8570x x + 84 │ │ │ │ +0002edb0: 3434 7820 7820 297c 0a7c 2020 2020 2020 44x x )|.| │ │ │ │ +0002edc0: 2020 2020 2020 2020 2020 2030 2032 2020 0 2 │ │ │ │ +0002edd0: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ +0002ede0: 2020 3220 3320 2020 2020 2020 2030 2034 2 3 0 4 │ │ │ │ +0002edf0: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ +0002ee00: 2020 2033 2034 207c 0a7c 2020 2020 2020 3 4 |.| │ │ │ │ +0002ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee50: 2020 2020 2020 207c 0a7c 6f31 3020 3a20 |.|o10 : │ │ │ │ +0002ee60: 4964 6561 6c20 6f66 2052 2020 2020 2020 Ideal of R │ │ │ │ 0002ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee80: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ -0002ee90: 203a 2049 6465 616c 206f 6620 5220 2020 : Ideal of R │ │ │ │ -0002eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eed0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002eea0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002eed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002eee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3131 ----------+.|i11 │ │ │ │ -0002ef30: 203a 2063 3d43 6865 726e 2843 682c 582c : c=Chern(Ch,X, │ │ │ │ -0002ef40: 4929 2020 2020 2020 2020 2020 2020 2020 I) │ │ │ │ +0002eef0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ +0002ef00: 633d 4368 6572 6e28 4368 2c58 2c49 2920 c=Chern(Ch,X,I) │ │ │ │ +0002ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002ef90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002efa0: 2020 3220 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ 0002efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002efd0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -0002efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f010: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0002f020: 203d 2034 7820 7820 202b 2032 7820 202b = 4x x + 2x + │ │ │ │ -0002f030: 2032 7820 7820 202b 2078 2020 2020 2020 2x x + x │ │ │ │ -0002f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f070: 2020 2020 2033 2034 2020 2020 2033 2020 3 4 3 │ │ │ │ -0002f080: 2020 2033 2034 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002efe0: 2020 2020 2020 207c 0a7c 6f31 3120 3d20 |.|o11 = │ │ │ │ +0002eff0: 3478 2078 2020 2b20 3278 2020 2b20 3278 4x x + 2x + 2x │ │ │ │ +0002f000: 2078 2020 2b20 7820 2020 2020 2020 2020 x + x │ │ │ │ +0002f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f040: 2020 3320 3420 2020 2020 3320 2020 2020 3 4 3 │ │ │ │ +0002f050: 3320 3420 2020 2033 2020 2020 2020 2020 3 4 3 │ │ │ │ +0002f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f0d0: 2020 2020 2020 207c 0a7c 6f31 3120 3a20 |.|o11 : │ │ │ │ +0002f0e0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 0002f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f100: 2020 2020 2020 2020 2020 7c0a 7c6f 3131 |.|o11 │ │ │ │ -0002f110: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f150: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f120: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3132 ----------+.|i12 │ │ │ │ -0002f1b0: 203a 2073 3d53 6567 7265 2843 682c 582c : s=Segre(Ch,X, │ │ │ │ -0002f1c0: 4b29 2020 2020 2020 2020 2020 2020 2020 K) │ │ │ │ +0002f170: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3220 3a20 -------+.|i12 : │ │ │ │ +0002f180: 733d 5365 6772 6528 4368 2c58 2c4b 2920 s=Segre(Ch,X,K) │ │ │ │ +0002f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f1c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f1f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f220: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ 0002f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f240: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f250: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0002f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f290: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -0002f2a0: 203d 2033 7820 7820 202d 2078 2020 2d20 = 3x x - x - │ │ │ │ -0002f2b0: 3278 2078 2020 2b20 7820 202b 2078 2020 2x x + x + x │ │ │ │ -0002f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f2f0: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ -0002f300: 2020 3320 3420 2020 2033 2020 2020 3420 3 4 3 4 │ │ │ │ +0002f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f260: 2020 2020 2020 207c 0a7c 6f31 3220 3d20 |.|o12 = │ │ │ │ +0002f270: 3378 2078 2020 2d20 7820 202d 2032 7820 3x x - x - 2x │ │ │ │ +0002f280: 7820 202b 2078 2020 2b20 7820 2020 2020 x + x + x │ │ │ │ +0002f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f2b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f2c0: 2020 3320 3420 2020 2033 2020 2020 2033 3 4 3 3 │ │ │ │ +0002f2d0: 2034 2020 2020 3320 2020 2034 2020 2020 4 3 4 │ │ │ │ +0002f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f300: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f330: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f350: 2020 2020 2020 207c 0a7c 6f31 3220 3a20 |.|o12 : │ │ │ │ +0002f360: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 0002f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f380: 2020 2020 2020 2020 2020 7c0a 7c6f 3132 |.|o12 │ │ │ │ -0002f390: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3133 ----------+.|i13 │ │ │ │ -0002f430: 203a 2073 2d63 2020 2020 2020 2020 2020 : s-c │ │ │ │ -0002f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f3f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3320 3a20 -------+.|i13 : │ │ │ │ +0002f400: 732d 6320 2020 2020 2020 2020 2020 2020 s-c │ │ │ │ +0002f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f470: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f4a0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ 0002f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f4d0: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -0002f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f510: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -0002f520: 203d 202d 2078 2078 2020 2d20 3378 2020 = - x x - 3x │ │ │ │ -0002f530: 2d20 3478 2078 2020 2b20 7820 2020 2020 - 4x x + x │ │ │ │ -0002f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f560: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f570: 2020 2020 2020 3320 3420 2020 2020 3320 3 4 3 │ │ │ │ -0002f580: 2020 2020 3320 3420 2020 2034 2020 2020 3 4 4 │ │ │ │ +0002f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f4e0: 2020 2020 2020 207c 0a7c 6f31 3320 3d20 |.|o13 = │ │ │ │ +0002f4f0: 2d20 7820 7820 202d 2033 7820 202d 2034 - x x - 3x - 4 │ │ │ │ +0002f500: 7820 7820 202b 2078 2020 2020 2020 2020 x x + x │ │ │ │ +0002f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f540: 2020 2033 2034 2020 2020 2033 2020 2020 3 4 3 │ │ │ │ +0002f550: 2033 2034 2020 2020 3420 2020 2020 2020 3 4 4 │ │ │ │ +0002f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f5d0: 2020 2020 2020 207c 0a7c 6f31 3320 3a20 |.|o13 : │ │ │ │ +0002f5e0: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 0002f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f600: 2020 2020 2020 2020 2020 7c0a 7c6f 3133 |.|o13 │ │ │ │ -0002f610: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f650: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f620: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 ----------+.|i14 │ │ │ │ -0002f6b0: 203a 2073 2a63 2020 2020 2020 2020 2020 : s*c │ │ │ │ -0002f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f670: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3420 3a20 -------+.|i14 : │ │ │ │ +0002f680: 732a 6320 2020 2020 2020 2020 2020 2020 s*c │ │ │ │ +0002f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f6c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f710: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f720: 2020 3220 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ 0002f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f750: 2020 2020 2032 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0002f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f760: 2020 2020 2020 207c 0a7c 6f31 3420 3d20 |.|o14 = │ │ │ │ +0002f770: 3278 2078 2020 2b20 7820 202b 2078 2078 2x x + x + x x │ │ │ │ 0002f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f790: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -0002f7a0: 203d 2032 7820 7820 202b 2078 2020 2b20 = 2x x + x + │ │ │ │ -0002f7b0: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -0002f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0002f7f0: 2020 2020 2033 2034 2020 2020 3320 2020 3 4 3 │ │ │ │ -0002f800: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0002f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0002f7c0: 2020 3320 3420 2020 2033 2020 2020 3320 3 4 3 3 │ │ │ │ +0002f7d0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0002f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f830: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0002f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f850: 2020 2020 2020 207c 0a7c 6f31 3420 3a20 |.|o14 : │ │ │ │ +0002f860: 4368 2020 2020 2020 2020 2020 2020 2020 Ch │ │ │ │ 0002f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f880: 2020 2020 2020 2020 2020 7c0a 7c6f 3134 |.|o14 │ │ │ │ -0002f890: 203a 2043 6820 2020 2020 2020 2020 2020 : Ch │ │ │ │ -0002f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f8d0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0002f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002f8a0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0002f8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a46 6f72 ----------+..For │ │ │ │ -0002f930: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -0002f940: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0002f950: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -0002f960: 6e6f 7465 2054 6f72 6963 4368 6f77 5269 note ToricChowRi │ │ │ │ -0002f970: 6e67 3a20 546f 7269 6343 686f 7752 696e ng: ToricChowRin │ │ │ │ -0002f980: 672c 2069 7320 6120 2a6e 6f74 6520 6d65 g, is a *note me │ │ │ │ -0002f990: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -0002f9a0: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -0002f9b0: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +0002f8f0: 2d2d 2d2d 2d2d 2d2b 0a0a 466f 7220 7468 -------+..For th │ │ │ │ +0002f900: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0002f910: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0002f920: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0002f930: 6520 546f 7269 6343 686f 7752 696e 673a e ToricChowRing: │ │ │ │ +0002f940: 2054 6f72 6963 4368 6f77 5269 6e67 2c20 ToricChowRing, │ │ │ │ +0002f950: 6973 2061 202a 6e6f 7465 206d 6574 686f is a *note metho │ │ │ │ +0002f960: 6420 6675 6e63 7469 6f6e 3a0a 284d 6163 d function:.(Mac │ │ │ │ +0002f970: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +0002f980: 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d Function,...---- │ │ │ │ +0002f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +0002f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002f9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fa00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0002fa10: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0002fa20: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0002fa30: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0002fa40: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0002fa50: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0002fa60: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0002fa70: 6b61 6765 732f 0a43 6861 7261 6374 6572 kages/.Character │ │ │ │ -0002fa80: 6973 7469 6343 6c61 7373 6573 2e6d 323a isticClasses.m2: │ │ │ │ -0002fa90: 3139 3531 3a30 2e0a 1f0a 5461 6720 5461 1951:0....Tag Ta │ │ │ │ -0002faa0: 626c 653a 0a4e 6f64 653a 2054 6f70 7f32 ble:.Node: Top.2 │ │ │ │ -0002fab0: 3931 0a4e 6f64 653a 2062 6572 7469 6e69 91.Node: bertini │ │ │ │ -0002fac0: 4368 6563 6b7f 3136 3730 350a 4e6f 6465 Check.16705.Node │ │ │ │ -0002fad0: 3a20 4368 6563 6b53 6d6f 6f74 687f 3137 : CheckSmooth.17 │ │ │ │ -0002fae0: 3932 320a 4e6f 6465 3a20 4368 6563 6b54 922.Node: CheckT │ │ │ │ -0002faf0: 6f72 6963 5661 7269 6574 7956 616c 6964 oricVarietyValid │ │ │ │ -0002fb00: 7f32 3237 3138 0a4e 6f64 653a 2043 6865 .22718.Node: Che │ │ │ │ -0002fb10: 726e 7f33 3337 3039 0a4e 6f64 653a 2043 rn.33709.Node: C │ │ │ │ -0002fb20: 686f 7752 696e 677f 3531 3231 370a 4e6f howRing.51217.No │ │ │ │ -0002fb30: 6465 3a20 436c 6173 7349 6e43 686f 7752 de: ClassInChowR │ │ │ │ -0002fb40: 696e 677f 3538 3934 380a 4e6f 6465 3a20 ing.58948.Node: │ │ │ │ -0002fb50: 436c 6173 7349 6e54 6f72 6963 4368 6f77 ClassInToricChow │ │ │ │ -0002fb60: 5269 6e67 7f36 3133 3038 0a4e 6f64 653a Ring.61308.Node: │ │ │ │ -0002fb70: 2043 6f6d 704d 6574 686f 647f 3636 3535 CompMethod.6655 │ │ │ │ -0002fb80: 310a 4e6f 6465 3a20 636f 6e66 6967 7572 1.Node: configur │ │ │ │ -0002fb90: 696e 6720 4265 7274 696e 697f 3736 3437 ing Bertini.7647 │ │ │ │ -0002fba0: 380a 4e6f 6465 3a20 4353 4d7f 3738 3131 8.Node: CSM.7811 │ │ │ │ -0002fbb0: 330a 4e6f 6465 3a20 4575 6c65 727f 3130 3.Node: Euler.10 │ │ │ │ -0002fbc0: 3138 3032 0a4e 6f64 653a 2045 756c 6572 1802.Node: Euler │ │ │ │ -0002fbd0: 4166 6669 6e65 7f31 3139 3637 390a 4e6f Affine.119679.No │ │ │ │ -0002fbe0: 6465 3a20 496e 6473 4f66 536d 6f6f 7468 de: IndsOfSmooth │ │ │ │ -0002fbf0: 7f31 3232 3139 310a 4e6f 6465 3a20 496e .122191.Node: In │ │ │ │ -0002fc00: 7075 7449 7353 6d6f 6f74 687f 3132 3631 putIsSmooth.1261 │ │ │ │ -0002fc10: 3436 0a4e 6f64 653a 2069 734d 756c 7469 46.Node: isMulti │ │ │ │ -0002fc20: 486f 6d6f 6765 6e65 6f75 737f 3133 3031 Homogeneous.1301 │ │ │ │ -0002fc30: 3634 0a4e 6f64 653a 204d 6574 686f 647f 64.Node: Method. │ │ │ │ -0002fc40: 3133 3432 3432 0a4e 6f64 653a 204d 756c 134242.Node: Mul │ │ │ │ -0002fc50: 7469 5072 6f6a 436f 6f72 6452 696e 677f tiProjCoordRing. │ │ │ │ -0002fc60: 3133 3831 3931 0a4e 6f64 653a 204f 7574 138191.Node: Out │ │ │ │ -0002fc70: 7075 747f 3134 3438 3539 0a4e 6f64 653a put.144859.Node: │ │ │ │ -0002fc80: 2070 726f 6261 6269 6c69 7374 6963 2061 probabilistic a │ │ │ │ -0002fc90: 6c67 6f72 6974 686d 7f31 3633 3337 370a lgorithm.163377. │ │ │ │ -0002fca0: 4e6f 6465 3a20 5365 6772 657f 3136 3830 Node: Segre.1680 │ │ │ │ -0002fcb0: 3732 0a4e 6f64 653a 2054 6f72 6963 4368 72.Node: ToricCh │ │ │ │ -0002fcc0: 6f77 5269 6e67 7f31 3835 3937 390a 1f0a owRing.185979... │ │ │ │ -0002fcd0: 456e 6420 5461 6720 5461 626c 650a End Tag Table. │ │ │ │ +0002f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0002f9e0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0002f9f0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0002fa00: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0002fa10: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0002fa20: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0002fa30: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0002fa40: 6573 2f0a 4368 6172 6163 7465 7269 7374 es/.Characterist │ │ │ │ +0002fa50: 6963 436c 6173 7365 732e 6d32 3a31 3935 icClasses.m2:195 │ │ │ │ +0002fa60: 313a 302e 0a1f 0a54 6167 2054 6162 6c65 1:0....Tag Table │ │ │ │ +0002fa70: 3a0a 4e6f 6465 3a20 546f 707f 3239 310a :.Node: Top.291. │ │ │ │ +0002fa80: 4e6f 6465 3a20 6265 7274 696e 6943 6865 Node: bertiniChe │ │ │ │ +0002fa90: 636b 7f31 3637 3035 0a4e 6f64 653a 2043 ck.16705.Node: C │ │ │ │ +0002faa0: 6865 636b 536d 6f6f 7468 7f31 3739 3232 heckSmooth.17922 │ │ │ │ +0002fab0: 0a4e 6f64 653a 2043 6865 636b 546f 7269 .Node: CheckTori │ │ │ │ +0002fac0: 6356 6172 6965 7479 5661 6c69 647f 3232 cVarietyValid.22 │ │ │ │ +0002fad0: 3731 380a 4e6f 6465 3a20 4368 6572 6e7f 718.Node: Chern. │ │ │ │ +0002fae0: 3333 3730 390a 4e6f 6465 3a20 4368 6f77 33709.Node: Chow │ │ │ │ +0002faf0: 5269 6e67 7f35 3132 3137 0a4e 6f64 653a Ring.51217.Node: │ │ │ │ +0002fb00: 2043 6c61 7373 496e 4368 6f77 5269 6e67 ClassInChowRing │ │ │ │ +0002fb10: 7f35 3839 3438 0a4e 6f64 653a 2043 6c61 .58948.Node: Cla │ │ │ │ +0002fb20: 7373 496e 546f 7269 6343 686f 7752 696e ssInToricChowRin │ │ │ │ +0002fb30: 677f 3631 3330 380a 4e6f 6465 3a20 436f g.61308.Node: Co │ │ │ │ +0002fb40: 6d70 4d65 7468 6f64 7f36 3635 3531 0a4e mpMethod.66551.N │ │ │ │ +0002fb50: 6f64 653a 2063 6f6e 6669 6775 7269 6e67 ode: configuring │ │ │ │ +0002fb60: 2042 6572 7469 6e69 7f37 3634 3738 0a4e Bertini.76478.N │ │ │ │ +0002fb70: 6f64 653a 2043 534d 7f37 3831 3133 0a4e ode: CSM.78113.N │ │ │ │ +0002fb80: 6f64 653a 2045 756c 6572 7f31 3031 3735 ode: Euler.10175 │ │ │ │ +0002fb90: 310a 4e6f 6465 3a20 4575 6c65 7241 6666 1.Node: EulerAff │ │ │ │ +0002fba0: 696e 657f 3131 3936 3238 0a4e 6f64 653a ine.119628.Node: │ │ │ │ +0002fbb0: 2049 6e64 734f 6653 6d6f 6f74 687f 3132 IndsOfSmooth.12 │ │ │ │ +0002fbc0: 3231 3430 0a4e 6f64 653a 2049 6e70 7574 2140.Node: Input │ │ │ │ +0002fbd0: 4973 536d 6f6f 7468 7f31 3236 3039 350a IsSmooth.126095. │ │ │ │ +0002fbe0: 4e6f 6465 3a20 6973 4d75 6c74 6948 6f6d Node: isMultiHom │ │ │ │ +0002fbf0: 6f67 656e 656f 7573 7f31 3330 3131 330a ogeneous.130113. │ │ │ │ +0002fc00: 4e6f 6465 3a20 4d65 7468 6f64 7f31 3334 Node: Method.134 │ │ │ │ +0002fc10: 3139 310a 4e6f 6465 3a20 4d75 6c74 6950 191.Node: MultiP │ │ │ │ +0002fc20: 726f 6a43 6f6f 7264 5269 6e67 7f31 3338 rojCoordRing.138 │ │ │ │ +0002fc30: 3134 300a 4e6f 6465 3a20 4f75 7470 7574 140.Node: Output │ │ │ │ +0002fc40: 7f31 3434 3830 380a 4e6f 6465 3a20 7072 .144808.Node: pr │ │ │ │ +0002fc50: 6f62 6162 696c 6973 7469 6320 616c 676f obabilistic algo │ │ │ │ +0002fc60: 7269 7468 6d7f 3136 3333 3236 0a4e 6f64 rithm.163326.Nod │ │ │ │ +0002fc70: 653a 2053 6567 7265 7f31 3638 3032 310a e: Segre.168021. │ │ │ │ +0002fc80: 4e6f 6465 3a20 546f 7269 6343 686f 7752 Node: ToricChowR │ │ │ │ +0002fc90: 696e 677f 3138 3539 3238 0a1f 0a45 6e64 ing.185928...End │ │ │ │ +0002fca0: 2054 6167 2054 6162 6c65 0a Tag Table. │ │ ├── ./usr/share/info/Chordal.info.gz │ │ │ ├── Chordal.info │ │ │ │ @@ -3949,30 +3949,30 @@ │ │ │ │ 0000f6c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f710: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ 0000f720: 203d 2045 6c69 6d54 7265 657b 6120 3d3e = ElimTree{a => │ │ │ │ -0000f730: 2062 2020 207d 2020 2020 2020 2020 2020 b } │ │ │ │ +0000f730: 2063 7d20 2020 2020 2020 2020 2020 2020 c} │ │ │ │ 0000f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f770: 2020 2020 2020 2020 2020 2020 6220 3d3e b => │ │ │ │ 0000f780: 2063 2020 2020 2020 2020 2020 2020 2020 c │ │ │ │ 0000f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f7c0: 2020 2020 2020 2020 2020 2020 6320 3d3e c => │ │ │ │ 0000f7d0: 2064 2020 2020 2020 2020 2020 2020 2020 d │ │ │ │ 0000f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f800: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f810: 2020 2020 2020 2020 2020 2020 6420 3d3e d => │ │ │ │ -0000f820: 206e 756c 6c20 2020 2020 2020 2020 2020 null │ │ │ │ +0000f820: 2062 2020 2020 2020 2020 2020 2020 2020 b │ │ │ │ 0000f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4033,31 +4033,31 @@ │ │ │ │ 0000fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fc60: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ -0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2064 = ChordalNet{ d │ │ │ │ -0000fc80: 203d 3e20 7b20 2c20 647d 2020 2020 7d20 => { , d} } │ │ │ │ +0000fc70: 203d 2043 686f 7264 616c 4e65 747b 2061 = ChordalNet{ a │ │ │ │ +0000fc80: 203d 3e20 7b61 2c20 207d 2020 2020 7d20 => {a, } } │ │ │ │ 0000fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ -0000fcd0: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ +0000fcc0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +0000fcd0: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ 0000fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd10: 2020 2020 2020 2020 2020 2020 2020 2061 a │ │ │ │ -0000fd20: 203d 3e20 7b61 2c20 207d 2020 2020 2020 => {a, } │ │ │ │ +0000fd10: 2020 2020 2020 2020 2020 2020 2020 2064 d │ │ │ │ +0000fd20: 203d 3e20 7b20 2c20 647d 2020 2020 2020 => { , d} │ │ │ │ 0000fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0000fd60: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ -0000fd70: 203d 3e20 7b20 2c20 637d 2020 2020 2020 => { , c} │ │ │ │ +0000fd60: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +0000fd70: 203d 3e20 7b62 2c20 202c 2062 7d20 2020 => {b, , b} │ │ │ │ 0000fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fda0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 0000fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CohomCalg.info.gz │ │ │ ├── CohomCalg.info │ │ │ │ @@ -1042,15 +1042,15 @@ │ │ │ │ 00004110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00004130: 7c69 3230 203a 2065 6c61 7073 6564 5469 |i20 : elapsedTi │ │ │ │ 00004140: 6d65 2068 7665 6373 203d 2063 6f68 6f6d me hvecs = cohom │ │ │ │ 00004150: 4361 6c67 2858 2c20 4432 2920 2020 2020 Calg(X, D2) │ │ │ │ 00004160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00004180: 7c20 2d2d 2032 2e36 3734 3038 7320 656c | -- 2.67408s el │ │ │ │ +00004180: 7c20 2d2d 2033 2e33 3332 3537 7320 656c | -- 3.33257s el │ │ │ │ 00004190: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 000041a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000041d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000041e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000041f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1677,15 +1677,15 @@ │ │ │ │ 000068c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000068d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000068e0: 7c69 3233 203a 2065 6c61 7073 6564 5469 |i23 : elapsedTi │ │ │ │ 000068f0: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00006900: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00006910: 5f37 202b 2058 5f38 2920 2020 2020 2020 _7 + X_8) │ │ │ │ 00006920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00006930: 7c20 2d2d 202e 3330 3239 3135 7320 656c | -- .302915s el │ │ │ │ +00006930: 7c20 2d2d 202e 3533 3134 3634 7320 656c | -- .531464s el │ │ │ │ 00006940: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000069a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1712,15 +1712,15 @@ │ │ │ │ 00006af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00006b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00006b10: 7c69 3234 203a 2065 6c61 7073 6564 5469 |i24 : elapsedTi │ │ │ │ 00006b20: 6d65 2063 6f68 6f6d 7665 6332 203d 2066 me cohomvec2 = f │ │ │ │ 00006b30: 6f72 206a 2066 726f 6d20 3020 746f 2064 or j from 0 to d │ │ │ │ 00006b40: 696d 2058 206c 6973 7420 7261 6e6b 2048 im X list rank H │ │ │ │ 00006b50: 485e 6a28 582c 2020 2020 2020 2020 7c0a H^j(X, |. │ │ │ │ -00006b60: 7c20 2d2d 2031 302e 3937 3932 7320 656c | -- 10.9792s el │ │ │ │ +00006b60: 7c20 2d2d 2031 302e 3237 3136 7320 656c | -- 10.2716s el │ │ │ │ 00006b70: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00006b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00006bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00006bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00006bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1797,16 +1797,16 @@ │ │ │ │ 00007040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007060: 7c69 3237 203a 2065 6c61 7073 6564 5469 |i27 : elapsedTi │ │ │ │ 00007070: 6d65 2063 6f68 6f6d 7665 6331 203d 2063 me cohomvec1 = c │ │ │ │ 00007080: 6f68 6f6d 4361 6c67 2858 5f33 202b 2058 ohomCalg(X_3 + X │ │ │ │ 00007090: 5f37 202d 2058 5f38 2920 2020 2020 2020 _7 - X_8) │ │ │ │ 000070a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000070b0: 7c20 2d2d 202e 3334 3231 3236 7320 656c | -- .342126s el │ │ │ │ -000070c0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +000070b0: 7c20 2d2d 202e 3536 3239 7320 656c 6170 | -- .5629s elap │ │ │ │ +000070c0: 7365 6420 2020 2020 2020 2020 2020 2020 sed │ │ │ │ 000070d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000070f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1832,20 +1832,20 @@ │ │ │ │ 00007270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00007280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00007290: 7c69 3238 203a 2065 6c61 7073 6564 5469 |i28 : elapsedTi │ │ │ │ 000072a0: 6d65 2063 6f68 6f6d 7665 6332 203d 2065 me cohomvec2 = e │ │ │ │ 000072b0: 6c61 7073 6564 5469 6d65 2066 6f72 206a lapsedTime for j │ │ │ │ 000072c0: 2066 726f 6d20 3020 746f 2064 696d 2058 from 0 to dim X │ │ │ │ 000072d0: 206c 6973 7420 7261 6e6b 2020 2020 7c0a list rank |. │ │ │ │ -000072e0: 7c20 2d2d 202e 3531 3733 3436 7320 656c | -- .517346s el │ │ │ │ -000072f0: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ +000072e0: 7c20 2d2d 202e 3436 3331 3873 2065 6c61 | -- .46318s ela │ │ │ │ +000072f0: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00007300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00007330: 7c20 2d2d 202e 3531 3733 3733 7320 656c | -- .517373s el │ │ │ │ +00007330: 7c20 2d2d 202e 3436 3332 3131 7320 656c | -- .463211s el │ │ │ │ 00007340: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00007350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00007370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00007380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00007390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000073a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ ├── ./usr/share/info/CompleteIntersectionResolutions.info.gz │ │ │ ├── CompleteIntersectionResolutions.info │ │ │ │ @@ -4343,17 +4343,17 @@ │ │ │ │ 00010f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00010f80: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ 00010f90: 4720 3d20 4569 7365 6e62 7564 5368 616d G = EisenbudSham │ │ │ │ 00010fa0: 6173 6828 6666 2c46 2c6c 656e 2920 2020 ash(ff,F,len) │ │ │ │ 00010fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00010fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2036 |.| -- used 6 │ │ │ │ -00010fe0: 2e36 3632 3932 7320 2863 7075 293b 2034 .66292s (cpu); 4 │ │ │ │ -00010ff0: 2e38 3937 3937 7320 2874 6872 6561 6429 .89797s (thread) │ │ │ │ +00010fd0: 2020 207c 0a7c 202d 2d20 7573 6564 2038 |.| -- used 8 │ │ │ │ +00010fe0: 2e34 3933 3236 7320 2863 7075 293b 2036 .49326s (cpu); 6 │ │ │ │ +00010ff0: 2e34 3234 3833 7320 2874 6872 6561 6429 .42483s (thread) │ │ │ │ 00011000: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 00011010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4884,17 +4884,17 @@ │ │ │ │ 00013130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013150: 2d2b 0a7c 6932 3020 3a20 4646 203d 2074 -+.|i20 : FF = t │ │ │ │ 00013160: 696d 6520 5368 616d 6173 6828 5231 2c46 ime Shamash(R1,F │ │ │ │ 00013170: 2c34 2920 2020 2020 2020 2020 2020 2020 ,4) │ │ │ │ 00013180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013190: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -000131a0: 2e31 3639 3335 3673 2028 6370 7529 3b20 .169356s (cpu); │ │ │ │ -000131b0: 302e 3039 3630 3434 3573 2028 7468 7265 0.0960445s (thre │ │ │ │ -000131c0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000131a0: 2e32 3834 3236 3973 2028 6370 7529 3b20 .284269s (cpu); │ │ │ │ +000131b0: 302e 3138 3539 3034 7320 2874 6872 6561 0.185904s (threa │ │ │ │ +000131c0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 000131d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000131e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000131f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00013220: 2020 3120 2020 2020 2020 3620 2020 2020 1 6 │ │ │ │ 00013230: 2020 3138 2020 2020 2020 2033 3820 2020 18 38 │ │ │ │ @@ -4925,17 +4925,17 @@ │ │ │ │ 000133c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000133e0: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 4747 -----+.|i21 : GG │ │ │ │ 000133f0: 203d 2074 696d 6520 4569 7365 6e62 7564 = time Eisenbud │ │ │ │ 00013400: 5368 616d 6173 6828 6666 2c46 2c34 2920 Shamash(ff,F,4) │ │ │ │ 00013410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013420: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00013430: 6564 2030 2e39 3337 3435 3973 2028 6370 ed 0.937459s (cp │ │ │ │ -00013440: 7529 3b20 302e 3732 3039 3132 7320 2874 u); 0.720912s (t │ │ │ │ -00013450: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00013430: 6564 2031 2e33 3039 3236 7320 2863 7075 ed 1.30926s (cpu │ │ │ │ +00013440: 293b 2031 2e30 3134 3538 7320 2874 6872 ); 1.01458s (thr │ │ │ │ +00013450: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00013460: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ 00013470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000134a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000134b0: 2020 2020 2f20 525c 3120 2020 2020 2f20 / R\1 / │ │ │ │ 000134c0: 525c 3620 2020 2020 2f20 525c 3138 2020 R\6 / R\18 │ │ │ │ @@ -4982,16 +4982,16 @@ │ │ │ │ 00013750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00013780: 0a7c 6932 3220 3a20 4747 203d 2074 696d .|i22 : GG = tim │ │ │ │ 00013790: 6520 4569 7365 6e62 7564 5368 616d 6173 e EisenbudShamas │ │ │ │ 000137a0: 6828 5231 2c46 5b32 5d2c 3429 2020 2020 h(R1,F[2],4) │ │ │ │ 000137b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000137c0: 6420 302e 3933 3032 3673 2028 6370 7529 d 0.93026s (cpu) │ │ │ │ -000137d0: 3b20 302e 3730 3231 3332 7320 2874 6872 ; 0.702132s (thr │ │ │ │ +000137c0: 6420 312e 3238 3135 3773 2028 6370 7529 d 1.28157s (cpu) │ │ │ │ +000137d0: 3b20 302e 3936 3636 3534 7320 2874 6872 ; 0.966654s (thr │ │ │ │ 000137e0: 6561 6429 3b20 3073 2028 6763 297c 0a7c ead); 0s (gc)|.| │ │ │ │ 000137f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013820: 2020 2020 7c0a 7c20 2020 2020 2020 2031 |.| 1 │ │ │ │ 00013830: 2020 2020 2020 2036 2020 2020 2020 2031 6 1 │ │ │ │ 00013840: 3820 2020 2020 2020 3338 2020 2020 2020 8 38 │ │ │ │ @@ -28230,45 +28230,45 @@ │ │ │ │ 0006e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 0006e480: 6932 203a 2073 756d 5477 6f4d 6f6e 6f6d i2 : sumTwoMonom │ │ │ │ 0006e490: 6961 6c73 2832 2c33 2920 2020 2020 2020 ials(2,3) │ │ │ │ 0006e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e4b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0006e4c0: 6564 2030 2e33 3730 3233 3973 2028 6370 ed 0.370239s (cp │ │ │ │ -0006e4d0: 7529 3b20 302e 3331 3937 3339 7320 2874 u); 0.319739s (t │ │ │ │ +0006e4c0: 6564 2030 2e35 3736 3533 3473 2028 6370 ed 0.576534s (cp │ │ │ │ +0006e4d0: 7529 3b20 302e 3435 3134 3039 7320 2874 u); 0.451409s (t │ │ │ │ 0006e4e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 0006e4f0: 207c 0a7c 3220 2020 2020 2020 2020 2020 |.|2 │ │ │ │ 0006e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e520: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 0006e530: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ 0006e540: 2032 7d7d 203d 3e20 337d 2020 2020 2020 2}} => 3} │ │ │ │ 0006e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0006e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0006e5a0: 0a7c 202d 2d20 7573 6564 2030 2e32 3130 .| -- used 0.210 │ │ │ │ -0006e5b0: 3130 3473 2028 6370 7529 3b20 302e 3133 104s (cpu); 0.13 │ │ │ │ -0006e5c0: 3831 3539 7320 2874 6872 6561 6429 3b20 8159s (thread); │ │ │ │ -0006e5d0: 3073 2028 6763 2920 207c 0a7c 3320 2020 0s (gc) |.|3 │ │ │ │ +0006e5a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3039 .| -- used 0.309 │ │ │ │ +0006e5b0: 3233 7320 2863 7075 293b 2030 2e31 3639 23s (cpu); 0.169 │ │ │ │ +0006e5c0: 3537 3373 2028 7468 7265 6164 293b 2030 573s (thread); 0 │ │ │ │ +0006e5d0: 7320 2867 6329 2020 207c 0a7c 3320 2020 s (gc) |.|3 │ │ │ │ 0006e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e610: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ 0006e620: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ 0006e630: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ 0006e640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 0006e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e680: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0006e690: 6564 2033 2e36 3937 652d 3036 7320 2863 ed 3.697e-06s (c │ │ │ │ -0006e6a0: 7075 293b 2033 2e33 3236 652d 3036 7320 pu); 3.326e-06s │ │ │ │ +0006e690: 6564 2033 2e35 3035 652d 3036 7320 2863 ed 3.505e-06s (c │ │ │ │ +0006e6a0: 7075 293b 2032 2e37 3433 652d 3036 7320 pu); 2.743e-06s │ │ │ │ 0006e6b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ 0006e6c0: 297c 0a7c 3420 2020 2020 2020 2020 2020 )|.|4 │ │ │ │ 0006e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e6f0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 0006e700: 6c6c 797b 7d20 2020 2020 2020 2020 2020 lly{} │ │ │ │ 0006e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -28812,34 +28812,34 @@ │ │ │ │ 000708b0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 000708c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000708d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000708e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ 000708f0: 203a 2074 776f 4d6f 6e6f 6d69 616c 7328 : twoMonomials( │ │ │ │ 00070900: 322c 3329 2020 2020 2020 2020 2020 2020 2,3) │ │ │ │ 00070910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070920: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00070930: 2e38 3032 3531 3773 2028 6370 7529 3b20 .802517s (cpu); │ │ │ │ -00070940: 302e 3538 3533 3538 7320 2874 6872 6561 0.585358s (threa │ │ │ │ -00070950: 6429 3b20 3073 2028 6763 297c 0a7c 3220 d); 0s (gc)|.|2 │ │ │ │ +00070920: 2020 207c 0a7c 202d 2d20 7573 6564 2031 |.| -- used 1 │ │ │ │ +00070930: 2e32 3830 3638 7320 2863 7075 293b 2030 .28068s (cpu); 0 │ │ │ │ +00070940: 2e38 3032 3438 3873 2028 7468 7265 6164 .802488s (thread │ │ │ │ +00070950: 293b 2030 7320 2867 6329 207c 0a7c 3220 ); 0s (gc) |.|2 │ │ │ │ 00070960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070990: 2020 207c 0a7c 5461 6c6c 797b 7b7b 312c |.|Tally{{{1, │ │ │ │ 000709a0: 2031 7d7d 203d 3e20 3220 2020 2020 2020 1}} => 2 │ │ │ │ 000709b0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000709c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 000709d0: 2020 2020 7b7b 322c 2032 7d2c 207b 312c {{2, 2}, {1, │ │ │ │ 000709e0: 2032 7d7d 203d 3e20 3420 2020 2020 2020 2}} => 4 │ │ │ │ 000709f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00070a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a30: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00070a40: 2d20 7573 6564 2030 2e34 3031 3330 3373 - used 0.401303s │ │ │ │ -00070a50: 2028 6370 7529 3b20 302e 3333 3530 3535 (cpu); 0.335055 │ │ │ │ +00070a40: 2d20 7573 6564 2030 2e36 3533 3230 3273 - used 0.653202s │ │ │ │ +00070a50: 2028 6370 7529 3b20 302e 3433 3839 3036 (cpu); 0.438906 │ │ │ │ 00070a60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 00070a70: 6763 297c 0a7c 3320 2020 2020 2020 2020 gc)|.|3 │ │ │ │ 00070a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070aa0: 2020 2020 2020 2020 2020 207c 0a7c 5461 |.|Ta │ │ │ │ 00070ab0: 6c6c 797b 7b7b 322c 2032 7d2c 207b 312c lly{{{2, 2}, {1, │ │ │ │ 00070ac0: 2032 7d7d 203d 3e20 327d 2020 2020 2020 2}} => 2} │ │ │ │ @@ -28848,16 +28848,16 @@ │ │ │ │ 00070af0: 2033 7d2c 207b 322c 2033 7d7d 203d 3e20 3}, {2, 3}} => │ │ │ │ 00070b00: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00070b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ 00070b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070b50: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00070b60: 2e32 3032 3232 3173 2028 6370 7529 3b20 .202221s (cpu); │ │ │ │ -00070b70: 302e 3133 3830 3435 7320 2874 6872 6561 0.138045s (threa │ │ │ │ +00070b60: 2e33 3031 3337 3473 2028 6370 7529 3b20 .301374s (cpu); │ │ │ │ +00070b70: 302e 3136 3035 3736 7320 2874 6872 6561 0.160576s (threa │ │ │ │ 00070b80: 6429 3b20 3073 2028 6763 297c 0a7c 3420 d); 0s (gc)|.|4 │ │ │ │ 00070b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070bc0: 2020 207c 0a7c 5461 6c6c 797b 7b7b 322c |.|Tally{{{2, │ │ │ │ 00070bd0: 2032 7d2c 207b 312c 2032 7d7d 203d 3e20 2}, {1, 2}} => │ │ │ │ 00070be0: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ ├── ./usr/share/info/ConnectionMatrices.info.gz │ │ │ ├── ConnectionMatrices.info │ │ │ │ @@ -2415,30 +2415,30 @@ │ │ │ │ 000096e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000096f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 00009700: 7c69 3920 3a20 656c 6170 7365 6454 696d |i9 : elapsedTim │ │ │ │ 00009710: 6520 4120 3d20 636f 6e6e 6563 7469 6f6e e A = connection │ │ │ │ 00009720: 4d61 7472 6963 6573 2049 3b20 2020 2020 Matrices I; │ │ │ │ 00009730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009750: 7c20 2d2d 2032 2e38 3130 3738 7320 656c | -- 2.81078s el │ │ │ │ +00009750: 7c20 2d2d 2032 2e36 3036 3239 7320 656c | -- 2.60629s el │ │ │ │ 00009760: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00009770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 000097a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000097b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000097e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ 000097f0: 7c69 3130 203a 2065 6c61 7073 6564 5469 |i10 : elapsedTi │ │ │ │ 00009800: 6d65 2061 7373 6572 7420 6973 496e 7465 me assert isInte │ │ │ │ 00009810: 6772 6162 6c65 2041 2020 2020 2020 2020 grable A │ │ │ │ 00009820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00009840: 7c20 2d2d 2035 2e39 3430 3133 7320 656c | -- 5.94013s el │ │ │ │ +00009840: 7c20 2d2d 2034 2e34 3734 3431 7320 656c | -- 4.47441s el │ │ │ │ 00009850: 6170 7365 6420 2020 2020 2020 2020 2020 apsed │ │ │ │ 00009860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00009880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ 00009890: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000098a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000098b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -4559,16 +4559,16 @@ │ │ │ │ 00011ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011d00: 2b0a 7c69 3134 203a 2065 6c61 7073 6564 +.|i14 : elapsed │ │ │ │ 00011d10: 5469 6d65 2067 203d 2067 6175 6765 4d61 Time g = gaugeMa │ │ │ │ 00011d20: 7472 6978 2849 2c20 4229 3b20 2020 2020 trix(I, B); │ │ │ │ 00011d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011d50: 7c0a 7c20 2d2d 202e 3733 3532 3373 2065 |.| -- .73523s e │ │ │ │ -00011d60: 6c61 7073 6564 2020 2020 2020 2020 2020 lapsed │ │ │ │ +00011d50: 7c0a 7c20 2d2d 202e 3533 3839 3437 7320 |.| -- .538947s │ │ │ │ +00011d60: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011da0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00011db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4589,30 +4589,30 @@ │ │ │ │ 00011ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011ee0: 2b0a 7c69 3135 203a 2065 6c61 7073 6564 +.|i15 : elapsed │ │ │ │ 00011ef0: 5469 6d65 2041 3120 3d20 6761 7567 6554 Time A1 = gaugeT │ │ │ │ 00011f00: 7261 6e73 666f 726d 2867 2c20 4129 3b20 ransform(g, A); │ │ │ │ 00011f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00011f30: 7c0a 7c20 2d2d 2031 2e35 3730 3432 7320 |.| -- 1.57042s │ │ │ │ +00011f30: 7c0a 7c20 2d2d 2031 2e32 3130 3736 7320 |.| -- 1.21076s │ │ │ │ 00011f40: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00011f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00011f80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00011f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00011fd0: 2b0a 7c69 3136 203a 2065 6c61 7073 6564 +.|i16 : elapsed │ │ │ │ 00011fe0: 5469 6d65 2061 7373 6572 7420 6973 496e Time assert isIn │ │ │ │ 00011ff0: 7465 6772 6162 6c65 2041 3120 2020 2020 tegrable A1 │ │ │ │ 00012000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012020: 7c0a 7c20 2d2d 202e 3830 3836 3135 7320 |.| -- .808615s │ │ │ │ +00012020: 7c0a 7c20 2d2d 202e 3935 3530 3837 7320 |.| -- .955087s │ │ │ │ 00012030: 656c 6170 7365 6420 2020 2020 2020 2020 elapsed │ │ │ │ 00012040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012070: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00012080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5030,31 +5030,31 @@ │ │ │ │ 00013a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013a70: 2d2d 2d2d 2d2b 0a7c 6931 3920 3a20 656c -----+.|i19 : el │ │ │ │ 00013a80: 6170 7365 6454 696d 6520 4132 203d 2067 apsedTime A2 = g │ │ │ │ 00013a90: 6175 6765 5472 616e 7366 6f72 6d28 6368 augeTransform(ch │ │ │ │ 00013aa0: 616e 6765 4570 732c 2041 3129 3b20 2020 angeEps, A1); │ │ │ │ 00013ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e34 3936 |.| -- .496 │ │ │ │ -00013ad0: 3137 3373 2065 6c61 7073 6564 2020 2020 173s elapsed │ │ │ │ +00013ac0: 2020 2020 207c 0a7c 202d 2d20 2e33 3838 |.| -- .388 │ │ │ │ +00013ad0: 3134 3673 2065 6c61 7073 6564 2020 2020 146s elapsed │ │ │ │ 00013ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013b10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013b60: 2d2d 2d2d 2d2b 0a7c 6932 3020 3a20 656c -----+.|i20 : el │ │ │ │ 00013b70: 6170 7365 6454 696d 6520 6173 7365 7274 apsedTime assert │ │ │ │ 00013b80: 2069 7349 6e74 6567 7261 626c 6520 4132 isIntegrable A2 │ │ │ │ 00013b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e38 3330 |.| -- .830 │ │ │ │ -00013bc0: 3437 3973 2065 6c61 7073 6564 2020 2020 479s elapsed │ │ │ │ +00013bb0: 2020 2020 207c 0a7c 202d 2d20 2e37 3132 |.| -- .712 │ │ │ │ +00013bc0: 3832 3873 2065 6c61 7073 6564 2020 2020 828s elapsed │ │ │ │ 00013bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00013c00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00013c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00013c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -5440,30 +5440,30 @@ │ │ │ │ 000153f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015410: 6937 203a 2065 6c61 7073 6564 5469 6d65 i7 : elapsedTime │ │ │ │ 00015420: 2041 203d 2063 6f6e 6e65 6374 696f 6e4d A = connectionM │ │ │ │ 00015430: 6174 7269 6365 7320 493b 2020 2020 2020 atrices I; │ │ │ │ 00015440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015450: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015460: 202d 2d20 2e32 3637 3232 3673 2065 6c61 -- .267226s ela │ │ │ │ +00015460: 202d 2d20 2e32 3139 3535 3373 2065 6c61 -- .219553s ela │ │ │ │ 00015470: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00015480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154a0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000154b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000154f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 00015500: 6938 203a 2065 6c61 7073 6564 5469 6d65 i8 : elapsedTime │ │ │ │ 00015510: 2061 7373 6572 7420 6973 496e 7465 6772 assert isIntegr │ │ │ │ 00015520: 6162 6c65 2041 2020 2020 2020 2020 2020 able A │ │ │ │ 00015530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00015550: 202d 2d20 2e32 3033 3838 3373 2065 6c61 -- .203883s ela │ │ │ │ +00015550: 202d 2d20 2e31 3831 3532 3873 2065 6c61 -- .181528s ela │ │ │ │ 00015560: 7073 6564 2020 2020 2020 2020 2020 2020 psed │ │ │ │ 00015570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015590: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ 000155a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000155c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ ├── ./usr/share/info/Cremona.info.gz │ │ │ ├── Cremona.info │ │ │ │ @@ -147,16 +147,16 @@ │ │ │ │ 00000920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00000930: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ 00000940: 696d 6520 7068 6920 3d20 746f 4d61 7020 ime phi = toMap │ │ │ │ 00000950: 6d69 6e6f 7273 2833 2c6d 6174 7269 787b minors(3,matrix{ │ │ │ │ 00000960: 7b74 5f30 2e2e 745f 347d 2c7b 745f 312e {t_0..t_4},{t_1. │ │ │ │ 00000970: 2e74 5f35 7d2c 7b74 5f32 2e2e 745f 367d .t_5},{t_2..t_6} │ │ │ │ 00000980: 7d29 2020 2020 207c 0a7c 202d 2d20 7573 }) |.| -- us │ │ │ │ -00000990: 6564 2030 2e30 3034 3330 3231 3573 2028 ed 0.00430215s ( │ │ │ │ -000009a0: 6370 7529 3b20 302e 3030 3432 3938 3432 cpu); 0.00429842 │ │ │ │ +00000990: 6564 2030 2e30 3036 3531 3337 3173 2028 ed 0.00651371s ( │ │ │ │ +000009a0: 6370 7529 3b20 302e 3030 3635 3132 3237 cpu); 0.00651227 │ │ │ │ 000009b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ 000009c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ 000009d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000009e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000009f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00000a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -322,16 +322,16 @@ │ │ │ │ 00001410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001420: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ 00001430: 696d 6520 4a20 3d20 6b65 726e 656c 2870 ime J = kernel(p │ │ │ │ 00001440: 6869 2c32 2920 2020 2020 2020 2020 2020 hi,2) │ │ │ │ 00001450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001470: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001480: 6564 2030 2e31 3337 3233 3173 2028 6370 ed 0.137231s (cp │ │ │ │ -00001490: 7529 3b20 302e 3036 3939 3637 3973 2028 u); 0.0699679s ( │ │ │ │ +00001480: 6564 2030 2e31 3837 3339 3573 2028 6370 ed 0.187395s (cp │ │ │ │ +00001490: 7529 3b20 302e 3039 3338 3835 3673 2028 u); 0.0938856s ( │ │ │ │ 000014a0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ 000014b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000014d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000014f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -387,18 +387,18 @@ │ │ │ │ 00001820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001830: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2074 -------+.|i4 : t │ │ │ │ 00001840: 696d 6520 6465 6772 6565 4d61 7020 7068 ime degreeMap ph │ │ │ │ 00001850: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ 00001860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001880: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001890: 6564 2030 2e30 3239 3434 7320 2863 7075 ed 0.02944s (cpu │ │ │ │ -000018a0: 293b 2030 2e30 3239 3434 3435 7320 2874 ); 0.0294445s (t │ │ │ │ -000018b0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -000018c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00001890: 6564 2030 2e30 3538 3635 3032 7320 2863 ed 0.0586502s (c │ │ │ │ +000018a0: 7075 293b 2030 2e30 3538 3634 3939 7320 pu); 0.0586499s │ │ │ │ +000018b0: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +000018c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000018d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000018e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000018f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001920: 2020 2020 2020 207c 0a7c 6f34 203d 2031 |.|o4 = 1 │ │ │ │ 00001930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -412,16 +412,16 @@ │ │ │ │ 000019b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000019c0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2074 -------+.|i5 : t │ │ │ │ 000019d0: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 000019e0: 6772 6565 7320 7068 6920 2020 2020 2020 grees phi │ │ │ │ 000019f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a10: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001a20: 6564 2030 2e36 3837 3536 7320 2863 7075 ed 0.68756s (cpu │ │ │ │ -00001a30: 293b 2030 2e34 3837 3538 3673 2028 7468 ); 0.487586s (th │ │ │ │ +00001a20: 6564 2030 2e37 3434 3331 3173 2028 6370 ed 0.744311s (cp │ │ │ │ +00001a30: 7529 3b20 302e 3535 3835 3373 2028 7468 u); 0.55853s (th │ │ │ │ 00001a40: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 00001a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -447,18 +447,18 @@ │ │ │ │ 00001be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001bf0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2074 -------+.|i6 : t │ │ │ │ 00001c00: 696d 6520 7072 6f6a 6563 7469 7665 4465 ime projectiveDe │ │ │ │ 00001c10: 6772 6565 7328 7068 692c 4e75 6d44 6567 grees(phi,NumDeg │ │ │ │ 00001c20: 7265 6573 3d3e 3029 2020 2020 2020 2020 rees=>0) │ │ │ │ 00001c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001c40: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001c50: 6564 2030 2e30 3632 3332 3037 7320 2863 ed 0.0623207s (c │ │ │ │ -00001c60: 7075 293b 2030 2e30 3632 3236 3533 7320 pu); 0.0622653s │ │ │ │ -00001c70: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -00001c80: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00001c50: 6564 2030 2e31 3033 3930 3373 2028 6370 ed 0.103903s (cp │ │ │ │ +00001c60: 7529 3b20 302e 3130 3337 3034 7320 2874 u); 0.103704s (t │ │ │ │ +00001c70: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00001c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001c90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ce0: 2020 2020 2020 207c 0a7c 6f36 203d 207b |.|o6 = { │ │ │ │ 00001cf0: 357d 2020 2020 2020 2020 2020 2020 2020 5} │ │ │ │ @@ -478,20 +478,20 @@ │ │ │ │ 00001dd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00001de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00001e20: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2074 -------+.|i7 : t │ │ │ │ 00001e30: 696d 6520 7068 6920 3d20 746f 4d61 7028 ime phi = toMap( │ │ │ │ -00001e40: 7068 692c 2020 2020 2020 2020 2020 2020 phi, │ │ │ │ +00001e40: 7068 6920 2020 2020 2020 2020 2020 2020 phi │ │ │ │ 00001e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001e70: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00001e80: 6564 2030 2e30 3032 3134 3836 7320 2863 ed 0.0021486s (c │ │ │ │ -00001e90: 7075 293b 2020 2020 2020 2020 2020 2020 pu); │ │ │ │ +00001e80: 6564 2030 2e30 3032 3934 3032 3773 2028 ed 0.00294027s ( │ │ │ │ +00001e90: 6370 7520 2020 2020 2020 2020 2020 2020 cpu │ │ │ │ 00001ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00001ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00001f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -548,130 +548,130 @@ │ │ │ │ 00002230: 2020 2020 2020 207c 0a7c 6f37 203a 2052 |.|o7 : R │ │ │ │ 00002240: 696e 674d 6170 202d 2d2d 2d2d 2d5b 7420 ingMap ------[t │ │ │ │ 00002250: 2e2e 7420 2020 2020 2020 2020 2020 2020 ..t │ │ │ │ 00002260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002280: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002290: 2020 2020 2020 2033 3030 3030 3720 2030 300007 0 │ │ │ │ -000022a0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000022a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000022e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000022f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002320: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 446f 6d69 6e61 -------|.|Domina │ │ │ │ -00002380: 6e74 3d3e 4a29 2020 2020 2020 2020 2020 nt=>J) │ │ │ │ +00002370: 2d2d 2d2d 2d2d 2d7c 0a7c 2c44 6f6d 696e -------|.|,Domin │ │ │ │ +00002380: 616e 743d 3e4a 2920 2020 2020 2020 2020 ant=>J) │ │ │ │ 00002390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000023b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000023c0: 2020 2020 2020 207c 0a7c 2030 2e30 3032 |.| 0.002 │ │ │ │ -000023d0: 3134 3933 3973 2028 7468 7265 6164 293b 14939s (thread); │ │ │ │ -000023e0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +000023c0: 2020 2020 2020 207c 0a7c 293b 2030 2e30 |.|); 0.0 │ │ │ │ +000023d0: 3032 3934 3733 3573 2028 7468 7265 6164 0294735s (thread │ │ │ │ +000023e0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 000023f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002490: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00002490: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 000024a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000024b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000024c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000024d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000024e0: 2020 2020 202d 2d2d 2d2d 2d5b 7820 2e2e ------[x .. │ │ │ │ -000024f0: 7820 5d20 2020 2020 2020 2020 2020 2020 x ] │ │ │ │ +000024e0: 2020 2020 2020 2d2d 2d2d 2d2d 5b78 202e ------[x . │ │ │ │ +000024f0: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ 00002500: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002530: 2020 2020 2033 3030 3030 3720 2030 2020 300007 0 │ │ │ │ -00002540: 2039 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ -00002550: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00002530: 2020 2020 2020 3330 3030 3037 2020 3020 300007 0 │ │ │ │ +00002540: 2020 3920 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +00002550: 2020 2020 2020 207c 0a7c 202d 2d2d 2d2d |.| ----- │ │ │ │ 00002560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000025a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2878 2078 2020 -------|.|(x x │ │ │ │ -000025b0: 2d20 7820 7820 202b 2078 2078 202c 2078 - x x + x x , x │ │ │ │ -000025c0: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ -000025d0: 202c 2078 2078 2020 2d20 7820 7820 202b , x x - x x + │ │ │ │ -000025e0: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000025f0: 7820 202b 2078 207c 0a7c 2020 3620 3720 x + x |.| 6 7 │ │ │ │ -00002600: 2020 2035 2038 2020 2020 3420 3920 2020 5 8 4 9 │ │ │ │ -00002610: 3320 3720 2020 2032 2038 2020 2020 3120 3 7 2 8 1 │ │ │ │ -00002620: 3920 2020 3320 3520 2020 2032 2036 2020 9 3 5 2 6 │ │ │ │ -00002630: 2020 3020 3920 2020 3320 3420 2020 2031 0 9 3 4 1 │ │ │ │ -00002640: 2036 2020 2020 307c 0a7c 2020 2020 2020 6 0|.| │ │ │ │ +000025a0: 2d2d 2d2d 2d2d 2d7c 0a7c 2028 7820 7820 -------|.| (x x │ │ │ │ +000025b0: 202d 2078 2078 2020 2b20 7820 7820 2c20 - x x + x x , │ │ │ │ +000025c0: 7820 7820 202d 2078 2078 2020 2b20 7820 x x - x x + x │ │ │ │ +000025d0: 7820 2c20 7820 7820 202d 2078 2078 2020 x , x x - x x │ │ │ │ +000025e0: 2b20 7820 7820 2c20 7820 7820 202d 2078 + x x , x x - x │ │ │ │ +000025f0: 2078 2020 2b20 787c 0a7c 2020 2036 2037 x + x|.| 6 7 │ │ │ │ +00002600: 2020 2020 3520 3820 2020 2034 2039 2020 5 8 4 9 │ │ │ │ +00002610: 2033 2037 2020 2020 3220 3820 2020 2031 3 7 2 8 1 │ │ │ │ +00002620: 2039 2020 2033 2035 2020 2020 3220 3620 9 3 5 2 6 │ │ │ │ +00002630: 2020 2030 2039 2020 2033 2034 2020 2020 0 9 3 4 │ │ │ │ +00002640: 3120 3620 2020 207c 0a7c 2020 2020 2020 1 6 |.| │ │ │ │ 00002650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000026a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000026b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000026c0: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +000026c0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ 000026d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000026e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000026f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002710: 2020 2020 2020 2020 2020 202d 2d2d 2d2d ----- │ │ │ │ -00002720: 2d5b 7820 2e2e 7820 5d20 2020 2020 2020 -[x ..x ] │ │ │ │ +00002710: 2020 2020 2020 2020 2020 2020 2d2d 2d2d ---- │ │ │ │ +00002720: 2d2d 5b78 202e 2e78 205d 2020 2020 2020 --[x ..x ] │ │ │ │ 00002730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002760: 2020 2020 2020 2020 2020 2033 3030 3030 30000 │ │ │ │ -00002770: 3720 2030 2020 2039 2020 2020 2020 2020 7 0 9 │ │ │ │ -00002780: 2020 2020 2020 207c 0a7c 5d20 3c2d 2d20 |.|] <-- │ │ │ │ -00002790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00002760: 2020 2020 2020 2020 2020 2020 3330 3030 3000 │ │ │ │ +00002770: 3037 2020 3020 2020 3920 2020 2020 2020 07 0 9 │ │ │ │ +00002780: 2020 2020 2020 207c 0a7c 205d 203c 2d2d |.| ] <-- │ │ │ │ +00002790: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d --------------- │ │ │ │ 000027a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000027b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000027c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000027d0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -000027e0: 2878 2078 2020 2d20 7820 7820 202b 2078 (x x - x x + x │ │ │ │ -000027f0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ -00002800: 202b 2078 2078 202c 2078 2078 2020 2d20 + x x , x x - │ │ │ │ -00002810: 7820 7820 202b 2078 2078 202c 2078 2078 x x + x x , x x │ │ │ │ -00002820: 2020 2d20 7820 787c 0a7c 2020 2020 2020 - x x|.| │ │ │ │ -00002830: 2020 3620 3720 2020 2035 2038 2020 2020 6 7 5 8 │ │ │ │ -00002840: 3420 3920 2020 3320 3720 2020 2032 2038 4 9 3 7 2 8 │ │ │ │ -00002850: 2020 2020 3120 3920 2020 3320 3520 2020 1 9 3 5 │ │ │ │ -00002860: 2032 2036 2020 2020 3020 3920 2020 3320 2 6 0 9 3 │ │ │ │ -00002870: 3420 2020 2031 207c 0a7c 2d2d 2d2d 2d2d 4 1 |.|------ │ │ │ │ +000027d0: 2d2d 2d2d 2d2d 2d7c 0a7c 3620 2020 2020 -------|.|6 │ │ │ │ +000027e0: 2028 7820 7820 202d 2078 2078 2020 2b20 (x x - x x + │ │ │ │ +000027f0: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ +00002800: 2020 2b20 7820 7820 2c20 7820 7820 202d + x x , x x - │ │ │ │ +00002810: 2078 2078 2020 2b20 7820 7820 2c20 7820 x x + x x , x │ │ │ │ +00002820: 7820 202d 2078 207c 0a7c 2020 2020 2020 x - x |.| │ │ │ │ +00002830: 2020 2036 2037 2020 2020 3520 3820 2020 6 7 5 8 │ │ │ │ +00002840: 2034 2039 2020 2033 2037 2020 2020 3220 4 9 3 7 2 │ │ │ │ +00002850: 3820 2020 2031 2039 2020 2033 2035 2020 8 1 9 3 5 │ │ │ │ +00002860: 2020 3220 3620 2020 2030 2039 2020 2033 2 6 0 9 3 │ │ │ │ +00002870: 2034 2020 2020 317c 0a7c 2d2d 2d2d 2d2d 4 1|.|------ │ │ │ │ 00002880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000028c0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ 000028d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000028e0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -000028f0: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ -00002900: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000028e0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +000028f0: 2020 2020 2020 2020 2032 2020 2020 3220 2 2 │ │ │ │ +00002900: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ 00002910: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002930: 2d2c 207b 2d20 7420 202b 2032 7420 7420 -, {- t + 2t t │ │ │ │ -00002940: 7420 202d 2074 2074 2020 2d20 7420 7420 t - t t - t t │ │ │ │ -00002950: 202b 2074 2074 2074 202c 202d 2074 2074 + t t t , - t t │ │ │ │ -00002960: 2020 2b20 2020 207c 0a7c 7820 2c20 7820 + |.|x , x │ │ │ │ -00002970: 7820 202d 2078 2078 2020 2b20 7820 7820 x - x x + x x │ │ │ │ -00002980: 2920 2020 2020 2032 2020 2020 2031 2032 ) 2 1 2 │ │ │ │ -00002990: 2033 2020 2020 3020 3320 2020 2031 2034 3 0 3 1 4 │ │ │ │ -000029a0: 2020 2020 3020 3220 3420 2020 2020 3220 0 2 4 2 │ │ │ │ -000029b0: 3320 2020 2020 207c 0a7c 2038 2020 2032 3 |.| 8 2 │ │ │ │ -000029c0: 2034 2020 2020 3120 3520 2020 2030 2037 4 1 5 0 7 │ │ │ │ -000029d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00002930: 2d2d 2c20 7b2d 2074 2020 2b20 3274 2074 --, {- t + 2t t │ │ │ │ +00002940: 2074 2020 2d20 7420 7420 202d 2074 2074 t - t t - t t │ │ │ │ +00002950: 2020 2b20 7420 7420 7420 2c20 2d20 7420 + t t t , - t │ │ │ │ +00002960: 7420 202b 2020 207c 0a7c 2078 202c 2078 t + |.| x , x │ │ │ │ +00002970: 2078 2020 2d20 7820 7820 202b 2078 2078 x - x x + x x │ │ │ │ +00002980: 2029 2020 2020 2020 3220 2020 2020 3120 ) 2 1 │ │ │ │ +00002990: 3220 3320 2020 2030 2033 2020 2020 3120 2 3 0 3 1 │ │ │ │ +000029a0: 3420 2020 2030 2032 2034 2020 2020 2032 4 0 2 4 2 │ │ │ │ +000029b0: 2033 2020 2020 207c 0a7c 3020 3820 2020 3 |.|0 8 │ │ │ │ +000029c0: 3220 3420 2020 2031 2035 2020 2020 3020 2 4 1 5 0 │ │ │ │ +000029d0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 000029e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000029f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -688,25 +688,25 @@ │ │ │ │ 00002af0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00002b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b40: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00002b60: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +00002b60: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ 00002b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002b90: 2020 2020 2020 207c 0a7c 2020 2b20 7820 |.| + x │ │ │ │ -00002ba0: 7820 2c20 7820 7820 202d 2078 2078 2020 x , x x - x x │ │ │ │ -00002bb0: 2b20 7820 7820 2920 2020 2020 2020 2020 + x x ) │ │ │ │ +00002b90: 2020 2020 2020 207c 0a7c 7820 202b 2078 |.|x + x │ │ │ │ +00002ba0: 2078 202c 2078 2078 2020 2d20 7820 7820 x , x x - x x │ │ │ │ +00002bb0: 202b 2078 2078 2029 2020 2020 2020 2020 + x x ) │ │ │ │ 00002bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00002be0: 2020 2020 2020 207c 0a7c 3620 2020 2030 |.|6 0 │ │ │ │ -00002bf0: 2038 2020 2032 2034 2020 2020 3120 3520 8 2 4 1 5 │ │ │ │ -00002c00: 2020 2030 2037 2020 2020 2020 2020 2020 0 7 │ │ │ │ +00002be0: 2020 2020 2020 207c 0a7c 2036 2020 2020 |.| 6 │ │ │ │ +00002bf0: 3020 3820 2020 3220 3420 2020 2031 2035 0 8 2 4 1 5 │ │ │ │ +00002c00: 2020 2020 3020 3720 2020 2020 2020 2020 0 7 │ │ │ │ 00002c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00002c30: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ 00002c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00002c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ @@ -832,16 +832,16 @@ │ │ │ │ 000033f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00003400: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2074 -------+.|i8 : t │ │ │ │ 00003410: 696d 6520 7073 6920 3d20 696e 7665 7273 ime psi = invers │ │ │ │ 00003420: 654d 6170 2070 6869 2020 2020 2020 2020 eMap phi │ │ │ │ 00003430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00003450: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00003460: 6564 2030 2e34 3734 3235 3273 2028 6370 ed 0.474252s (cp │ │ │ │ -00003470: 7529 3b20 302e 3339 3435 3334 7320 2874 u); 0.394534s (t │ │ │ │ +00003460: 6564 2030 2e34 3437 3733 3973 2028 6370 ed 0.447739s (cp │ │ │ │ +00003470: 7529 3b20 302e 3434 3737 3434 7320 2874 u); 0.447744s (t │ │ │ │ 00003480: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 00003490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000034b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000034e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1117,18 +1117,18 @@ │ │ │ │ 000045c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000045d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6939 203a 2074 -------+.|i9 : t │ │ │ │ 000045e0: 696d 6520 6973 496e 7665 7273 654d 6170 ime isInverseMap │ │ │ │ 000045f0: 2870 6869 2c70 7369 2920 2020 2020 2020 (phi,psi) │ │ │ │ 00004600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004620: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004630: 6564 2030 2e30 3039 3331 3630 3373 2028 ed 0.00931603s ( │ │ │ │ -00004640: 6370 7529 3b20 302e 3030 3933 3138 3535 cpu); 0.00931855 │ │ │ │ -00004650: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00004660: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00004630: 6564 2030 2e30 3131 3332 3634 7320 2863 ed 0.0113264s (c │ │ │ │ +00004640: 7075 293b 2030 2e30 3131 3333 3138 7320 pu); 0.0113318s │ │ │ │ +00004650: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ +00004660: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00004670: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000046c0: 2020 2020 2020 207c 0a7c 6f39 203d 2074 |.|o9 = t │ │ │ │ 000046d0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ @@ -1142,16 +1142,16 @@ │ │ │ │ 00004750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00004760: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 -------+.|i10 : │ │ │ │ 00004770: 7469 6d65 2064 6567 7265 654d 6170 2070 time degreeMap p │ │ │ │ 00004780: 7369 2020 2020 2020 2020 2020 2020 2020 si │ │ │ │ 00004790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000047b0: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -000047c0: 6564 2030 2e34 3538 3439 3373 2028 6370 ed 0.458493s (cp │ │ │ │ -000047d0: 7529 3b20 302e 3239 3432 3539 7320 2874 u); 0.294259s (t │ │ │ │ +000047c0: 6564 2030 2e35 3633 3539 3573 2028 6370 ed 0.563595s (cp │ │ │ │ +000047d0: 7529 3b20 302e 3239 3433 3038 7320 2874 u); 0.294308s (t │ │ │ │ 000047e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ 000047f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00004810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1167,16 +1167,16 @@ │ │ │ │ 000048e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000048f0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 -------+.|i11 : │ │ │ │ 00004900: 7469 6d65 2070 726f 6a65 6374 6976 6544 time projectiveD │ │ │ │ 00004910: 6567 7265 6573 2070 7369 2020 2020 2020 egrees psi │ │ │ │ 00004920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004940: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -00004950: 6564 2035 2e32 3930 3034 7320 2863 7075 ed 5.29004s (cpu │ │ │ │ -00004960: 293b 2034 2e36 3339 3638 7320 2874 6872 ); 4.63968s (thr │ │ │ │ +00004950: 6564 2036 2e34 3330 3134 7320 2863 7075 ed 6.43014s (cpu │ │ │ │ +00004960: 293b 2035 2e39 3732 3935 7320 2874 6872 ); 5.97295s (thr │ │ │ │ 00004970: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ 00004980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000049a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000049d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -1214,16 +1214,16 @@ │ │ │ │ 00004bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00004be0: 0a7c 6931 3220 3a20 7469 6d65 2070 6869 .|i12 : time phi │ │ │ │ 00004bf0: 203d 2072 6174 696f 6e61 6c4d 6170 206d = rationalMap m │ │ │ │ 00004c00: 696e 6f72 7328 332c 6d61 7472 6978 7b7b inors(3,matrix{{ │ │ │ │ 00004c10: 745f 302e 2e74 5f34 7d2c 7b74 5f31 2e2e t_0..t_4},{t_1.. │ │ │ │ 00004c20: 745f 357d 2c7b 745f 322e 2e74 5f36 207c t_5},{t_2..t_6 | │ │ │ │ 00004c30: 0a7c 202d 2d20 7573 6564 2030 2e30 3032 .| -- used 0.002 │ │ │ │ -00004c40: 3230 3233 3873 2028 6370 7529 3b20 302e 20238s (cpu); 0. │ │ │ │ -00004c50: 3030 3232 3033 3133 7320 2874 6872 6561 00220313s (threa │ │ │ │ +00004c40: 3530 3233 3873 2028 6370 7529 3b20 302e 50238s (cpu); 0. │ │ │ │ +00004c50: 3030 3235 3038 3433 7320 2874 6872 6561 00250843s (threa │ │ │ │ 00004c60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 00004c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00004c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00004c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00004cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -1493,17 +1493,17 @@ │ │ │ │ 00005d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00005d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 00005d60: 0a7c 6931 3320 3a20 7469 6d65 2070 6869 .|i13 : time phi │ │ │ │ 00005d70: 203d 2072 6174 696f 6e61 6c4d 6170 2870 = rationalMap(p │ │ │ │ 00005d80: 6869 2c44 6f6d 696e 616e 743d 3e32 2920 hi,Dominant=>2) │ │ │ │ 00005d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3537 .| -- used 0.157 │ │ │ │ -00005dc0: 3331 7320 2863 7075 293b 2030 2e30 3834 31s (cpu); 0.084 │ │ │ │ -00005dd0: 3938 3639 7320 2874 6872 6561 6429 3b20 9869s (thread); │ │ │ │ +00005db0: 0a7c 202d 2d20 7573 6564 2030 2e31 3938 .| -- used 0.198 │ │ │ │ +00005dc0: 3238 3273 2028 6370 7529 3b20 302e 3130 282s (cpu); 0.10 │ │ │ │ +00005dd0: 3031 3638 7320 2874 6872 6561 6429 3b20 0168s (thread); │ │ │ │ 00005de0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00005df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00005e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00005e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00005e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2153,17 +2153,17 @@ │ │ │ │ 00008680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00008690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 000086a0: 0a7c 6931 3420 3a20 7469 6d65 2070 6869 .|i14 : time phi │ │ │ │ 000086b0: 5e28 2d31 2920 2020 2020 2020 2020 2020 ^(-1) │ │ │ │ 000086c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000086e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000086f0: 0a7c 202d 2d20 7573 6564 2030 2e35 3132 .| -- used 0.512 │ │ │ │ -00008700: 3035 3973 2028 6370 7529 3b20 302e 3432 059s (cpu); 0.42 │ │ │ │ -00008710: 3638 3638 7320 2874 6872 6561 6429 3b20 6868s (thread); │ │ │ │ +000086f0: 0a7c 202d 2d20 7573 6564 2030 2e34 3933 .| -- used 0.493 │ │ │ │ +00008700: 3438 3973 2028 6370 7529 3b20 302e 3439 489s (cpu); 0.49 │ │ │ │ +00008710: 3331 3634 7320 2874 6872 6561 6429 3b20 3164s (thread); │ │ │ │ 00008720: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 00008730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 00008740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00008750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00008780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2708,17 +2708,17 @@ │ │ │ │ 0000a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000a950: 0a7c 6931 3520 3a20 7469 6d65 2064 6567 .|i15 : time deg │ │ │ │ 0000a960: 7265 6573 2070 6869 5e28 2d31 2920 2020 rees phi^(-1) │ │ │ │ 0000a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000a990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e33 3437 .| -- used 0.347 │ │ │ │ -0000a9b0: 3734 3973 2028 6370 7529 3b20 302e 3237 749s (cpu); 0.27 │ │ │ │ -0000a9c0: 3431 3431 7320 2874 6872 6561 6429 3b20 4141s (thread); │ │ │ │ +0000a9a0: 0a7c 202d 2d20 7573 6564 2030 2e34 3732 .| -- used 0.472 │ │ │ │ +0000a9b0: 3134 3473 2028 6370 7529 3b20 302e 3336 144s (cpu); 0.36 │ │ │ │ +0000a9c0: 3636 3038 7320 2874 6872 6561 6429 3b20 6608s (thread); │ │ │ │ 0000a9d0: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000a9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000a9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000aa30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2743,17 +2743,17 @@ │ │ │ │ 0000ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000ab80: 0a7c 6931 3620 3a20 7469 6d65 2064 6567 .|i16 : time deg │ │ │ │ 0000ab90: 7265 6573 2070 6869 2020 2020 2020 2020 rees phi │ │ │ │ 0000aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000abc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3138 .| -- used 0.018 │ │ │ │ -0000abe0: 3031 3133 7320 2863 7075 293b 2030 2e30 0113s (cpu); 0.0 │ │ │ │ -0000abf0: 3137 3639 3933 7320 2874 6872 6561 6429 176993s (thread) │ │ │ │ +0000abd0: 0a7c 202d 2d20 7573 6564 2030 2e30 3837 .| -- used 0.087 │ │ │ │ +0000abe0: 3532 3732 7320 2863 7075 293b 2030 2e30 5272s (cpu); 0.0 │ │ │ │ +0000abf0: 3235 3133 3436 7320 2874 6872 6561 6429 251346s (thread) │ │ │ │ 0000ac00: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000ac10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ac20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ac60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2778,17 +2778,17 @@ │ │ │ │ 0000ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000adb0: 0a7c 6931 3720 3a20 7469 6d65 2064 6573 .|i17 : time des │ │ │ │ 0000adc0: 6372 6962 6520 7068 6920 2020 2020 2020 cribe phi │ │ │ │ 0000add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000adf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3033 .| -- used 0.003 │ │ │ │ -0000ae10: 3230 3731 3873 2028 6370 7529 3b20 302e 20718s (cpu); 0. │ │ │ │ -0000ae20: 3030 3332 3037 3434 7320 2874 6872 6561 00320744s (threa │ │ │ │ +0000ae00: 0a7c 202d 2d20 7573 6564 2030 2e30 3034 .| -- used 0.004 │ │ │ │ +0000ae10: 3231 3037 3573 2028 6370 7529 3b20 302e 21075s (cpu); 0. │ │ │ │ +0000ae20: 3030 3432 3231 3139 7320 2874 6872 6561 00422119s (threa │ │ │ │ 0000ae30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000ae40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000ae50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000ae90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2843,18 +2843,18 @@ │ │ │ │ 0000b1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b1c0: 0a7c 6931 3820 3a20 7469 6d65 2064 6573 .|i18 : time des │ │ │ │ 0000b1d0: 6372 6962 6520 7068 695e 282d 3129 2020 cribe phi^(-1) │ │ │ │ 0000b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b220: 3937 3939 3773 2028 6370 7529 3b20 302e 97997s (cpu); 0. │ │ │ │ -0000b230: 3030 3939 3830 3773 2028 7468 7265 6164 0099807s (thread │ │ │ │ -0000b240: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +0000b210: 0a7c 202d 2d20 7573 6564 2030 2e30 3131 .| -- used 0.011 │ │ │ │ +0000b220: 3933 3673 2028 6370 7529 3b20 302e 3031 936s (cpu); 0.01 │ │ │ │ +0000b230: 3139 3437 3373 2028 7468 7265 6164 293b 19473s (thread); │ │ │ │ +0000b240: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ 0000b250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b2b0: 0a7c 6f31 3820 3d20 7261 7469 6f6e 616c .|o18 = rational │ │ │ │ @@ -2923,18 +2923,18 @@ │ │ │ │ 0000b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b6c0: 0a7c 6931 3920 3a20 7469 6d65 2028 662c .|i19 : time (f, │ │ │ │ 0000b6d0: 6729 203d 2067 7261 7068 2070 6869 5e2d g) = graph phi^- │ │ │ │ 0000b6e0: 313b 2066 3b20 2020 2020 2020 2020 2020 1; f; │ │ │ │ 0000b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3039 .| -- used 0.009 │ │ │ │ -0000b720: 3530 3537 3173 2028 6370 7529 3b20 302e 50571s (cpu); 0. │ │ │ │ -0000b730: 3030 3935 3036 3539 7320 2874 6872 6561 00950659s (threa │ │ │ │ -0000b740: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0000b710: 0a7c 202d 2d20 7573 6564 2030 2e30 3132 .| -- used 0.012 │ │ │ │ +0000b720: 3036 3536 7320 2863 7075 293b 2030 2e30 0656s (cpu); 0.0 │ │ │ │ +0000b730: 3132 3037 3834 7320 2874 6872 6561 6429 120784s (thread) │ │ │ │ +0000b740: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ 0000b750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b7b0: 0a7c 6f32 3020 3a20 4d75 6c74 6968 6f6d .|o20 : Multihom │ │ │ │ @@ -2958,17 +2958,17 @@ │ │ │ │ 0000b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000b8f0: 0a7c 6932 3120 3a20 7469 6d65 2064 6567 .|i21 : time deg │ │ │ │ 0000b900: 7265 6573 2066 2020 2020 2020 2020 2020 rees f │ │ │ │ 0000b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000b940: 0a7c 202d 2d20 7573 6564 2031 2e33 3333 .| -- used 1.333 │ │ │ │ -0000b950: 3237 7320 2863 7075 293b 2030 2e39 3535 27s (cpu); 0.955 │ │ │ │ -0000b960: 3132 7320 2874 6872 6561 6429 3b20 3073 12s (thread); 0s │ │ │ │ +0000b940: 0a7c 202d 2d20 7573 6564 2031 2e31 3938 .| -- used 1.198 │ │ │ │ +0000b950: 3131 7320 2863 7075 293b 2031 2e30 3239 11s (cpu); 1.029 │ │ │ │ +0000b960: 3036 7320 2874 6872 6561 6429 3b20 3073 06s (thread); 0s │ │ │ │ 0000b970: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ 0000b980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000b990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000b9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -2993,18 +2993,18 @@ │ │ │ │ 0000bb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0000bb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bb20: 0a7c 6932 3220 3a20 7469 6d65 2064 6567 .|i22 : time deg │ │ │ │ 0000bb30: 7265 6520 6620 2020 2020 2020 2020 2020 ree f │ │ │ │ 0000bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0000bb70: 0a7c 202d 2d20 7573 6564 2031 2e36 3235 .| -- used 1.625 │ │ │ │ -0000bb80: 652d 3035 7320 2863 7075 293b 2031 2e35 e-05s (cpu); 1.5 │ │ │ │ -0000bb90: 3933 652d 3035 7320 2874 6872 6561 6429 93e-05s (thread) │ │ │ │ -0000bba0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +0000bb70: 0a7c 202d 2d20 7573 6564 2031 2e37 3638 .| -- used 1.768 │ │ │ │ +0000bb80: 3465 2d30 3573 2028 6370 7529 3b20 312e 4e-05s (cpu); 1. │ │ │ │ +0000bb90: 3732 3036 652d 3035 7320 2874 6872 6561 7206e-05s (threa │ │ │ │ +0000bba0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bc10: 0a7c 6f32 3220 3d20 3120 2020 2020 2020 .|o22 = 1 │ │ │ │ @@ -3019,16 +3019,16 @@ │ │ │ │ 0000bca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ 0000bcb0: 0a7c 6932 3320 3a20 7469 6d65 2064 6573 .|i23 : time des │ │ │ │ 0000bcc0: 6372 6962 6520 6620 2020 2020 2020 2020 cribe f │ │ │ │ 0000bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd00: 0a7c 202d 2d20 7573 6564 2030 2e30 3031 .| -- used 0.001 │ │ │ │ -0000bd10: 3631 3436 3573 2028 6370 7529 3b20 302e 61465s (cpu); 0. │ │ │ │ -0000bd20: 3030 3136 3135 3535 7320 2874 6872 6561 00161555s (threa │ │ │ │ +0000bd10: 3732 3234 3673 2028 6370 7529 3b20 302e 72246s (cpu); 0. │ │ │ │ +0000bd20: 3030 3137 3237 3939 7320 2874 6872 6561 00172799s (threa │ │ │ │ 0000bd30: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ 0000bd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ 0000bd50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0000bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0000bd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ @@ -4676,16 +4676,16 @@ │ │ │ │ 00012430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00012440: 2b0a 7c69 3420 3a20 7469 6d65 2070 7369 +.|i4 : time psi │ │ │ │ 00012450: 203d 2061 6273 7472 6163 7452 6174 696f = abstractRatio │ │ │ │ 00012460: 6e61 6c4d 6170 2850 342c 5035 2c66 2920 nalMap(P4,P5,f) │ │ │ │ 00012470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012490: 7c0a 7c20 2d2d 2075 7365 6420 302e 3030 |.| -- used 0.00 │ │ │ │ -000124a0: 3034 3130 3031 3973 2028 6370 7529 3b20 0410019s (cpu); │ │ │ │ -000124b0: 302e 3030 3034 3036 3239 3273 2028 7468 0.000406292s (th │ │ │ │ +000124a0: 3034 3933 3339 3773 2028 6370 7529 3b20 0493397s (cpu); │ │ │ │ +000124b0: 302e 3030 3034 3835 3538 3573 2028 7468 0.000485585s (th │ │ │ │ 000124c0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000124d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000124e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000124f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4746,18 +4746,18 @@ │ │ │ │ 00012890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000128b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ 000128c0: 6935 203a 2074 696d 6520 7072 6f6a 6563 i5 : time projec │ │ │ │ 000128d0: 7469 7665 4465 6772 6565 7328 7073 692c tiveDegrees(psi, │ │ │ │ 000128e0: 3329 2020 2020 2020 2020 2020 2020 2020 3) │ │ │ │ 000128f0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00012900: 2d20 7573 6564 2030 2e32 3938 3835 3373 - used 0.298853s │ │ │ │ -00012910: 2028 6370 7529 3b20 302e 3138 3532 3773 (cpu); 0.18527s │ │ │ │ -00012920: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00012930: 6329 2020 2020 2020 207c 0a7c 2020 2020 c) |.| │ │ │ │ +00012900: 2d20 7573 6564 2030 2e34 3134 3130 3773 - used 0.414107s │ │ │ │ +00012910: 2028 6370 7529 3b20 302e 3234 3236 3331 (cpu); 0.242631 │ │ │ │ +00012920: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00012930: 6763 2920 2020 2020 207c 0a7c 2020 2020 gc) |.| │ │ │ │ 00012940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012970: 2020 2020 2020 207c 0a7c 6f35 203d 2032 |.|o5 = 2 │ │ │ │ 00012980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000129a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ @@ -4765,17 +4765,17 @@ │ │ │ │ 000129c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000129f0: 2d2d 2d2b 0a7c 6936 203a 2074 696d 6520 ---+.|i6 : time │ │ │ │ 00012a00: 7261 7469 6f6e 616c 4d61 7020 7073 6920 rationalMap psi │ │ │ │ 00012a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e35 |.| -- used 0.5 │ │ │ │ -00012a40: 3034 3032 3673 2028 6370 7529 3b20 302e 04026s (cpu); 0. │ │ │ │ -00012a50: 3336 3634 3939 7320 2874 6872 6561 6429 366499s (thread) │ │ │ │ +00012a30: 207c 0a7c 202d 2d20 7573 6564 2030 2e36 |.| -- used 0.6 │ │ │ │ +00012a40: 3034 3931 3573 2028 6370 7529 3b20 302e 04915s (cpu); 0. │ │ │ │ +00012a50: 3530 3438 3933 7320 2874 6872 6561 6429 504893s (thread) │ │ │ │ 00012a60: 3b20 3073 2028 6763 2920 2020 2020 207c ; 0s (gc) | │ │ │ │ 00012a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00012a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00012aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ 00012ab0: 6f36 203d 202d 2d20 7261 7469 6f6e 616c o6 = -- rational │ │ │ │ 00012ac0: 206d 6170 202d 2d20 2020 2020 2020 2020 map -- │ │ │ │ @@ -5189,17 +5189,17 @@ │ │ │ │ 00014440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014450: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3134 203a --------+.|i14 : │ │ │ │ 00014460: 2074 696d 6520 5420 3d20 6162 7374 7261 time T = abstra │ │ │ │ 00014470: 6374 5261 7469 6f6e 616c 4d61 7028 492c ctRationalMap(I, │ │ │ │ 00014480: 224f 4144 5022 2920 2020 2020 2020 2020 "OADP") │ │ │ │ 00014490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144a0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ -000144b0: 6420 302e 3134 3931 3835 7320 2863 7075 d 0.149185s (cpu │ │ │ │ -000144c0: 293b 2030 2e30 3736 3932 3939 7320 2874 ); 0.0769299s (t │ │ │ │ -000144d0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +000144b0: 6420 302e 3138 3236 3173 2028 6370 7529 d 0.18261s (cpu) │ │ │ │ +000144c0: 3b20 302e 3038 3732 3631 3873 2028 7468 ; 0.0872618s (th │ │ │ │ +000144d0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ 000144e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000144f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00014500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014540: 2020 7c0a 7c6f 3134 203d 202d 2d20 7261 |.|o14 = -- ra │ │ │ │ @@ -5261,48244 +5261,48218 @@ │ │ │ │ 000148c0: 7468 6520 6162 7374 7261 6374 206d 6170 the abstract map │ │ │ │ 000148d0: 2054 2063 616e 2062 6520 6f62 7461 696e T can be obtain │ │ │ │ 000148e0: 6564 2062 7920 7468 650a 666f 6c6c 6f77 ed by the.follow │ │ │ │ 000148f0: 696e 6720 636f 6d6d 616e 643a 0a0a 2b2d ing command:..+- │ │ │ │ 00014900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014930: 2d2d 2b0a 7c69 3135 203a 2074 696d 6520 --+.|i15 : time │ │ │ │ -00014940: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -00014950: 7328 542c 3229 2020 2020 2020 2020 2020 s(T,2) │ │ │ │ -00014960: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014970: 7365 6420 342e 3037 3736 3473 2028 6370 sed 4.07764s (cp │ │ │ │ -00014980: 7529 3b20 322e 3132 3032 3273 2028 7468 u); 2.12022s (th │ │ │ │ -00014990: 7265 6164 293b 2030 7320 2867 6329 7c0a read); 0s (gc)|. │ │ │ │ -000149a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00014930: 2d2b 0a7c 6931 3520 3a20 7469 6d65 2070 -+.|i15 : time p │ │ │ │ +00014940: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ +00014950: 2854 2c32 2920 2020 2020 2020 2020 2020 (T,2) │ │ │ │ +00014960: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +00014970: 6420 352e 3334 3333 7320 2863 7075 293b d 5.3433s (cpu); │ │ │ │ +00014980: 2032 2e34 3636 3839 7320 2874 6872 6561 2.46689s (threa │ │ │ │ +00014990: 6429 3b20 3073 2028 6763 297c 0a7c 2020 d); 0s (gc)|.| │ │ │ │ +000149a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000149d0: 2020 2020 7c0a 7c6f 3135 203d 2033 2020 |.|o15 = 3 │ │ │ │ +000149d0: 7c0a 7c6f 3135 203d 2033 2020 2020 2020 |.|o15 = 3 │ │ │ │ 000149e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000149f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014a00: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00014a00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00014a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014a40: 2b0a 0a57 6520 7665 7269 6679 2074 6861 +..We verify tha │ │ │ │ -00014a50: 7420 7468 6520 636f 6d70 6f73 6974 696f t the compositio │ │ │ │ -00014a60: 6e20 6f66 2054 2077 6974 6820 6974 7365 n of T with itse │ │ │ │ -00014a70: 6c66 2069 7320 6465 6669 6e65 6420 6279 lf is defined by │ │ │ │ -00014a80: 206c 696e 6561 7220 666f 726d 733a 0a0a linear forms:.. │ │ │ │ -00014a90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00014a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 ----------+..We │ │ │ │ +00014a40: 7665 7269 6679 2074 6861 7420 7468 6520 verify that the │ │ │ │ +00014a50: 636f 6d70 6f73 6974 696f 6e20 6f66 2054 composition of T │ │ │ │ +00014a60: 2077 6974 6820 6974 7365 6c66 2069 7320 with itself is │ │ │ │ +00014a70: 6465 6669 6e65 6420 6279 206c 696e 6561 defined by linea │ │ │ │ +00014a80: 7220 666f 726d 733a 0a0a 2b2d 2d2d 2d2d r forms:..+----- │ │ │ │ +00014a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -00014ad0: 3620 3a20 7469 6d65 2054 3220 3d20 5420 6 : time T2 = T │ │ │ │ -00014ae0: 2a20 5420 2020 2020 2020 2020 2020 2020 * T │ │ │ │ +00014ac0: 2d2d 2d2d 2d2b 0a7c 6931 3620 3a20 7469 -----+.|i16 : ti │ │ │ │ +00014ad0: 6d65 2054 3220 3d20 5420 2a20 5420 2020 me T2 = T * T │ │ │ │ +00014ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b00: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00014b10: 7365 6420 322e 3835 3634 652d 3035 7320 sed 2.8564e-05s │ │ │ │ -00014b20: 2863 7075 293b 2032 2e38 3237 3365 2d30 (cpu); 2.8273e-0 │ │ │ │ -00014b30: 3573 2028 7468 7265 6164 293b 2030 7320 5s (thread); 0s │ │ │ │ -00014b40: 2867 6329 207c 0a7c 2020 2020 2020 2020 (gc) |.| │ │ │ │ +00014b00: 2020 7c0a 7c20 2d2d 2075 7365 6420 322e |.| -- used 2. │ │ │ │ +00014b10: 3835 3436 652d 3035 7320 2863 7075 293b 8546e-05s (cpu); │ │ │ │ +00014b20: 2032 2e36 3731 652d 3035 7320 2874 6872 2.671e-05s (thr │ │ │ │ +00014b30: 6561 6429 3b20 3073 2028 6763 2920 207c ead); 0s (gc) | │ │ │ │ +00014b40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00014b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014b80: 2020 7c0a 7c6f 3136 203d 202d 2d20 7261 |.|o16 = -- ra │ │ │ │ -00014b90: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ +00014b70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00014b80: 3136 203d 202d 2d20 7261 7469 6f6e 616c 16 = -- rational │ │ │ │ +00014b90: 206d 6170 202d 2d20 2020 2020 2020 2020 map -- │ │ │ │ 00014ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00014bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00014bd0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +00014bb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00014bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014bd0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00014be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014bf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00014c00: 2020 2020 2073 6f75 7263 653a 2050 726f source: Pro │ │ │ │ -00014c10: 6a28 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 j(-----[x , x , │ │ │ │ -00014c20: 7820 2c20 7820 5d29 2020 2020 2020 2020 x , x ]) │ │ │ │ -00014c30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00014c40: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ -00014c50: 3535 3231 2020 3020 2020 3120 2020 3220 5521 0 1 2 │ │ │ │ -00014c60: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00014c70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00014c80: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +00014bf0: 2020 2020 2020 7c0a 7c20 2020 2020 2073 |.| s │ │ │ │ +00014c00: 6f75 7263 653a 2050 726f 6a28 2d2d 2d2d ource: Proj(---- │ │ │ │ +00014c10: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ +00014c20: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00014c30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014c40: 2020 2020 2020 2020 2036 3535 3231 2020 65521 │ │ │ │ +00014c50: 3020 2020 3120 2020 3220 2020 3320 2020 0 1 2 3 │ │ │ │ +00014c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014c70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00014c80: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 00014c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cb0: 2020 207c 0a7c 2020 2020 2020 7461 7267 |.| targ │ │ │ │ -00014cc0: 6574 3a20 5072 6f6a 282d 2d2d 2d2d 5b78 et: Proj(-----[x │ │ │ │ -00014cd0: 202c 2078 202c 2078 202c 2078 205d 2920 , x , x , x ]) │ │ │ │ -00014ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014cf0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00014d00: 2020 2020 2020 3635 3532 3120 2030 2020 65521 0 │ │ │ │ -00014d10: 2031 2020 2032 2020 2033 2020 2020 2020 1 2 3 │ │ │ │ -00014d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00014d30: 2020 2020 2020 6465 6669 6e69 6e67 2066 defining f │ │ │ │ -00014d40: 6f72 6d73 3a20 6769 7665 6e20 6279 2061 orms: given by a │ │ │ │ -00014d50: 2066 756e 6374 696f 6e20 2020 2020 2020 function │ │ │ │ -00014d60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00014ca0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00014cb0: 2020 2020 2020 7461 7267 6574 3a20 5072 target: Pr │ │ │ │ +00014cc0: 6f6a 282d 2d2d 2d2d 5b78 202c 2078 202c oj(-----[x , x , │ │ │ │ +00014cd0: 2078 202c 2078 205d 2920 2020 2020 2020 x , x ]) │ │ │ │ +00014ce0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00014cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014d00: 3635 3532 3120 2030 2020 2031 2020 2032 65521 0 1 2 │ │ │ │ +00014d10: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00014d20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00014d30: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ +00014d40: 6769 7665 6e20 6279 2061 2066 756e 6374 given by a funct │ │ │ │ +00014d50: 696f 6e20 2020 2020 2020 2020 2020 2020 ion │ │ │ │ +00014d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00014d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014da0: 2020 2020 2020 207c 0a7c 6f31 3620 3a20 |.|o16 : │ │ │ │ -00014db0: 4162 7374 7261 6374 5261 7469 6f6e 616c AbstractRational │ │ │ │ -00014dc0: 4d61 7020 2872 6174 696f 6e61 6c20 6d61 Map (rational ma │ │ │ │ -00014dd0: 7020 6672 6f6d 2050 505e 3320 746f 2050 p from PP^3 to P │ │ │ │ -00014de0: 505e 3329 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d P^3)|.+--------- │ │ │ │ +00014da0: 207c 0a7c 6f31 3620 3a20 4162 7374 7261 |.|o16 : Abstra │ │ │ │ +00014db0: 6374 5261 7469 6f6e 616c 4d61 7020 2872 ctRationalMap (r │ │ │ │ +00014dc0: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ +00014dd0: 2050 505e 3320 746f 2050 505e 3329 7c0a PP^3 to PP^3)|. │ │ │ │ +00014de0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00014df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014e20: 2d2b 0a7c 6931 3720 3a20 7469 6d65 2070 -+.|i17 : time p │ │ │ │ -00014e30: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -00014e40: 2854 322c 3229 2020 2020 2020 2020 2020 (T2,2) │ │ │ │ -00014e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00014e60: 7c20 2d2d 2075 7365 6420 362e 3635 3930 | -- used 6.6590 │ │ │ │ -00014e70: 3173 2028 6370 7529 3b20 332e 3435 3639 1s (cpu); 3.4569 │ │ │ │ -00014e80: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -00014e90: 2867 6329 2020 2020 2020 207c 0a7c 2020 (gc) |.| │ │ │ │ +00014e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00014e20: 3720 3a20 7469 6d65 2070 726f 6a65 6374 7 : time project │ │ │ │ +00014e30: 6976 6544 6567 7265 6573 2854 322c 3229 iveDegrees(T2,2) │ │ │ │ +00014e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00014e50: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +00014e60: 7365 6420 372e 3939 3032 3973 2028 6370 sed 7.99029s (cp │ │ │ │ +00014e70: 7529 3b20 332e 3932 3134 3473 2028 7468 u); 3.92144s (th │ │ │ │ +00014e80: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00014e90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00014ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014ed0: 2020 2020 2020 2020 7c0a 7c6f 3137 203d |.|o17 = │ │ │ │ -00014ee0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00014ed0: 2020 7c0a 7c6f 3137 203d 2031 2020 2020 |.|o17 = 1 │ │ │ │ +00014ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00014ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00014f10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00014f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00014f10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00014f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014f50: 2d2d 2b0a 0a57 6520 7665 7269 6679 2074 --+..We verify t │ │ │ │ -00014f60: 6861 7420 7468 6520 636f 6d70 6f73 6974 hat the composit │ │ │ │ -00014f70: 696f 6e20 6f66 2054 2077 6974 6820 6974 ion of T with it │ │ │ │ -00014f80: 7365 6c66 206c 6561 7665 7320 6120 7261 self leaves a ra │ │ │ │ -00014f90: 6e64 6f6d 2070 6f69 6e74 2066 6978 6564 ndom point fixed │ │ │ │ -00014fa0: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ +00014f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 ------------+..W │ │ │ │ +00014f50: 6520 7665 7269 6679 2074 6861 7420 7468 e verify that th │ │ │ │ +00014f60: 6520 636f 6d70 6f73 6974 696f 6e20 6f66 e composition of │ │ │ │ +00014f70: 2054 2077 6974 6820 6974 7365 6c66 206c T with itself l │ │ │ │ +00014f80: 6561 7665 7320 6120 7261 6e64 6f6d 2070 eaves a random p │ │ │ │ +00014f90: 6f69 6e74 2066 6978 6564 3a0a 0a2b 2d2d oint fixed:..+-- │ │ │ │ +00014fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00014fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00014fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00014fd0: 7c69 3138 203a 2070 203d 2061 7070 6c79 |i18 : p = apply │ │ │ │ -00014fe0: 2833 2c69 2d3e 7261 6e64 6f6d 285a 5a2f (3,i->random(ZZ/ │ │ │ │ -00014ff0: 3635 3532 3129 297c 7b31 7d7c 0a7c 2020 65521))|{1}|.| │ │ │ │ +00014fc0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3138 203a --------+.|i18 : │ │ │ │ +00014fd0: 2070 203d 2061 7070 6c79 2833 2c69 2d3e p = apply(3,i-> │ │ │ │ +00014fe0: 7261 6e64 6f6d 285a 5a2f 3635 3532 3129 random(ZZ/65521) │ │ │ │ +00014ff0: 297c 7b31 7d7c 0a7c 2020 2020 2020 2020 )|{1}|.| │ │ │ │ 00015000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015020: 2020 2020 2020 2020 7c0a 7c6f 3138 203d |.|o18 = │ │ │ │ -00015030: 207b 2d36 3634 382c 202d 3233 3339 362c {-6648, -23396, │ │ │ │ -00015040: 202d 3132 3331 312c 2031 7d20 2020 2020 -12311, 1} │ │ │ │ -00015050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015020: 2020 7c0a 7c6f 3138 203d 207b 2d36 3634 |.|o18 = {-664 │ │ │ │ +00015030: 382c 202d 3233 3339 362c 202d 3132 3331 8, -23396, -1231 │ │ │ │ +00015040: 312c 2031 7d20 2020 2020 2020 2020 207c 1, 1} | │ │ │ │ +00015050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00015060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015080: 2020 7c0a 7c6f 3138 203a 204c 6973 7420 |.|o18 : List │ │ │ │ +00015070: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00015080: 3138 203a 204c 6973 7420 2020 2020 2020 18 : List │ │ │ │ 00015090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000150a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000150b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000150a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000150b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000150c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000150d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000150e0: 3139 203a 2071 203d 2054 2070 2020 2020 19 : q = T p │ │ │ │ +000150d0: 2d2d 2d2d 2d2d 2b0a 7c69 3139 203a 2071 ------+.|i19 : q │ │ │ │ +000150e0: 203d 2054 2070 2020 2020 2020 2020 2020 = T p │ │ │ │ 000150f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015130: 2020 2020 2020 7c0a 7c6f 3139 203d 207b |.|o19 = { │ │ │ │ -00015140: 2d39 3633 342c 2032 3037 3034 2c20 2d32 -9634, 20704, -2 │ │ │ │ -00015150: 3530 3134 2c20 317d 2020 2020 2020 2020 5014, 1} │ │ │ │ -00015160: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015130: 7c0a 7c6f 3139 203d 207b 2d39 3633 342c |.|o19 = {-9634, │ │ │ │ +00015140: 2032 3037 3034 2c20 2d32 3530 3134 2c20 20704, -25014, │ │ │ │ +00015150: 317d 2020 2020 2020 2020 2020 207c 0a7c 1} |.| │ │ │ │ +00015160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015190: 7c0a 7c6f 3139 203a 204c 6973 7420 2020 |.|o19 : List │ │ │ │ +00015180: 2020 2020 2020 2020 2020 7c0a 7c6f 3139 |.|o19 │ │ │ │ +00015190: 203a 204c 6973 7420 2020 2020 2020 2020 : List │ │ │ │ 000151a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000151b0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000151b0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 000151c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000151d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000151e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3230 ----------+.|i20 │ │ │ │ -000151f0: 203a 2054 2071 2020 2020 2020 2020 2020 : T q │ │ │ │ +000151e0: 2d2d 2d2d 2b0a 7c69 3230 203a 2054 2071 ----+.|i20 : T q │ │ │ │ +000151f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015210: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015240: 2020 2020 7c0a 7c6f 3230 203d 207b 2d36 |.|o20 = {-6 │ │ │ │ -00015250: 3634 382c 202d 3233 3339 362c 202d 3132 648, -23396, -12 │ │ │ │ -00015260: 3331 312c 2031 7d20 2020 2020 2020 2020 311, 1} │ │ │ │ -00015270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015230: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00015240: 7c6f 3230 203d 207b 2d36 3634 382c 202d |o20 = {-6648, - │ │ │ │ +00015250: 3233 3339 362c 202d 3132 3331 312c 2031 23396, -12311, 1 │ │ │ │ +00015260: 7d20 2020 2020 2020 2020 207c 0a7c 2020 } |.| │ │ │ │ +00015270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000152a0: 7c6f 3230 203a 204c 6973 7420 2020 2020 |o20 : List │ │ │ │ +00015290: 2020 2020 2020 2020 7c0a 7c6f 3230 203a |.|o20 : │ │ │ │ +000152a0: 204c 6973 7420 2020 2020 2020 2020 2020 List │ │ │ │ 000152b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000152c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000152c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000152d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000152e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000152f0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6520 6e6f --------+..We no │ │ │ │ -00015300: 7720 636f 6d70 7574 6520 7468 6520 636f w compute the co │ │ │ │ -00015310: 6e63 7265 7465 2072 6174 696f 6e61 6c20 ncrete rational │ │ │ │ -00015320: 6d61 7020 636f 7272 6573 706f 6e64 696e map correspondin │ │ │ │ -00015330: 6720 746f 2054 3a0a 0a2b 2d2d 2d2d 2d2d g to T:..+------ │ │ │ │ +000152f0: 2d2d 2b0a 0a57 6520 6e6f 7720 636f 6d70 --+..We now comp │ │ │ │ +00015300: 7574 6520 7468 6520 636f 6e63 7265 7465 ute the concrete │ │ │ │ +00015310: 2072 6174 696f 6e61 6c20 6d61 7020 636f rational map co │ │ │ │ +00015320: 7272 6573 706f 6e64 696e 6720 746f 2054 rresponding to T │ │ │ │ +00015330: 3a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d :..+------------ │ │ │ │ 00015340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ -00015380: 3120 3a20 7469 6d65 2066 203d 2072 6174 1 : time f = rat │ │ │ │ -00015390: 696f 6e61 6c4d 6170 2054 2020 2020 2020 ionalMap T │ │ │ │ +00015370: 2d2d 2d2d 2d2b 0a7c 6932 3120 3a20 7469 -----+.|i21 : ti │ │ │ │ +00015380: 6d65 2066 203d 2072 6174 696f 6e61 6c4d me f = rationalM │ │ │ │ +00015390: 6170 2054 2020 2020 2020 2020 2020 2020 ap T │ │ │ │ 000153a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000153b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000153c0: 0a7c 202d 2d20 7573 6564 2035 2e33 3833 .| -- used 5.383 │ │ │ │ -000153d0: 3637 7320 2863 7075 293b 2032 2e39 3231 67s (cpu); 2.921 │ │ │ │ -000153e0: 3139 7320 2874 6872 6561 6429 3b20 3073 19s (thread); 0s │ │ │ │ -000153f0: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00015400: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000153b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +000153c0: 7573 6564 2036 2e32 3039 3533 7320 2863 used 6.20953s (c │ │ │ │ +000153d0: 7075 293b 2033 2e33 3130 3233 7320 2874 pu); 3.31023s (t │ │ │ │ +000153e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +000153f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015440: 2020 2020 2020 207c 0a7c 6f32 3120 3d20 |.|o21 = │ │ │ │ -00015450: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ -00015460: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00015440: 207c 0a7c 6f32 3120 3d20 2d2d 2072 6174 |.|o21 = -- rat │ │ │ │ +00015450: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +00015460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00015490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154a0: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00015480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00015490: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +000154a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000154b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000154c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000154d0: 0a7c 2020 2020 2020 736f 7572 6365 3a20 .| source: │ │ │ │ -000154e0: 5072 6f6a 282d 2d2d 2d2d 5b78 202c 2078 Proj(-----[x , x │ │ │ │ -000154f0: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ -00015500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015520: 2020 2020 2020 2020 2036 3535 3231 2020 65521 │ │ │ │ -00015530: 3020 2020 3120 2020 3220 2020 3320 2020 0 1 2 3 │ │ │ │ +000154c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000154d0: 2020 736f 7572 6365 3a20 5072 6f6a 282d source: Proj(- │ │ │ │ +000154e0: 2d2d 2d2d 5b78 202c 2078 202c 2078 202c ----[x , x , x , │ │ │ │ +000154f0: 2078 205d 2920 2020 2020 2020 2020 2020 x ]) │ │ │ │ +00015500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015520: 2020 2036 3535 3231 2020 3020 2020 3120 65521 0 1 │ │ │ │ +00015530: 2020 3220 2020 3320 2020 2020 2020 2020 2 3 │ │ │ │ 00015540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015550: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00015560: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ -00015570: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +00015550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015560: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +00015570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015590: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000155a0: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -000155b0: 282d 2d2d 2d2d 5b78 202c 2078 202c 2078 (-----[x , x , x │ │ │ │ -000155c0: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ -000155d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000155e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000155f0: 2020 2020 2036 3535 3231 2020 3020 2020 65521 0 │ │ │ │ -00015600: 3120 2020 3220 2020 3320 2020 2020 2020 1 2 3 │ │ │ │ -00015610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015620: 2020 207c 0a7c 2020 2020 2020 6465 6669 |.| defi │ │ │ │ -00015630: 6e69 6e67 2066 6f72 6d73 3a20 7b20 2020 ning forms: { │ │ │ │ +00015590: 2020 2020 207c 0a7c 2020 2020 2020 7461 |.| ta │ │ │ │ +000155a0: 7267 6574 3a20 5072 6f6a 282d 2d2d 2d2d rget: Proj(----- │ │ │ │ +000155b0: 5b78 202c 2078 202c 2078 202c 2078 205d [x , x , x , x ] │ │ │ │ +000155c0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +000155d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000155e0: 2020 2020 2020 2020 2020 2020 2020 2036 6 │ │ │ │ +000155f0: 3535 3231 2020 3020 2020 3120 2020 3220 5521 0 1 2 │ │ │ │ +00015600: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00015610: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015620: 2020 2020 2020 6465 6669 6e69 6e67 2066 defining f │ │ │ │ +00015630: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ 00015640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015660: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00015670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015680: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00015690: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000156a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000156b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000156c0: 2020 2020 202d 2078 2020 2d20 3332 3735 - x - 3275 │ │ │ │ -000156d0: 3978 2078 2078 2020 2b20 3332 3736 3078 9x x x + 32760x │ │ │ │ -000156e0: 2078 202c 2020 2020 2020 2020 2020 207c x , | │ │ │ │ -000156f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00015700: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00015710: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ -00015720: 2020 2020 3020 3320 2020 2020 2020 2020 0 3 │ │ │ │ -00015730: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015670: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00015680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015690: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000156a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000156b0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +000156c0: 2078 2020 2d20 3332 3735 3978 2078 2078 x - 32759x x x │ │ │ │ +000156d0: 2020 2b20 3332 3736 3078 2078 202c 2020 + 32760x x , │ │ │ │ +000156e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000156f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015700: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +00015710: 3020 3120 3220 2020 2020 2020 2020 3020 0 1 2 0 │ │ │ │ +00015720: 3320 2020 2020 2020 2020 2020 207c 0a7c 3 |.| │ │ │ │ +00015730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015790: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000157a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000157b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000157c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000157d0: 2020 2020 2033 3237 3630 7820 7820 202b 32760x x + │ │ │ │ -000157e0: 2078 2078 2020 2b20 3332 3736 3078 2078 x x + 32760x x │ │ │ │ -000157f0: 2078 202c 2020 2020 2020 2020 2020 207c x , | │ │ │ │ -00015800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00015810: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00015820: 2032 2020 2020 3020 3220 2020 2020 2020 2 0 2 │ │ │ │ -00015830: 2020 3020 3120 3320 2020 2020 2020 2020 0 1 3 │ │ │ │ -00015840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00015790: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000157a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000157b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000157c0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +000157d0: 3237 3630 7820 7820 202b 2078 2078 2020 2760x x + x x │ │ │ │ +000157e0: 2b20 3332 3736 3078 2078 2078 202c 2020 + 32760x x x , │ │ │ │ +000157f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015810: 2020 2020 2020 2020 2031 2032 2020 2020 1 2 │ │ │ │ +00015820: 3020 3220 2020 2020 2020 2020 3020 3120 0 2 0 1 │ │ │ │ +00015830: 3320 2020 2020 2020 2020 2020 207c 0a7c 3 |.| │ │ │ │ +00015840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000158b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000158c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000158d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000158e0: 2020 2020 202d 2033 3237 3630 7820 7820 - 32760x x │ │ │ │ -000158f0: 202d 2078 2078 2020 2d20 3332 3736 3078 - x x - 32760x │ │ │ │ -00015900: 2078 2078 202c 2020 2020 2020 2020 207c x x , | │ │ │ │ -00015910: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00015920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015930: 2031 2032 2020 2020 3120 3320 2020 2020 1 2 1 3 │ │ │ │ -00015940: 2020 2020 3020 3220 3320 2020 2020 2020 0 2 3 │ │ │ │ -00015950: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000158a0: 2020 2020 2032 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000158b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000158c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000158d0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +000158e0: 2033 3237 3630 7820 7820 202d 2078 2078 32760x x - x x │ │ │ │ +000158f0: 2020 2d20 3332 3736 3078 2078 2078 202c - 32760x x x , │ │ │ │ +00015900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015920: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +00015930: 2020 3120 3320 2020 2020 2020 2020 3020 1 3 0 │ │ │ │ +00015940: 3220 3320 2020 2020 2020 2020 207c 0a7c 2 3 |.| │ │ │ │ +00015950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000159a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159b0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000159c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000159d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000159e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000159f0: 2020 2020 2078 2020 2b20 3332 3735 3978 x + 32759x │ │ │ │ -00015a00: 2078 2078 2020 2d20 3332 3736 3078 2078 x x - 32760x x │ │ │ │ -00015a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00015a30: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00015a40: 2020 2020 3120 3220 3320 2020 2020 2020 1 2 3 │ │ │ │ -00015a50: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00015a60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00015a70: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +00015990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000159a0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +000159b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000159c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000159d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000159e0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000159f0: 2020 2b20 3332 3735 3978 2078 2078 2020 + 32759x x x │ │ │ │ +00015a00: 2d20 3332 3736 3078 2078 2020 2020 2020 - 32760x x │ │ │ │ +00015a10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a30: 2020 2020 3220 2020 2020 2020 2020 3120 2 1 │ │ │ │ +00015a40: 3220 3320 2020 2020 2020 2020 3020 3320 2 3 0 3 │ │ │ │ +00015a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015a70: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ 00015a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015aa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015aa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ae0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00015af0: 3120 3a20 5261 7469 6f6e 616c 4d61 7020 1 : RationalMap │ │ │ │ -00015b00: 2863 7562 6963 2072 6174 696f 6e61 6c20 (cubic rational │ │ │ │ -00015b10: 6d61 7020 6672 6f6d 2050 505e 3320 746f map from PP^3 to │ │ │ │ -00015b20: 2050 505e 3329 2020 2020 2020 2020 207c PP^3) | │ │ │ │ -00015b30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00015ae0: 2020 2020 207c 0a7c 6f32 3120 3a20 5261 |.|o21 : Ra │ │ │ │ +00015af0: 7469 6f6e 616c 4d61 7020 2863 7562 6963 tionalMap (cubic │ │ │ │ +00015b00: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +00015b10: 6f6d 2050 505e 3320 746f 2050 505e 3329 om PP^3 to PP^3) │ │ │ │ +00015b20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00015b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015b70: 2d2d 2d2b 0a7c 6932 3220 3a20 6465 7363 ---+.|i22 : desc │ │ │ │ -00015b80: 7269 6265 2066 2120 2020 2020 2020 2020 ribe f! │ │ │ │ +00015b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00015b70: 6932 3220 3a20 6465 7363 7269 6265 2066 i22 : describe f │ │ │ │ +00015b80: 2120 2020 2020 2020 2020 2020 2020 2020 ! │ │ │ │ 00015b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00015bb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00015bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015bf0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00015c00: 3220 3d20 7261 7469 6f6e 616c 206d 6170 2 = rational map │ │ │ │ -00015c10: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -00015c20: 7320 6f66 2064 6567 7265 6520 3320 2020 s of degree 3 │ │ │ │ -00015c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015c40: 0a7c 2020 2020 2020 736f 7572 6365 2076 .| source v │ │ │ │ -00015c50: 6172 6965 7479 3a20 5050 5e33 2020 2020 ariety: PP^3 │ │ │ │ +00015bf0: 2020 2020 207c 0a7c 6f32 3220 3d20 7261 |.|o22 = ra │ │ │ │ +00015c00: 7469 6f6e 616c 206d 6170 2064 6566 696e tional map defin │ │ │ │ +00015c10: 6564 2062 7920 666f 726d 7320 6f66 2064 ed by forms of d │ │ │ │ +00015c20: 6567 7265 6520 3320 2020 2020 2020 2020 egree 3 │ │ │ │ +00015c30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015c40: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ +00015c50: 3a20 5050 5e33 2020 2020 2020 2020 2020 : PP^3 │ │ │ │ 00015c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015c80: 2020 207c 0a7c 2020 2020 2020 7461 7267 |.| targ │ │ │ │ -00015c90: 6574 2076 6172 6965 7479 3a20 5050 5e33 et variety: PP^3 │ │ │ │ +00015c70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015c80: 2020 2020 2020 7461 7267 6574 2076 6172 target var │ │ │ │ +00015c90: 6965 7479 3a20 5050 5e33 2020 2020 2020 iety: PP^3 │ │ │ │ 00015ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015cc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00015cd0: 646f 6d69 6e61 6e63 653a 2074 7275 6520 dominance: true │ │ │ │ +00015cc0: 207c 0a7c 2020 2020 2020 646f 6d69 6e61 |.| domina │ │ │ │ +00015cd0: 6e63 653a 2074 7275 6520 2020 2020 2020 nce: true │ │ │ │ 00015ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00015cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00015d10: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ -00015d20: 793a 2074 7275 6520 2874 6865 2069 6e76 y: true (the inv │ │ │ │ -00015d30: 6572 7365 206d 6170 2069 7320 616c 7265 erse map is alre │ │ │ │ -00015d40: 6164 7920 6361 6c63 756c 6174 6564 297c ady calculated)| │ │ │ │ -00015d50: 0a7c 2020 2020 2020 7072 6f6a 6563 7469 .| projecti │ │ │ │ -00015d60: 7665 2064 6567 7265 6573 3a20 7b31 2c20 ve degrees: {1, │ │ │ │ -00015d70: 332c 2033 2c20 317d 2020 2020 2020 2020 3, 3, 1} │ │ │ │ -00015d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015d90: 2020 207c 0a7c 2020 2020 2020 6e75 6d62 |.| numb │ │ │ │ -00015da0: 6572 206f 6620 6d69 6e69 6d61 6c20 7265 er of minimal re │ │ │ │ -00015db0: 7072 6573 656e 7461 7469 7665 733a 2031 presentatives: 1 │ │ │ │ +00015d00: 2020 2020 207c 0a7c 2020 2020 2020 6269 |.| bi │ │ │ │ +00015d10: 7261 7469 6f6e 616c 6974 793a 2074 7275 rationality: tru │ │ │ │ +00015d20: 6520 2874 6865 2069 6e76 6572 7365 206d e (the inverse m │ │ │ │ +00015d30: 6170 2069 7320 616c 7265 6164 7920 6361 ap is already ca │ │ │ │ +00015d40: 6c63 756c 6174 6564 297c 0a7c 2020 2020 lculated)|.| │ │ │ │ +00015d50: 2020 7072 6f6a 6563 7469 7665 2064 6567 projective deg │ │ │ │ +00015d60: 7265 6573 3a20 7b31 2c20 332c 2033 2c20 rees: {1, 3, 3, │ │ │ │ +00015d70: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ +00015d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00015d90: 2020 2020 2020 6e75 6d62 6572 206f 6620 number of │ │ │ │ +00015da0: 6d69 6e69 6d61 6c20 7265 7072 6573 656e minimal represen │ │ │ │ +00015db0: 7461 7469 7665 733a 2031 2020 2020 2020 tatives: 1 │ │ │ │ 00015dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015dd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00015de0: 6469 6d65 6e73 696f 6e20 6261 7365 206c dimension base l │ │ │ │ -00015df0: 6f63 7573 3a20 3120 2020 2020 2020 2020 ocus: 1 │ │ │ │ +00015dd0: 207c 0a7c 2020 2020 2020 6469 6d65 6e73 |.| dimens │ │ │ │ +00015de0: 696f 6e20 6261 7365 206c 6f63 7573 3a20 ion base locus: │ │ │ │ +00015df0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00015e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00015e20: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ -00015e30: 6c6f 6375 733a 2036 2020 2020 2020 2020 locus: 6 │ │ │ │ +00015e10: 2020 2020 207c 0a7c 2020 2020 2020 6465 |.| de │ │ │ │ +00015e20: 6772 6565 2062 6173 6520 6c6f 6375 733a gree base locus: │ │ │ │ +00015e30: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 00015e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00015e60: 0a7c 2020 2020 2020 636f 6566 6669 6369 .| coeffici │ │ │ │ -00015e70: 656e 7420 7269 6e67 3a20 5a5a 2f36 3535 ent ring: ZZ/655 │ │ │ │ -00015e80: 3231 2020 2020 2020 2020 2020 2020 2020 21 │ │ │ │ -00015e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00015ea0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00015e50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00015e60: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00015e70: 6e67 3a20 5a5a 2f36 3535 3231 2020 2020 ng: ZZ/65521 │ │ │ │ +00015e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00015e90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00015ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00015ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00015ee0: 2d2d 2d2d 2d2d 2d2b 0a0a 4361 7665 6174 -------+..Caveat │ │ │ │ -00015ef0: 0a3d 3d3d 3d3d 3d0a 0a54 6869 7320 6973 .======..This is │ │ │ │ -00015f00: 2075 6e64 6572 2064 6576 656c 6f70 6d65 under developme │ │ │ │ -00015f10: 6e74 2079 6574 2e0a 0a57 6179 7320 746f nt yet...Ways to │ │ │ │ -00015f20: 2075 7365 2061 6273 7472 6163 7452 6174 use abstractRat │ │ │ │ -00015f30: 696f 6e61 6c4d 6170 3a0a 3d3d 3d3d 3d3d ionalMap:.====== │ │ │ │ +00015ee0: 2d2b 0a0a 4361 7665 6174 0a3d 3d3d 3d3d -+..Caveat.===== │ │ │ │ +00015ef0: 3d0a 0a54 6869 7320 6973 2075 6e64 6572 =..This is under │ │ │ │ +00015f00: 2064 6576 656c 6f70 6d65 6e74 2079 6574 development yet │ │ │ │ +00015f10: 2e0a 0a57 6179 7320 746f 2075 7365 2061 ...Ways to use a │ │ │ │ +00015f20: 6273 7472 6163 7452 6174 696f 6e61 6c4d bstractRationalM │ │ │ │ +00015f30: 6170 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ap:.============ │ │ │ │ 00015f40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00015f50: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00015f60: 2261 6273 7472 6163 7452 6174 696f 6e61 "abstractRationa │ │ │ │ -00015f70: 6c4d 6170 2850 6f6c 796e 6f6d 6961 6c52 lMap(PolynomialR │ │ │ │ -00015f80: 696e 672c 506f 6c79 6e6f 6d69 616c 5269 ing,PolynomialRi │ │ │ │ -00015f90: 6e67 2c46 756e 6374 696f 6e43 6c6f 7375 ng,FunctionClosu │ │ │ │ -00015fa0: 7265 2922 0a20 202a 2022 6162 7374 7261 re)". * "abstra │ │ │ │ -00015fb0: 6374 5261 7469 6f6e 616c 4d61 7028 506f ctRationalMap(Po │ │ │ │ -00015fc0: 6c79 6e6f 6d69 616c 5269 6e67 2c50 6f6c lynomialRing,Pol │ │ │ │ -00015fd0: 796e 6f6d 6961 6c52 696e 672c 4675 6e63 ynomialRing,Func │ │ │ │ -00015fe0: 7469 6f6e 436c 6f73 7572 652c 5a5a 2922 tionClosure,ZZ)" │ │ │ │ -00015ff0: 0a20 202a 2022 6162 7374 7261 6374 5261 . * "abstractRa │ │ │ │ -00016000: 7469 6f6e 616c 4d61 7028 5261 7469 6f6e tionalMap(Ration │ │ │ │ -00016010: 616c 4d61 7029 220a 0a46 6f72 2074 6865 alMap)"..For the │ │ │ │ -00016020: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00016030: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00016040: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00016050: 2061 6273 7472 6163 7452 6174 696f 6e61 abstractRationa │ │ │ │ -00016060: 6c4d 6170 3a20 6162 7374 7261 6374 5261 lMap: abstractRa │ │ │ │ -00016070: 7469 6f6e 616c 4d61 702c 2069 7320 6120 tionalMap, is a │ │ │ │ -00016080: 2a6e 6f74 6520 6d65 7468 6f64 0a66 756e *note method.fun │ │ │ │ -00016090: 6374 696f 6e3a 2028 4d61 6361 756c 6179 ction: (Macaulay │ │ │ │ -000160a0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -000160b0: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +00015f50: 3d3d 3d3d 0a0a 2020 2a20 2261 6273 7472 ====.. * "abstr │ │ │ │ +00015f60: 6163 7452 6174 696f 6e61 6c4d 6170 2850 actRationalMap(P │ │ │ │ +00015f70: 6f6c 796e 6f6d 6961 6c52 696e 672c 506f olynomialRing,Po │ │ │ │ +00015f80: 6c79 6e6f 6d69 616c 5269 6e67 2c46 756e lynomialRing,Fun │ │ │ │ +00015f90: 6374 696f 6e43 6c6f 7375 7265 2922 0a20 ctionClosure)". │ │ │ │ +00015fa0: 202a 2022 6162 7374 7261 6374 5261 7469 * "abstractRati │ │ │ │ +00015fb0: 6f6e 616c 4d61 7028 506f 6c79 6e6f 6d69 onalMap(Polynomi │ │ │ │ +00015fc0: 616c 5269 6e67 2c50 6f6c 796e 6f6d 6961 alRing,Polynomia │ │ │ │ +00015fd0: 6c52 696e 672c 4675 6e63 7469 6f6e 436c lRing,FunctionCl │ │ │ │ +00015fe0: 6f73 7572 652c 5a5a 2922 0a20 202a 2022 osure,ZZ)". * " │ │ │ │ +00015ff0: 6162 7374 7261 6374 5261 7469 6f6e 616c abstractRational │ │ │ │ +00016000: 4d61 7028 5261 7469 6f6e 616c 4d61 7029 Map(RationalMap) │ │ │ │ +00016010: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00016020: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00016030: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00016040: 6a65 6374 202a 6e6f 7465 2061 6273 7472 ject *note abstr │ │ │ │ +00016050: 6163 7452 6174 696f 6e61 6c4d 6170 3a20 actRationalMap: │ │ │ │ +00016060: 6162 7374 7261 6374 5261 7469 6f6e 616c abstractRational │ │ │ │ +00016070: 4d61 702c 2069 7320 6120 2a6e 6f74 6520 Map, is a *note │ │ │ │ +00016080: 6d65 7468 6f64 0a66 756e 6374 696f 6e3a method.function: │ │ │ │ +00016090: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000160a0: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +000160b0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 000160c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000160f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016100: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00016110: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00016120: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00016130: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00016140: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00016150: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00016160: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -00016170: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -00016180: 7469 6f6e 2e6d 323a 3131 3032 3a30 2e0a tion.m2:1102:0.. │ │ │ │ -00016190: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ -000161a0: 696e 666f 2c20 4e6f 6465 3a20 6170 7072 info, Node: appr │ │ │ │ -000161b0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ -000161c0: 702c 204e 6578 743a 2042 6c6f 7755 7053 p, Next: BlowUpS │ │ │ │ -000161d0: 7472 6174 6567 792c 2050 7265 763a 2061 trategy, Prev: a │ │ │ │ -000161e0: 6273 7472 6163 7452 6174 696f 6e61 6c4d bstractRationalM │ │ │ │ -000161f0: 6170 2c20 5570 3a20 546f 700a 0a61 7070 ap, Up: Top..app │ │ │ │ -00016200: 726f 7869 6d61 7465 496e 7665 7273 654d roximateInverseM │ │ │ │ -00016210: 6170 202d 2d20 7261 6e64 6f6d 206d 6170 ap -- random map │ │ │ │ -00016220: 2072 656c 6174 6564 2074 6f20 7468 6520 related to the │ │ │ │ -00016230: 696e 7665 7273 6520 6f66 2061 2062 6972 inverse of a bir │ │ │ │ -00016240: 6174 696f 6e61 6c20 6d61 700a 2a2a 2a2a ational map.**** │ │ │ │ +00016100: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00016110: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00016120: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00016130: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00016140: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00016150: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00016160: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +00016170: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +00016180: 323a 3131 3032 3a30 2e0a 1f0a 4669 6c65 2:1102:0....File │ │ │ │ +00016190: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ +000161a0: 4e6f 6465 3a20 6170 7072 6f78 696d 6174 Node: approximat │ │ │ │ +000161b0: 6549 6e76 6572 7365 4d61 702c 204e 6578 eInverseMap, Nex │ │ │ │ +000161c0: 743a 2042 6c6f 7755 7053 7472 6174 6567 t: BlowUpStrateg │ │ │ │ +000161d0: 792c 2050 7265 763a 2061 6273 7472 6163 y, Prev: abstrac │ │ │ │ +000161e0: 7452 6174 696f 6e61 6c4d 6170 2c20 5570 tRationalMap, Up │ │ │ │ +000161f0: 3a20 546f 700a 0a61 7070 726f 7869 6d61 : Top..approxima │ │ │ │ +00016200: 7465 496e 7665 7273 654d 6170 202d 2d20 teInverseMap -- │ │ │ │ +00016210: 7261 6e64 6f6d 206d 6170 2072 656c 6174 random map relat │ │ │ │ +00016220: 6564 2074 6f20 7468 6520 696e 7665 7273 ed to the invers │ │ │ │ +00016230: 6520 6f66 2061 2062 6972 6174 696f 6e61 e of a birationa │ │ │ │ +00016240: 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a l map.********** │ │ │ │ 00016250: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016260: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016270: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00016280: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00016290: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -000162a0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -000162b0: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ -000162c0: 7365 4d61 7020 7068 6920 0a20 2020 2020 seMap phi . │ │ │ │ -000162d0: 2020 2061 7070 726f 7869 6d61 7465 496e approximateIn │ │ │ │ -000162e0: 7665 7273 654d 6170 2870 6869 2c64 290a verseMap(phi,d). │ │ │ │ -000162f0: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00016300: 2020 2a20 7068 692c 2061 202a 6e6f 7465 * phi, a *note │ │ │ │ -00016310: 2072 6174 696f 6e61 6c20 6d61 703a 2052 rational map: R │ │ │ │ -00016320: 6174 696f 6e61 6c4d 6170 2c2c 2061 2062 ationalMap,, a b │ │ │ │ -00016330: 6972 6174 696f 6e61 6c20 6d61 700a 2020 irational map. │ │ │ │ -00016340: 2020 2020 2a20 642c 2061 6e20 2a6e 6f74 * d, an *not │ │ │ │ -00016350: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ -00016360: 756c 6179 3244 6f63 295a 5a2c 2c20 6f70 ulay2Doc)ZZ,, op │ │ │ │ -00016370: 7469 6f6e 616c 2c20 6275 7420 6974 2073 tional, but it s │ │ │ │ -00016380: 686f 756c 6420 6265 2074 6865 0a20 2020 hould be the. │ │ │ │ -00016390: 2020 2020 2064 6567 7265 6520 6f66 2074 degree of t │ │ │ │ -000163a0: 6865 2066 6f72 6d73 2064 6566 696e 696e he forms definin │ │ │ │ -000163b0: 6720 7468 6520 696e 7665 7273 6520 6f66 g the inverse of │ │ │ │ -000163c0: 2070 6869 0a20 202a 202a 6e6f 7465 204f phi. * *note O │ │ │ │ -000163d0: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ -000163e0: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ -000163f0: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ -00016400: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ -00016410: 7473 2c3a 0a20 2020 2020 202a 202a 6e6f ts,:. * *no │ │ │ │ -00016420: 7465 2043 6572 7469 6679 3a20 4365 7274 te Certify: Cert │ │ │ │ -00016430: 6966 792c 203d 3e20 2e2e 2e2c 2064 6566 ify, => ..., def │ │ │ │ -00016440: 6175 6c74 2076 616c 7565 2066 616c 7365 ault value false │ │ │ │ -00016450: 2c20 7768 6574 6865 7220 746f 2065 6e73 , whether to ens │ │ │ │ -00016460: 7572 650a 2020 2020 2020 2020 636f 7272 ure. corr │ │ │ │ -00016470: 6563 746e 6573 7320 6f66 206f 7574 7075 ectness of outpu │ │ │ │ -00016480: 740a 2020 2020 2020 2a20 2a6e 6f74 6520 t. * *note │ │ │ │ -00016490: 436f 6469 6d42 7349 6e76 3a20 436f 6469 CodimBsInv: Codi │ │ │ │ -000164a0: 6d42 7349 6e76 2c20 3d3e 202e 2e2e 2c20 mBsInv, => ..., │ │ │ │ -000164b0: 6465 6661 756c 7420 7661 6c75 6520 6e75 default value nu │ │ │ │ -000164c0: 6c6c 2c20 0a20 2020 2020 202a 202a 6e6f ll, . * *no │ │ │ │ -000164d0: 7465 2056 6572 626f 7365 3a20 696e 7665 te Verbose: inve │ │ │ │ -000164e0: 7273 654d 6170 5f6c 705f 7064 5f70 645f rseMap_lp_pd_pd_ │ │ │ │ -000164f0: 7064 5f63 6d56 6572 626f 7365 3d3e 5f70 pd_cmVerbose=>_p │ │ │ │ -00016500: 645f 7064 5f70 645f 7270 2c20 3d3e 202e d_pd_pd_rp, => . │ │ │ │ -00016510: 2e2e 2c0a 2020 2020 2020 2020 6465 6661 ..,. defa │ │ │ │ -00016520: 756c 7420 7661 6c75 6520 7472 7565 2c0a ult value true,. │ │ │ │ -00016530: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -00016540: 2020 202a 2061 202a 6e6f 7465 2072 6174 * a *note rat │ │ │ │ -00016550: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00016560: 6e61 6c4d 6170 2c2c 2061 2072 616e 646f nalMap,, a rando │ │ │ │ -00016570: 6d20 7261 7469 6f6e 616c 206d 6170 2077 m rational map w │ │ │ │ -00016580: 6869 6368 2069 6e20 736f 6d65 0a20 2020 hich in some. │ │ │ │ -00016590: 2020 2020 2073 656e 7365 2069 7320 7265 sense is re │ │ │ │ -000165a0: 6c61 7465 6420 746f 2074 6865 2069 6e76 lated to the inv │ │ │ │ -000165b0: 6572 7365 206f 6620 7068 6920 2865 2e67 erse of phi (e.g │ │ │ │ -000165c0: 2e2c 2074 6865 7920 7368 6f75 6c64 2068 ., they should h │ │ │ │ -000165d0: 6176 6520 7468 6520 7361 6d65 0a20 2020 ave the same. │ │ │ │ -000165e0: 2020 2020 2062 6173 6520 6c6f 6375 7329 base locus) │ │ │ │ -000165f0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00016600: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 2061 =========..The a │ │ │ │ -00016610: 6c67 6f72 6974 686d 2069 7320 746f 2074 lgorithm is to t │ │ │ │ -00016620: 7279 2074 6f20 636f 6e73 7472 7563 7420 ry to construct │ │ │ │ -00016630: 7468 6520 6964 6561 6c20 6f66 2074 6865 the ideal of the │ │ │ │ -00016640: 2062 6173 6520 6c6f 6375 7320 6f66 2074 base locus of t │ │ │ │ -00016650: 6865 2069 6e76 6572 7365 0a62 7920 6c6f he inverse.by lo │ │ │ │ -00016660: 6f6b 696e 6720 666f 7220 7468 6520 696d oking for the im │ │ │ │ -00016670: 6167 6573 2076 6961 2070 6869 206f 6620 ages via phi of │ │ │ │ -00016680: 7261 6e64 6f6d 206c 696e 6561 7220 7365 random linear se │ │ │ │ -00016690: 6374 696f 6e73 206f 6620 7468 6520 736f ctions of the so │ │ │ │ -000166a0: 7572 6365 0a76 6172 6965 7479 2e20 4765 urce.variety. Ge │ │ │ │ -000166b0: 6e65 7261 6c6c 792c 206f 6e65 2063 616e nerally, one can │ │ │ │ -000166c0: 2073 7065 6564 2075 7020 7468 6520 7072 speed up the pr │ │ │ │ -000166d0: 6f63 6573 7320 6279 2070 6173 7369 6e67 ocess by passing │ │ │ │ -000166e0: 2074 6872 6f75 6768 2074 6865 206f 7074 through the opt │ │ │ │ -000166f0: 696f 6e0a 2a6e 6f74 6520 436f 6469 6d42 ion.*note CodimB │ │ │ │ -00016700: 7349 6e76 3a20 436f 6469 6d42 7349 6e76 sInv: CodimBsInv │ │ │ │ -00016710: 2c20 6120 676f 6f64 206c 6f77 6572 2062 , a good lower b │ │ │ │ -00016720: 6f75 6e64 2066 6f72 2074 6865 2063 6f64 ound for the cod │ │ │ │ -00016730: 696d 656e 7369 6f6e 206f 6620 7468 6973 imension of this │ │ │ │ -00016740: 0a62 6173 6520 6c6f 6375 732e 0a0a 2b2d .base locus...+- │ │ │ │ +00016290: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +000162a0: 200a 2020 2020 2020 2020 6170 7072 6f78 . approx │ │ │ │ +000162b0: 696d 6174 6549 6e76 6572 7365 4d61 7020 imateInverseMap │ │ │ │ +000162c0: 7068 6920 0a20 2020 2020 2020 2061 7070 phi . app │ │ │ │ +000162d0: 726f 7869 6d61 7465 496e 7665 7273 654d roximateInverseM │ │ │ │ +000162e0: 6170 2870 6869 2c64 290a 2020 2a20 496e ap(phi,d). * In │ │ │ │ +000162f0: 7075 7473 3a0a 2020 2020 2020 2a20 7068 puts:. * ph │ │ │ │ +00016300: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ +00016310: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ +00016320: 6c4d 6170 2c2c 2061 2062 6972 6174 696f lMap,, a biratio │ │ │ │ +00016330: 6e61 6c20 6d61 700a 2020 2020 2020 2a20 nal map. * │ │ │ │ +00016340: 642c 2061 6e20 2a6e 6f74 6520 696e 7465 d, an *note inte │ │ │ │ +00016350: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ +00016360: 6f63 295a 5a2c 2c20 6f70 7469 6f6e 616c oc)ZZ,, optional │ │ │ │ +00016370: 2c20 6275 7420 6974 2073 686f 756c 6420 , but it should │ │ │ │ +00016380: 6265 2074 6865 0a20 2020 2020 2020 2064 be the. d │ │ │ │ +00016390: 6567 7265 6520 6f66 2074 6865 2066 6f72 egree of the for │ │ │ │ +000163a0: 6d73 2064 6566 696e 696e 6720 7468 6520 ms defining the │ │ │ │ +000163b0: 696e 7665 7273 6520 6f66 2070 6869 0a20 inverse of phi. │ │ │ │ +000163c0: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +000163d0: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +000163e0: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +000163f0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00016400: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00016410: 2020 2020 202a 202a 6e6f 7465 2043 6572 * *note Cer │ │ │ │ +00016420: 7469 6679 3a20 4365 7274 6966 792c 203d tify: Certify, = │ │ │ │ +00016430: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +00016440: 616c 7565 2066 616c 7365 2c20 7768 6574 alue false, whet │ │ │ │ +00016450: 6865 7220 746f 2065 6e73 7572 650a 2020 her to ensure. │ │ │ │ +00016460: 2020 2020 2020 636f 7272 6563 746e 6573 correctnes │ │ │ │ +00016470: 7320 6f66 206f 7574 7075 740a 2020 2020 s of output. │ │ │ │ +00016480: 2020 2a20 2a6e 6f74 6520 436f 6469 6d42 * *note CodimB │ │ │ │ +00016490: 7349 6e76 3a20 436f 6469 6d42 7349 6e76 sInv: CodimBsInv │ │ │ │ +000164a0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +000164b0: 7420 7661 6c75 6520 6e75 6c6c 2c20 0a20 t value null, . │ │ │ │ +000164c0: 2020 2020 202a 202a 6e6f 7465 2056 6572 * *note Ver │ │ │ │ +000164d0: 626f 7365 3a20 696e 7665 7273 654d 6170 bose: inverseMap │ │ │ │ +000164e0: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ +000164f0: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ +00016500: 645f 7270 2c20 3d3e 202e 2e2e 2c0a 2020 d_rp, => ...,. │ │ │ │ +00016510: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +00016520: 6c75 6520 7472 7565 2c0a 2020 2a20 4f75 lue true,. * Ou │ │ │ │ +00016530: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +00016540: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00016550: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00016560: 2c2c 2061 2072 616e 646f 6d20 7261 7469 ,, a random rati │ │ │ │ +00016570: 6f6e 616c 206d 6170 2077 6869 6368 2069 onal map which i │ │ │ │ +00016580: 6e20 736f 6d65 0a20 2020 2020 2020 2073 n some. s │ │ │ │ +00016590: 656e 7365 2069 7320 7265 6c61 7465 6420 ense is related │ │ │ │ +000165a0: 746f 2074 6865 2069 6e76 6572 7365 206f to the inverse o │ │ │ │ +000165b0: 6620 7068 6920 2865 2e67 2e2c 2074 6865 f phi (e.g., the │ │ │ │ +000165c0: 7920 7368 6f75 6c64 2068 6176 6520 7468 y should have th │ │ │ │ +000165d0: 6520 7361 6d65 0a20 2020 2020 2020 2062 e same. b │ │ │ │ +000165e0: 6173 6520 6c6f 6375 7329 0a0a 4465 7363 ase locus)..Desc │ │ │ │ +000165f0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00016600: 3d3d 3d0a 0a54 6865 2061 6c67 6f72 6974 ===..The algorit │ │ │ │ +00016610: 686d 2069 7320 746f 2074 7279 2074 6f20 hm is to try to │ │ │ │ +00016620: 636f 6e73 7472 7563 7420 7468 6520 6964 construct the id │ │ │ │ +00016630: 6561 6c20 6f66 2074 6865 2062 6173 6520 eal of the base │ │ │ │ +00016640: 6c6f 6375 7320 6f66 2074 6865 2069 6e76 locus of the inv │ │ │ │ +00016650: 6572 7365 0a62 7920 6c6f 6f6b 696e 6720 erse.by looking │ │ │ │ +00016660: 666f 7220 7468 6520 696d 6167 6573 2076 for the images v │ │ │ │ +00016670: 6961 2070 6869 206f 6620 7261 6e64 6f6d ia phi of random │ │ │ │ +00016680: 206c 696e 6561 7220 7365 6374 696f 6e73 linear sections │ │ │ │ +00016690: 206f 6620 7468 6520 736f 7572 6365 0a76 of the source.v │ │ │ │ +000166a0: 6172 6965 7479 2e20 4765 6e65 7261 6c6c ariety. Generall │ │ │ │ +000166b0: 792c 206f 6e65 2063 616e 2073 7065 6564 y, one can speed │ │ │ │ +000166c0: 2075 7020 7468 6520 7072 6f63 6573 7320 up the process │ │ │ │ +000166d0: 6279 2070 6173 7369 6e67 2074 6872 6f75 by passing throu │ │ │ │ +000166e0: 6768 2074 6865 206f 7074 696f 6e0a 2a6e gh the option.*n │ │ │ │ +000166f0: 6f74 6520 436f 6469 6d42 7349 6e76 3a20 ote CodimBsInv: │ │ │ │ +00016700: 436f 6469 6d42 7349 6e76 2c20 6120 676f CodimBsInv, a go │ │ │ │ +00016710: 6f64 206c 6f77 6572 2062 6f75 6e64 2066 od lower bound f │ │ │ │ +00016720: 6f72 2074 6865 2063 6f64 696d 656e 7369 or the codimensi │ │ │ │ +00016730: 6f6e 206f 6620 7468 6973 0a62 6173 6520 on of this.base │ │ │ │ +00016740: 6c6f 6375 732e 0a0a 2b2d 2d2d 2d2d 2d2d locus...+------- │ │ │ │ 00016750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000167a0: 3120 3a20 5038 203d 205a 5a2f 3937 5b74 1 : P8 = ZZ/97[t │ │ │ │ -000167b0: 5f30 2e2e 745f 385d 3b20 2020 2020 2020 _0..t_8]; │ │ │ │ +00016790: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5038 ------+.|i1 : P8 │ │ │ │ +000167a0: 203d 205a 5a2f 3937 5b74 5f30 2e2e 745f = ZZ/97[t_0..t_ │ │ │ │ +000167b0: 385d 3b20 2020 2020 2020 2020 2020 2020 8]; │ │ │ │ 000167c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000167d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000167e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000167e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000167f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00016820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00016830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00016840: 3220 3a20 7068 6920 3d20 696e 7665 7273 2 : phi = invers │ │ │ │ -00016850: 654d 6170 2072 6174 696f 6e61 6c4d 6170 eMap rationalMap │ │ │ │ -00016860: 2874 7269 6d28 6d69 6e6f 7273 2832 2c67 (trim(minors(2,g │ │ │ │ -00016870: 656e 6572 6963 4d61 7472 6978 2850 382c enericMatrix(P8, │ │ │ │ -00016880: 3320 2020 2020 2020 2020 2020 7c0a 7c20 3 |.| │ │ │ │ +00016830: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7068 ------+.|i2 : ph │ │ │ │ +00016840: 6920 3d20 696e 7665 7273 654d 6170 2072 i = inverseMap r │ │ │ │ +00016850: 6174 696f 6e61 6c4d 6170 2874 7269 6d28 ationalMap(trim( │ │ │ │ +00016860: 6d69 6e6f 7273 2832 2c67 656e 6572 6963 minors(2,generic │ │ │ │ +00016870: 4d61 7472 6978 2850 382c 3320 2020 2020 Matrix(P8,3 │ │ │ │ +00016880: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000168a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000168b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000168c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000168d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000168e0: 3220 3d20 2d2d 2072 6174 696f 6e61 6c20 2 = -- rational │ │ │ │ -000168f0: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +000168d0: 2020 2020 2020 7c0a 7c6f 3220 3d20 2d2d |.|o2 = -- │ │ │ │ +000168e0: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +000168f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016920: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016920: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016940: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ -00016950: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +00016940: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +00016950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016970: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016980: 2020 2020 736f 7572 6365 3a20 7375 6276 source: subv │ │ │ │ -00016990: 6172 6965 7479 206f 6620 5072 6f6a 282d ariety of Proj(- │ │ │ │ -000169a0: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ -000169b0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -000169c0: 2c20 2020 2020 2020 2020 2020 7c0a 7c20 , |.| │ │ │ │ +00016970: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +00016980: 7572 6365 3a20 7375 6276 6172 6965 7479 urce: subvariety │ │ │ │ +00016990: 206f 6620 5072 6f6a 282d 2d5b 7820 2c20 of Proj(--[x , │ │ │ │ +000169a0: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +000169b0: 7820 2c20 7820 2c20 7820 2c20 2020 2020 x , x , x , │ │ │ │ +000169c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000169d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000169e0: 2020 2020 2020 2020 2020 2020 2020 2039 9 │ │ │ │ -000169f0: 3720 2030 2020 2031 2020 2032 2020 2033 7 0 1 2 3 │ │ │ │ -00016a00: 2020 2034 2020 2035 2020 2036 2020 2037 4 5 6 7 │ │ │ │ -00016a10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016a20: 2020 2020 2020 2020 2020 2020 7b20 2020 { │ │ │ │ +000169e0: 2020 2020 2020 2020 2039 3720 2030 2020 97 0 │ │ │ │ +000169f0: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +00016a00: 2035 2020 2036 2020 2037 2020 2020 2020 5 6 7 │ │ │ │ +00016a10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016a20: 2020 2020 2020 7b20 2020 2020 2020 2020 { │ │ │ │ 00016a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016a60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016a70: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00016a80: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -00016a90: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00016a60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016a70: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ +00016a80: 2032 2020 2020 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ +00016a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ab0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016ac0: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ -00016ad0: 2020 2b20 3134 7820 7820 7820 202b 2032 + 14x x x + 2 │ │ │ │ -00016ae0: 3678 2078 2020 2d20 3278 2078 2078 2078 6x x - 2x x x x │ │ │ │ -00016af0: 2020 2d20 3134 7820 7820 7820 7820 202b - 14x x x x + │ │ │ │ -00016b00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016b10: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00016b20: 3220 2020 2020 2031 2032 2033 2020 2020 2 1 2 3 │ │ │ │ -00016b30: 2020 3120 3320 2020 2020 3020 3120 3220 1 3 0 1 2 │ │ │ │ -00016b40: 3420 2020 2020 2030 2031 2033 2034 2020 4 0 1 3 4 │ │ │ │ -00016b50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016b60: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +00016ab0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016ac0: 2020 2020 2020 2078 2078 2020 2b20 3134 x x + 14 │ │ │ │ +00016ad0: 7820 7820 7820 202b 2032 3678 2078 2020 x x x + 26x x │ │ │ │ +00016ae0: 2d20 3278 2078 2078 2078 2020 2d20 3134 - 2x x x x - 14 │ │ │ │ +00016af0: 7820 7820 7820 7820 202b 2020 2020 2020 x x x x + │ │ │ │ +00016b00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016b10: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +00016b20: 2031 2032 2033 2020 2020 2020 3120 3320 1 2 3 1 3 │ │ │ │ +00016b30: 2020 2020 3020 3120 3220 3420 2020 2020 0 1 2 4 │ │ │ │ +00016b40: 2030 2031 2033 2034 2020 2020 2020 2020 0 1 3 4 │ │ │ │ +00016b50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016b60: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ 00016b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bc0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00016ba0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016bb0: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +00016bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016bf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016c00: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -00016c10: 282d 2d5b 7420 2c20 7420 2c20 7420 2c20 (--[t , t , t , │ │ │ │ -00016c20: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -00016c30: 7420 2c20 7420 5d29 2020 2020 2020 2020 t , t ]) │ │ │ │ -00016c40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016c60: 2039 3720 2030 2020 2031 2020 2032 2020 97 0 1 2 │ │ │ │ -00016c70: 2033 2020 2034 2020 2035 2020 2036 2020 3 4 5 6 │ │ │ │ -00016c80: 2037 2020 2038 2020 2020 2020 2020 2020 7 8 │ │ │ │ -00016c90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016ca0: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -00016cb0: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +00016bf0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +00016c00: 7267 6574 3a20 5072 6f6a 282d 2d5b 7420 rget: Proj(--[t │ │ │ │ +00016c10: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +00016c20: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +00016c30: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00016c40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016c50: 2020 2020 2020 2020 2020 2039 3720 2030 97 0 │ │ │ │ +00016c60: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ +00016c70: 2020 2035 2020 2036 2020 2037 2020 2038 5 6 7 8 │ │ │ │ +00016c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00016c90: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +00016ca0: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00016cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ce0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d00: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -00016d10: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00016ce0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016cf0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00016d00: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +00016d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016d30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d50: 2020 2020 2020 3520 3720 2020 2034 2038 5 7 4 8 │ │ │ │ +00016d50: 3520 3720 2020 2034 2038 2020 2020 2020 5 7 4 8 │ │ │ │ 00016d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016d80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016d80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016dd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016df0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -00016e00: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00016dd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016de0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00016df0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +00016e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016e20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e40: 2020 2020 2020 3520 3620 2020 2031 2038 5 6 1 8 │ │ │ │ +00016e40: 3520 3620 2020 2031 2038 2020 2020 2020 5 6 1 8 │ │ │ │ 00016e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016e70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016e70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ec0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016ee0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -00016ef0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00016ec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016ed0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00016ee0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +00016ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016f10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f30: 2020 2020 2020 3420 3620 2020 2031 2037 4 6 1 7 │ │ │ │ +00016f30: 3420 3620 2020 2031 2037 2020 2020 2020 4 6 1 7 │ │ │ │ 00016f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016f60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00016f60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00016f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00016fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00016fd0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -00016fe0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00016fb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00016fc0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00016fd0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +00016fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00016ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017000: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017020: 2020 2020 2020 3320 3720 2020 2032 2038 3 7 2 8 │ │ │ │ +00017020: 3320 3720 2020 2032 2038 2020 2020 2020 3 7 2 8 │ │ │ │ 00017030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017050: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017050: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000170b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170c0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -000170d0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000170a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000170b0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000170c0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +000170d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000170e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000170f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000170f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017110: 2020 2020 2020 3320 3620 2020 2030 2038 3 6 0 8 │ │ │ │ +00017110: 3320 3620 2020 2030 2038 2020 2020 2020 3 6 0 8 │ │ │ │ 00017120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017190: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000171a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171b0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -000171c0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00017190: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000171a0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000171b0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +000171c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000171d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000171e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000171e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000171f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017200: 2020 2020 2020 3220 3620 2020 2030 2037 2 6 0 7 │ │ │ │ +00017200: 3220 3620 2020 2030 2037 2020 2020 2020 2 6 0 7 │ │ │ │ 00017210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017230: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017230: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172a0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -000172b0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00017280: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017290: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000172a0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +000172b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000172c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000172d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000172e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000172f0: 2020 2020 2020 3320 3420 2020 2032 2035 3 4 2 5 │ │ │ │ +000172f0: 3320 3420 2020 2032 2035 2020 2020 2020 3 4 2 5 │ │ │ │ 00017300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017320: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017370: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017390: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -000173a0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00017370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017380: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00017390: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +000173a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000173b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000173c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000173d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000173e0: 2020 2020 2020 3120 3320 2020 2030 2035 1 3 0 5 │ │ │ │ +000173e0: 3120 3320 2020 2030 2035 2020 2020 2020 1 3 0 5 │ │ │ │ 000173f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017410: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017480: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ +00017460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017470: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +00017480: 2078 2020 2d20 7820 7820 2020 2020 2020 x - x x │ │ │ │ 00017490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000174b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000174c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000174d0: 2020 2020 2020 3120 3220 2020 2030 2034 1 2 0 4 │ │ │ │ +000174d0: 3120 3220 2020 2030 2034 2020 2020 2020 1 2 0 4 │ │ │ │ 000174e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000174f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017520: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00017500: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017510: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00017520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017550: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000175a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000175b0: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ -000175c0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -000175d0: 6e61 6c20 6d61 7020 6672 6f6d 2068 7970 nal map from hyp │ │ │ │ -000175e0: 6572 7375 7266 6163 6520 696e 2050 505e ersurface in PP^ │ │ │ │ -000175f0: 3920 2020 2020 2020 2020 2020 7c0a 7c2d 9 |.|- │ │ │ │ +000175a0: 2020 2020 2020 7c0a 7c6f 3220 3a20 5261 |.|o2 : Ra │ │ │ │ +000175b0: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +000175c0: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +000175d0: 7020 6672 6f6d 2068 7970 6572 7375 7266 p from hypersurf │ │ │ │ +000175e0: 6163 6520 696e 2050 505e 3920 2020 2020 ace in PP^9 │ │ │ │ +000175f0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00017600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00017630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00017640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2c ------------|.|, │ │ │ │ -00017650: 3329 292b 7261 6e64 6f6d 2832 2c50 3829 3))+random(2,P8) │ │ │ │ -00017660: 292c 446f 6d69 6e61 6e74 3d3e 7472 7565 ),Dominant=>true │ │ │ │ -00017670: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00017640: 2d2d 2d2d 2d2d 7c0a 7c2c 3329 292b 7261 ------|.|,3))+ra │ │ │ │ +00017650: 6e64 6f6d 2832 2c50 3829 292c 446f 6d69 ndom(2,P8)),Domi │ │ │ │ +00017660: 6e61 6e74 3d3e 7472 7565 2920 2020 2020 nant=>true) │ │ │ │ +00017670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017690: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000176a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000176d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000176e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000176e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000176f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017730: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017790: 7820 2c20 7820 5d29 2064 6566 696e 6564 x , x ]) defined │ │ │ │ -000177a0: 2062 7920 2020 2020 2020 2020 2020 2020 by │ │ │ │ +00017780: 2020 2020 2020 7c0a 7c20 7820 2c20 7820 |.| x , x │ │ │ │ +00017790: 5d29 2064 6566 696e 6564 2062 7920 2020 ]) defined by │ │ │ │ +000177a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000177d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000177e0: 2038 2020 2039 2020 2020 2020 2020 2020 8 9 │ │ │ │ +000177d0: 2020 2020 2020 7c0a 7c20 2038 2020 2039 |.| 8 9 │ │ │ │ +000177e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000177f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017820: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00017880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017890: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ -000178a0: 2020 2020 2032 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ -000178b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000178c0: 2020 2020 3220 2020 2020 2020 7c0a 7c31 2 |.|1 │ │ │ │ -000178d0: 3178 2078 2078 2078 2020 2b20 3139 7820 1x x x x + 19x │ │ │ │ -000178e0: 7820 7820 202b 2078 2078 2020 2d20 3131 x x + x x - 11 │ │ │ │ -000178f0: 7820 7820 7820 202b 2033 3878 2078 2020 x x x + 38x x │ │ │ │ -00017900: 2d20 3134 7820 7820 7820 7820 202d 2031 - 14x x x x - 1 │ │ │ │ -00017910: 3178 2078 2078 2020 2b20 2020 7c0a 7c20 1x x x + |.| │ │ │ │ -00017920: 2020 3120 3220 3320 3420 2020 2020 2031 1 2 3 4 1 │ │ │ │ -00017930: 2033 2034 2020 2020 3020 3420 2020 2020 3 4 0 4 │ │ │ │ -00017940: 2030 2033 2034 2020 2020 2020 3320 3420 0 3 4 3 4 │ │ │ │ -00017950: 2020 2020 2030 2031 2032 2035 2020 2020 0 1 2 5 │ │ │ │ -00017960: 2020 3120 3220 3520 2020 2020 7c0a 7c20 1 2 5 |.| │ │ │ │ +00017870: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00017880: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00017890: 2020 3220 3220 2020 2020 2020 2020 2032 2 2 2 │ │ │ │ +000178a0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ +000178b0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000178c0: 2020 2020 2020 7c0a 7c31 3178 2078 2078 |.|11x x x │ │ │ │ +000178d0: 2078 2020 2b20 3139 7820 7820 7820 202b x + 19x x x + │ │ │ │ +000178e0: 2078 2078 2020 2d20 3131 7820 7820 7820 x x - 11x x x │ │ │ │ +000178f0: 202b 2033 3878 2078 2020 2d20 3134 7820 + 38x x - 14x │ │ │ │ +00017900: 7820 7820 7820 202d 2031 3178 2078 2078 x x x - 11x x x │ │ │ │ +00017910: 2020 2b20 2020 7c0a 7c20 2020 3120 3220 + |.| 1 2 │ │ │ │ +00017920: 3320 3420 2020 2020 2031 2033 2034 2020 3 4 1 3 4 │ │ │ │ +00017930: 2020 3020 3420 2020 2020 2030 2033 2034 0 4 0 3 4 │ │ │ │ +00017940: 2020 2020 2020 3320 3420 2020 2020 2030 3 4 0 │ │ │ │ +00017950: 2031 2032 2035 2020 2020 2020 3120 3220 1 2 5 1 2 │ │ │ │ +00017960: 3520 2020 2020 7c0a 7c20 2020 2020 2020 5 |.| │ │ │ │ 00017970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000179b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000179b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000179c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000179f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017a00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017a50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017a50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017aa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017aa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017af0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017af0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017b40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017b90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017be0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017be0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017c30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017c80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017c80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017cd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017cd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017d20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017d70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017d70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017dc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017dc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017e10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017e60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017e60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017eb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017f00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017f50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017f50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017fa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017fa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00017fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00017fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00017ff0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00017ff0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018040: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018090: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000180a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000180b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000180c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000180d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000180e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000180e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000180f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018130: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018130: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018180: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018180: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000181d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000181d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000181e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000181f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018220: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018270: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018270: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000182c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000182c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000182d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000182f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018310: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018310: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018360: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00018360: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00018370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000183b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000183c0: 746f 2050 505e 3829 2020 2020 2020 2020 to PP^8) │ │ │ │ +000183b0: 2020 2020 2020 7c0a 7c20 746f 2050 505e |.| to PP^ │ │ │ │ +000183c0: 3829 2020 2020 2020 2020 2020 2020 2020 8) │ │ │ │ 000183d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000183f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018400: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +00018400: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00018410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00018450: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00018460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018470: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00018470: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00018480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000184a0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -000184b0: 3578 2078 2078 2078 2020 2d20 3139 7820 5x x x x - 19x │ │ │ │ -000184c0: 7820 7820 7820 202b 2031 3478 2078 2078 x x x + 14x x x │ │ │ │ -000184d0: 2020 2b20 3131 7820 7820 7820 7820 202d + 11x x x x - │ │ │ │ -000184e0: 2031 3978 2078 2078 2078 2020 2b20 3231 19x x x x + 21 │ │ │ │ -000184f0: 7820 7820 7820 7820 202b 2020 7c0a 7c20 x x x x + |.| │ │ │ │ -00018500: 2020 3020 3120 3320 3520 2020 2020 2031 0 1 3 5 1 │ │ │ │ -00018510: 2032 2033 2035 2020 2020 2020 3020 3420 2 3 5 0 4 │ │ │ │ -00018520: 3520 2020 2020 2030 2032 2034 2035 2020 5 0 2 4 5 │ │ │ │ -00018530: 2020 2020 3020 3320 3420 3520 2020 2020 0 3 4 5 │ │ │ │ -00018540: 2032 2033 2034 2035 2020 2020 7c0a 7c2d 2 3 4 5 |.|- │ │ │ │ +000184a0: 2020 2020 2020 7c0a 7c34 3578 2078 2078 |.|45x x x │ │ │ │ +000184b0: 2078 2020 2d20 3139 7820 7820 7820 7820 x - 19x x x x │ │ │ │ +000184c0: 202b 2031 3478 2078 2078 2020 2b20 3131 + 14x x x + 11 │ │ │ │ +000184d0: 7820 7820 7820 7820 202d 2031 3978 2078 x x x x - 19x x │ │ │ │ +000184e0: 2078 2078 2020 2b20 3231 7820 7820 7820 x x + 21x x x │ │ │ │ +000184f0: 7820 202b 2020 7c0a 7c20 2020 3020 3120 x + |.| 0 1 │ │ │ │ +00018500: 3320 3520 2020 2020 2031 2032 2033 2035 3 5 1 2 3 5 │ │ │ │ +00018510: 2020 2020 2020 3020 3420 3520 2020 2020 0 4 5 │ │ │ │ +00018520: 2030 2032 2034 2035 2020 2020 2020 3020 0 2 4 5 0 │ │ │ │ +00018530: 3320 3420 3520 2020 2020 2032 2033 2034 3 4 5 2 3 4 │ │ │ │ +00018540: 2035 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 5 |.|------- │ │ │ │ 00018550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -000185a0: 2020 3220 3220 2020 2020 2020 2020 2032 2 2 2 │ │ │ │ -000185b0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ -000185c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000185d0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000185e0: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -000185f0: 3678 2078 2020 2b20 3139 7820 7820 7820 6x x + 19x x x │ │ │ │ -00018600: 202b 2033 3878 2078 2020 2d20 3330 7820 + 38x x - 30x │ │ │ │ -00018610: 7820 7820 202d 2031 3178 2078 2078 2078 x x - 11x x x x │ │ │ │ -00018620: 2020 2d20 3131 7820 7820 7820 202b 2033 - 11x x x + 3 │ │ │ │ -00018630: 3078 2078 2078 2078 2020 2b20 7c0a 7c20 0x x x x + |.| │ │ │ │ -00018640: 2020 3020 3520 2020 2020 2030 2032 2035 0 5 0 2 5 │ │ │ │ -00018650: 2020 2020 2020 3220 3520 2020 2020 2031 2 5 1 │ │ │ │ -00018660: 2032 2036 2020 2020 2020 3120 3220 3320 2 6 1 2 3 │ │ │ │ -00018670: 3620 2020 2020 2031 2033 2036 2020 2020 6 1 3 6 │ │ │ │ -00018680: 2020 3020 3220 3420 3620 2020 7c0a 7c2d 0 2 4 6 |.|- │ │ │ │ +00018590: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 3220 ------|.| 2 2 │ │ │ │ +000185a0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000185b0: 3220 3220 2020 2020 2020 2032 2020 2020 2 2 2 │ │ │ │ +000185c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000185d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000185e0: 2020 2020 2020 7c0a 7c32 3678 2078 2020 |.|26x x │ │ │ │ +000185f0: 2b20 3139 7820 7820 7820 202b 2033 3878 + 19x x x + 38x │ │ │ │ +00018600: 2078 2020 2d20 3330 7820 7820 7820 202d x - 30x x x - │ │ │ │ +00018610: 2031 3178 2078 2078 2078 2020 2d20 3131 11x x x x - 11 │ │ │ │ +00018620: 7820 7820 7820 202b 2033 3078 2078 2078 x x x + 30x x x │ │ │ │ +00018630: 2078 2020 2b20 7c0a 7c20 2020 3020 3520 x + |.| 0 5 │ │ │ │ +00018640: 2020 2020 2030 2032 2035 2020 2020 2020 0 2 5 │ │ │ │ +00018650: 3220 3520 2020 2020 2031 2032 2036 2020 2 5 1 2 6 │ │ │ │ +00018660: 2020 2020 3120 3220 3320 3620 2020 2020 1 2 3 6 │ │ │ │ +00018670: 2031 2033 2036 2020 2020 2020 3020 3220 1 3 6 0 2 │ │ │ │ +00018680: 3420 3620 2020 7c0a 7c2d 2d2d 2d2d 2d2d 4 6 |.|------- │ │ │ │ 00018690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000186c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000186d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +000186d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 000186e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000186f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000186f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00018700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018720: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -00018730: 3278 2078 2078 2078 2020 2b20 3131 7820 2x x x x + 11x │ │ │ │ -00018740: 7820 7820 7820 202d 2032 3278 2078 2078 x x x - 22x x x │ │ │ │ -00018750: 2020 2b20 3130 7820 7820 7820 7820 202b + 10x x x x + │ │ │ │ -00018760: 2031 3178 2078 2078 2078 2020 2d20 3432 11x x x x - 42 │ │ │ │ -00018770: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -00018780: 2020 3120 3220 3420 3620 2020 2020 2030 1 2 4 6 0 │ │ │ │ -00018790: 2033 2034 2036 2020 2020 2020 3020 3420 3 4 6 0 4 │ │ │ │ -000187a0: 3620 2020 2020 2031 2032 2035 2036 2020 6 1 2 5 6 │ │ │ │ -000187b0: 2020 2020 3020 3320 3520 3620 2020 2020 0 3 5 6 │ │ │ │ -000187c0: 2031 2033 2035 2036 2020 2020 7c0a 7c2d 1 3 5 6 |.|- │ │ │ │ +00018720: 2020 2020 2020 7c0a 7c32 3278 2078 2078 |.|22x x x │ │ │ │ +00018730: 2078 2020 2b20 3131 7820 7820 7820 7820 x + 11x x x x │ │ │ │ +00018740: 202d 2032 3278 2078 2078 2020 2b20 3130 - 22x x x + 10 │ │ │ │ +00018750: 7820 7820 7820 7820 202b 2031 3178 2078 x x x x + 11x x │ │ │ │ +00018760: 2078 2078 2020 2d20 3432 7820 7820 7820 x x - 42x x x │ │ │ │ +00018770: 7820 202d 2020 7c0a 7c20 2020 3120 3220 x - |.| 1 2 │ │ │ │ +00018780: 3420 3620 2020 2020 2030 2033 2034 2036 4 6 0 3 4 6 │ │ │ │ +00018790: 2020 2020 2020 3020 3420 3620 2020 2020 0 4 6 │ │ │ │ +000187a0: 2031 2032 2035 2036 2020 2020 2020 3020 1 2 5 6 0 │ │ │ │ +000187b0: 3320 3520 3620 2020 2020 2031 2033 2035 3 5 6 1 3 5 │ │ │ │ +000187c0: 2036 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 6 |.|------- │ │ │ │ 000187d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000187f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00018820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018830: 2032 2020 2020 2020 2020 3220 3220 2020 2 2 2 │ │ │ │ -00018840: 2020 2020 2020 2032 2020 2020 2032 2032 2 2 2 │ │ │ │ -00018850: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00018860: 2032 2032 2020 2020 2020 2020 7c0a 7c31 2 2 |.|1 │ │ │ │ -00018870: 3078 2078 2078 2078 2020 2b20 3432 7820 0x x x x + 42x │ │ │ │ -00018880: 7820 7820 202d 2033 3878 2078 2020 2d20 x x - 38x x - │ │ │ │ -00018890: 3337 7820 7820 7820 202b 2037 7820 7820 37x x x + 7x x │ │ │ │ -000188a0: 202b 2032 3878 2078 2078 2020 2d20 3338 + 28x x x - 38 │ │ │ │ -000188b0: 7820 7820 202d 2020 2020 2020 7c0a 7c20 x x - |.| │ │ │ │ -000188c0: 2020 3020 3420 3520 3620 2020 2020 2030 0 4 5 6 0 │ │ │ │ -000188d0: 2035 2036 2020 2020 2020 3220 3620 2020 5 6 2 6 │ │ │ │ -000188e0: 2020 2032 2033 2036 2020 2020 2033 2036 2 3 6 3 6 │ │ │ │ -000188f0: 2020 2020 2020 3220 3420 3620 2020 2020 2 4 6 │ │ │ │ -00018900: 2034 2036 2020 2020 2020 2020 7c0a 7c2d 4 6 |.|- │ │ │ │ +00018810: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +00018820: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00018830: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +00018840: 2032 2020 2020 2032 2032 2020 2020 2020 2 2 2 │ │ │ │ +00018850: 2020 2020 3220 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ +00018860: 2020 2020 2020 7c0a 7c31 3078 2078 2078 |.|10x x x │ │ │ │ +00018870: 2078 2020 2b20 3432 7820 7820 7820 202d x + 42x x x - │ │ │ │ +00018880: 2033 3878 2078 2020 2d20 3337 7820 7820 38x x - 37x x │ │ │ │ +00018890: 7820 202b 2037 7820 7820 202b 2032 3878 x + 7x x + 28x │ │ │ │ +000188a0: 2078 2078 2020 2d20 3338 7820 7820 202d x x - 38x x - │ │ │ │ +000188b0: 2020 2020 2020 7c0a 7c20 2020 3020 3420 |.| 0 4 │ │ │ │ +000188c0: 3520 3620 2020 2020 2030 2035 2036 2020 5 6 0 5 6 │ │ │ │ +000188d0: 2020 2020 3220 3620 2020 2020 2032 2033 2 6 2 3 │ │ │ │ +000188e0: 2036 2020 2020 2033 2036 2020 2020 2020 6 3 6 │ │ │ │ +000188f0: 3220 3420 3620 2020 2020 2034 2036 2020 2 4 6 4 6 │ │ │ │ +00018900: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00018910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00018960: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00018970: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00018980: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00018990: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000189a0: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -000189b0: 7820 7820 7820 202d 2032 3978 2078 2078 x x x - 29x x x │ │ │ │ -000189c0: 2020 2d20 3437 7820 7820 7820 202b 2033 - 47x x x + 3 │ │ │ │ -000189d0: 3678 2078 2020 2b20 3330 7820 7820 7820 6x x + 30x x x │ │ │ │ -000189e0: 7820 202d 2032 3278 2078 2078 2020 2d20 x - 22x x x - │ │ │ │ -000189f0: 3230 7820 7820 7820 7820 202d 7c0a 7c20 20x x x x -|.| │ │ │ │ -00018a00: 2032 2035 2036 2020 2020 2020 3320 3520 2 5 6 3 5 │ │ │ │ -00018a10: 3620 2020 2020 2034 2035 2036 2020 2020 6 4 5 6 │ │ │ │ -00018a20: 2020 3520 3620 2020 2020 2030 2031 2032 5 6 0 1 2 │ │ │ │ -00018a30: 2037 2020 2020 2020 3120 3220 3720 2020 7 1 2 7 │ │ │ │ -00018a40: 2020 2031 2032 2033 2037 2020 7c0a 7c2d 1 2 3 7 |.|- │ │ │ │ +00018950: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2032 ------|.| 2 │ │ │ │ +00018960: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00018970: 2020 2020 2032 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ +00018980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018990: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000189a0: 2020 2020 2020 7c0a 7c33 7820 7820 7820 |.|3x x x │ │ │ │ +000189b0: 202d 2032 3978 2078 2078 2020 2d20 3437 - 29x x x - 47 │ │ │ │ +000189c0: 7820 7820 7820 202b 2033 3678 2078 2020 x x x + 36x x │ │ │ │ +000189d0: 2b20 3330 7820 7820 7820 7820 202d 2032 + 30x x x x - 2 │ │ │ │ +000189e0: 3278 2078 2078 2020 2d20 3230 7820 7820 2x x x - 20x x │ │ │ │ +000189f0: 7820 7820 202d 7c0a 7c20 2032 2035 2036 x x -|.| 2 5 6 │ │ │ │ +00018a00: 2020 2020 2020 3320 3520 3620 2020 2020 3 5 6 │ │ │ │ +00018a10: 2034 2035 2036 2020 2020 2020 3520 3620 4 5 6 5 6 │ │ │ │ +00018a20: 2020 2020 2030 2031 2032 2037 2020 2020 0 1 2 7 │ │ │ │ +00018a30: 2020 3120 3220 3720 2020 2020 2031 2032 1 2 7 1 2 │ │ │ │ +00018a40: 2033 2037 2020 7c0a 7c2d 2d2d 2d2d 2d2d 3 7 |.|------- │ │ │ │ 00018a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00018aa0: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00018a90: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3220 ------|.| 2 │ │ │ │ +00018aa0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00018ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ad0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00018ae0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -00018af0: 3178 2078 2078 2020 2d20 3330 7820 7820 1x x x - 30x x │ │ │ │ -00018b00: 7820 202b 2032 3278 2078 2078 2078 2020 x + 22x x x x │ │ │ │ -00018b10: 2b20 3230 7820 7820 7820 7820 202d 2034 + 20x x x x - 4 │ │ │ │ -00018b20: 7820 7820 7820 202b 2032 3678 2078 2078 x x x + 26x x x │ │ │ │ -00018b30: 2078 2020 2b20 2020 2020 2020 7c0a 7c20 x + |.| │ │ │ │ -00018b40: 2020 3120 3320 3720 2020 2020 2030 2034 1 3 7 0 4 │ │ │ │ -00018b50: 2037 2020 2020 2020 3020 3120 3420 3720 7 0 1 4 7 │ │ │ │ -00018b60: 2020 2020 2030 2033 2034 2037 2020 2020 0 3 4 7 │ │ │ │ -00018b70: 2033 2034 2037 2020 2020 2020 3120 3220 3 4 7 1 2 │ │ │ │ -00018b80: 3520 3720 2020 2020 2020 2020 7c0a 7c2d 5 7 |.|- │ │ │ │ +00018ac0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00018ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00018ae0: 2020 2020 2020 7c0a 7c34 3178 2078 2078 |.|41x x x │ │ │ │ +00018af0: 2020 2d20 3330 7820 7820 7820 202b 2032 - 30x x x + 2 │ │ │ │ +00018b00: 3278 2078 2078 2078 2020 2b20 3230 7820 2x x x x + 20x │ │ │ │ +00018b10: 7820 7820 7820 202d 2034 7820 7820 7820 x x x - 4x x x │ │ │ │ +00018b20: 202b 2032 3678 2078 2078 2078 2020 2b20 + 26x x x x + │ │ │ │ +00018b30: 2020 2020 2020 7c0a 7c20 2020 3120 3320 |.| 1 3 │ │ │ │ +00018b40: 3720 2020 2020 2030 2034 2037 2020 2020 7 0 4 7 │ │ │ │ +00018b50: 2020 3020 3120 3420 3720 2020 2020 2030 0 1 4 7 0 │ │ │ │ +00018b60: 2033 2034 2037 2020 2020 2033 2034 2037 3 4 7 3 4 7 │ │ │ │ +00018b70: 2020 2020 2020 3120 3220 3520 3720 2020 1 2 5 7 │ │ │ │ +00018b80: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00018b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00018bd0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00018be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018c20: 2020 2020 3220 2020 2020 2020 7c0a 7c34 2 |.|4 │ │ │ │ -00018c30: 3178 2078 2078 2078 2020 2d20 3238 7820 1x x x x - 28x │ │ │ │ -00018c40: 7820 7820 7820 202b 2034 7820 7820 7820 x x x + 4x x x │ │ │ │ -00018c50: 7820 202d 2032 3678 2078 2078 2078 2020 x - 26x x x x │ │ │ │ -00018c60: 2b20 3132 7820 7820 7820 7820 202b 2032 + 12x x x x + 2 │ │ │ │ -00018c70: 3878 2078 2078 2020 2d20 2020 7c0a 7c20 8x x x - |.| │ │ │ │ -00018c80: 2020 3020 3320 3520 3720 2020 2020 2031 0 3 5 7 1 │ │ │ │ -00018c90: 2033 2035 2037 2020 2020 2032 2033 2035 3 5 7 2 3 5 │ │ │ │ -00018ca0: 2037 2020 2020 2020 3020 3420 3520 3720 7 0 4 5 7 │ │ │ │ -00018cb0: 2020 2020 2033 2034 2035 2037 2020 2020 3 4 5 7 │ │ │ │ -00018cc0: 2020 3020 3520 3720 2020 2020 7c0a 7c2d 0 5 7 |.|- │ │ │ │ +00018c10: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00018c20: 2020 2020 2020 7c0a 7c34 3178 2078 2078 |.|41x x x │ │ │ │ +00018c30: 2078 2020 2d20 3238 7820 7820 7820 7820 x - 28x x x x │ │ │ │ +00018c40: 202b 2034 7820 7820 7820 7820 202d 2032 + 4x x x x - 2 │ │ │ │ +00018c50: 3678 2078 2078 2078 2020 2b20 3132 7820 6x x x x + 12x │ │ │ │ +00018c60: 7820 7820 7820 202b 2032 3878 2078 2078 x x x + 28x x x │ │ │ │ +00018c70: 2020 2d20 2020 7c0a 7c20 2020 3020 3320 - |.| 0 3 │ │ │ │ +00018c80: 3520 3720 2020 2020 2031 2033 2035 2037 5 7 1 3 5 7 │ │ │ │ +00018c90: 2020 2020 2032 2033 2035 2037 2020 2020 2 3 5 7 │ │ │ │ +00018ca0: 2020 3020 3420 3520 3720 2020 2020 2033 0 4 5 7 3 │ │ │ │ +00018cb0: 2034 2035 2037 2020 2020 2020 3020 3520 4 5 7 0 5 │ │ │ │ +00018cc0: 3720 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 |.|------- │ │ │ │ 00018cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00018d20: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00018d10: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3220 ------|.| 2 │ │ │ │ +00018d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018d60: 2032 2020 2020 2020 2020 2020 7c0a 7c31 2 |.|1 │ │ │ │ -00018d70: 3278 2078 2078 2020 2d20 3231 7820 7820 2x x x - 21x x │ │ │ │ -00018d80: 7820 7820 202d 2032 3878 2078 2078 2078 x x - 28x x x x │ │ │ │ -00018d90: 2020 2b20 3337 7820 7820 7820 7820 202b + 37x x x x + │ │ │ │ -00018da0: 2032 3178 2078 2078 2078 2020 2d20 3131 21x x x x - 11 │ │ │ │ -00018db0: 7820 7820 7820 202d 2020 2020 7c0a 7c20 x x x - |.| │ │ │ │ -00018dc0: 2020 3220 3520 3720 2020 2020 2030 2032 2 5 7 0 2 │ │ │ │ -00018dd0: 2036 2037 2020 2020 2020 3120 3220 3620 6 7 1 2 6 │ │ │ │ -00018de0: 3720 2020 2020 2030 2033 2036 2037 2020 7 0 3 6 7 │ │ │ │ -00018df0: 2020 2020 3220 3320 3620 3720 2020 2020 2 3 6 7 │ │ │ │ -00018e00: 2033 2036 2037 2020 2020 2020 7c0a 7c2d 3 6 7 |.|- │ │ │ │ +00018d50: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00018d60: 2020 2020 2020 7c0a 7c31 3278 2078 2078 |.|12x x x │ │ │ │ +00018d70: 2020 2d20 3231 7820 7820 7820 7820 202d - 21x x x x - │ │ │ │ +00018d80: 2032 3878 2078 2078 2078 2020 2b20 3337 28x x x x + 37 │ │ │ │ +00018d90: 7820 7820 7820 7820 202b 2032 3178 2078 x x x x + 21x x │ │ │ │ +00018da0: 2078 2078 2020 2d20 3131 7820 7820 7820 x x - 11x x x │ │ │ │ +00018db0: 202d 2020 2020 7c0a 7c20 2020 3220 3520 - |.| 2 5 │ │ │ │ +00018dc0: 3720 2020 2020 2030 2032 2036 2037 2020 7 0 2 6 7 │ │ │ │ +00018dd0: 2020 2020 3120 3220 3620 3720 2020 2020 1 2 6 7 │ │ │ │ +00018de0: 2030 2033 2036 2037 2020 2020 2020 3220 0 3 6 7 2 │ │ │ │ +00018df0: 3320 3620 3720 2020 2020 2033 2036 2037 3 6 7 3 6 7 │ │ │ │ +00018e00: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00018e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00018e50: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00018e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00018e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00018ea0: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -00018eb0: 3878 2078 2078 2078 2020 2d20 3231 7820 8x x x x - 21x │ │ │ │ -00018ec0: 7820 7820 7820 202b 2033 7820 7820 7820 x x x + 3x x x │ │ │ │ -00018ed0: 7820 202b 2034 3778 2078 2078 2078 2020 x + 47x x x x │ │ │ │ -00018ee0: 2b20 3438 7820 7820 7820 7820 202b 2032 + 48x x x x + 2 │ │ │ │ -00018ef0: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -00018f00: 2020 3020 3420 3620 3720 2020 2020 2031 0 4 6 7 1 │ │ │ │ -00018f10: 2034 2036 2037 2020 2020 2030 2035 2036 4 6 7 0 5 6 │ │ │ │ -00018f20: 2037 2020 2020 2020 3120 3520 3620 3720 7 1 5 6 7 │ │ │ │ -00018f30: 2020 2020 2032 2035 2036 2037 2020 2020 2 5 6 7 │ │ │ │ -00018f40: 2033 2035 2036 2037 2020 2020 7c0a 7c2d 3 5 6 7 |.|- │ │ │ │ +00018ea0: 2020 2020 2020 7c0a 7c32 3878 2078 2078 |.|28x x x │ │ │ │ +00018eb0: 2078 2020 2d20 3231 7820 7820 7820 7820 x - 21x x x x │ │ │ │ +00018ec0: 202b 2033 7820 7820 7820 7820 202b 2034 + 3x x x x + 4 │ │ │ │ +00018ed0: 3778 2078 2078 2078 2020 2b20 3438 7820 7x x x x + 48x │ │ │ │ +00018ee0: 7820 7820 7820 202b 2032 7820 7820 7820 x x x + 2x x x │ │ │ │ +00018ef0: 7820 202d 2020 7c0a 7c20 2020 3020 3420 x - |.| 0 4 │ │ │ │ +00018f00: 3620 3720 2020 2020 2031 2034 2036 2037 6 7 1 4 6 7 │ │ │ │ +00018f10: 2020 2020 2030 2035 2036 2037 2020 2020 0 5 6 7 │ │ │ │ +00018f20: 2020 3120 3520 3620 3720 2020 2020 2032 1 5 6 7 2 │ │ │ │ +00018f30: 2035 2036 2037 2020 2020 2033 2035 2036 5 6 7 3 5 6 │ │ │ │ +00018f40: 2037 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 |.|------- │ │ │ │ 00018f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00018f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00018f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00018fa0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00018fb0: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ -00018fc0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -00018fd0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00018fe0: 2020 3220 3220 2020 2020 2020 7c0a 7c34 2 2 |.|4 │ │ │ │ -00018ff0: 3578 2078 2078 2078 2020 2d20 3333 7820 5x x x x - 33x │ │ │ │ -00019000: 7820 7820 202d 2033 3878 2078 2020 2b20 x x - 38x x + │ │ │ │ -00019010: 3238 7820 7820 7820 202d 2033 3878 2078 28x x x - 38x x │ │ │ │ -00019020: 2020 2d20 3231 7820 7820 7820 202b 2034 - 21x x x + 4 │ │ │ │ -00019030: 3878 2078 2020 2d20 2020 2020 7c0a 7c20 8x x - |.| │ │ │ │ -00019040: 2020 3420 3520 3620 3720 2020 2020 2035 4 5 6 7 5 │ │ │ │ -00019050: 2036 2037 2020 2020 2020 3020 3720 2020 6 7 0 7 │ │ │ │ -00019060: 2020 2030 2031 2037 2020 2020 2020 3120 0 1 7 1 │ │ │ │ -00019070: 3720 2020 2020 2030 2033 2037 2020 2020 7 0 3 7 │ │ │ │ -00019080: 2020 3320 3720 2020 2020 2020 7c0a 7c2d 3 7 |.|- │ │ │ │ +00018f90: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +00018fa0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00018fb0: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +00018fc0: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ +00018fd0: 2020 2020 2032 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ +00018fe0: 2020 2020 2020 7c0a 7c34 3578 2078 2078 |.|45x x x │ │ │ │ +00018ff0: 2078 2020 2d20 3333 7820 7820 7820 202d x - 33x x x - │ │ │ │ +00019000: 2033 3878 2078 2020 2b20 3238 7820 7820 38x x + 28x x │ │ │ │ +00019010: 7820 202d 2033 3878 2078 2020 2d20 3231 x - 38x x - 21 │ │ │ │ +00019020: 7820 7820 7820 202b 2034 3878 2078 2020 x x x + 48x x │ │ │ │ +00019030: 2d20 2020 2020 7c0a 7c20 2020 3420 3520 - |.| 4 5 │ │ │ │ +00019040: 3620 3720 2020 2020 2035 2036 2037 2020 6 7 5 6 7 │ │ │ │ +00019050: 2020 2020 3020 3720 2020 2020 2030 2031 0 7 0 1 │ │ │ │ +00019060: 2037 2020 2020 2020 3120 3720 2020 2020 7 1 7 │ │ │ │ +00019070: 2030 2033 2037 2020 2020 2020 3320 3720 0 3 7 3 7 │ │ │ │ +00019080: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00019090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000190a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000190b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000190c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000190d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -000190e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000190f0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00019100: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00019110: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00019120: 2020 2020 2020 3220 2020 2020 7c0a 7c34 2 |.|4 │ │ │ │ -00019130: 3878 2078 2078 2020 2b20 3435 7820 7820 8x x x + 45x x │ │ │ │ -00019140: 7820 202d 2034 3778 2078 2078 2020 2d20 x - 47x x x - │ │ │ │ -00019150: 3438 7820 7820 202b 2031 3178 2078 2078 48x x + 11x x x │ │ │ │ -00019160: 2078 2020 2d20 3130 7820 7820 7820 202b x - 10x x x + │ │ │ │ -00019170: 2032 3078 2078 2078 2020 2b20 7c0a 7c20 20x x x + |.| │ │ │ │ -00019180: 2020 3020 3520 3720 2020 2020 2031 2035 0 5 7 1 5 │ │ │ │ -00019190: 2037 2020 2020 2020 3320 3520 3720 2020 7 3 5 7 │ │ │ │ -000191a0: 2020 2035 2037 2020 2020 2020 3020 3120 5 7 0 1 │ │ │ │ -000191b0: 3220 3820 2020 2020 2031 2032 2038 2020 2 8 1 2 8 │ │ │ │ -000191c0: 2020 2020 3120 3220 3820 2020 7c0a 7c2d 1 2 8 |.|- │ │ │ │ +000190d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +000190e0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000190f0: 2020 2020 2020 3220 2020 2020 2032 2032 2 2 2 │ │ │ │ +00019100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019110: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019120: 3220 2020 2020 7c0a 7c34 3878 2078 2078 2 |.|48x x x │ │ │ │ +00019130: 2020 2b20 3435 7820 7820 7820 202d 2034 + 45x x x - 4 │ │ │ │ +00019140: 3778 2078 2078 2020 2d20 3438 7820 7820 7x x x - 48x x │ │ │ │ +00019150: 202b 2031 3178 2078 2078 2078 2020 2d20 + 11x x x x - │ │ │ │ +00019160: 3130 7820 7820 7820 202b 2032 3078 2078 10x x x + 20x x │ │ │ │ +00019170: 2078 2020 2b20 7c0a 7c20 2020 3020 3520 x + |.| 0 5 │ │ │ │ +00019180: 3720 2020 2020 2031 2035 2037 2020 2020 7 1 5 7 │ │ │ │ +00019190: 2020 3320 3520 3720 2020 2020 2035 2037 3 5 7 5 7 │ │ │ │ +000191a0: 2020 2020 2020 3020 3120 3220 3820 2020 0 1 2 8 │ │ │ │ +000191b0: 2020 2031 2032 2038 2020 2020 2020 3120 1 2 8 1 │ │ │ │ +000191c0: 3220 3820 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2 8 |.|------- │ │ │ │ 000191d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000191e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000191f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00019220: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00019210: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +00019220: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00019230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019240: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00019240: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00019250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019260: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -00019270: 3178 2078 2078 2078 2020 2b20 3432 7820 1x x x x + 42x │ │ │ │ -00019280: 7820 7820 202b 2034 3178 2078 2078 2078 x x + 41x x x x │ │ │ │ -00019290: 2020 2d20 3131 7820 7820 7820 202b 2031 - 11x x x + 1 │ │ │ │ -000192a0: 3078 2078 2078 2078 2020 2d20 3230 7820 0x x x x - 20x │ │ │ │ -000192b0: 7820 7820 7820 202d 2020 2020 7c0a 7c20 x x x - |.| │ │ │ │ -000192c0: 2020 3020 3120 3320 3820 2020 2020 2031 0 1 3 8 1 │ │ │ │ -000192d0: 2033 2038 2020 2020 2020 3120 3220 3320 3 8 1 2 3 │ │ │ │ -000192e0: 3820 2020 2020 2030 2034 2038 2020 2020 8 0 4 8 │ │ │ │ -000192f0: 2020 3020 3120 3420 3820 2020 2020 2030 0 1 4 8 0 │ │ │ │ -00019300: 2032 2034 2038 2020 2020 2020 7c0a 7c2d 2 4 8 |.|- │ │ │ │ +00019260: 2020 2020 2020 7c0a 7c31 3178 2078 2078 |.|11x x x │ │ │ │ +00019270: 2078 2020 2b20 3432 7820 7820 7820 202b x + 42x x x + │ │ │ │ +00019280: 2034 3178 2078 2078 2078 2020 2d20 3131 41x x x x - 11 │ │ │ │ +00019290: 7820 7820 7820 202b 2031 3078 2078 2078 x x x + 10x x x │ │ │ │ +000192a0: 2078 2020 2d20 3230 7820 7820 7820 7820 x - 20x x x x │ │ │ │ +000192b0: 202d 2020 2020 7c0a 7c20 2020 3020 3120 - |.| 0 1 │ │ │ │ +000192c0: 3320 3820 2020 2020 2031 2033 2038 2020 3 8 1 3 8 │ │ │ │ +000192d0: 2020 2020 3120 3220 3320 3820 2020 2020 1 2 3 8 │ │ │ │ +000192e0: 2030 2034 2038 2020 2020 2020 3020 3120 0 4 8 0 1 │ │ │ │ +000192f0: 3420 3820 2020 2020 2030 2032 2034 2038 4 8 0 2 4 8 │ │ │ │ +00019300: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00019310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019350: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00019360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019380: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00019390: 2020 2020 2032 2020 2020 2020 2020 3220 2 2 │ │ │ │ -000193a0: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -000193b0: 3678 2078 2078 2078 2020 2b20 3238 7820 6x x x x + 28x │ │ │ │ -000193c0: 7820 7820 7820 202b 2034 7820 7820 7820 x x x + 4x x x │ │ │ │ -000193d0: 7820 202b 2032 3678 2078 2078 2020 2d20 x + 26x x x - │ │ │ │ -000193e0: 3132 7820 7820 7820 202d 2031 3178 2078 12x x x - 11x x │ │ │ │ -000193f0: 2078 2020 2d20 2020 2020 2020 7c0a 7c20 x - |.| │ │ │ │ -00019400: 2020 3120 3220 3420 3820 2020 2020 2031 1 2 4 8 1 │ │ │ │ -00019410: 2033 2034 2038 2020 2020 2032 2033 2034 3 4 8 2 3 4 │ │ │ │ -00019420: 2038 2020 2020 2020 3020 3420 3820 2020 8 0 4 8 │ │ │ │ -00019430: 2020 2033 2034 2038 2020 2020 2020 3020 3 4 8 0 │ │ │ │ -00019440: 3520 3820 2020 2020 2020 2020 7c0a 7c2d 5 8 |.|- │ │ │ │ +00019380: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ +00019390: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000193a0: 2020 2020 2020 7c0a 7c32 3678 2078 2078 |.|26x x x │ │ │ │ +000193b0: 2078 2020 2b20 3238 7820 7820 7820 7820 x + 28x x x x │ │ │ │ +000193c0: 202b 2034 7820 7820 7820 7820 202b 2032 + 4x x x x + 2 │ │ │ │ +000193d0: 3678 2078 2078 2020 2d20 3132 7820 7820 6x x x - 12x x │ │ │ │ +000193e0: 7820 202d 2031 3178 2078 2078 2020 2d20 x - 11x x x - │ │ │ │ +000193f0: 2020 2020 2020 7c0a 7c20 2020 3120 3220 |.| 1 2 │ │ │ │ +00019400: 3420 3820 2020 2020 2031 2033 2034 2038 4 8 1 3 4 8 │ │ │ │ +00019410: 2020 2020 2032 2033 2034 2038 2020 2020 2 3 4 8 │ │ │ │ +00019420: 2020 3020 3420 3820 2020 2020 2033 2034 0 4 8 3 4 │ │ │ │ +00019430: 2038 2020 2020 2020 3020 3520 3820 2020 8 0 5 8 │ │ │ │ +00019440: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00019450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019490: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 000194a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000194b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000194b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000194c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000194d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000194e0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -000194f0: 3278 2078 2078 2078 2020 2d20 3431 7820 2x x x x - 41x │ │ │ │ -00019500: 7820 7820 7820 202d 2034 7820 7820 7820 x x x - 4x x x │ │ │ │ -00019510: 202d 2032 3878 2078 2078 2078 2020 2b20 - 28x x x x + │ │ │ │ -00019520: 3132 7820 7820 7820 7820 202b 2033 3778 12x x x x + 37x │ │ │ │ -00019530: 2078 2078 2078 2020 2b20 2020 7c0a 7c20 x x x + |.| │ │ │ │ -00019540: 2020 3020 3120 3520 3820 2020 2020 2030 0 1 5 8 0 │ │ │ │ -00019550: 2032 2035 2038 2020 2020 2032 2035 2038 2 5 8 2 5 8 │ │ │ │ -00019560: 2020 2020 2020 3020 3420 3520 3820 2020 0 4 5 8 │ │ │ │ -00019570: 2020 2032 2034 2035 2038 2020 2020 2020 2 4 5 8 │ │ │ │ -00019580: 3020 3220 3620 3820 2020 2020 7c0a 7c2d 0 2 6 8 |.|- │ │ │ │ +000194e0: 2020 2020 2020 7c0a 7c34 3278 2078 2078 |.|42x x x │ │ │ │ +000194f0: 2078 2020 2d20 3431 7820 7820 7820 7820 x - 41x x x x │ │ │ │ +00019500: 202d 2034 7820 7820 7820 202d 2032 3878 - 4x x x - 28x │ │ │ │ +00019510: 2078 2078 2078 2020 2b20 3132 7820 7820 x x x + 12x x │ │ │ │ +00019520: 7820 7820 202b 2033 3778 2078 2078 2078 x x + 37x x x x │ │ │ │ +00019530: 2020 2b20 2020 7c0a 7c20 2020 3020 3120 + |.| 0 1 │ │ │ │ +00019540: 3520 3820 2020 2020 2030 2032 2035 2038 5 8 0 2 5 8 │ │ │ │ +00019550: 2020 2020 2032 2035 2038 2020 2020 2020 2 5 8 │ │ │ │ +00019560: 3020 3420 3520 3820 2020 2020 2032 2034 0 4 5 8 2 4 │ │ │ │ +00019570: 2035 2038 2020 2020 2020 3020 3220 3620 5 8 0 2 6 │ │ │ │ +00019580: 3820 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 00019590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000195a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000195b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000195c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000195d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -000195e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000195d0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +000195e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000195f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019620: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -00019630: 7820 7820 7820 7820 202d 2032 3178 2078 x x x x - 21x x │ │ │ │ -00019640: 2078 2020 2d20 3134 7820 7820 7820 7820 x - 14x x x x │ │ │ │ -00019650: 202b 2032 3978 2078 2078 2078 2020 2b20 + 29x x x x + │ │ │ │ -00019660: 3131 7820 7820 7820 7820 202b 2034 3778 11x x x x + 47x │ │ │ │ -00019670: 2078 2078 2078 2020 2d20 2020 7c0a 7c20 x x x - |.| │ │ │ │ -00019680: 2031 2032 2036 2038 2020 2020 2020 3220 1 2 6 8 2 │ │ │ │ -00019690: 3620 3820 2020 2020 2030 2033 2036 2038 6 8 0 3 6 8 │ │ │ │ -000196a0: 2020 2020 2020 3120 3320 3620 3820 2020 1 3 6 8 │ │ │ │ -000196b0: 2020 2032 2033 2036 2038 2020 2020 2020 2 3 6 8 │ │ │ │ -000196c0: 3120 3420 3620 3820 2020 2020 7c0a 7c2d 1 4 6 8 |.|- │ │ │ │ +00019620: 2020 2020 2020 7c0a 7c33 7820 7820 7820 |.|3x x x │ │ │ │ +00019630: 7820 202d 2032 3178 2078 2078 2020 2d20 x - 21x x x - │ │ │ │ +00019640: 3134 7820 7820 7820 7820 202b 2032 3978 14x x x x + 29x │ │ │ │ +00019650: 2078 2078 2078 2020 2b20 3131 7820 7820 x x x + 11x x │ │ │ │ +00019660: 7820 7820 202b 2034 3778 2078 2078 2078 x x + 47x x x x │ │ │ │ +00019670: 2020 2d20 2020 7c0a 7c20 2031 2032 2036 - |.| 1 2 6 │ │ │ │ +00019680: 2038 2020 2020 2020 3220 3620 3820 2020 8 2 6 8 │ │ │ │ +00019690: 2020 2030 2033 2036 2038 2020 2020 2020 0 3 6 8 │ │ │ │ +000196a0: 3120 3320 3620 3820 2020 2020 2032 2033 1 3 6 8 2 3 │ │ │ │ +000196b0: 2036 2038 2020 2020 2020 3120 3420 3620 6 8 1 4 6 │ │ │ │ +000196c0: 3820 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 000196d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000196e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000196f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019710: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 00019720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019730: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00019730: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00019740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019760: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -00019770: 3878 2078 2078 2078 2020 2d20 3278 2078 8x x x x - 2x x │ │ │ │ -00019780: 2078 2078 2020 2b20 3435 7820 7820 7820 x x + 45x x x │ │ │ │ -00019790: 202b 2032 3978 2078 2078 2078 2020 2b20 + 29x x x x + │ │ │ │ -000197a0: 3235 7820 7820 7820 7820 202b 2033 3378 25x x x x + 33x │ │ │ │ -000197b0: 2078 2078 2078 2020 2d20 2020 7c0a 7c20 x x x - |.| │ │ │ │ -000197c0: 2020 3220 3420 3620 3820 2020 2020 3320 2 4 6 8 3 │ │ │ │ -000197d0: 3420 3620 3820 2020 2020 2034 2036 2038 4 6 8 4 6 8 │ │ │ │ -000197e0: 2020 2020 2020 3020 3520 3620 3820 2020 0 5 6 8 │ │ │ │ -000197f0: 2020 2031 2035 2036 2038 2020 2020 2020 1 5 6 8 │ │ │ │ -00019800: 3420 3520 3620 3820 2020 2020 7c0a 7c2d 4 5 6 8 |.|- │ │ │ │ +00019760: 2020 2020 2020 7c0a 7c34 3878 2078 2078 |.|48x x x │ │ │ │ +00019770: 2078 2020 2d20 3278 2078 2078 2078 2020 x - 2x x x x │ │ │ │ +00019780: 2b20 3435 7820 7820 7820 202b 2032 3978 + 45x x x + 29x │ │ │ │ +00019790: 2078 2078 2078 2020 2b20 3235 7820 7820 x x x + 25x x │ │ │ │ +000197a0: 7820 7820 202b 2033 3378 2078 2078 2078 x x + 33x x x x │ │ │ │ +000197b0: 2020 2d20 2020 7c0a 7c20 2020 3220 3420 - |.| 2 4 │ │ │ │ +000197c0: 3620 3820 2020 2020 3320 3420 3620 3820 6 8 3 4 6 8 │ │ │ │ +000197d0: 2020 2020 2034 2036 2038 2020 2020 2020 4 6 8 │ │ │ │ +000197e0: 3020 3520 3620 3820 2020 2020 2031 2035 0 5 6 8 1 5 │ │ │ │ +000197f0: 2036 2038 2020 2020 2020 3420 3520 3620 6 8 4 5 6 │ │ │ │ +00019800: 3820 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 00019810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00019860: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00019870: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00019850: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 2020 ------|.| 2 │ │ │ │ +00019860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00019870: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00019880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000198a0: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -000198b0: 3778 2078 2078 2020 2d20 3378 2078 2078 7x x x - 3x x x │ │ │ │ -000198c0: 2078 2020 2d20 3437 7820 7820 7820 202b x - 47x x x + │ │ │ │ -000198d0: 2032 3178 2078 2078 2078 2020 2b20 3131 21x x x x + 11 │ │ │ │ -000198e0: 7820 7820 7820 7820 202b 2078 2078 2078 x x x x + x x x │ │ │ │ -000198f0: 2078 2020 2b20 2020 2020 2020 7c0a 7c20 x + |.| │ │ │ │ -00019900: 2020 3020 3720 3820 2020 2020 3020 3120 0 7 8 0 1 │ │ │ │ -00019910: 3720 3820 2020 2020 2031 2037 2038 2020 7 8 1 7 8 │ │ │ │ -00019920: 2020 2020 3020 3220 3720 3820 2020 2020 0 2 7 8 │ │ │ │ -00019930: 2030 2033 2037 2038 2020 2020 3220 3320 0 3 7 8 2 3 │ │ │ │ -00019940: 3720 3820 2020 2020 2020 2020 7c0a 7c2d 7 8 |.|- │ │ │ │ +000198a0: 2020 2020 2020 7c0a 7c33 3778 2078 2078 |.|37x x x │ │ │ │ +000198b0: 2020 2d20 3378 2078 2078 2078 2020 2d20 - 3x x x x - │ │ │ │ +000198c0: 3437 7820 7820 7820 202b 2032 3178 2078 47x x x + 21x x │ │ │ │ +000198d0: 2078 2078 2020 2b20 3131 7820 7820 7820 x x + 11x x x │ │ │ │ +000198e0: 7820 202b 2078 2078 2078 2078 2020 2b20 x + x x x x + │ │ │ │ +000198f0: 2020 2020 2020 7c0a 7c20 2020 3020 3720 |.| 0 7 │ │ │ │ +00019900: 3820 2020 2020 3020 3120 3720 3820 2020 8 0 1 7 8 │ │ │ │ +00019910: 2020 2031 2037 2038 2020 2020 2020 3020 1 7 8 0 │ │ │ │ +00019920: 3220 3720 3820 2020 2020 2030 2033 2037 2 7 8 0 3 7 │ │ │ │ +00019930: 2038 2020 2020 3220 3320 3720 3820 2020 8 2 3 7 8 │ │ │ │ +00019940: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00019950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +00019990: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 000199a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000199b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000199c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000199d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000199e0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -000199f0: 3878 2078 2078 2078 2020 2d20 3435 7820 8x x x x - 45x │ │ │ │ -00019a00: 7820 7820 7820 202b 2034 3778 2078 2078 x x x + 47x x x │ │ │ │ -00019a10: 2078 2020 2d20 3278 2078 2078 2078 2020 x - 2x x x x │ │ │ │ -00019a20: 2b20 3333 7820 7820 7820 7820 202b 2034 + 33x x x x + 4 │ │ │ │ -00019a30: 3778 2078 2078 2078 2020 2d20 7c0a 7c20 7x x x x - |.| │ │ │ │ -00019a40: 2020 3020 3420 3720 3820 2020 2020 2031 0 4 7 8 1 │ │ │ │ -00019a50: 2034 2037 2038 2020 2020 2020 3320 3420 4 7 8 3 4 │ │ │ │ -00019a60: 3720 3820 2020 2020 3020 3520 3720 3820 7 8 0 5 7 8 │ │ │ │ -00019a70: 2020 2020 2031 2035 2037 2038 2020 2020 1 5 7 8 │ │ │ │ -00019a80: 2020 3220 3520 3720 3820 2020 7c0a 7c2d 2 5 7 8 |.|- │ │ │ │ +000199e0: 2020 2020 2020 7c0a 7c34 3878 2078 2078 |.|48x x x │ │ │ │ +000199f0: 2078 2020 2d20 3435 7820 7820 7820 7820 x - 45x x x x │ │ │ │ +00019a00: 202b 2034 3778 2078 2078 2078 2020 2d20 + 47x x x x - │ │ │ │ +00019a10: 3278 2078 2078 2078 2020 2b20 3333 7820 2x x x x + 33x │ │ │ │ +00019a20: 7820 7820 7820 202b 2034 3778 2078 2078 x x x + 47x x x │ │ │ │ +00019a30: 2078 2020 2d20 7c0a 7c20 2020 3020 3420 x - |.| 0 4 │ │ │ │ +00019a40: 3720 3820 2020 2020 2031 2034 2037 2038 7 8 1 4 7 8 │ │ │ │ +00019a50: 2020 2020 2020 3320 3420 3720 3820 2020 3 4 7 8 │ │ │ │ +00019a60: 2020 3020 3520 3720 3820 2020 2020 2031 0 5 7 8 1 │ │ │ │ +00019a70: 2035 2037 2038 2020 2020 2020 3220 3520 5 7 8 2 5 │ │ │ │ +00019a80: 3720 3820 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 8 |.|------- │ │ │ │ 00019a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00019ae0: 2020 2020 2020 2020 2020 2020 3220 3220 2 2 │ │ │ │ -00019af0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00019b00: 3220 3220 2020 2020 2020 2020 2032 2020 2 2 2 │ │ │ │ -00019b10: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ -00019b20: 3220 2020 2020 2020 2020 2032 7c0a 7c78 2 2|.|x │ │ │ │ -00019b30: 2078 2078 2078 2020 2b20 3778 2078 2020 x x x + 7x x │ │ │ │ -00019b40: 2d20 3239 7820 7820 7820 202b 2033 3678 - 29x x x + 36x │ │ │ │ -00019b50: 2078 2020 2d20 3131 7820 7820 7820 202b x - 11x x x + │ │ │ │ -00019b60: 2034 3878 2078 2020 2b20 3278 2078 2078 48x x + 2x x x │ │ │ │ -00019b70: 2020 2d20 3333 7820 7820 7820 7c0a 7c20 - 33x x x |.| │ │ │ │ -00019b80: 3420 3520 3720 3820 2020 2020 3020 3820 4 5 7 8 0 8 │ │ │ │ -00019b90: 2020 2020 2030 2031 2038 2020 2020 2020 0 1 8 │ │ │ │ -00019ba0: 3120 3820 2020 2020 2030 2032 2038 2020 1 8 0 2 8 │ │ │ │ -00019bb0: 2020 2020 3220 3820 2020 2020 3020 3420 2 8 0 4 │ │ │ │ -00019bc0: 3820 2020 2020 2031 2034 2038 7c0a 7c2d 8 1 4 8|.|- │ │ │ │ +00019ad0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +00019ae0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ +00019af0: 2020 2032 2020 2020 2020 3220 3220 2020 2 2 2 │ │ │ │ +00019b00: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ +00019b10: 3220 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +00019b20: 2020 2020 2032 7c0a 7c78 2078 2078 2078 2|.|x x x x │ │ │ │ +00019b30: 2020 2b20 3778 2078 2020 2d20 3239 7820 + 7x x - 29x │ │ │ │ +00019b40: 7820 7820 202b 2033 3678 2078 2020 2d20 x x + 36x x - │ │ │ │ +00019b50: 3131 7820 7820 7820 202b 2034 3878 2078 11x x x + 48x x │ │ │ │ +00019b60: 2020 2b20 3278 2078 2078 2020 2d20 3333 + 2x x x - 33 │ │ │ │ +00019b70: 7820 7820 7820 7c0a 7c20 3420 3520 3720 x x x |.| 4 5 7 │ │ │ │ +00019b80: 3820 2020 2020 3020 3820 2020 2020 2030 8 0 8 0 │ │ │ │ +00019b90: 2031 2038 2020 2020 2020 3120 3820 2020 1 8 1 8 │ │ │ │ +00019ba0: 2020 2030 2032 2038 2020 2020 2020 3220 0 2 8 2 │ │ │ │ +00019bb0: 3820 2020 2020 3020 3420 3820 2020 2020 8 0 4 8 │ │ │ │ +00019bc0: 2031 2034 2038 7c0a 7c2d 2d2d 2d2d 2d2d 1 4 8|.|------- │ │ │ │ 00019bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -00019c20: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ -00019c30: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00019c10: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +00019c20: 2020 3220 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ +00019c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019c60: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019c70: 2034 3778 2078 2078 2020 2d20 3438 7820 47x x x - 48x │ │ │ │ -00019c80: 7820 202b 2034 3878 2078 2078 2078 2020 x + 48x x x x │ │ │ │ -00019c90: 2d20 3438 7820 7820 7820 7820 202d 2034 - 48x x x x - 4 │ │ │ │ -00019ca0: 3878 2078 2078 2078 2020 2b20 3438 7820 8x x x x + 48x │ │ │ │ -00019cb0: 7820 7820 7820 202b 2020 2020 7c0a 7c20 x x x + |.| │ │ │ │ -00019cc0: 2020 2020 3220 3420 3820 2020 2020 2034 2 4 8 4 │ │ │ │ -00019cd0: 2038 2020 2020 2020 3320 3420 3620 3920 8 3 4 6 9 │ │ │ │ -00019ce0: 2020 2020 2032 2035 2036 2039 2020 2020 2 5 6 9 │ │ │ │ -00019cf0: 2020 3120 3320 3720 3920 2020 2020 2030 1 3 7 9 0 │ │ │ │ -00019d00: 2035 2037 2039 2020 2020 2020 7c0a 7c2d 5 7 9 |.|- │ │ │ │ +00019c60: 2020 2020 2020 7c0a 7c2d 2034 3778 2078 |.|- 47x x │ │ │ │ +00019c70: 2078 2020 2d20 3438 7820 7820 202b 2034 x - 48x x + 4 │ │ │ │ +00019c80: 3878 2078 2078 2078 2020 2d20 3438 7820 8x x x x - 48x │ │ │ │ +00019c90: 7820 7820 7820 202d 2034 3878 2078 2078 x x x - 48x x x │ │ │ │ +00019ca0: 2078 2020 2b20 3438 7820 7820 7820 7820 x + 48x x x x │ │ │ │ +00019cb0: 202b 2020 2020 7c0a 7c20 2020 2020 3220 + |.| 2 │ │ │ │ +00019cc0: 3420 3820 2020 2020 2034 2038 2020 2020 4 8 4 8 │ │ │ │ +00019cd0: 2020 3320 3420 3620 3920 2020 2020 2032 3 4 6 9 2 │ │ │ │ +00019ce0: 2035 2036 2039 2020 2020 2020 3120 3320 5 6 9 1 3 │ │ │ │ +00019cf0: 3720 3920 2020 2020 2030 2035 2037 2039 7 9 0 5 7 9 │ │ │ │ +00019d00: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00019d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c34 ------------|.|4 │ │ │ │ -00019d60: 3878 2078 2078 2078 2020 2d20 3438 7820 8x x x x - 48x │ │ │ │ -00019d70: 7820 7820 7820 2020 2020 2020 2020 2020 x x x │ │ │ │ +00019d50: 2d2d 2d2d 2d2d 7c0a 7c34 3878 2078 2078 ------|.|48x x x │ │ │ │ +00019d60: 2078 2020 2d20 3438 7820 7820 7820 7820 x - 48x x x x │ │ │ │ +00019d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00019db0: 2020 3120 3220 3820 3920 2020 2020 2030 1 2 8 9 0 │ │ │ │ -00019dc0: 2034 2038 2039 2020 2020 2020 2020 2020 4 8 9 │ │ │ │ +00019da0: 2020 2020 2020 7c0a 7c20 2020 3120 3220 |.| 1 2 │ │ │ │ +00019db0: 3820 3920 2020 2020 2030 2034 2038 2039 8 9 0 4 8 9 │ │ │ │ +00019dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019df0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00019df0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00019e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00019e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00019e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00019e50: 3320 3a20 7469 6d65 2070 7369 203d 2061 3 : time psi = a │ │ │ │ -00019e60: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ -00019e70: 654d 6170 2070 6869 2020 2020 2020 2020 eMap phi │ │ │ │ +00019e40: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7469 ------+.|i3 : ti │ │ │ │ +00019e50: 6d65 2070 7369 203d 2061 7070 726f 7869 me psi = approxi │ │ │ │ +00019e60: 6d61 7465 496e 7665 7273 654d 6170 2070 mateInverseMap p │ │ │ │ +00019e70: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ 00019e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019e90: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019ea0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -00019eb0: 6572 7365 4d61 703a 2073 7465 7020 3120 erseMap: step 1 │ │ │ │ -00019ec0: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019e90: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +00019ea0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00019eb0: 703a 2073 7465 7020 3120 6f66 2031 3020 p: step 1 of 10 │ │ │ │ +00019ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019ee0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019ef0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -00019f00: 6572 7365 4d61 703a 2073 7465 7020 3220 erseMap: step 2 │ │ │ │ -00019f10: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019ee0: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +00019ef0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00019f00: 703a 2073 7465 7020 3220 6f66 2031 3020 p: step 2 of 10 │ │ │ │ +00019f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f30: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019f40: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -00019f50: 6572 7365 4d61 703a 2073 7465 7020 3320 erseMap: step 3 │ │ │ │ -00019f60: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019f30: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +00019f40: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00019f50: 703a 2073 7465 7020 3320 6f66 2031 3020 p: step 3 of 10 │ │ │ │ +00019f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019f80: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019f90: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -00019fa0: 6572 7365 4d61 703a 2073 7465 7020 3420 erseMap: step 4 │ │ │ │ -00019fb0: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019f80: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +00019f90: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00019fa0: 703a 2073 7465 7020 3420 6f66 2031 3020 p: step 4 of 10 │ │ │ │ +00019fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00019fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00019fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -00019fe0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -00019ff0: 6572 7365 4d61 703a 2073 7465 7020 3520 erseMap: step 5 │ │ │ │ -0001a000: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +00019fd0: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +00019fe0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00019ff0: 703a 2073 7465 7020 3520 6f66 2031 3020 p: step 5 of 10 │ │ │ │ +0001a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a020: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001a030: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001a040: 6572 7365 4d61 703a 2073 7465 7020 3620 erseMap: step 6 │ │ │ │ -0001a050: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +0001a020: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001a030: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001a040: 703a 2073 7465 7020 3620 6f66 2031 3020 p: step 6 of 10 │ │ │ │ +0001a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a070: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001a080: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001a090: 6572 7365 4d61 703a 2073 7465 7020 3720 erseMap: step 7 │ │ │ │ -0001a0a0: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +0001a070: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001a080: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001a090: 703a 2073 7465 7020 3720 6f66 2031 3020 p: step 7 of 10 │ │ │ │ +0001a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a0c0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001a0d0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001a0e0: 6572 7365 4d61 703a 2073 7465 7020 3820 erseMap: step 8 │ │ │ │ -0001a0f0: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +0001a0c0: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001a0d0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001a0e0: 703a 2073 7465 7020 3820 6f66 2031 3020 p: step 8 of 10 │ │ │ │ +0001a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a110: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001a120: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001a130: 6572 7365 4d61 703a 2073 7465 7020 3920 erseMap: step 9 │ │ │ │ -0001a140: 6f66 2031 3020 2020 2020 2020 2020 2020 of 10 │ │ │ │ +0001a110: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001a120: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001a130: 703a 2073 7465 7020 3920 6f66 2031 3020 p: step 9 of 10 │ │ │ │ +0001a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a160: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001a170: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001a180: 6572 7365 4d61 703a 2073 7465 7020 3130 erseMap: step 10 │ │ │ │ -0001a190: 206f 6620 3130 2020 2020 2020 2020 2020 of 10 │ │ │ │ +0001a160: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001a170: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001a180: 703a 2073 7465 7020 3130 206f 6620 3130 p: step 10 of 10 │ │ │ │ +0001a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a1b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a1c0: 2d2d 2075 7365 6420 302e 3237 3230 3137 -- used 0.272017 │ │ │ │ -0001a1d0: 7320 2863 7075 293b 2030 2e32 3036 3936 s (cpu); 0.20696 │ │ │ │ -0001a1e0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -0001a1f0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -0001a200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a1b0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +0001a1c0: 6420 302e 3331 3938 3639 7320 2863 7075 d 0.319869s (cpu │ │ │ │ +0001a1d0: 293b 2030 2e32 3433 3933 3273 2028 7468 ); 0.243932s (th │ │ │ │ +0001a1e0: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +0001a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a200: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a250: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001a260: 3320 3d20 2d2d 2072 6174 696f 6e61 6c20 3 = -- rational │ │ │ │ -0001a270: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +0001a250: 2020 2020 2020 7c0a 7c6f 3320 3d20 2d2d |.|o3 = -- │ │ │ │ +0001a260: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +0001a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2c0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0001a2a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a2b0: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +0001a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a2f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a300: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -0001a310: 282d 2d5b 7420 2c20 7420 2c20 7420 2c20 (--[t , t , t , │ │ │ │ -0001a320: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -0001a330: 7420 2c20 7420 5d29 2020 2020 2020 2020 t , t ]) │ │ │ │ -0001a340: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a360: 2039 3720 2030 2020 2031 2020 2032 2020 97 0 1 2 │ │ │ │ -0001a370: 2033 2020 2034 2020 2035 2020 2036 2020 3 4 5 6 │ │ │ │ -0001a380: 2037 2020 2038 2020 2020 2020 2020 2020 7 8 │ │ │ │ -0001a390: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a2f0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0001a300: 7572 6365 3a20 5072 6f6a 282d 2d5b 7420 urce: Proj(--[t │ │ │ │ +0001a310: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +0001a320: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +0001a330: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0001a340: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a350: 2020 2020 2020 2020 2020 2039 3720 2030 97 0 │ │ │ │ +0001a360: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ +0001a370: 2020 2035 2020 2036 2020 2037 2020 2038 5 6 7 8 │ │ │ │ +0001a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001a390: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a3b0: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ -0001a3c0: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +0001a3b0: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +0001a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a3e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a3f0: 2020 2020 7461 7267 6574 3a20 7375 6276 target: subv │ │ │ │ -0001a400: 6172 6965 7479 206f 6620 5072 6f6a 282d ariety of Proj(- │ │ │ │ -0001a410: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ -0001a420: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -0001a430: 2c20 7820 2c20 7820 5d29 2020 7c0a 7c20 , x , x ]) |.| │ │ │ │ +0001a3e0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0001a3f0: 7267 6574 3a20 7375 6276 6172 6965 7479 rget: subvariety │ │ │ │ +0001a400: 206f 6620 5072 6f6a 282d 2d5b 7820 2c20 of Proj(--[x , │ │ │ │ +0001a410: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +0001a420: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +0001a430: 7820 5d29 2020 7c0a 7c20 2020 2020 2020 x ]) |.| │ │ │ │ 0001a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a450: 2020 2020 2020 2020 2020 2020 2020 2039 9 │ │ │ │ -0001a460: 3720 2030 2020 2031 2020 2032 2020 2033 7 0 1 2 3 │ │ │ │ -0001a470: 2020 2034 2020 2035 2020 2036 2020 2037 4 5 6 7 │ │ │ │ -0001a480: 2020 2038 2020 2039 2020 2020 7c0a 7c20 8 9 |.| │ │ │ │ -0001a490: 2020 2020 2020 2020 2020 2020 7b20 2020 { │ │ │ │ +0001a450: 2020 2020 2020 2020 2039 3720 2030 2020 97 0 │ │ │ │ +0001a460: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +0001a470: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ +0001a480: 2039 2020 2020 7c0a 7c20 2020 2020 2020 9 |.| │ │ │ │ +0001a490: 2020 2020 2020 7b20 2020 2020 2020 2020 { │ │ │ │ 0001a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a4d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a4e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001a4f0: 3220 2020 2020 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001a500: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0001a4d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a4e0: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ +0001a4f0: 2032 2020 2020 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ +0001a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a520: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a530: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ -0001a540: 2020 2b20 3134 7820 7820 7820 202b 2032 + 14x x x + 2 │ │ │ │ -0001a550: 3678 2078 2020 2d20 3278 2078 2078 2078 6x x - 2x x x x │ │ │ │ -0001a560: 2020 2d20 3134 7820 7820 7820 7820 202b - 14x x x x + │ │ │ │ -0001a570: 2031 3178 2078 2078 2078 2020 7c0a 7c20 11x x x x |.| │ │ │ │ -0001a580: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -0001a590: 3220 2020 2020 2031 2032 2033 2020 2020 2 1 2 3 │ │ │ │ -0001a5a0: 2020 3120 3320 2020 2020 3020 3120 3220 1 3 0 1 2 │ │ │ │ -0001a5b0: 3420 2020 2020 2030 2031 2033 2034 2020 4 0 1 3 4 │ │ │ │ -0001a5c0: 2020 2020 3120 3220 3320 3420 7c0a 7c20 1 2 3 4 |.| │ │ │ │ -0001a5d0: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +0001a520: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a530: 2020 2020 2020 2078 2078 2020 2b20 3134 x x + 14 │ │ │ │ +0001a540: 7820 7820 7820 202b 2032 3678 2078 2020 x x x + 26x x │ │ │ │ +0001a550: 2d20 3278 2078 2078 2078 2020 2d20 3134 - 2x x x x - 14 │ │ │ │ +0001a560: 7820 7820 7820 7820 202b 2031 3178 2078 x x x x + 11x x │ │ │ │ +0001a570: 2078 2078 2020 7c0a 7c20 2020 2020 2020 x x |.| │ │ │ │ +0001a580: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +0001a590: 2031 2032 2033 2020 2020 2020 3120 3320 1 2 3 1 3 │ │ │ │ +0001a5a0: 2020 2020 3020 3120 3220 3420 2020 2020 0 1 2 4 │ │ │ │ +0001a5b0: 2030 2031 2033 2034 2020 2020 2020 3120 0 1 3 4 1 │ │ │ │ +0001a5c0: 3220 3320 3420 7c0a 7c20 2020 2020 2020 2 3 4 |.| │ │ │ │ +0001a5d0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ 0001a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a610: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a620: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -0001a630: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +0001a610: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +0001a620: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +0001a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a660: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a680: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001a690: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001a660: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a670: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001a680: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a6b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a6d0: 2020 2020 2020 3520 3720 2020 2034 2038 5 7 4 8 │ │ │ │ +0001a6d0: 3520 3720 2020 2034 2038 2020 2020 2020 5 7 4 8 │ │ │ │ 0001a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a700: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a770: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001a780: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001a750: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a760: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001a770: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a7a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7c0: 2020 2020 2020 3220 3720 2020 2031 2038 2 7 1 8 │ │ │ │ +0001a7c0: 3220 3720 2020 2031 2038 2020 2020 2020 2 7 1 8 │ │ │ │ 0001a7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a7f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a7f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a840: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a860: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001a870: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001a840: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a850: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001a860: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a890: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8b0: 2020 2020 2020 3520 3620 2020 2033 2038 5 6 3 8 │ │ │ │ +0001a8b0: 3520 3620 2020 2033 2038 2020 2020 2020 5 6 3 8 │ │ │ │ 0001a8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a8e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a8e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a930: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a950: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001a960: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001a930: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001a940: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001a950: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a980: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a980: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9a0: 2020 2020 2020 3420 3620 2020 2033 2037 4 6 3 7 │ │ │ │ +0001a9a0: 3420 3620 2020 2033 2037 2020 2020 2020 4 6 3 7 │ │ │ │ 0001a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001a9d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001a9d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa40: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001aa50: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001aa20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001aa30: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001aa40: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001aa70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aa90: 2020 2020 2020 3220 3620 2020 2030 2038 2 6 0 8 │ │ │ │ +0001aa90: 3220 3620 2020 2030 2038 2020 2020 2020 2 6 0 8 │ │ │ │ 0001aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aac0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001aac0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ab20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab30: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001ab40: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001ab10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001ab20: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001ab30: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ab60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ab70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ab80: 2020 2020 2020 3120 3620 2020 2030 2037 1 6 0 7 │ │ │ │ +0001ab80: 3120 3620 2020 2030 2037 2020 2020 2020 1 6 0 7 │ │ │ │ 0001ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001abb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001abb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac20: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001ac30: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001ac00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001ac10: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001ac20: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ac50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ac60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ac70: 2020 2020 2020 3220 3420 2020 2031 2035 2 4 1 5 │ │ │ │ +0001ac70: 3220 3420 2020 2031 2035 2020 2020 2020 2 4 1 5 │ │ │ │ 0001ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aca0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001aca0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001acb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001acd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ace0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001acf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad10: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001ad20: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001acf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001ad00: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001ad10: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ad40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ad50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad60: 2020 2020 2020 3220 3320 2020 2030 2035 2 3 0 5 │ │ │ │ +0001ad60: 3220 3320 2020 2030 2035 2020 2020 2020 2 3 0 5 │ │ │ │ 0001ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ad90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ad90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ada0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ade0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001adf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae00: 2020 2020 2074 2074 2020 2d20 7420 7420 t t - t t │ │ │ │ -0001ae10: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0001ade0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001adf0: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001ae00: 2074 2020 2d20 7420 7420 2c20 2020 2020 t - t t , │ │ │ │ +0001ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ae30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae50: 2020 2020 2020 3120 3320 2020 2030 2034 1 3 0 4 │ │ │ │ +0001ae50: 3120 3320 2020 2030 2034 2020 2020 2020 1 3 0 4 │ │ │ │ 0001ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ae80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ae80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aed0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001aed0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001aee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001aef0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001af00: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001af10: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0001af20: 2020 2020 2020 2020 2020 3220 7c0a 7c20 2 |.| │ │ │ │ -0001af30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af40: 2020 2020 2074 2020 2b20 3331 7420 7420 t + 31t t │ │ │ │ -0001af50: 202d 2032 3574 2020 2b20 3774 2074 2020 - 25t + 7t t │ │ │ │ -0001af60: 2b20 3374 2074 2020 2b20 3231 7420 202b + 3t t + 21t + │ │ │ │ -0001af70: 2033 7420 7420 202d 2074 2020 7c0a 7c20 3t t - t |.| │ │ │ │ +0001aef0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001af00: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001af10: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001af20: 2020 2020 3220 7c0a 7c20 2020 2020 2020 2 |.| │ │ │ │ +0001af30: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0001af40: 2020 2b20 3331 7420 7420 202d 2032 3574 + 31t t - 25t │ │ │ │ +0001af50: 2020 2b20 3774 2074 2020 2b20 3374 2074 + 7t t + 3t t │ │ │ │ +0001af60: 2020 2b20 3231 7420 202b 2033 7420 7420 + 21t + 3t t │ │ │ │ +0001af70: 202d 2074 2020 7c0a 7c20 2020 2020 2020 - t |.| │ │ │ │ 0001af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001af90: 2020 2020 2020 3020 2020 2020 2030 2031 0 0 1 │ │ │ │ -0001afa0: 2020 2020 2020 3120 2020 2020 3020 3220 1 0 2 │ │ │ │ -0001afb0: 2020 2020 3120 3220 2020 2020 2032 2020 1 2 2 │ │ │ │ -0001afc0: 2020 2030 2033 2020 2020 3320 7c0a 7c20 0 3 3 |.| │ │ │ │ -0001afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001afe0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +0001af90: 3020 2020 2020 2030 2031 2020 2020 2020 0 0 1 │ │ │ │ +0001afa0: 3120 2020 2020 3020 3220 2020 2020 3120 1 0 2 1 │ │ │ │ +0001afb0: 3220 2020 2020 2032 2020 2020 2030 2033 2 2 0 3 │ │ │ │ +0001afc0: 2020 2020 3320 7c0a 7c20 2020 2020 2020 3 |.| │ │ │ │ +0001afd0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0001afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b010: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b010: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b060: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001b070: 3320 3a20 5261 7469 6f6e 616c 4d61 7020 3 : RationalMap │ │ │ │ -0001b080: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -0001b090: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -0001b0a0: 3820 746f 2068 7970 6572 7375 7266 6163 8 to hypersurfac │ │ │ │ -0001b0b0: 6520 696e 2050 505e 3929 2020 7c0a 7c2d e in PP^9) |.|- │ │ │ │ +0001b060: 2020 2020 2020 7c0a 7c6f 3320 3a20 5261 |.|o3 : Ra │ │ │ │ +0001b070: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +0001b080: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +0001b090: 7020 6672 6f6d 2050 505e 3820 746f 2068 p from PP^8 to h │ │ │ │ +0001b0a0: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ +0001b0b0: 505e 3929 2020 7c0a 7c2d 2d2d 2d2d 2d2d P^9) |.|------- │ │ │ │ 0001b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001b0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001b100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c64 ------------|.|d │ │ │ │ -0001b110: 6566 696e 6564 2062 7920 2020 2020 2020 efined by │ │ │ │ +0001b100: 2d2d 2d2d 2d2d 7c0a 7c64 6566 696e 6564 ------|.|defined │ │ │ │ +0001b110: 2062 7920 2020 2020 2020 2020 2020 2020 by │ │ │ │ 0001b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b150: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b1a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b1f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b200: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -0001b210: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0001b220: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -0001b230: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0001b240: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001b250: 2b20 3139 7820 7820 7820 202b 2078 2078 + 19x x x + x x │ │ │ │ -0001b260: 2020 2d20 3131 7820 7820 7820 202b 2033 - 11x x x + 3 │ │ │ │ -0001b270: 3878 2078 2020 2d20 3134 7820 7820 7820 8x x - 14x x x │ │ │ │ -0001b280: 7820 202d 2031 3178 2078 2078 2020 2b20 x - 11x x x + │ │ │ │ -0001b290: 3435 7820 7820 7820 7820 202d 7c0a 7c20 45x x x x -|.| │ │ │ │ -0001b2a0: 2020 2020 2031 2033 2034 2020 2020 3020 1 3 4 0 │ │ │ │ -0001b2b0: 3420 2020 2020 2030 2033 2034 2020 2020 4 0 3 4 │ │ │ │ -0001b2c0: 2020 3320 3420 2020 2020 2030 2031 2032 3 4 0 1 2 │ │ │ │ -0001b2d0: 2035 2020 2020 2020 3120 3220 3520 2020 5 1 2 5 │ │ │ │ -0001b2e0: 2020 2030 2031 2033 2035 2020 7c0a 7c20 0 1 3 5 |.| │ │ │ │ +0001b1f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0001b200: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ +0001b210: 2020 2020 2032 2020 2020 2020 3220 3220 2 2 2 │ │ │ │ +0001b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001b230: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0001b240: 2020 2020 2020 7c0a 7c20 2b20 3139 7820 |.| + 19x │ │ │ │ +0001b250: 7820 7820 202b 2078 2078 2020 2d20 3131 x x + x x - 11 │ │ │ │ +0001b260: 7820 7820 7820 202b 2033 3878 2078 2020 x x x + 38x x │ │ │ │ +0001b270: 2d20 3134 7820 7820 7820 7820 202d 2031 - 14x x x x - 1 │ │ │ │ +0001b280: 3178 2078 2078 2020 2b20 3435 7820 7820 1x x x + 45x x │ │ │ │ +0001b290: 7820 7820 202d 7c0a 7c20 2020 2020 2031 x x -|.| 1 │ │ │ │ +0001b2a0: 2033 2034 2020 2020 3020 3420 2020 2020 3 4 0 4 │ │ │ │ +0001b2b0: 2030 2033 2034 2020 2020 2020 3320 3420 0 3 4 3 4 │ │ │ │ +0001b2c0: 2020 2020 2030 2031 2032 2035 2020 2020 0 1 2 5 │ │ │ │ +0001b2d0: 2020 3120 3220 3520 2020 2020 2030 2031 1 2 5 0 1 │ │ │ │ +0001b2e0: 2033 2035 2020 7c0a 7c20 2020 2020 2020 3 5 |.| │ │ │ │ 0001b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b330: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b330: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b380: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b380: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b3d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b3d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b470: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b470: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b4c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b4c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b510: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b510: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b560: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b560: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b5b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b5b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b600: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b600: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b650: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b650: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b6a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b6f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b6f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b740: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b740: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b790: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b790: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b7e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b7e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b830: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b830: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b880: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b880: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b8d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b8d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b920: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b920: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b970: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001b9c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001b9c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ba10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ba60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ba60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001baa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bab0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bab0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bb00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bb50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bb50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bba0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bba0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bbf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bbf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0001bc10: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0001bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bc40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001bc50: 2b20 3474 2074 2020 2b20 3339 7420 7420 + 4t t + 39t t │ │ │ │ -0001bc60: 202d 2032 3274 2074 2020 2b20 3134 7420 - 22t t + 14t │ │ │ │ -0001bc70: 202d 2074 2074 2020 2d20 3674 2074 2020 - t t - 6t t │ │ │ │ -0001bc80: 2d20 3431 7420 7420 202b 2034 3274 2074 - 41t t + 42t t │ │ │ │ -0001bc90: 2020 2b20 3233 7420 7420 202b 7c0a 7c20 + 23t t +|.| │ │ │ │ -0001bca0: 2020 2020 3020 3420 2020 2020 2031 2034 0 4 1 4 │ │ │ │ -0001bcb0: 2020 2020 2020 3320 3420 2020 2020 2034 3 4 4 │ │ │ │ -0001bcc0: 2020 2020 3020 3520 2020 2020 3120 3520 0 5 1 5 │ │ │ │ -0001bcd0: 2020 2020 2032 2035 2020 2020 2020 3320 2 5 3 │ │ │ │ -0001bce0: 3520 2020 2020 2034 2035 2020 7c0a 7c2d 5 4 5 |.|- │ │ │ │ +0001bc40: 2020 2020 2020 7c0a 7c20 2b20 3474 2074 |.| + 4t t │ │ │ │ +0001bc50: 2020 2b20 3339 7420 7420 202d 2032 3274 + 39t t - 22t │ │ │ │ +0001bc60: 2074 2020 2b20 3134 7420 202d 2074 2074 t + 14t - t t │ │ │ │ +0001bc70: 2020 2d20 3674 2074 2020 2d20 3431 7420 - 6t t - 41t │ │ │ │ +0001bc80: 7420 202b 2034 3274 2074 2020 2b20 3233 t + 42t t + 23 │ │ │ │ +0001bc90: 7420 7420 202b 7c0a 7c20 2020 2020 3020 t t +|.| 0 │ │ │ │ +0001bca0: 3420 2020 2020 2031 2034 2020 2020 2020 4 1 4 │ │ │ │ +0001bcb0: 3320 3420 2020 2020 2034 2020 2020 3020 3 4 4 0 │ │ │ │ +0001bcc0: 3520 2020 2020 3120 3520 2020 2020 2032 5 1 5 2 │ │ │ │ +0001bcd0: 2035 2020 2020 2020 3320 3520 2020 2020 5 3 5 │ │ │ │ +0001bce0: 2034 2035 2020 7c0a 7c2d 2d2d 2d2d 2d2d 4 5 |.|------- │ │ │ │ 0001bcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001bd40: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0001bd30: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001bd40: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0001bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bd80: 2032 2032 2020 2020 2020 2020 7c0a 7c31 2 2 |.|1 │ │ │ │ -0001bd90: 3978 2078 2078 2078 2020 2b20 3134 7820 9x x x x + 14x │ │ │ │ -0001bda0: 7820 7820 202b 2031 3178 2078 2078 2078 x x + 11x x x x │ │ │ │ -0001bdb0: 2020 2d20 3139 7820 7820 7820 7820 202b - 19x x x x + │ │ │ │ -0001bdc0: 2032 3178 2078 2078 2078 2020 2b20 3236 21x x x x + 26 │ │ │ │ -0001bdd0: 7820 7820 202b 2031 3978 2020 7c0a 7c20 x x + 19x |.| │ │ │ │ -0001bde0: 2020 3120 3220 3320 3520 2020 2020 2030 1 2 3 5 0 │ │ │ │ -0001bdf0: 2034 2035 2020 2020 2020 3020 3220 3420 4 5 0 2 4 │ │ │ │ -0001be00: 3520 2020 2020 2030 2033 2034 2035 2020 5 0 3 4 5 │ │ │ │ -0001be10: 2020 2020 3220 3320 3420 3520 2020 2020 2 3 4 5 │ │ │ │ -0001be20: 2030 2035 2020 2020 2020 3020 7c0a 7c20 0 5 0 |.| │ │ │ │ +0001bd70: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ +0001bd80: 2020 2020 2020 7c0a 7c31 3978 2078 2078 |.|19x x x │ │ │ │ +0001bd90: 2078 2020 2b20 3134 7820 7820 7820 202b x + 14x x x + │ │ │ │ +0001bda0: 2031 3178 2078 2078 2078 2020 2d20 3139 11x x x x - 19 │ │ │ │ +0001bdb0: 7820 7820 7820 7820 202b 2032 3178 2078 x x x x + 21x x │ │ │ │ +0001bdc0: 2078 2078 2020 2b20 3236 7820 7820 202b x x + 26x x + │ │ │ │ +0001bdd0: 2031 3978 2020 7c0a 7c20 2020 3120 3220 19x |.| 1 2 │ │ │ │ +0001bde0: 3320 3520 2020 2020 2030 2034 2035 2020 3 5 0 4 5 │ │ │ │ +0001bdf0: 2020 2020 3020 3220 3420 3520 2020 2020 0 2 4 5 │ │ │ │ +0001be00: 2030 2033 2034 2035 2020 2020 2020 3220 0 3 4 5 2 │ │ │ │ +0001be10: 3320 3420 3520 2020 2020 2030 2035 2020 3 4 5 0 5 │ │ │ │ +0001be20: 2020 2020 3020 7c0a 7c20 2020 2020 2020 0 |.| │ │ │ │ 0001be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001be70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001be70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bec0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bec0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bf10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bf60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bf60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001bfb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001bfb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c000: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c050: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c050: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c0a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c0f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c0f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c140: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c140: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c190: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c190: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c1e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c1e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c230: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c230: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c280: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c2d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c2d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c320: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c320: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c370: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c370: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c3c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c3c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c410: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c410: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c460: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c460: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c4b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c4b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c500: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c500: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c550: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c550: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c5a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c5f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c640: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c690: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c690: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c6e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c6e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c730: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001c740: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001c750: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0001c730: 2020 2020 2020 7c0a 7c20 2020 3220 2020 |.| 2 │ │ │ │ +0001c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c750: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0001c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c780: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -0001c790: 3174 2020 2b20 3234 7420 7420 202d 2038 1t + 24t t - 8 │ │ │ │ -0001c7a0: 7420 7420 202d 2032 3174 2020 2b20 3431 t t - 21t + 41 │ │ │ │ -0001c7b0: 7420 7420 202b 2031 3374 2074 2020 2b20 t t + 13t t + │ │ │ │ -0001c7c0: 3135 7420 7420 202d 2032 3274 2074 2020 15t t - 22t t │ │ │ │ -0001c7d0: 2b20 3338 7420 7420 202d 2020 7c0a 7c20 + 38t t - |.| │ │ │ │ -0001c7e0: 2020 3520 2020 2020 2030 2036 2020 2020 5 0 6 │ │ │ │ -0001c7f0: 2033 2036 2020 2020 2020 3620 2020 2020 3 6 6 │ │ │ │ -0001c800: 2030 2037 2020 2020 2020 3120 3720 2020 0 7 1 7 │ │ │ │ -0001c810: 2020 2033 2037 2020 2020 2020 3420 3720 3 7 4 7 │ │ │ │ -0001c820: 2020 2020 2036 2037 2020 2020 7c0a 7c2d 6 7 |.|- │ │ │ │ +0001c780: 2020 2020 2020 7c0a 7c32 3174 2020 2b20 |.|21t + │ │ │ │ +0001c790: 3234 7420 7420 202d 2038 7420 7420 202d 24t t - 8t t - │ │ │ │ +0001c7a0: 2032 3174 2020 2b20 3431 7420 7420 202b 21t + 41t t + │ │ │ │ +0001c7b0: 2031 3374 2074 2020 2b20 3135 7420 7420 13t t + 15t t │ │ │ │ +0001c7c0: 202d 2032 3274 2074 2020 2b20 3338 7420 - 22t t + 38t │ │ │ │ +0001c7d0: 7420 202d 2020 7c0a 7c20 2020 3520 2020 t - |.| 5 │ │ │ │ +0001c7e0: 2020 2030 2036 2020 2020 2033 2036 2020 0 6 3 6 │ │ │ │ +0001c7f0: 2020 2020 3620 2020 2020 2030 2037 2020 6 0 7 │ │ │ │ +0001c800: 2020 2020 3120 3720 2020 2020 2033 2037 1 7 3 7 │ │ │ │ +0001c810: 2020 2020 2020 3420 3720 2020 2020 2036 4 7 6 │ │ │ │ +0001c820: 2037 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 |.|------- │ │ │ │ 0001c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001c880: 2020 3220 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ -0001c890: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0001c8a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0001c870: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 2020 ------|.| 2 │ │ │ │ +0001c880: 2020 2032 2032 2020 2020 2020 2020 3220 2 2 2 │ │ │ │ +0001c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001c8a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0001c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c78 |.|x │ │ │ │ -0001c8d0: 2078 2020 2b20 3338 7820 7820 202d 2033 x + 38x x - 3 │ │ │ │ -0001c8e0: 3078 2078 2078 2020 2d20 3131 7820 7820 0x x x - 11x x │ │ │ │ -0001c8f0: 7820 7820 202d 2031 3178 2078 2078 2020 x x - 11x x x │ │ │ │ -0001c900: 2b20 3330 7820 7820 7820 7820 202b 2032 + 30x x x x + 2 │ │ │ │ -0001c910: 3278 2078 2078 2078 2020 2b20 7c0a 7c20 2x x x x + |.| │ │ │ │ -0001c920: 3220 3520 2020 2020 2032 2035 2020 2020 2 5 2 5 │ │ │ │ -0001c930: 2020 3120 3220 3620 2020 2020 2031 2032 1 2 6 1 2 │ │ │ │ -0001c940: 2033 2036 2020 2020 2020 3120 3320 3620 3 6 1 3 6 │ │ │ │ -0001c950: 2020 2020 2030 2032 2034 2036 2020 2020 0 2 4 6 │ │ │ │ -0001c960: 2020 3120 3220 3420 3620 2020 7c0a 7c20 1 2 4 6 |.| │ │ │ │ +0001c8c0: 2020 2020 2020 7c0a 7c78 2078 2020 2b20 |.|x x + │ │ │ │ +0001c8d0: 3338 7820 7820 202d 2033 3078 2078 2078 38x x - 30x x x │ │ │ │ +0001c8e0: 2020 2d20 3131 7820 7820 7820 7820 202d - 11x x x x - │ │ │ │ +0001c8f0: 2031 3178 2078 2078 2020 2b20 3330 7820 11x x x + 30x │ │ │ │ +0001c900: 7820 7820 7820 202b 2032 3278 2078 2078 x x x + 22x x x │ │ │ │ +0001c910: 2078 2020 2b20 7c0a 7c20 3220 3520 2020 x + |.| 2 5 │ │ │ │ +0001c920: 2020 2032 2035 2020 2020 2020 3120 3220 2 5 1 2 │ │ │ │ +0001c930: 3620 2020 2020 2031 2032 2033 2036 2020 6 1 2 3 6 │ │ │ │ +0001c940: 2020 2020 3120 3320 3620 2020 2020 2030 1 3 6 0 │ │ │ │ +0001c950: 2032 2034 2036 2020 2020 2020 3120 3220 2 4 6 1 2 │ │ │ │ +0001c960: 3420 3620 2020 7c0a 7c20 2020 2020 2020 4 6 |.| │ │ │ │ 0001c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001c9b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001c9b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ca00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ca50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ca50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001caa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001caa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001caf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001caf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cb40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cb90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cb90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cbe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cc30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cc80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cc80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ccd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ccd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cd20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cd70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cd70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cdc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cdc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ce10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ce60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ce60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001ce70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ceb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001ceb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cf00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cf50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cf50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cfa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cfa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001cff0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001cff0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d040: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d090: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d0e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d0e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d130: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d130: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d180: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d180: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d1d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d1d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d220: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d270: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001d280: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001d270: 2020 2020 2020 7c0a 7c20 2020 3220 2020 |.| 2 │ │ │ │ +0001d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d2c0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0001d2d0: 3574 2020 2d20 3435 7420 7420 202b 2032 5t - 45t t + 2 │ │ │ │ -0001d2e0: 3074 2074 2020 2b20 3434 7420 7420 202d 0t t + 44t t - │ │ │ │ -0001d2f0: 2034 3074 2074 2020 2d20 3232 7420 7420 40t t - 22t t │ │ │ │ -0001d300: 202b 2033 3774 2074 2020 2b20 3232 7420 + 37t t + 22t │ │ │ │ -0001d310: 7420 202b 2032 3874 2074 2020 7c0a 7c20 t + 28t t |.| │ │ │ │ -0001d320: 2020 3720 2020 2020 2030 2038 2020 2020 7 0 8 │ │ │ │ -0001d330: 2020 3120 3820 2020 2020 2032 2038 2020 1 8 2 8 │ │ │ │ -0001d340: 2020 2020 3320 3820 2020 2020 2034 2038 3 8 4 8 │ │ │ │ -0001d350: 2020 2020 2020 3520 3820 2020 2020 2036 5 8 6 │ │ │ │ -0001d360: 2038 2020 2020 2020 3720 3820 7c0a 7c2d 8 7 8 |.|- │ │ │ │ +0001d2c0: 2020 2020 2020 7c0a 7c34 3574 2020 2d20 |.|45t - │ │ │ │ +0001d2d0: 3435 7420 7420 202b 2032 3074 2074 2020 45t t + 20t t │ │ │ │ +0001d2e0: 2b20 3434 7420 7420 202d 2034 3074 2074 + 44t t - 40t t │ │ │ │ +0001d2f0: 2020 2d20 3232 7420 7420 202b 2033 3774 - 22t t + 37t │ │ │ │ +0001d300: 2074 2020 2b20 3232 7420 7420 202b 2032 t + 22t t + 2 │ │ │ │ +0001d310: 3874 2074 2020 7c0a 7c20 2020 3720 2020 8t t |.| 7 │ │ │ │ +0001d320: 2020 2030 2038 2020 2020 2020 3120 3820 0 8 1 8 │ │ │ │ +0001d330: 2020 2020 2032 2038 2020 2020 2020 3320 2 8 3 │ │ │ │ +0001d340: 3820 2020 2020 2034 2038 2020 2020 2020 8 4 8 │ │ │ │ +0001d350: 3520 3820 2020 2020 2036 2038 2020 2020 5 8 6 8 │ │ │ │ +0001d360: 2020 3720 3820 7c0a 7c2d 2d2d 2d2d 2d2d 7 8 |.|------- │ │ │ │ 0001d370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001d3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d3d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001d3b0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001d3c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0001d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d400: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -0001d410: 3178 2078 2078 2078 2020 2d20 3232 7820 1x x x x - 22x │ │ │ │ -0001d420: 7820 7820 202b 2031 3078 2078 2078 2078 x x + 10x x x x │ │ │ │ -0001d430: 2020 2b20 3131 7820 7820 7820 7820 202d + 11x x x x - │ │ │ │ -0001d440: 2034 3278 2078 2078 2078 2020 2d20 3130 42x x x x - 10 │ │ │ │ -0001d450: 7820 7820 7820 7820 202b 2020 7c0a 7c20 x x x x + |.| │ │ │ │ -0001d460: 2020 3020 3320 3420 3620 2020 2020 2030 0 3 4 6 0 │ │ │ │ -0001d470: 2034 2036 2020 2020 2020 3120 3220 3520 4 6 1 2 5 │ │ │ │ -0001d480: 3620 2020 2020 2030 2033 2035 2036 2020 6 0 3 5 6 │ │ │ │ -0001d490: 2020 2020 3120 3320 3520 3620 2020 2020 1 3 5 6 │ │ │ │ -0001d4a0: 2030 2034 2035 2036 2020 2020 7c0a 7c20 0 4 5 6 |.| │ │ │ │ +0001d400: 2020 2020 2020 7c0a 7c31 3178 2078 2078 |.|11x x x │ │ │ │ +0001d410: 2078 2020 2d20 3232 7820 7820 7820 202b x - 22x x x + │ │ │ │ +0001d420: 2031 3078 2078 2078 2078 2020 2b20 3131 10x x x x + 11 │ │ │ │ +0001d430: 7820 7820 7820 7820 202d 2034 3278 2078 x x x x - 42x x │ │ │ │ +0001d440: 2078 2078 2020 2d20 3130 7820 7820 7820 x x - 10x x x │ │ │ │ +0001d450: 7820 202b 2020 7c0a 7c20 2020 3020 3320 x + |.| 0 3 │ │ │ │ +0001d460: 3420 3620 2020 2020 2030 2034 2036 2020 4 6 0 4 6 │ │ │ │ +0001d470: 2020 2020 3120 3220 3520 3620 2020 2020 1 2 5 6 │ │ │ │ +0001d480: 2030 2033 2035 2036 2020 2020 2020 3120 0 3 5 6 1 │ │ │ │ +0001d490: 3320 3520 3620 2020 2020 2030 2034 2035 3 5 6 0 4 5 │ │ │ │ +0001d4a0: 2036 2020 2020 7c0a 7c20 2020 2020 2020 6 |.| │ │ │ │ 0001d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d4f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d4f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d540: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d590: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d5e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d630: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d630: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d680: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d6d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d6d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d720: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d7c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d7c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d810: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d860: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d8b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d8b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d900: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d900: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d950: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d950: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d9a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001d9f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001d9f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001da40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001da90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001da90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dae0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dae0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001db30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001db80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001db80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dbd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dbd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dc20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dc70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dc70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dcc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dcc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dd10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dd60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001dd60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ddb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001ddc0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ddb0: 2020 2020 2020 7c0a 7c20 2020 2032 2020 |.| 2 │ │ │ │ +0001ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de00: 2020 2020 2020 2020 2020 2020 7c0a 7c2b |.|+ │ │ │ │ -0001de10: 2032 7420 2020 2020 2020 2020 2020 2020 2t │ │ │ │ +0001de00: 2020 2020 2020 7c0a 7c2b 2032 7420 2020 |.|+ 2t │ │ │ │ +0001de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001de50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001de60: 2020 2038 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +0001de50: 2020 2020 2020 7c0a 7c20 2020 2038 2020 |.| 8 │ │ │ │ +0001de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001dea0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0001dea0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001df00: 2020 2020 3220 2020 2020 2020 2032 2032 2 2 2 │ │ │ │ -0001df10: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0001df20: 3220 3220 2020 2020 2020 2020 2032 2020 2 2 2 │ │ │ │ -0001df30: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ -0001df40: 3220 2020 2020 2020 2020 2032 7c0a 7c34 2 2|.|4 │ │ │ │ -0001df50: 3278 2078 2078 2020 2d20 3338 7820 7820 2x x x - 38x x │ │ │ │ -0001df60: 202d 2033 3778 2078 2078 2020 2b20 3778 - 37x x x + 7x │ │ │ │ -0001df70: 2078 2020 2b20 3238 7820 7820 7820 202d x + 28x x x - │ │ │ │ -0001df80: 2033 3878 2078 2020 2d20 3378 2078 2078 38x x - 3x x x │ │ │ │ -0001df90: 2020 2d20 3239 7820 7820 7820 7c0a 7c20 - 29x x x |.| │ │ │ │ -0001dfa0: 2020 3020 3520 3620 2020 2020 2032 2036 0 5 6 2 6 │ │ │ │ -0001dfb0: 2020 2020 2020 3220 3320 3620 2020 2020 2 3 6 │ │ │ │ -0001dfc0: 3320 3620 2020 2020 2032 2034 2036 2020 3 6 2 4 6 │ │ │ │ -0001dfd0: 2020 2020 3420 3620 2020 2020 3220 3520 4 6 2 5 │ │ │ │ -0001dfe0: 3620 2020 2020 2033 2035 2036 7c0a 7c2d 6 3 5 6|.|- │ │ │ │ +0001def0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3220 ------|.| 2 │ │ │ │ +0001df00: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ +0001df10: 2020 2020 3220 2020 2020 3220 3220 2020 2 2 2 │ │ │ │ +0001df20: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ +0001df30: 3220 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +0001df40: 2020 2020 2032 7c0a 7c34 3278 2078 2078 2|.|42x x x │ │ │ │ +0001df50: 2020 2d20 3338 7820 7820 202d 2033 3778 - 38x x - 37x │ │ │ │ +0001df60: 2078 2078 2020 2b20 3778 2078 2020 2b20 x x + 7x x + │ │ │ │ +0001df70: 3238 7820 7820 7820 202d 2033 3878 2078 28x x x - 38x x │ │ │ │ +0001df80: 2020 2d20 3378 2078 2078 2020 2d20 3239 - 3x x x - 29 │ │ │ │ +0001df90: 7820 7820 7820 7c0a 7c20 2020 3020 3520 x x x |.| 0 5 │ │ │ │ +0001dfa0: 3620 2020 2020 2032 2036 2020 2020 2020 6 2 6 │ │ │ │ +0001dfb0: 3220 3320 3620 2020 2020 3320 3620 2020 2 3 6 3 6 │ │ │ │ +0001dfc0: 2020 2032 2034 2036 2020 2020 2020 3420 2 4 6 4 │ │ │ │ +0001dfd0: 3620 2020 2020 3220 3520 3620 2020 2020 6 2 5 6 │ │ │ │ +0001dfe0: 2033 2035 2036 7c0a 7c2d 2d2d 2d2d 2d2d 3 5 6|.|------- │ │ │ │ 0001dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001e040: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ -0001e050: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e060: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e070: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -0001e080: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001e090: 2034 3778 2078 2078 2020 2b20 3336 7820 47x x x + 36x │ │ │ │ -0001e0a0: 7820 202b 2033 3078 2078 2078 2078 2020 x + 30x x x x │ │ │ │ -0001e0b0: 2d20 3232 7820 7820 7820 202d 2032 3078 - 22x x x - 20x │ │ │ │ -0001e0c0: 2078 2078 2078 2020 2d20 3431 7820 7820 x x x - 41x x │ │ │ │ -0001e0d0: 7820 202d 2020 2020 2020 2020 7c0a 7c20 x - |.| │ │ │ │ -0001e0e0: 2020 2020 3420 3520 3620 2020 2020 2035 4 5 6 5 │ │ │ │ -0001e0f0: 2036 2020 2020 2020 3020 3120 3220 3720 6 0 1 2 7 │ │ │ │ -0001e100: 2020 2020 2031 2032 2037 2020 2020 2020 1 2 7 │ │ │ │ -0001e110: 3120 3220 3320 3720 2020 2020 2031 2033 1 2 3 7 1 3 │ │ │ │ -0001e120: 2037 2020 2020 2020 2020 2020 7c0a 7c2d 7 |.|- │ │ │ │ +0001e030: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001e040: 2020 3220 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ +0001e050: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0001e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e070: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0001e080: 2020 2020 2020 7c0a 7c2d 2034 3778 2078 |.|- 47x x │ │ │ │ +0001e090: 2078 2020 2b20 3336 7820 7820 202b 2033 x + 36x x + 3 │ │ │ │ +0001e0a0: 3078 2078 2078 2078 2020 2d20 3232 7820 0x x x x - 22x │ │ │ │ +0001e0b0: 7820 7820 202d 2032 3078 2078 2078 2078 x x - 20x x x x │ │ │ │ +0001e0c0: 2020 2d20 3431 7820 7820 7820 202d 2020 - 41x x x - │ │ │ │ +0001e0d0: 2020 2020 2020 7c0a 7c20 2020 2020 3420 |.| 4 │ │ │ │ +0001e0e0: 3520 3620 2020 2020 2035 2036 2020 2020 5 6 5 6 │ │ │ │ +0001e0f0: 2020 3020 3120 3220 3720 2020 2020 2031 0 1 2 7 1 │ │ │ │ +0001e100: 2032 2037 2020 2020 2020 3120 3220 3320 2 7 1 2 3 │ │ │ │ +0001e110: 3720 2020 2020 2031 2033 2037 2020 2020 7 1 3 7 │ │ │ │ +0001e120: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001e180: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e170: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 2020 ------|.| 2 │ │ │ │ +0001e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0001e1a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e1c0: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0001e1d0: 3078 2078 2078 2020 2b20 3232 7820 7820 0x x x + 22x x │ │ │ │ -0001e1e0: 7820 7820 202b 2032 3078 2078 2078 2078 x x + 20x x x x │ │ │ │ -0001e1f0: 2020 2d20 3478 2078 2078 2020 2b20 3236 - 4x x x + 26 │ │ │ │ -0001e200: 7820 7820 7820 7820 202b 2034 3178 2078 x x x x + 41x x │ │ │ │ -0001e210: 2078 2078 2020 2d20 2020 2020 7c0a 7c20 x x - |.| │ │ │ │ -0001e220: 2020 3020 3420 3720 2020 2020 2030 2031 0 4 7 0 1 │ │ │ │ -0001e230: 2034 2037 2020 2020 2020 3020 3320 3420 4 7 0 3 4 │ │ │ │ -0001e240: 3720 2020 2020 3320 3420 3720 2020 2020 7 3 4 7 │ │ │ │ -0001e250: 2031 2032 2035 2037 2020 2020 2020 3020 1 2 5 7 0 │ │ │ │ -0001e260: 3320 3520 3720 2020 2020 2020 7c0a 7c2d 3 5 7 |.|- │ │ │ │ +0001e1c0: 2020 2020 2020 7c0a 7c33 3078 2078 2078 |.|30x x x │ │ │ │ +0001e1d0: 2020 2b20 3232 7820 7820 7820 7820 202b + 22x x x x + │ │ │ │ +0001e1e0: 2032 3078 2078 2078 2078 2020 2d20 3478 20x x x x - 4x │ │ │ │ +0001e1f0: 2078 2078 2020 2b20 3236 7820 7820 7820 x x + 26x x x │ │ │ │ +0001e200: 7820 202b 2034 3178 2078 2078 2078 2020 x + 41x x x x │ │ │ │ +0001e210: 2d20 2020 2020 7c0a 7c20 2020 3020 3420 - |.| 0 4 │ │ │ │ +0001e220: 3720 2020 2020 2030 2031 2034 2037 2020 7 0 1 4 7 │ │ │ │ +0001e230: 2020 2020 3020 3320 3420 3720 2020 2020 0 3 4 7 │ │ │ │ +0001e240: 3320 3420 3720 2020 2020 2031 2032 2035 3 4 7 1 2 5 │ │ │ │ +0001e250: 2037 2020 2020 2020 3020 3320 3520 3720 7 0 3 5 7 │ │ │ │ +0001e260: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0001e2b0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e2f0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0001e300: 2020 3220 2020 2020 2020 2020 7c0a 7c32 2 |.|2 │ │ │ │ -0001e310: 3878 2078 2078 2078 2020 2b20 3478 2078 8x x x x + 4x x │ │ │ │ -0001e320: 2078 2078 2020 2d20 3236 7820 7820 7820 x x - 26x x x │ │ │ │ -0001e330: 7820 202b 2031 3278 2078 2078 2078 2020 x + 12x x x x │ │ │ │ -0001e340: 2b20 3238 7820 7820 7820 202d 2031 3278 + 28x x x - 12x │ │ │ │ -0001e350: 2078 2078 2020 2d20 2020 2020 7c0a 7c20 x x - |.| │ │ │ │ -0001e360: 2020 3120 3320 3520 3720 2020 2020 3220 1 3 5 7 2 │ │ │ │ -0001e370: 3320 3520 3720 2020 2020 2030 2034 2035 3 5 7 0 4 5 │ │ │ │ -0001e380: 2037 2020 2020 2020 3320 3420 3520 3720 7 3 4 5 7 │ │ │ │ -0001e390: 2020 2020 2030 2035 2037 2020 2020 2020 0 5 7 │ │ │ │ -0001e3a0: 3220 3520 3720 2020 2020 2020 7c0a 7c2d 2 5 7 |.|- │ │ │ │ +0001e2f0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0001e300: 2020 2020 2020 7c0a 7c32 3878 2078 2078 |.|28x x x │ │ │ │ +0001e310: 2078 2020 2b20 3478 2078 2078 2078 2020 x + 4x x x x │ │ │ │ +0001e320: 2d20 3236 7820 7820 7820 7820 202b 2031 - 26x x x x + 1 │ │ │ │ +0001e330: 3278 2078 2078 2078 2020 2b20 3238 7820 2x x x x + 28x │ │ │ │ +0001e340: 7820 7820 202d 2031 3278 2078 2078 2020 x x - 12x x x │ │ │ │ +0001e350: 2d20 2020 2020 7c0a 7c20 2020 3120 3320 - |.| 1 3 │ │ │ │ +0001e360: 3520 3720 2020 2020 3220 3320 3520 3720 5 7 2 3 5 7 │ │ │ │ +0001e370: 2020 2020 2030 2034 2035 2037 2020 2020 0 4 5 7 │ │ │ │ +0001e380: 2020 3320 3420 3520 3720 2020 2020 2030 3 4 5 7 0 │ │ │ │ +0001e390: 2035 2037 2020 2020 2020 3220 3520 3720 5 7 2 5 7 │ │ │ │ +0001e3a0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0001e3f0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e430: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001e440: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -0001e450: 3178 2078 2078 2078 2020 2d20 3238 7820 1x x x x - 28x │ │ │ │ -0001e460: 7820 7820 7820 202b 2033 3778 2078 2078 x x x + 37x x x │ │ │ │ -0001e470: 2078 2020 2b20 3231 7820 7820 7820 7820 x + 21x x x x │ │ │ │ -0001e480: 202d 2031 3178 2078 2078 2020 2d20 3238 - 11x x x - 28 │ │ │ │ -0001e490: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -0001e4a0: 2020 3020 3220 3620 3720 2020 2020 2031 0 2 6 7 1 │ │ │ │ -0001e4b0: 2032 2036 2037 2020 2020 2020 3020 3320 2 6 7 0 3 │ │ │ │ -0001e4c0: 3620 3720 2020 2020 2032 2033 2036 2037 6 7 2 3 6 7 │ │ │ │ -0001e4d0: 2020 2020 2020 3320 3620 3720 2020 2020 3 6 7 │ │ │ │ -0001e4e0: 2030 2034 2036 2037 2020 2020 7c0a 7c2d 0 4 6 7 |.|- │ │ │ │ +0001e430: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e440: 2020 2020 2020 7c0a 7c32 3178 2078 2078 |.|21x x x │ │ │ │ +0001e450: 2078 2020 2d20 3238 7820 7820 7820 7820 x - 28x x x x │ │ │ │ +0001e460: 202b 2033 3778 2078 2078 2078 2020 2b20 + 37x x x x + │ │ │ │ +0001e470: 3231 7820 7820 7820 7820 202d 2031 3178 21x x x x - 11x │ │ │ │ +0001e480: 2078 2078 2020 2d20 3238 7820 7820 7820 x x - 28x x x │ │ │ │ +0001e490: 7820 202d 2020 7c0a 7c20 2020 3020 3220 x - |.| 0 2 │ │ │ │ +0001e4a0: 3620 3720 2020 2020 2031 2032 2036 2037 6 7 1 2 6 7 │ │ │ │ +0001e4b0: 2020 2020 2020 3020 3320 3620 3720 2020 0 3 6 7 │ │ │ │ +0001e4c0: 2020 2032 2033 2036 2037 2020 2020 2020 2 3 6 7 │ │ │ │ +0001e4d0: 3320 3620 3720 2020 2020 2030 2034 2036 3 6 7 0 4 6 │ │ │ │ +0001e4e0: 2037 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 |.|------- │ │ │ │ 0001e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0001e530: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e580: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -0001e590: 3178 2078 2078 2078 2020 2b20 3378 2078 1x x x x + 3x x │ │ │ │ -0001e5a0: 2078 2078 2020 2b20 3437 7820 7820 7820 x x + 47x x x │ │ │ │ -0001e5b0: 7820 202b 2034 3878 2078 2078 2078 2020 x + 48x x x x │ │ │ │ -0001e5c0: 2b20 3278 2078 2078 2078 2020 2d20 3435 + 2x x x x - 45 │ │ │ │ -0001e5d0: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -0001e5e0: 2020 3120 3420 3620 3720 2020 2020 3020 1 4 6 7 0 │ │ │ │ -0001e5f0: 3520 3620 3720 2020 2020 2031 2035 2036 5 6 7 1 5 6 │ │ │ │ -0001e600: 2037 2020 2020 2020 3220 3520 3620 3720 7 2 5 6 7 │ │ │ │ -0001e610: 2020 2020 3320 3520 3620 3720 2020 2020 3 5 6 7 │ │ │ │ -0001e620: 2034 2035 2036 2037 2020 2020 7c0a 7c2d 4 5 6 7 |.|- │ │ │ │ +0001e580: 2020 2020 2020 7c0a 7c32 3178 2078 2078 |.|21x x x │ │ │ │ +0001e590: 2078 2020 2b20 3378 2078 2078 2078 2020 x + 3x x x x │ │ │ │ +0001e5a0: 2b20 3437 7820 7820 7820 7820 202b 2034 + 47x x x x + 4 │ │ │ │ +0001e5b0: 3878 2078 2078 2078 2020 2b20 3278 2078 8x x x x + 2x x │ │ │ │ +0001e5c0: 2078 2078 2020 2d20 3435 7820 7820 7820 x x - 45x x x │ │ │ │ +0001e5d0: 7820 202d 2020 7c0a 7c20 2020 3120 3420 x - |.| 1 4 │ │ │ │ +0001e5e0: 3620 3720 2020 2020 3020 3520 3620 3720 6 7 0 5 6 7 │ │ │ │ +0001e5f0: 2020 2020 2031 2035 2036 2037 2020 2020 1 5 6 7 │ │ │ │ +0001e600: 2020 3220 3520 3620 3720 2020 2020 3320 2 5 6 7 3 │ │ │ │ +0001e610: 3520 3620 3720 2020 2020 2034 2035 2036 5 6 7 4 5 6 │ │ │ │ +0001e620: 2037 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 7 |.|------- │ │ │ │ 0001e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001e680: 2020 3220 2020 2020 2020 2020 2032 2032 2 2 2 │ │ │ │ -0001e690: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0001e6a0: 2032 2032 2020 2020 2020 2020 2020 3220 2 2 2 │ │ │ │ -0001e6b0: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001e6c0: 2020 3220 2020 2020 2020 2020 7c0a 7c33 2 |.|3 │ │ │ │ -0001e6d0: 3378 2078 2078 2020 2d20 3338 7820 7820 3x x x - 38x x │ │ │ │ -0001e6e0: 202b 2032 3878 2078 2078 2020 2d20 3338 + 28x x x - 38 │ │ │ │ -0001e6f0: 7820 7820 202d 2032 3178 2078 2078 2020 x x - 21x x x │ │ │ │ -0001e700: 2b20 3438 7820 7820 202d 2034 3878 2078 + 48x x - 48x x │ │ │ │ -0001e710: 2078 2020 2b20 2020 2020 2020 7c0a 7c20 x + |.| │ │ │ │ -0001e720: 2020 3520 3620 3720 2020 2020 2030 2037 5 6 7 0 7 │ │ │ │ -0001e730: 2020 2020 2020 3020 3120 3720 2020 2020 0 1 7 │ │ │ │ -0001e740: 2031 2037 2020 2020 2020 3020 3320 3720 1 7 0 3 7 │ │ │ │ -0001e750: 2020 2020 2033 2037 2020 2020 2020 3020 3 7 0 │ │ │ │ -0001e760: 3520 3720 2020 2020 2020 2020 7c0a 7c2d 5 7 |.|- │ │ │ │ +0001e670: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 2020 ------|.| 2 │ │ │ │ +0001e680: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ +0001e690: 2020 2020 3220 2020 2020 2032 2032 2020 2 2 2 │ │ │ │ +0001e6a0: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ +0001e6b0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0001e6c0: 2020 2020 2020 7c0a 7c33 3378 2078 2078 |.|33x x x │ │ │ │ +0001e6d0: 2020 2d20 3338 7820 7820 202b 2032 3878 - 38x x + 28x │ │ │ │ +0001e6e0: 2078 2078 2020 2d20 3338 7820 7820 202d x x - 38x x - │ │ │ │ +0001e6f0: 2032 3178 2078 2078 2020 2b20 3438 7820 21x x x + 48x │ │ │ │ +0001e700: 7820 202d 2034 3878 2078 2078 2020 2b20 x - 48x x x + │ │ │ │ +0001e710: 2020 2020 2020 7c0a 7c20 2020 3520 3620 |.| 5 6 │ │ │ │ +0001e720: 3720 2020 2020 2030 2037 2020 2020 2020 7 0 7 │ │ │ │ +0001e730: 3020 3120 3720 2020 2020 2031 2037 2020 0 1 7 1 7 │ │ │ │ +0001e740: 2020 2020 3020 3320 3720 2020 2020 2033 0 3 7 3 │ │ │ │ +0001e750: 2037 2020 2020 2020 3020 3520 3720 2020 7 0 5 7 │ │ │ │ +0001e760: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001e7c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0001e7d0: 2032 2020 2020 2020 3220 3220 2020 2020 2 2 2 │ │ │ │ -0001e7e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0001e7f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0001e800: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0001e810: 3578 2078 2078 2020 2d20 3437 7820 7820 5x x x - 47x x │ │ │ │ -0001e820: 7820 202d 2034 3878 2078 2020 2b20 3131 x - 48x x + 11 │ │ │ │ -0001e830: 7820 7820 7820 7820 202d 2031 3078 2078 x x x x - 10x x │ │ │ │ -0001e840: 2078 2020 2b20 3230 7820 7820 7820 202b x + 20x x x + │ │ │ │ -0001e850: 2031 3178 2078 2078 2078 2020 7c0a 7c20 11x x x x |.| │ │ │ │ -0001e860: 2020 3120 3520 3720 2020 2020 2033 2035 1 5 7 3 5 │ │ │ │ -0001e870: 2037 2020 2020 2020 3520 3720 2020 2020 7 5 7 │ │ │ │ -0001e880: 2030 2031 2032 2038 2020 2020 2020 3120 0 1 2 8 1 │ │ │ │ -0001e890: 3220 3820 2020 2020 2031 2032 2038 2020 2 8 1 2 8 │ │ │ │ -0001e8a0: 2020 2020 3020 3120 3320 3820 7c0a 7c2d 0 1 3 8 |.|- │ │ │ │ +0001e7b0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001e7c0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0001e7d0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +0001e7e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0001e7f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0001e800: 2020 2020 2020 7c0a 7c34 3578 2078 2078 |.|45x x x │ │ │ │ +0001e810: 2020 2d20 3437 7820 7820 7820 202d 2034 - 47x x x - 4 │ │ │ │ +0001e820: 3878 2078 2020 2b20 3131 7820 7820 7820 8x x + 11x x x │ │ │ │ +0001e830: 7820 202d 2031 3078 2078 2078 2020 2b20 x - 10x x x + │ │ │ │ +0001e840: 3230 7820 7820 7820 202b 2031 3178 2078 20x x x + 11x x │ │ │ │ +0001e850: 2078 2078 2020 7c0a 7c20 2020 3120 3520 x x |.| 1 5 │ │ │ │ +0001e860: 3720 2020 2020 2033 2035 2037 2020 2020 7 3 5 7 │ │ │ │ +0001e870: 2020 3520 3720 2020 2020 2030 2031 2032 5 7 0 1 2 │ │ │ │ +0001e880: 2038 2020 2020 2020 3120 3220 3820 2020 8 1 2 8 │ │ │ │ +0001e890: 2020 2031 2032 2038 2020 2020 2020 3020 1 2 8 0 │ │ │ │ +0001e8a0: 3120 3320 3820 7c0a 7c2d 2d2d 2d2d 2d2d 1 3 8 |.|------- │ │ │ │ 0001e8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001e8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001e900: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0001e910: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0001e8f0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3220 ------|.| 2 │ │ │ │ +0001e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001e910: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0001e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001e940: 2020 2020 2020 2020 2020 2020 7c0a 7c2b |.|+ │ │ │ │ -0001e950: 2034 3278 2078 2078 2020 2b20 3431 7820 42x x x + 41x │ │ │ │ -0001e960: 7820 7820 7820 202d 2031 3178 2078 2078 x x x - 11x x x │ │ │ │ -0001e970: 2020 2b20 3130 7820 7820 7820 7820 202d + 10x x x x - │ │ │ │ -0001e980: 2032 3078 2078 2078 2078 2020 2d20 3236 20x x x x - 26 │ │ │ │ -0001e990: 7820 7820 7820 7820 202b 2020 7c0a 7c20 x x x x + |.| │ │ │ │ -0001e9a0: 2020 2020 3120 3320 3820 2020 2020 2031 1 3 8 1 │ │ │ │ -0001e9b0: 2032 2033 2038 2020 2020 2020 3020 3420 2 3 8 0 4 │ │ │ │ -0001e9c0: 3820 2020 2020 2030 2031 2034 2038 2020 8 0 1 4 8 │ │ │ │ -0001e9d0: 2020 2020 3020 3220 3420 3820 2020 2020 0 2 4 8 │ │ │ │ -0001e9e0: 2031 2032 2034 2038 2020 2020 7c0a 7c2d 1 2 4 8 |.|- │ │ │ │ +0001e940: 2020 2020 2020 7c0a 7c2b 2034 3278 2078 |.|+ 42x x │ │ │ │ +0001e950: 2078 2020 2b20 3431 7820 7820 7820 7820 x + 41x x x x │ │ │ │ +0001e960: 202d 2031 3178 2078 2078 2020 2b20 3130 - 11x x x + 10 │ │ │ │ +0001e970: 7820 7820 7820 7820 202d 2032 3078 2078 x x x x - 20x x │ │ │ │ +0001e980: 2078 2078 2020 2d20 3236 7820 7820 7820 x x - 26x x x │ │ │ │ +0001e990: 7820 202b 2020 7c0a 7c20 2020 2020 3120 x + |.| 1 │ │ │ │ +0001e9a0: 3320 3820 2020 2020 2031 2032 2033 2038 3 8 1 2 3 8 │ │ │ │ +0001e9b0: 2020 2020 2020 3020 3420 3820 2020 2020 0 4 8 │ │ │ │ +0001e9c0: 2030 2031 2034 2038 2020 2020 2020 3020 0 1 4 8 0 │ │ │ │ +0001e9d0: 3220 3420 3820 2020 2020 2031 2032 2034 2 4 8 1 2 4 │ │ │ │ +0001e9e0: 2038 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 0001e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0001ea30: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ea50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0001ea60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0001ea70: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0001ea80: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -0001ea90: 3878 2078 2078 2078 2020 2b20 3478 2078 8x x x x + 4x x │ │ │ │ -0001eaa0: 2078 2078 2020 2b20 3236 7820 7820 7820 x x + 26x x x │ │ │ │ -0001eab0: 202d 2031 3278 2078 2078 2020 2d20 3131 - 12x x x - 11 │ │ │ │ -0001eac0: 7820 7820 7820 202d 2034 3278 2078 2078 x x x - 42x x x │ │ │ │ -0001ead0: 2078 2020 2d20 2020 2020 2020 7c0a 7c20 x - |.| │ │ │ │ -0001eae0: 2020 3120 3320 3420 3820 2020 2020 3220 1 3 4 8 2 │ │ │ │ -0001eaf0: 3320 3420 3820 2020 2020 2030 2034 2038 3 4 8 0 4 8 │ │ │ │ -0001eb00: 2020 2020 2020 3320 3420 3820 2020 2020 3 4 8 │ │ │ │ -0001eb10: 2030 2035 2038 2020 2020 2020 3020 3120 0 5 8 0 1 │ │ │ │ -0001eb20: 3520 3820 2020 2020 2020 2020 7c0a 7c2d 5 8 |.|- │ │ │ │ +0001ea50: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001ea60: 2020 3220 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +0001ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001ea80: 2020 2020 2020 7c0a 7c32 3878 2078 2078 |.|28x x x │ │ │ │ +0001ea90: 2078 2020 2b20 3478 2078 2078 2078 2020 x + 4x x x x │ │ │ │ +0001eaa0: 2b20 3236 7820 7820 7820 202d 2031 3278 + 26x x x - 12x │ │ │ │ +0001eab0: 2078 2078 2020 2d20 3131 7820 7820 7820 x x - 11x x x │ │ │ │ +0001eac0: 202d 2034 3278 2078 2078 2078 2020 2d20 - 42x x x x - │ │ │ │ +0001ead0: 2020 2020 2020 7c0a 7c20 2020 3120 3320 |.| 1 3 │ │ │ │ +0001eae0: 3420 3820 2020 2020 3220 3320 3420 3820 4 8 2 3 4 8 │ │ │ │ +0001eaf0: 2020 2020 2030 2034 2038 2020 2020 2020 0 4 8 │ │ │ │ +0001eb00: 3320 3420 3820 2020 2020 2030 2035 2038 3 4 8 0 5 8 │ │ │ │ +0001eb10: 2020 2020 2020 3020 3120 3520 3820 2020 0 1 5 8 │ │ │ │ +0001eb20: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001eb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001eb80: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0001eb70: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001eb80: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0001eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ebc0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0001ebd0: 3178 2078 2078 2078 2020 2d20 3478 2078 1x x x x - 4x x │ │ │ │ -0001ebe0: 2078 2020 2d20 3238 7820 7820 7820 7820 x - 28x x x x │ │ │ │ -0001ebf0: 202b 2031 3278 2078 2078 2078 2020 2b20 + 12x x x x + │ │ │ │ -0001ec00: 3337 7820 7820 7820 7820 202b 2033 7820 37x x x x + 3x │ │ │ │ -0001ec10: 7820 7820 7820 202d 2020 2020 7c0a 7c20 x x x - |.| │ │ │ │ -0001ec20: 2020 3020 3220 3520 3820 2020 2020 3220 0 2 5 8 2 │ │ │ │ -0001ec30: 3520 3820 2020 2020 2030 2034 2035 2038 5 8 0 4 5 8 │ │ │ │ -0001ec40: 2020 2020 2020 3220 3420 3520 3820 2020 2 4 5 8 │ │ │ │ -0001ec50: 2020 2030 2032 2036 2038 2020 2020 2031 0 2 6 8 1 │ │ │ │ -0001ec60: 2032 2036 2038 2020 2020 2020 7c0a 7c2d 2 6 8 |.|- │ │ │ │ +0001ebc0: 2020 2020 2020 7c0a 7c34 3178 2078 2078 |.|41x x x │ │ │ │ +0001ebd0: 2078 2020 2d20 3478 2078 2078 2020 2d20 x - 4x x x - │ │ │ │ +0001ebe0: 3238 7820 7820 7820 7820 202b 2031 3278 28x x x x + 12x │ │ │ │ +0001ebf0: 2078 2078 2078 2020 2b20 3337 7820 7820 x x x + 37x x │ │ │ │ +0001ec00: 7820 7820 202b 2033 7820 7820 7820 7820 x x + 3x x x x │ │ │ │ +0001ec10: 202d 2020 2020 7c0a 7c20 2020 3020 3220 - |.| 0 2 │ │ │ │ +0001ec20: 3520 3820 2020 2020 3220 3520 3820 2020 5 8 2 5 8 │ │ │ │ +0001ec30: 2020 2030 2034 2035 2038 2020 2020 2020 0 4 5 8 │ │ │ │ +0001ec40: 3220 3420 3520 3820 2020 2020 2030 2032 2 4 5 8 0 2 │ │ │ │ +0001ec50: 2036 2038 2020 2020 2031 2032 2036 2038 6 8 1 2 6 8 │ │ │ │ +0001ec60: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001ecc0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001ecb0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 3220 2020 ------|.| 2 │ │ │ │ +0001ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ed00: 2020 2020 2020 2020 2020 2020 7c0a 7c32 |.|2 │ │ │ │ -0001ed10: 3178 2078 2078 2020 2d20 3134 7820 7820 1x x x - 14x x │ │ │ │ -0001ed20: 7820 7820 202b 2032 3978 2078 2078 2078 x x + 29x x x x │ │ │ │ -0001ed30: 2020 2b20 3131 7820 7820 7820 7820 202b + 11x x x x + │ │ │ │ -0001ed40: 2034 3778 2078 2078 2078 2020 2d20 3438 47x x x x - 48 │ │ │ │ -0001ed50: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -0001ed60: 2020 3220 3620 3820 2020 2020 2030 2033 2 6 8 0 3 │ │ │ │ -0001ed70: 2036 2038 2020 2020 2020 3120 3320 3620 6 8 1 3 6 │ │ │ │ -0001ed80: 3820 2020 2020 2032 2033 2036 2038 2020 8 2 3 6 8 │ │ │ │ -0001ed90: 2020 2020 3120 3420 3620 3820 2020 2020 1 4 6 8 │ │ │ │ -0001eda0: 2032 2034 2036 2038 2020 2020 7c0a 7c2d 2 4 6 8 |.|- │ │ │ │ +0001ed00: 2020 2020 2020 7c0a 7c32 3178 2078 2078 |.|21x x x │ │ │ │ +0001ed10: 2020 2d20 3134 7820 7820 7820 7820 202b - 14x x x x + │ │ │ │ +0001ed20: 2032 3978 2078 2078 2078 2020 2b20 3131 29x x x x + 11 │ │ │ │ +0001ed30: 7820 7820 7820 7820 202b 2034 3778 2078 x x x x + 47x x │ │ │ │ +0001ed40: 2078 2078 2020 2d20 3438 7820 7820 7820 x x - 48x x x │ │ │ │ +0001ed50: 7820 202d 2020 7c0a 7c20 2020 3220 3620 x - |.| 2 6 │ │ │ │ +0001ed60: 3820 2020 2020 2030 2033 2036 2038 2020 8 0 3 6 8 │ │ │ │ +0001ed70: 2020 2020 3120 3320 3620 3820 2020 2020 1 3 6 8 │ │ │ │ +0001ed80: 2032 2033 2036 2038 2020 2020 2020 3120 2 3 6 8 1 │ │ │ │ +0001ed90: 3420 3620 3820 2020 2020 2032 2034 2036 4 6 8 2 4 6 │ │ │ │ +0001eda0: 2038 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 0001edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001ee00: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0001edf0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001ee00: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0001ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ee40: 3220 2020 2020 2020 2020 2020 7c0a 7c32 2 |.|2 │ │ │ │ -0001ee50: 7820 7820 7820 7820 202b 2034 3578 2078 x x x x + 45x x │ │ │ │ -0001ee60: 2078 2020 2b20 3239 7820 7820 7820 7820 x + 29x x x x │ │ │ │ -0001ee70: 202b 2032 3578 2078 2078 2078 2020 2b20 + 25x x x x + │ │ │ │ -0001ee80: 3333 7820 7820 7820 7820 202d 2033 3778 33x x x x - 37x │ │ │ │ -0001ee90: 2078 2078 2020 2d20 2020 2020 7c0a 7c20 x x - |.| │ │ │ │ -0001eea0: 2033 2034 2036 2038 2020 2020 2020 3420 3 4 6 8 4 │ │ │ │ -0001eeb0: 3620 3820 2020 2020 2030 2035 2036 2038 6 8 0 5 6 8 │ │ │ │ -0001eec0: 2020 2020 2020 3120 3520 3620 3820 2020 1 5 6 8 │ │ │ │ -0001eed0: 2020 2034 2035 2036 2038 2020 2020 2020 4 5 6 8 │ │ │ │ -0001eee0: 3020 3720 3820 2020 2020 2020 7c0a 7c2d 0 7 8 |.|- │ │ │ │ +0001ee30: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0001ee40: 2020 2020 2020 7c0a 7c32 7820 7820 7820 |.|2x x x │ │ │ │ +0001ee50: 7820 202b 2034 3578 2078 2078 2020 2b20 x + 45x x x + │ │ │ │ +0001ee60: 3239 7820 7820 7820 7820 202b 2032 3578 29x x x x + 25x │ │ │ │ +0001ee70: 2078 2078 2078 2020 2b20 3333 7820 7820 x x x + 33x x │ │ │ │ +0001ee80: 7820 7820 202d 2033 3778 2078 2078 2020 x x - 37x x x │ │ │ │ +0001ee90: 2d20 2020 2020 7c0a 7c20 2033 2034 2036 - |.| 3 4 6 │ │ │ │ +0001eea0: 2038 2020 2020 2020 3420 3620 3820 2020 8 4 6 8 │ │ │ │ +0001eeb0: 2020 2030 2035 2036 2038 2020 2020 2020 0 5 6 8 │ │ │ │ +0001eec0: 3120 3520 3620 3820 2020 2020 2034 2035 1 5 6 8 4 5 │ │ │ │ +0001eed0: 2036 2038 2020 2020 2020 3020 3720 3820 6 8 0 7 8 │ │ │ │ +0001eee0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001ef40: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0001ef30: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0001ef40: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0001ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ef80: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0001ef90: 7820 7820 7820 7820 202d 2034 3778 2078 x x x x - 47x x │ │ │ │ -0001efa0: 2078 2020 2b20 3231 7820 7820 7820 7820 x + 21x x x x │ │ │ │ -0001efb0: 202b 2031 3178 2078 2078 2078 2020 2b20 + 11x x x x + │ │ │ │ -0001efc0: 7820 7820 7820 7820 202b 2034 3878 2078 x x x x + 48x x │ │ │ │ -0001efd0: 2078 2078 2020 2d20 2020 2020 7c0a 7c20 x x - |.| │ │ │ │ -0001efe0: 2030 2031 2037 2038 2020 2020 2020 3120 0 1 7 8 1 │ │ │ │ -0001eff0: 3720 3820 2020 2020 2030 2032 2037 2038 7 8 0 2 7 8 │ │ │ │ -0001f000: 2020 2020 2020 3020 3320 3720 3820 2020 0 3 7 8 │ │ │ │ -0001f010: 2032 2033 2037 2038 2020 2020 2020 3020 2 3 7 8 0 │ │ │ │ -0001f020: 3420 3720 3820 2020 2020 2020 7c0a 7c2d 4 7 8 |.|- │ │ │ │ +0001ef80: 2020 2020 2020 7c0a 7c33 7820 7820 7820 |.|3x x x │ │ │ │ +0001ef90: 7820 202d 2034 3778 2078 2078 2020 2b20 x - 47x x x + │ │ │ │ +0001efa0: 3231 7820 7820 7820 7820 202b 2031 3178 21x x x x + 11x │ │ │ │ +0001efb0: 2078 2078 2078 2020 2b20 7820 7820 7820 x x x + x x x │ │ │ │ +0001efc0: 7820 202b 2034 3878 2078 2078 2078 2020 x + 48x x x x │ │ │ │ +0001efd0: 2d20 2020 2020 7c0a 7c20 2030 2031 2037 - |.| 0 1 7 │ │ │ │ +0001efe0: 2038 2020 2020 2020 3120 3720 3820 2020 8 1 7 8 │ │ │ │ +0001eff0: 2020 2030 2032 2037 2038 2020 2020 2020 0 2 7 8 │ │ │ │ +0001f000: 3020 3320 3720 3820 2020 2032 2033 2037 0 3 7 8 2 3 7 │ │ │ │ +0001f010: 2038 2020 2020 2020 3020 3420 3720 3820 8 0 4 7 8 │ │ │ │ +0001f020: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0001f030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0001f070: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0001f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f0c0: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0001f0d0: 3578 2078 2078 2078 2020 2b20 3437 7820 5x x x x + 47x │ │ │ │ -0001f0e0: 7820 7820 7820 202d 2032 7820 7820 7820 x x x - 2x x x │ │ │ │ -0001f0f0: 7820 202b 2033 3378 2078 2078 2078 2020 x + 33x x x x │ │ │ │ -0001f100: 2b20 3437 7820 7820 7820 7820 202d 2078 + 47x x x x - x │ │ │ │ -0001f110: 2078 2078 2078 2020 2b20 2020 7c0a 7c20 x x x + |.| │ │ │ │ -0001f120: 2020 3120 3420 3720 3820 2020 2020 2033 1 4 7 8 3 │ │ │ │ -0001f130: 2034 2037 2038 2020 2020 2030 2035 2037 4 7 8 0 5 7 │ │ │ │ -0001f140: 2038 2020 2020 2020 3120 3520 3720 3820 8 1 5 7 8 │ │ │ │ -0001f150: 2020 2020 2032 2035 2037 2038 2020 2020 2 5 7 8 │ │ │ │ -0001f160: 3420 3520 3720 3820 2020 2020 7c0a 7c2d 4 5 7 8 |.|- │ │ │ │ +0001f0c0: 2020 2020 2020 7c0a 7c34 3578 2078 2078 |.|45x x x │ │ │ │ +0001f0d0: 2078 2020 2b20 3437 7820 7820 7820 7820 x + 47x x x x │ │ │ │ +0001f0e0: 202d 2032 7820 7820 7820 7820 202b 2033 - 2x x x x + 3 │ │ │ │ +0001f0f0: 3378 2078 2078 2078 2020 2b20 3437 7820 3x x x x + 47x │ │ │ │ +0001f100: 7820 7820 7820 202d 2078 2078 2078 2078 x x x - x x x x │ │ │ │ +0001f110: 2020 2b20 2020 7c0a 7c20 2020 3120 3420 + |.| 1 4 │ │ │ │ +0001f120: 3720 3820 2020 2020 2033 2034 2037 2038 7 8 3 4 7 8 │ │ │ │ +0001f130: 2020 2020 2030 2035 2037 2038 2020 2020 0 5 7 8 │ │ │ │ +0001f140: 2020 3120 3520 3720 3820 2020 2020 2032 1 5 7 8 2 │ │ │ │ +0001f150: 2035 2037 2038 2020 2020 3420 3520 3720 5 7 8 4 5 7 │ │ │ │ +0001f160: 3820 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 8 |.|------- │ │ │ │ 0001f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001f1c0: 2032 2032 2020 2020 2020 2020 2020 3220 2 2 2 │ │ │ │ -0001f1d0: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -0001f1e0: 2020 3220 2020 2020 2032 2032 2020 2020 2 2 2 │ │ │ │ -0001f1f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0001f200: 3220 2020 2020 2020 2020 2032 7c0a 7c37 2 2|.|7 │ │ │ │ -0001f210: 7820 7820 202d 2032 3978 2078 2078 2020 x x - 29x x x │ │ │ │ -0001f220: 2b20 3336 7820 7820 202d 2031 3178 2078 + 36x x - 11x x │ │ │ │ -0001f230: 2078 2020 2b20 3438 7820 7820 202b 2032 x + 48x x + 2 │ │ │ │ -0001f240: 7820 7820 7820 202d 2033 3378 2078 2078 x x x - 33x x x │ │ │ │ -0001f250: 2020 2d20 3437 7820 7820 7820 7c0a 7c20 - 47x x x |.| │ │ │ │ -0001f260: 2030 2038 2020 2020 2020 3020 3120 3820 0 8 0 1 8 │ │ │ │ -0001f270: 2020 2020 2031 2038 2020 2020 2020 3020 1 8 0 │ │ │ │ -0001f280: 3220 3820 2020 2020 2032 2038 2020 2020 2 8 2 8 │ │ │ │ -0001f290: 2030 2034 2038 2020 2020 2020 3120 3420 0 4 8 1 4 │ │ │ │ -0001f2a0: 3820 2020 2020 2032 2034 2038 7c0a 7c2d 8 2 4 8|.|- │ │ │ │ +0001f1b0: 2d2d 2d2d 2d2d 7c0a 7c20 2032 2032 2020 ------|.| 2 2 │ │ │ │ +0001f1c0: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ +0001f1d0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +0001f1e0: 2020 2032 2032 2020 2020 2020 2020 2032 2 2 2 │ │ │ │ +0001f1f0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0001f200: 2020 2020 2032 7c0a 7c37 7820 7820 202d 2|.|7x x - │ │ │ │ +0001f210: 2032 3978 2078 2078 2020 2b20 3336 7820 29x x x + 36x │ │ │ │ +0001f220: 7820 202d 2031 3178 2078 2078 2020 2b20 x - 11x x x + │ │ │ │ +0001f230: 3438 7820 7820 202b 2032 7820 7820 7820 48x x + 2x x x │ │ │ │ +0001f240: 202d 2033 3378 2078 2078 2020 2d20 3437 - 33x x x - 47 │ │ │ │ +0001f250: 7820 7820 7820 7c0a 7c20 2030 2038 2020 x x x |.| 0 8 │ │ │ │ +0001f260: 2020 2020 3020 3120 3820 2020 2020 2031 0 1 8 1 │ │ │ │ +0001f270: 2038 2020 2020 2020 3020 3220 3820 2020 8 0 2 8 │ │ │ │ +0001f280: 2020 2032 2038 2020 2020 2030 2034 2038 2 8 0 4 8 │ │ │ │ +0001f290: 2020 2020 2020 3120 3420 3820 2020 2020 1 4 8 │ │ │ │ +0001f2a0: 2032 2034 2038 7c0a 7c2d 2d2d 2d2d 2d2d 2 4 8|.|------- │ │ │ │ 0001f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0001f300: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +0001f2f0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 3220 ------|.| 2 │ │ │ │ +0001f300: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f340: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001f350: 2034 3878 2078 2020 2b20 3438 7820 7820 48x x + 48x x │ │ │ │ -0001f360: 7820 7820 202d 2034 3878 2078 2078 2078 x x - 48x x x x │ │ │ │ -0001f370: 2020 2d20 3438 7820 7820 7820 7820 202b - 48x x x x + │ │ │ │ -0001f380: 2034 3878 2078 2078 2078 2020 2b20 3438 48x x x x + 48 │ │ │ │ -0001f390: 7820 7820 7820 7820 202d 2020 7c0a 7c20 x x x x - |.| │ │ │ │ -0001f3a0: 2020 2020 3420 3820 2020 2020 2033 2034 4 8 3 4 │ │ │ │ -0001f3b0: 2036 2039 2020 2020 2020 3220 3520 3620 6 9 2 5 6 │ │ │ │ -0001f3c0: 3920 2020 2020 2031 2033 2037 2039 2020 9 1 3 7 9 │ │ │ │ -0001f3d0: 2020 2020 3020 3520 3720 3920 2020 2020 0 5 7 9 │ │ │ │ -0001f3e0: 2031 2032 2038 2039 2020 2020 7c0a 7c2d 1 2 8 9 |.|- │ │ │ │ +0001f340: 2020 2020 2020 7c0a 7c2d 2034 3878 2078 |.|- 48x x │ │ │ │ +0001f350: 2020 2b20 3438 7820 7820 7820 7820 202d + 48x x x x - │ │ │ │ +0001f360: 2034 3878 2078 2078 2078 2020 2d20 3438 48x x x x - 48 │ │ │ │ +0001f370: 7820 7820 7820 7820 202b 2034 3878 2078 x x x x + 48x x │ │ │ │ +0001f380: 2078 2078 2020 2b20 3438 7820 7820 7820 x x + 48x x x │ │ │ │ +0001f390: 7820 202d 2020 7c0a 7c20 2020 2020 3420 x - |.| 4 │ │ │ │ +0001f3a0: 3820 2020 2020 2033 2034 2036 2039 2020 8 3 4 6 9 │ │ │ │ +0001f3b0: 2020 2020 3220 3520 3620 3920 2020 2020 2 5 6 9 │ │ │ │ +0001f3c0: 2031 2033 2037 2039 2020 2020 2020 3020 1 3 7 9 0 │ │ │ │ +0001f3d0: 3520 3720 3920 2020 2020 2031 2032 2038 5 7 9 1 2 8 │ │ │ │ +0001f3e0: 2039 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 9 |.|------- │ │ │ │ 0001f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c34 ------------|.|4 │ │ │ │ -0001f440: 3878 2078 2078 2078 2020 2020 2020 2020 8x x x x │ │ │ │ +0001f430: 2d2d 2d2d 2d2d 7c0a 7c34 3878 2078 2078 ------|.|48x x x │ │ │ │ +0001f440: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 0001f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f490: 2020 3020 3420 3820 3920 2020 2020 2020 0 4 8 9 │ │ │ │ +0001f480: 2020 2020 2020 7c0a 7c20 2020 3020 3420 |.| 0 4 │ │ │ │ +0001f490: 3820 3920 2020 2020 2020 2020 2020 2020 8 9 │ │ │ │ 0001f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f4d0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001f4d0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001f530: 3420 3a20 6173 7365 7274 2870 6869 202a 4 : assert(phi * │ │ │ │ -0001f540: 2070 7369 203d 3d20 3120 616e 6420 7073 psi == 1 and ps │ │ │ │ -0001f550: 6920 2a20 7068 6920 3d3d 2031 2920 2020 i * phi == 1) │ │ │ │ +0001f520: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6173 ------+.|i4 : as │ │ │ │ +0001f530: 7365 7274 2870 6869 202a 2070 7369 203d sert(phi * psi = │ │ │ │ +0001f540: 3d20 3120 616e 6420 7073 6920 2a20 7068 = 1 and psi * ph │ │ │ │ +0001f550: 6920 3d3d 2031 2920 2020 2020 2020 2020 i == 1) │ │ │ │ 0001f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f570: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001f570: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001f580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001f5d0: 3520 3a20 7469 6d65 2070 7369 2720 3d20 5 : time psi' = │ │ │ │ -0001f5e0: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ -0001f5f0: 7365 4d61 7028 7068 692c 436f 6469 6d42 seMap(phi,CodimB │ │ │ │ -0001f600: 7349 6e76 3d3e 3529 3b20 2020 2020 2020 sInv=>5); │ │ │ │ -0001f610: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001f620: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001f630: 6572 7365 4d61 703a 2073 7465 7020 3120 erseMap: step 1 │ │ │ │ -0001f640: 6f66 2033 2020 2020 2020 2020 2020 2020 of 3 │ │ │ │ +0001f5c0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7469 ------+.|i5 : ti │ │ │ │ +0001f5d0: 6d65 2070 7369 2720 3d20 6170 7072 6f78 me psi' = approx │ │ │ │ +0001f5e0: 696d 6174 6549 6e76 6572 7365 4d61 7028 imateInverseMap( │ │ │ │ +0001f5f0: 7068 692c 436f 6469 6d42 7349 6e76 3d3e phi,CodimBsInv=> │ │ │ │ +0001f600: 3529 3b20 2020 2020 2020 2020 2020 2020 5); │ │ │ │ +0001f610: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001f620: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001f630: 703a 2073 7465 7020 3120 6f66 2033 2020 p: step 1 of 3 │ │ │ │ +0001f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f660: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001f670: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001f680: 6572 7365 4d61 703a 2073 7465 7020 3220 erseMap: step 2 │ │ │ │ -0001f690: 6f66 2033 2020 2020 2020 2020 2020 2020 of 3 │ │ │ │ +0001f660: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001f670: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001f680: 703a 2073 7465 7020 3220 6f66 2033 2020 p: step 2 of 3 │ │ │ │ +0001f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ -0001f6c0: 2d20 6170 7072 6f78 696d 6174 6549 6e76 - approximateInv │ │ │ │ -0001f6d0: 6572 7365 4d61 703a 2073 7465 7020 3320 erseMap: step 3 │ │ │ │ -0001f6e0: 6f66 2033 2020 2020 2020 2020 2020 2020 of 3 │ │ │ │ +0001f6b0: 2020 2020 2020 7c0a 7c2d 2d20 6170 7072 |.|-- appr │ │ │ │ +0001f6c0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0001f6d0: 703a 2073 7465 7020 3320 6f66 2033 2020 p: step 3 of 3 │ │ │ │ +0001f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0001f710: 2d2d 2075 7365 6420 302e 3232 3739 3335 -- used 0.227935 │ │ │ │ -0001f720: 7320 2863 7075 293b 2030 2e31 3632 3333 s (cpu); 0.16233 │ │ │ │ -0001f730: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -0001f740: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -0001f750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0001f700: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +0001f710: 6420 302e 3332 3638 3836 7320 2863 7075 d 0.326886s (cpu │ │ │ │ +0001f720: 293b 2030 2e32 3436 3931 3473 2028 7468 ); 0.246914s (th │ │ │ │ +0001f730: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +0001f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f750: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0001f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f7a0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0001f7b0: 3520 3a20 5261 7469 6f6e 616c 4d61 7020 5 : RationalMap │ │ │ │ -0001f7c0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -0001f7d0: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -0001f7e0: 3820 746f 2068 7970 6572 7375 7266 6163 8 to hypersurfac │ │ │ │ -0001f7f0: 6520 696e 2050 505e 3929 2020 7c0a 2b2d e in PP^9) |.+- │ │ │ │ +0001f7a0: 2020 2020 2020 7c0a 7c6f 3520 3a20 5261 |.|o5 : Ra │ │ │ │ +0001f7b0: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +0001f7c0: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +0001f7d0: 7020 6672 6f6d 2050 505e 3820 746f 2068 p from PP^8 to h │ │ │ │ +0001f7e0: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ +0001f7f0: 505e 3929 2020 7c0a 2b2d 2d2d 2d2d 2d2d P^9) |.+------- │ │ │ │ 0001f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0001f850: 3620 3a20 6173 7365 7274 2870 7369 203d 6 : assert(psi = │ │ │ │ -0001f860: 3d20 7073 6927 2920 2020 2020 2020 2020 = psi') │ │ │ │ +0001f840: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 6173 ------+.|i6 : as │ │ │ │ +0001f850: 7365 7274 2870 7369 203d 3d20 7073 6927 sert(psi == psi' │ │ │ │ +0001f860: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0001f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f890: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0001f890: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0001f8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a41 ------------+..A │ │ │ │ -0001f8f0: 206d 6f72 6520 636f 6d70 6c69 6361 7465 more complicate │ │ │ │ -0001f900: 6420 6578 616d 706c 6520 6973 2074 6865 d example is the │ │ │ │ -0001f910: 2066 6f6c 6c6f 7769 6e67 2028 6865 7265 following (here │ │ │ │ -0001f920: 202a 6e6f 7465 2069 6e76 6572 7365 4d61 *note inverseMa │ │ │ │ -0001f930: 703a 2069 6e76 6572 7365 4d61 702c 0a74 p: inverseMap,.t │ │ │ │ -0001f940: 616b 6573 2061 206c 6f74 206f 6620 7469 akes a lot of ti │ │ │ │ -0001f950: 6d65 2129 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d me!)...+-------- │ │ │ │ +0001f8e0: 2d2d 2d2d 2d2d 2b0a 0a41 206d 6f72 6520 ------+..A more │ │ │ │ +0001f8f0: 636f 6d70 6c69 6361 7465 6420 6578 616d complicated exam │ │ │ │ +0001f900: 706c 6520 6973 2074 6865 2066 6f6c 6c6f ple is the follo │ │ │ │ +0001f910: 7769 6e67 2028 6865 7265 202a 6e6f 7465 wing (here *note │ │ │ │ +0001f920: 2069 6e76 6572 7365 4d61 703a 2069 6e76 inverseMap: inv │ │ │ │ +0001f930: 6572 7365 4d61 702c 0a74 616b 6573 2061 erseMap,.takes a │ │ │ │ +0001f940: 206c 6f74 206f 6620 7469 6d65 2129 2e0a lot of time!).. │ │ │ │ +0001f950: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0001f960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0001f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0001f9a0: 2d2d 2d2d 2d2b 0a7c 6937 203a 2070 6869 -----+.|i7 : phi │ │ │ │ -0001f9b0: 203d 2072 6174 696f 6e61 6c4d 6170 206d = rationalMap m │ │ │ │ -0001f9c0: 6170 2850 382c 5a5a 2f39 375b 785f 302e ap(P8,ZZ/97[x_0. │ │ │ │ -0001f9d0: 2e20 2020 2020 2020 2020 2020 2020 2020 . │ │ │ │ -0001f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001f9f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0001f9a0: 0a7c 6937 203a 2070 6869 203d 2072 6174 .|i7 : phi = rat │ │ │ │ +0001f9b0: 696f 6e61 6c4d 6170 206d 6170 2850 382c ionalMap map(P8, │ │ │ │ +0001f9c0: 5a5a 2f39 375b 785f 302e 2e20 2020 2020 ZZ/97[x_0.. │ │ │ │ +0001f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001f9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001f9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa40: 2020 2020 207c 0a7c 6f37 203d 202d 2d20 |.|o7 = -- │ │ │ │ -0001fa50: 7261 7469 6f6e 616c 206d 6170 202d 2d20 rational map -- │ │ │ │ +0001fa30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fa40: 0a7c 6f37 203d 202d 2d20 7261 7469 6f6e .|o7 = -- ration │ │ │ │ +0001fa50: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 0001fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fa90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001faa0: 2020 2020 2020 2020 2020 5a5a 2020 2020 ZZ │ │ │ │ +0001fa80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fa90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001faa0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0001fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fae0: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ -0001faf0: 7263 653a 2050 726f 6a28 2d2d 5b74 202c rce: Proj(--[t , │ │ │ │ -0001fb00: 2074 202c 2074 202c 2074 202c 2074 202c t , t , t , t , │ │ │ │ +0001fad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fae0: 0a7c 2020 2020 2073 6f75 7263 653a 2050 .| source: P │ │ │ │ +0001faf0: 726f 6a28 2d2d 5b74 202c 2074 202c 2074 roj(--[t , t , t │ │ │ │ +0001fb00: 202c 2074 202c 2074 202c 2020 2020 2020 , t , t , │ │ │ │ 0001fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fb40: 2020 2020 2020 2020 2020 3937 2020 3020 97 0 │ │ │ │ -0001fb50: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +0001fb20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fb30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fb40: 2020 2020 3937 2020 3020 2020 3120 2020 97 0 1 │ │ │ │ +0001fb50: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ 0001fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fb80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001fb70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fb80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fba0: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +0001fba0: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0001fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fbd0: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ -0001fbe0: 6765 743a 2073 7562 7661 7269 6574 7920 get: subvariety │ │ │ │ -0001fbf0: 6f66 2050 726f 6a28 2d2d 5b78 202c 2078 of Proj(--[x , x │ │ │ │ +0001fbc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fbd0: 0a7c 2020 2020 2074 6172 6765 743a 2073 .| target: s │ │ │ │ +0001fbe0: 7562 7661 7269 6574 7920 6f66 2050 726f ubvariety of Pro │ │ │ │ +0001fbf0: 6a28 2d2d 5b78 202c 2078 2020 2020 2020 j(--[x , x │ │ │ │ 0001fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001fc10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fc20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc40: 2020 2020 2020 2020 3937 2020 3020 2020 97 0 │ │ │ │ -0001fc50: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -0001fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fc70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fc80: 2020 2020 207b 2020 2020 2020 2020 2020 { │ │ │ │ +0001fc40: 2020 3937 2020 3020 2020 3120 2020 2020 97 0 1 │ │ │ │ +0001fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fc60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fc70: 0a7c 2020 2020 2020 2020 2020 2020 207b .| { │ │ │ │ +0001fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fcc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001fcb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fcc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fce0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0001fce0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fd20: 2020 2020 2020 7820 7820 202d 2038 7820 x x - 8x │ │ │ │ -0001fd30: 7820 202b 2032 3578 2020 2d20 3235 7820 x + 25x - 25x │ │ │ │ -0001fd40: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0001fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fd60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fd70: 2020 2020 2020 2031 2033 2020 2020 2032 1 3 2 │ │ │ │ -0001fd80: 2033 2020 2020 2020 3320 2020 2020 2032 3 3 2 │ │ │ │ +0001fd00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fd10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fd20: 7820 7820 202d 2038 7820 7820 202b 2032 x x - 8x x + 2 │ │ │ │ +0001fd30: 3578 2020 2d20 3235 7820 7820 2020 2020 5x - 25x x │ │ │ │ +0001fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fd50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fd60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fd70: 2031 2033 2020 2020 2032 2033 2020 2020 1 3 2 3 │ │ │ │ +0001fd80: 2020 3320 2020 2020 2032 2020 2020 2020 3 2 │ │ │ │ 0001fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fdb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001fda0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fdb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fe10: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0001fe20: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0001fdf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fe00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fe10: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0001fe20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fe60: 2020 2020 2020 7820 202b 2031 3778 2078 x + 17x x │ │ │ │ -0001fe70: 2020 2d20 3134 7820 202d 2031 3378 2078 - 14x - 13x x │ │ │ │ +0001fe40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fe50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fe60: 7820 202b 2031 3778 2078 2020 2d20 3134 x + 17x x - 14 │ │ │ │ +0001fe70: 7820 202d 2031 3378 2078 2020 2020 2020 x - 13x x │ │ │ │ 0001fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fea0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001feb0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -0001fec0: 3320 2020 2020 2033 2020 2020 2020 3220 3 3 2 │ │ │ │ -0001fed0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0001fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001fef0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001fe90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001feb0: 2032 2020 2020 2020 3220 3320 2020 2020 2 2 3 │ │ │ │ +0001fec0: 2033 2020 2020 2020 3220 3420 2020 2020 3 2 4 │ │ │ │ +0001fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0001fee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001fef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0001ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0001ff30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ff40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0001ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff60: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0001ff60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0001ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ff90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001ffa0: 2020 2020 2020 7820 7820 202d 2034 3078 x x - 40x │ │ │ │ -0001ffb0: 2078 2020 2b20 3238 7820 202d 2078 2078 x + 28x - x x │ │ │ │ +0001ff80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ff90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001ffa0: 7820 7820 202d 2034 3078 2078 2020 2b20 x x - 40x x + │ │ │ │ +0001ffb0: 3238 7820 202d 2078 2078 2020 2020 2020 28x - x x │ │ │ │ 0001ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0001ffe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0001fff0: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00020000: 3220 3320 2020 2020 2033 2020 2020 3020 2 3 3 0 │ │ │ │ -00020010: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00020020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020040: 2020 2020 207d 2020 2020 2020 2020 2020 } │ │ │ │ +0001ffd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0001ffe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0001fff0: 2031 2032 2020 2020 2020 3220 3320 2020 1 2 2 3 │ │ │ │ +00020000: 2020 2033 2020 2020 3020 3420 2020 2020 3 0 4 │ │ │ │ +00020010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020030: 0a7c 2020 2020 2020 2020 2020 2020 207d .| } │ │ │ │ +00020040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020080: 2020 2020 207c 0a7c 2020 2020 2064 6566 |.| def │ │ │ │ -00020090: 696e 696e 6720 666f 726d 733a 207b 2020 ining forms: { │ │ │ │ +00020070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020080: 0a7c 2020 2020 2064 6566 696e 696e 6720 .| defining │ │ │ │ +00020090: 666f 726d 733a 207b 2020 2020 2020 2020 forms: { │ │ │ │ 000200a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000200b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000200d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000200e0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000200c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000200d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000200e0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000200f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020130: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020140: 202b 2074 2074 2020 2b20 7420 7420 202b + t t + t t + │ │ │ │ +00020110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020130: 2020 2020 2020 2020 7420 202b 2074 2074 t + t t │ │ │ │ +00020140: 2020 2b20 7420 7420 202b 2020 2020 2020 + t t + │ │ │ │ 00020150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020180: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -00020190: 2020 2020 3020 3520 2020 2031 2035 2020 0 5 1 5 │ │ │ │ +00020160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020180: 2020 2020 2020 2020 2034 2020 2020 3020 4 0 │ │ │ │ +00020190: 3520 2020 2031 2035 2020 2020 2020 2020 5 1 5 │ │ │ │ 000201a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000201c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000201b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000201c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000201d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000201f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020270: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020280: 7420 202b 2034 7420 7420 202b 2033 3974 t + 4t t + 39t │ │ │ │ +00020250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020270: 2020 2020 2020 2020 7420 7420 202b 2034 t t + 4 │ │ │ │ +00020280: 7420 7420 202b 2033 3974 2020 2020 2020 t t + 39t │ │ │ │ 00020290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000202b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000202c0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -000202d0: 2034 2020 2020 2030 2035 2020 2020 2020 4 0 5 │ │ │ │ -000202e0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000202f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000202a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000202b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000202c0: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +000202d0: 2030 2035 2020 2020 2020 3120 2020 2020 0 5 1 │ │ │ │ +000202e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000202f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020350: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000203b0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000203c0: 7420 202d 2035 7420 7420 202d 2034 3074 t - 5t t - 40t │ │ │ │ +00020390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000203a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000203b0: 2020 2020 2020 2020 7420 7420 202d 2035 t t - 5 │ │ │ │ +000203c0: 7420 7420 202d 2034 3074 2020 2020 2020 t t - 40t │ │ │ │ 000203d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000203f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020400: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00020410: 2034 2020 2020 2030 2035 2020 2020 2020 4 0 5 │ │ │ │ -00020420: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00020430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000203e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000203f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020400: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ +00020410: 2030 2035 2020 2020 2020 3120 2020 2020 0 5 1 │ │ │ │ +00020420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000204a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000204b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000204c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000204e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000204f0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020500: 7420 202d 2074 2074 2020 2d20 3874 2074 t - t t - 8t t │ │ │ │ +000204d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000204e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000204f0: 2020 2020 2020 2020 7420 7420 202d 2074 t t - t │ │ │ │ +00020500: 2074 2020 2d20 3874 2074 2020 2020 2020 t - 8t t │ │ │ │ 00020510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020530: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020540: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00020550: 2034 2020 2020 3020 3520 2020 2020 3120 4 0 5 1 │ │ │ │ -00020560: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00020570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020580: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020540: 2020 2020 2020 2020 2030 2034 2020 2020 0 4 │ │ │ │ +00020550: 3020 3520 2020 2020 3120 3520 2020 2020 0 5 1 5 │ │ │ │ +00020560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020580: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000205a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000205b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000205d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000205c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000205d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000205e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000205f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020620: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020630: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020640: 7420 202d 2074 2074 2020 2d20 7420 7420 t - t t - t t │ │ │ │ +00020610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020630: 2020 2020 2020 2020 7420 7420 202d 2074 t t - t │ │ │ │ +00020640: 2074 2020 2d20 7420 7420 2020 2020 2020 t - t t │ │ │ │ 00020650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020680: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00020690: 2033 2020 2020 3020 3520 2020 2031 2035 3 0 5 1 5 │ │ │ │ +00020660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020680: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ +00020690: 3020 3520 2020 2031 2035 2020 2020 2020 0 5 1 5 │ │ │ │ 000206a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000206c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000206b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000206c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000206d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000206f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020770: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020780: 7420 202d 2037 7420 7420 202b 2074 2074 t - 7t t + t t │ │ │ │ +00020750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020770: 2020 2020 2020 2020 7420 7420 202d 2037 t t - 7 │ │ │ │ +00020780: 7420 7420 202b 2074 2074 2020 2020 2020 t t + t t │ │ │ │ 00020790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000207b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000207c0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000207d0: 2033 2020 2020 2031 2035 2020 2020 3120 3 1 5 1 │ │ │ │ -000207e0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -000207f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020800: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000207a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000207b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000207c0: 2020 2020 2020 2020 2031 2033 2020 2020 1 3 │ │ │ │ +000207d0: 2031 2035 2020 2020 3120 3620 2020 2020 1 5 1 6 │ │ │ │ +000207e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000207f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020850: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000208b0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000208c0: 7420 202d 2034 3674 2074 2020 2d20 3339 t - 46t t - 39 │ │ │ │ -000208d0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -000208e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000208f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020900: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00020910: 2033 2020 2020 2020 3020 3520 2020 2020 3 0 5 │ │ │ │ +00020890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000208a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000208b0: 2020 2020 2020 2020 7420 7420 202d 2034 t t - 4 │ │ │ │ +000208c0: 3674 2074 2020 2d20 3339 7420 2020 2020 6t t - 39t │ │ │ │ +000208d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000208e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000208f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020900: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +00020910: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 00020920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000209a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00020980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000209a0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000209b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000209c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000209e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000209f0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020a00: 202d 2034 3674 2074 2020 2d20 3333 7420 - 46t t - 33t │ │ │ │ -00020a10: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00020a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020a40: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00020a50: 2020 2020 2020 3120 3420 2020 2020 2030 1 4 0 │ │ │ │ +000209d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000209e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000209f0: 2020 2020 2020 2020 7420 202d 2034 3674 t - 46t │ │ │ │ +00020a00: 2074 2020 2d20 3333 7420 7420 2020 2020 t - 33t t │ │ │ │ +00020a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020a40: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00020a50: 3120 3420 2020 2020 2030 2020 2020 2020 1 4 0 │ │ │ │ 00020a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ad0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020ae0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020af0: 7420 202b 2036 7420 7420 202b 2035 7420 t + 6t t + 5t │ │ │ │ -00020b00: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00020b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020b30: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00020b40: 2032 2020 2020 2031 2035 2020 2020 2030 2 1 5 0 │ │ │ │ +00020ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020ad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020ae0: 2020 2020 2020 2020 7420 7420 202b 2036 t t + 6 │ │ │ │ +00020af0: 7420 7420 202b 2035 7420 7420 2020 2020 t t + 5t t │ │ │ │ +00020b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020b30: 2020 2020 2020 2020 2031 2032 2020 2020 1 2 │ │ │ │ +00020b40: 2031 2035 2020 2020 2030 2020 2020 2020 1 5 0 │ │ │ │ 00020b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020b70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020bc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020c20: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020c30: 7420 202b 2074 2074 2020 2b20 3574 2074 t + t t + 5t t │ │ │ │ +00020c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020c10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020c20: 2020 2020 2020 2020 7420 7420 202b 2074 t t + t │ │ │ │ +00020c30: 2074 2020 2b20 3574 2074 2020 2020 2020 t + 5t t │ │ │ │ 00020c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020c60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020c70: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00020c80: 2032 2020 2020 3120 3420 2020 2020 3020 2 1 4 0 │ │ │ │ -00020c90: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00020ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020c60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020c70: 2020 2020 2020 2020 2030 2032 2020 2020 0 2 │ │ │ │ +00020c80: 3120 3420 2020 2020 3020 3520 2020 2020 1 4 0 5 │ │ │ │ +00020c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020d10: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020d20: 7420 202d 2033 3974 2074 2020 2b20 3430 t - 39t t + 40 │ │ │ │ -00020d30: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00020d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020d60: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00020d70: 2031 2020 2020 2020 3120 3420 2020 2020 1 1 4 │ │ │ │ +00020cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020d00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020d10: 2020 2020 2020 2020 7420 7420 202d 2033 t t - 3 │ │ │ │ +00020d20: 3974 2074 2020 2b20 3430 7420 2020 2020 9t t + 40t │ │ │ │ +00020d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020d60: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ +00020d70: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ 00020d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020da0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020df0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020e00: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00020de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020e00: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00020e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020e50: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -00020e60: 202b 2031 3274 2074 2020 2b20 3230 7420 + 12t t + 20t │ │ │ │ -00020e70: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00020e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020e90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020ea0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00020eb0: 2020 2020 2020 3120 3420 2020 2020 2030 1 4 0 │ │ │ │ +00020e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020e50: 2020 2020 2020 2020 7420 202b 2031 3274 t + 12t │ │ │ │ +00020e60: 2074 2020 2b20 3230 7420 7420 2020 2020 t + 20t t │ │ │ │ +00020e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00020e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020ea0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00020eb0: 3120 3420 2020 2020 2030 2020 2020 2020 1 4 0 │ │ │ │ 00020ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020ee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00020ef0: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +00020ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00020ef0: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 00020f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00020f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00020f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00020f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020f80: 2020 2020 207c 0a7c 6f37 203a 2052 6174 |.|o7 : Rat │ │ │ │ -00020f90: 696f 6e61 6c4d 6170 2028 7175 6164 7261 ionalMap (quadra │ │ │ │ -00020fa0: 7469 6320 7261 7469 6f6e 616c 206d 6170 tic rational map │ │ │ │ +00020f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020f80: 0a7c 6f37 203a 2052 6174 696f 6e61 6c4d .|o7 : RationalM │ │ │ │ +00020f90: 6170 2028 7175 6164 7261 7469 6320 7261 ap (quadratic ra │ │ │ │ +00020fa0: 7469 6f6e 616c 206d 6170 2020 2020 2020 tional map │ │ │ │ 00020fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00020fd0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00020fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00020fd0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00020fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00020ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00021000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00021020: 2d2d 2d2d 2d7c 0a7c 785f 3131 5d2f 6964 -----|.|x_11]/id │ │ │ │ -00021030: 6561 6c28 785f 312a 785f 332d 382a 785f eal(x_1*x_3-8*x_ │ │ │ │ -00021040: 322a 785f 332b 3235 2a78 5f33 5e32 2d32 2*x_3+25*x_3^2-2 │ │ │ │ -00021050: 352a 785f 322a 785f 342d 3232 2a78 5f33 5*x_2*x_4-22*x_3 │ │ │ │ -00021060: 2a78 5f34 2b78 5f30 2a78 5f35 2b31 332a *x_4+x_0*x_5+13* │ │ │ │ -00021070: 785f 322a 787c 0a7c 2020 2020 2020 2020 x_2*x|.| │ │ │ │ +00021010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00021020: 0a7c 785f 3131 5d2f 6964 6561 6c28 785f .|x_11]/ideal(x_ │ │ │ │ +00021030: 312a 785f 332d 382a 785f 322a 785f 332b 1*x_3-8*x_2*x_3+ │ │ │ │ +00021040: 3235 2a78 5f33 5e32 2d32 352a 785f 322a 25*x_3^2-25*x_2* │ │ │ │ +00021050: 785f 342d 3232 2a78 5f33 2a78 5f34 2b78 x_4-22*x_3*x_4+x │ │ │ │ +00021060: 5f30 2a78 5f35 2b31 332a 785f 322a 787c _0*x_5+13*x_2*x| │ │ │ │ +00021070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000210c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000210b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000210c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000210d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000210f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021160: 2020 2020 207c 0a7c 7420 2c20 7420 2c20 |.|t , t , │ │ │ │ -00021170: 7420 2c20 7420 5d29 2020 2020 2020 2020 t , t ]) │ │ │ │ +00021150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021160: 0a7c 7420 2c20 7420 2c20 7420 2c20 7420 .|t , t , t , t │ │ │ │ +00021170: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ 00021180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211b0: 2020 2020 207c 0a7c 2035 2020 2036 2020 |.| 5 6 │ │ │ │ -000211c0: 2037 2020 2038 2020 2020 2020 2020 2020 7 8 │ │ │ │ +000211a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000211b0: 0a7c 2035 2020 2036 2020 2037 2020 2038 .| 5 6 7 8 │ │ │ │ +000211c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000211d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000211e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000211f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000211f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021250: 2020 2020 207c 0a7c 2c20 7820 2c20 7820 |.|, x , x │ │ │ │ -00021260: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -00021270: 2c20 7820 2c20 7820 2c20 7820 202c 2078 , x , x , x , x │ │ │ │ -00021280: 2020 5d29 2064 6566 696e 6564 2062 7920 ]) defined by │ │ │ │ -00021290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212a0: 2020 2020 207c 0a7c 2020 2032 2020 2033 |.| 2 3 │ │ │ │ -000212b0: 2020 2034 2020 2035 2020 2036 2020 2037 4 5 6 7 │ │ │ │ -000212c0: 2020 2038 2020 2039 2020 2031 3020 2020 8 9 10 │ │ │ │ -000212d0: 3131 2020 2020 2020 2020 2020 2020 2020 11 │ │ │ │ -000212e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000212f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021250: 0a7c 2c20 7820 2c20 7820 2c20 7820 2c20 .|, x , x , x , │ │ │ │ +00021260: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +00021270: 7820 2c20 7820 202c 2078 2020 5d29 2064 x , x , x ]) d │ │ │ │ +00021280: 6566 696e 6564 2062 7920 2020 2020 2020 efined by │ │ │ │ +00021290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000212a0: 0a7c 2020 2032 2020 2033 2020 2034 2020 .| 2 3 4 │ │ │ │ +000212b0: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ +000212c0: 2039 2020 2031 3020 2020 3131 2020 2020 9 10 11 │ │ │ │ +000212d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000212e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000212f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021390: 2020 2020 207c 0a7c 2020 2d20 3232 7820 |.| - 22x │ │ │ │ -000213a0: 7820 202b 2078 2078 2020 2b20 3133 7820 x + x x + 13x │ │ │ │ -000213b0: 7820 202b 2034 3178 2078 2020 2d20 7820 x + 41x x - x │ │ │ │ -000213c0: 7820 202b 2031 3278 2078 2020 2b20 3235 x + 12x x + 25 │ │ │ │ -000213d0: 7820 7820 202b 2032 3578 2078 2020 2b20 x x + 25x x + │ │ │ │ -000213e0: 3233 7820 787c 0a7c 3420 2020 2020 2033 23x x|.|4 3 │ │ │ │ -000213f0: 2034 2020 2020 3020 3520 2020 2020 2032 4 0 5 2 │ │ │ │ -00021400: 2035 2020 2020 2020 3320 3520 2020 2030 5 3 5 0 │ │ │ │ -00021410: 2036 2020 2020 2020 3220 3620 2020 2020 6 2 6 │ │ │ │ -00021420: 2031 2037 2020 2020 2020 3320 3720 2020 1 7 3 7 │ │ │ │ -00021430: 2020 2035 207c 0a7c 2020 2020 2020 2020 5 |.| │ │ │ │ +00021380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021390: 0a7c 2020 2d20 3232 7820 7820 202b 2078 .| - 22x x + x │ │ │ │ +000213a0: 2078 2020 2b20 3133 7820 7820 202b 2034 x + 13x x + 4 │ │ │ │ +000213b0: 3178 2078 2020 2d20 7820 7820 202b 2031 1x x - x x + 1 │ │ │ │ +000213c0: 3278 2078 2020 2b20 3235 7820 7820 202b 2x x + 25x x + │ │ │ │ +000213d0: 2032 3578 2078 2020 2b20 3233 7820 787c 25x x + 23x x| │ │ │ │ +000213e0: 0a7c 3420 2020 2020 2033 2034 2020 2020 .|4 3 4 │ │ │ │ +000213f0: 3020 3520 2020 2020 2032 2035 2020 2020 0 5 2 5 │ │ │ │ +00021400: 2020 3320 3520 2020 2030 2036 2020 2020 3 5 0 6 │ │ │ │ +00021410: 2020 3220 3620 2020 2020 2031 2037 2020 2 6 1 7 │ │ │ │ +00021420: 2020 2020 3320 3720 2020 2020 2035 207c 3 7 5 | │ │ │ │ +00021430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000214b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000214d0: 2020 2020 207c 0a7c 202b 2033 3478 2078 |.| + 34x x │ │ │ │ -000214e0: 2020 2b20 3434 7820 7820 202d 2033 3078 + 44x x - 30x │ │ │ │ -000214f0: 2078 2020 2b20 3237 7820 7820 202b 2033 x + 27x x + 3 │ │ │ │ -00021500: 3178 2078 2020 2d20 3336 7820 7820 202d 1x x - 36x x - │ │ │ │ -00021510: 2078 2078 2020 2b20 3133 7820 7820 202b x x + 13x x + │ │ │ │ -00021520: 2038 7820 787c 0a7c 2020 2020 2020 3320 8x x|.| 3 │ │ │ │ -00021530: 3420 2020 2020 2030 2035 2020 2020 2020 4 0 5 │ │ │ │ -00021540: 3220 3520 2020 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ -00021550: 2020 3220 3620 2020 2020 2033 2036 2020 2 6 3 6 │ │ │ │ -00021560: 2020 3020 3720 2020 2020 2031 2037 2020 0 7 1 7 │ │ │ │ -00021570: 2020 2033 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +000214c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000214d0: 0a7c 202b 2033 3478 2078 2020 2b20 3434 .| + 34x x + 44 │ │ │ │ +000214e0: 7820 7820 202d 2033 3078 2078 2020 2b20 x x - 30x x + │ │ │ │ +000214f0: 3237 7820 7820 202b 2033 3178 2078 2020 27x x + 31x x │ │ │ │ +00021500: 2d20 3336 7820 7820 202d 2078 2078 2020 - 36x x - x x │ │ │ │ +00021510: 2b20 3133 7820 7820 202b 2038 7820 787c + 13x x + 8x x| │ │ │ │ +00021520: 0a7c 2020 2020 2020 3320 3420 2020 2020 .| 3 4 │ │ │ │ +00021530: 2030 2035 2020 2020 2020 3220 3520 2020 0 5 2 5 │ │ │ │ +00021540: 2020 2033 2035 2020 2020 2020 3220 3620 3 5 2 6 │ │ │ │ +00021550: 2020 2020 2033 2036 2020 2020 3020 3720 3 6 0 7 │ │ │ │ +00021560: 2020 2020 2031 2037 2020 2020 2033 207c 1 7 3 | │ │ │ │ +00021570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000215c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000215b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000215c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000215d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000215f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021610: 2020 2020 207c 0a7c 202b 2035 7820 7820 |.| + 5x x │ │ │ │ -00021620: 202d 2031 3678 2078 2020 2b20 3578 2078 - 16x x + 5x x │ │ │ │ -00021630: 2020 2d20 3336 7820 7820 202b 2033 3778 - 36x x + 37x │ │ │ │ -00021640: 2078 2020 2b20 3438 7820 7820 202d 2035 x + 48x x - 5 │ │ │ │ -00021650: 7820 7820 202d 2035 7820 7820 202b 2078 x x - 5x x + x │ │ │ │ -00021660: 2078 2020 2b7c 0a7c 2020 2020 2032 2034 x +|.| 2 4 │ │ │ │ -00021670: 2020 2020 2020 3320 3420 2020 2020 3020 3 4 0 │ │ │ │ -00021680: 3520 2020 2020 2032 2035 2020 2020 2020 5 2 5 │ │ │ │ -00021690: 3320 3520 2020 2020 2032 2036 2020 2020 3 5 2 6 │ │ │ │ -000216a0: 2031 2037 2020 2020 2033 2037 2020 2020 1 7 3 7 │ │ │ │ -000216b0: 3520 3720 207c 0a7c 2020 2020 2020 2020 5 7 |.| │ │ │ │ +00021600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021610: 0a7c 202b 2035 7820 7820 202d 2031 3678 .| + 5x x - 16x │ │ │ │ +00021620: 2078 2020 2b20 3578 2078 2020 2d20 3336 x + 5x x - 36 │ │ │ │ +00021630: 7820 7820 202b 2033 3778 2078 2020 2b20 x x + 37x x + │ │ │ │ +00021640: 3438 7820 7820 202d 2035 7820 7820 202d 48x x - 5x x - │ │ │ │ +00021650: 2035 7820 7820 202b 2078 2078 2020 2b7c 5x x + x x +| │ │ │ │ +00021660: 0a7c 2020 2020 2032 2034 2020 2020 2020 .| 2 4 │ │ │ │ +00021670: 3320 3420 2020 2020 3020 3520 2020 2020 3 4 0 5 │ │ │ │ +00021680: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ +00021690: 2020 2032 2036 2020 2020 2031 2037 2020 2 6 1 7 │ │ │ │ +000216a0: 2020 2033 2037 2020 2020 3520 3720 207c 3 7 5 7 | │ │ │ │ +000216b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000216c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000216e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000216f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000216f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021700: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00021760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021770: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00021740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00021760: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00021770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000217a0: 2020 2020 207c 0a7c 3335 7420 7420 202b |.|35t t + │ │ │ │ -000217b0: 2031 3074 2074 2020 2b20 3235 7420 7420 10t t + 25t t │ │ │ │ -000217c0: 202d 2035 7420 202d 2031 3474 2074 2020 - 5t - 14t t │ │ │ │ -000217d0: 2d20 3134 7420 7420 202d 2035 7420 7420 - 14t t - 5t t │ │ │ │ -000217e0: 202d 2031 3374 2074 2020 2b20 3337 7420 - 13t t + 37t │ │ │ │ -000217f0: 7420 202b 207c 0a7c 2020 2032 2035 2020 t + |.| 2 5 │ │ │ │ -00021800: 2020 2020 3320 3520 2020 2020 2034 2035 3 5 4 5 │ │ │ │ -00021810: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ -00021820: 2020 2020 2031 2036 2020 2020 2032 2036 1 6 2 6 │ │ │ │ -00021830: 2020 2020 2020 3420 3620 2020 2020 2035 4 6 5 │ │ │ │ -00021840: 2036 2020 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ +00021790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000217a0: 0a7c 3335 7420 7420 202b 2031 3074 2074 .|35t t + 10t t │ │ │ │ +000217b0: 2020 2b20 3235 7420 7420 202d 2035 7420 + 25t t - 5t │ │ │ │ +000217c0: 202d 2031 3474 2074 2020 2d20 3134 7420 - 14t t - 14t │ │ │ │ +000217d0: 7420 202d 2035 7420 7420 202d 2031 3374 t - 5t t - 13t │ │ │ │ +000217e0: 2074 2020 2b20 3337 7420 7420 202b 207c t + 37t t + | │ │ │ │ +000217f0: 0a7c 2020 2032 2035 2020 2020 2020 3320 .| 2 5 3 │ │ │ │ +00021800: 3520 2020 2020 2034 2035 2020 2020 2035 5 4 5 5 │ │ │ │ +00021810: 2020 2020 2020 3020 3620 2020 2020 2031 0 6 1 │ │ │ │ +00021820: 2036 2020 2020 2032 2036 2020 2020 2020 6 2 6 │ │ │ │ +00021830: 3420 3620 2020 2020 2035 2036 2020 207c 4 6 5 6 | │ │ │ │ +00021840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021890: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000218a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000218b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000218c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000218e0: 2020 2020 207c 0a7c 7420 202d 2034 3074 |.|t - 40t │ │ │ │ -000218f0: 2074 2020 2b20 3430 7420 7420 202b 2032 t + 40t t + 2 │ │ │ │ -00021900: 3674 2074 2020 2d20 3230 7420 202b 2034 6t t - 20t + 4 │ │ │ │ -00021910: 3174 2074 2020 2b20 3336 7420 7420 202d 1t t + 36t t - │ │ │ │ -00021920: 2032 3274 2074 2020 2b20 3336 7420 7420 22t t + 36t t │ │ │ │ -00021930: 202d 2033 307c 0a7c 2035 2020 2020 2020 - 30|.| 5 │ │ │ │ -00021940: 3220 3520 2020 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ -00021950: 2020 3420 3520 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ -00021960: 2020 3020 3620 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ -00021970: 2020 2020 3220 3620 2020 2020 2034 2036 2 6 4 6 │ │ │ │ -00021980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000218d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000218e0: 0a7c 7420 202d 2034 3074 2074 2020 2b20 .|t - 40t t + │ │ │ │ +000218f0: 3430 7420 7420 202b 2032 3674 2074 2020 40t t + 26t t │ │ │ │ +00021900: 2d20 3230 7420 202b 2034 3174 2074 2020 - 20t + 41t t │ │ │ │ +00021910: 2b20 3336 7420 7420 202d 2032 3274 2074 + 36t t - 22t t │ │ │ │ +00021920: 2020 2b20 3336 7420 7420 202d 2033 307c + 36t t - 30| │ │ │ │ +00021930: 0a7c 2035 2020 2020 2020 3220 3520 2020 .| 5 2 5 │ │ │ │ +00021940: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +00021950: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ +00021960: 2020 2020 2031 2036 2020 2020 2020 3220 1 6 2 │ │ │ │ +00021970: 3620 2020 2020 2034 2036 2020 2020 207c 6 4 6 | │ │ │ │ +00021980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000219b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000219c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000219d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000219e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000219f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000219f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00021a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021a20: 2020 2020 207c 0a7c 7420 202b 2031 3274 |.|t + 12t │ │ │ │ -00021a30: 2074 2020 2b20 3437 7420 7420 202b 2033 t + 47t t + 3 │ │ │ │ -00021a40: 3774 2074 2020 2b20 3235 7420 202d 2032 7t t + 25t - 2 │ │ │ │ -00021a50: 3774 2074 2020 2d20 3232 7420 7420 202b 7t t - 22t t + │ │ │ │ -00021a60: 2032 3774 2074 2020 2d20 3233 7420 7420 27t t - 23t t │ │ │ │ -00021a70: 202b 2035 747c 0a7c 2035 2020 2020 2020 + 5t|.| 5 │ │ │ │ -00021a80: 3220 3520 2020 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ -00021a90: 2020 3420 3520 2020 2020 2035 2020 2020 4 5 5 │ │ │ │ -00021aa0: 2020 3020 3620 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ -00021ab0: 2020 2020 3220 3620 2020 2020 2034 2036 2 6 4 6 │ │ │ │ -00021ac0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021a20: 0a7c 7420 202b 2031 3274 2074 2020 2b20 .|t + 12t t + │ │ │ │ +00021a30: 3437 7420 7420 202b 2033 3774 2074 2020 47t t + 37t t │ │ │ │ +00021a40: 2b20 3235 7420 202d 2032 3774 2074 2020 + 25t - 27t t │ │ │ │ +00021a50: 2d20 3232 7420 7420 202b 2032 3774 2074 - 22t t + 27t t │ │ │ │ +00021a60: 2020 2d20 3233 7420 7420 202b 2035 747c - 23t t + 5t| │ │ │ │ +00021a70: 0a7c 2035 2020 2020 2020 3220 3520 2020 .| 5 2 5 │ │ │ │ +00021a80: 2020 2033 2035 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +00021a90: 2020 2020 2035 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ +00021aa0: 2020 2020 2031 2036 2020 2020 2020 3220 1 6 2 │ │ │ │ +00021ab0: 3620 2020 2020 2034 2036 2020 2020 207c 6 4 6 | │ │ │ │ +00021ac0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021b10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b30: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00021b30: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00021b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021b60: 2020 2020 207c 0a7c 202d 2033 3574 2074 |.| - 35t t │ │ │ │ -00021b70: 2020 2d20 3130 7420 7420 202d 2033 3374 - 10t t - 33t │ │ │ │ -00021b80: 2074 2020 2b20 3574 2020 2b20 3135 7420 t + 5t + 15t │ │ │ │ -00021b90: 7420 202b 2031 3574 2074 2020 2b20 3574 t + 15t t + 5t │ │ │ │ -00021ba0: 2074 2020 2b20 3135 7420 7420 202d 2033 t + 15t t - 3 │ │ │ │ -00021bb0: 3874 2074 207c 0a7c 2020 2020 2020 3220 8t t |.| 2 │ │ │ │ -00021bc0: 3520 2020 2020 2033 2035 2020 2020 2020 5 3 5 │ │ │ │ -00021bd0: 3420 3520 2020 2020 3520 2020 2020 2030 4 5 5 0 │ │ │ │ -00021be0: 2036 2020 2020 2020 3120 3620 2020 2020 6 1 6 │ │ │ │ -00021bf0: 3220 3620 2020 2020 2034 2036 2020 2020 2 6 4 6 │ │ │ │ -00021c00: 2020 3520 367c 0a7c 2020 2020 2020 2020 5 6|.| │ │ │ │ +00021b50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021b60: 0a7c 202d 2033 3574 2074 2020 2d20 3130 .| - 35t t - 10 │ │ │ │ +00021b70: 7420 7420 202d 2033 3374 2074 2020 2b20 t t - 33t t + │ │ │ │ +00021b80: 3574 2020 2b20 3135 7420 7420 202b 2031 5t + 15t t + 1 │ │ │ │ +00021b90: 3574 2074 2020 2b20 3574 2074 2020 2b20 5t t + 5t t + │ │ │ │ +00021ba0: 3135 7420 7420 202d 2033 3874 2074 207c 15t t - 38t t | │ │ │ │ +00021bb0: 0a7c 2020 2020 2020 3220 3520 2020 2020 .| 2 5 │ │ │ │ +00021bc0: 2033 2035 2020 2020 2020 3420 3520 2020 3 5 4 5 │ │ │ │ +00021bd0: 2020 3520 2020 2020 2030 2036 2020 2020 5 0 6 │ │ │ │ +00021be0: 2020 3120 3620 2020 2020 3220 3620 2020 1 6 2 6 │ │ │ │ +00021bf0: 2020 2034 2036 2020 2020 2020 3520 367c 4 6 5 6| │ │ │ │ +00021c00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021c50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00021c70: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00021c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ca0: 2020 2020 207c 0a7c 2d20 3335 7420 7420 |.|- 35t t │ │ │ │ -00021cb0: 202d 2031 3074 2074 2020 2d20 3333 7420 - 10t t - 33t │ │ │ │ -00021cc0: 7420 202b 2035 7420 202b 2031 3474 2074 t + 5t + 14t t │ │ │ │ -00021cd0: 2020 2b20 3134 7420 7420 202b 2035 7420 + 14t t + 5t │ │ │ │ -00021ce0: 7420 202b 2031 3474 2074 2020 2d20 3331 t + 14t t - 31 │ │ │ │ -00021cf0: 7420 7420 207c 0a7c 2020 2020 2032 2035 t t |.| 2 5 │ │ │ │ -00021d00: 2020 2020 2020 3320 3520 2020 2020 2034 3 5 4 │ │ │ │ -00021d10: 2035 2020 2020 2035 2020 2020 2020 3020 5 5 0 │ │ │ │ -00021d20: 3620 2020 2020 2031 2036 2020 2020 2032 6 1 6 2 │ │ │ │ -00021d30: 2036 2020 2020 2020 3420 3620 2020 2020 6 4 6 │ │ │ │ -00021d40: 2035 2036 207c 0a7c 2020 2020 2020 2020 5 6 |.| │ │ │ │ +00021c90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021ca0: 0a7c 2d20 3335 7420 7420 202d 2031 3074 .|- 35t t - 10t │ │ │ │ +00021cb0: 2074 2020 2d20 3333 7420 7420 202b 2035 t - 33t t + 5 │ │ │ │ +00021cc0: 7420 202b 2031 3474 2074 2020 2b20 3134 t + 14t t + 14 │ │ │ │ +00021cd0: 7420 7420 202b 2035 7420 7420 202b 2031 t t + 5t t + 1 │ │ │ │ +00021ce0: 3474 2074 2020 2d20 3331 7420 7420 207c 4t t - 31t t | │ │ │ │ +00021cf0: 0a7c 2020 2020 2032 2035 2020 2020 2020 .| 2 5 │ │ │ │ +00021d00: 3320 3520 2020 2020 2034 2035 2020 2020 3 5 4 5 │ │ │ │ +00021d10: 2035 2020 2020 2020 3020 3620 2020 2020 5 0 6 │ │ │ │ +00021d20: 2031 2036 2020 2020 2032 2036 2020 2020 1 6 2 6 │ │ │ │ +00021d30: 2020 3420 3620 2020 2020 2035 2036 207c 4 6 5 6 | │ │ │ │ +00021d40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021d90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00021da0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00021d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021d90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00021da0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00021db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021de0: 2020 2020 207c 0a7c 202b 2074 2074 2020 |.| + t t │ │ │ │ -00021df0: 2d20 3774 2074 2020 2b20 3274 2020 2d20 - 7t t + 2t - │ │ │ │ -00021e00: 7420 7420 2c20 2020 2020 2020 2020 2020 t t , │ │ │ │ +00021dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021de0: 0a7c 202b 2074 2074 2020 2d20 3774 2074 .| + t t - 7t t │ │ │ │ +00021df0: 2020 2b20 3274 2020 2d20 7420 7420 2c20 + 2t - t t , │ │ │ │ +00021e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e30: 2020 2020 207c 0a7c 2020 2020 3420 3620 |.| 4 6 │ │ │ │ -00021e40: 2020 2020 3520 3620 2020 2020 3620 2020 5 6 6 │ │ │ │ -00021e50: 2033 2037 2020 2020 2020 2020 2020 2020 3 7 │ │ │ │ +00021e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021e30: 0a7c 2020 2020 3420 3620 2020 2020 3520 .| 4 6 5 │ │ │ │ +00021e40: 3620 2020 2020 3620 2020 2033 2037 2020 6 6 3 7 │ │ │ │ +00021e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021e80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021e80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ed0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00021ec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021ed0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021ef0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00021ef0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00021f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00021f20: 2020 2020 207c 0a7c 2074 2020 2d20 3433 |.| t - 43 │ │ │ │ -00021f30: 7420 7420 202d 2034 3174 2074 2020 2d20 t t - 41t t - │ │ │ │ -00021f40: 3236 7420 7420 202d 2032 3874 2020 2d20 26t t - 28t - │ │ │ │ -00021f50: 3335 7420 7420 202d 2033 3674 2074 2020 35t t - 36t t │ │ │ │ -00021f60: 2b20 3230 7420 7420 202d 2033 3674 2074 + 20t t - 36t t │ │ │ │ -00021f70: 2020 2b20 397c 0a7c 3120 3520 2020 2020 + 9|.|1 5 │ │ │ │ -00021f80: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ -00021f90: 2020 2034 2035 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ -00021fa0: 2020 2030 2036 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -00021fb0: 2020 2020 2032 2036 2020 2020 2020 3420 2 6 4 │ │ │ │ -00021fc0: 3620 2020 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ +00021f10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00021f20: 0a7c 2074 2020 2d20 3433 7420 7420 202d .| t - 43t t - │ │ │ │ +00021f30: 2034 3174 2074 2020 2d20 3236 7420 7420 41t t - 26t t │ │ │ │ +00021f40: 202d 2032 3874 2020 2d20 3335 7420 7420 - 28t - 35t t │ │ │ │ +00021f50: 202d 2033 3674 2074 2020 2b20 3230 7420 - 36t t + 20t │ │ │ │ +00021f60: 7420 202d 2033 3674 2074 2020 2b20 397c t - 36t t + 9| │ │ │ │ +00021f70: 0a7c 3120 3520 2020 2020 2032 2035 2020 .|1 5 2 5 │ │ │ │ +00021f80: 2020 2020 3320 3520 2020 2020 2034 2035 3 5 4 5 │ │ │ │ +00021f90: 2020 2020 2020 3520 2020 2020 2030 2036 5 0 6 │ │ │ │ +00021fa0: 2020 2020 2020 3120 3620 2020 2020 2032 1 6 2 │ │ │ │ +00021fb0: 2036 2020 2020 2020 3420 3620 2020 207c 6 4 6 | │ │ │ │ +00021fc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00021fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00021ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022010: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022040: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00022050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022060: 2020 2020 207c 0a7c 2020 2d20 3435 7420 |.| - 45t │ │ │ │ -00022070: 7420 202d 2033 3974 2074 2020 2d20 3339 t - 39t t - 39 │ │ │ │ -00022080: 7420 7420 202d 2034 3674 2074 2020 2d20 t t - 46t t - │ │ │ │ -00022090: 3239 7420 202d 2034 3874 2074 2020 2d20 29t - 48t t - │ │ │ │ -000220a0: 3338 7420 7420 202d 2033 3074 2074 2020 38t t - 30t t │ │ │ │ -000220b0: 2b20 3139 747c 0a7c 3520 2020 2020 2031 + 19t|.|5 1 │ │ │ │ -000220c0: 2035 2020 2020 2020 3220 3520 2020 2020 5 2 5 │ │ │ │ -000220d0: 2033 2035 2020 2020 2020 3420 3520 2020 3 5 4 5 │ │ │ │ -000220e0: 2020 2035 2020 2020 2020 3020 3620 2020 5 0 6 │ │ │ │ -000220f0: 2020 2031 2036 2020 2020 2020 3220 3620 1 6 2 6 │ │ │ │ -00022100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022030: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00022040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022060: 0a7c 2020 2d20 3435 7420 7420 202d 2033 .| - 45t t - 3 │ │ │ │ +00022070: 3974 2074 2020 2d20 3339 7420 7420 202d 9t t - 39t t - │ │ │ │ +00022080: 2034 3674 2074 2020 2d20 3239 7420 202d 46t t - 29t - │ │ │ │ +00022090: 2034 3874 2074 2020 2d20 3338 7420 7420 48t t - 38t t │ │ │ │ +000220a0: 202d 2033 3074 2074 2020 2b20 3139 747c - 30t t + 19t| │ │ │ │ +000220b0: 0a7c 3520 2020 2020 2031 2035 2020 2020 .|5 1 5 │ │ │ │ +000220c0: 2020 3220 3520 2020 2020 2033 2035 2020 2 5 3 5 │ │ │ │ +000220d0: 2020 2020 3420 3520 2020 2020 2035 2020 4 5 5 │ │ │ │ +000220e0: 2020 2020 3020 3620 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +000220f0: 2020 2020 2020 3220 3620 2020 2020 207c 2 6 | │ │ │ │ +00022100: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022150: 2020 2020 207c 0a7c 2020 2d20 3274 2074 |.| - 2t t │ │ │ │ -00022160: 2020 2d20 7420 7420 202d 2074 2074 2020 - t t - t t │ │ │ │ -00022170: 2b20 3574 2074 2020 2b20 7420 7420 202d + 5t t + t t - │ │ │ │ -00022180: 2032 7420 7420 202d 2037 7420 7420 202b 2t t - 7t t + │ │ │ │ -00022190: 2032 7420 7420 202d 2032 7420 7420 202b 2t t - 2t t + │ │ │ │ -000221a0: 2033 7420 747c 0a7c 3620 2020 2020 3120 3t t|.|6 1 │ │ │ │ -000221b0: 3620 2020 2034 2036 2020 2020 3520 3620 6 4 6 5 6 │ │ │ │ -000221c0: 2020 2020 3020 3720 2020 2031 2037 2020 0 7 1 7 │ │ │ │ -000221d0: 2020 2032 2037 2020 2020 2035 2037 2020 2 7 5 7 │ │ │ │ -000221e0: 2020 2036 2037 2020 2020 2031 2038 2020 6 7 1 8 │ │ │ │ -000221f0: 2020 2037 207c 0a7c 2020 2020 2020 2020 7 |.| │ │ │ │ +00022140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022150: 0a7c 2020 2d20 3274 2074 2020 2d20 7420 .| - 2t t - t │ │ │ │ +00022160: 7420 202d 2074 2074 2020 2b20 3574 2074 t - t t + 5t t │ │ │ │ +00022170: 2020 2b20 7420 7420 202d 2032 7420 7420 + t t - 2t t │ │ │ │ +00022180: 202d 2037 7420 7420 202b 2032 7420 7420 - 7t t + 2t t │ │ │ │ +00022190: 202d 2032 7420 7420 202b 2033 7420 747c - 2t t + 3t t| │ │ │ │ +000221a0: 0a7c 3620 2020 2020 3120 3620 2020 2034 .|6 1 6 4 │ │ │ │ +000221b0: 2036 2020 2020 3520 3620 2020 2020 3020 6 5 6 0 │ │ │ │ +000221c0: 3720 2020 2031 2037 2020 2020 2032 2037 7 1 7 2 7 │ │ │ │ +000221d0: 2020 2020 2035 2037 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +000221e0: 2020 2020 2031 2038 2020 2020 2037 207c 1 8 7 | │ │ │ │ +000221f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022270: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00022280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022290: 2020 2020 207c 0a7c 202b 2033 3274 2074 |.| + 32t t │ │ │ │ -000222a0: 2020 2d20 3230 7420 7420 202d 2034 3774 - 20t t - 47t │ │ │ │ -000222b0: 2074 2020 2d20 3337 7420 7420 202d 2032 t - 37t t - 2 │ │ │ │ -000222c0: 3574 2020 2b20 3139 7420 7420 202b 2032 5t + 19t t + 2 │ │ │ │ -000222d0: 3274 2074 2020 2d20 3235 7420 7420 202b 2t t - 25t t + │ │ │ │ -000222e0: 2032 3574 207c 0a7c 2020 2020 2020 3120 25t |.| 1 │ │ │ │ -000222f0: 3520 2020 2020 2032 2035 2020 2020 2020 5 2 5 │ │ │ │ -00022300: 3320 3520 2020 2020 2034 2035 2020 2020 3 5 4 5 │ │ │ │ -00022310: 2020 3520 2020 2020 2030 2036 2020 2020 5 0 6 │ │ │ │ -00022320: 2020 3120 3620 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ -00022330: 2020 2020 347c 0a7c 2020 2020 2020 2020 4|.| │ │ │ │ +00022260: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00022270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022290: 0a7c 202b 2033 3274 2074 2020 2d20 3230 .| + 32t t - 20 │ │ │ │ +000222a0: 7420 7420 202d 2034 3774 2074 2020 2d20 t t - 47t t - │ │ │ │ +000222b0: 3337 7420 7420 202d 2032 3574 2020 2b20 37t t - 25t + │ │ │ │ +000222c0: 3139 7420 7420 202b 2032 3274 2074 2020 19t t + 22t t │ │ │ │ +000222d0: 2d20 3235 7420 7420 202b 2032 3574 207c - 25t t + 25t | │ │ │ │ +000222e0: 0a7c 2020 2020 2020 3120 3520 2020 2020 .| 1 5 │ │ │ │ +000222f0: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ +00022300: 2020 2034 2035 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +00022310: 2020 2030 2036 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +00022320: 2020 2020 2032 2036 2020 2020 2020 347c 2 6 4| │ │ │ │ +00022330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022380: 2020 2020 207c 0a7c 2074 2020 2d20 3337 |.| t - 37 │ │ │ │ -00022390: 7420 7420 202d 2033 3974 2074 2020 2b20 t t - 39t t + │ │ │ │ -000223a0: 3139 7420 7420 202d 2033 3974 2074 2020 19t t - 39t t │ │ │ │ -000223b0: 2d20 3338 7420 7420 202b 2033 3974 2074 - 38t t + 39t t │ │ │ │ -000223c0: 2020 2b20 3139 7420 7420 202b 2031 3874 + 19t t + 18t │ │ │ │ -000223d0: 2074 2020 2d7c 0a7c 3120 3520 2020 2020 t -|.|1 5 │ │ │ │ -000223e0: 2030 2036 2020 2020 2020 3120 3620 2020 0 6 1 6 │ │ │ │ -000223f0: 2020 2034 2036 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -00022400: 2020 2020 2030 2037 2020 2020 2020 3120 0 7 1 │ │ │ │ -00022410: 3720 2020 2020 2032 2037 2020 2020 2020 7 2 7 │ │ │ │ -00022420: 3520 3720 207c 0a7c 2020 2020 2020 2020 5 7 |.| │ │ │ │ +00022370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022380: 0a7c 2074 2020 2d20 3337 7420 7420 202d .| t - 37t t - │ │ │ │ +00022390: 2033 3974 2074 2020 2b20 3139 7420 7420 39t t + 19t t │ │ │ │ +000223a0: 202d 2033 3974 2074 2020 2d20 3338 7420 - 39t t - 38t │ │ │ │ +000223b0: 7420 202b 2033 3974 2074 2020 2b20 3139 t + 39t t + 19 │ │ │ │ +000223c0: 7420 7420 202b 2031 3874 2074 2020 2d7c t t + 18t t -| │ │ │ │ +000223d0: 0a7c 3120 3520 2020 2020 2030 2036 2020 .|1 5 0 6 │ │ │ │ +000223e0: 2020 2020 3120 3620 2020 2020 2034 2036 1 6 4 6 │ │ │ │ +000223f0: 2020 2020 2020 3520 3620 2020 2020 2030 5 6 0 │ │ │ │ +00022400: 2037 2020 2020 2020 3120 3720 2020 2020 7 1 7 │ │ │ │ +00022410: 2032 2037 2020 2020 2020 3520 3720 207c 2 7 5 7 | │ │ │ │ +00022420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224a0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000224b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000224c0: 2020 2020 207c 0a7c 2020 2b20 3237 7420 |.| + 27t │ │ │ │ -000224d0: 7420 202d 2038 7420 7420 202b 2033 3774 t - 8t t + 37t │ │ │ │ -000224e0: 2074 2020 2b20 3238 7420 7420 202b 2033 t + 28t t + 3 │ │ │ │ -000224f0: 3074 2020 2d20 3436 7420 7420 202b 2032 0t - 46t t + 2 │ │ │ │ -00022500: 3474 2074 2020 2d20 3430 7420 7420 202b 4t t - 40t t + │ │ │ │ -00022510: 2032 3574 207c 0a7c 3520 2020 2020 2031 25t |.|5 1 │ │ │ │ -00022520: 2035 2020 2020 2032 2035 2020 2020 2020 5 2 5 │ │ │ │ -00022530: 3320 3520 2020 2020 2034 2035 2020 2020 3 5 4 5 │ │ │ │ -00022540: 2020 3520 2020 2020 2030 2036 2020 2020 5 0 6 │ │ │ │ -00022550: 2020 3120 3620 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ -00022560: 2020 2020 347c 0a7c 2020 2020 2020 2020 4|.| │ │ │ │ +00022490: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000224a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000224b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000224c0: 0a7c 2020 2b20 3237 7420 7420 202d 2038 .| + 27t t - 8 │ │ │ │ +000224d0: 7420 7420 202b 2033 3774 2074 2020 2b20 t t + 37t t + │ │ │ │ +000224e0: 3238 7420 7420 202b 2033 3074 2020 2d20 28t t + 30t - │ │ │ │ +000224f0: 3436 7420 7420 202b 2032 3474 2074 2020 46t t + 24t t │ │ │ │ +00022500: 2d20 3430 7420 7420 202b 2032 3574 207c - 40t t + 25t | │ │ │ │ +00022510: 0a7c 3520 2020 2020 2031 2035 2020 2020 .|5 1 5 │ │ │ │ +00022520: 2032 2035 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ +00022530: 2020 2034 2035 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +00022540: 2020 2030 2036 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +00022550: 2020 2020 2032 2036 2020 2020 2020 347c 2 6 4| │ │ │ │ +00022560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000225a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000225b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000225c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000225e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000225f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022600: 2020 2020 207c 0a7c 6672 6f6d 2050 505e |.|from PP^ │ │ │ │ -00022610: 3820 746f 2038 2d64 696d 656e 7369 6f6e 8 to 8-dimension │ │ │ │ -00022620: 616c 2073 7562 7661 7269 6574 7920 6f66 al subvariety of │ │ │ │ -00022630: 2050 505e 3131 2920 2020 2020 2020 2020 PP^11) │ │ │ │ -00022640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022650: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000225f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022600: 0a7c 6672 6f6d 2050 505e 3820 746f 2038 .|from PP^8 to 8 │ │ │ │ +00022610: 2d64 696d 656e 7369 6f6e 616c 2073 7562 -dimensional sub │ │ │ │ +00022620: 7661 7269 6574 7920 6f66 2050 505e 3131 variety of PP^11 │ │ │ │ +00022630: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00022640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022650: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00022660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00022680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00022690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000226a0: 2d2d 2d2d 2d7c 0a7c 5f35 2b34 312a 785f -----|.|_5+41*x_ │ │ │ │ -000226b0: 332a 785f 352d 785f 302a 785f 362b 3132 3*x_5-x_0*x_6+12 │ │ │ │ -000226c0: 2a78 5f32 2a78 5f36 2b32 352a 785f 312a *x_2*x_6+25*x_1* │ │ │ │ -000226d0: 785f 3720 2020 2020 2020 2020 2020 2020 x_7 │ │ │ │ -000226e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000226f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000226a0: 0a7c 5f35 2b34 312a 785f 332a 785f 352d .|_5+41*x_3*x_5- │ │ │ │ +000226b0: 785f 302a 785f 362b 3132 2a78 5f32 2a78 x_0*x_6+12*x_2*x │ │ │ │ +000226c0: 5f36 2b32 352a 785f 312a 785f 3720 2020 _6+25*x_1*x_7 │ │ │ │ +000226d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000226e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000226f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022740: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000227a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000227c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000227e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000227d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000227e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000227f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000228d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000228c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000228d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000228e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000228f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022920: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000229c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000229b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000229c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000229d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000229f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a10: 2020 2020 207c 0a7c 2020 2d20 3378 2078 |.| - 3x x │ │ │ │ -00022a20: 2020 2b20 3278 2078 2020 2b20 3131 7820 + 2x x + 11x │ │ │ │ -00022a30: 7820 202d 2033 3778 2078 2020 2d20 3233 x - 37x x - 23 │ │ │ │ -00022a40: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00022a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022a60: 2020 2020 207c 0a7c 3720 2020 2020 3620 |.|7 6 │ │ │ │ -00022a70: 3720 2020 2020 3020 3820 2020 2020 2031 7 0 8 1 │ │ │ │ -00022a80: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -00022a90: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00022aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022a00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022a10: 0a7c 2020 2d20 3378 2078 2020 2b20 3278 .| - 3x x + 2x │ │ │ │ +00022a20: 2078 2020 2b20 3131 7820 7820 202d 2033 x + 11x x - 3 │ │ │ │ +00022a30: 3778 2078 2020 2d20 3233 7820 7820 2020 7x x - 23x x │ │ │ │ +00022a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022a60: 0a7c 3720 2020 2020 3620 3720 2020 2020 .|7 6 7 │ │ │ │ +00022a70: 3020 3820 2020 2020 2031 2038 2020 2020 0 8 1 8 │ │ │ │ +00022a80: 2020 3320 3820 2020 2020 2034 2020 2020 3 8 4 │ │ │ │ +00022a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022ab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022b50: 2020 2020 207c 0a7c 2020 2b20 3978 2078 |.| + 9x x │ │ │ │ -00022b60: 2020 2b20 3436 7820 7820 202b 2034 3178 + 46x x + 41x │ │ │ │ -00022b70: 2078 2020 2d20 3778 2078 2020 2d20 3334 x - 7x x - 34 │ │ │ │ -00022b80: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00022b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ba0: 2020 2020 207c 0a7c 3720 2020 2020 3520 |.|7 5 │ │ │ │ -00022bb0: 3720 2020 2020 2036 2037 2020 2020 2020 7 6 7 │ │ │ │ -00022bc0: 3020 3820 2020 2020 3120 3820 2020 2020 0 8 1 8 │ │ │ │ -00022bd0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00022be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022bf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022b50: 0a7c 2020 2b20 3978 2078 2020 2b20 3436 .| + 9x x + 46 │ │ │ │ +00022b60: 7820 7820 202b 2034 3178 2078 2020 2d20 x x + 41x x - │ │ │ │ +00022b70: 3778 2078 2020 2d20 3334 7820 7820 2020 7x x - 34x x │ │ │ │ +00022b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022ba0: 0a7c 3720 2020 2020 3520 3720 2020 2020 .|7 5 7 │ │ │ │ +00022bb0: 2036 2037 2020 2020 2020 3020 3820 2020 6 7 0 8 │ │ │ │ +00022bc0: 2020 3120 3820 2020 2020 2033 2020 2020 1 8 3 │ │ │ │ +00022bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022c40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022c90: 2020 2020 207c 0a7c 2032 3078 2078 2020 |.| 20x x │ │ │ │ -00022ca0: 2b20 3130 7820 7820 202b 2033 3478 2078 + 10x x + 34x x │ │ │ │ -00022cb0: 2020 2b20 3431 7820 7820 202d 2078 2078 + 41x x - x x │ │ │ │ -00022cc0: 2020 2b20 2020 2020 2020 2020 2020 2020 + │ │ │ │ -00022cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ce0: 2020 2020 207c 0a7c 2020 2020 3620 3720 |.| 6 7 │ │ │ │ -00022cf0: 2020 2020 2030 2038 2020 2020 2020 3120 0 8 1 │ │ │ │ -00022d00: 3820 2020 2020 2033 2038 2020 2020 3420 8 3 8 4 │ │ │ │ -00022d10: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -00022d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022c90: 0a7c 2032 3078 2078 2020 2b20 3130 7820 .| 20x x + 10x │ │ │ │ +00022ca0: 7820 202b 2033 3478 2078 2020 2b20 3431 x + 34x x + 41 │ │ │ │ +00022cb0: 7820 7820 202d 2078 2078 2020 2b20 2020 x x - x x + │ │ │ │ +00022cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022ce0: 0a7c 2020 2020 3620 3720 2020 2020 2030 .| 6 7 0 │ │ │ │ +00022cf0: 2038 2020 2020 2020 3120 3820 2020 2020 8 1 8 │ │ │ │ +00022d00: 2033 2038 2020 2020 3420 3820 2020 2020 3 8 4 8 │ │ │ │ +00022d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022d80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022dd0: 2020 2020 207c 0a7c 2020 2032 2020 2020 |.| 2 │ │ │ │ +00022dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022dd0: 0a7c 2020 2032 2020 2020 2020 2020 2020 .| 2 │ │ │ │ 00022de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e20: 2020 2020 207c 0a7c 3232 7420 202d 2033 |.|22t - 3 │ │ │ │ -00022e30: 3174 2074 2020 2b20 3236 7420 7420 202b 1t t + 26t t + │ │ │ │ -00022e40: 2031 3274 2074 2020 2d20 3435 7420 7420 12t t - 45t t │ │ │ │ -00022e50: 202d 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ -00022e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022e70: 2020 2020 207c 0a7c 2020 2036 2020 2020 |.| 6 │ │ │ │ -00022e80: 2020 3320 3720 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ -00022e90: 2020 2020 3520 3720 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +00022e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022e20: 0a7c 3232 7420 202d 2033 3174 2074 2020 .|22t - 31t t │ │ │ │ +00022e30: 2b20 3236 7420 7420 202b 2031 3274 2074 + 26t t + 12t t │ │ │ │ +00022e40: 2020 2d20 3435 7420 7420 202d 2020 2020 - 45t t - │ │ │ │ +00022e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022e70: 0a7c 2020 2036 2020 2020 2020 3320 3720 .| 6 3 7 │ │ │ │ +00022e80: 2020 2020 2034 2037 2020 2020 2020 3520 4 7 5 │ │ │ │ +00022e90: 3720 2020 2020 2036 2037 2020 2020 2020 7 6 7 │ │ │ │ 00022ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022eb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00022ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00022f20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00022f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022f10: 0a7c 2020 2020 2020 2020 2020 3220 2020 .| 2 │ │ │ │ +00022f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00022f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022f60: 2020 2020 207c 0a7c 7420 7420 202d 2031 |.|t t - 1 │ │ │ │ -00022f70: 3374 2020 2d20 3235 7420 7420 202b 2035 3t - 25t t + 5 │ │ │ │ -00022f80: 7420 7420 202d 2033 3574 2074 2020 2b20 t t - 35t t + │ │ │ │ -00022f90: 3130 7420 2020 2020 2020 2020 2020 2020 10t │ │ │ │ -00022fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022fb0: 2020 2020 207c 0a7c 2035 2036 2020 2020 |.| 5 6 │ │ │ │ -00022fc0: 2020 3620 2020 2020 2033 2037 2020 2020 6 3 7 │ │ │ │ -00022fd0: 2034 2037 2020 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ +00022f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022f60: 0a7c 7420 7420 202d 2031 3374 2020 2d20 .|t t - 13t - │ │ │ │ +00022f70: 3235 7420 7420 202b 2035 7420 7420 202d 25t t + 5t t - │ │ │ │ +00022f80: 2033 3574 2074 2020 2b20 3130 7420 2020 35t t + 10t │ │ │ │ +00022f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00022fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00022fb0: 0a7c 2035 2036 2020 2020 2020 3620 2020 .| 5 6 6 │ │ │ │ +00022fc0: 2020 2033 2037 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ +00022fd0: 2020 2020 3520 3720 2020 2020 2020 2020 5 7 │ │ │ │ 00022fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00022ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00022ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00023060: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00023040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023050: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +00023060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230a0: 2020 2020 207c 0a7c 2074 2020 2d20 3133 |.| t - 13 │ │ │ │ -000230b0: 7420 202d 2033 3974 2074 2020 2d20 3239 t - 39t t - 29 │ │ │ │ -000230c0: 7420 7420 202b 2039 7420 7420 202b 2033 t t + 9t t + 3 │ │ │ │ -000230d0: 3974 2020 2020 2020 2020 2020 2020 2020 9t │ │ │ │ -000230e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000230f0: 2020 2020 207c 0a7c 3520 3620 2020 2020 |.|5 6 │ │ │ │ -00023100: 2036 2020 2020 2020 3320 3720 2020 2020 6 3 7 │ │ │ │ -00023110: 2034 2037 2020 2020 2035 2037 2020 2020 4 7 5 7 │ │ │ │ -00023120: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00023130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023140: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000230a0: 0a7c 2074 2020 2d20 3133 7420 202d 2033 .| t - 13t - 3 │ │ │ │ +000230b0: 3974 2074 2020 2d20 3239 7420 7420 202b 9t t - 29t t + │ │ │ │ +000230c0: 2039 7420 7420 202b 2033 3974 2020 2020 9t t + 39t │ │ │ │ +000230d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000230e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000230f0: 0a7c 3520 3620 2020 2020 2036 2020 2020 .|5 6 6 │ │ │ │ +00023100: 2020 3320 3720 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ +00023110: 2020 2035 2037 2020 2020 2020 3620 2020 5 7 6 │ │ │ │ +00023120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023190: 2020 2020 207c 0a7c 2020 2020 2020 3220 |.| 2 │ │ │ │ +00023180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023190: 0a7c 2020 2020 2020 3220 2020 2020 2020 .| 2 │ │ │ │ 000231a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000231c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000231d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000231e0: 2020 2020 207c 0a7c 202d 2032 3274 2020 |.| - 22t │ │ │ │ -000231f0: 2b20 3331 7420 7420 202d 2032 3574 2074 + 31t t - 25t t │ │ │ │ -00023200: 2020 2d20 3139 7420 7420 202b 2034 3774 - 19t t + 47t │ │ │ │ -00023210: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00023220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023230: 2020 2020 207c 0a7c 2020 2020 2020 3620 |.| 6 │ │ │ │ -00023240: 2020 2020 2033 2037 2020 2020 2020 3420 3 7 4 │ │ │ │ -00023250: 3720 2020 2020 2035 2037 2020 2020 2020 7 5 7 │ │ │ │ -00023260: 3620 3720 2020 2020 2020 2020 2020 2020 6 7 │ │ │ │ -00023270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000231d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000231e0: 0a7c 202d 2032 3274 2020 2b20 3331 7420 .| - 22t + 31t │ │ │ │ +000231f0: 7420 202d 2032 3574 2074 2020 2d20 3139 t - 25t t - 19 │ │ │ │ +00023200: 7420 7420 202b 2034 3774 2074 2020 2020 t t + 47t t │ │ │ │ +00023210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023230: 0a7c 2020 2020 2020 3620 2020 2020 2033 .| 6 3 │ │ │ │ +00023240: 2037 2020 2020 2020 3420 3720 2020 2020 7 4 7 │ │ │ │ +00023250: 2035 2037 2020 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ +00023260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000232d0: 2020 2020 207c 0a7c 2020 2020 2032 2020 |.| 2 │ │ │ │ +000232c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000232d0: 0a7c 2020 2020 2032 2020 2020 2020 2020 .| 2 │ │ │ │ 000232e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000232f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023320: 2020 2020 207c 0a7c 2d20 3234 7420 202b |.|- 24t + │ │ │ │ -00023330: 2033 3274 2074 2020 2d20 3235 7420 7420 32t t - 25t t │ │ │ │ -00023340: 202d 2031 3974 2074 2020 2b20 3437 7420 - 19t t + 47t │ │ │ │ -00023350: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00023360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023370: 2020 2020 207c 0a7c 2020 2020 2036 2020 |.| 6 │ │ │ │ -00023380: 2020 2020 3320 3720 2020 2020 2034 2037 3 7 4 7 │ │ │ │ -00023390: 2020 2020 2020 3520 3720 2020 2020 2036 5 7 6 │ │ │ │ -000233a0: 2037 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -000233b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000233c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023320: 0a7c 2d20 3234 7420 202b 2033 3274 2074 .|- 24t + 32t t │ │ │ │ +00023330: 2020 2d20 3235 7420 7420 202d 2031 3974 - 25t t - 19t │ │ │ │ +00023340: 2074 2020 2b20 3437 7420 7420 2020 2020 t + 47t t │ │ │ │ +00023350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023370: 0a7c 2020 2020 2036 2020 2020 2020 3320 .| 6 3 │ │ │ │ +00023380: 3720 2020 2020 2034 2037 2020 2020 2020 7 4 7 │ │ │ │ +00023390: 3520 3720 2020 2020 2036 2037 2020 2020 5 7 6 7 │ │ │ │ +000233a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000233b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000233c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000233d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000233e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000233f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023410: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023410: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023460: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000234a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000234b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000234c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000234e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000234f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023500: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000234f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00023560: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00023540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023550: 0a7c 2020 2020 2020 2020 2020 3220 2020 .| 2 │ │ │ │ +00023560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235a0: 2020 2020 207c 0a7c 7420 7420 202b 2031 |.|t t + 1 │ │ │ │ -000235b0: 3574 2020 2b20 3236 7420 7420 202d 2035 5t + 26t t - 5 │ │ │ │ -000235c0: 7420 7420 202b 2033 3574 2074 2020 2d20 t t + 35t t - │ │ │ │ -000235d0: 3130 7420 2020 2020 2020 2020 2020 2020 10t │ │ │ │ -000235e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000235f0: 2020 2020 207c 0a7c 2035 2036 2020 2020 |.| 5 6 │ │ │ │ -00023600: 2020 3620 2020 2020 2033 2037 2020 2020 6 3 7 │ │ │ │ -00023610: 2034 2037 2020 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ +00023590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000235a0: 0a7c 7420 7420 202b 2031 3574 2020 2b20 .|t t + 15t + │ │ │ │ +000235b0: 3236 7420 7420 202d 2035 7420 7420 202b 26t t - 5t t + │ │ │ │ +000235c0: 2033 3574 2074 2020 2d20 3130 7420 2020 35t t - 10t │ │ │ │ +000235d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000235e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000235f0: 0a7c 2035 2036 2020 2020 2020 3620 2020 .| 5 6 6 │ │ │ │ +00023600: 2020 2033 2037 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ +00023610: 2020 2020 3520 3720 2020 2020 2020 2020 5 7 │ │ │ │ 00023620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023640: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023640: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023690: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000236a0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00023680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023690: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000236a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000236b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000236c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000236e0: 2020 2020 207c 0a7c 2074 2020 2d20 3434 |.| t - 44 │ │ │ │ -000236f0: 7420 7420 202d 2034 3774 2020 2d20 3336 t t - 47t - 36 │ │ │ │ -00023700: 7420 7420 202d 2034 3674 2074 2020 2b20 t t - 46t t + │ │ │ │ -00023710: 7420 7420 2020 2020 2020 2020 2020 2020 t t │ │ │ │ -00023720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023730: 2020 2020 207c 0a7c 3420 3620 2020 2020 |.|4 6 │ │ │ │ -00023740: 2035 2036 2020 2020 2020 3620 2020 2020 5 6 6 │ │ │ │ -00023750: 2030 2037 2020 2020 2020 3120 3720 2020 0 7 1 7 │ │ │ │ -00023760: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00023770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023780: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000236d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000236e0: 0a7c 2074 2020 2d20 3434 7420 7420 202d .| t - 44t t - │ │ │ │ +000236f0: 2034 3774 2020 2d20 3336 7420 7420 202d 47t - 36t t - │ │ │ │ +00023700: 2034 3674 2074 2020 2b20 7420 7420 2020 46t t + t t │ │ │ │ +00023710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023730: 0a7c 3420 3620 2020 2020 2035 2036 2020 .|4 6 5 6 │ │ │ │ +00023740: 2020 2020 3620 2020 2020 2030 2037 2020 6 0 7 │ │ │ │ +00023750: 2020 2020 3120 3720 2020 2032 2020 2020 1 7 2 │ │ │ │ +00023760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023780: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000237d0: 2020 2020 207c 0a7c 202c 2020 2020 2020 |.| , │ │ │ │ +000237c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000237d0: 0a7c 202c 2020 2020 2020 2020 2020 2020 .| , │ │ │ │ 000237e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000237f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023820: 2020 2020 207c 0a7c 3820 2020 2020 2020 |.|8 │ │ │ │ +00023810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023820: 0a7c 3820 2020 2020 2020 2020 2020 2020 .|8 │ │ │ │ 00023830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000238c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000238d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000238b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000238c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000238d0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000238e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000238f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023910: 2020 2020 207c 0a7c 7420 202d 2035 7420 |.|t - 5t │ │ │ │ -00023920: 7420 202b 2031 3374 2020 2b20 3574 2074 t + 13t + 5t t │ │ │ │ -00023930: 2020 2b20 7420 7420 202b 2033 3974 2074 + t t + 39t t │ │ │ │ -00023940: 2020 2b20 2020 2020 2020 2020 2020 2020 + │ │ │ │ -00023950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023960: 2020 2020 207c 0a7c 2036 2020 2020 2035 |.| 6 5 │ │ │ │ -00023970: 2036 2020 2020 2020 3620 2020 2020 3020 6 6 0 │ │ │ │ -00023980: 3720 2020 2031 2037 2020 2020 2020 3320 7 1 7 3 │ │ │ │ -00023990: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -000239a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023910: 0a7c 7420 202d 2035 7420 7420 202b 2031 .|t - 5t t + 1 │ │ │ │ +00023920: 3374 2020 2b20 3574 2074 2020 2b20 7420 3t + 5t t + t │ │ │ │ +00023930: 7420 202b 2033 3974 2074 2020 2b20 2020 t + 39t t + │ │ │ │ +00023940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023960: 0a7c 2036 2020 2020 2035 2036 2020 2020 .| 6 5 6 │ │ │ │ +00023970: 2020 3620 2020 2020 3020 3720 2020 2031 6 0 7 1 │ │ │ │ +00023980: 2037 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ +00023990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000239a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000239b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000239c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000239e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000239f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a00: 2020 2020 207c 0a7c 2031 3974 2074 2020 |.| 19t t │ │ │ │ -00023a10: 2b20 3139 7420 7420 202b 2032 3074 2074 + 19t t + 20t t │ │ │ │ -00023a20: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000239f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023a00: 0a7c 2031 3974 2074 2020 2b20 3139 7420 .| 19t t + 19t │ │ │ │ +00023a10: 7420 202b 2032 3074 2074 202c 2020 2020 t + 20t t , │ │ │ │ +00023a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a50: 2020 2020 207c 0a7c 2020 2020 3620 3720 |.| 6 7 │ │ │ │ -00023a60: 2020 2020 2031 2038 2020 2020 2020 3720 1 8 7 │ │ │ │ -00023a70: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +00023a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023a50: 0a7c 2020 2020 3620 3720 2020 2020 2031 .| 6 7 1 │ │ │ │ +00023a60: 2038 2020 2020 2020 3720 3820 2020 2020 8 7 8 │ │ │ │ +00023a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023aa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023aa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00023b00: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00023ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00023b00: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00023b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b40: 2020 2020 207c 0a7c 7420 202b 2031 3674 |.|t + 16t │ │ │ │ -00023b50: 2074 2020 2d20 3335 7420 202b 2032 3974 t - 35t + 29t │ │ │ │ -00023b60: 2074 2020 2b20 3132 7420 7420 202d 2033 t + 12t t - 3 │ │ │ │ -00023b70: 3574 2020 2020 2020 2020 2020 2020 2020 5t │ │ │ │ -00023b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023b90: 2020 2020 207c 0a7c 2036 2020 2020 2020 |.| 6 │ │ │ │ -00023ba0: 3520 3620 2020 2020 2036 2020 2020 2020 5 6 6 │ │ │ │ -00023bb0: 3020 3720 2020 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ -00023bc0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00023bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023be0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00023b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023b40: 0a7c 7420 202b 2031 3674 2074 2020 2d20 .|t + 16t t - │ │ │ │ +00023b50: 3335 7420 202b 2032 3974 2074 2020 2b20 35t + 29t t + │ │ │ │ +00023b60: 3132 7420 7420 202d 2033 3574 2020 2020 12t t - 35t │ │ │ │ +00023b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023b90: 0a7c 2036 2020 2020 2020 3520 3620 2020 .| 6 5 6 │ │ │ │ +00023ba0: 2020 2036 2020 2020 2020 3020 3720 2020 6 0 7 │ │ │ │ +00023bb0: 2020 2031 2037 2020 2020 2020 3220 2020 1 7 2 │ │ │ │ +00023bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00023bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023be0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00023bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00023c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00023c30: 2d2d 2d2d 2d7c 0a7c 2b32 352a 785f 332a -----|.|+25*x_3* │ │ │ │ -00023c40: 785f 372b 3233 2a78 5f35 2a78 5f37 2d33 x_7+23*x_5*x_7-3 │ │ │ │ -00023c50: 2a78 5f36 2a78 5f37 2b32 2a78 5f30 2a78 *x_6*x_7+2*x_0*x │ │ │ │ -00023c60: 5f38 2b31 312a 785f 312a 785f 382d 3337 _8+11*x_1*x_8-37 │ │ │ │ -00023c70: 2a78 5f33 2a78 5f38 2d32 332a 785f 342a *x_3*x_8-23*x_4* │ │ │ │ -00023c80: 7820 2020 207c 0a7c 2020 2020 2020 2020 x |.| │ │ │ │ +00023c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00023c30: 0a7c 2b32 352a 785f 332a 785f 372b 3233 .|+25*x_3*x_7+23 │ │ │ │ +00023c40: 2a78 5f35 2a78 5f37 2d33 2a78 5f36 2a78 *x_5*x_7-3*x_6*x │ │ │ │ +00023c50: 5f37 2b32 2a78 5f30 2a78 5f38 2b31 312a _7+2*x_0*x_8+11* │ │ │ │ +00023c60: 785f 312a 785f 382d 3337 2a78 5f33 2a78 x_1*x_8-37*x_3*x │ │ │ │ +00023c70: 5f38 2d32 332a 785f 342a 7820 2020 207c _8-23*x_4*x | │ │ │ │ +00023c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023cd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023d20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023dc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023e10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023e60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023e60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023eb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023ea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023eb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023f50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00023f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00023f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00023fa0: 2020 2020 207c 0a7c 2020 2d20 3333 7820 |.| - 33x │ │ │ │ -00023fb0: 7820 202b 2038 7820 7820 202b 2031 3078 x + 8x x + 10x │ │ │ │ -00023fc0: 2078 2020 2d20 3235 7820 7820 202d 2039 x - 25x x - 9 │ │ │ │ -00023fd0: 7820 7820 202b 2033 7820 7820 202b 2032 x x + 3x x + 2 │ │ │ │ -00023fe0: 3478 2078 2020 2d20 3237 7820 7820 202d 4x x - 27x x - │ │ │ │ -00023ff0: 2020 2020 207c 0a7c 3820 2020 2020 2036 |.|8 6 │ │ │ │ -00024000: 2038 2020 2020 2030 2039 2020 2020 2020 8 0 9 │ │ │ │ -00024010: 3120 3920 2020 2020 2032 2039 2020 2020 1 9 2 9 │ │ │ │ -00024020: 2033 2039 2020 2020 2034 2039 2020 2020 3 9 4 9 │ │ │ │ -00024030: 2020 3520 3920 2020 2020 2036 2039 2020 5 9 6 9 │ │ │ │ -00024040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00023f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00023fa0: 0a7c 2020 2d20 3333 7820 7820 202b 2038 .| - 33x x + 8 │ │ │ │ +00023fb0: 7820 7820 202b 2031 3078 2078 2020 2d20 x x + 10x x - │ │ │ │ +00023fc0: 3235 7820 7820 202d 2039 7820 7820 202b 25x x - 9x x + │ │ │ │ +00023fd0: 2033 7820 7820 202b 2032 3478 2078 2020 3x x + 24x x │ │ │ │ +00023fe0: 2d20 3237 7820 7820 202d 2020 2020 207c - 27x x - | │ │ │ │ +00023ff0: 0a7c 3820 2020 2020 2036 2038 2020 2020 .|8 6 8 │ │ │ │ +00024000: 2030 2039 2020 2020 2020 3120 3920 2020 0 9 1 9 │ │ │ │ +00024010: 2020 2032 2039 2020 2020 2033 2039 2020 2 9 3 9 │ │ │ │ +00024020: 2020 2034 2039 2020 2020 2020 3520 3920 4 9 5 9 │ │ │ │ +00024030: 2020 2020 2036 2039 2020 2020 2020 207c 6 9 | │ │ │ │ +00024040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000240a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000240b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000240c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000240e0: 2020 2020 207c 0a7c 2020 2d20 3978 2078 |.| - 9x x │ │ │ │ -000240f0: 2020 2d20 3436 7820 7820 202d 2031 3778 - 46x x - 17x │ │ │ │ -00024100: 2078 2020 2b20 3332 7820 7820 202d 2038 x + 32x x - 8 │ │ │ │ -00024110: 7820 7820 202d 2033 3578 2078 2020 2d20 x x - 35x x - │ │ │ │ -00024120: 3436 7820 7820 202b 2032 3678 2078 2020 46x x + 26x x │ │ │ │ -00024130: 2b20 2020 207c 0a7c 3820 2020 2020 3420 + |.|8 4 │ │ │ │ -00024140: 3820 2020 2020 2036 2038 2020 2020 2020 8 6 8 │ │ │ │ -00024150: 3020 3920 2020 2020 2031 2039 2020 2020 0 9 1 9 │ │ │ │ -00024160: 2032 2039 2020 2020 2020 3320 3920 2020 2 9 3 9 │ │ │ │ -00024170: 2020 2034 2039 2020 2020 2020 3520 3920 4 9 5 9 │ │ │ │ -00024180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000240d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000240e0: 0a7c 2020 2d20 3978 2078 2020 2d20 3436 .| - 9x x - 46 │ │ │ │ +000240f0: 7820 7820 202d 2031 3778 2078 2020 2b20 x x - 17x x + │ │ │ │ +00024100: 3332 7820 7820 202d 2038 7820 7820 202d 32x x - 8x x - │ │ │ │ +00024110: 2033 3578 2078 2020 2d20 3436 7820 7820 35x x - 46x x │ │ │ │ +00024120: 202b 2032 3678 2078 2020 2b20 2020 207c + 26x x + | │ │ │ │ +00024130: 0a7c 3820 2020 2020 3420 3820 2020 2020 .|8 4 8 │ │ │ │ +00024140: 2036 2038 2020 2020 2020 3020 3920 2020 6 8 0 9 │ │ │ │ +00024150: 2020 2031 2039 2020 2020 2032 2039 2020 1 9 2 9 │ │ │ │ +00024160: 2020 2020 3320 3920 2020 2020 2034 2039 3 9 4 9 │ │ │ │ +00024170: 2020 2020 2020 3520 3920 2020 2020 207c 5 9 | │ │ │ │ +00024180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000241c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000241d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000241c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000241d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000241e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000241f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024220: 2020 2020 207c 0a7c 2078 2078 2020 2b20 |.| x x + │ │ │ │ -00024230: 3430 7820 7820 202d 2033 3278 2078 2020 40x x - 32x x │ │ │ │ -00024240: 2b20 3578 2078 2020 2d20 3131 7820 7820 + 5x x - 11x x │ │ │ │ -00024250: 202d 2032 3078 2078 2020 2b20 3435 7820 - 20x x + 45x │ │ │ │ -00024260: 7820 202d 2031 3478 2078 2020 2d20 3235 x - 14x x - 25 │ │ │ │ -00024270: 7820 2020 207c 0a7c 2020 3620 3820 2020 x |.| 6 8 │ │ │ │ -00024280: 2020 2030 2039 2020 2020 2020 3120 3920 0 9 1 9 │ │ │ │ -00024290: 2020 2020 3220 3920 2020 2020 2033 2039 2 9 3 9 │ │ │ │ -000242a0: 2020 2020 2020 3420 3920 2020 2020 2035 4 9 5 │ │ │ │ -000242b0: 2039 2020 2020 2020 3620 3920 2020 2020 9 6 9 │ │ │ │ -000242c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024220: 0a7c 2078 2078 2020 2b20 3430 7820 7820 .| x x + 40x x │ │ │ │ +00024230: 202d 2033 3278 2078 2020 2b20 3578 2078 - 32x x + 5x x │ │ │ │ +00024240: 2020 2d20 3131 7820 7820 202d 2032 3078 - 11x x - 20x │ │ │ │ +00024250: 2078 2020 2b20 3435 7820 7820 202d 2031 x + 45x x - 1 │ │ │ │ +00024260: 3478 2078 2020 2d20 3235 7820 2020 207c 4x x - 25x | │ │ │ │ +00024270: 0a7c 2020 3620 3820 2020 2020 2030 2039 .| 6 8 0 9 │ │ │ │ +00024280: 2020 2020 2020 3120 3920 2020 2020 3220 1 9 2 │ │ │ │ +00024290: 3920 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ +000242a0: 3420 3920 2020 2020 2035 2039 2020 2020 4 9 5 9 │ │ │ │ +000242b0: 2020 3620 3920 2020 2020 2020 2020 207c 6 9 | │ │ │ │ +000242c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000242d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000242e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000242f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000243a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000243b0: 2020 2020 207c 0a7c 3436 7420 7420 202b |.|46t t + │ │ │ │ -000243c0: 2033 3774 2074 2020 2b20 3238 7420 7420 37t t + 28t t │ │ │ │ -000243d0: 202b 2033 3374 2074 202c 2020 2020 2020 + 33t t , │ │ │ │ +000243a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000243b0: 0a7c 3436 7420 7420 202b 2033 3774 2074 .|46t t + 37t t │ │ │ │ +000243c0: 2020 2b20 3238 7420 7420 202b 2033 3374 + 28t t + 33t │ │ │ │ +000243d0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 000243e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000243f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024400: 2020 2020 207c 0a7c 2020 2033 2038 2020 |.| 3 8 │ │ │ │ -00024410: 2020 2020 3420 3820 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -00024420: 2020 2020 2020 3620 3820 2020 2020 2020 6 8 │ │ │ │ +000243f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024400: 0a7c 2020 2033 2038 2020 2020 2020 3420 .| 3 8 4 │ │ │ │ +00024410: 3820 2020 2020 2035 2038 2020 2020 2020 8 5 8 │ │ │ │ +00024420: 3620 3820 2020 2020 2020 2020 2020 2020 6 8 │ │ │ │ 00024430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000244a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000244a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000244b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000244d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000244e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000244f0: 2020 2020 207c 0a7c 2074 2020 2b20 3131 |.| t + 11 │ │ │ │ -00024500: 7420 7420 202b 2034 3674 2074 2020 2b20 t t + 46t t + │ │ │ │ -00024510: 3239 7420 7420 202b 2032 3874 2074 202c 29t t + 28t t , │ │ │ │ +000244e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000244f0: 0a7c 2074 2020 2b20 3131 7420 7420 202b .| t + 11t t + │ │ │ │ +00024500: 2034 3674 2074 2020 2b20 3239 7420 7420 46t t + 29t t │ │ │ │ +00024510: 202b 2032 3874 2074 202c 2020 2020 2020 + 28t t , │ │ │ │ 00024520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024540: 2020 2020 207c 0a7c 3620 3720 2020 2020 |.|6 7 │ │ │ │ -00024550: 2033 2038 2020 2020 2020 3420 3820 2020 3 8 4 8 │ │ │ │ -00024560: 2020 2035 2038 2020 2020 2020 3620 3820 5 8 6 8 │ │ │ │ +00024530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024540: 0a7c 3620 3720 2020 2020 2033 2038 2020 .|6 7 3 8 │ │ │ │ +00024550: 2020 2020 3420 3820 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +00024560: 2020 2020 2020 3620 3820 2020 2020 2020 6 8 │ │ │ │ 00024570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000245a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000245c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000245e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000245d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000245e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000245f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024630: 2020 2020 207c 0a7c 7420 202b 2033 3674 |.|t + 36t │ │ │ │ -00024640: 2074 2020 2b20 3133 7420 7420 202b 2032 t + 13t t + 2 │ │ │ │ -00024650: 3674 2074 2020 2b20 3337 7420 7420 2c20 6t t + 37t t , │ │ │ │ +00024620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024630: 0a7c 7420 202b 2033 3674 2074 2020 2b20 .|t + 36t t + │ │ │ │ +00024640: 3133 7420 7420 202b 2032 3674 2074 2020 13t t + 26t t │ │ │ │ +00024650: 2b20 3337 7420 7420 2c20 2020 2020 2020 + 37t t , │ │ │ │ 00024660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024680: 2020 2020 207c 0a7c 2037 2020 2020 2020 |.| 7 │ │ │ │ -00024690: 3320 3820 2020 2020 2034 2038 2020 2020 3 8 4 8 │ │ │ │ -000246a0: 2020 3520 3820 2020 2020 2036 2038 2020 5 8 6 8 │ │ │ │ +00024670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024680: 0a7c 2037 2020 2020 2020 3320 3820 2020 .| 7 3 8 │ │ │ │ +00024690: 2020 2034 2038 2020 2020 2020 3520 3820 4 8 5 8 │ │ │ │ +000246a0: 2020 2020 2036 2038 2020 2020 2020 2020 6 8 │ │ │ │ 000246b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000246d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000246c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000246d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000246e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000246f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024720: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024770: 2020 2020 207c 0a7c 202b 2034 3674 2074 |.| + 46t t │ │ │ │ -00024780: 2020 2d20 3336 7420 7420 202d 2033 3574 - 36t t - 35t │ │ │ │ -00024790: 2074 2020 2d20 3331 7420 7420 2c20 2020 t - 31t t , │ │ │ │ +00024760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024770: 0a7c 202b 2034 3674 2074 2020 2d20 3336 .| + 46t t - 36 │ │ │ │ +00024780: 7420 7420 202d 2033 3574 2074 2020 2d20 t t - 35t t - │ │ │ │ +00024790: 3331 7420 7420 2c20 2020 2020 2020 2020 31t t , │ │ │ │ 000247a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000247c0: 2020 2020 207c 0a7c 2020 2020 2020 3320 |.| 3 │ │ │ │ -000247d0: 3820 2020 2020 2034 2038 2020 2020 2020 8 4 8 │ │ │ │ -000247e0: 3520 3820 2020 2020 2036 2038 2020 2020 5 8 6 8 │ │ │ │ +000247b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000247c0: 0a7c 2020 2020 2020 3320 3820 2020 2020 .| 3 8 │ │ │ │ +000247d0: 2034 2038 2020 2020 2020 3520 3820 2020 4 8 5 8 │ │ │ │ +000247e0: 2020 2036 2038 2020 2020 2020 2020 2020 6 8 │ │ │ │ 000247f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024860: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248b0: 2020 2020 207c 0a7c 2b20 3436 7420 7420 |.|+ 46t t │ │ │ │ -000248c0: 202d 2033 3674 2074 2020 2d20 3335 7420 - 36t t - 35t │ │ │ │ -000248d0: 7420 202d 2033 3174 2074 202c 2020 2020 t - 31t t , │ │ │ │ +000248a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000248b0: 0a7c 2b20 3436 7420 7420 202d 2033 3674 .|+ 46t t - 36t │ │ │ │ +000248c0: 2074 2020 2d20 3335 7420 7420 202d 2033 t - 35t t - 3 │ │ │ │ +000248d0: 3174 2074 202c 2020 2020 2020 2020 2020 1t t , │ │ │ │ 000248e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000248f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024900: 2020 2020 207c 0a7c 2020 2020 2033 2038 |.| 3 8 │ │ │ │ -00024910: 2020 2020 2020 3420 3820 2020 2020 2035 4 8 5 │ │ │ │ -00024920: 2038 2020 2020 2020 3620 3820 2020 2020 8 6 8 │ │ │ │ +000248f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024900: 0a7c 2020 2020 2033 2038 2020 2020 2020 .| 3 8 │ │ │ │ +00024910: 3420 3820 2020 2020 2035 2038 2020 2020 4 8 5 8 │ │ │ │ +00024920: 2020 3620 3820 2020 2020 2020 2020 2020 6 8 │ │ │ │ 00024930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000249a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000249b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000249c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000249d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000249f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000249e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000249f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024ae0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b30: 2020 2020 207c 0a7c 2074 2020 2d20 3130 |.| t - 10 │ │ │ │ -00024b40: 7420 7420 202d 2034 3674 2074 2020 2b20 t t - 46t t + │ │ │ │ -00024b50: 3437 7420 7420 202d 2032 3574 2074 202c 47t t - 25t t , │ │ │ │ +00024b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024b30: 0a7c 2074 2020 2d20 3130 7420 7420 202d .| t - 10t t - │ │ │ │ +00024b40: 2034 3674 2074 2020 2b20 3437 7420 7420 46t t + 47t t │ │ │ │ +00024b50: 202d 2032 3574 2074 202c 2020 2020 2020 - 25t t , │ │ │ │ 00024b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024b80: 2020 2020 207c 0a7c 3620 3720 2020 2020 |.|6 7 │ │ │ │ -00024b90: 2033 2038 2020 2020 2020 3420 3820 2020 3 8 4 8 │ │ │ │ -00024ba0: 2020 2035 2038 2020 2020 2020 3620 3820 5 8 6 8 │ │ │ │ +00024b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024b80: 0a7c 3620 3720 2020 2020 2033 2038 2020 .|6 7 3 8 │ │ │ │ +00024b90: 2020 2020 3420 3820 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +00024ba0: 2020 2020 2020 3620 3820 2020 2020 2020 6 8 │ │ │ │ 00024bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024bd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024bd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024c70: 2020 2020 207c 0a7c 2020 2d20 3434 7420 |.| - 44t │ │ │ │ -00024c80: 7420 202b 2034 3874 2074 2020 2d20 3134 t + 48t t - 14 │ │ │ │ -00024c90: 7420 7420 202b 2034 7420 7420 202d 2033 t t + 4t t - 3 │ │ │ │ -00024ca0: 3674 2074 2020 2d20 3436 7420 7420 202b 6t t - 46t t + │ │ │ │ -00024cb0: 2034 3774 2074 2020 2d20 3334 7420 7420 47t t - 34t t │ │ │ │ -00024cc0: 2020 2020 207c 0a7c 3720 2020 2020 2033 |.|7 3 │ │ │ │ -00024cd0: 2037 2020 2020 2020 3420 3720 2020 2020 7 4 7 │ │ │ │ -00024ce0: 2035 2037 2020 2020 2036 2037 2020 2020 5 7 6 7 │ │ │ │ -00024cf0: 2020 3020 3820 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -00024d00: 2020 2020 3220 3820 2020 2020 2033 2038 2 8 3 8 │ │ │ │ -00024d10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024c70: 0a7c 2020 2d20 3434 7420 7420 202b 2034 .| - 44t t + 4 │ │ │ │ +00024c80: 3874 2074 2020 2d20 3134 7420 7420 202b 8t t - 14t t + │ │ │ │ +00024c90: 2034 7420 7420 202d 2033 3674 2074 2020 4t t - 36t t │ │ │ │ +00024ca0: 2d20 3436 7420 7420 202b 2034 3774 2074 - 46t t + 47t t │ │ │ │ +00024cb0: 2020 2d20 3334 7420 7420 2020 2020 207c - 34t t | │ │ │ │ +00024cc0: 0a7c 3720 2020 2020 2033 2037 2020 2020 .|7 3 7 │ │ │ │ +00024cd0: 2020 3420 3720 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ +00024ce0: 2020 2036 2037 2020 2020 2020 3020 3820 6 7 0 8 │ │ │ │ +00024cf0: 2020 2020 2031 2038 2020 2020 2020 3220 1 8 2 │ │ │ │ +00024d00: 3820 2020 2020 2033 2038 2020 2020 207c 8 3 8 | │ │ │ │ +00024d10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024d60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024e50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024ea0: 2020 2020 207c 0a7c 2032 3874 2074 2020 |.| 28t t │ │ │ │ -00024eb0: 2d20 3974 2074 2020 2d20 3339 7420 7420 - 9t t - 39t t │ │ │ │ -00024ec0: 202b 2034 7420 7420 202b 2074 2074 2020 + 4t t + t t │ │ │ │ -00024ed0: 2d20 3336 7420 7420 202d 2031 3474 2074 - 36t t - 14t t │ │ │ │ -00024ee0: 2020 2d20 3236 7420 7420 202d 2033 3774 - 26t t - 37t │ │ │ │ -00024ef0: 2020 2020 207c 0a7c 2020 2020 3420 3720 |.| 4 7 │ │ │ │ -00024f00: 2020 2020 3520 3720 2020 2020 2036 2037 5 7 6 7 │ │ │ │ -00024f10: 2020 2020 2030 2038 2020 2020 3120 3820 0 8 1 8 │ │ │ │ -00024f20: 2020 2020 2033 2038 2020 2020 2020 3420 3 8 4 │ │ │ │ -00024f30: 3820 2020 2020 2035 2038 2020 2020 2020 8 5 8 │ │ │ │ -00024f40: 3620 2020 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ +00024e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024ea0: 0a7c 2032 3874 2074 2020 2d20 3974 2074 .| 28t t - 9t t │ │ │ │ +00024eb0: 2020 2d20 3339 7420 7420 202b 2034 7420 - 39t t + 4t │ │ │ │ +00024ec0: 7420 202b 2074 2074 2020 2d20 3336 7420 t + t t - 36t │ │ │ │ +00024ed0: 7420 202d 2031 3474 2074 2020 2d20 3236 t - 14t t - 26 │ │ │ │ +00024ee0: 7420 7420 202d 2033 3774 2020 2020 207c t t - 37t | │ │ │ │ +00024ef0: 0a7c 2020 2020 3420 3720 2020 2020 3520 .| 4 7 5 │ │ │ │ +00024f00: 3720 2020 2020 2036 2037 2020 2020 2030 7 6 7 0 │ │ │ │ +00024f10: 2038 2020 2020 3120 3820 2020 2020 2033 8 1 8 3 │ │ │ │ +00024f20: 2038 2020 2020 2020 3420 3820 2020 2020 8 4 8 │ │ │ │ +00024f30: 2035 2038 2020 2020 2020 3620 2020 207c 5 8 6 | │ │ │ │ +00024f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024f90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024f90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00024fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00024fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00024fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00024fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00024ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000250b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000250d0: 2020 2020 207c 0a7c 7420 202d 2038 7420 |.|t - 8t │ │ │ │ -000250e0: 7420 202d 2031 3874 2074 2020 2b20 3432 t - 18t t + 42 │ │ │ │ -000250f0: 7420 7420 202d 2031 3274 2074 2020 2d20 t t - 12t t - │ │ │ │ -00025100: 3674 2074 2020 2b20 3132 7420 7420 202d 6t t + 12t t - │ │ │ │ -00025110: 2031 3574 2074 2020 2b20 3974 2074 2020 15t t + 9t t │ │ │ │ -00025120: 2b20 2020 207c 0a7c 2037 2020 2020 2033 + |.| 7 3 │ │ │ │ -00025130: 2037 2020 2020 2020 3420 3720 2020 2020 7 4 7 │ │ │ │ -00025140: 2035 2037 2020 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -00025150: 2020 3020 3820 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -00025160: 2020 2020 3320 3820 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -00025170: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000250c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000250d0: 0a7c 7420 202d 2038 7420 7420 202d 2031 .|t - 8t t - 1 │ │ │ │ +000250e0: 3874 2074 2020 2b20 3432 7420 7420 202d 8t t + 42t t - │ │ │ │ +000250f0: 2031 3274 2074 2020 2d20 3674 2074 2020 12t t - 6t t │ │ │ │ +00025100: 2b20 3132 7420 7420 202d 2031 3574 2074 + 12t t - 15t t │ │ │ │ +00025110: 2020 2b20 3974 2074 2020 2b20 2020 207c + 9t t + | │ │ │ │ +00025120: 0a7c 2037 2020 2020 2033 2037 2020 2020 .| 7 3 7 │ │ │ │ +00025130: 2020 3420 3720 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ +00025140: 2020 2020 3620 3720 2020 2020 3020 3820 6 7 0 8 │ │ │ │ +00025150: 2020 2020 2031 2038 2020 2020 2020 3320 1 8 3 │ │ │ │ +00025160: 3820 2020 2020 3420 3820 2020 2020 207c 8 4 8 | │ │ │ │ +00025170: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00025180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00025190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000251a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000251b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000251c0: 2d2d 2d2d 2d7c 0a7c 5f38 2d33 332a 785f -----|.|_8-33*x_ │ │ │ │ -000251d0: 362a 785f 382b 382a 785f 302a 785f 392b 6*x_8+8*x_0*x_9+ │ │ │ │ -000251e0: 3130 2a78 5f31 2a78 5f39 2d32 352a 785f 10*x_1*x_9-25*x_ │ │ │ │ -000251f0: 322a 785f 392d 392a 785f 332a 785f 392b 2*x_9-9*x_3*x_9+ │ │ │ │ -00025200: 332a 785f 342a 785f 392b 3234 2a78 5f35 3*x_4*x_9+24*x_5 │ │ │ │ -00025210: 2a78 5f20 207c 0a7c 2020 2020 2020 2020 *x_ |.| │ │ │ │ +000251b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000251c0: 0a7c 5f38 2d33 332a 785f 362a 785f 382b .|_8-33*x_6*x_8+ │ │ │ │ +000251d0: 382a 785f 302a 785f 392b 3130 2a78 5f31 8*x_0*x_9+10*x_1 │ │ │ │ +000251e0: 2a78 5f39 2d32 352a 785f 322a 785f 392d *x_9-25*x_2*x_9- │ │ │ │ +000251f0: 392a 785f 332a 785f 392b 332a 785f 342a 9*x_3*x_9+3*x_4* │ │ │ │ +00025200: 785f 392b 3234 2a78 5f35 2a78 5f20 207c x_9+24*x_5*x_ | │ │ │ │ +00025210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000252a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000252b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000252c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000252e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000252f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000252f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025350: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000253a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000253b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000253d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000253f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000253e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000253f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000254a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000254c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000254e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000254d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000254e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000254f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025530: 2020 2020 207c 0a7c 3578 2078 2020 202b |.|5x x + │ │ │ │ -00025540: 2032 3878 2078 2020 202b 2033 3778 2078 28x x + 37x x │ │ │ │ -00025550: 2020 202b 2039 7820 7820 2020 2b20 3237 + 9x x + 27 │ │ │ │ -00025560: 7820 7820 2020 2d20 3235 7820 7820 2020 x x - 25x x │ │ │ │ -00025570: 2b20 3978 2078 2020 202b 2032 3778 2078 + 9x x + 27x x │ │ │ │ -00025580: 2020 2020 207c 0a7c 2020 3020 3130 2020 |.| 0 10 │ │ │ │ -00025590: 2020 2020 3120 3130 2020 2020 2020 3220 1 10 2 │ │ │ │ -000255a0: 3130 2020 2020 2034 2031 3020 2020 2020 10 4 10 │ │ │ │ -000255b0: 2036 2031 3020 2020 2020 2030 2031 3120 6 10 0 11 │ │ │ │ -000255c0: 2020 2020 3220 3131 2020 2020 2020 3420 2 11 4 │ │ │ │ -000255d0: 3131 2020 207c 0a7c 2020 2020 2020 2020 11 |.| │ │ │ │ +00025520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025530: 0a7c 3578 2078 2020 202b 2032 3878 2078 .|5x x + 28x x │ │ │ │ +00025540: 2020 202b 2033 3778 2078 2020 202b 2039 + 37x x + 9 │ │ │ │ +00025550: 7820 7820 2020 2b20 3237 7820 7820 2020 x x + 27x x │ │ │ │ +00025560: 2d20 3235 7820 7820 2020 2b20 3978 2078 - 25x x + 9x x │ │ │ │ +00025570: 2020 202b 2032 3778 2078 2020 2020 207c + 27x x | │ │ │ │ +00025580: 0a7c 2020 3020 3130 2020 2020 2020 3120 .| 0 10 1 │ │ │ │ +00025590: 3130 2020 2020 2020 3220 3130 2020 2020 10 2 10 │ │ │ │ +000255a0: 2034 2031 3020 2020 2020 2036 2031 3020 4 10 6 10 │ │ │ │ +000255b0: 2020 2020 2030 2031 3120 2020 2020 3220 0 11 2 │ │ │ │ +000255c0: 3131 2020 2020 2020 3420 3131 2020 207c 11 4 11 | │ │ │ │ +000255d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000255e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000255f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025620: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025670: 2020 2020 207c 0a7c 2031 3778 2078 2020 |.| 17x x │ │ │ │ -00025680: 2b20 3135 7820 7820 2020 2b20 3335 7820 + 15x x + 35x │ │ │ │ -00025690: 7820 2020 2b20 3334 7820 7820 2020 2b20 x + 34x x + │ │ │ │ -000256a0: 3230 7820 7820 2020 2b20 3134 7820 7820 20x x + 14x x │ │ │ │ -000256b0: 2020 2b20 3336 7820 7820 2020 2b20 3335 + 36x x + 35 │ │ │ │ -000256c0: 7820 7820 207c 0a7c 2020 2020 3620 3920 x x |.| 6 9 │ │ │ │ -000256d0: 2020 2020 2030 2031 3020 2020 2020 2031 0 10 1 │ │ │ │ -000256e0: 2031 3020 2020 2020 2032 2031 3020 2020 10 2 10 │ │ │ │ -000256f0: 2020 2034 2031 3020 2020 2020 2030 2031 4 10 0 1 │ │ │ │ -00025700: 3120 2020 2020 2031 2031 3120 2020 2020 1 1 11 │ │ │ │ -00025710: 2032 2020 207c 0a7c 2020 2020 2020 2020 2 |.| │ │ │ │ +00025660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025670: 0a7c 2031 3778 2078 2020 2b20 3135 7820 .| 17x x + 15x │ │ │ │ +00025680: 7820 2020 2b20 3335 7820 7820 2020 2b20 x + 35x x + │ │ │ │ +00025690: 3334 7820 7820 2020 2b20 3230 7820 7820 34x x + 20x x │ │ │ │ +000256a0: 2020 2b20 3134 7820 7820 2020 2b20 3336 + 14x x + 36 │ │ │ │ +000256b0: 7820 7820 2020 2b20 3335 7820 7820 207c x x + 35x x | │ │ │ │ +000256c0: 0a7c 2020 2020 3620 3920 2020 2020 2030 .| 6 9 0 │ │ │ │ +000256d0: 2031 3020 2020 2020 2031 2031 3020 2020 10 1 10 │ │ │ │ +000256e0: 2020 2032 2031 3020 2020 2020 2034 2031 2 10 4 1 │ │ │ │ +000256f0: 3020 2020 2020 2030 2031 3120 2020 2020 0 0 11 │ │ │ │ +00025700: 2031 2031 3120 2020 2020 2032 2020 207c 1 11 2 | │ │ │ │ +00025710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000257b0: 2020 2020 207c 0a7c 2078 2020 202b 2034 |.| x + 4 │ │ │ │ -000257c0: 3578 2078 2020 202d 2034 3178 2078 2020 5x x - 41x x │ │ │ │ -000257d0: 202d 2034 3678 2078 2020 202b 2038 7820 - 46x x + 8x │ │ │ │ -000257e0: 7820 2020 2d20 3238 7820 7820 2020 2b20 x - 28x x + │ │ │ │ -000257f0: 3131 7820 7820 2020 2b20 3134 7820 7820 11x x + 14x x │ │ │ │ -00025800: 2020 2d20 207c 0a7c 3020 3130 2020 2020 - |.|0 10 │ │ │ │ -00025810: 2020 3120 3130 2020 2020 2020 3220 3130 1 10 2 10 │ │ │ │ -00025820: 2020 2020 2020 3420 3130 2020 2020 2036 4 10 6 │ │ │ │ -00025830: 2031 3020 2020 2020 2030 2031 3120 2020 10 0 11 │ │ │ │ -00025840: 2020 2032 2031 3120 2020 2020 2034 2031 2 11 4 1 │ │ │ │ -00025850: 3120 2020 207c 0a7c 2020 2020 2020 2020 1 |.| │ │ │ │ +000257a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000257b0: 0a7c 2078 2020 202b 2034 3578 2078 2020 .| x + 45x x │ │ │ │ +000257c0: 202d 2034 3178 2078 2020 202d 2034 3678 - 41x x - 46x │ │ │ │ +000257d0: 2078 2020 202b 2038 7820 7820 2020 2d20 x + 8x x - │ │ │ │ +000257e0: 3238 7820 7820 2020 2b20 3131 7820 7820 28x x + 11x x │ │ │ │ +000257f0: 2020 2b20 3134 7820 7820 2020 2d20 207c + 14x x - | │ │ │ │ +00025800: 0a7c 3020 3130 2020 2020 2020 3120 3130 .|0 10 1 10 │ │ │ │ +00025810: 2020 2020 2020 3220 3130 2020 2020 2020 2 10 │ │ │ │ +00025820: 3420 3130 2020 2020 2036 2031 3020 2020 4 10 6 10 │ │ │ │ +00025830: 2020 2030 2031 3120 2020 2020 2032 2031 0 11 2 1 │ │ │ │ +00025840: 3120 2020 2020 2034 2031 3120 2020 207c 1 4 11 | │ │ │ │ +00025850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000258a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000258b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000258d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000258f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000258e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000258f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000259a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000259c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000259e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000259d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000259e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000259f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ad0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025ad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025b70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025bc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025c10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025c60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025c50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025c60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025d00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025d50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025da0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025d90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025df0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025e90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025ee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025f80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00025fd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00025fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00025fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00025fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00025ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000260c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000260b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000260c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000260d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000260f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000261a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000261b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000261c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000261e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000261f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026200: 2020 2020 207c 0a7c 2d20 3234 7420 7420 |.|- 24t t │ │ │ │ -00026210: 202d 2031 3274 2074 2020 2d20 3437 7420 - 12t t - 47t │ │ │ │ -00026220: 7420 202b 2034 3774 2074 202c 2020 2020 t + 47t t , │ │ │ │ +000261f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026200: 0a7c 2d20 3234 7420 7420 202d 2031 3274 .|- 24t t - 12t │ │ │ │ +00026210: 2074 2020 2d20 3437 7420 7420 202b 2034 t - 47t t + 4 │ │ │ │ +00026220: 3774 2074 202c 2020 2020 2020 2020 2020 7t t , │ │ │ │ 00026230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026250: 2020 2020 207c 0a7c 2020 2020 2034 2038 |.| 4 8 │ │ │ │ -00026260: 2020 2020 2020 3520 3820 2020 2020 2036 5 8 6 │ │ │ │ -00026270: 2038 2020 2020 2020 3720 3820 2020 2020 8 7 8 │ │ │ │ +00026240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026250: 0a7c 2020 2020 2034 2038 2020 2020 2020 .| 4 8 │ │ │ │ +00026260: 3520 3820 2020 2020 2036 2038 2020 2020 5 8 6 8 │ │ │ │ +00026270: 2020 3720 3820 2020 2020 2020 2020 2020 7 8 │ │ │ │ 00026280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000262a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000262b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000262d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000262f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000262e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000262f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000263a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000263c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000263e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000263d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000263e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000263f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026430: 2020 2020 207c 0a7c 7420 2c20 2020 2020 |.|t , │ │ │ │ +00026420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026430: 0a7c 7420 2c20 2020 2020 2020 2020 2020 .|t , │ │ │ │ 00026440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026480: 2020 2020 207c 0a7c 2038 2020 2020 2020 |.| 8 │ │ │ │ +00026470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026480: 0a7c 2038 2020 2020 2020 2020 2020 2020 .| 8 │ │ │ │ 00026490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000264d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000264c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000264d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000264e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000264f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026520: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000265c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000265b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000265c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000265d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000265f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026610: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026660: 2020 2020 207c 0a7c 2032 3074 2074 2020 |.| 20t t │ │ │ │ -00026670: 2d20 3330 7420 7420 202b 2034 7420 7420 - 30t t + 4t t │ │ │ │ +00026650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026660: 0a7c 2032 3074 2074 2020 2d20 3330 7420 .| 20t t - 30t │ │ │ │ +00026670: 7420 202b 2034 7420 7420 2020 2020 2020 t + 4t t │ │ │ │ 00026680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266b0: 2020 2020 207c 0a7c 2020 2020 3520 3820 |.| 5 8 │ │ │ │ -000266c0: 2020 2020 2036 2038 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +000266a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000266b0: 0a7c 2020 2020 3520 3820 2020 2020 2036 .| 5 8 6 │ │ │ │ +000266c0: 2038 2020 2020 2037 2038 2020 2020 2020 8 7 8 │ │ │ │ 000266d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000266e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000266f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026700: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000266f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026700: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00026710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026750: 2d2d 2d2d 2d7c 0a7c 392d 3237 2a78 5f36 -----|.|9-27*x_6 │ │ │ │ -00026760: 2a78 5f39 2d35 2a78 5f30 2a78 5f31 302b *x_9-5*x_0*x_10+ │ │ │ │ -00026770: 3238 2a78 5f31 2a78 5f31 302b 3337 2a78 28*x_1*x_10+37*x │ │ │ │ -00026780: 5f32 2a78 5f31 302b 392a 785f 342a 785f _2*x_10+9*x_4*x_ │ │ │ │ -00026790: 3130 2b32 372a 785f 362a 785f 3130 2d32 10+27*x_6*x_10-2 │ │ │ │ -000267a0: 352a 785f 307c 0a7c 2020 2020 2020 2020 5*x_0|.| │ │ │ │ +00026740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00026750: 0a7c 392d 3237 2a78 5f36 2a78 5f39 2d35 .|9-27*x_6*x_9-5 │ │ │ │ +00026760: 2a78 5f30 2a78 5f31 302b 3238 2a78 5f31 *x_0*x_10+28*x_1 │ │ │ │ +00026770: 2a78 5f31 302b 3337 2a78 5f32 2a78 5f31 *x_10+37*x_2*x_1 │ │ │ │ +00026780: 302b 392a 785f 342a 785f 3130 2b32 372a 0+9*x_4*x_10+27* │ │ │ │ +00026790: 785f 362a 785f 3130 2d32 352a 785f 307c x_6*x_10-25*x_0| │ │ │ │ +000267a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000267b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000267d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000267f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000267e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000267f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026840: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026890: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000268a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000268b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000268c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000268e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000268d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000268e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000268f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000269d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000269c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000269d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000269e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000269f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ac0: 2020 2020 207c 0a7c 2d20 3237 7820 7820 |.|- 27x x │ │ │ │ -00026ad0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00026ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026ac0: 0a7c 2d20 3237 7820 7820 202c 2020 2020 .|- 27x x , │ │ │ │ +00026ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b10: 2020 2020 207c 0a7c 2020 2020 2035 2031 |.| 5 1 │ │ │ │ -00026b20: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00026b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026b10: 0a7c 2020 2020 2035 2031 3120 2020 2020 .| 5 11 │ │ │ │ +00026b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026b60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026b50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026b60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026bb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c00: 2020 2020 207c 0a7c 2020 202d 2031 3778 |.| - 17x │ │ │ │ -00026c10: 2078 2020 2c20 2020 2020 2020 2020 2020 x , │ │ │ │ +00026bf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026c00: 0a7c 2020 202d 2031 3778 2078 2020 2c20 .| - 17x x , │ │ │ │ +00026c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c50: 2020 2020 207c 0a7c 3131 2020 2020 2020 |.|11 │ │ │ │ -00026c60: 3420 3131 2020 2020 2020 2020 2020 2020 4 11 │ │ │ │ +00026c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026c50: 0a7c 3131 2020 2020 2020 3420 3131 2020 .|11 4 11 │ │ │ │ +00026c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026c90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026ca0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00026ce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00026d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d40: 2020 2020 207c 0a7c 2038 7820 7820 2020 |.| 8x x │ │ │ │ +00026d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026d40: 0a7c 2038 7820 7820 2020 2020 2020 2020 .| 8x x │ │ │ │ 00026d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026d90: 2020 2020 207c 0a7c 2020 2035 2031 3120 |.| 5 11 │ │ │ │ +00026d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026d90: 0a7c 2020 2035 2031 3120 2020 2020 2020 .| 5 11 │ │ │ │ 00026da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00026dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00026de0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00026dd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00026de0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00026df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026e30: 2d2d 2d2d 2d7c 0a7c 2a78 5f31 312b 392a -----|.|*x_11+9* │ │ │ │ -00026e40: 785f 322a 785f 3131 2b32 372a 785f 342a x_2*x_11+27*x_4* │ │ │ │ -00026e50: 785f 3131 2d32 372a 785f 352a 785f 3131 x_11-27*x_5*x_11 │ │ │ │ -00026e60: 2c78 5f32 5e32 2b31 372a 785f 322a 785f ,x_2^2+17*x_2*x_ │ │ │ │ -00026e70: 332d 3134 2a78 5f33 5e32 2d31 332a 785f 3-14*x_3^2-13*x_ │ │ │ │ -00026e80: 322a 785f 347c 0a7c 2d2d 2d2d 2d2d 2d2d 2*x_4|.|-------- │ │ │ │ +00026e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00026e30: 0a7c 2a78 5f31 312b 392a 785f 322a 785f .|*x_11+9*x_2*x_ │ │ │ │ +00026e40: 3131 2b32 372a 785f 342a 785f 3131 2d32 11+27*x_4*x_11-2 │ │ │ │ +00026e50: 372a 785f 352a 785f 3131 2c78 5f32 5e32 7*x_5*x_11,x_2^2 │ │ │ │ +00026e60: 2b31 372a 785f 322a 785f 332d 3134 2a78 +17*x_2*x_3-14*x │ │ │ │ +00026e70: 5f33 5e32 2d31 332a 785f 322a 785f 347c _3^2-13*x_2*x_4| │ │ │ │ +00026e80: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00026e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026ed0: 2d2d 2d2d 2d7c 0a7c 2b33 342a 785f 332a -----|.|+34*x_3* │ │ │ │ -00026ee0: 785f 342b 3434 2a78 5f30 2a78 5f35 2d33 x_4+44*x_0*x_5-3 │ │ │ │ -00026ef0: 302a 785f 322a 785f 352b 3237 2a78 5f33 0*x_2*x_5+27*x_3 │ │ │ │ -00026f00: 2a78 5f35 2b33 312a 785f 322a 785f 362d *x_5+31*x_2*x_6- │ │ │ │ -00026f10: 3336 2a78 5f33 2a78 5f36 2d78 5f30 2a78 36*x_3*x_6-x_0*x │ │ │ │ -00026f20: 5f37 2b31 337c 0a7c 2d2d 2d2d 2d2d 2d2d _7+13|.|-------- │ │ │ │ +00026ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00026ed0: 0a7c 2b33 342a 785f 332a 785f 342b 3434 .|+34*x_3*x_4+44 │ │ │ │ +00026ee0: 2a78 5f30 2a78 5f35 2d33 302a 785f 322a *x_0*x_5-30*x_2* │ │ │ │ +00026ef0: 785f 352b 3237 2a78 5f33 2a78 5f35 2b33 x_5+27*x_3*x_5+3 │ │ │ │ +00026f00: 312a 785f 322a 785f 362d 3336 2a78 5f33 1*x_2*x_6-36*x_3 │ │ │ │ +00026f10: 2a78 5f36 2d78 5f30 2a78 5f37 2b31 337c *x_6-x_0*x_7+13| │ │ │ │ +00026f20: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00026f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00026f70: 2d2d 2d2d 2d7c 0a7c 2a78 5f31 2a78 5f37 -----|.|*x_1*x_7 │ │ │ │ -00026f80: 2b38 2a78 5f33 2a78 5f37 2b39 2a78 5f35 +8*x_3*x_7+9*x_5 │ │ │ │ -00026f90: 2a78 5f37 2b34 362a 785f 362a 785f 372b *x_7+46*x_6*x_7+ │ │ │ │ -00026fa0: 3431 2a78 5f30 2a78 5f38 2d37 2a78 5f31 41*x_0*x_8-7*x_1 │ │ │ │ -00026fb0: 2a78 5f38 2d33 342a 785f 332a 785f 382d *x_8-34*x_3*x_8- │ │ │ │ -00026fc0: 392a 785f 347c 0a7c 2d2d 2d2d 2d2d 2d2d 9*x_4|.|-------- │ │ │ │ +00026f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00026f70: 0a7c 2a78 5f31 2a78 5f37 2b38 2a78 5f33 .|*x_1*x_7+8*x_3 │ │ │ │ +00026f80: 2a78 5f37 2b39 2a78 5f35 2a78 5f37 2b34 *x_7+9*x_5*x_7+4 │ │ │ │ +00026f90: 362a 785f 362a 785f 372b 3431 2a78 5f30 6*x_6*x_7+41*x_0 │ │ │ │ +00026fa0: 2a78 5f38 2d37 2a78 5f31 2a78 5f38 2d33 *x_8-7*x_1*x_8-3 │ │ │ │ +00026fb0: 342a 785f 332a 785f 382d 392a 785f 347c 4*x_3*x_8-9*x_4| │ │ │ │ +00026fc0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00026fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00026ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027010: 2d2d 2d2d 2d7c 0a7c 2a78 5f38 2d34 362a -----|.|*x_8-46* │ │ │ │ -00027020: 785f 362a 785f 382d 3137 2a78 5f30 2a78 x_6*x_8-17*x_0*x │ │ │ │ -00027030: 5f39 2b33 322a 785f 312a 785f 392d 382a _9+32*x_1*x_9-8* │ │ │ │ -00027040: 785f 322a 785f 392d 3335 2a78 5f33 2a78 x_2*x_9-35*x_3*x │ │ │ │ -00027050: 5f39 2d34 362a 785f 342a 785f 392b 3236 _9-46*x_4*x_9+26 │ │ │ │ -00027060: 2a78 5f35 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d *x_5*|.|-------- │ │ │ │ +00027000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027010: 0a7c 2a78 5f38 2d34 362a 785f 362a 785f .|*x_8-46*x_6*x_ │ │ │ │ +00027020: 382d 3137 2a78 5f30 2a78 5f39 2b33 322a 8-17*x_0*x_9+32* │ │ │ │ +00027030: 785f 312a 785f 392d 382a 785f 322a 785f x_1*x_9-8*x_2*x_ │ │ │ │ +00027040: 392d 3335 2a78 5f33 2a78 5f39 2d34 362a 9-35*x_3*x_9-46* │ │ │ │ +00027050: 785f 342a 785f 392b 3236 2a78 5f35 2a7c x_4*x_9+26*x_5*| │ │ │ │ +00027060: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000270a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000270b0: 2d2d 2d2d 2d7c 0a7c 785f 392b 3137 2a78 -----|.|x_9+17*x │ │ │ │ -000270c0: 5f36 2a78 5f39 2b31 352a 785f 302a 785f _6*x_9+15*x_0*x_ │ │ │ │ -000270d0: 3130 2b33 352a 785f 312a 785f 3130 2b33 10+35*x_1*x_10+3 │ │ │ │ -000270e0: 342a 785f 322a 785f 3130 2b32 302a 785f 4*x_2*x_10+20*x_ │ │ │ │ -000270f0: 342a 785f 3130 2b31 342a 785f 302a 785f 4*x_10+14*x_0*x_ │ │ │ │ -00027100: 3131 2b33 367c 0a7c 2d2d 2d2d 2d2d 2d2d 11+36|.|-------- │ │ │ │ +000270a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000270b0: 0a7c 785f 392b 3137 2a78 5f36 2a78 5f39 .|x_9+17*x_6*x_9 │ │ │ │ +000270c0: 2b31 352a 785f 302a 785f 3130 2b33 352a +15*x_0*x_10+35* │ │ │ │ +000270d0: 785f 312a 785f 3130 2b33 342a 785f 322a x_1*x_10+34*x_2* │ │ │ │ +000270e0: 785f 3130 2b32 302a 785f 342a 785f 3130 x_10+20*x_4*x_10 │ │ │ │ +000270f0: 2b31 342a 785f 302a 785f 3131 2b33 367c +14*x_0*x_11+36| │ │ │ │ +00027100: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027150: 2d2d 2d2d 2d7c 0a7c 2a78 5f31 2a78 5f31 -----|.|*x_1*x_1 │ │ │ │ -00027160: 312b 3335 2a78 5f32 2a78 5f31 312d 3137 1+35*x_2*x_11-17 │ │ │ │ -00027170: 2a78 5f34 2a78 5f31 312c 785f 312a 785f *x_4*x_11,x_1*x_ │ │ │ │ -00027180: 322d 3430 2a78 5f32 2a78 5f33 2b32 382a 2-40*x_2*x_3+28* │ │ │ │ -00027190: 785f 335e 322d 785f 302a 785f 342b 352a x_3^2-x_0*x_4+5* │ │ │ │ -000271a0: 785f 322a 787c 0a7c 2d2d 2d2d 2d2d 2d2d x_2*x|.|-------- │ │ │ │ +00027140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027150: 0a7c 2a78 5f31 2a78 5f31 312b 3335 2a78 .|*x_1*x_11+35*x │ │ │ │ +00027160: 5f32 2a78 5f31 312d 3137 2a78 5f34 2a78 _2*x_11-17*x_4*x │ │ │ │ +00027170: 5f31 312c 785f 312a 785f 322d 3430 2a78 _11,x_1*x_2-40*x │ │ │ │ +00027180: 5f32 2a78 5f33 2b32 382a 785f 335e 322d _2*x_3+28*x_3^2- │ │ │ │ +00027190: 785f 302a 785f 342b 352a 785f 322a 787c x_0*x_4+5*x_2*x| │ │ │ │ +000271a0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000271b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000271c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000271d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000271e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000271f0: 2d2d 2d2d 2d7c 0a7c 5f34 2d31 362a 785f -----|.|_4-16*x_ │ │ │ │ -00027200: 332a 785f 342b 352a 785f 302a 785f 352d 3*x_4+5*x_0*x_5- │ │ │ │ -00027210: 3336 2a78 5f32 2a78 5f35 2b33 372a 785f 36*x_2*x_5+37*x_ │ │ │ │ -00027220: 332a 785f 352b 3438 2a78 5f32 2a78 5f36 3*x_5+48*x_2*x_6 │ │ │ │ -00027230: 2d35 2a78 5f31 2a78 5f37 2d35 2a78 5f33 -5*x_1*x_7-5*x_3 │ │ │ │ -00027240: 2a78 5f37 2b7c 0a7c 2d2d 2d2d 2d2d 2d2d *x_7+|.|-------- │ │ │ │ +000271e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000271f0: 0a7c 5f34 2d31 362a 785f 332a 785f 342b .|_4-16*x_3*x_4+ │ │ │ │ +00027200: 352a 785f 302a 785f 352d 3336 2a78 5f32 5*x_0*x_5-36*x_2 │ │ │ │ +00027210: 2a78 5f35 2b33 372a 785f 332a 785f 352b *x_5+37*x_3*x_5+ │ │ │ │ +00027220: 3438 2a78 5f32 2a78 5f36 2d35 2a78 5f31 48*x_2*x_6-5*x_1 │ │ │ │ +00027230: 2a78 5f37 2d35 2a78 5f33 2a78 5f37 2b7c *x_7-5*x_3*x_7+| │ │ │ │ +00027240: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027290: 2d2d 2d2d 2d7c 0a7c 785f 352a 785f 372b -----|.|x_5*x_7+ │ │ │ │ -000272a0: 3230 2a78 5f36 2a78 5f37 2b31 302a 785f 20*x_6*x_7+10*x_ │ │ │ │ -000272b0: 302a 785f 382b 3334 2a78 5f31 2a78 5f38 0*x_8+34*x_1*x_8 │ │ │ │ -000272c0: 2b34 312a 785f 332a 785f 382d 785f 342a +41*x_3*x_8-x_4* │ │ │ │ -000272d0: 785f 382b 785f 362a 785f 382b 3430 2a78 x_8+x_6*x_8+40*x │ │ │ │ -000272e0: 5f30 2a78 5f7c 0a7c 2d2d 2d2d 2d2d 2d2d _0*x_|.|-------- │ │ │ │ +00027280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027290: 0a7c 785f 352a 785f 372b 3230 2a78 5f36 .|x_5*x_7+20*x_6 │ │ │ │ +000272a0: 2a78 5f37 2b31 302a 785f 302a 785f 382b *x_7+10*x_0*x_8+ │ │ │ │ +000272b0: 3334 2a78 5f31 2a78 5f38 2b34 312a 785f 34*x_1*x_8+41*x_ │ │ │ │ +000272c0: 332a 785f 382d 785f 342a 785f 382b 785f 3*x_8-x_4*x_8+x_ │ │ │ │ +000272d0: 362a 785f 382b 3430 2a78 5f30 2a78 5f7c 6*x_8+40*x_0*x_| │ │ │ │ +000272e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000272f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027330: 2d2d 2d2d 2d7c 0a7c 392d 3332 2a78 5f31 -----|.|9-32*x_1 │ │ │ │ -00027340: 2a78 5f39 2b35 2a78 5f32 2a78 5f39 2d31 *x_9+5*x_2*x_9-1 │ │ │ │ -00027350: 312a 785f 332a 785f 392d 3230 2a78 5f34 1*x_3*x_9-20*x_4 │ │ │ │ -00027360: 2a78 5f39 2b34 352a 785f 352a 785f 392d *x_9+45*x_5*x_9- │ │ │ │ -00027370: 3134 2a78 5f36 2a78 5f39 2d32 352a 785f 14*x_6*x_9-25*x_ │ │ │ │ -00027380: 302a 785f 207c 0a7c 2d2d 2d2d 2d2d 2d2d 0*x_ |.|-------- │ │ │ │ +00027320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027330: 0a7c 392d 3332 2a78 5f31 2a78 5f39 2b35 .|9-32*x_1*x_9+5 │ │ │ │ +00027340: 2a78 5f32 2a78 5f39 2d31 312a 785f 332a *x_2*x_9-11*x_3* │ │ │ │ +00027350: 785f 392d 3230 2a78 5f34 2a78 5f39 2b34 x_9-20*x_4*x_9+4 │ │ │ │ +00027360: 352a 785f 352a 785f 392d 3134 2a78 5f36 5*x_5*x_9-14*x_6 │ │ │ │ +00027370: 2a78 5f39 2d32 352a 785f 302a 785f 207c *x_9-25*x_0*x_ | │ │ │ │ +00027380: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000273a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000273b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000273c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000273d0: 2d2d 2d2d 2d7c 0a7c 3130 2b34 352a 785f -----|.|10+45*x_ │ │ │ │ -000273e0: 312a 785f 3130 2d34 312a 785f 322a 785f 1*x_10-41*x_2*x_ │ │ │ │ -000273f0: 3130 2d34 362a 785f 342a 785f 3130 2b38 10-46*x_4*x_10+8 │ │ │ │ -00027400: 2a78 5f36 2a78 5f31 302d 3238 2a78 5f30 *x_6*x_10-28*x_0 │ │ │ │ -00027410: 2a78 5f31 312b 3131 2a78 5f32 2a78 5f31 *x_11+11*x_2*x_1 │ │ │ │ -00027420: 312b 3134 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d 1+14*|.|-------- │ │ │ │ +000273c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000273d0: 0a7c 3130 2b34 352a 785f 312a 785f 3130 .|10+45*x_1*x_10 │ │ │ │ +000273e0: 2d34 312a 785f 322a 785f 3130 2d34 362a -41*x_2*x_10-46* │ │ │ │ +000273f0: 785f 342a 785f 3130 2b38 2a78 5f36 2a78 x_4*x_10+8*x_6*x │ │ │ │ +00027400: 5f31 302d 3238 2a78 5f30 2a78 5f31 312b _10-28*x_0*x_11+ │ │ │ │ +00027410: 3131 2a78 5f32 2a78 5f31 312b 3134 2a7c 11*x_2*x_11+14*| │ │ │ │ +00027420: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027470: 2d2d 2d2d 2d7c 0a7c 785f 342a 785f 3131 -----|.|x_4*x_11 │ │ │ │ -00027480: 2d38 2a78 5f35 2a78 5f31 3129 2c7b 745f -8*x_5*x_11),{t_ │ │ │ │ -00027490: 345e 322b 745f 302a 745f 352b 745f 312a 4^2+t_0*t_5+t_1* │ │ │ │ -000274a0: 745f 352b 3335 2a74 5f32 2a74 5f35 2b31 t_5+35*t_2*t_5+1 │ │ │ │ -000274b0: 302a 745f 332a 745f 352b 3235 2a74 5f34 0*t_3*t_5+25*t_4 │ │ │ │ -000274c0: 2a74 5f35 2d7c 0a7c 2d2d 2d2d 2d2d 2d2d *t_5-|.|-------- │ │ │ │ +00027460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027470: 0a7c 785f 342a 785f 3131 2d38 2a78 5f35 .|x_4*x_11-8*x_5 │ │ │ │ +00027480: 2a78 5f31 3129 2c7b 745f 345e 322b 745f *x_11),{t_4^2+t_ │ │ │ │ +00027490: 302a 745f 352b 745f 312a 745f 352b 3335 0*t_5+t_1*t_5+35 │ │ │ │ +000274a0: 2a74 5f32 2a74 5f35 2b31 302a 745f 332a *t_2*t_5+10*t_3* │ │ │ │ +000274b0: 745f 352b 3235 2a74 5f34 2a74 5f35 2d7c t_5+25*t_4*t_5-| │ │ │ │ +000274c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000274d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000274e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000274f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027510: 2d2d 2d2d 2d7c 0a7c 352a 745f 355e 322d -----|.|5*t_5^2- │ │ │ │ -00027520: 3134 2a74 5f30 2a74 5f36 2d31 342a 745f 14*t_0*t_6-14*t_ │ │ │ │ -00027530: 312a 745f 362d 352a 745f 322a 745f 362d 1*t_6-5*t_2*t_6- │ │ │ │ -00027540: 3133 2a74 5f34 2a74 5f36 2b33 372a 745f 13*t_4*t_6+37*t_ │ │ │ │ -00027550: 352a 745f 362b 3232 2a74 5f36 5e32 2d33 5*t_6+22*t_6^2-3 │ │ │ │ -00027560: 312a 745f 337c 0a7c 2d2d 2d2d 2d2d 2d2d 1*t_3|.|-------- │ │ │ │ +00027500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027510: 0a7c 352a 745f 355e 322d 3134 2a74 5f30 .|5*t_5^2-14*t_0 │ │ │ │ +00027520: 2a74 5f36 2d31 342a 745f 312a 745f 362d *t_6-14*t_1*t_6- │ │ │ │ +00027530: 352a 745f 322a 745f 362d 3133 2a74 5f34 5*t_2*t_6-13*t_4 │ │ │ │ +00027540: 2a74 5f36 2b33 372a 745f 352a 745f 362b *t_6+37*t_5*t_6+ │ │ │ │ +00027550: 3232 2a74 5f36 5e32 2d33 312a 745f 337c 22*t_6^2-31*t_3| │ │ │ │ +00027560: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000275b0: 2d2d 2d2d 2d7c 0a7c 2a74 5f37 2b32 362a -----|.|*t_7+26* │ │ │ │ -000275c0: 745f 342a 745f 372b 3132 2a74 5f35 2a74 t_4*t_7+12*t_5*t │ │ │ │ -000275d0: 5f37 2d34 352a 745f 362a 745f 372d 3436 _7-45*t_6*t_7-46 │ │ │ │ -000275e0: 2a74 5f33 2a74 5f38 2b33 372a 745f 342a *t_3*t_8+37*t_4* │ │ │ │ -000275f0: 745f 382b 3238 2a74 5f35 2a74 5f38 2b33 t_8+28*t_5*t_8+3 │ │ │ │ -00027600: 332a 745f 367c 0a7c 2d2d 2d2d 2d2d 2d2d 3*t_6|.|-------- │ │ │ │ +000275a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000275b0: 0a7c 2a74 5f37 2b32 362a 745f 342a 745f .|*t_7+26*t_4*t_ │ │ │ │ +000275c0: 372b 3132 2a74 5f35 2a74 5f37 2d34 352a 7+12*t_5*t_7-45* │ │ │ │ +000275d0: 745f 362a 745f 372d 3436 2a74 5f33 2a74 t_6*t_7-46*t_3*t │ │ │ │ +000275e0: 5f38 2b33 372a 745f 342a 745f 382b 3238 _8+37*t_4*t_8+28 │ │ │ │ +000275f0: 2a74 5f35 2a74 5f38 2b33 332a 745f 367c *t_5*t_8+33*t_6| │ │ │ │ +00027600: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027650: 2d2d 2d2d 2d7c 0a7c 2a74 5f38 2c74 5f33 -----|.|*t_8,t_3 │ │ │ │ -00027660: 2a74 5f34 2b34 2a74 5f30 2a74 5f35 2b33 *t_4+4*t_0*t_5+3 │ │ │ │ -00027670: 392a 745f 312a 745f 352d 3430 2a74 5f32 9*t_1*t_5-40*t_2 │ │ │ │ -00027680: 2a74 5f35 2b34 302a 745f 332a 745f 352b *t_5+40*t_3*t_5+ │ │ │ │ -00027690: 3236 2a74 5f34 2a74 5f35 2d32 302a 745f 26*t_4*t_5-20*t_ │ │ │ │ -000276a0: 355e 322b 207c 0a7c 2d2d 2d2d 2d2d 2d2d 5^2+ |.|-------- │ │ │ │ +00027640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027650: 0a7c 2a74 5f38 2c74 5f33 2a74 5f34 2b34 .|*t_8,t_3*t_4+4 │ │ │ │ +00027660: 2a74 5f30 2a74 5f35 2b33 392a 745f 312a *t_0*t_5+39*t_1* │ │ │ │ +00027670: 745f 352d 3430 2a74 5f32 2a74 5f35 2b34 t_5-40*t_2*t_5+4 │ │ │ │ +00027680: 302a 745f 332a 745f 352b 3236 2a74 5f34 0*t_3*t_5+26*t_4 │ │ │ │ +00027690: 2a74 5f35 2d32 302a 745f 355e 322b 207c *t_5-20*t_5^2+ | │ │ │ │ +000276a0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000276b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000276c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000276d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000276f0: 2d2d 2d2d 2d7c 0a7c 3431 2a74 5f30 2a74 -----|.|41*t_0*t │ │ │ │ -00027700: 5f36 2b33 362a 745f 312a 745f 362d 3232 _6+36*t_1*t_6-22 │ │ │ │ -00027710: 2a74 5f32 2a74 5f36 2b33 362a 745f 342a *t_2*t_6+36*t_4* │ │ │ │ -00027720: 745f 362d 3330 2a74 5f35 2a74 5f36 2d31 t_6-30*t_5*t_6-1 │ │ │ │ -00027730: 332a 745f 365e 322d 3235 2a74 5f33 2a74 3*t_6^2-25*t_3*t │ │ │ │ -00027740: 5f37 2b35 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d _7+5*|.|-------- │ │ │ │ +000276e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000276f0: 0a7c 3431 2a74 5f30 2a74 5f36 2b33 362a .|41*t_0*t_6+36* │ │ │ │ +00027700: 745f 312a 745f 362d 3232 2a74 5f32 2a74 t_1*t_6-22*t_2*t │ │ │ │ +00027710: 5f36 2b33 362a 745f 342a 745f 362d 3330 _6+36*t_4*t_6-30 │ │ │ │ +00027720: 2a74 5f35 2a74 5f36 2d31 332a 745f 365e *t_5*t_6-13*t_6^ │ │ │ │ +00027730: 322d 3235 2a74 5f33 2a74 5f37 2b35 2a7c 2-25*t_3*t_7+5*| │ │ │ │ +00027740: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027790: 2d2d 2d2d 2d7c 0a7c 745f 342a 745f 372d -----|.|t_4*t_7- │ │ │ │ -000277a0: 3335 2a74 5f35 2a74 5f37 2b31 302a 745f 35*t_5*t_7+10*t_ │ │ │ │ -000277b0: 362a 745f 372b 3131 2a74 5f33 2a74 5f38 6*t_7+11*t_3*t_8 │ │ │ │ -000277c0: 2b34 362a 745f 342a 745f 382b 3239 2a74 +46*t_4*t_8+29*t │ │ │ │ -000277d0: 5f35 2a74 5f38 2b32 382a 745f 362a 745f _5*t_8+28*t_6*t_ │ │ │ │ -000277e0: 382c 745f 327c 0a7c 2d2d 2d2d 2d2d 2d2d 8,t_2|.|-------- │ │ │ │ +00027780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027790: 0a7c 745f 342a 745f 372d 3335 2a74 5f35 .|t_4*t_7-35*t_5 │ │ │ │ +000277a0: 2a74 5f37 2b31 302a 745f 362a 745f 372b *t_7+10*t_6*t_7+ │ │ │ │ +000277b0: 3131 2a74 5f33 2a74 5f38 2b34 362a 745f 11*t_3*t_8+46*t_ │ │ │ │ +000277c0: 342a 745f 382b 3239 2a74 5f35 2a74 5f38 4*t_8+29*t_5*t_8 │ │ │ │ +000277d0: 2b32 382a 745f 362a 745f 382c 745f 327c +28*t_6*t_8,t_2| │ │ │ │ +000277e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000277f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027830: 2d2d 2d2d 2d7c 0a7c 2a74 5f34 2d35 2a74 -----|.|*t_4-5*t │ │ │ │ -00027840: 5f30 2a74 5f35 2d34 302a 745f 312a 745f _0*t_5-40*t_1*t_ │ │ │ │ -00027850: 352b 3132 2a74 5f32 2a74 5f35 2b34 372a 5+12*t_2*t_5+47* │ │ │ │ -00027860: 745f 332a 745f 352b 3337 2a74 5f34 2a74 t_3*t_5+37*t_4*t │ │ │ │ -00027870: 5f35 2b32 352a 745f 355e 322d 3237 2a74 _5+25*t_5^2-27*t │ │ │ │ -00027880: 5f30 2a74 5f7c 0a7c 2d2d 2d2d 2d2d 2d2d _0*t_|.|-------- │ │ │ │ +00027820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027830: 0a7c 2a74 5f34 2d35 2a74 5f30 2a74 5f35 .|*t_4-5*t_0*t_5 │ │ │ │ +00027840: 2d34 302a 745f 312a 745f 352b 3132 2a74 -40*t_1*t_5+12*t │ │ │ │ +00027850: 5f32 2a74 5f35 2b34 372a 745f 332a 745f _2*t_5+47*t_3*t_ │ │ │ │ +00027860: 352b 3337 2a74 5f34 2a74 5f35 2b32 352a 5+37*t_4*t_5+25* │ │ │ │ +00027870: 745f 355e 322d 3237 2a74 5f30 2a74 5f7c t_5^2-27*t_0*t_| │ │ │ │ +00027880: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000278a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000278b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000278c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000278d0: 2d2d 2d2d 2d7c 0a7c 362d 3232 2a74 5f31 -----|.|6-22*t_1 │ │ │ │ -000278e0: 2a74 5f36 2b32 372a 745f 322a 745f 362d *t_6+27*t_2*t_6- │ │ │ │ -000278f0: 3233 2a74 5f34 2a74 5f36 2b35 2a74 5f35 23*t_4*t_6+5*t_5 │ │ │ │ -00027900: 2a74 5f36 2d31 332a 745f 365e 322d 3339 *t_6-13*t_6^2-39 │ │ │ │ -00027910: 2a74 5f33 2a74 5f37 2d32 392a 745f 342a *t_3*t_7-29*t_4* │ │ │ │ -00027920: 745f 372b 397c 0a7c 2d2d 2d2d 2d2d 2d2d t_7+9|.|-------- │ │ │ │ +000278c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000278d0: 0a7c 362d 3232 2a74 5f31 2a74 5f36 2b32 .|6-22*t_1*t_6+2 │ │ │ │ +000278e0: 372a 745f 322a 745f 362d 3233 2a74 5f34 7*t_2*t_6-23*t_4 │ │ │ │ +000278f0: 2a74 5f36 2b35 2a74 5f35 2a74 5f36 2d31 *t_6+5*t_5*t_6-1 │ │ │ │ +00027900: 332a 745f 365e 322d 3339 2a74 5f33 2a74 3*t_6^2-39*t_3*t │ │ │ │ +00027910: 5f37 2d32 392a 745f 342a 745f 372b 397c _7-29*t_4*t_7+9| │ │ │ │ +00027920: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027970: 2d2d 2d2d 2d7c 0a7c 2a74 5f35 2a74 5f37 -----|.|*t_5*t_7 │ │ │ │ -00027980: 2b33 392a 745f 362a 745f 372b 3336 2a74 +39*t_6*t_7+36*t │ │ │ │ -00027990: 5f33 2a74 5f38 2b31 332a 745f 342a 745f _3*t_8+13*t_4*t_ │ │ │ │ -000279a0: 382b 3236 2a74 5f35 2a74 5f38 2b33 372a 8+26*t_5*t_8+37* │ │ │ │ -000279b0: 745f 362a 745f 382c 745f 302a 745f 342d t_6*t_8,t_0*t_4- │ │ │ │ -000279c0: 745f 302a 747c 0a7c 2d2d 2d2d 2d2d 2d2d t_0*t|.|-------- │ │ │ │ +00027960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027970: 0a7c 2a74 5f35 2a74 5f37 2b33 392a 745f .|*t_5*t_7+39*t_ │ │ │ │ +00027980: 362a 745f 372b 3336 2a74 5f33 2a74 5f38 6*t_7+36*t_3*t_8 │ │ │ │ +00027990: 2b31 332a 745f 342a 745f 382b 3236 2a74 +13*t_4*t_8+26*t │ │ │ │ +000279a0: 5f35 2a74 5f38 2b33 372a 745f 362a 745f _5*t_8+37*t_6*t_ │ │ │ │ +000279b0: 382c 745f 302a 745f 342d 745f 302a 747c 8,t_0*t_4-t_0*t| │ │ │ │ +000279c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000279d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000279e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000279f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027a10: 2d2d 2d2d 2d7c 0a7c 5f35 2d38 2a74 5f31 -----|.|_5-8*t_1 │ │ │ │ -00027a20: 2a74 5f35 2d33 352a 745f 322a 745f 352d *t_5-35*t_2*t_5- │ │ │ │ -00027a30: 3130 2a74 5f33 2a74 5f35 2d33 332a 745f 10*t_3*t_5-33*t_ │ │ │ │ -00027a40: 342a 745f 352b 352a 745f 355e 322b 3135 4*t_5+5*t_5^2+15 │ │ │ │ -00027a50: 2a74 5f30 2a74 5f36 2b31 352a 745f 312a *t_0*t_6+15*t_1* │ │ │ │ -00027a60: 745f 362b 357c 0a7c 2d2d 2d2d 2d2d 2d2d t_6+5|.|-------- │ │ │ │ +00027a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027a10: 0a7c 5f35 2d38 2a74 5f31 2a74 5f35 2d33 .|_5-8*t_1*t_5-3 │ │ │ │ +00027a20: 352a 745f 322a 745f 352d 3130 2a74 5f33 5*t_2*t_5-10*t_3 │ │ │ │ +00027a30: 2a74 5f35 2d33 332a 745f 342a 745f 352b *t_5-33*t_4*t_5+ │ │ │ │ +00027a40: 352a 745f 355e 322b 3135 2a74 5f30 2a74 5*t_5^2+15*t_0*t │ │ │ │ +00027a50: 5f36 2b31 352a 745f 312a 745f 362b 357c _6+15*t_1*t_6+5| │ │ │ │ +00027a60: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027ab0: 2d2d 2d2d 2d7c 0a7c 2a74 5f32 2a74 5f36 -----|.|*t_2*t_6 │ │ │ │ -00027ac0: 2b31 352a 745f 342a 745f 362d 3338 2a74 +15*t_4*t_6-38*t │ │ │ │ -00027ad0: 5f35 2a74 5f36 2d32 322a 745f 365e 322b _5*t_6-22*t_6^2+ │ │ │ │ -00027ae0: 3331 2a74 5f33 2a74 5f37 2d32 352a 745f 31*t_3*t_7-25*t_ │ │ │ │ -00027af0: 342a 745f 372d 3139 2a74 5f35 2a74 5f37 4*t_7-19*t_5*t_7 │ │ │ │ -00027b00: 2b34 372a 747c 0a7c 2d2d 2d2d 2d2d 2d2d +47*t|.|-------- │ │ │ │ +00027aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027ab0: 0a7c 2a74 5f32 2a74 5f36 2b31 352a 745f .|*t_2*t_6+15*t_ │ │ │ │ +00027ac0: 342a 745f 362d 3338 2a74 5f35 2a74 5f36 4*t_6-38*t_5*t_6 │ │ │ │ +00027ad0: 2d32 322a 745f 365e 322b 3331 2a74 5f33 -22*t_6^2+31*t_3 │ │ │ │ +00027ae0: 2a74 5f37 2d32 352a 745f 342a 745f 372d *t_7-25*t_4*t_7- │ │ │ │ +00027af0: 3139 2a74 5f35 2a74 5f37 2b34 372a 747c 19*t_5*t_7+47*t| │ │ │ │ +00027b00: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027b50: 2d2d 2d2d 2d7c 0a7c 5f36 2a74 5f37 2b34 -----|.|_6*t_7+4 │ │ │ │ -00027b60: 362a 745f 332a 745f 382d 3336 2a74 5f34 6*t_3*t_8-36*t_4 │ │ │ │ -00027b70: 2a74 5f38 2d33 352a 745f 352a 745f 382d *t_8-35*t_5*t_8- │ │ │ │ -00027b80: 3331 2a74 5f36 2a74 5f38 2c74 5f32 2a74 31*t_6*t_8,t_2*t │ │ │ │ -00027b90: 5f33 2d74 5f30 2a74 5f35 2d74 5f31 2a74 _3-t_0*t_5-t_1*t │ │ │ │ -00027ba0: 5f35 2d33 357c 0a7c 2d2d 2d2d 2d2d 2d2d _5-35|.|-------- │ │ │ │ +00027b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027b50: 0a7c 5f36 2a74 5f37 2b34 362a 745f 332a .|_6*t_7+46*t_3* │ │ │ │ +00027b60: 745f 382d 3336 2a74 5f34 2a74 5f38 2d33 t_8-36*t_4*t_8-3 │ │ │ │ +00027b70: 352a 745f 352a 745f 382d 3331 2a74 5f36 5*t_5*t_8-31*t_6 │ │ │ │ +00027b80: 2a74 5f38 2c74 5f32 2a74 5f33 2d74 5f30 *t_8,t_2*t_3-t_0 │ │ │ │ +00027b90: 2a74 5f35 2d74 5f31 2a74 5f35 2d33 357c *t_5-t_1*t_5-35| │ │ │ │ +00027ba0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027bf0: 2d2d 2d2d 2d7c 0a7c 2a74 5f32 2a74 5f35 -----|.|*t_2*t_5 │ │ │ │ -00027c00: 2d31 302a 745f 332a 745f 352d 3333 2a74 -10*t_3*t_5-33*t │ │ │ │ -00027c10: 5f34 2a74 5f35 2b35 2a74 5f35 5e32 2b31 _4*t_5+5*t_5^2+1 │ │ │ │ -00027c20: 342a 745f 302a 745f 362b 3134 2a74 5f31 4*t_0*t_6+14*t_1 │ │ │ │ -00027c30: 2a74 5f36 2b35 2a74 5f32 2a74 5f36 2b31 *t_6+5*t_2*t_6+1 │ │ │ │ -00027c40: 342a 745f 347c 0a7c 2d2d 2d2d 2d2d 2d2d 4*t_4|.|-------- │ │ │ │ +00027be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027bf0: 0a7c 2a74 5f32 2a74 5f35 2d31 302a 745f .|*t_2*t_5-10*t_ │ │ │ │ +00027c00: 332a 745f 352d 3333 2a74 5f34 2a74 5f35 3*t_5-33*t_4*t_5 │ │ │ │ +00027c10: 2b35 2a74 5f35 5e32 2b31 342a 745f 302a +5*t_5^2+14*t_0* │ │ │ │ +00027c20: 745f 362b 3134 2a74 5f31 2a74 5f36 2b35 t_6+14*t_1*t_6+5 │ │ │ │ +00027c30: 2a74 5f32 2a74 5f36 2b31 342a 745f 347c *t_2*t_6+14*t_4| │ │ │ │ +00027c40: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027c90: 2d2d 2d2d 2d7c 0a7c 2a74 5f36 2d33 312a -----|.|*t_6-31* │ │ │ │ -00027ca0: 745f 352a 745f 362d 3234 2a74 5f36 5e32 t_5*t_6-24*t_6^2 │ │ │ │ -00027cb0: 2b33 322a 745f 332a 745f 372d 3235 2a74 +32*t_3*t_7-25*t │ │ │ │ -00027cc0: 5f34 2a74 5f37 2d31 392a 745f 352a 745f _4*t_7-19*t_5*t_ │ │ │ │ -00027cd0: 372b 3437 2a74 5f36 2a74 5f37 2b34 362a 7+47*t_6*t_7+46* │ │ │ │ -00027ce0: 745f 332a 747c 0a7c 2d2d 2d2d 2d2d 2d2d t_3*t|.|-------- │ │ │ │ +00027c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027c90: 0a7c 2a74 5f36 2d33 312a 745f 352a 745f .|*t_6-31*t_5*t_ │ │ │ │ +00027ca0: 362d 3234 2a74 5f36 5e32 2b33 322a 745f 6-24*t_6^2+32*t_ │ │ │ │ +00027cb0: 332a 745f 372d 3235 2a74 5f34 2a74 5f37 3*t_7-25*t_4*t_7 │ │ │ │ +00027cc0: 2d31 392a 745f 352a 745f 372b 3437 2a74 -19*t_5*t_7+47*t │ │ │ │ +00027cd0: 5f36 2a74 5f37 2b34 362a 745f 332a 747c _6*t_7+46*t_3*t| │ │ │ │ +00027ce0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027d30: 2d2d 2d2d 2d7c 0a7c 5f38 2d33 362a 745f -----|.|_8-36*t_ │ │ │ │ -00027d40: 342a 745f 382d 3335 2a74 5f35 2a74 5f38 4*t_8-35*t_5*t_8 │ │ │ │ -00027d50: 2d33 312a 745f 362a 745f 382c 745f 312a -31*t_6*t_8,t_1* │ │ │ │ -00027d60: 745f 332d 372a 745f 312a 745f 352b 745f t_3-7*t_1*t_5+t_ │ │ │ │ -00027d70: 312a 745f 362b 745f 342a 745f 362d 372a 1*t_6+t_4*t_6-7* │ │ │ │ -00027d80: 745f 352a 747c 0a7c 2d2d 2d2d 2d2d 2d2d t_5*t|.|-------- │ │ │ │ +00027d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027d30: 0a7c 5f38 2d33 362a 745f 342a 745f 382d .|_8-36*t_4*t_8- │ │ │ │ +00027d40: 3335 2a74 5f35 2a74 5f38 2d33 312a 745f 35*t_5*t_8-31*t_ │ │ │ │ +00027d50: 362a 745f 382c 745f 312a 745f 332d 372a 6*t_8,t_1*t_3-7* │ │ │ │ +00027d60: 745f 312a 745f 352b 745f 312a 745f 362b t_1*t_5+t_1*t_6+ │ │ │ │ +00027d70: 745f 342a 745f 362d 372a 745f 352a 747c t_4*t_6-7*t_5*t| │ │ │ │ +00027d80: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027dd0: 2d2d 2d2d 2d7c 0a7c 5f36 2b32 2a74 5f36 -----|.|_6+2*t_6 │ │ │ │ -00027de0: 5e32 2d74 5f33 2a74 5f37 2c74 5f30 2a74 ^2-t_3*t_7,t_0*t │ │ │ │ -00027df0: 5f33 2d34 362a 745f 302a 745f 352d 3339 _3-46*t_0*t_5-39 │ │ │ │ -00027e00: 2a74 5f31 2a74 5f35 2d34 332a 745f 322a *t_1*t_5-43*t_2* │ │ │ │ -00027e10: 745f 352d 3431 2a74 5f33 2a74 5f35 2d32 t_5-41*t_3*t_5-2 │ │ │ │ -00027e20: 362a 745f 347c 0a7c 2d2d 2d2d 2d2d 2d2d 6*t_4|.|-------- │ │ │ │ +00027dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027dd0: 0a7c 5f36 2b32 2a74 5f36 5e32 2d74 5f33 .|_6+2*t_6^2-t_3 │ │ │ │ +00027de0: 2a74 5f37 2c74 5f30 2a74 5f33 2d34 362a *t_7,t_0*t_3-46* │ │ │ │ +00027df0: 745f 302a 745f 352d 3339 2a74 5f31 2a74 t_0*t_5-39*t_1*t │ │ │ │ +00027e00: 5f35 2d34 332a 745f 322a 745f 352d 3431 _5-43*t_2*t_5-41 │ │ │ │ +00027e10: 2a74 5f33 2a74 5f35 2d32 362a 745f 347c *t_3*t_5-26*t_4| │ │ │ │ +00027e20: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027e70: 2d2d 2d2d 2d7c 0a7c 2a74 5f35 2d32 382a -----|.|*t_5-28* │ │ │ │ -00027e80: 745f 355e 322d 3335 2a74 5f30 2a74 5f36 t_5^2-35*t_0*t_6 │ │ │ │ -00027e90: 2d33 362a 745f 312a 745f 362b 3230 2a74 -36*t_1*t_6+20*t │ │ │ │ -00027ea0: 5f32 2a74 5f36 2d33 362a 745f 342a 745f _2*t_6-36*t_4*t_ │ │ │ │ -00027eb0: 362b 392a 745f 352a 745f 362b 3135 2a74 6+9*t_5*t_6+15*t │ │ │ │ -00027ec0: 5f36 5e32 2b7c 0a7c 2d2d 2d2d 2d2d 2d2d _6^2+|.|-------- │ │ │ │ +00027e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027e70: 0a7c 2a74 5f35 2d32 382a 745f 355e 322d .|*t_5-28*t_5^2- │ │ │ │ +00027e80: 3335 2a74 5f30 2a74 5f36 2d33 362a 745f 35*t_0*t_6-36*t_ │ │ │ │ +00027e90: 312a 745f 362b 3230 2a74 5f32 2a74 5f36 1*t_6+20*t_2*t_6 │ │ │ │ +00027ea0: 2d33 362a 745f 342a 745f 362b 392a 745f -36*t_4*t_6+9*t_ │ │ │ │ +00027eb0: 352a 745f 362b 3135 2a74 5f36 5e32 2b7c 5*t_6+15*t_6^2+| │ │ │ │ +00027ec0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027f10: 2d2d 2d2d 2d7c 0a7c 3236 2a74 5f33 2a74 -----|.|26*t_3*t │ │ │ │ -00027f20: 5f37 2d35 2a74 5f34 2a74 5f37 2b33 352a _7-5*t_4*t_7+35* │ │ │ │ -00027f30: 745f 352a 745f 372d 3130 2a74 5f36 2a74 t_5*t_7-10*t_6*t │ │ │ │ -00027f40: 5f37 2d31 302a 745f 332a 745f 382d 3436 _7-10*t_3*t_8-46 │ │ │ │ -00027f50: 2a74 5f34 2a74 5f38 2b34 372a 745f 352a *t_4*t_8+47*t_5* │ │ │ │ -00027f60: 745f 382d 207c 0a7c 2d2d 2d2d 2d2d 2d2d t_8- |.|-------- │ │ │ │ +00027f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027f10: 0a7c 3236 2a74 5f33 2a74 5f37 2d35 2a74 .|26*t_3*t_7-5*t │ │ │ │ +00027f20: 5f34 2a74 5f37 2b33 352a 745f 352a 745f _4*t_7+35*t_5*t_ │ │ │ │ +00027f30: 372d 3130 2a74 5f36 2a74 5f37 2d31 302a 7-10*t_6*t_7-10* │ │ │ │ +00027f40: 745f 332a 745f 382d 3436 2a74 5f34 2a74 t_3*t_8-46*t_4*t │ │ │ │ +00027f50: 5f38 2b34 372a 745f 352a 745f 382d 207c _8+47*t_5*t_8- | │ │ │ │ +00027f60: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00027f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00027f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00027fb0: 2d2d 2d2d 2d7c 0a7c 3235 2a74 5f36 2a74 -----|.|25*t_6*t │ │ │ │ -00027fc0: 5f38 2c74 5f32 5e32 2d34 362a 745f 312a _8,t_2^2-46*t_1* │ │ │ │ -00027fd0: 745f 342d 3333 2a74 5f30 2a74 5f35 2d34 t_4-33*t_0*t_5-4 │ │ │ │ -00027fe0: 352a 745f 312a 745f 352d 3339 2a74 5f32 5*t_1*t_5-39*t_2 │ │ │ │ -00027ff0: 2a74 5f35 2d33 392a 745f 332a 745f 352d *t_5-39*t_3*t_5- │ │ │ │ -00028000: 3436 2a74 5f7c 0a7c 2d2d 2d2d 2d2d 2d2d 46*t_|.|-------- │ │ │ │ +00027fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00027fb0: 0a7c 3235 2a74 5f36 2a74 5f38 2c74 5f32 .|25*t_6*t_8,t_2 │ │ │ │ +00027fc0: 5e32 2d34 362a 745f 312a 745f 342d 3333 ^2-46*t_1*t_4-33 │ │ │ │ +00027fd0: 2a74 5f30 2a74 5f35 2d34 352a 745f 312a *t_0*t_5-45*t_1* │ │ │ │ +00027fe0: 745f 352d 3339 2a74 5f32 2a74 5f35 2d33 t_5-39*t_2*t_5-3 │ │ │ │ +00027ff0: 392a 745f 332a 745f 352d 3436 2a74 5f7c 9*t_3*t_5-46*t_| │ │ │ │ +00028000: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028050: 2d2d 2d2d 2d7c 0a7c 342a 745f 352d 3239 -----|.|4*t_5-29 │ │ │ │ -00028060: 2a74 5f35 5e32 2d34 382a 745f 302a 745f *t_5^2-48*t_0*t_ │ │ │ │ -00028070: 362d 3338 2a74 5f31 2a74 5f36 2d33 302a 6-38*t_1*t_6-30* │ │ │ │ -00028080: 745f 322a 745f 362b 3139 2a74 5f34 2a74 t_2*t_6+19*t_4*t │ │ │ │ -00028090: 5f36 2d34 342a 745f 352a 745f 362d 3437 _6-44*t_5*t_6-47 │ │ │ │ -000280a0: 2a74 5f36 5e7c 0a7c 2d2d 2d2d 2d2d 2d2d *t_6^|.|-------- │ │ │ │ +00028040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028050: 0a7c 342a 745f 352d 3239 2a74 5f35 5e32 .|4*t_5-29*t_5^2 │ │ │ │ +00028060: 2d34 382a 745f 302a 745f 362d 3338 2a74 -48*t_0*t_6-38*t │ │ │ │ +00028070: 5f31 2a74 5f36 2d33 302a 745f 322a 745f _1*t_6-30*t_2*t_ │ │ │ │ +00028080: 362b 3139 2a74 5f34 2a74 5f36 2d34 342a 6+19*t_4*t_6-44* │ │ │ │ +00028090: 745f 352a 745f 362d 3437 2a74 5f36 5e7c t_5*t_6-47*t_6^| │ │ │ │ +000280a0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000280b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000280c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000280d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000280f0: 2d2d 2d2d 2d7c 0a7c 322d 3336 2a74 5f30 -----|.|2-36*t_0 │ │ │ │ -00028100: 2a74 5f37 2d34 362a 745f 312a 745f 372b *t_7-46*t_1*t_7+ │ │ │ │ -00028110: 745f 322a 745f 372d 3434 2a74 5f33 2a74 t_2*t_7-44*t_3*t │ │ │ │ -00028120: 5f37 2b34 382a 745f 342a 745f 372d 3134 _7+48*t_4*t_7-14 │ │ │ │ -00028130: 2a74 5f35 2a74 5f37 2b34 2a74 5f36 2a74 *t_5*t_7+4*t_6*t │ │ │ │ -00028140: 5f37 2d33 367c 0a7c 2d2d 2d2d 2d2d 2d2d _7-36|.|-------- │ │ │ │ +000280e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000280f0: 0a7c 322d 3336 2a74 5f30 2a74 5f37 2d34 .|2-36*t_0*t_7-4 │ │ │ │ +00028100: 362a 745f 312a 745f 372b 745f 322a 745f 6*t_1*t_7+t_2*t_ │ │ │ │ +00028110: 372d 3434 2a74 5f33 2a74 5f37 2b34 382a 7-44*t_3*t_7+48* │ │ │ │ +00028120: 745f 342a 745f 372d 3134 2a74 5f35 2a74 t_4*t_7-14*t_5*t │ │ │ │ +00028130: 5f37 2b34 2a74 5f36 2a74 5f37 2d33 367c _7+4*t_6*t_7-36| │ │ │ │ +00028140: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028190: 2d2d 2d2d 2d7c 0a7c 2a74 5f30 2a74 5f38 -----|.|*t_0*t_8 │ │ │ │ -000281a0: 2d34 362a 745f 312a 745f 382b 3437 2a74 -46*t_1*t_8+47*t │ │ │ │ -000281b0: 5f32 2a74 5f38 2d33 342a 745f 332a 745f _2*t_8-34*t_3*t_ │ │ │ │ -000281c0: 382d 3234 2a74 5f34 2a74 5f38 2d31 322a 8-24*t_4*t_8-12* │ │ │ │ -000281d0: 745f 352a 745f 382d 3437 2a74 5f36 2a74 t_5*t_8-47*t_6*t │ │ │ │ -000281e0: 5f38 2b34 377c 0a7c 2d2d 2d2d 2d2d 2d2d _8+47|.|-------- │ │ │ │ +00028180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028190: 0a7c 2a74 5f30 2a74 5f38 2d34 362a 745f .|*t_0*t_8-46*t_ │ │ │ │ +000281a0: 312a 745f 382b 3437 2a74 5f32 2a74 5f38 1*t_8+47*t_2*t_8 │ │ │ │ +000281b0: 2d33 342a 745f 332a 745f 382d 3234 2a74 -34*t_3*t_8-24*t │ │ │ │ +000281c0: 5f34 2a74 5f38 2d31 322a 745f 352a 745f _4*t_8-12*t_5*t_ │ │ │ │ +000281d0: 382d 3437 2a74 5f36 2a74 5f38 2b34 377c 8-47*t_6*t_8+47| │ │ │ │ +000281e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000281f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028230: 2d2d 2d2d 2d7c 0a7c 2a74 5f37 2a74 5f38 -----|.|*t_7*t_8 │ │ │ │ -00028240: 2c74 5f31 2a74 5f32 2b36 2a74 5f31 2a74 ,t_1*t_2+6*t_1*t │ │ │ │ -00028250: 5f35 2b35 2a74 5f30 2a74 5f36 2d32 2a74 _5+5*t_0*t_6-2*t │ │ │ │ -00028260: 5f31 2a74 5f36 2d74 5f34 2a74 5f36 2d74 _1*t_6-t_4*t_6-t │ │ │ │ -00028270: 5f35 2a74 5f36 2b35 2a74 5f30 2a74 5f37 _5*t_6+5*t_0*t_7 │ │ │ │ -00028280: 2b74 5f31 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d +t_1*|.|-------- │ │ │ │ +00028220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028230: 0a7c 2a74 5f37 2a74 5f38 2c74 5f31 2a74 .|*t_7*t_8,t_1*t │ │ │ │ +00028240: 5f32 2b36 2a74 5f31 2a74 5f35 2b35 2a74 _2+6*t_1*t_5+5*t │ │ │ │ +00028250: 5f30 2a74 5f36 2d32 2a74 5f31 2a74 5f36 _0*t_6-2*t_1*t_6 │ │ │ │ +00028260: 2d74 5f34 2a74 5f36 2d74 5f35 2a74 5f36 -t_4*t_6-t_5*t_6 │ │ │ │ +00028270: 2b35 2a74 5f30 2a74 5f37 2b74 5f31 2a7c +5*t_0*t_7+t_1*| │ │ │ │ +00028280: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000282a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000282b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000282c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000282d0: 2d2d 2d2d 2d7c 0a7c 745f 372d 322a 745f -----|.|t_7-2*t_ │ │ │ │ -000282e0: 322a 745f 372d 372a 745f 352a 745f 372b 2*t_7-7*t_5*t_7+ │ │ │ │ -000282f0: 322a 745f 362a 745f 372d 322a 745f 312a 2*t_6*t_7-2*t_1* │ │ │ │ -00028300: 745f 382b 332a 745f 372a 745f 382c 745f t_8+3*t_7*t_8,t_ │ │ │ │ -00028310: 302a 745f 322b 745f 312a 745f 342b 352a 0*t_2+t_1*t_4+5* │ │ │ │ -00028320: 745f 302a 747c 0a7c 2d2d 2d2d 2d2d 2d2d t_0*t|.|-------- │ │ │ │ +000282c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000282d0: 0a7c 745f 372d 322a 745f 322a 745f 372d .|t_7-2*t_2*t_7- │ │ │ │ +000282e0: 372a 745f 352a 745f 372b 322a 745f 362a 7*t_5*t_7+2*t_6* │ │ │ │ +000282f0: 745f 372d 322a 745f 312a 745f 382b 332a t_7-2*t_1*t_8+3* │ │ │ │ +00028300: 745f 372a 745f 382c 745f 302a 745f 322b t_7*t_8,t_0*t_2+ │ │ │ │ +00028310: 745f 312a 745f 342b 352a 745f 302a 747c t_1*t_4+5*t_0*t| │ │ │ │ +00028320: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028370: 2d2d 2d2d 2d7c 0a7c 5f35 2b33 322a 745f -----|.|_5+32*t_ │ │ │ │ -00028380: 312a 745f 352d 3230 2a74 5f32 2a74 5f35 1*t_5-20*t_2*t_5 │ │ │ │ -00028390: 2d34 372a 745f 332a 745f 352d 3337 2a74 -47*t_3*t_5-37*t │ │ │ │ -000283a0: 5f34 2a74 5f35 2d32 352a 745f 355e 322b _4*t_5-25*t_5^2+ │ │ │ │ -000283b0: 3139 2a74 5f30 2a74 5f36 2b32 322a 745f 19*t_0*t_6+22*t_ │ │ │ │ -000283c0: 312a 745f 367c 0a7c 2d2d 2d2d 2d2d 2d2d 1*t_6|.|-------- │ │ │ │ +00028360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028370: 0a7c 5f35 2b33 322a 745f 312a 745f 352d .|_5+32*t_1*t_5- │ │ │ │ +00028380: 3230 2a74 5f32 2a74 5f35 2d34 372a 745f 20*t_2*t_5-47*t_ │ │ │ │ +00028390: 332a 745f 352d 3337 2a74 5f34 2a74 5f35 3*t_5-37*t_4*t_5 │ │ │ │ +000283a0: 2d32 352a 745f 355e 322b 3139 2a74 5f30 -25*t_5^2+19*t_0 │ │ │ │ +000283b0: 2a74 5f36 2b32 322a 745f 312a 745f 367c *t_6+22*t_1*t_6| │ │ │ │ +000283c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000283d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000283e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000283f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028410: 2d2d 2d2d 2d7c 0a7c 2d32 352a 745f 322a -----|.|-25*t_2* │ │ │ │ -00028420: 745f 362b 3235 2a74 5f34 2a74 5f36 2d35 t_6+25*t_4*t_6-5 │ │ │ │ -00028430: 2a74 5f35 2a74 5f36 2b31 332a 745f 365e *t_5*t_6+13*t_6^ │ │ │ │ -00028440: 322b 352a 745f 302a 745f 372b 745f 312a 2+5*t_0*t_7+t_1* │ │ │ │ -00028450: 745f 372b 3339 2a74 5f33 2a74 5f37 2b32 t_7+39*t_3*t_7+2 │ │ │ │ -00028460: 382a 745f 347c 0a7c 2d2d 2d2d 2d2d 2d2d 8*t_4|.|-------- │ │ │ │ +00028400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028410: 0a7c 2d32 352a 745f 322a 745f 362b 3235 .|-25*t_2*t_6+25 │ │ │ │ +00028420: 2a74 5f34 2a74 5f36 2d35 2a74 5f35 2a74 *t_4*t_6-5*t_5*t │ │ │ │ +00028430: 5f36 2b31 332a 745f 365e 322b 352a 745f _6+13*t_6^2+5*t_ │ │ │ │ +00028440: 302a 745f 372b 745f 312a 745f 372b 3339 0*t_7+t_1*t_7+39 │ │ │ │ +00028450: 2a74 5f33 2a74 5f37 2b32 382a 745f 347c *t_3*t_7+28*t_4| │ │ │ │ +00028460: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000284a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000284b0: 2d2d 2d2d 2d7c 0a7c 2a74 5f37 2d39 2a74 -----|.|*t_7-9*t │ │ │ │ -000284c0: 5f35 2a74 5f37 2d33 392a 745f 362a 745f _5*t_7-39*t_6*t_ │ │ │ │ -000284d0: 372b 342a 745f 302a 745f 382b 745f 312a 7+4*t_0*t_8+t_1* │ │ │ │ -000284e0: 745f 382d 3336 2a74 5f33 2a74 5f38 2d31 t_8-36*t_3*t_8-1 │ │ │ │ -000284f0: 342a 745f 342a 745f 382d 3236 2a74 5f35 4*t_4*t_8-26*t_5 │ │ │ │ -00028500: 2a74 5f38 2d7c 0a7c 2d2d 2d2d 2d2d 2d2d *t_8-|.|-------- │ │ │ │ +000284a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000284b0: 0a7c 2a74 5f37 2d39 2a74 5f35 2a74 5f37 .|*t_7-9*t_5*t_7 │ │ │ │ +000284c0: 2d33 392a 745f 362a 745f 372b 342a 745f -39*t_6*t_7+4*t_ │ │ │ │ +000284d0: 302a 745f 382b 745f 312a 745f 382d 3336 0*t_8+t_1*t_8-36 │ │ │ │ +000284e0: 2a74 5f33 2a74 5f38 2d31 342a 745f 342a *t_3*t_8-14*t_4* │ │ │ │ +000284f0: 745f 382d 3236 2a74 5f35 2a74 5f38 2d7c t_8-26*t_5*t_8-| │ │ │ │ +00028500: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028550: 2d2d 2d2d 2d7c 0a7c 3337 2a74 5f36 2a74 -----|.|37*t_6*t │ │ │ │ -00028560: 5f38 2c74 5f30 2a74 5f31 2d33 392a 745f _8,t_0*t_1-39*t_ │ │ │ │ -00028570: 312a 745f 342b 3430 2a74 5f31 2a74 5f35 1*t_4+40*t_1*t_5 │ │ │ │ -00028580: 2d33 372a 745f 302a 745f 362d 3339 2a74 -37*t_0*t_6-39*t │ │ │ │ -00028590: 5f31 2a74 5f36 2b31 392a 745f 342a 745f _1*t_6+19*t_4*t_ │ │ │ │ -000285a0: 362d 3339 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d 6-39*|.|-------- │ │ │ │ +00028540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028550: 0a7c 3337 2a74 5f36 2a74 5f38 2c74 5f30 .|37*t_6*t_8,t_0 │ │ │ │ +00028560: 2a74 5f31 2d33 392a 745f 312a 745f 342b *t_1-39*t_1*t_4+ │ │ │ │ +00028570: 3430 2a74 5f31 2a74 5f35 2d33 372a 745f 40*t_1*t_5-37*t_ │ │ │ │ +00028580: 302a 745f 362d 3339 2a74 5f31 2a74 5f36 0*t_6-39*t_1*t_6 │ │ │ │ +00028590: 2b31 392a 745f 342a 745f 362d 3339 2a7c +19*t_4*t_6-39*| │ │ │ │ +000285a0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000285b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000285d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000285f0: 2d2d 2d2d 2d7c 0a7c 745f 352a 745f 362d -----|.|t_5*t_6- │ │ │ │ -00028600: 3338 2a74 5f30 2a74 5f37 2b33 392a 745f 38*t_0*t_7+39*t_ │ │ │ │ -00028610: 312a 745f 372b 3139 2a74 5f32 2a74 5f37 1*t_7+19*t_2*t_7 │ │ │ │ -00028620: 2b31 382a 745f 352a 745f 372d 3139 2a74 +18*t_5*t_7-19*t │ │ │ │ -00028630: 5f36 2a74 5f37 2b31 392a 745f 312a 745f _6*t_7+19*t_1*t_ │ │ │ │ -00028640: 382b 3230 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d 8+20*|.|-------- │ │ │ │ +000285e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000285f0: 0a7c 745f 352a 745f 362d 3338 2a74 5f30 .|t_5*t_6-38*t_0 │ │ │ │ +00028600: 2a74 5f37 2b33 392a 745f 312a 745f 372b *t_7+39*t_1*t_7+ │ │ │ │ +00028610: 3139 2a74 5f32 2a74 5f37 2b31 382a 745f 19*t_2*t_7+18*t_ │ │ │ │ +00028620: 352a 745f 372d 3139 2a74 5f36 2a74 5f37 5*t_7-19*t_6*t_7 │ │ │ │ +00028630: 2b31 392a 745f 312a 745f 382b 3230 2a7c +19*t_1*t_8+20*| │ │ │ │ +00028640: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028690: 2d2d 2d2d 2d7c 0a7c 745f 372a 745f 382c -----|.|t_7*t_8, │ │ │ │ -000286a0: 745f 305e 322b 3132 2a74 5f31 2a74 5f34 t_0^2+12*t_1*t_4 │ │ │ │ -000286b0: 2b32 302a 745f 302a 745f 352b 3237 2a74 +20*t_0*t_5+27*t │ │ │ │ -000286c0: 5f31 2a74 5f35 2d38 2a74 5f32 2a74 5f35 _1*t_5-8*t_2*t_5 │ │ │ │ -000286d0: 2b33 372a 745f 332a 745f 352b 3238 2a74 +37*t_3*t_5+28*t │ │ │ │ -000286e0: 5f34 2a74 5f7c 0a7c 2d2d 2d2d 2d2d 2d2d _4*t_|.|-------- │ │ │ │ +00028680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028690: 0a7c 745f 372a 745f 382c 745f 305e 322b .|t_7*t_8,t_0^2+ │ │ │ │ +000286a0: 3132 2a74 5f31 2a74 5f34 2b32 302a 745f 12*t_1*t_4+20*t_ │ │ │ │ +000286b0: 302a 745f 352b 3237 2a74 5f31 2a74 5f35 0*t_5+27*t_1*t_5 │ │ │ │ +000286c0: 2d38 2a74 5f32 2a74 5f35 2b33 372a 745f -8*t_2*t_5+37*t_ │ │ │ │ +000286d0: 332a 745f 352b 3238 2a74 5f34 2a74 5f7c 3*t_5+28*t_4*t_| │ │ │ │ +000286e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000286f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028730: 2d2d 2d2d 2d7c 0a7c 352b 3330 2a74 5f35 -----|.|5+30*t_5 │ │ │ │ -00028740: 5e32 2d34 362a 745f 302a 745f 362b 3234 ^2-46*t_0*t_6+24 │ │ │ │ -00028750: 2a74 5f31 2a74 5f36 2d34 302a 745f 322a *t_1*t_6-40*t_2* │ │ │ │ -00028760: 745f 362b 3235 2a74 5f34 2a74 5f36 2b31 t_6+25*t_4*t_6+1 │ │ │ │ -00028770: 362a 745f 352a 745f 362d 3335 2a74 5f36 6*t_5*t_6-35*t_6 │ │ │ │ -00028780: 5e32 2b32 397c 0a7c 2d2d 2d2d 2d2d 2d2d ^2+29|.|-------- │ │ │ │ +00028720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028730: 0a7c 352b 3330 2a74 5f35 5e32 2d34 362a .|5+30*t_5^2-46* │ │ │ │ +00028740: 745f 302a 745f 362b 3234 2a74 5f31 2a74 t_0*t_6+24*t_1*t │ │ │ │ +00028750: 5f36 2d34 302a 745f 322a 745f 362b 3235 _6-40*t_2*t_6+25 │ │ │ │ +00028760: 2a74 5f34 2a74 5f36 2b31 362a 745f 352a *t_4*t_6+16*t_5* │ │ │ │ +00028770: 745f 362d 3335 2a74 5f36 5e32 2b32 397c t_6-35*t_6^2+29| │ │ │ │ +00028780: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000287a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000287b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000287c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000287d0: 2d2d 2d2d 2d7c 0a7c 2a74 5f30 2a74 5f37 -----|.|*t_0*t_7 │ │ │ │ -000287e0: 2b31 322a 745f 312a 745f 372d 3335 2a74 +12*t_1*t_7-35*t │ │ │ │ -000287f0: 5f32 2a74 5f37 2d38 2a74 5f33 2a74 5f37 _2*t_7-8*t_3*t_7 │ │ │ │ -00028800: 2d31 382a 745f 342a 745f 372b 3432 2a74 -18*t_4*t_7+42*t │ │ │ │ -00028810: 5f35 2a74 5f37 2d31 322a 745f 362a 745f _5*t_7-12*t_6*t_ │ │ │ │ -00028820: 372d 362a 747c 0a7c 2d2d 2d2d 2d2d 2d2d 7-6*t|.|-------- │ │ │ │ +000287c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000287d0: 0a7c 2a74 5f30 2a74 5f37 2b31 322a 745f .|*t_0*t_7+12*t_ │ │ │ │ +000287e0: 312a 745f 372d 3335 2a74 5f32 2a74 5f37 1*t_7-35*t_2*t_7 │ │ │ │ +000287f0: 2d38 2a74 5f33 2a74 5f37 2d31 382a 745f -8*t_3*t_7-18*t_ │ │ │ │ +00028800: 342a 745f 372b 3432 2a74 5f35 2a74 5f37 4*t_7+42*t_5*t_7 │ │ │ │ +00028810: 2d31 322a 745f 362a 745f 372d 362a 747c -12*t_6*t_7-6*t| │ │ │ │ +00028820: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00028830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00028850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028870: 2d2d 2d2d 2d7c 0a7c 5f30 2a74 5f38 2b31 -----|.|_0*t_8+1 │ │ │ │ -00028880: 322a 745f 312a 745f 382d 3135 2a74 5f33 2*t_1*t_8-15*t_3 │ │ │ │ -00028890: 2a74 5f38 2b39 2a74 5f34 2a74 5f38 2b32 *t_8+9*t_4*t_8+2 │ │ │ │ -000288a0: 302a 745f 352a 745f 382d 3330 2a74 5f36 0*t_5*t_8-30*t_6 │ │ │ │ -000288b0: 2a74 5f38 2b34 2a74 5f37 2a74 5f38 7d29 *t_8+4*t_7*t_8}) │ │ │ │ -000288c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00028860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00028870: 0a7c 5f30 2a74 5f38 2b31 322a 745f 312a .|_0*t_8+12*t_1* │ │ │ │ +00028880: 745f 382d 3135 2a74 5f33 2a74 5f38 2b39 t_8-15*t_3*t_8+9 │ │ │ │ +00028890: 2a74 5f34 2a74 5f38 2b32 302a 745f 352a *t_4*t_8+20*t_5* │ │ │ │ +000288a0: 745f 382d 3330 2a74 5f36 2a74 5f38 2b34 t_8-30*t_6*t_8+4 │ │ │ │ +000288b0: 2a74 5f37 2a74 5f38 7d29 2020 2020 207c *t_7*t_8}) | │ │ │ │ +000288c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000288d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000288e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000288f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00028910: 2d2d 2d2d 2d2b 0a7c 6938 203a 202d 2d20 -----+.|i8 : -- │ │ │ │ -00028920: 7769 7468 6f75 7420 7468 6520 6f70 7469 without the opti │ │ │ │ -00028930: 6f6e 2027 436f 6469 6d42 7349 6e76 3d3e on 'CodimBsInv=> │ │ │ │ -00028940: 3427 2c20 6974 2074 616b 6573 2061 626f 4', it takes abo │ │ │ │ -00028950: 7574 2020 2020 2020 2020 2020 2020 2020 ut │ │ │ │ -00028960: 2020 2020 207c 0a7c 2020 2020 2074 696d |.| tim │ │ │ │ -00028970: 6520 7073 693d 6170 7072 6f78 696d 6174 e psi=approximat │ │ │ │ -00028980: 6549 6e76 6572 7365 4d61 7028 7068 692c eInverseMap(phi, │ │ │ │ -00028990: 436f 6469 6d42 7349 6e76 3d3e 3429 2020 CodimBsInv=>4) │ │ │ │ -000289a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289b0: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -000289c0: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -000289d0: 3a20 7374 6570 2031 206f 6620 3320 2020 : step 1 of 3 │ │ │ │ +00028900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00028910: 0a7c 6938 203a 202d 2d20 7769 7468 6f75 .|i8 : -- withou │ │ │ │ +00028920: 7420 7468 6520 6f70 7469 6f6e 2027 436f t the option 'Co │ │ │ │ +00028930: 6469 6d42 7349 6e76 3d3e 3427 2c20 6974 dimBsInv=>4', it │ │ │ │ +00028940: 2074 616b 6573 2061 626f 7574 2020 2020 takes about │ │ │ │ +00028950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028960: 0a7c 2020 2020 2074 696d 6520 7073 693d .| time psi= │ │ │ │ +00028970: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ +00028980: 7365 4d61 7028 7068 692c 436f 6469 6d42 seMap(phi,CodimB │ │ │ │ +00028990: 7349 6e76 3d3e 3429 2020 2020 2020 2020 sInv=>4) │ │ │ │ +000289a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000289b0: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +000289c0: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +000289d0: 2031 206f 6620 3320 2020 2020 2020 2020 1 of 3 │ │ │ │ 000289e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000289f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a00: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -00028a10: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -00028a20: 3a20 7374 6570 2032 206f 6620 3320 2020 : step 2 of 3 │ │ │ │ +000289f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028a00: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +00028a10: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +00028a20: 2032 206f 6620 3320 2020 2020 2020 2020 2 of 3 │ │ │ │ 00028a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a50: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -00028a60: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -00028a70: 3a20 7374 6570 2033 206f 6620 3320 2020 : step 3 of 3 │ │ │ │ +00028a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028a50: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +00028a60: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +00028a70: 2033 206f 6620 3320 2020 2020 2020 2020 3 of 3 │ │ │ │ 00028a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028aa0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00028ab0: 2032 2e33 3134 3637 7320 2863 7075 293b 2.31467s (cpu); │ │ │ │ -00028ac0: 2031 2e37 3837 3336 7320 2874 6872 6561 1.78736s (threa │ │ │ │ -00028ad0: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -00028ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028aa0: 0a7c 202d 2d20 7573 6564 2032 2e32 3238 .| -- used 2.228 │ │ │ │ +00028ab0: 7320 2863 7075 293b 2031 2e38 3839 3137 s (cpu); 1.88917 │ │ │ │ +00028ac0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00028ad0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00028ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b40: 2020 2020 207c 0a7c 6f38 203d 202d 2d20 |.|o8 = -- │ │ │ │ -00028b50: 7261 7469 6f6e 616c 206d 6170 202d 2d20 rational map -- │ │ │ │ +00028b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028b40: 0a7c 6f38 203d 202d 2d20 7261 7469 6f6e .|o8 = -- ration │ │ │ │ +00028b50: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 00028b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028b90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028b90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bb0: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +00028bb0: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00028bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028be0: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ -00028bf0: 7263 653a 2073 7562 7661 7269 6574 7920 rce: subvariety │ │ │ │ -00028c00: 6f66 2050 726f 6a28 2d2d 5b78 202c 2078 of Proj(--[x , x │ │ │ │ -00028c10: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ -00028c20: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ -00028c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028be0: 0a7c 2020 2020 2073 6f75 7263 653a 2073 .| source: s │ │ │ │ +00028bf0: 7562 7661 7269 6574 7920 6f66 2050 726f ubvariety of Pro │ │ │ │ +00028c00: 6a28 2d2d 5b78 202c 2078 202c 2078 202c j(--[x , x , x , │ │ │ │ +00028c10: 2078 202c 2078 202c 2078 202c 2020 2020 x , x , x , │ │ │ │ +00028c20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028c50: 2020 2020 2020 2020 3937 2020 3020 2020 97 0 │ │ │ │ -00028c60: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ -00028c70: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00028c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028c90: 2020 2020 207b 2020 2020 2020 2020 2020 { │ │ │ │ +00028c50: 2020 3937 2020 3020 2020 3120 2020 3220 97 0 1 2 │ │ │ │ +00028c60: 2020 3320 2020 3420 2020 3520 2020 2020 3 4 5 │ │ │ │ +00028c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028c80: 0a7c 2020 2020 2020 2020 2020 2020 207b .| { │ │ │ │ +00028c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028cd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028cf0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00028cf0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00028d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028d30: 2020 2020 2020 7820 7820 202d 2038 7820 x x - 8x │ │ │ │ -00028d40: 7820 202b 2032 3578 2020 2d20 3235 7820 x + 25x - 25x │ │ │ │ -00028d50: 7820 202d 2032 3278 2078 2020 2b20 7820 x - 22x x + x │ │ │ │ -00028d60: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00028d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028d80: 2020 2020 2020 2031 2033 2020 2020 2032 1 3 2 │ │ │ │ -00028d90: 2033 2020 2020 2020 3320 2020 2020 2032 3 3 2 │ │ │ │ -00028da0: 2034 2020 2020 2020 3320 3420 2020 2030 4 3 4 0 │ │ │ │ -00028db0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00028dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028d20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028d30: 7820 7820 202d 2038 7820 7820 202b 2032 x x - 8x x + 2 │ │ │ │ +00028d40: 3578 2020 2d20 3235 7820 7820 202d 2032 5x - 25x x - 2 │ │ │ │ +00028d50: 3278 2078 2020 2b20 7820 7820 2020 2020 2x x + x x │ │ │ │ +00028d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028d80: 2031 2033 2020 2020 2032 2033 2020 2020 1 3 2 3 │ │ │ │ +00028d90: 2020 3320 2020 2020 2032 2034 2020 2020 3 2 4 │ │ │ │ +00028da0: 2020 3320 3420 2020 2030 2035 2020 2020 3 4 0 5 │ │ │ │ +00028db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028dc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028e20: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00028e30: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00028e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028e10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028e20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00028e30: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00028e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028e60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028e70: 2020 2020 2020 7820 202b 2031 3778 2078 x + 17x x │ │ │ │ -00028e80: 2020 2d20 3134 7820 202d 2031 3378 2078 - 14x - 13x x │ │ │ │ -00028e90: 2020 2b20 3334 7820 7820 202b 2034 3478 + 34x x + 44x │ │ │ │ -00028ea0: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00028eb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028ec0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ -00028ed0: 3320 2020 2020 2033 2020 2020 2020 3220 3 3 2 │ │ │ │ -00028ee0: 3420 2020 2020 2033 2034 2020 2020 2020 4 3 4 │ │ │ │ -00028ef0: 3020 3520 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ -00028f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028e60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028e70: 7820 202b 2031 3778 2078 2020 2d20 3134 x + 17x x - 14 │ │ │ │ +00028e80: 7820 202d 2031 3378 2078 2020 2b20 3334 x - 13x x + 34 │ │ │ │ +00028e90: 7820 7820 202b 2034 3478 2078 2020 2020 x x + 44x x │ │ │ │ +00028ea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028eb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028ec0: 2032 2020 2020 2020 3220 3320 2020 2020 2 2 3 │ │ │ │ +00028ed0: 2033 2020 2020 2020 3220 3420 2020 2020 3 2 4 │ │ │ │ +00028ee0: 2033 2034 2020 2020 2020 3020 3520 2020 3 4 0 5 │ │ │ │ +00028ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00028f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00028f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028f50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00028f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00028f70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00028f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00028fa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00028fb0: 2020 2020 2020 7820 7820 202d 2034 3078 x x - 40x │ │ │ │ -00028fc0: 2078 2020 2b20 3238 7820 202d 2078 2078 x + 28x - x x │ │ │ │ -00028fd0: 2020 2b20 3578 2078 2020 2d20 3136 7820 + 5x x - 16x │ │ │ │ -00028fe0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00028ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029000: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00029010: 3220 3320 2020 2020 2033 2020 2020 3020 2 3 3 0 │ │ │ │ -00029020: 3420 2020 2020 3220 3420 2020 2020 2033 4 2 4 3 │ │ │ │ -00029030: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00029040: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029050: 2020 2020 207d 2020 2020 2020 2020 2020 } │ │ │ │ +00028f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00028fb0: 7820 7820 202d 2034 3078 2078 2020 2b20 x x - 40x x + │ │ │ │ +00028fc0: 3238 7820 202d 2078 2078 2020 2b20 3578 28x - x x + 5x │ │ │ │ +00028fd0: 2078 2020 2d20 3136 7820 7820 2020 2020 x - 16x x │ │ │ │ +00028fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00028ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029000: 2031 2032 2020 2020 2020 3220 3320 2020 1 2 2 3 │ │ │ │ +00029010: 2020 2033 2020 2020 3020 3420 2020 2020 3 0 4 │ │ │ │ +00029020: 3220 3420 2020 2020 2033 2034 2020 2020 2 4 3 4 │ │ │ │ +00029030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029040: 0a7c 2020 2020 2020 2020 2020 2020 207d .| } │ │ │ │ +00029050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000290a0: 2020 2020 2020 2020 2020 5a5a 2020 2020 ZZ │ │ │ │ +00029080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000290a0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000290b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000290c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000290e0: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ -000290f0: 6765 743a 2050 726f 6a28 2d2d 5b74 202c get: Proj(--[t , │ │ │ │ -00029100: 2074 202c 2074 202c 2074 202c 2074 202c t , t , t , t , │ │ │ │ -00029110: 2074 202c 2074 202c 2074 202c 2074 205d t , t , t , t ] │ │ │ │ -00029120: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00029130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029140: 2020 2020 2020 2020 2020 3937 2020 3020 97 0 │ │ │ │ -00029150: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -00029160: 2020 3520 2020 3620 2020 3720 2020 3820 5 6 7 8 │ │ │ │ -00029170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029180: 2020 2020 207c 0a7c 2020 2020 2064 6566 |.| def │ │ │ │ -00029190: 696e 696e 6720 666f 726d 733a 207b 2020 ining forms: { │ │ │ │ +000290d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000290e0: 0a7c 2020 2020 2074 6172 6765 743a 2050 .| target: P │ │ │ │ +000290f0: 726f 6a28 2d2d 5b74 202c 2074 202c 2074 roj(--[t , t , t │ │ │ │ +00029100: 202c 2074 202c 2074 202c 2074 202c 2074 , t , t , t , t │ │ │ │ +00029110: 202c 2074 202c 2074 205d 2920 2020 2020 , t , t ]) │ │ │ │ +00029120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029140: 2020 2020 3937 2020 3020 2020 3120 2020 97 0 1 │ │ │ │ +00029150: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +00029160: 3620 2020 3720 2020 3820 2020 2020 2020 6 7 8 │ │ │ │ +00029170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029180: 0a7c 2020 2020 2064 6566 696e 696e 6720 .| defining │ │ │ │ +00029190: 666f 726d 733a 207b 2020 2020 2020 2020 forms: { │ │ │ │ 000291a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000291b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000291d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000291e0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000291f0: 7820 202b 2032 7820 7820 202b 2078 2078 x + 2x x + x x │ │ │ │ -00029200: 2020 2b20 3278 2078 2020 2d20 3478 2078 + 2x x - 4x x │ │ │ │ -00029210: 2020 2d20 2020 2020 2020 2020 2020 2020 - │ │ │ │ -00029220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029230: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00029240: 2035 2020 2020 2035 2037 2020 2020 3120 5 5 7 1 │ │ │ │ -00029250: 3820 2020 2020 3220 3820 2020 2020 3320 8 2 8 3 │ │ │ │ -00029260: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -00029270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000291c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000291d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000291e0: 2020 2020 2020 2020 7820 7820 202b 2032 x x + 2 │ │ │ │ +000291f0: 7820 7820 202b 2078 2078 2020 2b20 3278 x x + x x + 2x │ │ │ │ +00029200: 2078 2020 2d20 3478 2078 2020 2d20 2020 x - 4x x - │ │ │ │ +00029210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029230: 2020 2020 2020 2020 2033 2035 2020 2020 3 5 │ │ │ │ +00029240: 2035 2037 2020 2020 3120 3820 2020 2020 5 7 1 8 │ │ │ │ +00029250: 3220 3820 2020 2020 3320 3820 2020 2020 2 8 3 8 │ │ │ │ +00029260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000292a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000292c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000292d0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000292e0: 7820 202b 2036 7820 7820 202b 2032 7820 x + 6x x + 2x │ │ │ │ -000292f0: 7820 202b 2035 7820 7820 202d 2031 3078 x + 5x x - 10x │ │ │ │ -00029300: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00029310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029320: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00029330: 2035 2020 2020 2035 2037 2020 2020 2031 5 5 7 1 │ │ │ │ -00029340: 2038 2020 2020 2032 2038 2020 2020 2020 8 2 8 │ │ │ │ -00029350: 3320 3820 2020 2020 2020 2020 2020 2020 3 8 │ │ │ │ -00029360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000292b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000292c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000292d0: 2020 2020 2020 2020 7820 7820 202b 2036 x x + 6 │ │ │ │ +000292e0: 7820 7820 202b 2032 7820 7820 202b 2035 x x + 2x x + 5 │ │ │ │ +000292f0: 7820 7820 202d 2031 3078 2078 2020 2020 x x - 10x x │ │ │ │ +00029300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029320: 2020 2020 2020 2020 2032 2035 2020 2020 2 5 │ │ │ │ +00029330: 2035 2037 2020 2020 2031 2038 2020 2020 5 7 1 8 │ │ │ │ +00029340: 2032 2038 2020 2020 2020 3320 3820 2020 2 8 3 8 │ │ │ │ +00029350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000293b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000293c0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000293d0: 7820 202b 2038 7820 7820 202b 2078 2078 x + 8x x + x x │ │ │ │ -000293e0: 2020 2b20 3478 2078 2020 2b20 3130 7820 + 4x x + 10x │ │ │ │ -000293f0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00029400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029410: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00029420: 2035 2020 2020 2035 2037 2020 2020 3020 5 5 7 0 │ │ │ │ -00029430: 3820 2020 2020 3120 3820 2020 2020 2032 8 1 8 2 │ │ │ │ -00029440: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ -00029450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000293a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000293b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000293c0: 2020 2020 2020 2020 7820 7820 202b 2038 x x + 8 │ │ │ │ +000293d0: 7820 7820 202b 2078 2078 2020 2b20 3478 x x + x x + 4x │ │ │ │ +000293e0: 2078 2020 2b20 3130 7820 7820 2020 2020 x + 10x x │ │ │ │ +000293f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029400: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029410: 2020 2020 2020 2020 2030 2035 2020 2020 0 5 │ │ │ │ +00029420: 2035 2037 2020 2020 3020 3820 2020 2020 5 7 0 8 │ │ │ │ +00029430: 3120 3820 2020 2020 2032 2038 2020 2020 1 8 2 8 │ │ │ │ +00029440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000294a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000294b0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000294c0: 7820 202d 2034 7820 7820 202b 2034 3678 x - 4x x + 46x │ │ │ │ -000294d0: 2078 2020 2d20 3338 7820 7820 202d 2034 x - 38x x - 4 │ │ │ │ -000294e0: 3378 2020 2020 2020 2020 2020 2020 2020 3x │ │ │ │ -000294f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029500: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00029510: 2034 2020 2020 2032 2036 2020 2020 2020 4 2 6 │ │ │ │ -00029520: 3320 3620 2020 2020 2033 2037 2020 2020 3 6 3 7 │ │ │ │ -00029530: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00029540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000294a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000294b0: 2020 2020 2020 2020 7820 7820 202d 2034 x x - 4 │ │ │ │ +000294c0: 7820 7820 202b 2034 3678 2078 2020 2d20 x x + 46x x - │ │ │ │ +000294d0: 3338 7820 7820 202d 2034 3378 2020 2020 38x x - 43x │ │ │ │ +000294e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000294f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029500: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +00029510: 2032 2036 2020 2020 2020 3320 3620 2020 2 6 3 6 │ │ │ │ +00029520: 2020 2033 2037 2020 2020 2020 3520 2020 3 7 5 │ │ │ │ +00029530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000295a0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000295b0: 7820 202b 2031 3778 2078 2020 2b20 3431 x + 17x x + 41 │ │ │ │ -000295c0: 7820 7820 202d 2078 2078 2020 2d20 3138 x x - x x - 18 │ │ │ │ -000295d0: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -000295e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000295f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00029600: 2034 2020 2020 2020 3220 3620 2020 2020 4 2 6 │ │ │ │ -00029610: 2033 2036 2020 2020 3120 3720 2020 2020 3 6 1 7 │ │ │ │ -00029620: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00029630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000295a0: 2020 2020 2020 2020 7820 7820 202b 2031 x x + 1 │ │ │ │ +000295b0: 3778 2078 2020 2b20 3431 7820 7820 202d 7x x + 41x x - │ │ │ │ +000295c0: 2078 2078 2020 2d20 3138 7820 7820 2020 x x - 18x x │ │ │ │ +000295d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000295e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000295f0: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ +00029600: 2020 3220 3620 2020 2020 2033 2036 2020 2 6 3 6 │ │ │ │ +00029610: 2020 3120 3720 2020 2020 2033 2020 2020 1 7 3 │ │ │ │ +00029620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029690: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00029670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029690: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000296a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000296b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000296d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000296e0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000296f0: 202d 2033 3278 2078 2020 2b20 3432 7820 - 32x x + 42x │ │ │ │ -00029700: 7820 202b 2032 3778 2078 2020 2d20 3432 x + 27x x - 42 │ │ │ │ -00029710: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00029720: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029730: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00029740: 2020 2020 2020 3020 3420 2020 2020 2030 0 4 0 │ │ │ │ -00029750: 2036 2020 2020 2020 3220 3620 2020 2020 6 2 6 │ │ │ │ -00029760: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00029770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000296c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000296d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000296e0: 2020 2020 2020 2020 7820 202d 2033 3278 x - 32x │ │ │ │ +000296f0: 2078 2020 2b20 3432 7820 7820 202b 2032 x + 42x x + 2 │ │ │ │ +00029700: 3778 2078 2020 2d20 3432 7820 7820 2020 7x x - 42x x │ │ │ │ +00029710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029730: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +00029740: 3020 3420 2020 2020 2030 2036 2020 2020 0 4 0 6 │ │ │ │ +00029750: 2020 3220 3620 2020 2020 2033 2020 2020 2 6 3 │ │ │ │ +00029760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000297a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000297c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000297d0: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -000297e0: 7820 202b 2078 2078 2020 2d20 3136 7820 x + x x - 16x │ │ │ │ -000297f0: 7820 202d 2031 3078 2078 2020 2b20 3278 x - 10x x + 2x │ │ │ │ -00029800: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -00029810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029820: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00029830: 2033 2020 2020 3020 3420 2020 2020 2032 3 0 4 2 │ │ │ │ -00029840: 2036 2020 2020 2020 3320 3620 2020 2020 6 3 6 │ │ │ │ -00029850: 3020 3720 2020 2020 2020 2020 2020 2020 0 7 │ │ │ │ -00029860: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000297b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000297c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000297d0: 2020 2020 2020 2020 7820 7820 202b 2078 x x + x │ │ │ │ +000297e0: 2078 2020 2d20 3136 7820 7820 202d 2031 x - 16x x - 1 │ │ │ │ +000297f0: 3078 2078 2020 2b20 3278 2078 2020 2020 0x x + 2x x │ │ │ │ +00029800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029820: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ +00029830: 3020 3420 2020 2020 2032 2036 2020 2020 0 4 2 6 │ │ │ │ +00029840: 2020 3320 3620 2020 2020 3020 3720 2020 3 6 0 7 │ │ │ │ +00029850: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000298c0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000298a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000298b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000298c0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000298d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000298e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000298f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029910: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -00029920: 202b 2033 3678 2078 2020 2b20 7820 7820 + 36x x + x x │ │ │ │ -00029930: 202b 2037 7820 7820 202d 2034 7820 7820 + 7x x - 4x x │ │ │ │ -00029940: 202d 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ -00029950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029960: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00029970: 2020 2020 2020 3020 3420 2020 2034 2035 0 4 4 5 │ │ │ │ -00029980: 2020 2020 2030 2036 2020 2020 2031 2036 0 6 1 6 │ │ │ │ -00029990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000298f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029900: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029910: 2020 2020 2020 2020 7820 202b 2033 3678 x + 36x │ │ │ │ +00029920: 2078 2020 2b20 7820 7820 202b 2037 7820 x + x x + 7x │ │ │ │ +00029930: 7820 202d 2034 7820 7820 202d 2020 2020 x - 4x x - │ │ │ │ +00029940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029960: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +00029970: 3020 3420 2020 2034 2035 2020 2020 2030 0 4 4 5 0 │ │ │ │ +00029980: 2036 2020 2020 2031 2036 2020 2020 2020 6 1 6 │ │ │ │ +00029990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000299a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000299b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000299c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000299d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000299f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029a00: 2020 2020 2020 2020 2020 2020 2020 7820 x │ │ │ │ -00029a10: 7820 202b 2032 7820 7820 202d 2035 7820 x + 2x x - 5x │ │ │ │ -00029a20: 7820 202d 2033 3478 2078 2020 2d20 3136 x - 34x x - 16 │ │ │ │ -00029a30: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00029a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029a50: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00029a60: 2031 2020 2020 2030 2032 2020 2020 2030 1 0 2 0 │ │ │ │ -00029a70: 2033 2020 2020 2020 3020 3420 2020 2020 3 0 4 │ │ │ │ -00029a80: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00029a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00029aa0: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +000299e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000299f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029a00: 2020 2020 2020 2020 7820 7820 202b 2032 x x + 2 │ │ │ │ +00029a10: 7820 7820 202d 2035 7820 7820 202d 2033 x x - 5x x - 3 │ │ │ │ +00029a20: 3478 2078 2020 2d20 3136 7820 7820 2020 4x x - 16x x │ │ │ │ +00029a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029a50: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ +00029a60: 2030 2032 2020 2020 2030 2033 2020 2020 0 2 0 3 │ │ │ │ +00029a70: 2020 3020 3420 2020 2020 2030 2020 2020 0 4 0 │ │ │ │ +00029a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00029aa0: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 00029ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ae0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029b30: 2020 2020 207c 0a7c 6f38 203a 2052 6174 |.|o8 : Rat │ │ │ │ -00029b40: 696f 6e61 6c4d 6170 2028 7175 6164 7261 ionalMap (quadra │ │ │ │ -00029b50: 7469 6320 7261 7469 6f6e 616c 206d 6170 tic rational map │ │ │ │ -00029b60: 2066 726f 6d20 382d 6469 6d65 6e73 696f from 8-dimensio │ │ │ │ -00029b70: 6e61 6c20 2020 2020 2020 2020 2020 2020 nal │ │ │ │ -00029b80: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00029b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029b30: 0a7c 6f38 203a 2052 6174 696f 6e61 6c4d .|o8 : RationalM │ │ │ │ +00029b40: 6170 2028 7175 6164 7261 7469 6320 7261 ap (quadratic ra │ │ │ │ +00029b50: 7469 6f6e 616c 206d 6170 2066 726f 6d20 tional map from │ │ │ │ +00029b60: 382d 6469 6d65 6e73 696f 6e61 6c20 2020 8-dimensional │ │ │ │ +00029b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029b80: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00029b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00029bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00029bd0: 2d2d 2d2d 2d7c 0a7c 7472 6970 6c65 2074 -----|.|triple t │ │ │ │ -00029be0: 696d 6520 2020 2020 2020 2020 2020 2020 ime │ │ │ │ +00029bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00029bd0: 0a7c 7472 6970 6c65 2074 696d 6520 2020 .|triple time │ │ │ │ +00029be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029c70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029cc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029d10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029d60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029e50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ea0: 2020 2020 207c 0a7c 7820 2c20 7820 2c20 |.|x , x , │ │ │ │ -00029eb0: 7820 2c20 7820 2c20 7820 202c 2078 2020 x , x , x , x │ │ │ │ -00029ec0: 5d29 2064 6566 696e 6564 2062 7920 2020 ]) defined by │ │ │ │ +00029e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ea0: 0a7c 7820 2c20 7820 2c20 7820 2c20 7820 .|x , x , x , x │ │ │ │ +00029eb0: 2c20 7820 202c 2078 2020 5d29 2064 6566 , x , x ]) def │ │ │ │ +00029ec0: 696e 6564 2062 7920 2020 2020 2020 2020 ined by │ │ │ │ 00029ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029ef0: 2020 2020 207c 0a7c 2036 2020 2037 2020 |.| 6 7 │ │ │ │ -00029f00: 2038 2020 2039 2020 2031 3020 2020 3131 8 9 10 11 │ │ │ │ +00029ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029ef0: 0a7c 2036 2020 2037 2020 2038 2020 2039 .| 6 7 8 9 │ │ │ │ +00029f00: 2020 2031 3020 2020 3131 2020 2020 2020 10 11 │ │ │ │ 00029f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029f30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029f90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00029f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029f90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00029fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00029fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00029fe0: 2020 2020 207c 0a7c 2b20 3133 7820 7820 |.|+ 13x x │ │ │ │ -00029ff0: 202b 2034 3178 2078 2020 2d20 7820 7820 + 41x x - x x │ │ │ │ -0002a000: 202b 2031 3278 2078 2020 2b20 3235 7820 + 12x x + 25x │ │ │ │ -0002a010: 7820 202b 2032 3578 2078 2020 2b20 3233 x + 25x x + 23 │ │ │ │ -0002a020: 7820 7820 202d 2033 7820 7820 202b 2032 x x - 3x x + 2 │ │ │ │ -0002a030: 7820 7820 207c 0a7c 2020 2020 2032 2035 x x |.| 2 5 │ │ │ │ -0002a040: 2020 2020 2020 3320 3520 2020 2030 2036 3 5 0 6 │ │ │ │ -0002a050: 2020 2020 2020 3220 3620 2020 2020 2031 2 6 1 │ │ │ │ -0002a060: 2037 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ -0002a070: 2035 2037 2020 2020 2036 2037 2020 2020 5 7 6 7 │ │ │ │ -0002a080: 2030 2020 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +00029fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00029fe0: 0a7c 2b20 3133 7820 7820 202b 2034 3178 .|+ 13x x + 41x │ │ │ │ +00029ff0: 2078 2020 2d20 7820 7820 202b 2031 3278 x - x x + 12x │ │ │ │ +0002a000: 2078 2020 2b20 3235 7820 7820 202b 2032 x + 25x x + 2 │ │ │ │ +0002a010: 3578 2078 2020 2b20 3233 7820 7820 202d 5x x + 23x x - │ │ │ │ +0002a020: 2033 7820 7820 202b 2032 7820 7820 207c 3x x + 2x x | │ │ │ │ +0002a030: 0a7c 2020 2020 2032 2035 2020 2020 2020 .| 2 5 │ │ │ │ +0002a040: 3320 3520 2020 2030 2036 2020 2020 2020 3 5 0 6 │ │ │ │ +0002a050: 3220 3620 2020 2020 2031 2037 2020 2020 2 6 1 7 │ │ │ │ +0002a060: 2020 3320 3720 2020 2020 2035 2037 2020 3 7 5 7 │ │ │ │ +0002a070: 2020 2036 2037 2020 2020 2030 2020 207c 6 7 0 | │ │ │ │ +0002a080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a0d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a0c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a0d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a120: 2020 2020 207c 0a7c 202d 2033 3078 2078 |.| - 30x x │ │ │ │ -0002a130: 2020 2b20 3237 7820 7820 202b 2033 3178 + 27x x + 31x │ │ │ │ -0002a140: 2078 2020 2d20 3336 7820 7820 202d 2078 x - 36x x - x │ │ │ │ -0002a150: 2078 2020 2b20 3133 7820 7820 202b 2038 x + 13x x + 8 │ │ │ │ -0002a160: 7820 7820 202b 2039 7820 7820 202b 2034 x x + 9x x + 4 │ │ │ │ -0002a170: 3678 2020 207c 0a7c 2020 2020 2020 3220 6x |.| 2 │ │ │ │ -0002a180: 3520 2020 2020 2033 2035 2020 2020 2020 5 3 5 │ │ │ │ -0002a190: 3220 3620 2020 2020 2033 2036 2020 2020 2 6 3 6 │ │ │ │ -0002a1a0: 3020 3720 2020 2020 2031 2037 2020 2020 0 7 1 7 │ │ │ │ -0002a1b0: 2033 2037 2020 2020 2035 2037 2020 2020 3 7 5 7 │ │ │ │ -0002a1c0: 2020 3620 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ +0002a110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a120: 0a7c 202d 2033 3078 2078 2020 2b20 3237 .| - 30x x + 27 │ │ │ │ +0002a130: 7820 7820 202b 2033 3178 2078 2020 2d20 x x + 31x x - │ │ │ │ +0002a140: 3336 7820 7820 202d 2078 2078 2020 2b20 36x x - x x + │ │ │ │ +0002a150: 3133 7820 7820 202b 2038 7820 7820 202b 13x x + 8x x + │ │ │ │ +0002a160: 2039 7820 7820 202b 2034 3678 2020 207c 9x x + 46x | │ │ │ │ +0002a170: 0a7c 2020 2020 2020 3220 3520 2020 2020 .| 2 5 │ │ │ │ +0002a180: 2033 2035 2020 2020 2020 3220 3620 2020 3 5 2 6 │ │ │ │ +0002a190: 2020 2033 2036 2020 2020 3020 3720 2020 3 6 0 7 │ │ │ │ +0002a1a0: 2020 2031 2037 2020 2020 2033 2037 2020 1 7 3 7 │ │ │ │ +0002a1b0: 2020 2035 2037 2020 2020 2020 3620 207c 5 7 6 | │ │ │ │ +0002a1c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a260: 2020 2020 207c 0a7c 2b20 3578 2078 2020 |.|+ 5x x │ │ │ │ -0002a270: 2d20 3336 7820 7820 202b 2033 3778 2078 - 36x x + 37x x │ │ │ │ -0002a280: 2020 2b20 3438 7820 7820 202d 2035 7820 + 48x x - 5x │ │ │ │ -0002a290: 7820 202d 2035 7820 7820 202b 2078 2078 x - 5x x + x x │ │ │ │ -0002a2a0: 2020 2b20 3230 7820 7820 202b 2031 3078 + 20x x + 10x │ │ │ │ -0002a2b0: 2078 2020 207c 0a7c 2020 2020 3020 3520 x |.| 0 5 │ │ │ │ -0002a2c0: 2020 2020 2032 2035 2020 2020 2020 3320 2 5 3 │ │ │ │ -0002a2d0: 3520 2020 2020 2032 2036 2020 2020 2031 5 2 6 1 │ │ │ │ -0002a2e0: 2037 2020 2020 2033 2037 2020 2020 3520 7 3 7 5 │ │ │ │ -0002a2f0: 3720 2020 2020 2036 2037 2020 2020 2020 7 6 7 │ │ │ │ -0002a300: 3020 3820 207c 0a7c 2020 2020 2020 2020 0 8 |.| │ │ │ │ +0002a250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a260: 0a7c 2b20 3578 2078 2020 2d20 3336 7820 .|+ 5x x - 36x │ │ │ │ +0002a270: 7820 202b 2033 3778 2078 2020 2b20 3438 x + 37x x + 48 │ │ │ │ +0002a280: 7820 7820 202d 2035 7820 7820 202d 2035 x x - 5x x - 5 │ │ │ │ +0002a290: 7820 7820 202b 2078 2078 2020 2b20 3230 x x + x x + 20 │ │ │ │ +0002a2a0: 7820 7820 202b 2031 3078 2078 2020 207c x x + 10x x | │ │ │ │ +0002a2b0: 0a7c 2020 2020 3020 3520 2020 2020 2032 .| 0 5 2 │ │ │ │ +0002a2c0: 2035 2020 2020 2020 3320 3520 2020 2020 5 3 5 │ │ │ │ +0002a2d0: 2032 2036 2020 2020 2031 2037 2020 2020 2 6 1 7 │ │ │ │ +0002a2e0: 2033 2037 2020 2020 3520 3720 2020 2020 3 7 5 7 │ │ │ │ +0002a2f0: 2036 2037 2020 2020 2020 3020 3820 207c 6 7 0 8 | │ │ │ │ +0002a300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a350: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a3a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a3f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a3f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a490: 2020 2020 207c 0a7c 2032 7820 7820 202b |.| 2x x + │ │ │ │ -0002a4a0: 2078 2078 2020 2d20 3678 2078 2020 2d20 x x - 6x x - │ │ │ │ -0002a4b0: 3578 2078 2020 202d 2031 3078 2078 2020 5x x - 10x x │ │ │ │ -0002a4c0: 202b 2032 3578 2078 2020 202b 2035 7820 + 25x x + 5x │ │ │ │ -0002a4d0: 7820 2020 2d20 3578 2078 2020 2c20 2020 x - 5x x , │ │ │ │ -0002a4e0: 2020 2020 207c 0a7c 2020 2034 2038 2020 |.| 4 8 │ │ │ │ -0002a4f0: 2020 3520 3820 2020 2020 3520 3920 2020 5 8 5 9 │ │ │ │ -0002a500: 2020 3120 3130 2020 2020 2020 3220 3130 1 10 2 10 │ │ │ │ -0002a510: 2020 2020 2020 3320 3130 2020 2020 2034 3 10 4 │ │ │ │ -0002a520: 2031 3020 2020 2020 3520 3130 2020 2020 10 5 10 │ │ │ │ -0002a530: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a490: 0a7c 2032 7820 7820 202b 2078 2078 2020 .| 2x x + x x │ │ │ │ +0002a4a0: 2d20 3678 2078 2020 2d20 3578 2078 2020 - 6x x - 5x x │ │ │ │ +0002a4b0: 202d 2031 3078 2078 2020 202b 2032 3578 - 10x x + 25x │ │ │ │ +0002a4c0: 2078 2020 202b 2035 7820 7820 2020 2d20 x + 5x x - │ │ │ │ +0002a4d0: 3578 2078 2020 2c20 2020 2020 2020 207c 5x x , | │ │ │ │ +0002a4e0: 0a7c 2020 2034 2038 2020 2020 3520 3820 .| 4 8 5 8 │ │ │ │ +0002a4f0: 2020 2020 3520 3920 2020 2020 3120 3130 5 9 1 10 │ │ │ │ +0002a500: 2020 2020 2020 3220 3130 2020 2020 2020 2 10 │ │ │ │ +0002a510: 3320 3130 2020 2020 2034 2031 3020 2020 3 10 4 10 │ │ │ │ +0002a520: 2020 3520 3130 2020 2020 2020 2020 207c 5 10 | │ │ │ │ +0002a530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a580: 2020 2020 207c 0a7c 202d 2036 7820 7820 |.| - 6x x │ │ │ │ -0002a590: 202d 2034 3678 2078 2020 2d20 3434 7820 - 46x x - 44x │ │ │ │ -0002a5a0: 7820 202d 2032 3278 2078 2020 2b20 3336 x - 22x x + 36 │ │ │ │ -0002a5b0: 7820 7820 2020 2d20 3235 7820 7820 2020 x x - 25x x │ │ │ │ -0002a5c0: 2b20 3134 7820 7820 2020 2b20 3135 7820 + 14x x + 15x │ │ │ │ -0002a5d0: 7820 2020 207c 0a7c 2020 2020 2034 2038 x |.| 4 8 │ │ │ │ -0002a5e0: 2020 2020 2020 3520 3820 2020 2020 2036 5 8 6 │ │ │ │ -0002a5f0: 2038 2020 2020 2020 3520 3920 2020 2020 8 5 9 │ │ │ │ -0002a600: 2031 2031 3020 2020 2020 2032 2031 3020 1 10 2 10 │ │ │ │ -0002a610: 2020 2020 2033 2031 3020 2020 2020 2034 3 10 4 │ │ │ │ -0002a620: 2031 3020 207c 0a7c 2020 2020 2020 2020 10 |.| │ │ │ │ +0002a570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a580: 0a7c 202d 2036 7820 7820 202d 2034 3678 .| - 6x x - 46x │ │ │ │ +0002a590: 2078 2020 2d20 3434 7820 7820 202d 2032 x - 44x x - 2 │ │ │ │ +0002a5a0: 3278 2078 2020 2b20 3336 7820 7820 2020 2x x + 36x x │ │ │ │ +0002a5b0: 2d20 3235 7820 7820 2020 2b20 3134 7820 - 25x x + 14x │ │ │ │ +0002a5c0: 7820 2020 2b20 3135 7820 7820 2020 207c x + 15x x | │ │ │ │ +0002a5d0: 0a7c 2020 2020 2034 2038 2020 2020 2020 .| 4 8 │ │ │ │ +0002a5e0: 3520 3820 2020 2020 2036 2038 2020 2020 5 8 6 8 │ │ │ │ +0002a5f0: 2020 3520 3920 2020 2020 2031 2031 3020 5 9 1 10 │ │ │ │ +0002a600: 2020 2020 2032 2031 3020 2020 2020 2033 2 10 3 │ │ │ │ +0002a610: 2031 3020 2020 2020 2034 2031 3020 207c 10 4 10 | │ │ │ │ +0002a620: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a670: 2020 2020 207c 0a7c 2d20 3235 7820 7820 |.|- 25x x │ │ │ │ -0002a680: 202d 2038 7820 7820 202b 2035 7820 7820 - 8x x + 5x x │ │ │ │ -0002a690: 202d 2032 3578 2078 2020 2d20 3230 7820 - 25x x - 20x │ │ │ │ -0002a6a0: 7820 2020 2d20 3435 7820 7820 2020 2b20 x - 45x x + │ │ │ │ -0002a6b0: 3238 7820 7820 2020 2b20 3230 7820 7820 28x x + 20x x │ │ │ │ -0002a6c0: 2020 2d20 207c 0a7c 2020 2020 2033 2038 - |.| 3 8 │ │ │ │ -0002a6d0: 2020 2020 2034 2038 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -0002a6e0: 2020 2020 2020 3520 3920 2020 2020 2031 5 9 1 │ │ │ │ -0002a6f0: 2031 3020 2020 2020 2032 2031 3020 2020 10 2 10 │ │ │ │ -0002a700: 2020 2033 2031 3020 2020 2020 2034 2031 3 10 4 1 │ │ │ │ -0002a710: 3020 2020 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +0002a660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a670: 0a7c 2d20 3235 7820 7820 202d 2038 7820 .|- 25x x - 8x │ │ │ │ +0002a680: 7820 202b 2035 7820 7820 202d 2032 3578 x + 5x x - 25x │ │ │ │ +0002a690: 2078 2020 2d20 3230 7820 7820 2020 2d20 x - 20x x - │ │ │ │ +0002a6a0: 3435 7820 7820 2020 2b20 3238 7820 7820 45x x + 28x x │ │ │ │ +0002a6b0: 2020 2b20 3230 7820 7820 2020 2d20 207c + 20x x - | │ │ │ │ +0002a6c0: 0a7c 2020 2020 2033 2038 2020 2020 2034 .| 3 8 4 │ │ │ │ +0002a6d0: 2038 2020 2020 2035 2038 2020 2020 2020 8 5 8 │ │ │ │ +0002a6e0: 3520 3920 2020 2020 2031 2031 3020 2020 5 9 1 10 │ │ │ │ +0002a6f0: 2020 2032 2031 3020 2020 2020 2033 2031 2 10 3 1 │ │ │ │ +0002a700: 3020 2020 2020 2034 2031 3020 2020 207c 0 4 10 | │ │ │ │ +0002a710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a760: 2020 2020 207c 0a7c 7820 202d 2033 3978 |.|x - 39x │ │ │ │ -0002a770: 2078 2020 2d20 3431 7820 7820 202b 2031 x - 41x x + 1 │ │ │ │ -0002a780: 3978 2078 2020 2b20 3430 7820 7820 202b 9x x + 40x x + │ │ │ │ -0002a790: 2034 3378 2078 2020 2d20 3339 7820 7820 43x x - 39x x │ │ │ │ -0002a7a0: 202d 2033 3778 2078 2020 2b20 3378 2078 - 37x x + 3x x │ │ │ │ -0002a7b0: 2020 2b20 207c 0a7c 2037 2020 2020 2020 + |.| 7 │ │ │ │ -0002a7c0: 3620 3720 2020 2020 2031 2038 2020 2020 6 7 1 8 │ │ │ │ -0002a7d0: 2020 3220 3820 2020 2020 2033 2038 2020 2 8 3 8 │ │ │ │ -0002a7e0: 2020 2020 3420 3820 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -0002a7f0: 2020 2020 2020 3620 3820 2020 2020 3120 6 8 1 │ │ │ │ -0002a800: 3920 2020 207c 0a7c 2020 2020 2020 2020 9 |.| │ │ │ │ +0002a750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a760: 0a7c 7820 202d 2033 3978 2078 2020 2d20 .|x - 39x x - │ │ │ │ +0002a770: 3431 7820 7820 202b 2031 3978 2078 2020 41x x + 19x x │ │ │ │ +0002a780: 2b20 3430 7820 7820 202b 2034 3378 2078 + 40x x + 43x x │ │ │ │ +0002a790: 2020 2d20 3339 7820 7820 202d 2033 3778 - 39x x - 37x │ │ │ │ +0002a7a0: 2078 2020 2b20 3378 2078 2020 2b20 207c x + 3x x + | │ │ │ │ +0002a7b0: 0a7c 2037 2020 2020 2020 3620 3720 2020 .| 7 6 7 │ │ │ │ +0002a7c0: 2020 2031 2038 2020 2020 2020 3220 3820 1 8 2 8 │ │ │ │ +0002a7d0: 2020 2020 2033 2038 2020 2020 2020 3420 3 8 4 │ │ │ │ +0002a7e0: 3820 2020 2020 2035 2038 2020 2020 2020 8 5 8 │ │ │ │ +0002a7f0: 3620 3820 2020 2020 3120 3920 2020 207c 6 8 1 9 | │ │ │ │ +0002a800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a850: 2020 2020 207c 0a7c 2020 2b20 3436 7820 |.| + 46x │ │ │ │ -0002a860: 7820 202d 2031 3678 2078 2020 2d20 3336 x - 16x x - 36 │ │ │ │ -0002a870: 7820 7820 202b 2039 7820 7820 202d 2032 x x + 9x x - 2 │ │ │ │ -0002a880: 3778 2078 2020 2d20 3436 7820 7820 202d 7x x - 46x x - │ │ │ │ -0002a890: 2034 3478 2078 2020 2d20 3239 7820 7820 44x x - 29x x │ │ │ │ -0002a8a0: 202d 2020 207c 0a7c 3720 2020 2020 2035 - |.|7 5 │ │ │ │ -0002a8b0: 2037 2020 2020 2020 3620 3720 2020 2020 7 6 7 │ │ │ │ -0002a8c0: 2031 2038 2020 2020 2032 2038 2020 2020 1 8 2 8 │ │ │ │ -0002a8d0: 2020 3320 3820 2020 2020 2034 2038 2020 3 8 4 8 │ │ │ │ -0002a8e0: 2020 2020 3520 3820 2020 2020 2036 2038 5 8 6 8 │ │ │ │ -0002a8f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a850: 0a7c 2020 2b20 3436 7820 7820 202d 2031 .| + 46x x - 1 │ │ │ │ +0002a860: 3678 2078 2020 2d20 3336 7820 7820 202b 6x x - 36x x + │ │ │ │ +0002a870: 2039 7820 7820 202d 2032 3778 2078 2020 9x x - 27x x │ │ │ │ +0002a880: 2d20 3436 7820 7820 202d 2034 3478 2078 - 46x x - 44x x │ │ │ │ +0002a890: 2020 2d20 3239 7820 7820 202d 2020 207c - 29x x - | │ │ │ │ +0002a8a0: 0a7c 3720 2020 2020 2035 2037 2020 2020 .|7 5 7 │ │ │ │ +0002a8b0: 2020 3620 3720 2020 2020 2031 2038 2020 6 7 1 8 │ │ │ │ +0002a8c0: 2020 2032 2038 2020 2020 2020 3320 3820 2 8 3 8 │ │ │ │ +0002a8d0: 2020 2020 2034 2038 2020 2020 2020 3520 4 8 5 │ │ │ │ +0002a8e0: 3820 2020 2020 2036 2038 2020 2020 207c 8 6 8 | │ │ │ │ +0002a8f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002a990: 2020 2020 207c 0a7c 2020 2b20 3333 7820 |.| + 33x │ │ │ │ -0002a9a0: 7820 202b 2033 3378 2078 2020 2d20 3231 x + 33x x - 21 │ │ │ │ -0002a9b0: 7820 7820 202d 2032 3578 2078 2020 2b20 x x - 25x x + │ │ │ │ -0002a9c0: 3435 7820 7820 202b 2032 3378 2078 2020 45x x + 23x x │ │ │ │ -0002a9d0: 2b20 3130 7820 7820 202d 2037 7820 7820 + 10x x - 7x x │ │ │ │ -0002a9e0: 202b 2020 207c 0a7c 3620 2020 2020 2030 + |.|6 0 │ │ │ │ -0002a9f0: 2037 2020 2020 2020 3220 3720 2020 2020 7 2 7 │ │ │ │ -0002aa00: 2033 2037 2020 2020 2020 3520 3720 2020 3 7 5 7 │ │ │ │ -0002aa10: 2020 2036 2037 2020 2020 2020 3020 3820 6 7 0 8 │ │ │ │ -0002aa20: 2020 2020 2031 2038 2020 2020 2032 2038 1 8 2 8 │ │ │ │ -0002aa30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002a980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002a990: 0a7c 2020 2b20 3333 7820 7820 202b 2033 .| + 33x x + 3 │ │ │ │ +0002a9a0: 3378 2078 2020 2d20 3231 7820 7820 202d 3x x - 21x x - │ │ │ │ +0002a9b0: 2032 3578 2078 2020 2b20 3435 7820 7820 25x x + 45x x │ │ │ │ +0002a9c0: 202b 2032 3378 2078 2020 2b20 3130 7820 + 23x x + 10x │ │ │ │ +0002a9d0: 7820 202d 2037 7820 7820 202b 2020 207c x - 7x x + | │ │ │ │ +0002a9e0: 0a7c 3620 2020 2020 2030 2037 2020 2020 .|6 0 7 │ │ │ │ +0002a9f0: 2020 3220 3720 2020 2020 2033 2037 2020 2 7 3 7 │ │ │ │ +0002aa00: 2020 2020 3520 3720 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +0002aa10: 2020 2020 2020 3020 3820 2020 2020 2031 0 8 1 │ │ │ │ +0002aa20: 2038 2020 2020 2032 2038 2020 2020 207c 8 2 8 | │ │ │ │ +0002aa30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aa80: 2020 2020 207c 0a7c 202b 2032 7820 7820 |.| + 2x x │ │ │ │ -0002aa90: 202b 2033 3478 2078 2020 2b20 3232 7820 + 34x x + 22x │ │ │ │ -0002aaa0: 7820 202b 2033 3878 2078 2020 2b20 7820 x + 38x x + x │ │ │ │ -0002aab0: 7820 202b 2033 3078 2078 2020 2d20 3231 x + 30x x - 21 │ │ │ │ -0002aac0: 7820 7820 202d 2033 3478 2078 2020 2d20 x x - 34x x - │ │ │ │ -0002aad0: 3231 7820 207c 0a7c 2020 2020 2032 2037 21x |.| 2 7 │ │ │ │ -0002aae0: 2020 2020 2020 3320 3720 2020 2020 2035 3 7 5 │ │ │ │ -0002aaf0: 2037 2020 2020 2020 3620 3720 2020 2030 7 6 7 0 │ │ │ │ -0002ab00: 2038 2020 2020 2020 3120 3820 2020 2020 8 1 8 │ │ │ │ -0002ab10: 2032 2038 2020 2020 2020 3320 3820 2020 2 8 3 8 │ │ │ │ -0002ab20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002aa70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002aa80: 0a7c 202b 2032 7820 7820 202b 2033 3478 .| + 2x x + 34x │ │ │ │ +0002aa90: 2078 2020 2b20 3232 7820 7820 202b 2033 x + 22x x + 3 │ │ │ │ +0002aaa0: 3878 2078 2020 2b20 7820 7820 202b 2033 8x x + x x + 3 │ │ │ │ +0002aab0: 3078 2078 2020 2d20 3231 7820 7820 202d 0x x - 21x x - │ │ │ │ +0002aac0: 2033 3478 2078 2020 2d20 3231 7820 207c 34x x - 21x | │ │ │ │ +0002aad0: 0a7c 2020 2020 2032 2037 2020 2020 2020 .| 2 7 │ │ │ │ +0002aae0: 3320 3720 2020 2020 2035 2037 2020 2020 3 7 5 7 │ │ │ │ +0002aaf0: 2020 3620 3720 2020 2030 2038 2020 2020 6 7 0 8 │ │ │ │ +0002ab00: 2020 3120 3820 2020 2020 2032 2038 2020 1 8 2 8 │ │ │ │ +0002ab10: 2020 2020 3320 3820 2020 2020 2020 207c 3 8 | │ │ │ │ +0002ab20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ab30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ab70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ab60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ab70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ab80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ab90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002aba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002abb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002abc0: 2020 2020 207c 0a7c 3231 7820 7820 202b |.|21x x + │ │ │ │ -0002abd0: 2033 3078 2078 2020 2d20 7820 7820 202d 30x x - x x - │ │ │ │ -0002abe0: 2035 7820 7820 202d 2032 3978 2078 2020 5x x - 29x x │ │ │ │ -0002abf0: 2b20 3278 2078 2020 2d20 3239 7820 7820 + 2x x - 29x x │ │ │ │ -0002ac00: 202d 2032 3778 2078 2020 2d20 3578 2078 - 27x x - 5x x │ │ │ │ -0002ac10: 2020 2b20 207c 0a7c 2020 2032 2036 2020 + |.| 2 6 │ │ │ │ -0002ac20: 2020 2020 3320 3620 2020 2034 2036 2020 3 6 4 6 │ │ │ │ -0002ac30: 2020 2035 2036 2020 2020 2020 3020 3720 5 6 0 7 │ │ │ │ -0002ac40: 2020 2020 3120 3720 2020 2020 2032 2037 1 7 2 7 │ │ │ │ -0002ac50: 2020 2020 2020 3320 3720 2020 2020 3520 3 7 5 │ │ │ │ -0002ac60: 3720 2020 207c 0a7c 2020 2020 2020 2020 7 |.| │ │ │ │ +0002abb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002abc0: 0a7c 3231 7820 7820 202b 2033 3078 2078 .|21x x + 30x x │ │ │ │ +0002abd0: 2020 2d20 7820 7820 202d 2035 7820 7820 - x x - 5x x │ │ │ │ +0002abe0: 202d 2032 3978 2078 2020 2b20 3278 2078 - 29x x + 2x x │ │ │ │ +0002abf0: 2020 2d20 3239 7820 7820 202d 2032 3778 - 29x x - 27x │ │ │ │ +0002ac00: 2078 2020 2d20 3578 2078 2020 2b20 207c x - 5x x + | │ │ │ │ +0002ac10: 0a7c 2020 2032 2036 2020 2020 2020 3320 .| 2 6 3 │ │ │ │ +0002ac20: 3620 2020 2034 2036 2020 2020 2035 2036 6 4 6 5 6 │ │ │ │ +0002ac30: 2020 2020 2020 3020 3720 2020 2020 3120 0 7 1 │ │ │ │ +0002ac40: 3720 2020 2020 2032 2037 2020 2020 2020 7 2 7 │ │ │ │ +0002ac50: 3320 3720 2020 2020 3520 3720 2020 207c 3 7 5 7 | │ │ │ │ +0002ac60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ac70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ac80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ac90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002aca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002acb0: 2020 2020 207c 0a7c 2020 2b20 3331 7820 |.| + 31x │ │ │ │ -0002acc0: 7820 202b 2032 3978 2078 2020 2b20 3130 x + 29x x + 10 │ │ │ │ -0002acd0: 7820 7820 202d 2032 3778 2078 2020 2d20 x x - 27x x - │ │ │ │ -0002ace0: 3331 7820 7820 202d 2031 3778 2078 2020 31x x - 17x x │ │ │ │ -0002acf0: 2d20 3238 7820 7820 202b 2033 3978 2078 - 28x x + 39x x │ │ │ │ -0002ad00: 2020 2d20 207c 0a7c 3620 2020 2020 2030 - |.|6 0 │ │ │ │ -0002ad10: 2037 2020 2020 2020 3220 3720 2020 2020 7 2 7 │ │ │ │ -0002ad20: 2033 2037 2020 2020 2020 3520 3720 2020 3 7 5 7 │ │ │ │ -0002ad30: 2020 2036 2037 2020 2020 2020 3020 3820 6 7 0 8 │ │ │ │ -0002ad40: 2020 2020 2031 2038 2020 2020 2020 3220 1 8 2 │ │ │ │ -0002ad50: 3820 2020 207c 0a7c 2020 2020 2020 2020 8 |.| │ │ │ │ +0002aca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002acb0: 0a7c 2020 2b20 3331 7820 7820 202b 2032 .| + 31x x + 2 │ │ │ │ +0002acc0: 3978 2078 2020 2b20 3130 7820 7820 202d 9x x + 10x x - │ │ │ │ +0002acd0: 2032 3778 2078 2020 2d20 3331 7820 7820 27x x - 31x x │ │ │ │ +0002ace0: 202d 2031 3778 2078 2020 2d20 3238 7820 - 17x x - 28x │ │ │ │ +0002acf0: 7820 202b 2033 3978 2078 2020 2d20 207c x + 39x x - | │ │ │ │ +0002ad00: 0a7c 3620 2020 2020 2030 2037 2020 2020 .|6 0 7 │ │ │ │ +0002ad10: 2020 3220 3720 2020 2020 2033 2037 2020 2 7 3 7 │ │ │ │ +0002ad20: 2020 2020 3520 3720 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +0002ad30: 2020 2020 2020 3020 3820 2020 2020 2031 0 8 1 │ │ │ │ +0002ad40: 2038 2020 2020 2020 3220 3820 2020 207c 8 2 8 | │ │ │ │ +0002ad50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ad60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ad80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ad90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ada0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ad90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ada0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002adb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002adc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002add0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ade0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002adf0: 2020 2020 207c 0a7c 2073 7562 7661 7269 |.| subvari │ │ │ │ -0002ae00: 6574 7920 6f66 2050 505e 3131 2074 6f20 ety of PP^11 to │ │ │ │ -0002ae10: 5050 5e38 2920 2020 2020 2020 2020 2020 PP^8) │ │ │ │ +0002ade0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002adf0: 0a7c 2073 7562 7661 7269 6574 7920 6f66 .| subvariety of │ │ │ │ +0002ae00: 2050 505e 3131 2074 6f20 5050 5e38 2920 PP^11 to PP^8) │ │ │ │ +0002ae10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ae20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ae40: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0002ae30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ae40: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002ae50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ae60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ae70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ae90: 2d2d 2d2d 2d7c 0a7c 2020 2b20 3131 7820 -----|.| + 11x │ │ │ │ -0002aea0: 7820 202d 2033 3778 2078 2020 2d20 3233 x - 37x x - 23 │ │ │ │ -0002aeb0: 7820 7820 202d 2033 3378 2078 2020 2b20 x x - 33x x + │ │ │ │ -0002aec0: 3878 2078 2020 2b20 3130 7820 7820 202d 8x x + 10x x - │ │ │ │ -0002aed0: 2032 3578 2078 2020 2d20 3978 2078 2020 25x x - 9x x │ │ │ │ -0002aee0: 2b20 3378 207c 0a7c 3820 2020 2020 2031 + 3x |.|8 1 │ │ │ │ -0002aef0: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -0002af00: 2034 2038 2020 2020 2020 3620 3820 2020 4 8 6 8 │ │ │ │ -0002af10: 2020 3020 3920 2020 2020 2031 2039 2020 0 9 1 9 │ │ │ │ -0002af20: 2020 2020 3220 3920 2020 2020 3320 3920 2 9 3 9 │ │ │ │ -0002af30: 2020 2020 347c 0a7c 2020 2020 2020 2020 4|.| │ │ │ │ +0002ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002ae90: 0a7c 2020 2b20 3131 7820 7820 202d 2033 .| + 11x x - 3 │ │ │ │ +0002aea0: 3778 2078 2020 2d20 3233 7820 7820 202d 7x x - 23x x - │ │ │ │ +0002aeb0: 2033 3378 2078 2020 2b20 3878 2078 2020 33x x + 8x x │ │ │ │ +0002aec0: 2b20 3130 7820 7820 202d 2032 3578 2078 + 10x x - 25x x │ │ │ │ +0002aed0: 2020 2d20 3978 2078 2020 2b20 3378 207c - 9x x + 3x | │ │ │ │ +0002aee0: 0a7c 3820 2020 2020 2031 2038 2020 2020 .|8 1 8 │ │ │ │ +0002aef0: 2020 3320 3820 2020 2020 2034 2038 2020 3 8 4 8 │ │ │ │ +0002af00: 2020 2020 3620 3820 2020 2020 3020 3920 6 8 0 9 │ │ │ │ +0002af10: 2020 2020 2031 2039 2020 2020 2020 3220 1 9 2 │ │ │ │ +0002af20: 3920 2020 2020 3320 3920 2020 2020 347c 9 3 9 4| │ │ │ │ +0002af30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002af60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002af80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002af70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002af80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002af90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002afd0: 2020 2020 207c 0a7c 7820 202b 2034 3178 |.|x + 41x │ │ │ │ -0002afe0: 2078 2020 2d20 3778 2078 2020 2d20 3334 x - 7x x - 34 │ │ │ │ -0002aff0: 7820 7820 202d 2039 7820 7820 202d 2034 x x - 9x x - 4 │ │ │ │ -0002b000: 3678 2078 2020 2d20 3137 7820 7820 202b 6x x - 17x x + │ │ │ │ -0002b010: 2033 3278 2078 2020 2d20 3878 2078 2020 32x x - 8x x │ │ │ │ -0002b020: 2d20 3335 787c 0a7c 2037 2020 2020 2020 - 35x|.| 7 │ │ │ │ -0002b030: 3020 3820 2020 2020 3120 3820 2020 2020 0 8 1 8 │ │ │ │ -0002b040: 2033 2038 2020 2020 2034 2038 2020 2020 3 8 4 8 │ │ │ │ -0002b050: 2020 3620 3820 2020 2020 2030 2039 2020 6 8 0 9 │ │ │ │ -0002b060: 2020 2020 3120 3920 2020 2020 3220 3920 1 9 2 9 │ │ │ │ -0002b070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002afc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002afd0: 0a7c 7820 202b 2034 3178 2078 2020 2d20 .|x + 41x x - │ │ │ │ +0002afe0: 3778 2078 2020 2d20 3334 7820 7820 202d 7x x - 34x x - │ │ │ │ +0002aff0: 2039 7820 7820 202d 2034 3678 2078 2020 9x x - 46x x │ │ │ │ +0002b000: 2d20 3137 7820 7820 202b 2033 3278 2078 - 17x x + 32x x │ │ │ │ +0002b010: 2020 2d20 3878 2078 2020 2d20 3335 787c - 8x x - 35x| │ │ │ │ +0002b020: 0a7c 2037 2020 2020 2020 3020 3820 2020 .| 7 0 8 │ │ │ │ +0002b030: 2020 3120 3820 2020 2020 2033 2038 2020 1 8 3 8 │ │ │ │ +0002b040: 2020 2034 2038 2020 2020 2020 3620 3820 4 8 6 8 │ │ │ │ +0002b050: 2020 2020 2030 2039 2020 2020 2020 3120 0 9 1 │ │ │ │ +0002b060: 3920 2020 2020 3220 3920 2020 2020 207c 9 2 9 | │ │ │ │ +0002b070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b0c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b0c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b110: 2020 2020 207c 0a7c 202b 2033 3478 2078 |.| + 34x x │ │ │ │ -0002b120: 2020 2b20 3431 7820 7820 202d 2078 2078 + 41x x - x x │ │ │ │ -0002b130: 2020 2b20 7820 7820 202b 2034 3078 2078 + x x + 40x x │ │ │ │ -0002b140: 2020 2d20 3332 7820 7820 202b 2035 7820 - 32x x + 5x │ │ │ │ -0002b150: 7820 202d 2031 3178 2078 2020 2d20 3230 x - 11x x - 20 │ │ │ │ -0002b160: 7820 7820 207c 0a7c 2020 2020 2020 3120 x x |.| 1 │ │ │ │ -0002b170: 3820 2020 2020 2033 2038 2020 2020 3420 8 3 8 4 │ │ │ │ -0002b180: 3820 2020 2036 2038 2020 2020 2020 3020 8 6 8 0 │ │ │ │ -0002b190: 3920 2020 2020 2031 2039 2020 2020 2032 9 1 9 2 │ │ │ │ -0002b1a0: 2039 2020 2020 2020 3320 3920 2020 2020 9 3 9 │ │ │ │ -0002b1b0: 2034 2039 207c 0a7c 2020 2020 2020 2020 4 9 |.| │ │ │ │ +0002b100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b110: 0a7c 202b 2033 3478 2078 2020 2b20 3431 .| + 34x x + 41 │ │ │ │ +0002b120: 7820 7820 202d 2078 2078 2020 2b20 7820 x x - x x + x │ │ │ │ +0002b130: 7820 202b 2034 3078 2078 2020 2d20 3332 x + 40x x - 32 │ │ │ │ +0002b140: 7820 7820 202b 2035 7820 7820 202d 2031 x x + 5x x - 1 │ │ │ │ +0002b150: 3178 2078 2020 2d20 3230 7820 7820 207c 1x x - 20x x | │ │ │ │ +0002b160: 0a7c 2020 2020 2020 3120 3820 2020 2020 .| 1 8 │ │ │ │ +0002b170: 2033 2038 2020 2020 3420 3820 2020 2036 3 8 4 8 6 │ │ │ │ +0002b180: 2038 2020 2020 2020 3020 3920 2020 2020 8 0 9 │ │ │ │ +0002b190: 2031 2039 2020 2020 2032 2039 2020 2020 1 9 2 9 │ │ │ │ +0002b1a0: 2020 3320 3920 2020 2020 2034 2039 207c 3 9 4 9 | │ │ │ │ +0002b1b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b2a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b2f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b2f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b3e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b3d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b3e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b430: 2020 2020 207c 0a7c 202b 2033 3678 2078 |.| + 36x x │ │ │ │ -0002b440: 2020 202b 2033 3678 2078 2020 202d 2033 + 36x x - 3 │ │ │ │ -0002b450: 3678 2078 2020 2c20 2020 2020 2020 2020 6x x , │ │ │ │ +0002b420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b430: 0a7c 202b 2033 3678 2078 2020 202b 2033 .| + 36x x + 3 │ │ │ │ +0002b440: 3678 2078 2020 202d 2033 3678 2078 2020 6x x - 36x x │ │ │ │ +0002b450: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0002b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b480: 2020 2020 207c 0a7c 2020 2020 2020 3520 |.| 5 │ │ │ │ -0002b490: 3130 2020 2020 2020 3620 3130 2020 2020 10 6 10 │ │ │ │ -0002b4a0: 2020 3520 3131 2020 2020 2020 2020 2020 5 11 │ │ │ │ +0002b470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b480: 0a7c 2020 2020 2020 3520 3130 2020 2020 .| 5 10 │ │ │ │ +0002b490: 2020 3620 3130 2020 2020 2020 3520 3131 6 10 5 11 │ │ │ │ +0002b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b4d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b4c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b4d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b520: 2020 2020 207c 0a7c 2032 3578 2078 2020 |.| 25x x │ │ │ │ -0002b530: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0002b510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b520: 0a7c 2032 3578 2078 2020 2c20 2020 2020 .| 25x x , │ │ │ │ +0002b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b570: 2020 2020 207c 0a7c 2020 2020 3520 3130 |.| 5 10 │ │ │ │ +0002b560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b570: 0a7c 2020 2020 3520 3130 2020 2020 2020 .| 5 10 │ │ │ │ 0002b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b5c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b5b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b5c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b610: 2020 2020 207c 0a7c 2033 3878 2078 2020 |.| 38x x │ │ │ │ -0002b620: 2d20 3278 2078 2020 2b20 3339 7820 7820 - 2x x + 39x x │ │ │ │ -0002b630: 202d 2031 3178 2078 2020 2d20 3238 7820 - 11x x - 28x │ │ │ │ -0002b640: 7820 2020 2b20 3231 7820 7820 2020 2d20 x + 21x x - │ │ │ │ -0002b650: 3578 2078 2020 202d 2031 3078 2078 2020 5x x - 10x x │ │ │ │ -0002b660: 202b 2078 207c 0a7c 2020 2020 3220 3920 + x |.| 2 9 │ │ │ │ -0002b670: 2020 2020 3320 3920 2020 2020 2034 2039 3 9 4 9 │ │ │ │ -0002b680: 2020 2020 2020 3520 3920 2020 2020 2031 5 9 1 │ │ │ │ -0002b690: 2031 3020 2020 2020 2032 2031 3020 2020 10 2 10 │ │ │ │ -0002b6a0: 2020 3320 3130 2020 2020 2020 3420 3130 3 10 4 10 │ │ │ │ -0002b6b0: 2020 2020 357c 0a7c 2020 2020 2020 2020 5|.| │ │ │ │ +0002b600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b610: 0a7c 2033 3878 2078 2020 2d20 3278 2078 .| 38x x - 2x x │ │ │ │ +0002b620: 2020 2b20 3339 7820 7820 202d 2031 3178 + 39x x - 11x │ │ │ │ +0002b630: 2078 2020 2d20 3238 7820 7820 2020 2b20 x - 28x x + │ │ │ │ +0002b640: 3231 7820 7820 2020 2d20 3578 2078 2020 21x x - 5x x │ │ │ │ +0002b650: 202d 2031 3078 2078 2020 202b 2078 207c - 10x x + x | │ │ │ │ +0002b660: 0a7c 2020 2020 3220 3920 2020 2020 3320 .| 2 9 3 │ │ │ │ +0002b670: 3920 2020 2020 2034 2039 2020 2020 2020 9 4 9 │ │ │ │ +0002b680: 3520 3920 2020 2020 2031 2031 3020 2020 5 9 1 10 │ │ │ │ +0002b690: 2020 2032 2031 3020 2020 2020 3320 3130 2 10 3 10 │ │ │ │ +0002b6a0: 2020 2020 2020 3420 3130 2020 2020 357c 4 10 5| │ │ │ │ +0002b6b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b700: 2020 2020 207c 0a7c 3137 7820 7820 202b |.|17x x + │ │ │ │ -0002b710: 2031 3878 2078 2020 2b20 3435 7820 7820 18x x + 45x x │ │ │ │ -0002b720: 202b 2031 3678 2078 2020 2b20 3578 2078 + 16x x + 5x x │ │ │ │ -0002b730: 2020 2b20 3336 7820 7820 202b 2033 3978 + 36x x + 39x │ │ │ │ -0002b740: 2078 2020 202d 2033 3678 2078 2020 202d x - 36x x - │ │ │ │ -0002b750: 2033 3378 207c 0a7c 2020 2031 2039 2020 33x |.| 1 9 │ │ │ │ -0002b760: 2020 2020 3220 3920 2020 2020 2033 2039 2 9 3 9 │ │ │ │ -0002b770: 2020 2020 2020 3420 3920 2020 2020 3520 4 9 5 │ │ │ │ -0002b780: 3920 2020 2020 2036 2039 2020 2020 2020 9 6 9 │ │ │ │ -0002b790: 3120 3130 2020 2020 2020 3220 3130 2020 1 10 2 10 │ │ │ │ -0002b7a0: 2020 2020 337c 0a7c 2020 2020 2020 2020 3|.| │ │ │ │ +0002b6f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b700: 0a7c 3137 7820 7820 202b 2031 3878 2078 .|17x x + 18x x │ │ │ │ +0002b710: 2020 2b20 3435 7820 7820 202b 2031 3678 + 45x x + 16x │ │ │ │ +0002b720: 2078 2020 2b20 3578 2078 2020 2b20 3336 x + 5x x + 36 │ │ │ │ +0002b730: 7820 7820 202b 2033 3978 2078 2020 202d x x + 39x x - │ │ │ │ +0002b740: 2033 3678 2078 2020 202d 2033 3378 207c 36x x - 33x | │ │ │ │ +0002b750: 0a7c 2020 2031 2039 2020 2020 2020 3220 .| 1 9 2 │ │ │ │ +0002b760: 3920 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ +0002b770: 3420 3920 2020 2020 3520 3920 2020 2020 4 9 5 9 │ │ │ │ +0002b780: 2036 2039 2020 2020 2020 3120 3130 2020 6 9 1 10 │ │ │ │ +0002b790: 2020 2020 3220 3130 2020 2020 2020 337c 2 10 3| │ │ │ │ +0002b7a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b7f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002b7e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b7f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b840: 2020 2020 207c 0a7c 3578 2078 2020 2d20 |.|5x x - │ │ │ │ -0002b850: 3778 2078 2020 2b20 3435 7820 7820 202b 7x x + 45x x + │ │ │ │ -0002b860: 2032 3578 2078 2020 2d20 3437 7820 7820 25x x - 47x x │ │ │ │ -0002b870: 202b 2034 7820 7820 202d 2032 3978 2078 + 4x x - 29x x │ │ │ │ -0002b880: 2020 2b20 3332 7820 7820 202d 2031 3378 + 32x x - 13x │ │ │ │ -0002b890: 2078 2020 2d7c 0a7c 2020 3320 3820 2020 x -|.| 3 8 │ │ │ │ -0002b8a0: 2020 3420 3820 2020 2020 2035 2038 2020 4 8 5 8 │ │ │ │ -0002b8b0: 2020 2020 3620 3820 2020 2020 2030 2039 6 8 0 9 │ │ │ │ -0002b8c0: 2020 2020 2031 2039 2020 2020 2020 3220 1 9 2 │ │ │ │ -0002b8d0: 3920 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ -0002b8e0: 3420 3920 207c 0a7c 2020 2020 2020 2020 4 9 |.| │ │ │ │ +0002b830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b840: 0a7c 3578 2078 2020 2d20 3778 2078 2020 .|5x x - 7x x │ │ │ │ +0002b850: 2b20 3435 7820 7820 202b 2032 3578 2078 + 45x x + 25x x │ │ │ │ +0002b860: 2020 2d20 3437 7820 7820 202b 2034 7820 - 47x x + 4x │ │ │ │ +0002b870: 7820 202d 2032 3978 2078 2020 2b20 3332 x - 29x x + 32 │ │ │ │ +0002b880: 7820 7820 202d 2031 3378 2078 2020 2d7c x x - 13x x -| │ │ │ │ +0002b890: 0a7c 2020 3320 3820 2020 2020 3420 3820 .| 3 8 4 8 │ │ │ │ +0002b8a0: 2020 2020 2035 2038 2020 2020 2020 3620 5 8 6 │ │ │ │ +0002b8b0: 3820 2020 2020 2030 2039 2020 2020 2031 8 0 9 1 │ │ │ │ +0002b8c0: 2039 2020 2020 2020 3220 3920 2020 2020 9 2 9 │ │ │ │ +0002b8d0: 2033 2039 2020 2020 2020 3420 3920 207c 3 9 4 9 | │ │ │ │ +0002b8e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002b930: 2020 2020 207c 0a7c 2078 2020 2b20 3338 |.| x + 38 │ │ │ │ -0002b940: 7820 7820 202b 2034 3678 2078 2020 2d20 x x + 46x x - │ │ │ │ -0002b950: 3678 2078 2020 2b20 3132 7820 7820 202d 6x x + 12x x - │ │ │ │ -0002b960: 2034 3878 2078 2020 2b20 3137 7820 7820 48x x + 17x x │ │ │ │ -0002b970: 202d 2033 3978 2078 2020 2d20 3434 7820 - 39x x - 44x │ │ │ │ -0002b980: 7820 202d 207c 0a7c 3420 3820 2020 2020 x - |.|4 8 │ │ │ │ -0002b990: 2035 2038 2020 2020 2020 3620 3820 2020 5 8 6 8 │ │ │ │ -0002b9a0: 2020 3020 3920 2020 2020 2031 2039 2020 0 9 1 9 │ │ │ │ -0002b9b0: 2020 2020 3220 3920 2020 2020 2033 2039 2 9 3 9 │ │ │ │ -0002b9c0: 2020 2020 2020 3420 3920 2020 2020 2035 4 9 5 │ │ │ │ -0002b9d0: 2039 2020 207c 0a7c 2020 2020 2020 2020 9 |.| │ │ │ │ +0002b920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002b930: 0a7c 2078 2020 2b20 3338 7820 7820 202b .| x + 38x x + │ │ │ │ +0002b940: 2034 3678 2078 2020 2d20 3678 2078 2020 46x x - 6x x │ │ │ │ +0002b950: 2b20 3132 7820 7820 202d 2034 3878 2078 + 12x x - 48x x │ │ │ │ +0002b960: 2020 2b20 3137 7820 7820 202d 2033 3978 + 17x x - 39x │ │ │ │ +0002b970: 2078 2020 2d20 3434 7820 7820 202d 207c x - 44x x - | │ │ │ │ +0002b980: 0a7c 3420 3820 2020 2020 2035 2038 2020 .|4 8 5 8 │ │ │ │ +0002b990: 2020 2020 3620 3820 2020 2020 3020 3920 6 8 0 9 │ │ │ │ +0002b9a0: 2020 2020 2031 2039 2020 2020 2020 3220 1 9 2 │ │ │ │ +0002b9b0: 3920 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ +0002b9c0: 3420 3920 2020 2020 2035 2039 2020 207c 4 9 5 9 | │ │ │ │ +0002b9d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ba10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ba20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ba70: 2020 2020 207c 0a7c 2034 7820 7820 202b |.| 4x x + │ │ │ │ -0002ba80: 2031 3778 2078 2020 2d20 3434 7820 7820 17x x - 44x x │ │ │ │ -0002ba90: 202b 2031 3878 2078 2020 2d20 3432 7820 + 18x x - 42x │ │ │ │ -0002baa0: 7820 202b 2033 3978 2078 2020 2b20 3978 x + 39x x + 9x │ │ │ │ -0002bab0: 2078 2020 2d20 3133 7820 7820 202b 2034 x - 13x x + 4 │ │ │ │ -0002bac0: 3878 2078 207c 0a7c 2020 2036 2037 2020 8x x |.| 6 7 │ │ │ │ -0002bad0: 2020 2020 3020 3820 2020 2020 2031 2038 0 8 1 8 │ │ │ │ -0002bae0: 2020 2020 2020 3220 3820 2020 2020 2033 2 8 3 │ │ │ │ -0002baf0: 2038 2020 2020 2020 3420 3820 2020 2020 8 4 8 │ │ │ │ -0002bb00: 3520 3820 2020 2020 2036 2038 2020 2020 5 8 6 8 │ │ │ │ -0002bb10: 2020 3020 397c 0a7c 2020 2020 2020 2020 0 9|.| │ │ │ │ +0002ba60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ba70: 0a7c 2034 7820 7820 202b 2031 3778 2078 .| 4x x + 17x x │ │ │ │ +0002ba80: 2020 2d20 3434 7820 7820 202b 2031 3878 - 44x x + 18x │ │ │ │ +0002ba90: 2078 2020 2d20 3432 7820 7820 202b 2033 x - 42x x + 3 │ │ │ │ +0002baa0: 3978 2078 2020 2b20 3978 2078 2020 2d20 9x x + 9x x - │ │ │ │ +0002bab0: 3133 7820 7820 202b 2034 3878 2078 207c 13x x + 48x x | │ │ │ │ +0002bac0: 0a7c 2020 2036 2037 2020 2020 2020 3020 .| 6 7 0 │ │ │ │ +0002bad0: 3820 2020 2020 2031 2038 2020 2020 2020 8 1 8 │ │ │ │ +0002bae0: 3220 3820 2020 2020 2033 2038 2020 2020 2 8 3 8 │ │ │ │ +0002baf0: 2020 3420 3820 2020 2020 3520 3820 2020 4 8 5 8 │ │ │ │ +0002bb00: 2020 2036 2038 2020 2020 2020 3020 397c 6 8 0 9| │ │ │ │ +0002bb10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bb60: 2020 2020 207c 0a7c 2033 3278 2078 2020 |.| 32x x │ │ │ │ -0002bb70: 2d20 3778 2078 2020 2d20 3239 7820 7820 - 7x x - 29x x │ │ │ │ -0002bb80: 202d 2034 3778 2078 2020 2b20 3335 7820 - 47x x + 35x │ │ │ │ -0002bb90: 7820 202b 2033 3878 2078 2020 2d20 3433 x + 38x x - 43 │ │ │ │ -0002bba0: 7820 7820 202d 2032 7820 7820 202d 2033 x x - 2x x - 3 │ │ │ │ -0002bbb0: 3278 2078 207c 0a7c 2020 2020 3320 3820 2x x |.| 3 8 │ │ │ │ -0002bbc0: 2020 2020 3420 3820 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -0002bbd0: 2020 2020 2020 3620 3820 2020 2020 2030 6 8 0 │ │ │ │ -0002bbe0: 2039 2020 2020 2020 3120 3920 2020 2020 9 1 9 │ │ │ │ -0002bbf0: 2032 2039 2020 2020 2033 2039 2020 2020 2 9 3 9 │ │ │ │ -0002bc00: 2020 3420 397c 0a7c 2d2d 2d2d 2d2d 2d2d 4 9|.|-------- │ │ │ │ +0002bb50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bb60: 0a7c 2033 3278 2078 2020 2d20 3778 2078 .| 32x x - 7x x │ │ │ │ +0002bb70: 2020 2d20 3239 7820 7820 202d 2034 3778 - 29x x - 47x │ │ │ │ +0002bb80: 2078 2020 2b20 3335 7820 7820 202b 2033 x + 35x x + 3 │ │ │ │ +0002bb90: 3878 2078 2020 2d20 3433 7820 7820 202d 8x x - 43x x - │ │ │ │ +0002bba0: 2032 7820 7820 202d 2033 3278 2078 207c 2x x - 32x x | │ │ │ │ +0002bbb0: 0a7c 2020 2020 3320 3820 2020 2020 3420 .| 3 8 4 │ │ │ │ +0002bbc0: 3820 2020 2020 2035 2038 2020 2020 2020 8 5 8 │ │ │ │ +0002bbd0: 3620 3820 2020 2020 2030 2039 2020 2020 6 8 0 9 │ │ │ │ +0002bbe0: 2020 3120 3920 2020 2020 2032 2039 2020 1 9 2 9 │ │ │ │ +0002bbf0: 2020 2033 2039 2020 2020 2020 3420 397c 3 9 4 9| │ │ │ │ +0002bc00: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002bc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002bc50: 2d2d 2d2d 2d7c 0a7c 7820 202b 2032 3478 -----|.|x + 24x │ │ │ │ -0002bc60: 2078 2020 2d20 3237 7820 7820 202d 2035 x - 27x x - 5 │ │ │ │ -0002bc70: 7820 7820 2020 2b20 3238 7820 7820 2020 x x + 28x x │ │ │ │ -0002bc80: 2b20 3337 7820 7820 2020 2b20 3978 2078 + 37x x + 9x x │ │ │ │ -0002bc90: 2020 202b 2032 3778 2078 2020 202d 2032 + 27x x - 2 │ │ │ │ -0002bca0: 3578 2078 207c 0a7c 2039 2020 2020 2020 5x x |.| 9 │ │ │ │ -0002bcb0: 3520 3920 2020 2020 2036 2039 2020 2020 5 9 6 9 │ │ │ │ -0002bcc0: 2030 2031 3020 2020 2020 2031 2031 3020 0 10 1 10 │ │ │ │ -0002bcd0: 2020 2020 2032 2031 3020 2020 2020 3420 2 10 4 │ │ │ │ -0002bce0: 3130 2020 2020 2020 3620 3130 2020 2020 10 6 10 │ │ │ │ -0002bcf0: 2020 3020 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +0002bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002bc50: 0a7c 7820 202b 2032 3478 2078 2020 2d20 .|x + 24x x - │ │ │ │ +0002bc60: 3237 7820 7820 202d 2035 7820 7820 2020 27x x - 5x x │ │ │ │ +0002bc70: 2b20 3238 7820 7820 2020 2b20 3337 7820 + 28x x + 37x │ │ │ │ +0002bc80: 7820 2020 2b20 3978 2078 2020 202b 2032 x + 9x x + 2 │ │ │ │ +0002bc90: 3778 2078 2020 202d 2032 3578 2078 207c 7x x - 25x x | │ │ │ │ +0002bca0: 0a7c 2039 2020 2020 2020 3520 3920 2020 .| 9 5 9 │ │ │ │ +0002bcb0: 2020 2036 2039 2020 2020 2030 2031 3020 6 9 0 10 │ │ │ │ +0002bcc0: 2020 2020 2031 2031 3020 2020 2020 2032 1 10 2 │ │ │ │ +0002bcd0: 2031 3020 2020 2020 3420 3130 2020 2020 10 4 10 │ │ │ │ +0002bce0: 2020 3620 3130 2020 2020 2020 3020 207c 6 10 0 | │ │ │ │ +0002bcf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002bd30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bd40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bd90: 2020 2020 207c 0a7c 2078 2020 2d20 3436 |.| x - 46 │ │ │ │ -0002bda0: 7820 7820 202b 2032 3678 2078 2020 2b20 x x + 26x x + │ │ │ │ -0002bdb0: 3137 7820 7820 202b 2031 3578 2078 2020 17x x + 15x x │ │ │ │ -0002bdc0: 202b 2033 3578 2078 2020 202b 2033 3478 + 35x x + 34x │ │ │ │ -0002bdd0: 2078 2020 202b 2032 3078 2078 2020 202b x + 20x x + │ │ │ │ -0002bde0: 2031 3478 207c 0a7c 3320 3920 2020 2020 14x |.|3 9 │ │ │ │ -0002bdf0: 2034 2039 2020 2020 2020 3520 3920 2020 4 9 5 9 │ │ │ │ -0002be00: 2020 2036 2039 2020 2020 2020 3020 3130 6 9 0 10 │ │ │ │ -0002be10: 2020 2020 2020 3120 3130 2020 2020 2020 1 10 │ │ │ │ -0002be20: 3220 3130 2020 2020 2020 3420 3130 2020 2 10 4 10 │ │ │ │ -0002be30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002bd80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bd90: 0a7c 2078 2020 2d20 3436 7820 7820 202b .| x - 46x x + │ │ │ │ +0002bda0: 2032 3678 2078 2020 2b20 3137 7820 7820 26x x + 17x x │ │ │ │ +0002bdb0: 202b 2031 3578 2078 2020 202b 2033 3578 + 15x x + 35x │ │ │ │ +0002bdc0: 2078 2020 202b 2033 3478 2078 2020 202b x + 34x x + │ │ │ │ +0002bdd0: 2032 3078 2078 2020 202b 2031 3478 207c 20x x + 14x | │ │ │ │ +0002bde0: 0a7c 3320 3920 2020 2020 2034 2039 2020 .|3 9 4 9 │ │ │ │ +0002bdf0: 2020 2020 3520 3920 2020 2020 2036 2039 5 9 6 9 │ │ │ │ +0002be00: 2020 2020 2020 3020 3130 2020 2020 2020 0 10 │ │ │ │ +0002be10: 3120 3130 2020 2020 2020 3220 3130 2020 1 10 2 10 │ │ │ │ +0002be20: 2020 2020 3420 3130 2020 2020 2020 207c 4 10 | │ │ │ │ +0002be30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002be60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002be80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002be70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002be80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bed0: 2020 2020 207c 0a7c 2b20 3435 7820 7820 |.|+ 45x x │ │ │ │ -0002bee0: 202d 2031 3478 2078 2020 2d20 3235 7820 - 14x x - 25x │ │ │ │ -0002bef0: 7820 2020 2b20 3435 7820 7820 2020 2d20 x + 45x x - │ │ │ │ -0002bf00: 3431 7820 7820 2020 2d20 3436 7820 7820 41x x - 46x x │ │ │ │ -0002bf10: 2020 2b20 3878 2078 2020 202d 2032 3878 + 8x x - 28x │ │ │ │ -0002bf20: 2078 2020 207c 0a7c 2020 2020 2035 2039 x |.| 5 9 │ │ │ │ -0002bf30: 2020 2020 2020 3620 3920 2020 2020 2030 6 9 0 │ │ │ │ -0002bf40: 2031 3020 2020 2020 2031 2031 3020 2020 10 1 10 │ │ │ │ -0002bf50: 2020 2032 2031 3020 2020 2020 2034 2031 2 10 4 1 │ │ │ │ -0002bf60: 3020 2020 2020 3620 3130 2020 2020 2020 0 6 10 │ │ │ │ -0002bf70: 3020 3131 207c 0a7c 2020 2020 2020 2020 0 11 |.| │ │ │ │ +0002bec0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bed0: 0a7c 2b20 3435 7820 7820 202d 2031 3478 .|+ 45x x - 14x │ │ │ │ +0002bee0: 2078 2020 2d20 3235 7820 7820 2020 2b20 x - 25x x + │ │ │ │ +0002bef0: 3435 7820 7820 2020 2d20 3431 7820 7820 45x x - 41x x │ │ │ │ +0002bf00: 2020 2d20 3436 7820 7820 2020 2b20 3878 - 46x x + 8x │ │ │ │ +0002bf10: 2078 2020 202d 2032 3878 2078 2020 207c x - 28x x | │ │ │ │ +0002bf20: 0a7c 2020 2020 2035 2039 2020 2020 2020 .| 5 9 │ │ │ │ +0002bf30: 3620 3920 2020 2020 2030 2031 3020 2020 6 9 0 10 │ │ │ │ +0002bf40: 2020 2031 2031 3020 2020 2020 2032 2031 1 10 2 1 │ │ │ │ +0002bf50: 3020 2020 2020 2034 2031 3020 2020 2020 0 4 10 │ │ │ │ +0002bf60: 3620 3130 2020 2020 2020 3020 3131 207c 6 10 0 11 | │ │ │ │ +0002bf70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002bf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002bfc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002bfb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002bfc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c010: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c060: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c0a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c0b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c100: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c150: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c150: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c1a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c1f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c1e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c1f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c2e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c2e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c3d0: 2020 2020 207c 0a7c 7820 2020 2d20 7820 |.|x - x │ │ │ │ -0002c3e0: 7820 2020 2d20 3436 7820 7820 2020 2b20 x - 46x x + │ │ │ │ -0002c3f0: 3278 2078 2020 202b 2078 2078 2020 2c20 2x x + x x , │ │ │ │ +0002c3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c3d0: 0a7c 7820 2020 2d20 7820 7820 2020 2d20 .|x - x x - │ │ │ │ +0002c3e0: 3436 7820 7820 2020 2b20 3278 2078 2020 46x x + 2x x │ │ │ │ +0002c3f0: 202b 2078 2078 2020 2c20 2020 2020 2020 + x x , │ │ │ │ 0002c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c420: 2020 2020 207c 0a7c 2031 3020 2020 2036 |.| 10 6 │ │ │ │ -0002c430: 2031 3020 2020 2020 2031 2031 3120 2020 10 1 11 │ │ │ │ -0002c440: 2020 3220 3131 2020 2020 3520 3131 2020 2 11 5 11 │ │ │ │ +0002c410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c420: 0a7c 2031 3020 2020 2036 2031 3020 2020 .| 10 6 10 │ │ │ │ +0002c430: 2020 2031 2031 3120 2020 2020 3220 3131 1 11 2 11 │ │ │ │ +0002c440: 2020 2020 3520 3131 2020 2020 2020 2020 5 11 │ │ │ │ 0002c450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c4c0: 2020 2020 207c 0a7c 7820 2020 2d20 3239 |.|x - 29 │ │ │ │ -0002c4d0: 7820 7820 2020 2b20 3236 7820 7820 2020 x x + 26x x │ │ │ │ -0002c4e0: 2d20 3236 7820 7820 2020 2d20 3431 7820 - 26x x - 41x │ │ │ │ -0002c4f0: 7820 2020 2d20 3435 7820 7820 2020 2d20 x - 45x x - │ │ │ │ -0002c500: 3336 7820 7820 2020 2b20 3236 7820 7820 36x x + 26x x │ │ │ │ -0002c510: 202c 2020 207c 0a7c 2031 3020 2020 2020 , |.| 10 │ │ │ │ -0002c520: 2034 2031 3020 2020 2020 2035 2031 3020 4 10 5 10 │ │ │ │ -0002c530: 2020 2020 2036 2031 3020 2020 2020 2031 6 10 1 │ │ │ │ -0002c540: 2031 3120 2020 2020 2032 2031 3120 2020 11 2 11 │ │ │ │ -0002c550: 2020 2034 2031 3120 2020 2020 2035 2031 4 11 5 1 │ │ │ │ -0002c560: 3120 2020 207c 0a7c 2020 2020 2020 2020 1 |.| │ │ │ │ +0002c4b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c4c0: 0a7c 7820 2020 2d20 3239 7820 7820 2020 .|x - 29x x │ │ │ │ +0002c4d0: 2b20 3236 7820 7820 2020 2d20 3236 7820 + 26x x - 26x │ │ │ │ +0002c4e0: 7820 2020 2d20 3431 7820 7820 2020 2d20 x - 41x x - │ │ │ │ +0002c4f0: 3435 7820 7820 2020 2d20 3336 7820 7820 45x x - 36x x │ │ │ │ +0002c500: 2020 2b20 3236 7820 7820 202c 2020 207c + 26x x , | │ │ │ │ +0002c510: 0a7c 2031 3020 2020 2020 2034 2031 3020 .| 10 4 10 │ │ │ │ +0002c520: 2020 2020 2035 2031 3020 2020 2020 2036 5 10 6 │ │ │ │ +0002c530: 2031 3020 2020 2020 2031 2031 3120 2020 10 1 11 │ │ │ │ +0002c540: 2020 2032 2031 3120 2020 2020 2034 2031 2 11 4 1 │ │ │ │ +0002c550: 3120 2020 2020 2035 2031 3120 2020 207c 1 5 11 | │ │ │ │ +0002c560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c5a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c5b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c600: 2020 2020 207c 0a7c 2034 3778 2078 2020 |.| 47x x │ │ │ │ -0002c610: 2d20 3432 7820 7820 202d 2031 3878 2078 - 42x x - 18x x │ │ │ │ -0002c620: 2020 202d 2035 7820 7820 2020 2b20 3434 - 5x x + 44 │ │ │ │ -0002c630: 7820 7820 2020 2d20 3339 7820 7820 2020 x x - 39x x │ │ │ │ -0002c640: 2d20 3135 7820 7820 2020 2d20 3331 7820 - 15x x - 31x │ │ │ │ -0002c650: 7820 2020 207c 0a7c 2020 2020 3520 3920 x |.| 5 9 │ │ │ │ -0002c660: 2020 2020 2036 2039 2020 2020 2020 3020 6 9 0 │ │ │ │ -0002c670: 3130 2020 2020 2031 2031 3020 2020 2020 10 1 10 │ │ │ │ -0002c680: 2032 2031 3020 2020 2020 2033 2031 3020 2 10 3 10 │ │ │ │ -0002c690: 2020 2020 2034 2031 3020 2020 2020 2035 4 10 5 │ │ │ │ -0002c6a0: 2031 3020 207c 0a7c 2020 2020 2020 2020 10 |.| │ │ │ │ +0002c5f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c600: 0a7c 2034 3778 2078 2020 2d20 3432 7820 .| 47x x - 42x │ │ │ │ +0002c610: 7820 202d 2031 3878 2078 2020 202d 2035 x - 18x x - 5 │ │ │ │ +0002c620: 7820 7820 2020 2b20 3434 7820 7820 2020 x x + 44x x │ │ │ │ +0002c630: 2d20 3339 7820 7820 2020 2d20 3135 7820 - 39x x - 15x │ │ │ │ +0002c640: 7820 2020 2d20 3331 7820 7820 2020 207c x - 31x x | │ │ │ │ +0002c650: 0a7c 2020 2020 3520 3920 2020 2020 2036 .| 5 9 6 │ │ │ │ +0002c660: 2039 2020 2020 2020 3020 3130 2020 2020 9 0 10 │ │ │ │ +0002c670: 2031 2031 3020 2020 2020 2032 2031 3020 1 10 2 10 │ │ │ │ +0002c680: 2020 2020 2033 2031 3020 2020 2020 2034 3 10 4 │ │ │ │ +0002c690: 2031 3020 2020 2020 2035 2031 3020 207c 10 5 10 | │ │ │ │ +0002c6a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c6f0: 2020 2020 207c 0a7c 3578 2078 2020 202d |.|5x x - │ │ │ │ -0002c700: 2031 3578 2078 2020 202d 2031 3378 2078 15x x - 13x x │ │ │ │ -0002c710: 2020 202d 2032 3078 2078 2020 202d 2034 - 20x x - 4 │ │ │ │ -0002c720: 3578 2078 2020 202b 2034 7820 7820 2020 5x x + 4x x │ │ │ │ -0002c730: 2d20 3478 2078 2020 202b 2031 3078 2078 - 4x x + 10x x │ │ │ │ -0002c740: 2020 202b 207c 0a7c 2020 3020 3130 2020 + |.| 0 10 │ │ │ │ -0002c750: 2020 2020 3120 3130 2020 2020 2020 3220 1 10 2 │ │ │ │ -0002c760: 3130 2020 2020 2020 3320 3130 2020 2020 10 3 10 │ │ │ │ -0002c770: 2020 3420 3130 2020 2020 2035 2031 3020 4 10 5 10 │ │ │ │ -0002c780: 2020 2020 3620 3130 2020 2020 2020 3120 6 10 1 │ │ │ │ -0002c790: 3131 2020 207c 0a7c 2020 2020 2020 2020 11 |.| │ │ │ │ +0002c6e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c6f0: 0a7c 3578 2078 2020 202d 2031 3578 2078 .|5x x - 15x x │ │ │ │ +0002c700: 2020 202d 2031 3378 2078 2020 202d 2032 - 13x x - 2 │ │ │ │ +0002c710: 3078 2078 2020 202d 2034 3578 2078 2020 0x x - 45x x │ │ │ │ +0002c720: 202b 2034 7820 7820 2020 2d20 3478 2078 + 4x x - 4x x │ │ │ │ +0002c730: 2020 202b 2031 3078 2078 2020 202b 207c + 10x x + | │ │ │ │ +0002c740: 0a7c 2020 3020 3130 2020 2020 2020 3120 .| 0 10 1 │ │ │ │ +0002c750: 3130 2020 2020 2020 3220 3130 2020 2020 10 2 10 │ │ │ │ +0002c760: 2020 3320 3130 2020 2020 2020 3420 3130 3 10 4 10 │ │ │ │ +0002c770: 2020 2020 2035 2031 3020 2020 2020 3620 5 10 6 │ │ │ │ +0002c780: 3130 2020 2020 2020 3120 3131 2020 207c 10 1 11 | │ │ │ │ +0002c790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c7e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002c7d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c7e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c830: 2020 2020 207c 0a7c 202d 2033 3278 2078 |.| - 32x x │ │ │ │ -0002c840: 2020 2d20 3337 7820 7820 202d 2034 7820 - 37x x - 4x │ │ │ │ -0002c850: 7820 202d 2033 3878 2078 2020 2b20 3130 x - 38x x + 10 │ │ │ │ -0002c860: 7820 7820 202b 2031 3378 2078 2020 2b20 x x + 13x x + │ │ │ │ -0002c870: 3132 7820 7820 2020 2b20 3335 7820 7820 12x x + 35x x │ │ │ │ -0002c880: 2020 2b20 207c 0a7c 2020 2020 2020 3120 + |.| 1 │ │ │ │ -0002c890: 3920 2020 2020 2032 2039 2020 2020 2033 9 2 9 3 │ │ │ │ -0002c8a0: 2039 2020 2020 2020 3420 3920 2020 2020 9 4 9 │ │ │ │ -0002c8b0: 2035 2039 2020 2020 2020 3620 3920 2020 5 9 6 9 │ │ │ │ -0002c8c0: 2020 2030 2031 3020 2020 2020 2031 2031 0 10 1 1 │ │ │ │ -0002c8d0: 3020 2020 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +0002c820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c830: 0a7c 202d 2033 3278 2078 2020 2d20 3337 .| - 32x x - 37 │ │ │ │ +0002c840: 7820 7820 202d 2034 7820 7820 202d 2033 x x - 4x x - 3 │ │ │ │ +0002c850: 3878 2078 2020 2b20 3130 7820 7820 202b 8x x + 10x x + │ │ │ │ +0002c860: 2031 3378 2078 2020 2b20 3132 7820 7820 13x x + 12x x │ │ │ │ +0002c870: 2020 2b20 3335 7820 7820 2020 2b20 207c + 35x x + | │ │ │ │ +0002c880: 0a7c 2020 2020 2020 3120 3920 2020 2020 .| 1 9 │ │ │ │ +0002c890: 2032 2039 2020 2020 2033 2039 2020 2020 2 9 3 9 │ │ │ │ +0002c8a0: 2020 3420 3920 2020 2020 2035 2039 2020 4 9 5 9 │ │ │ │ +0002c8b0: 2020 2020 3620 3920 2020 2020 2030 2031 6 9 0 1 │ │ │ │ +0002c8c0: 3020 2020 2020 2031 2031 3020 2020 207c 0 1 10 | │ │ │ │ +0002c8d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002c920: 2020 2020 207c 0a7c 202d 2034 3378 2078 |.| - 43x x │ │ │ │ -0002c930: 2020 2b20 3132 7820 7820 202d 2031 3278 + 12x x - 12x │ │ │ │ -0002c940: 2078 2020 202b 2031 3478 2078 2020 202d x + 14x x - │ │ │ │ -0002c950: 2034 3778 2078 2020 202d 2034 3678 2078 47x x - 46x x │ │ │ │ -0002c960: 2020 202d 2031 3478 2078 2020 202b 2034 - 14x x + 4 │ │ │ │ -0002c970: 3878 2078 207c 0a7c 2020 2020 2020 3520 8x x |.| 5 │ │ │ │ -0002c980: 3920 2020 2020 2036 2039 2020 2020 2020 9 6 9 │ │ │ │ -0002c990: 3020 3130 2020 2020 2020 3120 3130 2020 0 10 1 10 │ │ │ │ -0002c9a0: 2020 2020 3220 3130 2020 2020 2020 3320 2 10 3 │ │ │ │ -0002c9b0: 3130 2020 2020 2020 3420 3130 2020 2020 10 4 10 │ │ │ │ -0002c9c0: 2020 3520 207c 0a7c 2d2d 2d2d 2d2d 2d2d 5 |.|-------- │ │ │ │ +0002c910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002c920: 0a7c 202d 2034 3378 2078 2020 2b20 3132 .| - 43x x + 12 │ │ │ │ +0002c930: 7820 7820 202d 2031 3278 2078 2020 202b x x - 12x x + │ │ │ │ +0002c940: 2031 3478 2078 2020 202d 2034 3778 2078 14x x - 47x x │ │ │ │ +0002c950: 2020 202d 2034 3678 2078 2020 202d 2031 - 46x x - 1 │ │ │ │ +0002c960: 3478 2078 2020 202b 2034 3878 2078 207c 4x x + 48x x | │ │ │ │ +0002c970: 0a7c 2020 2020 2020 3520 3920 2020 2020 .| 5 9 │ │ │ │ +0002c980: 2036 2039 2020 2020 2020 3020 3130 2020 6 9 0 10 │ │ │ │ +0002c990: 2020 2020 3120 3130 2020 2020 2020 3220 1 10 2 │ │ │ │ +0002c9a0: 3130 2020 2020 2020 3320 3130 2020 2020 10 3 10 │ │ │ │ +0002c9b0: 2020 3420 3130 2020 2020 2020 3520 207c 4 10 5 | │ │ │ │ +0002c9c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002c9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002c9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002ca10: 2d2d 2d2d 2d7c 0a7c 2020 202b 2039 7820 -----|.| + 9x │ │ │ │ -0002ca20: 7820 2020 2b20 3237 7820 7820 2020 2d20 x + 27x x - │ │ │ │ -0002ca30: 3237 7820 7820 202c 2020 2020 2020 2020 27x x , │ │ │ │ +0002ca00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002ca10: 0a7c 2020 202b 2039 7820 7820 2020 2b20 .| + 9x x + │ │ │ │ +0002ca20: 3237 7820 7820 2020 2d20 3237 7820 7820 27x x - 27x x │ │ │ │ +0002ca30: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0002ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ca60: 2020 2020 207c 0a7c 3131 2020 2020 2032 |.|11 2 │ │ │ │ -0002ca70: 2031 3120 2020 2020 2034 2031 3120 2020 11 4 11 │ │ │ │ -0002ca80: 2020 2035 2031 3120 2020 2020 2020 2020 5 11 │ │ │ │ +0002ca50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ca60: 0a7c 3131 2020 2020 2032 2031 3120 2020 .|11 2 11 │ │ │ │ +0002ca70: 2020 2034 2031 3120 2020 2020 2035 2031 4 11 5 1 │ │ │ │ +0002ca80: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0002ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002caa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002caf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cb00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb50: 2020 2020 207c 0a7c 2078 2020 202b 2033 |.| x + 3 │ │ │ │ -0002cb60: 3678 2078 2020 202b 2033 3578 2078 2020 6x x + 35x x │ │ │ │ -0002cb70: 202d 2031 3778 2078 2020 2c20 2020 2020 - 17x x , │ │ │ │ +0002cb40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cb50: 0a7c 2078 2020 202b 2033 3678 2078 2020 .| x + 36x x │ │ │ │ +0002cb60: 202b 2033 3578 2078 2020 202d 2031 3778 + 35x x - 17x │ │ │ │ +0002cb70: 2078 2020 2c20 2020 2020 2020 2020 2020 x , │ │ │ │ 0002cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cba0: 2020 2020 207c 0a7c 3020 3131 2020 2020 |.|0 11 │ │ │ │ -0002cbb0: 2020 3120 3131 2020 2020 2020 3220 3131 1 11 2 11 │ │ │ │ -0002cbc0: 2020 2020 2020 3420 3131 2020 2020 2020 4 11 │ │ │ │ +0002cb90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cba0: 0a7c 3020 3131 2020 2020 2020 3120 3131 .|0 11 1 11 │ │ │ │ +0002cbb0: 2020 2020 2020 3220 3131 2020 2020 2020 2 11 │ │ │ │ +0002cbc0: 3420 3131 2020 2020 2020 2020 2020 2020 4 11 │ │ │ │ 0002cbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cbf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cbe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cbf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cc30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cc40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cc90: 2020 2020 207c 0a7c 202b 2031 3178 2078 |.| + 11x x │ │ │ │ -0002cca0: 2020 202b 2031 3478 2078 2020 202d 2038 + 14x x - 8 │ │ │ │ -0002ccb0: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ +0002cc80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cc90: 0a7c 202b 2031 3178 2078 2020 202b 2031 .| + 11x x + 1 │ │ │ │ +0002cca0: 3478 2078 2020 202d 2038 7820 7820 2020 4x x - 8x x │ │ │ │ +0002ccb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cce0: 2020 2020 207c 0a7c 2020 2020 2020 3220 |.| 2 │ │ │ │ -0002ccf0: 3131 2020 2020 2020 3420 3131 2020 2020 11 4 11 │ │ │ │ -0002cd00: 2035 2031 3120 2020 2020 2020 2020 2020 5 11 │ │ │ │ +0002ccd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cce0: 0a7c 2020 2020 2020 3220 3131 2020 2020 .| 2 11 │ │ │ │ +0002ccf0: 2020 3420 3131 2020 2020 2035 2031 3120 4 11 5 11 │ │ │ │ +0002cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cd20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cd30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cd80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cd70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cd80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cdd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cdc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cdd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ce10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ce20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ce30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ce70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ce60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ce70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ce80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ceb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ceb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cf00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cf10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cf60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cf50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cf60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cfb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cfa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002cfb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002cfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002cff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002cff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d0a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d0f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d0e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d0f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d140: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d190: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d1e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d1d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d1e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d230: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d2d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d2c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d2d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d320: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d370: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d3c0: 2020 2020 207c 0a7c 2b20 3135 7820 7820 |.|+ 15x x │ │ │ │ -0002d3d0: 2020 2d20 3137 7820 7820 2020 2d20 3239 - 17x x - 29 │ │ │ │ -0002d3e0: 7820 7820 2020 2b20 3335 7820 7820 2020 x x + 35x x │ │ │ │ -0002d3f0: 2d20 3137 7820 7820 2020 2d20 3331 7820 - 17x x - 31x │ │ │ │ -0002d400: 7820 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ -0002d410: 2020 2020 207c 0a7c 2020 2020 2036 2031 |.| 6 1 │ │ │ │ -0002d420: 3020 2020 2020 2030 2031 3120 2020 2020 0 0 11 │ │ │ │ -0002d430: 2031 2031 3120 2020 2020 2032 2031 3120 1 11 2 11 │ │ │ │ -0002d440: 2020 2020 2033 2031 3120 2020 2020 2035 3 11 5 │ │ │ │ -0002d450: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ -0002d460: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d3b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d3c0: 0a7c 2b20 3135 7820 7820 2020 2d20 3137 .|+ 15x x - 17 │ │ │ │ +0002d3d0: 7820 7820 2020 2d20 3239 7820 7820 2020 x x - 29x x │ │ │ │ +0002d3e0: 2b20 3335 7820 7820 2020 2d20 3137 7820 + 35x x - 17x │ │ │ │ +0002d3f0: 7820 2020 2d20 3331 7820 7820 202c 2020 x - 31x x , │ │ │ │ +0002d400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d410: 0a7c 2020 2020 2036 2031 3020 2020 2020 .| 6 10 │ │ │ │ +0002d420: 2030 2031 3120 2020 2020 2031 2031 3120 0 11 1 11 │ │ │ │ +0002d430: 2020 2020 2032 2031 3120 2020 2020 2033 2 11 3 │ │ │ │ +0002d440: 2031 3120 2020 2020 2035 2031 3120 2020 11 5 11 │ │ │ │ +0002d450: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4b0: 2020 2020 207c 0a7c 2038 7820 7820 2020 |.| 8x x │ │ │ │ -0002d4c0: 2b20 3478 2078 2020 2c20 2020 2020 2020 + 4x x , │ │ │ │ +0002d4a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d4b0: 0a7c 2038 7820 7820 2020 2b20 3478 2078 .| 8x x + 4x x │ │ │ │ +0002d4c0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0002d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d500: 2020 2020 207c 0a7c 2020 2032 2031 3120 |.| 2 11 │ │ │ │ -0002d510: 2020 2020 3520 3131 2020 2020 2020 2020 5 11 │ │ │ │ +0002d4f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d500: 0a7c 2020 2032 2031 3120 2020 2020 3520 .| 2 11 5 │ │ │ │ +0002d510: 3131 2020 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 0002d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d550: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d5a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d5f0: 2020 2020 207c 0a7c 3133 7820 7820 2020 |.|13x x │ │ │ │ -0002d600: 2b20 3331 7820 7820 2020 2b20 3330 7820 + 31x x + 30x │ │ │ │ -0002d610: 7820 2020 2d20 3435 7820 7820 2020 2d20 x - 45x x - │ │ │ │ -0002d620: 3135 7820 7820 2020 2b20 3337 7820 7820 15x x + 37x x │ │ │ │ -0002d630: 2020 2b20 3434 7820 7820 2020 2b20 3778 + 44x x + 7x │ │ │ │ -0002d640: 2078 2020 207c 0a7c 2020 2032 2031 3020 x |.| 2 10 │ │ │ │ -0002d650: 2020 2020 2033 2031 3020 2020 2020 2034 3 10 4 │ │ │ │ -0002d660: 2031 3020 2020 2020 2035 2031 3020 2020 10 5 10 │ │ │ │ -0002d670: 2020 2036 2031 3020 2020 2020 2030 2031 6 10 0 1 │ │ │ │ -0002d680: 3120 2020 2020 2031 2031 3120 2020 2020 1 1 11 │ │ │ │ -0002d690: 3220 3131 207c 0a7c 2020 2020 2020 2020 2 11 |.| │ │ │ │ +0002d5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d5f0: 0a7c 3133 7820 7820 2020 2b20 3331 7820 .|13x x + 31x │ │ │ │ +0002d600: 7820 2020 2b20 3330 7820 7820 2020 2d20 x + 30x x - │ │ │ │ +0002d610: 3435 7820 7820 2020 2d20 3135 7820 7820 45x x - 15x x │ │ │ │ +0002d620: 2020 2b20 3337 7820 7820 2020 2b20 3434 + 37x x + 44 │ │ │ │ +0002d630: 7820 7820 2020 2b20 3778 2078 2020 207c x x + 7x x | │ │ │ │ +0002d640: 0a7c 2020 2032 2031 3020 2020 2020 2033 .| 2 10 3 │ │ │ │ +0002d650: 2031 3020 2020 2020 2034 2031 3020 2020 10 4 10 │ │ │ │ +0002d660: 2020 2035 2031 3020 2020 2020 2036 2031 5 10 6 1 │ │ │ │ +0002d670: 3020 2020 2020 2030 2031 3120 2020 2020 0 0 11 │ │ │ │ +0002d680: 2031 2031 3120 2020 2020 3220 3131 207c 1 11 2 11 | │ │ │ │ +0002d690: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d6e0: 2020 2020 207c 0a7c 2020 202b 2031 3278 |.| + 12x │ │ │ │ -0002d6f0: 2078 2020 202d 2031 3278 2078 2020 202b x - 12x x + │ │ │ │ -0002d700: 2034 3878 2078 2020 202d 2078 2078 2020 48x x - x x │ │ │ │ -0002d710: 202d 2039 7820 7820 2020 2b20 3438 7820 - 9x x + 48x │ │ │ │ -0002d720: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0002d730: 2020 2020 207c 0a7c 3130 2020 2020 2020 |.|10 │ │ │ │ -0002d740: 3620 3130 2020 2020 2020 3020 3131 2020 6 10 0 11 │ │ │ │ -0002d750: 2020 2020 3120 3131 2020 2020 3220 3131 1 11 2 11 │ │ │ │ -0002d760: 2020 2020 2033 2031 3120 2020 2020 2035 3 11 5 │ │ │ │ -0002d770: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ -0002d780: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0002d6d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d6e0: 0a7c 2020 202b 2031 3278 2078 2020 202d .| + 12x x - │ │ │ │ +0002d6f0: 2031 3278 2078 2020 202b 2034 3878 2078 12x x + 48x x │ │ │ │ +0002d700: 2020 202d 2078 2078 2020 202d 2039 7820 - x x - 9x │ │ │ │ +0002d710: 7820 2020 2b20 3438 7820 7820 2020 2020 x + 48x x │ │ │ │ +0002d720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d730: 0a7c 3130 2020 2020 2020 3620 3130 2020 .|10 6 10 │ │ │ │ +0002d740: 2020 2020 3020 3131 2020 2020 2020 3120 0 11 1 │ │ │ │ +0002d750: 3131 2020 2020 3220 3131 2020 2020 2033 11 2 11 3 │ │ │ │ +0002d760: 2031 3120 2020 2020 2035 2031 3120 2020 11 5 11 │ │ │ │ +0002d770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d780: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002d790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d7d0: 2d2d 2d2d 2d7c 0a7c 2b20 3978 2078 2020 -----|.|+ 9x x │ │ │ │ -0002d7e0: 202d 2032 3578 2078 2020 202d 2034 3578 - 25x x - 45x │ │ │ │ -0002d7f0: 2078 2020 2c20 2020 2020 2020 2020 2020 x , │ │ │ │ +0002d7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002d7d0: 0a7c 2b20 3978 2078 2020 202d 2032 3578 .|+ 9x x - 25x │ │ │ │ +0002d7e0: 2078 2020 202d 2034 3578 2078 2020 2c20 x - 45x x , │ │ │ │ +0002d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d820: 2020 2020 207c 0a7c 2020 2020 3320 3131 |.| 3 11 │ │ │ │ -0002d830: 2020 2020 2020 3420 3131 2020 2020 2020 4 11 │ │ │ │ -0002d840: 3520 3131 2020 2020 2020 2020 2020 2020 5 11 │ │ │ │ +0002d810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d820: 0a7c 2020 2020 3320 3131 2020 2020 2020 .| 3 11 │ │ │ │ +0002d830: 3420 3131 2020 2020 2020 3520 3131 2020 4 11 5 11 │ │ │ │ +0002d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d870: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d870: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002d880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002d8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002d8c0: 2d2d 2d2d 2d2b 0a7c 6939 203a 202d 2d20 -----+.|i9 : -- │ │ │ │ -0002d8d0: 6275 742e 2e2e 2020 2020 2020 2020 2020 but... │ │ │ │ +0002d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002d8c0: 0a7c 6939 203a 202d 2d20 6275 742e 2e2e .|i9 : -- but... │ │ │ │ +0002d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d910: 2020 2020 207c 0a7c 2020 2020 2070 6869 |.| phi │ │ │ │ -0002d920: 202a 2070 7369 203d 3d20 3120 2020 2020 * psi == 1 │ │ │ │ +0002d900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d910: 0a7c 2020 2020 2070 6869 202a 2070 7369 .| phi * psi │ │ │ │ +0002d920: 203d 3d20 3120 2020 2020 2020 2020 2020 == 1 │ │ │ │ 0002d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d960: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002d950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d960: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9b0: 2020 2020 207c 0a7c 6f39 203d 2066 616c |.|o9 = fal │ │ │ │ -0002d9c0: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ +0002d9a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002d9b0: 0a7c 6f39 203d 2066 616c 7365 2020 2020 .|o9 = false │ │ │ │ +0002d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002da00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0002d9f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002da00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0002da10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002da30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002da50: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 2d2d -----+.|i10 : -- │ │ │ │ -0002da60: 2069 6e20 7468 6973 2063 6173 6520 7765 in this case we │ │ │ │ -0002da70: 2063 616e 2072 656d 6564 7920 656e 6162 can remedy enab │ │ │ │ -0002da80: 6c69 6e67 2074 6865 206f 7074 696f 6e20 ling the option │ │ │ │ -0002da90: 4365 7274 6966 7920 2020 2020 2020 2020 Certify │ │ │ │ -0002daa0: 2020 2020 207c 0a7c 2020 2020 2020 7469 |.| ti │ │ │ │ -0002dab0: 6d65 2070 7369 203d 2061 7070 726f 7869 me psi = approxi │ │ │ │ -0002dac0: 6d61 7465 496e 7665 7273 654d 6170 2870 mateInverseMap(p │ │ │ │ -0002dad0: 6869 2c43 6f64 696d 4273 496e 763d 3e34 hi,CodimBsInv=>4 │ │ │ │ -0002dae0: 2c43 6572 7469 6679 3d3e 7472 7565 2920 ,Certify=>true) │ │ │ │ -0002daf0: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -0002db00: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -0002db10: 3a20 7374 6570 2031 206f 6620 3320 2020 : step 1 of 3 │ │ │ │ +0002da40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0002da50: 0a7c 6931 3020 3a20 2d2d 2069 6e20 7468 .|i10 : -- in th │ │ │ │ +0002da60: 6973 2063 6173 6520 7765 2063 616e 2072 is case we can r │ │ │ │ +0002da70: 656d 6564 7920 656e 6162 6c69 6e67 2074 emedy enabling t │ │ │ │ +0002da80: 6865 206f 7074 696f 6e20 4365 7274 6966 he option Certif │ │ │ │ +0002da90: 7920 2020 2020 2020 2020 2020 2020 207c y | │ │ │ │ +0002daa0: 0a7c 2020 2020 2020 7469 6d65 2070 7369 .| time psi │ │ │ │ +0002dab0: 203d 2061 7070 726f 7869 6d61 7465 496e = approximateIn │ │ │ │ +0002dac0: 7665 7273 654d 6170 2870 6869 2c43 6f64 verseMap(phi,Cod │ │ │ │ +0002dad0: 696d 4273 496e 763d 3e34 2c43 6572 7469 imBsInv=>4,Certi │ │ │ │ +0002dae0: 6679 3d3e 7472 7565 2920 2020 2020 207c fy=>true) | │ │ │ │ +0002daf0: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +0002db00: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +0002db10: 2031 206f 6620 3320 2020 2020 2020 2020 1 of 3 │ │ │ │ 0002db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db40: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -0002db50: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -0002db60: 3a20 7374 6570 2032 206f 6620 3320 2020 : step 2 of 3 │ │ │ │ +0002db30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002db40: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +0002db50: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +0002db60: 2032 206f 6620 3320 2020 2020 2020 2020 2 of 3 │ │ │ │ 0002db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002db90: 2020 2020 207c 0a7c 2d2d 2061 7070 726f |.|-- appro │ │ │ │ -0002dba0: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -0002dbb0: 3a20 7374 6570 2033 206f 6620 3320 2020 : step 3 of 3 │ │ │ │ +0002db80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002db90: 0a7c 2d2d 2061 7070 726f 7869 6d61 7465 .|-- approximate │ │ │ │ +0002dba0: 496e 7665 7273 654d 6170 3a20 7374 6570 InverseMap: step │ │ │ │ +0002dbb0: 2033 206f 6620 3320 2020 2020 2020 2020 3 of 3 │ │ │ │ 0002dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dbe0: 2020 2020 207c 0a7c 4365 7274 6966 793a |.|Certify: │ │ │ │ -0002dbf0: 206f 7574 7075 7420 6365 7274 6966 6965 output certifie │ │ │ │ -0002dc00: 6421 2020 2020 2020 2020 2020 2020 2020 d! │ │ │ │ +0002dbd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dbe0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ +0002dbf0: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ +0002dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc30: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -0002dc40: 2033 2e38 3833 3333 7320 2863 7075 293b 3.88333s (cpu); │ │ │ │ -0002dc50: 2033 2e31 3136 3538 7320 2874 6872 6561 3.11658s (threa │ │ │ │ -0002dc60: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -0002dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dc80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dc20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dc30: 0a7c 202d 2d20 7573 6564 2033 2e32 3335 .| -- used 3.235 │ │ │ │ +0002dc40: 3235 7320 2863 7075 293b 2032 2e38 3031 25s (cpu); 2.801 │ │ │ │ +0002dc50: 3236 7320 2874 6872 6561 6429 3b20 3073 26s (thread); 0s │ │ │ │ +0002dc60: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0002dc70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dc80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dcd0: 2020 2020 207c 0a7c 6f31 3020 3d20 2d2d |.|o10 = -- │ │ │ │ -0002dce0: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +0002dcc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dcd0: 0a7c 6f31 3020 3d20 2d2d 2072 6174 696f .|o10 = -- ratio │ │ │ │ +0002dce0: 6e61 6c20 6d61 7020 2d2d 2020 2020 2020 nal map -- │ │ │ │ 0002dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002dd10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dd20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd40: 2020 2020 2020 2020 205a 5a20 2020 2020 ZZ │ │ │ │ +0002dd40: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0002dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dd70: 2020 2020 207c 0a7c 2020 2020 2020 736f |.| so │ │ │ │ -0002dd80: 7572 6365 3a20 7375 6276 6172 6965 7479 urce: subvariety │ │ │ │ -0002dd90: 206f 6620 5072 6f6a 282d 2d5b 7820 2c20 of Proj(--[x , │ │ │ │ -0002dda0: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -0002ddb0: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -0002ddc0: 7820 2c20 787c 0a7c 2020 2020 2020 2020 x , x|.| │ │ │ │ +0002dd60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dd70: 0a7c 2020 2020 2020 736f 7572 6365 3a20 .| source: │ │ │ │ +0002dd80: 7375 6276 6172 6965 7479 206f 6620 5072 subvariety of Pr │ │ │ │ +0002dd90: 6f6a 282d 2d5b 7820 2c20 7820 2c20 7820 oj(--[x , x , x │ │ │ │ +0002dda0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +0002ddb0: 2c20 7820 2c20 7820 2c20 7820 2c20 787c , x , x , x , x| │ │ │ │ +0002ddc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dde0: 2020 2020 2020 2020 2039 3720 2030 2020 97 0 │ │ │ │ -0002ddf0: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0002de00: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ -0002de10: 2039 2020 207c 0a7c 2020 2020 2020 2020 9 |.| │ │ │ │ -0002de20: 2020 2020 2020 7b20 2020 2020 2020 2020 { │ │ │ │ +0002dde0: 2020 2039 3720 2030 2020 2031 2020 2032 97 0 1 2 │ │ │ │ +0002ddf0: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +0002de00: 2020 2037 2020 2038 2020 2039 2020 207c 7 8 9 | │ │ │ │ +0002de10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002de20: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0002de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002de50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002de60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002de80: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0002de80: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002deb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002dec0: 2020 2020 2020 2078 2078 2020 2d20 3878 x x - 8x │ │ │ │ -0002ded0: 2078 2020 2b20 3235 7820 202d 2032 3578 x + 25x - 25x │ │ │ │ -0002dee0: 2078 2020 2d20 3232 7820 7820 202b 2078 x - 22x x + x │ │ │ │ -0002def0: 2078 2020 2b20 3133 7820 7820 202b 2034 x + 13x x + 4 │ │ │ │ -0002df00: 3178 2078 207c 0a7c 2020 2020 2020 2020 1x x |.| │ │ │ │ -0002df10: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ -0002df20: 3220 3320 2020 2020 2033 2020 2020 2020 2 3 3 │ │ │ │ -0002df30: 3220 3420 2020 2020 2033 2034 2020 2020 2 4 3 4 │ │ │ │ -0002df40: 3020 3520 2020 2020 2032 2035 2020 2020 0 5 2 5 │ │ │ │ -0002df50: 2020 3320 357c 0a7c 2020 2020 2020 2020 3 5|.| │ │ │ │ +0002dea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002deb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002dec0: 2078 2078 2020 2d20 3878 2078 2020 2b20 x x - 8x x + │ │ │ │ +0002ded0: 3235 7820 202d 2032 3578 2078 2020 2d20 25x - 25x x - │ │ │ │ +0002dee0: 3232 7820 7820 202b 2078 2078 2020 2b20 22x x + x x + │ │ │ │ +0002def0: 3133 7820 7820 202b 2034 3178 2078 207c 13x x + 41x x | │ │ │ │ +0002df00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002df10: 2020 3120 3320 2020 2020 3220 3320 2020 1 3 2 3 │ │ │ │ +0002df20: 2020 2033 2020 2020 2020 3220 3420 2020 3 2 4 │ │ │ │ +0002df30: 2020 2033 2034 2020 2020 3020 3520 2020 3 4 0 5 │ │ │ │ +0002df40: 2020 2032 2035 2020 2020 2020 3320 357c 2 5 3 5| │ │ │ │ +0002df50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002dfb0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0002dfc0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0002df90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dfa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002dfb0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0002dfc0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0002dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002dff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e000: 2020 2020 2020 2078 2020 2b20 3137 7820 x + 17x │ │ │ │ -0002e010: 7820 202d 2031 3478 2020 2d20 3133 7820 x - 14x - 13x │ │ │ │ -0002e020: 7820 202b 2033 3478 2078 2020 2b20 3434 x + 34x x + 44 │ │ │ │ -0002e030: 7820 7820 202d 2033 3078 2078 2020 2b20 x x - 30x x + │ │ │ │ -0002e040: 3237 7820 787c 0a7c 2020 2020 2020 2020 27x x|.| │ │ │ │ -0002e050: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ -0002e060: 2033 2020 2020 2020 3320 2020 2020 2032 3 3 2 │ │ │ │ -0002e070: 2034 2020 2020 2020 3320 3420 2020 2020 4 3 4 │ │ │ │ -0002e080: 2030 2035 2020 2020 2020 3220 3520 2020 0 5 2 5 │ │ │ │ -0002e090: 2020 2033 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0002dfe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002dff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e000: 2078 2020 2b20 3137 7820 7820 202d 2031 x + 17x x - 1 │ │ │ │ +0002e010: 3478 2020 2d20 3133 7820 7820 202b 2033 4x - 13x x + 3 │ │ │ │ +0002e020: 3478 2078 2020 2b20 3434 7820 7820 202d 4x x + 44x x - │ │ │ │ +0002e030: 2033 3078 2078 2020 2b20 3237 7820 787c 30x x + 27x x| │ │ │ │ +0002e040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e050: 2020 3220 2020 2020 2032 2033 2020 2020 2 2 3 │ │ │ │ +0002e060: 2020 3320 2020 2020 2032 2034 2020 2020 3 2 4 │ │ │ │ +0002e070: 2020 3320 3420 2020 2020 2030 2035 2020 3 4 0 5 │ │ │ │ +0002e080: 2020 2020 3220 3520 2020 2020 2033 207c 2 5 3 | │ │ │ │ +0002e090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e0e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e0d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e0e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e100: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0002e100: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0002e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e140: 2020 2020 2020 2078 2078 2020 2d20 3430 x x - 40 │ │ │ │ -0002e150: 7820 7820 202b 2032 3878 2020 2d20 7820 x x + 28x - x │ │ │ │ -0002e160: 7820 202b 2035 7820 7820 202d 2031 3678 x + 5x x - 16x │ │ │ │ -0002e170: 2078 2020 2b20 3578 2078 2020 2d20 3336 x + 5x x - 36 │ │ │ │ -0002e180: 7820 7820 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -0002e190: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -0002e1a0: 2032 2033 2020 2020 2020 3320 2020 2030 2 3 3 0 │ │ │ │ -0002e1b0: 2034 2020 2020 2032 2034 2020 2020 2020 4 2 4 │ │ │ │ -0002e1c0: 3320 3420 2020 2020 3020 3520 2020 2020 3 4 0 5 │ │ │ │ -0002e1d0: 2032 2035 207c 0a7c 2020 2020 2020 2020 2 5 |.| │ │ │ │ -0002e1e0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0002e120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e140: 2078 2078 2020 2d20 3430 7820 7820 202b x x - 40x x + │ │ │ │ +0002e150: 2032 3878 2020 2d20 7820 7820 202b 2035 28x - x x + 5 │ │ │ │ +0002e160: 7820 7820 202d 2031 3678 2078 2020 2b20 x x - 16x x + │ │ │ │ +0002e170: 3578 2078 2020 2d20 3336 7820 7820 207c 5x x - 36x x | │ │ │ │ +0002e180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e190: 2020 3120 3220 2020 2020 2032 2033 2020 1 2 2 3 │ │ │ │ +0002e1a0: 2020 2020 3320 2020 2030 2034 2020 2020 3 0 4 │ │ │ │ +0002e1b0: 2032 2034 2020 2020 2020 3320 3420 2020 2 4 3 4 │ │ │ │ +0002e1c0: 2020 3020 3520 2020 2020 2032 2035 207c 0 5 2 5 | │ │ │ │ +0002e1d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e1e0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0002e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e230: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +0002e210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e230: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ 0002e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e270: 2020 2020 207c 0a7c 2020 2020 2020 7461 |.| ta │ │ │ │ -0002e280: 7267 6574 3a20 5072 6f6a 282d 2d5b 7420 rget: Proj(--[t │ │ │ │ -0002e290: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ -0002e2a0: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ -0002e2b0: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ -0002e2c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e2d0: 2020 2020 2020 2020 2020 2039 3720 2030 97 0 │ │ │ │ -0002e2e0: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ -0002e2f0: 2020 2035 2020 2036 2020 2037 2020 2038 5 6 7 8 │ │ │ │ -0002e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e310: 2020 2020 207c 0a7c 2020 2020 2020 6465 |.| de │ │ │ │ -0002e320: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +0002e260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e270: 0a7c 2020 2020 2020 7461 7267 6574 3a20 .| target: │ │ │ │ +0002e280: 5072 6f6a 282d 2d5b 7420 2c20 7420 2c20 Proj(--[t , t , │ │ │ │ +0002e290: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ +0002e2a0: 7420 2c20 7420 2c20 7420 5d29 2020 2020 t , t , t ]) │ │ │ │ +0002e2b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e2c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e2d0: 2020 2020 2039 3720 2030 2020 2031 2020 97 0 1 │ │ │ │ +0002e2e0: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +0002e2f0: 2036 2020 2037 2020 2038 2020 2020 2020 6 7 8 │ │ │ │ +0002e300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e310: 0a7c 2020 2020 2020 6465 6669 6e69 6e67 .| defining │ │ │ │ +0002e320: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ 0002e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e360: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e380: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0002e380: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 0002e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e3b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e3c0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e3d0: 2032 7820 7820 202b 2036 7820 202d 2032 2x x + 6x - 2 │ │ │ │ -0002e3e0: 3478 2078 2020 2d20 3235 7820 7820 202b 4x x - 25x x + │ │ │ │ -0002e3f0: 2033 3978 2078 2020 2b20 3378 2078 2020 39x x + 3x x │ │ │ │ -0002e400: 2b20 3436 787c 0a7c 2020 2020 2020 2020 + 46x|.| │ │ │ │ -0002e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e420: 2020 2032 2033 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ -0002e430: 2020 3220 3420 2020 2020 2033 2034 2020 2 4 3 4 │ │ │ │ -0002e440: 2020 2020 3020 3520 2020 2020 3220 3520 0 5 2 5 │ │ │ │ -0002e450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e3a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e3b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e3c0: 2020 2020 2020 2020 202d 2032 7820 7820 - 2x x │ │ │ │ +0002e3d0: 202b 2036 7820 202d 2032 3478 2078 2020 + 6x - 24x x │ │ │ │ +0002e3e0: 2d20 3235 7820 7820 202b 2033 3978 2078 - 25x x + 39x x │ │ │ │ +0002e3f0: 2020 2b20 3378 2078 2020 2b20 3436 787c + 3x x + 46x| │ │ │ │ +0002e400: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e410: 2020 2020 2020 2020 2020 2020 2032 2033 2 3 │ │ │ │ +0002e420: 2020 2020 2033 2020 2020 2020 3220 3420 3 2 4 │ │ │ │ +0002e430: 2020 2020 2033 2034 2020 2020 2020 3020 3 4 0 │ │ │ │ +0002e440: 3520 2020 2020 3220 3520 2020 2020 207c 5 2 5 | │ │ │ │ +0002e450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e4a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e4b0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e4c0: 2031 3978 2078 2020 2d20 3430 7820 7820 19x x - 40x x │ │ │ │ -0002e4d0: 202b 2031 3978 2078 2020 2b20 3139 7820 + 19x x + 19x │ │ │ │ -0002e4e0: 7820 202d 2033 3878 2078 2020 2d20 3339 x - 38x x - 39 │ │ │ │ -0002e4f0: 7820 7820 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -0002e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e510: 2020 2020 3220 3520 2020 2020 2033 2035 2 5 3 5 │ │ │ │ -0002e520: 2020 2020 2020 3120 3820 2020 2020 2032 1 8 2 │ │ │ │ -0002e530: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -0002e540: 2035 2038 207c 0a7c 2020 2020 2020 2020 5 8 |.| │ │ │ │ +0002e490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e4a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e4b0: 2020 2020 2020 2020 202d 2031 3978 2078 - 19x x │ │ │ │ +0002e4c0: 2020 2d20 3430 7820 7820 202b 2031 3978 - 40x x + 19x │ │ │ │ +0002e4d0: 2078 2020 2b20 3139 7820 7820 202d 2033 x + 19x x - 3 │ │ │ │ +0002e4e0: 3878 2078 2020 2d20 3339 7820 7820 207c 8x x - 39x x | │ │ │ │ +0002e4f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e500: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0002e510: 3520 2020 2020 2033 2035 2020 2020 2020 5 3 5 │ │ │ │ +0002e520: 3120 3820 2020 2020 2032 2038 2020 2020 1 8 2 8 │ │ │ │ +0002e530: 2020 3320 3820 2020 2020 2035 2038 207c 3 8 5 8 | │ │ │ │ +0002e540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e5a0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e5b0: 2033 3978 2078 2020 2d20 3339 7820 7820 39x x - 39x x │ │ │ │ -0002e5c0: 202d 2033 3878 2078 2020 2d20 3339 7820 - 38x x - 39x │ │ │ │ -0002e5d0: 7820 202b 2031 3978 2078 2020 2b20 3278 x + 19x x + 2x │ │ │ │ -0002e5e0: 2078 2020 2b7c 0a7c 2020 2020 2020 2020 x +|.| │ │ │ │ -0002e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e600: 2020 2020 3220 3320 2020 2020 2030 2034 2 3 0 4 │ │ │ │ -0002e610: 2020 2020 2020 3320 3420 2020 2020 2030 3 4 0 │ │ │ │ -0002e620: 2035 2020 2020 2020 3220 3520 2020 2020 5 2 5 │ │ │ │ -0002e630: 3320 3520 207c 0a7c 2020 2020 2020 2020 3 5 |.| │ │ │ │ +0002e580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e5a0: 2020 2020 2020 2020 202d 2033 3978 2078 - 39x x │ │ │ │ +0002e5b0: 2020 2d20 3339 7820 7820 202d 2033 3878 - 39x x - 38x │ │ │ │ +0002e5c0: 2078 2020 2d20 3339 7820 7820 202b 2031 x - 39x x + 1 │ │ │ │ +0002e5d0: 3978 2078 2020 2b20 3278 2078 2020 2b7c 9x x + 2x x +| │ │ │ │ +0002e5e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e5f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0002e600: 3320 2020 2020 2030 2034 2020 2020 2020 3 0 4 │ │ │ │ +0002e610: 3320 3420 2020 2020 2030 2035 2020 2020 3 4 0 5 │ │ │ │ +0002e620: 2020 3220 3520 2020 2020 3320 3520 207c 2 5 3 5 | │ │ │ │ +0002e630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6a0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0002e6b0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0002e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e6d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e6e0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e6f0: 2033 3978 2020 2d20 3878 2078 2020 2b20 39x - 8x x + │ │ │ │ -0002e700: 3235 7820 202b 2031 3978 2078 2020 2b20 25x + 19x x + │ │ │ │ -0002e710: 3436 7820 7820 202d 2032 3278 2078 2020 46x x - 22x x │ │ │ │ -0002e720: 2b20 7820 787c 0a7c 2020 2020 2020 2020 + x x|.| │ │ │ │ -0002e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e740: 2020 2020 3120 2020 2020 3220 3320 2020 1 2 3 │ │ │ │ -0002e750: 2020 2033 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ -0002e760: 2020 2032 2034 2020 2020 2020 3320 3420 2 4 3 4 │ │ │ │ -0002e770: 2020 2030 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +0002e670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e690: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0002e6a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0002e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002e6c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e6d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e6e0: 2020 2020 2020 2020 202d 2033 3978 2020 - 39x │ │ │ │ +0002e6f0: 2d20 3878 2078 2020 2b20 3235 7820 202b - 8x x + 25x + │ │ │ │ +0002e700: 2031 3978 2078 2020 2b20 3436 7820 7820 19x x + 46x x │ │ │ │ +0002e710: 202d 2032 3278 2078 2020 2b20 7820 787c - 22x x + x x| │ │ │ │ +0002e720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e730: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +0002e740: 2020 2020 3220 3320 2020 2020 2033 2020 2 3 3 │ │ │ │ +0002e750: 2020 2020 3020 3420 2020 2020 2032 2034 0 4 2 4 │ │ │ │ +0002e760: 2020 2020 2020 3320 3420 2020 2030 207c 3 4 0 | │ │ │ │ +0002e770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e7b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e7c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e800: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0002e810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e820: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e830: 2033 3978 2078 2020 2b20 3139 7820 7820 39x x + 19x x │ │ │ │ -0002e840: 202b 2078 2078 2020 2b20 3878 2078 2020 + x x + 8x x │ │ │ │ -0002e850: 2d20 3235 7820 202d 2032 3378 2078 2020 - 25x - 23x x │ │ │ │ -0002e860: 2d20 3330 787c 0a7c 2020 2020 2020 2020 - 30x|.| │ │ │ │ -0002e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e880: 2020 2020 3020 3120 2020 2020 2030 2032 0 1 0 2 │ │ │ │ -0002e890: 2020 2020 3020 3320 2020 2020 3220 3320 0 3 2 3 │ │ │ │ -0002e8a0: 2020 2020 2033 2020 2020 2020 3220 3420 3 2 4 │ │ │ │ -0002e8b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e7f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0002e800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e820: 2020 2020 2020 2020 202d 2033 3978 2078 - 39x x │ │ │ │ +0002e830: 2020 2b20 3139 7820 7820 202b 2078 2078 + 19x x + x x │ │ │ │ +0002e840: 2020 2b20 3878 2078 2020 2d20 3235 7820 + 8x x - 25x │ │ │ │ +0002e850: 202d 2032 3378 2078 2020 2d20 3330 787c - 23x x - 30x| │ │ │ │ +0002e860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e870: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +0002e880: 3120 2020 2020 2030 2032 2020 2020 3020 1 0 2 0 │ │ │ │ +0002e890: 3320 2020 2020 3220 3320 2020 2020 2033 3 2 3 3 │ │ │ │ +0002e8a0: 2020 2020 2020 3220 3420 2020 2020 207c 2 4 | │ │ │ │ +0002e8b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002e910: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0002e920: 2032 3478 2078 2020 2d20 3235 7820 7820 24x x - 25x x │ │ │ │ -0002e930: 202b 2032 3278 2078 2020 2b20 3438 7820 + 22x x + 48x │ │ │ │ -0002e940: 7820 202d 2031 3778 2078 2020 2b20 3234 x - 17x x + 24 │ │ │ │ -0002e950: 7820 7820 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -0002e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e970: 2020 2020 3220 3420 2020 2020 2033 2034 2 4 3 4 │ │ │ │ -0002e980: 2020 2020 2020 3220 3520 2020 2020 2033 2 5 3 │ │ │ │ -0002e990: 2035 2020 2020 2020 3220 3620 2020 2020 5 2 6 │ │ │ │ -0002e9a0: 2031 2037 207c 0a7c 2020 2020 2020 2020 1 7 |.| │ │ │ │ +0002e8f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e900: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e910: 2020 2020 2020 2020 202d 2032 3478 2078 - 24x x │ │ │ │ +0002e920: 2020 2d20 3235 7820 7820 202b 2032 3278 - 25x x + 22x │ │ │ │ +0002e930: 2078 2020 2b20 3438 7820 7820 202d 2031 x + 48x x - 1 │ │ │ │ +0002e940: 3778 2078 2020 2b20 3234 7820 7820 207c 7x x + 24x x | │ │ │ │ +0002e950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002e960: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0002e970: 3420 2020 2020 2033 2034 2020 2020 2020 4 3 4 │ │ │ │ +0002e980: 3220 3520 2020 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ +0002e990: 2020 3220 3620 2020 2020 2031 2037 207c 2 6 1 7 | │ │ │ │ +0002e9a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002e9f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002ea00: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -0002ea10: 3978 2078 2020 2b20 7820 7820 202b 2031 9x x + x x + 1 │ │ │ │ -0002ea20: 3978 2078 2020 2b20 3339 7820 7820 202d 9x x + 39x x - │ │ │ │ -0002ea30: 2031 3978 2078 2020 2b20 3337 7820 7820 19x x + 37x x │ │ │ │ -0002ea40: 202d 2033 367c 0a7c 2020 2020 2020 2020 - 36|.| │ │ │ │ -0002ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ea60: 2020 3220 3520 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ -0002ea70: 2020 3520 3720 2020 2020 2031 2038 2020 5 7 1 8 │ │ │ │ -0002ea80: 2020 2020 3420 3820 2020 2020 2036 2038 4 8 6 8 │ │ │ │ -0002ea90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002e9e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002e9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ea00: 2020 2020 2020 2020 2031 3978 2078 2020 19x x │ │ │ │ +0002ea10: 2b20 7820 7820 202b 2031 3978 2078 2020 + x x + 19x x │ │ │ │ +0002ea20: 2b20 3339 7820 7820 202d 2031 3978 2078 + 39x x - 19x x │ │ │ │ +0002ea30: 2020 2b20 3337 7820 7820 202d 2033 367c + 37x x - 36| │ │ │ │ +0002ea40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ea50: 2020 2020 2020 2020 2020 2020 3220 3520 2 5 │ │ │ │ +0002ea60: 2020 2033 2035 2020 2020 2020 3520 3720 3 5 5 7 │ │ │ │ +0002ea70: 2020 2020 2031 2038 2020 2020 2020 3420 1 8 4 │ │ │ │ +0002ea80: 3820 2020 2020 2036 2038 2020 2020 207c 8 6 8 | │ │ │ │ +0002ea90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002eaf0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -0002eb00: 3978 2078 2020 2d20 3139 7820 7820 202d 9x x - 19x x - │ │ │ │ -0002eb10: 2032 7820 7820 202b 2033 3978 2078 2020 2x x + 39x x │ │ │ │ -0002eb20: 2b20 3139 7820 7820 202d 2078 2078 2020 + 19x x - x x │ │ │ │ -0002eb30: 2d20 3337 787c 0a7c 2020 2020 2020 2020 - 37x|.| │ │ │ │ -0002eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eb50: 2020 3020 3520 2020 2020 2032 2035 2020 0 5 2 5 │ │ │ │ -0002eb60: 2020 2033 2035 2020 2020 2020 3020 3820 3 5 0 8 │ │ │ │ -0002eb70: 2020 2020 2031 2038 2020 2020 3320 3820 1 8 3 8 │ │ │ │ -0002eb80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ead0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002eae0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002eaf0: 2020 2020 2020 2020 2033 3978 2078 2020 39x x │ │ │ │ +0002eb00: 2d20 3139 7820 7820 202d 2032 7820 7820 - 19x x - 2x x │ │ │ │ +0002eb10: 202b 2033 3978 2078 2020 2b20 3139 7820 + 39x x + 19x │ │ │ │ +0002eb20: 7820 202d 2078 2078 2020 2d20 3337 787c x - x x - 37x| │ │ │ │ +0002eb30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002eb40: 2020 2020 2020 2020 2020 2020 3020 3520 0 5 │ │ │ │ +0002eb50: 2020 2020 2032 2035 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +0002eb60: 2020 2020 2020 3020 3820 2020 2020 2031 0 8 1 │ │ │ │ +0002eb70: 2038 2020 2020 3320 3820 2020 2020 207c 8 3 8 | │ │ │ │ +0002eb80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ebd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0002ebe0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -0002ebf0: 3378 2078 2020 2d20 3330 7820 7820 202d 3x x - 30x x - │ │ │ │ -0002ec00: 2031 3978 2078 2020 2d20 3430 7820 7820 19x x - 40x x │ │ │ │ -0002ec10: 202b 2034 3478 2078 2020 2d20 3232 7820 + 44x x - 22x │ │ │ │ -0002ec20: 7820 202d 207c 0a7c 2020 2020 2020 2020 x - |.| │ │ │ │ -0002ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ec40: 2020 3220 3420 2020 2020 2033 2034 2020 2 4 3 4 │ │ │ │ -0002ec50: 2020 2020 3020 3520 2020 2020 2032 2035 0 5 2 5 │ │ │ │ -0002ec60: 2020 2020 2020 3320 3520 2020 2020 2032 3 5 2 │ │ │ │ -0002ec70: 2036 2020 207c 0a7c 2020 2020 2020 2020 6 |.| │ │ │ │ -0002ec80: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0002ebc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ebd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ebe0: 2020 2020 2020 2020 2034 3378 2078 2020 43x x │ │ │ │ +0002ebf0: 2d20 3330 7820 7820 202d 2031 3978 2078 - 30x x - 19x x │ │ │ │ +0002ec00: 2020 2d20 3430 7820 7820 202b 2034 3478 - 40x x + 44x │ │ │ │ +0002ec10: 2078 2020 2d20 3232 7820 7820 202d 207c x - 22x x - | │ │ │ │ +0002ec20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ec30: 2020 2020 2020 2020 2020 2020 3220 3420 2 4 │ │ │ │ +0002ec40: 2020 2020 2033 2034 2020 2020 2020 3020 3 4 0 │ │ │ │ +0002ec50: 3520 2020 2020 2032 2035 2020 2020 2020 5 2 5 │ │ │ │ +0002ec60: 3320 3520 2020 2020 2032 2036 2020 207c 3 5 2 6 | │ │ │ │ +0002ec70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0002ec80: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ 0002ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ecc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ecb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ecc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ed10: 2020 2020 207c 0a7c 6f31 3020 3a20 5261 |.|o10 : Ra │ │ │ │ -0002ed20: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ -0002ed30: 6174 6963 2062 6972 6174 696f 6e61 6c20 atic birational │ │ │ │ -0002ed40: 6d61 7020 6672 6f6d 2038 2d64 696d 656e map from 8-dimen │ │ │ │ -0002ed50: 7369 6f6e 616c 2073 7562 7661 7269 6574 sional subvariet │ │ │ │ -0002ed60: 7920 6f66 207c 0a7c 2d2d 2d2d 2d2d 2d2d y of |.|-------- │ │ │ │ +0002ed00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ed10: 0a7c 6f31 3020 3a20 5261 7469 6f6e 616c .|o10 : Rational │ │ │ │ +0002ed20: 4d61 7020 2871 7561 6472 6174 6963 2062 Map (quadratic b │ │ │ │ +0002ed30: 6972 6174 696f 6e61 6c20 6d61 7020 6672 irational map fr │ │ │ │ +0002ed40: 6f6d 2038 2d64 696d 656e 7369 6f6e 616c om 8-dimensional │ │ │ │ +0002ed50: 2073 7562 7661 7269 6574 7920 6f66 207c subvariety of | │ │ │ │ +0002ed60: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002ed70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ed80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002ed90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002edb0: 2d2d 2d2d 2d7c 0a7c 2020 2c20 7820 205d -----|.| , x ] │ │ │ │ -0002edc0: 2920 6465 6669 6e65 6420 6279 2020 2020 ) defined by │ │ │ │ +0002eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002edb0: 0a7c 2020 2c20 7820 205d 2920 6465 6669 .| , x ]) defi │ │ │ │ +0002edc0: 6e65 6420 6279 2020 2020 2020 2020 2020 ned by │ │ │ │ 0002edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee00: 2020 2020 207c 0a7c 3130 2020 2031 3120 |.|10 11 │ │ │ │ +0002edf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ee00: 0a7c 3130 2020 2031 3120 2020 2020 2020 .|10 11 │ │ │ │ 0002ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ee40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ee50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eea0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ee90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002eea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002eef0: 2020 2020 207c 0a7c 202d 2078 2078 2020 |.| - x x │ │ │ │ -0002ef00: 2b20 3132 7820 7820 202b 2032 3578 2078 + 12x x + 25x x │ │ │ │ -0002ef10: 2020 2b20 3235 7820 7820 202b 2032 3378 + 25x x + 23x │ │ │ │ -0002ef20: 2078 2020 2d20 3378 2078 2020 2b20 3278 x - 3x x + 2x │ │ │ │ -0002ef30: 2078 2020 2b20 3131 7820 7820 202d 2033 x + 11x x - 3 │ │ │ │ -0002ef40: 3778 2020 207c 0a7c 2020 2020 3020 3620 7x |.| 0 6 │ │ │ │ -0002ef50: 2020 2020 2032 2036 2020 2020 2020 3120 2 6 1 │ │ │ │ -0002ef60: 3720 2020 2020 2033 2037 2020 2020 2020 7 3 7 │ │ │ │ -0002ef70: 3520 3720 2020 2020 3620 3720 2020 2020 5 7 6 7 │ │ │ │ -0002ef80: 3020 3820 2020 2020 2031 2038 2020 2020 0 8 1 8 │ │ │ │ -0002ef90: 2020 3320 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0002eee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002eef0: 0a7c 202d 2078 2078 2020 2b20 3132 7820 .| - x x + 12x │ │ │ │ +0002ef00: 7820 202b 2032 3578 2078 2020 2b20 3235 x + 25x x + 25 │ │ │ │ +0002ef10: 7820 7820 202b 2032 3378 2078 2020 2d20 x x + 23x x - │ │ │ │ +0002ef20: 3378 2078 2020 2b20 3278 2078 2020 2b20 3x x + 2x x + │ │ │ │ +0002ef30: 3131 7820 7820 202d 2033 3778 2020 207c 11x x - 37x | │ │ │ │ +0002ef40: 0a7c 2020 2020 3020 3620 2020 2020 2032 .| 0 6 2 │ │ │ │ +0002ef50: 2036 2020 2020 2020 3120 3720 2020 2020 6 1 7 │ │ │ │ +0002ef60: 2033 2037 2020 2020 2020 3520 3720 2020 3 7 5 7 │ │ │ │ +0002ef70: 2020 3620 3720 2020 2020 3020 3820 2020 6 7 0 8 │ │ │ │ +0002ef80: 2020 2031 2038 2020 2020 2020 3320 207c 1 8 3 | │ │ │ │ +0002ef90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002efe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002efd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002efe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f030: 2020 2020 207c 0a7c 2020 2b20 3331 7820 |.| + 31x │ │ │ │ -0002f040: 7820 202d 2033 3678 2078 2020 2d20 7820 x - 36x x - x │ │ │ │ -0002f050: 7820 202b 2031 3378 2078 2020 2b20 3878 x + 13x x + 8x │ │ │ │ -0002f060: 2078 2020 2b20 3978 2078 2020 2b20 3436 x + 9x x + 46 │ │ │ │ -0002f070: 7820 7820 202b 2034 3178 2078 2020 2d20 x x + 41x x - │ │ │ │ -0002f080: 3778 2020 207c 0a7c 3520 2020 2020 2032 7x |.|5 2 │ │ │ │ -0002f090: 2036 2020 2020 2020 3320 3620 2020 2030 6 3 6 0 │ │ │ │ -0002f0a0: 2037 2020 2020 2020 3120 3720 2020 2020 7 1 7 │ │ │ │ -0002f0b0: 3320 3720 2020 2020 3520 3720 2020 2020 3 7 5 7 │ │ │ │ -0002f0c0: 2036 2037 2020 2020 2020 3020 3820 2020 6 7 0 8 │ │ │ │ -0002f0d0: 2020 3120 207c 0a7c 2020 2020 2020 2020 1 |.| │ │ │ │ +0002f020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f030: 0a7c 2020 2b20 3331 7820 7820 202d 2033 .| + 31x x - 3 │ │ │ │ +0002f040: 3678 2078 2020 2d20 7820 7820 202b 2031 6x x - x x + 1 │ │ │ │ +0002f050: 3378 2078 2020 2b20 3878 2078 2020 2b20 3x x + 8x x + │ │ │ │ +0002f060: 3978 2078 2020 2b20 3436 7820 7820 202b 9x x + 46x x + │ │ │ │ +0002f070: 2034 3178 2078 2020 2d20 3778 2020 207c 41x x - 7x | │ │ │ │ +0002f080: 0a7c 3520 2020 2020 2032 2036 2020 2020 .|5 2 6 │ │ │ │ +0002f090: 2020 3320 3620 2020 2030 2037 2020 2020 3 6 0 7 │ │ │ │ +0002f0a0: 2020 3120 3720 2020 2020 3320 3720 2020 1 7 3 7 │ │ │ │ +0002f0b0: 2020 3520 3720 2020 2020 2036 2037 2020 5 7 6 7 │ │ │ │ +0002f0c0: 2020 2020 3020 3820 2020 2020 3120 207c 0 8 1 | │ │ │ │ +0002f0d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f170: 2020 2020 207c 0a7c 2b20 3337 7820 7820 |.|+ 37x x │ │ │ │ -0002f180: 202b 2034 3878 2078 2020 2d20 3578 2078 + 48x x - 5x x │ │ │ │ -0002f190: 2020 2d20 3578 2078 2020 2b20 7820 7820 - 5x x + x x │ │ │ │ -0002f1a0: 202b 2032 3078 2078 2020 2b20 3130 7820 + 20x x + 10x │ │ │ │ -0002f1b0: 7820 202b 2033 3478 2078 2020 2b20 3431 x + 34x x + 41 │ │ │ │ -0002f1c0: 7820 7820 207c 0a7c 2020 2020 2033 2035 x x |.| 3 5 │ │ │ │ -0002f1d0: 2020 2020 2020 3220 3620 2020 2020 3120 2 6 1 │ │ │ │ -0002f1e0: 3720 2020 2020 3320 3720 2020 2035 2037 7 3 7 5 7 │ │ │ │ -0002f1f0: 2020 2020 2020 3620 3720 2020 2020 2030 6 7 0 │ │ │ │ -0002f200: 2038 2020 2020 2020 3120 3820 2020 2020 8 1 8 │ │ │ │ -0002f210: 2033 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0002f160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f170: 0a7c 2b20 3337 7820 7820 202b 2034 3878 .|+ 37x x + 48x │ │ │ │ +0002f180: 2078 2020 2d20 3578 2078 2020 2d20 3578 x - 5x x - 5x │ │ │ │ +0002f190: 2078 2020 2b20 7820 7820 202b 2032 3078 x + x x + 20x │ │ │ │ +0002f1a0: 2078 2020 2b20 3130 7820 7820 202b 2033 x + 10x x + 3 │ │ │ │ +0002f1b0: 3478 2078 2020 2b20 3431 7820 7820 207c 4x x + 41x x | │ │ │ │ +0002f1c0: 0a7c 2020 2020 2033 2035 2020 2020 2020 .| 3 5 │ │ │ │ +0002f1d0: 3220 3620 2020 2020 3120 3720 2020 2020 2 6 1 7 │ │ │ │ +0002f1e0: 3320 3720 2020 2035 2037 2020 2020 2020 3 7 5 7 │ │ │ │ +0002f1f0: 3620 3720 2020 2020 2030 2038 2020 2020 6 7 0 8 │ │ │ │ +0002f200: 2020 3120 3820 2020 2020 2033 2020 207c 1 8 3 | │ │ │ │ +0002f210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f2a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f2b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f2f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f350: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f3a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f3f0: 2020 2020 207c 0a7c 2078 2020 2d20 3339 |.| x - 39 │ │ │ │ -0002f400: 7820 7820 202d 2031 3778 2078 2020 2d20 x x - 17x x - │ │ │ │ -0002f410: 3338 7820 7820 202b 2032 3478 2078 2020 38x x + 24x x │ │ │ │ -0002f420: 2b20 3234 7820 7820 202b 2035 7820 7820 + 24x x + 5x x │ │ │ │ -0002f430: 202b 2078 2078 2020 2d20 3139 7820 7820 + x x - 19x x │ │ │ │ -0002f440: 202d 2020 207c 0a7c 3320 3520 2020 2020 - |.|3 5 │ │ │ │ -0002f450: 2030 2036 2020 2020 2020 3220 3620 2020 0 6 2 6 │ │ │ │ -0002f460: 2020 2033 2036 2020 2020 2020 3120 3720 3 6 1 7 │ │ │ │ -0002f470: 2020 2020 2033 2037 2020 2020 2035 2037 3 7 5 7 │ │ │ │ -0002f480: 2020 2020 3620 3720 2020 2020 2030 2038 6 7 0 8 │ │ │ │ -0002f490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f3f0: 0a7c 2078 2020 2d20 3339 7820 7820 202d .| x - 39x x - │ │ │ │ +0002f400: 2031 3778 2078 2020 2d20 3338 7820 7820 17x x - 38x x │ │ │ │ +0002f410: 202b 2032 3478 2078 2020 2b20 3234 7820 + 24x x + 24x │ │ │ │ +0002f420: 7820 202b 2035 7820 7820 202b 2078 2078 x + 5x x + x x │ │ │ │ +0002f430: 2020 2d20 3139 7820 7820 202d 2020 207c - 19x x - | │ │ │ │ +0002f440: 0a7c 3320 3520 2020 2020 2030 2036 2020 .|3 5 0 6 │ │ │ │ +0002f450: 2020 2020 3220 3620 2020 2020 2033 2036 2 6 3 6 │ │ │ │ +0002f460: 2020 2020 2020 3120 3720 2020 2020 2033 1 7 3 │ │ │ │ +0002f470: 2037 2020 2020 2035 2037 2020 2020 3620 7 5 7 6 │ │ │ │ +0002f480: 3720 2020 2020 2030 2038 2020 2020 207c 7 0 8 | │ │ │ │ +0002f490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f4e0: 2020 2020 207c 0a7c 2d20 3337 7820 7820 |.|- 37x x │ │ │ │ -0002f4f0: 202d 2032 3178 2078 2020 2b20 7820 7820 - 21x x + x x │ │ │ │ -0002f500: 2020 2b20 3278 2078 2020 202d 2035 7820 + 2x x - 5x │ │ │ │ -0002f510: 7820 2020 2b20 7820 7820 2020 2d20 3578 x + x x - 5x │ │ │ │ -0002f520: 2078 2020 202b 2035 7820 7820 202c 2020 x + 5x x , │ │ │ │ -0002f530: 2020 2020 207c 0a7c 2020 2020 2036 2038 |.| 6 8 │ │ │ │ -0002f540: 2020 2020 2020 3520 3920 2020 2031 2031 5 9 1 1 │ │ │ │ -0002f550: 3020 2020 2020 3220 3130 2020 2020 2033 0 2 10 3 │ │ │ │ -0002f560: 2031 3020 2020 2035 2031 3020 2020 2020 10 5 10 │ │ │ │ -0002f570: 3620 3130 2020 2020 2035 2031 3120 2020 6 10 5 11 │ │ │ │ -0002f580: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f4d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f4e0: 0a7c 2d20 3337 7820 7820 202d 2032 3178 .|- 37x x - 21x │ │ │ │ +0002f4f0: 2078 2020 2b20 7820 7820 2020 2b20 3278 x + x x + 2x │ │ │ │ +0002f500: 2078 2020 202d 2035 7820 7820 2020 2b20 x - 5x x + │ │ │ │ +0002f510: 7820 7820 2020 2d20 3578 2078 2020 202b x x - 5x x + │ │ │ │ +0002f520: 2035 7820 7820 202c 2020 2020 2020 207c 5x x , | │ │ │ │ +0002f530: 0a7c 2020 2020 2036 2038 2020 2020 2020 .| 6 8 │ │ │ │ +0002f540: 3520 3920 2020 2031 2031 3020 2020 2020 5 9 1 10 │ │ │ │ +0002f550: 3220 3130 2020 2020 2033 2031 3020 2020 2 10 3 10 │ │ │ │ +0002f560: 2035 2031 3020 2020 2020 3620 3130 2020 5 10 6 10 │ │ │ │ +0002f570: 2020 2035 2031 3120 2020 2020 2020 207c 5 11 | │ │ │ │ +0002f580: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f5d0: 2020 2020 207c 0a7c 2031 3978 2078 2020 |.| 19x x │ │ │ │ -0002f5e0: 2b20 3139 7820 7820 202b 2032 3178 2078 + 19x x + 21x x │ │ │ │ -0002f5f0: 2020 2b20 3139 7820 7820 202d 2031 3978 + 19x x - 19x │ │ │ │ -0002f600: 2078 2020 2b20 7820 7820 202d 2033 3978 x + x x - 39x │ │ │ │ -0002f610: 2078 2020 2b20 3337 7820 7820 202b 2034 x + 37x x + 4 │ │ │ │ -0002f620: 3078 2020 207c 0a7c 2020 2020 3020 3720 0x |.| 0 7 │ │ │ │ -0002f630: 2020 2020 2032 2037 2020 2020 2020 3320 2 7 3 │ │ │ │ -0002f640: 3720 2020 2020 2030 2038 2020 2020 2020 7 0 8 │ │ │ │ -0002f650: 3120 3820 2020 2033 2038 2020 2020 2020 1 8 3 8 │ │ │ │ -0002f660: 3420 3820 2020 2020 2036 2038 2020 2020 4 8 6 8 │ │ │ │ -0002f670: 2020 3020 207c 0a7c 2020 2020 2020 2020 0 |.| │ │ │ │ +0002f5c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f5d0: 0a7c 2031 3978 2078 2020 2b20 3139 7820 .| 19x x + 19x │ │ │ │ +0002f5e0: 7820 202b 2032 3178 2078 2020 2b20 3139 x + 21x x + 19 │ │ │ │ +0002f5f0: 7820 7820 202d 2031 3978 2078 2020 2b20 x x - 19x x + │ │ │ │ +0002f600: 7820 7820 202d 2033 3978 2078 2020 2b20 x x - 39x x + │ │ │ │ +0002f610: 3337 7820 7820 202b 2034 3078 2020 207c 37x x + 40x | │ │ │ │ +0002f620: 0a7c 2020 2020 3020 3720 2020 2020 2032 .| 0 7 2 │ │ │ │ +0002f630: 2037 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ +0002f640: 2030 2038 2020 2020 2020 3120 3820 2020 0 8 1 8 │ │ │ │ +0002f650: 2033 2038 2020 2020 2020 3420 3820 2020 3 8 4 8 │ │ │ │ +0002f660: 2020 2036 2038 2020 2020 2020 3020 207c 6 8 0 | │ │ │ │ +0002f670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f6c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f6b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f6c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f710: 2020 2020 207c 0a7c 2020 2d20 3878 2078 |.| - 8x x │ │ │ │ -0002f720: 2020 2b20 3332 7820 7820 202d 2033 3978 + 32x x - 39x │ │ │ │ -0002f730: 2078 2020 2b20 7820 7820 202d 2033 3878 x + x x - 38x │ │ │ │ -0002f740: 2078 2020 2d20 3330 7820 7820 202d 2035 x - 30x x - 5 │ │ │ │ -0002f750: 7820 7820 202b 2033 3978 2078 2020 2b20 x x + 39x x + │ │ │ │ -0002f760: 7820 7820 207c 0a7c 3520 2020 2020 3220 x x |.|5 2 │ │ │ │ -0002f770: 3520 2020 2020 2033 2035 2020 2020 2020 5 3 5 │ │ │ │ -0002f780: 3420 3520 2020 2030 2036 2020 2020 2020 4 5 0 6 │ │ │ │ -0002f790: 3120 3620 2020 2020 2032 2036 2020 2020 1 6 2 6 │ │ │ │ -0002f7a0: 2033 2036 2020 2020 2020 3420 3620 2020 3 6 4 6 │ │ │ │ -0002f7b0: 2035 2020 207c 0a7c 2020 2020 2020 2020 5 |.| │ │ │ │ +0002f700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f710: 0a7c 2020 2d20 3878 2078 2020 2b20 3332 .| - 8x x + 32 │ │ │ │ +0002f720: 7820 7820 202d 2033 3978 2078 2020 2b20 x x - 39x x + │ │ │ │ +0002f730: 7820 7820 202d 2033 3878 2078 2020 2d20 x x - 38x x - │ │ │ │ +0002f740: 3330 7820 7820 202d 2035 7820 7820 202b 30x x - 5x x + │ │ │ │ +0002f750: 2033 3978 2078 2020 2b20 7820 7820 207c 39x x + x x | │ │ │ │ +0002f760: 0a7c 3520 2020 2020 3220 3520 2020 2020 .|5 2 5 │ │ │ │ +0002f770: 2033 2035 2020 2020 2020 3420 3520 2020 3 5 4 5 │ │ │ │ +0002f780: 2030 2036 2020 2020 2020 3120 3620 2020 0 6 1 6 │ │ │ │ +0002f790: 2020 2032 2036 2020 2020 2033 2036 2020 2 6 3 6 │ │ │ │ +0002f7a0: 2020 2020 3420 3620 2020 2035 2020 207c 4 6 5 | │ │ │ │ +0002f7b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f800: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002f7f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f850: 2020 2020 207c 0a7c 2078 2020 2d20 3231 |.| x - 21 │ │ │ │ -0002f860: 7820 7820 202d 2031 3078 2078 2020 2d20 x x - 10x x - │ │ │ │ -0002f870: 3334 7820 7820 202d 2033 3878 2078 2020 34x x - 38x x │ │ │ │ -0002f880: 2d20 3778 2078 2020 2b20 3578 2078 2020 - 7x x + 5x x │ │ │ │ -0002f890: 2b20 3139 7820 7820 202b 2032 3378 2078 + 19x x + 23x x │ │ │ │ -0002f8a0: 2020 2b20 207c 0a7c 3320 3420 2020 2020 + |.|3 4 │ │ │ │ -0002f8b0: 2030 2035 2020 2020 2020 3220 3520 2020 0 5 2 5 │ │ │ │ -0002f8c0: 2020 2033 2035 2020 2020 2020 3020 3620 3 5 0 6 │ │ │ │ -0002f8d0: 2020 2020 3220 3620 2020 2020 3320 3620 2 6 3 6 │ │ │ │ -0002f8e0: 2020 2020 2030 2037 2020 2020 2020 3120 0 7 1 │ │ │ │ -0002f8f0: 3720 2020 207c 0a7c 2020 2020 2020 2020 7 |.| │ │ │ │ +0002f840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f850: 0a7c 2078 2020 2d20 3231 7820 7820 202d .| x - 21x x - │ │ │ │ +0002f860: 2031 3078 2078 2020 2d20 3334 7820 7820 10x x - 34x x │ │ │ │ +0002f870: 202d 2033 3878 2078 2020 2d20 3778 2078 - 38x x - 7x x │ │ │ │ +0002f880: 2020 2b20 3578 2078 2020 2b20 3139 7820 + 5x x + 19x │ │ │ │ +0002f890: 7820 202b 2032 3378 2078 2020 2b20 207c x + 23x x + | │ │ │ │ +0002f8a0: 0a7c 3320 3420 2020 2020 2030 2035 2020 .|3 4 0 5 │ │ │ │ +0002f8b0: 2020 2020 3220 3520 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +0002f8c0: 2020 2020 2020 3020 3620 2020 2020 3220 0 6 2 │ │ │ │ +0002f8d0: 3620 2020 2020 3320 3620 2020 2020 2030 6 3 6 0 │ │ │ │ +0002f8e0: 2037 2020 2020 2020 3120 3720 2020 207c 7 1 7 | │ │ │ │ +0002f8f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002f940: 2020 2020 207c 0a7c 2b20 3234 7820 7820 |.|+ 24x x │ │ │ │ -0002f950: 202b 2035 7820 7820 202b 2078 2078 2020 + 5x x + x x │ │ │ │ -0002f960: 2b20 3431 7820 7820 202b 2031 3278 2078 + 41x x + 12x x │ │ │ │ -0002f970: 2020 2d20 3578 2078 2020 2d20 3236 7820 - 5x x - 26x │ │ │ │ -0002f980: 7820 202b 2034 3278 2078 2020 2d20 3234 x + 42x x - 24 │ │ │ │ -0002f990: 7820 7820 207c 0a7c 2020 2020 2033 2037 x x |.| 3 7 │ │ │ │ -0002f9a0: 2020 2020 2035 2037 2020 2020 3620 3720 5 7 6 7 │ │ │ │ -0002f9b0: 2020 2020 2031 2038 2020 2020 2020 3320 1 8 3 │ │ │ │ -0002f9c0: 3820 2020 2020 3420 3820 2020 2020 2036 8 4 8 6 │ │ │ │ -0002f9d0: 2038 2020 2020 2020 3120 3920 2020 2020 8 1 9 │ │ │ │ -0002f9e0: 2032 2020 207c 0a7c 2020 2020 2020 2020 2 |.| │ │ │ │ +0002f930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002f940: 0a7c 2b20 3234 7820 7820 202b 2035 7820 .|+ 24x x + 5x │ │ │ │ +0002f950: 7820 202b 2078 2078 2020 2b20 3431 7820 x + x x + 41x │ │ │ │ +0002f960: 7820 202b 2031 3278 2078 2020 2d20 3578 x + 12x x - 5x │ │ │ │ +0002f970: 2078 2020 2d20 3236 7820 7820 202b 2034 x - 26x x + 4 │ │ │ │ +0002f980: 3278 2078 2020 2d20 3234 7820 7820 207c 2x x - 24x x | │ │ │ │ +0002f990: 0a7c 2020 2020 2033 2037 2020 2020 2035 .| 3 7 5 │ │ │ │ +0002f9a0: 2037 2020 2020 3620 3720 2020 2020 2031 7 6 7 1 │ │ │ │ +0002f9b0: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ +0002f9c0: 3420 3820 2020 2020 2036 2038 2020 2020 4 8 6 8 │ │ │ │ +0002f9d0: 2020 3120 3920 2020 2020 2032 2020 207c 1 9 2 | │ │ │ │ +0002f9e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fa30: 2020 2020 207c 0a7c 7820 7820 202d 2078 |.|x x - x │ │ │ │ -0002fa40: 2078 2020 202b 2035 7820 7820 2020 2d20 x + 5x x - │ │ │ │ -0002fa50: 3578 2078 2020 2c20 2020 2020 2020 2020 5x x , │ │ │ │ +0002fa20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fa30: 0a7c 7820 7820 202d 2078 2078 2020 202b .|x x - x x + │ │ │ │ +0002fa40: 2035 7820 7820 2020 2d20 3578 2078 2020 5x x - 5x x │ │ │ │ +0002fa50: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0002fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fa70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fa80: 2020 2020 207c 0a7c 2035 2039 2020 2020 |.| 5 9 │ │ │ │ -0002fa90: 3420 3130 2020 2020 2036 2031 3020 2020 4 10 6 10 │ │ │ │ -0002faa0: 2020 3520 3131 2020 2020 2020 2020 2020 5 11 │ │ │ │ +0002fa70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fa80: 0a7c 2035 2039 2020 2020 3420 3130 2020 .| 5 9 4 10 │ │ │ │ +0002fa90: 2020 2036 2031 3020 2020 2020 3520 3131 6 10 5 11 │ │ │ │ +0002faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fad0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002fac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fb20: 2020 2020 207c 0a7c 2078 2020 2b20 3337 |.| x + 37 │ │ │ │ -0002fb30: 7820 7820 202b 2078 2078 2020 202b 2078 x x + x x + x │ │ │ │ -0002fb40: 2078 2020 202d 2035 7820 7820 2020 2b20 x - 5x x + │ │ │ │ -0002fb50: 3578 2078 2020 2c20 2020 2020 2020 2020 5x x , │ │ │ │ -0002fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fb70: 2020 2020 207c 0a7c 3620 3820 2020 2020 |.|6 8 │ │ │ │ -0002fb80: 2035 2039 2020 2020 3120 3130 2020 2020 5 9 1 10 │ │ │ │ -0002fb90: 3220 3130 2020 2020 2036 2031 3020 2020 2 10 6 10 │ │ │ │ -0002fba0: 2020 3520 3131 2020 2020 2020 2020 2020 5 11 │ │ │ │ -0002fbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fbc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002fb10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fb20: 0a7c 2078 2020 2b20 3337 7820 7820 202b .| x + 37x x + │ │ │ │ +0002fb30: 2078 2078 2020 202b 2078 2078 2020 202d x x + x x - │ │ │ │ +0002fb40: 2035 7820 7820 2020 2b20 3578 2078 2020 5x x + 5x x │ │ │ │ +0002fb50: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0002fb60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fb70: 0a7c 3620 3820 2020 2020 2035 2039 2020 .|6 8 5 9 │ │ │ │ +0002fb80: 2020 3120 3130 2020 2020 3220 3130 2020 1 10 2 10 │ │ │ │ +0002fb90: 2020 2036 2031 3020 2020 2020 3520 3131 6 10 5 11 │ │ │ │ +0002fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0002fbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fbc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fc10: 2020 2020 207c 0a7c 3578 2078 2020 2d20 |.|5x x - │ │ │ │ -0002fc20: 3433 7820 7820 202d 2032 3278 2078 2020 43x x - 22x x │ │ │ │ -0002fc30: 2d20 3433 7820 7820 202d 2033 7820 7820 - 43x x - 3x x │ │ │ │ -0002fc40: 202d 2031 3978 2078 2020 2d20 3432 7820 - 19x x - 42x │ │ │ │ -0002fc50: 7820 202d 2031 3378 2078 2020 2b20 3433 x - 13x x + 43 │ │ │ │ -0002fc60: 7820 7820 207c 0a7c 2020 3320 3620 2020 x x |.| 3 6 │ │ │ │ -0002fc70: 2020 2031 2037 2020 2020 2020 3320 3720 1 7 3 7 │ │ │ │ -0002fc80: 2020 2020 2035 2037 2020 2020 2036 2037 5 7 6 7 │ │ │ │ -0002fc90: 2020 2020 2020 3020 3820 2020 2020 2031 0 8 1 │ │ │ │ -0002fca0: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -0002fcb0: 2034 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +0002fc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fc10: 0a7c 3578 2078 2020 2d20 3433 7820 7820 .|5x x - 43x x │ │ │ │ +0002fc20: 202d 2032 3278 2078 2020 2d20 3433 7820 - 22x x - 43x │ │ │ │ +0002fc30: 7820 202d 2033 7820 7820 202d 2031 3978 x - 3x x - 19x │ │ │ │ +0002fc40: 2078 2020 2d20 3432 7820 7820 202d 2031 x - 42x x - 1 │ │ │ │ +0002fc50: 3378 2078 2020 2b20 3433 7820 7820 207c 3x x + 43x x | │ │ │ │ +0002fc60: 0a7c 2020 3320 3620 2020 2020 2031 2037 .| 3 6 1 7 │ │ │ │ +0002fc70: 2020 2020 2020 3320 3720 2020 2020 2035 3 7 5 │ │ │ │ +0002fc80: 2037 2020 2020 2036 2037 2020 2020 2020 7 6 7 │ │ │ │ +0002fc90: 3020 3820 2020 2020 2031 2038 2020 2020 0 8 1 8 │ │ │ │ +0002fca0: 2020 3320 3820 2020 2020 2034 2020 207c 3 8 4 | │ │ │ │ +0002fcb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002fcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fd00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd50: 2020 2020 207c 0a7c 5050 5e31 3120 746f |.|PP^11 to │ │ │ │ -0002fd60: 2050 505e 3829 2020 2020 2020 2020 2020 PP^8) │ │ │ │ +0002fd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fd50: 0a7c 5050 5e31 3120 746f 2050 505e 3829 .|PP^11 to PP^8) │ │ │ │ +0002fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fda0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0002fd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fda0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0002fdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0002fdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0002fdf0: 2d2d 2d2d 2d7c 0a7c 7820 202d 2032 3378 -----|.|x - 23x │ │ │ │ -0002fe00: 2078 2020 2d20 3333 7820 7820 202b 2038 x - 33x x + 8 │ │ │ │ -0002fe10: 7820 7820 202b 2031 3078 2078 2020 2d20 x x + 10x x - │ │ │ │ -0002fe20: 3235 7820 7820 202d 2039 7820 7820 202b 25x x - 9x x + │ │ │ │ -0002fe30: 2033 7820 7820 202b 2032 3478 2078 2020 3x x + 24x x │ │ │ │ -0002fe40: 2020 2020 207c 0a7c 2038 2020 2020 2020 |.| 8 │ │ │ │ -0002fe50: 3420 3820 2020 2020 2036 2038 2020 2020 4 8 6 8 │ │ │ │ -0002fe60: 2030 2039 2020 2020 2020 3120 3920 2020 0 9 1 9 │ │ │ │ -0002fe70: 2020 2032 2039 2020 2020 2033 2039 2020 2 9 3 9 │ │ │ │ -0002fe80: 2020 2034 2039 2020 2020 2020 3520 2020 4 9 5 │ │ │ │ -0002fe90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002fde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0002fdf0: 0a7c 7820 202d 2032 3378 2078 2020 2d20 .|x - 23x x - │ │ │ │ +0002fe00: 3333 7820 7820 202b 2038 7820 7820 202b 33x x + 8x x + │ │ │ │ +0002fe10: 2031 3078 2078 2020 2d20 3235 7820 7820 10x x - 25x x │ │ │ │ +0002fe20: 202d 2039 7820 7820 202b 2033 7820 7820 - 9x x + 3x x │ │ │ │ +0002fe30: 202b 2032 3478 2078 2020 2020 2020 207c + 24x x | │ │ │ │ +0002fe40: 0a7c 2038 2020 2020 2020 3420 3820 2020 .| 8 4 8 │ │ │ │ +0002fe50: 2020 2036 2038 2020 2020 2030 2039 2020 6 8 0 9 │ │ │ │ +0002fe60: 2020 2020 3120 3920 2020 2020 2032 2039 1 9 2 9 │ │ │ │ +0002fe70: 2020 2020 2033 2039 2020 2020 2034 2039 3 9 4 9 │ │ │ │ +0002fe80: 2020 2020 2020 3520 2020 2020 2020 207c 5 | │ │ │ │ +0002fe90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002fee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002fed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002fee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0002ff30: 2020 2020 207c 0a7c 7820 202d 2033 3478 |.|x - 34x │ │ │ │ -0002ff40: 2078 2020 2d20 3978 2078 2020 2d20 3436 x - 9x x - 46 │ │ │ │ -0002ff50: 7820 7820 202d 2031 3778 2078 2020 2b20 x x - 17x x + │ │ │ │ -0002ff60: 3332 7820 7820 202d 2038 7820 7820 202d 32x x - 8x x - │ │ │ │ -0002ff70: 2033 3578 2078 2020 2d20 3436 7820 2020 35x x - 46x │ │ │ │ -0002ff80: 2020 2020 207c 0a7c 2038 2020 2020 2020 |.| 8 │ │ │ │ -0002ff90: 3320 3820 2020 2020 3420 3820 2020 2020 3 8 4 8 │ │ │ │ -0002ffa0: 2036 2038 2020 2020 2020 3020 3920 2020 6 8 0 9 │ │ │ │ -0002ffb0: 2020 2031 2039 2020 2020 2032 2039 2020 1 9 2 9 │ │ │ │ -0002ffc0: 2020 2020 3320 3920 2020 2020 2034 2020 3 9 4 │ │ │ │ -0002ffd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0002ff20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0002ff30: 0a7c 7820 202d 2033 3478 2078 2020 2d20 .|x - 34x x - │ │ │ │ +0002ff40: 3978 2078 2020 2d20 3436 7820 7820 202d 9x x - 46x x - │ │ │ │ +0002ff50: 2031 3778 2078 2020 2b20 3332 7820 7820 17x x + 32x x │ │ │ │ +0002ff60: 202d 2038 7820 7820 202d 2033 3578 2078 - 8x x - 35x x │ │ │ │ +0002ff70: 2020 2d20 3436 7820 2020 2020 2020 207c - 46x | │ │ │ │ +0002ff80: 0a7c 2038 2020 2020 2020 3320 3820 2020 .| 8 3 8 │ │ │ │ +0002ff90: 2020 3420 3820 2020 2020 2036 2038 2020 4 8 6 8 │ │ │ │ +0002ffa0: 2020 2020 3020 3920 2020 2020 2031 2039 0 9 1 9 │ │ │ │ +0002ffb0: 2020 2020 2032 2039 2020 2020 2020 3320 2 9 3 │ │ │ │ +0002ffc0: 3920 2020 2020 2034 2020 2020 2020 207c 9 4 | │ │ │ │ +0002ffd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0002ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0002fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030020: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030020: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030070: 2020 2020 207c 0a7c 2020 2d20 7820 7820 |.| - x x │ │ │ │ -00030080: 202b 2078 2078 2020 2b20 3430 7820 7820 + x x + 40x x │ │ │ │ -00030090: 202d 2033 3278 2078 2020 2b20 3578 2078 - 32x x + 5x x │ │ │ │ -000300a0: 2020 2d20 3131 7820 7820 202d 2032 3078 - 11x x - 20x │ │ │ │ -000300b0: 2078 2020 2b20 3435 7820 7820 202d 2020 x + 45x x - │ │ │ │ -000300c0: 2020 2020 207c 0a7c 3820 2020 2034 2038 |.|8 4 8 │ │ │ │ -000300d0: 2020 2020 3620 3820 2020 2020 2030 2039 6 8 0 9 │ │ │ │ -000300e0: 2020 2020 2020 3120 3920 2020 2020 3220 1 9 2 │ │ │ │ -000300f0: 3920 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ -00030100: 3420 3920 2020 2020 2035 2039 2020 2020 4 9 5 9 │ │ │ │ -00030110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030070: 0a7c 2020 2d20 7820 7820 202b 2078 2078 .| - x x + x x │ │ │ │ +00030080: 2020 2b20 3430 7820 7820 202d 2033 3278 + 40x x - 32x │ │ │ │ +00030090: 2078 2020 2b20 3578 2078 2020 2d20 3131 x + 5x x - 11 │ │ │ │ +000300a0: 7820 7820 202d 2032 3078 2078 2020 2b20 x x - 20x x + │ │ │ │ +000300b0: 3435 7820 7820 202d 2020 2020 2020 207c 45x x - | │ │ │ │ +000300c0: 0a7c 3820 2020 2034 2038 2020 2020 3620 .|8 4 8 6 │ │ │ │ +000300d0: 3820 2020 2020 2030 2039 2020 2020 2020 8 0 9 │ │ │ │ +000300e0: 3120 3920 2020 2020 3220 3920 2020 2020 1 9 2 9 │ │ │ │ +000300f0: 2033 2039 2020 2020 2020 3420 3920 2020 3 9 4 9 │ │ │ │ +00030100: 2020 2035 2039 2020 2020 2020 2020 207c 5 9 | │ │ │ │ +00030110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000301a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000301b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000301c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000301e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000301f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000301f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000302a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000302a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000302b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000302c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000302d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000302e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000302f0: 2020 2020 207c 0a7c 3337 7820 7820 202b |.|37x x + │ │ │ │ -00030300: 2031 3278 2078 2020 2d20 3578 2078 2020 12x x - 5x x │ │ │ │ -00030310: 2d20 3578 2078 2020 2b20 3231 7820 7820 - 5x x + 21x x │ │ │ │ -00030320: 202b 2034 3278 2078 2020 2d20 3578 2078 + 42x x - 5x x │ │ │ │ -00030330: 2020 2b20 7820 7820 202d 2078 2078 2020 + x x - x x │ │ │ │ -00030340: 2020 2020 207c 0a7c 2020 2031 2038 2020 |.| 1 8 │ │ │ │ -00030350: 2020 2020 3320 3820 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -00030360: 2020 2020 3620 3820 2020 2020 2030 2039 6 8 0 9 │ │ │ │ -00030370: 2020 2020 2020 3120 3920 2020 2020 3220 1 9 2 │ │ │ │ -00030380: 3920 2020 2033 2039 2020 2020 3420 2020 9 3 9 4 │ │ │ │ -00030390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000302e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000302f0: 0a7c 3337 7820 7820 202b 2031 3278 2078 .|37x x + 12x x │ │ │ │ +00030300: 2020 2d20 3578 2078 2020 2d20 3578 2078 - 5x x - 5x x │ │ │ │ +00030310: 2020 2b20 3231 7820 7820 202b 2034 3278 + 21x x + 42x │ │ │ │ +00030320: 2078 2020 2d20 3578 2078 2020 2b20 7820 x - 5x x + x │ │ │ │ +00030330: 7820 202d 2078 2078 2020 2020 2020 207c x - x x | │ │ │ │ +00030340: 0a7c 2020 2031 2038 2020 2020 2020 3320 .| 1 8 3 │ │ │ │ +00030350: 3820 2020 2020 3420 3820 2020 2020 3620 8 4 8 6 │ │ │ │ +00030360: 3820 2020 2020 2030 2039 2020 2020 2020 8 0 9 │ │ │ │ +00030370: 3120 3920 2020 2020 3220 3920 2020 2033 1 9 2 9 3 │ │ │ │ +00030380: 2039 2020 2020 3420 2020 2020 2020 207c 9 4 | │ │ │ │ +00030390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000303a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000303c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000303e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000303d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000303e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000303f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000304b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000304d0: 2020 2020 207c 0a7c 7820 202b 2034 3078 |.|x + 40x │ │ │ │ -000304e0: 2078 2020 2d20 3578 2078 2020 2b20 3339 x - 5x x + 39 │ │ │ │ -000304f0: 7820 7820 202d 2033 3778 2078 2020 2b20 x x - 37x x + │ │ │ │ -00030500: 7820 7820 2020 2d20 7820 7820 2020 2d20 x x - x x - │ │ │ │ -00030510: 7820 7820 2020 2b20 7820 7820 2020 2020 x x + x x │ │ │ │ -00030520: 2020 2020 207c 0a7c 2039 2020 2020 2020 |.| 9 │ │ │ │ -00030530: 3220 3920 2020 2020 3320 3920 2020 2020 2 9 3 9 │ │ │ │ -00030540: 2034 2039 2020 2020 2020 3520 3920 2020 4 9 5 9 │ │ │ │ -00030550: 2030 2031 3020 2020 2031 2031 3020 2020 0 10 1 10 │ │ │ │ -00030560: 2032 2031 3020 2020 2034 2031 3020 2020 2 10 4 10 │ │ │ │ -00030570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000304c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000304d0: 0a7c 7820 202b 2034 3078 2078 2020 2d20 .|x + 40x x - │ │ │ │ +000304e0: 3578 2078 2020 2b20 3339 7820 7820 202d 5x x + 39x x - │ │ │ │ +000304f0: 2033 3778 2078 2020 2b20 7820 7820 2020 37x x + x x │ │ │ │ +00030500: 2d20 7820 7820 2020 2d20 7820 7820 2020 - x x - x x │ │ │ │ +00030510: 2b20 7820 7820 2020 2020 2020 2020 207c + x x | │ │ │ │ +00030520: 0a7c 2039 2020 2020 2020 3220 3920 2020 .| 9 2 9 │ │ │ │ +00030530: 2020 3320 3920 2020 2020 2034 2039 2020 3 9 4 9 │ │ │ │ +00030540: 2020 2020 3520 3920 2020 2030 2031 3020 5 9 0 10 │ │ │ │ +00030550: 2020 2031 2031 3020 2020 2032 2031 3020 1 10 2 10 │ │ │ │ +00030560: 2020 2034 2031 3020 2020 2020 2020 207c 4 10 | │ │ │ │ +00030570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000305c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000305b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000305c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000305d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000305f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030610: 2020 2020 207c 0a7c 2020 2d20 3237 7820 |.| - 27x │ │ │ │ -00030620: 7820 202d 2032 3778 2078 2020 2d20 3432 x - 27x x - 42 │ │ │ │ -00030630: 7820 7820 202b 2031 3178 2078 2020 2b20 x x + 11x x + │ │ │ │ -00030640: 3278 2078 2020 2b20 3232 7820 7820 202b 2x x + 22x x + │ │ │ │ -00030650: 2033 3478 2078 2020 2b20 3432 7820 2020 34x x + 42x │ │ │ │ -00030660: 2020 2020 207c 0a7c 3620 2020 2020 2031 |.|6 1 │ │ │ │ -00030670: 2037 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ -00030680: 2035 2037 2020 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -00030690: 2020 3020 3820 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -000306a0: 2020 2020 3320 3820 2020 2020 2034 2020 3 8 4 │ │ │ │ -000306b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030610: 0a7c 2020 2d20 3237 7820 7820 202d 2032 .| - 27x x - 2 │ │ │ │ +00030620: 3778 2078 2020 2d20 3432 7820 7820 202b 7x x - 42x x + │ │ │ │ +00030630: 2031 3178 2078 2020 2b20 3278 2078 2020 11x x + 2x x │ │ │ │ +00030640: 2b20 3232 7820 7820 202b 2033 3478 2078 + 22x x + 34x x │ │ │ │ +00030650: 2020 2b20 3432 7820 2020 2020 2020 207c + 42x | │ │ │ │ +00030660: 0a7c 3620 2020 2020 2031 2037 2020 2020 .|6 1 7 │ │ │ │ +00030670: 2020 3320 3720 2020 2020 2035 2037 2020 3 7 5 7 │ │ │ │ +00030680: 2020 2020 3620 3720 2020 2020 3020 3820 6 7 0 8 │ │ │ │ +00030690: 2020 2020 2031 2038 2020 2020 2020 3320 1 8 3 │ │ │ │ +000306a0: 3820 2020 2020 2034 2020 2020 2020 207c 8 4 | │ │ │ │ +000306b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000306c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000306d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000306e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000306f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000306f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030700: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030750: 2020 2020 207c 0a7c 2032 3178 2078 2020 |.| 21x x │ │ │ │ -00030760: 2b20 3434 7820 7820 202d 2031 3478 2078 + 44x x - 14x x │ │ │ │ -00030770: 2020 2d20 3232 7820 7820 202d 2035 7820 - 22x x - 5x │ │ │ │ -00030780: 7820 202d 2033 3478 2078 2020 2d20 3434 x - 34x x - 44 │ │ │ │ -00030790: 7820 7820 202b 2031 3078 2078 2020 2020 x x + 10x x │ │ │ │ -000307a0: 2020 2020 207c 0a7c 2020 2020 3320 3720 |.| 3 7 │ │ │ │ -000307b0: 2020 2020 2035 2037 2020 2020 2020 3620 5 7 6 │ │ │ │ -000307c0: 3720 2020 2020 2030 2038 2020 2020 2031 7 0 8 1 │ │ │ │ -000307d0: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -000307e0: 2034 2038 2020 2020 2020 3620 3820 2020 4 8 6 8 │ │ │ │ -000307f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030750: 0a7c 2032 3178 2078 2020 2b20 3434 7820 .| 21x x + 44x │ │ │ │ +00030760: 7820 202d 2031 3478 2078 2020 2d20 3232 x - 14x x - 22 │ │ │ │ +00030770: 7820 7820 202d 2035 7820 7820 202d 2033 x x - 5x x - 3 │ │ │ │ +00030780: 3478 2078 2020 2d20 3434 7820 7820 202b 4x x - 44x x + │ │ │ │ +00030790: 2031 3078 2078 2020 2020 2020 2020 207c 10x x | │ │ │ │ +000307a0: 0a7c 2020 2020 3320 3720 2020 2020 2035 .| 3 7 5 │ │ │ │ +000307b0: 2037 2020 2020 2020 3620 3720 2020 2020 7 6 7 │ │ │ │ +000307c0: 2030 2038 2020 2020 2031 2038 2020 2020 0 8 1 8 │ │ │ │ +000307d0: 2020 3320 3820 2020 2020 2034 2038 2020 3 8 4 8 │ │ │ │ +000307e0: 2020 2020 3620 3820 2020 2020 2020 207c 6 8 | │ │ │ │ +000307f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030840: 2020 2020 207c 0a7c 2020 2b20 3337 7820 |.| + 37x │ │ │ │ -00030850: 7820 202d 2078 2078 2020 2d20 3335 7820 x - x x - 35x │ │ │ │ -00030860: 7820 202b 2039 7820 7820 202b 2032 3578 x + 9x x + 25x │ │ │ │ -00030870: 2078 2020 202d 2031 3278 2078 2020 202d x - 12x x - │ │ │ │ -00030880: 2033 3678 2078 2020 202d 2031 3478 2020 36x x - 14x │ │ │ │ -00030890: 2020 2020 207c 0a7c 3920 2020 2020 2033 |.|9 3 │ │ │ │ -000308a0: 2039 2020 2020 3420 3920 2020 2020 2035 9 4 9 5 │ │ │ │ -000308b0: 2039 2020 2020 2036 2039 2020 2020 2020 9 6 9 │ │ │ │ -000308c0: 3120 3130 2020 2020 2020 3220 3130 2020 1 10 2 10 │ │ │ │ -000308d0: 2020 2020 3420 3130 2020 2020 2020 2020 4 10 │ │ │ │ -000308e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030840: 0a7c 2020 2b20 3337 7820 7820 202d 2078 .| + 37x x - x │ │ │ │ +00030850: 2078 2020 2d20 3335 7820 7820 202b 2039 x - 35x x + 9 │ │ │ │ +00030860: 7820 7820 202b 2032 3578 2078 2020 202d x x + 25x x - │ │ │ │ +00030870: 2031 3278 2078 2020 202d 2033 3678 2078 12x x - 36x x │ │ │ │ +00030880: 2020 202d 2031 3478 2020 2020 2020 207c - 14x | │ │ │ │ +00030890: 0a7c 3920 2020 2020 2033 2039 2020 2020 .|9 3 9 │ │ │ │ +000308a0: 3420 3920 2020 2020 2035 2039 2020 2020 4 9 5 9 │ │ │ │ +000308b0: 2036 2039 2020 2020 2020 3120 3130 2020 6 9 1 10 │ │ │ │ +000308c0: 2020 2020 3220 3130 2020 2020 2020 3420 2 10 4 │ │ │ │ +000308d0: 3130 2020 2020 2020 2020 2020 2020 207c 10 | │ │ │ │ +000308e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000308f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000309d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000309c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000309d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000309e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000309f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ac0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030ac0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030b10: 2020 2020 207c 0a7c 2020 2d20 3236 7820 |.| - 26x │ │ │ │ -00030b20: 7820 202d 2034 3578 2078 2020 2b20 3232 x - 45x x + 22 │ │ │ │ -00030b30: 7820 7820 202d 2034 3278 2078 2020 2b20 x x - 42x x + │ │ │ │ -00030b40: 3378 2078 2020 2d20 3133 7820 7820 202d 3x x - 13x x - │ │ │ │ -00030b50: 2034 7820 7820 202d 2032 3478 2078 2020 4x x - 24x x │ │ │ │ -00030b60: 2020 2020 207c 0a7c 3820 2020 2020 2036 |.|8 6 │ │ │ │ -00030b70: 2038 2020 2020 2020 3120 3920 2020 2020 8 1 9 │ │ │ │ -00030b80: 2032 2039 2020 2020 2020 3320 3920 2020 2 9 3 9 │ │ │ │ -00030b90: 2020 3420 3920 2020 2020 2035 2039 2020 4 9 5 9 │ │ │ │ -00030ba0: 2020 2036 2039 2020 2020 2020 3120 2020 6 9 1 │ │ │ │ -00030bb0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00030b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030b10: 0a7c 2020 2d20 3236 7820 7820 202d 2034 .| - 26x x - 4 │ │ │ │ +00030b20: 3578 2078 2020 2b20 3232 7820 7820 202d 5x x + 22x x - │ │ │ │ +00030b30: 2034 3278 2078 2020 2b20 3378 2078 2020 42x x + 3x x │ │ │ │ +00030b40: 2d20 3133 7820 7820 202d 2034 7820 7820 - 13x x - 4x x │ │ │ │ +00030b50: 202d 2032 3478 2078 2020 2020 2020 207c - 24x x | │ │ │ │ +00030b60: 0a7c 3820 2020 2020 2036 2038 2020 2020 .|8 6 8 │ │ │ │ +00030b70: 2020 3120 3920 2020 2020 2032 2039 2020 1 9 2 9 │ │ │ │ +00030b80: 2020 2020 3320 3920 2020 2020 3420 3920 3 9 4 9 │ │ │ │ +00030b90: 2020 2020 2035 2039 2020 2020 2036 2039 5 9 6 9 │ │ │ │ +00030ba0: 2020 2020 2020 3120 2020 2020 2020 207c 1 | │ │ │ │ +00030bb0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00030bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00030be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00030c00: 2d2d 2d2d 2d7c 0a7c 2020 2d20 3237 7820 -----|.| - 27x │ │ │ │ -00030c10: 7820 202d 2035 7820 7820 2020 2b20 3238 x - 5x x + 28 │ │ │ │ -00030c20: 7820 7820 2020 2b20 3337 7820 7820 2020 x x + 37x x │ │ │ │ -00030c30: 2b20 3978 2078 2020 202b 2032 3778 2078 + 9x x + 27x x │ │ │ │ -00030c40: 2020 202d 2032 3578 2078 2020 202b 2039 - 25x x + 9 │ │ │ │ -00030c50: 7820 7820 207c 0a7c 3920 2020 2020 2036 x x |.|9 6 │ │ │ │ -00030c60: 2039 2020 2020 2030 2031 3020 2020 2020 9 0 10 │ │ │ │ -00030c70: 2031 2031 3020 2020 2020 2032 2031 3020 1 10 2 10 │ │ │ │ -00030c80: 2020 2020 3420 3130 2020 2020 2020 3620 4 10 6 │ │ │ │ -00030c90: 3130 2020 2020 2020 3020 3131 2020 2020 10 0 11 │ │ │ │ -00030ca0: 2032 2031 317c 0a7c 2020 2020 2020 2020 2 11|.| │ │ │ │ +00030bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00030c00: 0a7c 2020 2d20 3237 7820 7820 202d 2035 .| - 27x x - 5 │ │ │ │ +00030c10: 7820 7820 2020 2b20 3238 7820 7820 2020 x x + 28x x │ │ │ │ +00030c20: 2b20 3337 7820 7820 2020 2b20 3978 2078 + 37x x + 9x x │ │ │ │ +00030c30: 2020 202b 2032 3778 2078 2020 202d 2032 + 27x x - 2 │ │ │ │ +00030c40: 3578 2078 2020 202b 2039 7820 7820 207c 5x x + 9x x | │ │ │ │ +00030c50: 0a7c 3920 2020 2020 2036 2039 2020 2020 .|9 6 9 │ │ │ │ +00030c60: 2030 2031 3020 2020 2020 2031 2031 3020 0 10 1 10 │ │ │ │ +00030c70: 2020 2020 2032 2031 3020 2020 2020 3420 2 10 4 │ │ │ │ +00030c80: 3130 2020 2020 2020 3620 3130 2020 2020 10 6 10 │ │ │ │ +00030c90: 2020 3020 3131 2020 2020 2032 2031 317c 0 11 2 11| │ │ │ │ +00030ca0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030ce0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030d40: 2020 2020 207c 0a7c 7820 202b 2032 3678 |.|x + 26x │ │ │ │ -00030d50: 2078 2020 2b20 3137 7820 7820 202b 2031 x + 17x x + 1 │ │ │ │ -00030d60: 3578 2078 2020 202b 2033 3578 2078 2020 5x x + 35x x │ │ │ │ -00030d70: 202b 2033 3478 2078 2020 202b 2032 3078 + 34x x + 20x │ │ │ │ -00030d80: 2078 2020 202b 2031 3478 2078 2020 202b x + 14x x + │ │ │ │ -00030d90: 2033 3678 207c 0a7c 2039 2020 2020 2020 36x |.| 9 │ │ │ │ -00030da0: 3520 3920 2020 2020 2036 2039 2020 2020 5 9 6 9 │ │ │ │ -00030db0: 2020 3020 3130 2020 2020 2020 3120 3130 0 10 1 10 │ │ │ │ -00030dc0: 2020 2020 2020 3220 3130 2020 2020 2020 2 10 │ │ │ │ -00030dd0: 3420 3130 2020 2020 2020 3020 3131 2020 4 10 0 11 │ │ │ │ -00030de0: 2020 2020 317c 0a7c 2020 2020 2020 2020 1|.| │ │ │ │ +00030d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030d40: 0a7c 7820 202b 2032 3678 2078 2020 2b20 .|x + 26x x + │ │ │ │ +00030d50: 3137 7820 7820 202b 2031 3578 2078 2020 17x x + 15x x │ │ │ │ +00030d60: 202b 2033 3578 2078 2020 202b 2033 3478 + 35x x + 34x │ │ │ │ +00030d70: 2078 2020 202b 2032 3078 2078 2020 202b x + 20x x + │ │ │ │ +00030d80: 2031 3478 2078 2020 202b 2033 3678 207c 14x x + 36x | │ │ │ │ +00030d90: 0a7c 2039 2020 2020 2020 3520 3920 2020 .| 9 5 9 │ │ │ │ +00030da0: 2020 2036 2039 2020 2020 2020 3020 3130 6 9 0 10 │ │ │ │ +00030db0: 2020 2020 2020 3120 3130 2020 2020 2020 1 10 │ │ │ │ +00030dc0: 3220 3130 2020 2020 2020 3420 3130 2020 2 10 4 10 │ │ │ │ +00030dd0: 2020 2020 3020 3131 2020 2020 2020 317c 0 11 1| │ │ │ │ +00030de0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030e80: 2020 2020 207c 0a7c 2031 3478 2078 2020 |.| 14x x │ │ │ │ -00030e90: 2d20 3235 7820 7820 2020 2b20 3435 7820 - 25x x + 45x │ │ │ │ -00030ea0: 7820 2020 2d20 3431 7820 7820 2020 2d20 x - 41x x - │ │ │ │ -00030eb0: 3436 7820 7820 2020 2b20 3878 2078 2020 46x x + 8x x │ │ │ │ -00030ec0: 202d 2032 3878 2078 2020 202b 2031 3178 - 28x x + 11x │ │ │ │ -00030ed0: 2078 2020 207c 0a7c 2020 2020 3620 3920 x |.| 6 9 │ │ │ │ -00030ee0: 2020 2020 2030 2031 3020 2020 2020 2031 0 10 1 │ │ │ │ -00030ef0: 2031 3020 2020 2020 2032 2031 3020 2020 10 2 10 │ │ │ │ -00030f00: 2020 2034 2031 3020 2020 2020 3620 3130 4 10 6 10 │ │ │ │ -00030f10: 2020 2020 2020 3020 3131 2020 2020 2020 0 11 │ │ │ │ -00030f20: 3220 3131 207c 0a7c 2020 2020 2020 2020 2 11 |.| │ │ │ │ +00030e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030e80: 0a7c 2031 3478 2078 2020 2d20 3235 7820 .| 14x x - 25x │ │ │ │ +00030e90: 7820 2020 2b20 3435 7820 7820 2020 2d20 x + 45x x - │ │ │ │ +00030ea0: 3431 7820 7820 2020 2d20 3436 7820 7820 41x x - 46x x │ │ │ │ +00030eb0: 2020 2b20 3878 2078 2020 202d 2032 3878 + 8x x - 28x │ │ │ │ +00030ec0: 2078 2020 202b 2031 3178 2078 2020 207c x + 11x x | │ │ │ │ +00030ed0: 0a7c 2020 2020 3620 3920 2020 2020 2030 .| 6 9 0 │ │ │ │ +00030ee0: 2031 3020 2020 2020 2031 2031 3020 2020 10 1 10 │ │ │ │ +00030ef0: 2020 2032 2031 3020 2020 2020 2034 2031 2 10 4 1 │ │ │ │ +00030f00: 3020 2020 2020 3620 3130 2020 2020 2020 0 6 10 │ │ │ │ +00030f10: 3020 3131 2020 2020 2020 3220 3131 207c 0 11 2 11 | │ │ │ │ +00030f20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030f60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00030fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00030fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00030fc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00030fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00030ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031010: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031010: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031060: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031050: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000310a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000310b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000310c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000310d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000310e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000310f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031100: 2020 2020 207c 0a7c 2020 2b20 3278 2078 |.| + 2x x │ │ │ │ -00031110: 2020 2b20 3438 7820 7820 202d 2078 2078 + 48x x - x x │ │ │ │ -00031120: 2020 202b 2032 3678 2078 2020 202d 2031 + 26x x - 1 │ │ │ │ -00031130: 3278 2078 2020 202d 2033 3678 2078 2020 2x x - 36x x │ │ │ │ -00031140: 202d 2031 3878 2078 2020 202d 2035 7820 - 18x x - 5x │ │ │ │ -00031150: 7820 2020 2d7c 0a7c 3920 2020 2020 3520 x -|.|9 5 │ │ │ │ -00031160: 3920 2020 2020 2036 2039 2020 2020 3020 9 6 9 0 │ │ │ │ -00031170: 3130 2020 2020 2020 3120 3130 2020 2020 10 1 10 │ │ │ │ -00031180: 2020 3220 3130 2020 2020 2020 3420 3130 2 10 4 10 │ │ │ │ -00031190: 2020 2020 2020 3620 3130 2020 2020 2030 6 10 0 │ │ │ │ -000311a0: 2031 3120 207c 0a7c 2020 2020 2020 2020 11 |.| │ │ │ │ +000310f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031100: 0a7c 2020 2b20 3278 2078 2020 2b20 3438 .| + 2x x + 48 │ │ │ │ +00031110: 7820 7820 202d 2078 2078 2020 202b 2032 x x - x x + 2 │ │ │ │ +00031120: 3678 2078 2020 202d 2031 3278 2078 2020 6x x - 12x x │ │ │ │ +00031130: 202d 2033 3678 2078 2020 202d 2031 3878 - 36x x - 18x │ │ │ │ +00031140: 2078 2020 202d 2035 7820 7820 2020 2d7c x - 5x x -| │ │ │ │ +00031150: 0a7c 3920 2020 2020 3520 3920 2020 2020 .|9 5 9 │ │ │ │ +00031160: 2036 2039 2020 2020 3020 3130 2020 2020 6 9 0 10 │ │ │ │ +00031170: 2020 3120 3130 2020 2020 2020 3220 3130 1 10 2 10 │ │ │ │ +00031180: 2020 2020 2020 3420 3130 2020 2020 2020 4 10 │ │ │ │ +00031190: 3620 3130 2020 2020 2030 2031 3120 207c 6 10 0 11 | │ │ │ │ +000311a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000311b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000311d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000311f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000311e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000311f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031240: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031290: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031290: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000312a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000312b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000312c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000312e0: 2020 2020 207c 0a7c 2b20 3578 2078 2020 |.|+ 5x x │ │ │ │ -000312f0: 202d 2035 7820 7820 202c 2020 2020 2020 - 5x x , │ │ │ │ +000312d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000312e0: 0a7c 2b20 3578 2078 2020 202d 2035 7820 .|+ 5x x - 5x │ │ │ │ +000312f0: 7820 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00031300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031330: 2020 2020 207c 0a7c 2020 2020 3620 3130 |.| 6 10 │ │ │ │ -00031340: 2020 2020 2035 2031 3120 2020 2020 2020 5 11 │ │ │ │ +00031320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031330: 0a7c 2020 2020 3620 3130 2020 2020 2035 .| 6 10 5 │ │ │ │ +00031340: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 00031350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000313d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000313c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000313d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000313e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000313f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031420: 2020 2020 207c 0a7c 7820 202b 2031 3478 |.|x + 14x │ │ │ │ -00031430: 2078 2020 2b20 3878 2078 2020 2b20 3136 x + 8x x + 16 │ │ │ │ -00031440: 7820 7820 202b 2032 3778 2078 2020 2b20 x x + 27x x + │ │ │ │ -00031450: 3234 7820 7820 202d 2031 3178 2078 2020 24x x - 11x x │ │ │ │ -00031460: 2d20 3678 2078 2020 2b20 3278 2078 2020 - 6x x + 2x x │ │ │ │ -00031470: 2d20 3578 207c 0a7c 2038 2020 2020 2020 - 5x |.| 8 │ │ │ │ -00031480: 3620 3820 2020 2020 3020 3920 2020 2020 6 8 0 9 │ │ │ │ -00031490: 2031 2039 2020 2020 2020 3220 3920 2020 1 9 2 9 │ │ │ │ -000314a0: 2020 2033 2039 2020 2020 2020 3420 3920 3 9 4 9 │ │ │ │ -000314b0: 2020 2020 3520 3920 2020 2020 3620 3920 5 9 6 9 │ │ │ │ -000314c0: 2020 2020 307c 0a7c 2020 2020 2020 2020 0|.| │ │ │ │ +00031410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031420: 0a7c 7820 202b 2031 3478 2078 2020 2b20 .|x + 14x x + │ │ │ │ +00031430: 3878 2078 2020 2b20 3136 7820 7820 202b 8x x + 16x x + │ │ │ │ +00031440: 2032 3778 2078 2020 2b20 3234 7820 7820 27x x + 24x x │ │ │ │ +00031450: 202d 2031 3178 2078 2020 2d20 3678 2078 - 11x x - 6x x │ │ │ │ +00031460: 2020 2b20 3278 2078 2020 2d20 3578 207c + 2x x - 5x | │ │ │ │ +00031470: 0a7c 2038 2020 2020 2020 3620 3820 2020 .| 8 6 8 │ │ │ │ +00031480: 2020 3020 3920 2020 2020 2031 2039 2020 0 9 1 9 │ │ │ │ +00031490: 2020 2020 3220 3920 2020 2020 2033 2039 2 9 3 9 │ │ │ │ +000314a0: 2020 2020 2020 3420 3920 2020 2020 3520 4 9 5 │ │ │ │ +000314b0: 3920 2020 2020 3620 3920 2020 2020 307c 9 6 9 0| │ │ │ │ +000314c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000314d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000314f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031510: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031510: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031560: 2020 2020 207c 0a7c 2d20 3434 7820 7820 |.|- 44x x │ │ │ │ -00031570: 202d 2032 3178 2078 2020 2d20 3231 7820 - 21x x - 21x │ │ │ │ -00031580: 7820 202d 2039 7820 7820 202b 2031 3478 x - 9x x + 14x │ │ │ │ -00031590: 2078 2020 2d20 3232 7820 7820 202b 2034 x - 22x x + 4 │ │ │ │ -000315a0: 3578 2078 2020 2b20 3578 2078 2020 202b 5x x + 5x x + │ │ │ │ -000315b0: 2032 3078 207c 0a7c 2020 2020 2030 2039 20x |.| 0 9 │ │ │ │ -000315c0: 2020 2020 2020 3120 3920 2020 2020 2032 1 9 2 │ │ │ │ -000315d0: 2039 2020 2020 2033 2039 2020 2020 2020 9 3 9 │ │ │ │ -000315e0: 3420 3920 2020 2020 2035 2039 2020 2020 4 9 5 9 │ │ │ │ -000315f0: 2020 3620 3920 2020 2020 3020 3130 2020 6 9 0 10 │ │ │ │ -00031600: 2020 2020 317c 0a7c 2020 2020 2020 2020 1|.| │ │ │ │ +00031550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031560: 0a7c 2d20 3434 7820 7820 202d 2032 3178 .|- 44x x - 21x │ │ │ │ +00031570: 2078 2020 2d20 3231 7820 7820 202d 2039 x - 21x x - 9 │ │ │ │ +00031580: 7820 7820 202b 2031 3478 2078 2020 2d20 x x + 14x x - │ │ │ │ +00031590: 3232 7820 7820 202b 2034 3578 2078 2020 22x x + 45x x │ │ │ │ +000315a0: 2b20 3578 2078 2020 202b 2032 3078 207c + 5x x + 20x | │ │ │ │ +000315b0: 0a7c 2020 2020 2030 2039 2020 2020 2020 .| 0 9 │ │ │ │ +000315c0: 3120 3920 2020 2020 2032 2039 2020 2020 1 9 2 9 │ │ │ │ +000315d0: 2033 2039 2020 2020 2020 3420 3920 2020 3 9 4 9 │ │ │ │ +000315e0: 2020 2035 2039 2020 2020 2020 3620 3920 5 9 6 9 │ │ │ │ +000315f0: 2020 2020 3020 3130 2020 2020 2020 317c 0 10 1| │ │ │ │ +00031600: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031650: 2020 2020 207c 0a7c 2078 2020 202d 2033 |.| x - 3 │ │ │ │ -00031660: 3778 2078 2020 202d 2039 7820 7820 2020 7x x - 9x x │ │ │ │ -00031670: 2b20 3134 7820 7820 202c 2020 2020 2020 + 14x x , │ │ │ │ +00031640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031650: 0a7c 2078 2020 202d 2033 3778 2078 2020 .| x - 37x x │ │ │ │ +00031660: 202d 2039 7820 7820 2020 2b20 3134 7820 - 9x x + 14x │ │ │ │ +00031670: 7820 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00031680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316a0: 2020 2020 207c 0a7c 3620 3130 2020 2020 |.|6 10 │ │ │ │ -000316b0: 2020 3220 3131 2020 2020 2034 2031 3120 2 11 4 11 │ │ │ │ -000316c0: 2020 2020 2035 2031 3120 2020 2020 2020 5 11 │ │ │ │ +00031690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000316a0: 0a7c 3620 3130 2020 2020 2020 3220 3131 .|6 10 2 11 │ │ │ │ +000316b0: 2020 2020 2034 2031 3120 2020 2020 2035 4 11 5 │ │ │ │ +000316c0: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 000316d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000316f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000316e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000316f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031740: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031790: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000317a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000317b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000317c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000317e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000317d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000317e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000317f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000318a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000318b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000318c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000318d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000318c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000318d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000318e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000318f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031920: 2020 2020 207c 0a7c 2020 202b 2031 3378 |.| + 13x │ │ │ │ -00031930: 2078 2020 202b 2033 3978 2078 2020 202d x + 39x x - │ │ │ │ -00031940: 2036 7820 7820 2020 2b20 3578 2078 2020 6x x + 5x x │ │ │ │ -00031950: 202b 2034 3278 2078 2020 202b 2034 7820 + 42x x + 4x │ │ │ │ -00031960: 7820 2020 2b20 3678 2078 2020 2020 2020 x + 6x x │ │ │ │ -00031970: 2020 2020 207c 0a7c 3130 2020 2020 2020 |.|10 │ │ │ │ -00031980: 3220 3130 2020 2020 2020 3420 3130 2020 2 10 4 10 │ │ │ │ -00031990: 2020 2036 2031 3020 2020 2020 3120 3131 6 10 1 11 │ │ │ │ -000319a0: 2020 2020 2020 3220 3131 2020 2020 2034 2 11 4 │ │ │ │ -000319b0: 2031 3120 2020 2020 3520 3131 2020 2020 11 5 11 │ │ │ │ -000319c0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00031910: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031920: 0a7c 2020 202b 2031 3378 2078 2020 202b .| + 13x x + │ │ │ │ +00031930: 2033 3978 2078 2020 202d 2036 7820 7820 39x x - 6x x │ │ │ │ +00031940: 2020 2b20 3578 2078 2020 202b 2034 3278 + 5x x + 42x │ │ │ │ +00031950: 2078 2020 202b 2034 7820 7820 2020 2b20 x + 4x x + │ │ │ │ +00031960: 3678 2078 2020 2020 2020 2020 2020 207c 6x x | │ │ │ │ +00031970: 0a7c 3130 2020 2020 2020 3220 3130 2020 .|10 2 10 │ │ │ │ +00031980: 2020 2020 3420 3130 2020 2020 2036 2031 4 10 6 1 │ │ │ │ +00031990: 3020 2020 2020 3120 3131 2020 2020 2020 0 1 11 │ │ │ │ +000319a0: 3220 3131 2020 2020 2034 2031 3120 2020 2 11 4 11 │ │ │ │ +000319b0: 2020 3520 3131 2020 2020 2020 2020 207c 5 11 | │ │ │ │ +000319c0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000319d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000319e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000319f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00031a10: 2d2d 2d2d 2d7c 0a7c 202b 2032 3778 2078 -----|.| + 27x x │ │ │ │ -00031a20: 2020 202d 2032 3778 2078 2020 2c20 2020 - 27x x , │ │ │ │ +00031a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00031a10: 0a7c 202b 2032 3778 2078 2020 202d 2032 .| + 27x x - 2 │ │ │ │ +00031a20: 3778 2078 2020 2c20 2020 2020 2020 2020 7x x , │ │ │ │ 00031a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031a60: 2020 2020 207c 0a7c 2020 2020 2020 3420 |.| 4 │ │ │ │ -00031a70: 3131 2020 2020 2020 3520 3131 2020 2020 11 5 11 │ │ │ │ +00031a50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031a60: 0a7c 2020 2020 2020 3420 3131 2020 2020 .| 4 11 │ │ │ │ +00031a70: 2020 3520 3131 2020 2020 2020 2020 2020 5 11 │ │ │ │ 00031a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031aa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031ab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b50: 2020 2020 207c 0a7c 7820 2020 2b20 3335 |.|x + 35 │ │ │ │ -00031b60: 7820 7820 2020 2d20 3137 7820 7820 202c x x - 17x x , │ │ │ │ +00031b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031b50: 0a7c 7820 2020 2b20 3335 7820 7820 2020 .|x + 35x x │ │ │ │ +00031b60: 2d20 3137 7820 7820 202c 2020 2020 2020 - 17x x , │ │ │ │ 00031b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ba0: 2020 2020 207c 0a7c 2031 3120 2020 2020 |.| 11 │ │ │ │ -00031bb0: 2032 2031 3120 2020 2020 2034 2031 3120 2 11 4 11 │ │ │ │ +00031b90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031ba0: 0a7c 2031 3120 2020 2020 2032 2031 3120 .| 11 2 11 │ │ │ │ +00031bb0: 2020 2020 2034 2031 3120 2020 2020 2020 4 11 │ │ │ │ 00031bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031bf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031c40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031c90: 2020 2020 207c 0a7c 2b20 3134 7820 7820 |.|+ 14x x │ │ │ │ -00031ca0: 2020 2d20 3878 2078 2020 2020 2020 2020 - 8x x │ │ │ │ +00031c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031c90: 0a7c 2b20 3134 7820 7820 2020 2d20 3878 .|+ 14x x - 8x │ │ │ │ +00031ca0: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 00031cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ce0: 2020 2020 207c 0a7c 2020 2020 2034 2031 |.| 4 1 │ │ │ │ -00031cf0: 3120 2020 2020 3520 3131 2020 2020 2020 1 5 11 │ │ │ │ +00031cd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031ce0: 0a7c 2020 2020 2034 2031 3120 2020 2020 .| 4 11 │ │ │ │ +00031cf0: 3520 3131 2020 2020 2020 2020 2020 2020 5 11 │ │ │ │ 00031d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031d20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031d80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031dd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031dc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031dd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031e10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031e20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031e70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031e60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031e70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ec0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031eb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f10: 2020 2020 207c 0a7c 2033 3778 2078 2020 |.| 37x x │ │ │ │ -00031f20: 202d 2035 7820 7820 2020 2d20 3978 2078 - 5x x - 9x x │ │ │ │ -00031f30: 2020 202b 2031 3978 2078 2020 2c20 2020 + 19x x , │ │ │ │ +00031f00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031f10: 0a7c 2033 3778 2078 2020 202d 2035 7820 .| 37x x - 5x │ │ │ │ +00031f20: 7820 2020 2d20 3978 2078 2020 202b 2031 x - 9x x + 1 │ │ │ │ +00031f30: 3978 2078 2020 2c20 2020 2020 2020 2020 9x x , │ │ │ │ 00031f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031f60: 2020 2020 207c 0a7c 2020 2020 3220 3131 |.| 2 11 │ │ │ │ -00031f70: 2020 2020 2033 2031 3120 2020 2020 3420 3 11 4 │ │ │ │ -00031f80: 3131 2020 2020 2020 3520 3131 2020 2020 11 5 11 │ │ │ │ +00031f50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031f60: 0a7c 2020 2020 3220 3131 2020 2020 2033 .| 2 11 3 │ │ │ │ +00031f70: 2031 3120 2020 2020 3420 3131 2020 2020 11 4 11 │ │ │ │ +00031f80: 2020 3520 3131 2020 2020 2020 2020 2020 5 11 │ │ │ │ 00031f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031fb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00031fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00031fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00031fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00031ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00031ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032050: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032050: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000320a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032090: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000320a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000320b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000320d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000320e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000320f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000320e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000320f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032140: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032140: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032190: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032190: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000321a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000321c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000321d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000321e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000321d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000321e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000321f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032230: 2020 2020 207c 0a7c 7820 2020 2d20 3130 |.|x - 10 │ │ │ │ -00032240: 7820 7820 2020 2d20 3334 7820 7820 2020 x x - 34x x │ │ │ │ -00032250: 2d20 3878 2078 2020 202b 2031 3578 2078 - 8x x + 15x x │ │ │ │ -00032260: 2020 202d 2032 3578 2078 2020 202d 2032 - 25x x - 2 │ │ │ │ -00032270: 3478 2078 2020 202d 2032 7820 7820 2020 4x x - 2x x │ │ │ │ -00032280: 2d20 2020 207c 0a7c 2031 3020 2020 2020 - |.| 10 │ │ │ │ -00032290: 2031 2031 3020 2020 2020 2032 2031 3020 1 10 2 10 │ │ │ │ -000322a0: 2020 2020 3420 3130 2020 2020 2020 3620 4 10 6 │ │ │ │ -000322b0: 3130 2020 2020 2020 3020 3131 2020 2020 10 0 11 │ │ │ │ -000322c0: 2020 3220 3131 2020 2020 2034 2031 3120 2 11 4 11 │ │ │ │ -000322d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032230: 0a7c 7820 2020 2d20 3130 7820 7820 2020 .|x - 10x x │ │ │ │ +00032240: 2d20 3334 7820 7820 2020 2d20 3878 2078 - 34x x - 8x x │ │ │ │ +00032250: 2020 202b 2031 3578 2078 2020 202d 2032 + 15x x - 2 │ │ │ │ +00032260: 3578 2078 2020 202d 2032 3478 2078 2020 5x x - 24x x │ │ │ │ +00032270: 202d 2032 7820 7820 2020 2d20 2020 207c - 2x x - | │ │ │ │ +00032280: 0a7c 2031 3020 2020 2020 2031 2031 3020 .| 10 1 10 │ │ │ │ +00032290: 2020 2020 2032 2031 3020 2020 2020 3420 2 10 4 │ │ │ │ +000322a0: 3130 2020 2020 2020 3620 3130 2020 2020 10 6 10 │ │ │ │ +000322b0: 2020 3020 3131 2020 2020 2020 3220 3131 0 11 2 11 │ │ │ │ +000322c0: 2020 2020 2034 2031 3120 2020 2020 207c 4 11 | │ │ │ │ +000322d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000322e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000322f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032320: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032310: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032370: 2020 2020 207c 0a7c 7820 2020 2b20 3334 |.|x + 34 │ │ │ │ -00032380: 7820 7820 2020 2b20 3132 7820 7820 2020 x x + 12x x │ │ │ │ -00032390: 2d20 3235 7820 7820 2020 2b20 3230 7820 - 25x x + 20x │ │ │ │ -000323a0: 7820 2020 2d20 3578 2078 2020 202b 2039 x - 5x x + 9 │ │ │ │ -000323b0: 7820 7820 2020 2d20 3435 7820 7820 2020 x x - 45x x │ │ │ │ -000323c0: 2b20 2020 207c 0a7c 2031 3020 2020 2020 + |.| 10 │ │ │ │ -000323d0: 2032 2031 3020 2020 2020 2034 2031 3020 2 10 4 10 │ │ │ │ -000323e0: 2020 2020 2036 2031 3020 2020 2020 2030 6 10 0 │ │ │ │ -000323f0: 2031 3120 2020 2020 3120 3131 2020 2020 11 1 11 │ │ │ │ -00032400: 2032 2031 3120 2020 2020 2034 2031 3120 2 11 4 11 │ │ │ │ -00032410: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00032360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032370: 0a7c 7820 2020 2b20 3334 7820 7820 2020 .|x + 34x x │ │ │ │ +00032380: 2b20 3132 7820 7820 2020 2d20 3235 7820 + 12x x - 25x │ │ │ │ +00032390: 7820 2020 2b20 3230 7820 7820 2020 2d20 x + 20x x - │ │ │ │ +000323a0: 3578 2078 2020 202b 2039 7820 7820 2020 5x x + 9x x │ │ │ │ +000323b0: 2d20 3435 7820 7820 2020 2b20 2020 207c - 45x x + | │ │ │ │ +000323c0: 0a7c 2031 3020 2020 2020 2032 2031 3020 .| 10 2 10 │ │ │ │ +000323d0: 2020 2020 2034 2031 3020 2020 2020 2036 4 10 6 │ │ │ │ +000323e0: 2031 3020 2020 2020 2030 2031 3120 2020 10 0 11 │ │ │ │ +000323f0: 2020 3120 3131 2020 2020 2032 2031 3120 1 11 2 11 │ │ │ │ +00032400: 2020 2020 2034 2031 3120 2020 2020 207c 4 11 | │ │ │ │ +00032410: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00032420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032460: 2d2d 2d2d 2d7c 0a7c 3135 7820 7820 202c -----|.|15x x , │ │ │ │ +00032450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00032460: 0a7c 3135 7820 7820 202c 2020 2020 2020 .|15x x , │ │ │ │ 00032470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000324a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000324b0: 2020 2020 207c 0a7c 2020 2035 2031 3120 |.| 5 11 │ │ │ │ +000324a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000324b0: 0a7c 2020 2035 2031 3120 2020 2020 2020 .| 5 11 │ │ │ │ 000324c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000324e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000324f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032500: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000324f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032550: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00032540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032550: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00032560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000325a0: 2020 2020 207c 0a7c 3235 7820 7820 202c |.|25x x , │ │ │ │ +00032590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000325a0: 0a7c 3235 7820 7820 202c 2020 2020 2020 .|25x x , │ │ │ │ 000325b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000325d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000325e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000325f0: 2020 2020 207c 0a7c 2020 2035 2031 3120 |.| 5 11 │ │ │ │ +000325e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000325f0: 0a7c 2020 2035 2031 3120 2020 2020 2020 .| 5 11 │ │ │ │ 00032600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00032620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00032640: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00032630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00032640: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00032650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032690: 2d2d 2d2d 2d2b 0a7c 6931 3120 3a20 6173 -----+.|i11 : as │ │ │ │ -000326a0: 7365 7274 2870 6869 202a 2070 7369 203d sert(phi * psi = │ │ │ │ -000326b0: 3d20 3129 2020 2020 2020 2020 2020 2020 = 1) │ │ │ │ +00032680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00032690: 0a7c 6931 3120 3a20 6173 7365 7274 2870 .|i11 : assert(p │ │ │ │ +000326a0: 6869 202a 2070 7369 203d 3d20 3129 2020 hi * psi == 1) │ │ │ │ +000326b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000326c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000326d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000326e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000326d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000326e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000326f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032730: 2d2d 2d2d 2d2b 0a0a 5468 6520 6d65 7468 -----+..The meth │ │ │ │ -00032740: 6f64 2061 6c73 6f20 6163 6365 7074 7320 od also accepts │ │ │ │ -00032750: 6173 2069 6e70 7574 2061 202a 6e6f 7465 as input a *note │ │ │ │ -00032760: 2072 696e 6720 6d61 703a 2028 4d61 6361 ring map: (Maca │ │ │ │ -00032770: 756c 6179 3244 6f63 2952 696e 674d 6170 ulay2Doc)RingMap │ │ │ │ -00032780: 2c0a 7265 7072 6573 656e 7469 6e67 2061 ,.representing a │ │ │ │ -00032790: 2072 6174 696f 6e61 6c20 6d61 7020 6265 rational map be │ │ │ │ -000327a0: 7477 6565 6e20 7072 6f6a 6563 7469 7665 tween projective │ │ │ │ -000327b0: 2076 6172 6965 7469 6573 2e20 496e 2074 varieties. In t │ │ │ │ -000327c0: 6869 7320 6361 7365 2c20 6120 2a6e 6f74 his case, a *not │ │ │ │ -000327d0: 650a 7269 6e67 206d 6170 3a20 284d 6163 e.ring map: (Mac │ │ │ │ -000327e0: 6175 6c61 7932 446f 6329 5269 6e67 4d61 aulay2Doc)RingMa │ │ │ │ -000327f0: 702c 2069 7320 7265 7475 726e 6564 2061 p, is returned a │ │ │ │ -00032800: 7320 7765 6c6c 2e0a 0a43 6176 6561 740a s well...Caveat. │ │ │ │ -00032810: 3d3d 3d3d 3d3d 0a0a 466f 7220 7468 6520 ======..For the │ │ │ │ -00032820: 7075 7270 6f73 6520 6f66 2074 6869 7320 purpose of this │ │ │ │ -00032830: 6d65 7468 6f64 2c20 7468 6520 6f70 7469 method, the opti │ │ │ │ -00032840: 6f6e 202a 6e6f 7465 2043 6572 7469 6679 on *note Certify │ │ │ │ -00032850: 3a20 4365 7274 6966 792c 3d3e 7472 7565 : Certify,=>true │ │ │ │ -00032860: 2069 7320 746f 6f0a 7269 6769 642c 2065 is too.rigid, e │ │ │ │ -00032870: 7370 6563 6961 6c6c 7920 7768 656e 2074 specially when t │ │ │ │ -00032880: 6865 2073 6f75 7263 6520 6f66 2074 6865 he source of the │ │ │ │ -00032890: 2070 6173 7365 6420 6d61 7020 6973 206e passed map is n │ │ │ │ -000328a0: 6f74 2061 2070 726f 6a65 6374 6976 6520 ot a projective │ │ │ │ -000328b0: 7370 6163 652e 0a0a 5365 6520 616c 736f space...See also │ │ │ │ -000328c0: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -000328d0: 6e6f 7465 2069 6e76 6572 7365 4d61 703a note inverseMap: │ │ │ │ -000328e0: 2069 6e76 6572 7365 4d61 702c 202d 2d20 inverseMap, -- │ │ │ │ -000328f0: 696e 7665 7273 6520 6f66 2061 2062 6972 inverse of a bir │ │ │ │ -00032900: 6174 696f 6e61 6c20 6d61 700a 2020 2a20 ational map. * │ │ │ │ -00032910: 2a6e 6f74 6520 696e 7665 7273 6528 5261 *note inverse(Ra │ │ │ │ -00032920: 7469 6f6e 616c 4d61 7029 3a20 696e 7665 tionalMap): inve │ │ │ │ -00032930: 7273 655f 6c70 5261 7469 6f6e 616c 4d61 rse_lpRationalMa │ │ │ │ -00032940: 705f 7270 2c20 2d2d 2069 6e76 6572 7365 p_rp, -- inverse │ │ │ │ -00032950: 206f 6620 610a 2020 2020 6269 7261 7469 of a. birati │ │ │ │ -00032960: 6f6e 616c 206d 6170 0a0a 5761 7973 2074 onal map..Ways t │ │ │ │ -00032970: 6f20 7573 6520 6170 7072 6f78 696d 6174 o use approximat │ │ │ │ -00032980: 6549 6e76 6572 7365 4d61 703a 0a3d 3d3d eInverseMap:.=== │ │ │ │ +00032720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00032730: 0a0a 5468 6520 6d65 7468 6f64 2061 6c73 ..The method als │ │ │ │ +00032740: 6f20 6163 6365 7074 7320 6173 2069 6e70 o accepts as inp │ │ │ │ +00032750: 7574 2061 202a 6e6f 7465 2072 696e 6720 ut a *note ring │ │ │ │ +00032760: 6d61 703a 2028 4d61 6361 756c 6179 3244 map: (Macaulay2D │ │ │ │ +00032770: 6f63 2952 696e 674d 6170 2c0a 7265 7072 oc)RingMap,.repr │ │ │ │ +00032780: 6573 656e 7469 6e67 2061 2072 6174 696f esenting a ratio │ │ │ │ +00032790: 6e61 6c20 6d61 7020 6265 7477 6565 6e20 nal map between │ │ │ │ +000327a0: 7072 6f6a 6563 7469 7665 2076 6172 6965 projective varie │ │ │ │ +000327b0: 7469 6573 2e20 496e 2074 6869 7320 6361 ties. In this ca │ │ │ │ +000327c0: 7365 2c20 6120 2a6e 6f74 650a 7269 6e67 se, a *note.ring │ │ │ │ +000327d0: 206d 6170 3a20 284d 6163 6175 6c61 7932 map: (Macaulay2 │ │ │ │ +000327e0: 446f 6329 5269 6e67 4d61 702c 2069 7320 Doc)RingMap, is │ │ │ │ +000327f0: 7265 7475 726e 6564 2061 7320 7765 6c6c returned as well │ │ │ │ +00032800: 2e0a 0a43 6176 6561 740a 3d3d 3d3d 3d3d ...Caveat.====== │ │ │ │ +00032810: 0a0a 466f 7220 7468 6520 7075 7270 6f73 ..For the purpos │ │ │ │ +00032820: 6520 6f66 2074 6869 7320 6d65 7468 6f64 e of this method │ │ │ │ +00032830: 2c20 7468 6520 6f70 7469 6f6e 202a 6e6f , the option *no │ │ │ │ +00032840: 7465 2043 6572 7469 6679 3a20 4365 7274 te Certify: Cert │ │ │ │ +00032850: 6966 792c 3d3e 7472 7565 2069 7320 746f ify,=>true is to │ │ │ │ +00032860: 6f0a 7269 6769 642c 2065 7370 6563 6961 o.rigid, especia │ │ │ │ +00032870: 6c6c 7920 7768 656e 2074 6865 2073 6f75 lly when the sou │ │ │ │ +00032880: 7263 6520 6f66 2074 6865 2070 6173 7365 rce of the passe │ │ │ │ +00032890: 6420 6d61 7020 6973 206e 6f74 2061 2070 d map is not a p │ │ │ │ +000328a0: 726f 6a65 6374 6976 6520 7370 6163 652e rojective space. │ │ │ │ +000328b0: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +000328c0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2069 ===.. * *note i │ │ │ │ +000328d0: 6e76 6572 7365 4d61 703a 2069 6e76 6572 nverseMap: inver │ │ │ │ +000328e0: 7365 4d61 702c 202d 2d20 696e 7665 7273 seMap, -- invers │ │ │ │ +000328f0: 6520 6f66 2061 2062 6972 6174 696f 6e61 e of a birationa │ │ │ │ +00032900: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ +00032910: 696e 7665 7273 6528 5261 7469 6f6e 616c inverse(Rational │ │ │ │ +00032920: 4d61 7029 3a20 696e 7665 7273 655f 6c70 Map): inverse_lp │ │ │ │ +00032930: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +00032940: 2d2d 2069 6e76 6572 7365 206f 6620 610a -- inverse of a. │ │ │ │ +00032950: 2020 2020 6269 7261 7469 6f6e 616c 206d birational m │ │ │ │ +00032960: 6170 0a0a 5761 7973 2074 6f20 7573 6520 ap..Ways to use │ │ │ │ +00032970: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ +00032980: 7365 4d61 703a 0a3d 3d3d 3d3d 3d3d 3d3d seMap:.========= │ │ │ │ 00032990: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000329a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000329b0: 0a20 202a 2022 6170 7072 6f78 696d 6174 . * "approximat │ │ │ │ -000329c0: 6549 6e76 6572 7365 4d61 7028 5261 7469 eInverseMap(Rati │ │ │ │ -000329d0: 6f6e 616c 4d61 7029 220a 2020 2a20 2261 onalMap)". * "a │ │ │ │ -000329e0: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ -000329f0: 654d 6170 2852 6174 696f 6e61 6c4d 6170 eMap(RationalMap │ │ │ │ -00032a00: 2c5a 5a29 220a 2020 2a20 2261 7070 726f ,ZZ)". * "appro │ │ │ │ -00032a10: 7869 6d61 7465 496e 7665 7273 654d 6170 ximateInverseMap │ │ │ │ -00032a20: 2852 696e 674d 6170 2922 0a20 202a 2022 (RingMap)". * " │ │ │ │ -00032a30: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ -00032a40: 7365 4d61 7028 5269 6e67 4d61 702c 5a5a seMap(RingMap,ZZ │ │ │ │ -00032a50: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -00032a60: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -00032a70: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -00032a80: 626a 6563 7420 2a6e 6f74 6520 6170 7072 bject *note appr │ │ │ │ -00032a90: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ -00032aa0: 703a 2061 7070 726f 7869 6d61 7465 496e p: approximateIn │ │ │ │ -00032ab0: 7665 7273 654d 6170 2c20 6973 2061 202a verseMap, is a * │ │ │ │ -00032ac0: 6e6f 7465 0a6d 6574 686f 6420 6675 6e63 note.method func │ │ │ │ -00032ad0: 7469 6f6e 2077 6974 6820 6f70 7469 6f6e tion with option │ │ │ │ -00032ae0: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -00032af0: 294d 6574 686f 6446 756e 6374 696f 6e57 )MethodFunctionW │ │ │ │ -00032b00: 6974 684f 7074 696f 6e73 2c2e 0a0a 2d2d ithOptions,...-- │ │ │ │ +000329a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ +000329b0: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ +000329c0: 7365 4d61 7028 5261 7469 6f6e 616c 4d61 seMap(RationalMa │ │ │ │ +000329d0: 7029 220a 2020 2a20 2261 7070 726f 7869 p)". * "approxi │ │ │ │ +000329e0: 6d61 7465 496e 7665 7273 654d 6170 2852 mateInverseMap(R │ │ │ │ +000329f0: 6174 696f 6e61 6c4d 6170 2c5a 5a29 220a ationalMap,ZZ)". │ │ │ │ +00032a00: 2020 2a20 2261 7070 726f 7869 6d61 7465 * "approximate │ │ │ │ +00032a10: 496e 7665 7273 654d 6170 2852 696e 674d InverseMap(RingM │ │ │ │ +00032a20: 6170 2922 0a20 202a 2022 6170 7072 6f78 ap)". * "approx │ │ │ │ +00032a30: 696d 6174 6549 6e76 6572 7365 4d61 7028 imateInverseMap( │ │ │ │ +00032a40: 5269 6e67 4d61 702c 5a5a 2922 0a0a 466f RingMap,ZZ)"..Fo │ │ │ │ +00032a50: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00032a60: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00032a70: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00032a80: 2a6e 6f74 6520 6170 7072 6f78 696d 6174 *note approximat │ │ │ │ +00032a90: 6549 6e76 6572 7365 4d61 703a 2061 7070 eInverseMap: app │ │ │ │ +00032aa0: 726f 7869 6d61 7465 496e 7665 7273 654d roximateInverseM │ │ │ │ +00032ab0: 6170 2c20 6973 2061 202a 6e6f 7465 0a6d ap, is a *note.m │ │ │ │ +00032ac0: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ +00032ad0: 6974 6820 6f70 7469 6f6e 733a 2028 4d61 ith options: (Ma │ │ │ │ +00032ae0: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ +00032af0: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ +00032b00: 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d ions,...-------- │ │ │ │ 00032b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00032b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00032b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00032b60: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00032b70: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00032b80: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00032b90: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -00032ba0: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -00032bb0: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -00032bc0: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -00032bd0: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a32 cumentation.m2:2 │ │ │ │ -00032be0: 3237 3a30 2e0a 1f0a 4669 6c65 3a20 4372 27:0....File: Cr │ │ │ │ -00032bf0: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -00032c00: 3a20 426c 6f77 5570 5374 7261 7465 6779 : BlowUpStrategy │ │ │ │ -00032c10: 2c20 4e65 7874 3a20 4365 7274 6966 792c , Next: Certify, │ │ │ │ -00032c20: 2050 7265 763a 2061 7070 726f 7869 6d61 Prev: approxima │ │ │ │ -00032c30: 7465 496e 7665 7273 654d 6170 2c20 5570 teInverseMap, Up │ │ │ │ -00032c40: 3a20 546f 700a 0a42 6c6f 7755 7053 7472 : Top..BlowUpStr │ │ │ │ -00032c50: 6174 6567 790a 2a2a 2a2a 2a2a 2a2a 2a2a ategy.********** │ │ │ │ -00032c60: 2a2a 2a2a 0a0a 4465 7363 7269 7074 696f ****..Descriptio │ │ │ │ -00032c70: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ -00032c80: 6869 7320 6973 2061 6e20 6f70 7469 6f6e his is an option │ │ │ │ -00032c90: 616c 2061 7267 756d 656e 7420 666f 7220 al argument for │ │ │ │ -00032ca0: 2a6e 6f74 6520 6772 6170 683a 2067 7261 *note graph: gra │ │ │ │ -00032cb0: 7068 2c2c 2061 6e64 2066 6f72 2074 6865 ph,, and for the │ │ │ │ -00032cc0: 206d 6574 686f 6473 2074 6861 740a 6576 methods that.ev │ │ │ │ -00032cd0: 656e 7475 616c 6c79 2063 616c 6c20 6974 entually call it │ │ │ │ -00032ce0: 2e20 4375 7272 656e 746c 792c 2074 6865 . Currently, the │ │ │ │ -00032cf0: 2070 6f73 7369 626c 6520 7661 6c75 6573 possible values │ │ │ │ -00032d00: 2061 7265 2022 456c 696d 696e 6174 6522 are "Eliminate" │ │ │ │ -00032d10: 2061 6e64 0a22 5361 7475 7261 7465 222c and."Saturate", │ │ │ │ -00032d20: 2077 6869 6368 2069 6e64 6963 6174 6520 which indicate │ │ │ │ -00032d30: 7477 6f20 6469 6666 6572 656e 7420 7761 two different wa │ │ │ │ -00032d40: 7973 206f 6620 636f 6d70 7574 696e 6720 ys of computing │ │ │ │ -00032d50: 7468 6520 2863 6c6f 7375 7265 206f 6620 the (closure of │ │ │ │ -00032d60: 7468 6529 0a67 7261 7068 206f 6620 6120 the).graph of a │ │ │ │ -00032d70: 7261 7469 6f6e 616c 206d 6170 2e20 5468 rational map. Th │ │ │ │ -00032d80: 6520 6465 6661 756c 7420 6368 6f69 6365 e default choice │ │ │ │ -00032d90: 2069 7320 2245 6c69 6d69 6e61 7465 2220 is "Eliminate" │ │ │ │ -00032da0: 616e 6420 7468 6973 2069 730a 6765 6e65 and this is.gene │ │ │ │ -00032db0: 7261 6c6c 7920 7072 6566 6572 6162 6c65 rally preferable │ │ │ │ -00032dc0: 2e0a 0a46 756e 6374 696f 6e73 2077 6974 ...Functions wit │ │ │ │ -00032dd0: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ -00032de0: 656e 7420 6e61 6d65 6420 426c 6f77 5570 ent named BlowUp │ │ │ │ -00032df0: 5374 7261 7465 6779 3a0a 3d3d 3d3d 3d3d Strategy:.====== │ │ │ │ +00032b50: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00032b60: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00032b70: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00032b80: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00032b90: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00032ba0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00032bb0: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +00032bc0: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +00032bd0: 6174 696f 6e2e 6d32 3a32 3237 3a30 2e0a ation.m2:227:0.. │ │ │ │ +00032be0: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ +00032bf0: 696e 666f 2c20 4e6f 6465 3a20 426c 6f77 info, Node: Blow │ │ │ │ +00032c00: 5570 5374 7261 7465 6779 2c20 4e65 7874 UpStrategy, Next │ │ │ │ +00032c10: 3a20 4365 7274 6966 792c 2050 7265 763a : Certify, Prev: │ │ │ │ +00032c20: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ +00032c30: 7273 654d 6170 2c20 5570 3a20 546f 700a rseMap, Up: Top. │ │ │ │ +00032c40: 0a42 6c6f 7755 7053 7472 6174 6567 790a .BlowUpStrategy. │ │ │ │ +00032c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +00032c60: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +00032c70: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 6973 =======..This is │ │ │ │ +00032c80: 2061 6e20 6f70 7469 6f6e 616c 2061 7267 an optional arg │ │ │ │ +00032c90: 756d 656e 7420 666f 7220 2a6e 6f74 6520 ument for *note │ │ │ │ +00032ca0: 6772 6170 683a 2067 7261 7068 2c2c 2061 graph: graph,, a │ │ │ │ +00032cb0: 6e64 2066 6f72 2074 6865 206d 6574 686f nd for the metho │ │ │ │ +00032cc0: 6473 2074 6861 740a 6576 656e 7475 616c ds that.eventual │ │ │ │ +00032cd0: 6c79 2063 616c 6c20 6974 2e20 4375 7272 ly call it. Curr │ │ │ │ +00032ce0: 656e 746c 792c 2074 6865 2070 6f73 7369 ently, the possi │ │ │ │ +00032cf0: 626c 6520 7661 6c75 6573 2061 7265 2022 ble values are " │ │ │ │ +00032d00: 456c 696d 696e 6174 6522 2061 6e64 0a22 Eliminate" and." │ │ │ │ +00032d10: 5361 7475 7261 7465 222c 2077 6869 6368 Saturate", which │ │ │ │ +00032d20: 2069 6e64 6963 6174 6520 7477 6f20 6469 indicate two di │ │ │ │ +00032d30: 6666 6572 656e 7420 7761 7973 206f 6620 fferent ways of │ │ │ │ +00032d40: 636f 6d70 7574 696e 6720 7468 6520 2863 computing the (c │ │ │ │ +00032d50: 6c6f 7375 7265 206f 6620 7468 6529 0a67 losure of the).g │ │ │ │ +00032d60: 7261 7068 206f 6620 6120 7261 7469 6f6e raph of a ration │ │ │ │ +00032d70: 616c 206d 6170 2e20 5468 6520 6465 6661 al map. The defa │ │ │ │ +00032d80: 756c 7420 6368 6f69 6365 2069 7320 2245 ult choice is "E │ │ │ │ +00032d90: 6c69 6d69 6e61 7465 2220 616e 6420 7468 liminate" and th │ │ │ │ +00032da0: 6973 2069 730a 6765 6e65 7261 6c6c 7920 is is.generally │ │ │ │ +00032db0: 7072 6566 6572 6162 6c65 2e0a 0a46 756e preferable...Fun │ │ │ │ +00032dc0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +00032dd0: 6f6e 616c 2061 7267 756d 656e 7420 6e61 onal argument na │ │ │ │ +00032de0: 6d65 6420 426c 6f77 5570 5374 7261 7465 med BlowUpStrate │ │ │ │ +00032df0: 6779 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d gy:.============ │ │ │ │ 00032e00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00032e10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00032e20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00032e30: 0a0a 2020 2a20 2243 6865 726e 5363 6877 .. * "ChernSchw │ │ │ │ -00032e40: 6172 747a 4d61 6350 6865 7273 6f6e 282e artzMacPherson(. │ │ │ │ -00032e50: 2e2e 2c42 6c6f 7755 7053 7472 6174 6567 ..,BlowUpStrateg │ │ │ │ -00032e60: 793d 3e2e 2e2e 2922 0a20 202a 2022 6465 y=>...)". * "de │ │ │ │ -00032e70: 6772 6565 4d61 7028 2e2e 2e2c 426c 6f77 greeMap(...,Blow │ │ │ │ -00032e80: 5570 5374 7261 7465 6779 3d3e 2e2e 2e29 UpStrategy=>...) │ │ │ │ -00032e90: 220a 2020 2a20 2245 756c 6572 4368 6172 ". * "EulerChar │ │ │ │ -00032ea0: 6163 7465 7269 7374 6963 282e 2e2e 2c42 acteristic(...,B │ │ │ │ -00032eb0: 6c6f 7755 7053 7472 6174 6567 793d 3e2e lowUpStrategy=>. │ │ │ │ -00032ec0: 2e2e 2922 0a20 202a 2022 6772 6170 6828 ..)". * "graph( │ │ │ │ -00032ed0: 2e2e 2e2c 426c 6f77 5570 5374 7261 7465 ...,BlowUpStrate │ │ │ │ -00032ee0: 6779 3d3e 2e2e 2e29 220a 2020 2a20 2269 gy=>...)". * "i │ │ │ │ -00032ef0: 6e76 6572 7365 4d61 7028 2e2e 2e2c 426c nverseMap(...,Bl │ │ │ │ -00032f00: 6f77 5570 5374 7261 7465 6779 3d3e 2e2e owUpStrategy=>.. │ │ │ │ -00032f10: 2e29 220a 2020 2a20 2269 7342 6972 6174 .)". * "isBirat │ │ │ │ -00032f20: 696f 6e61 6c28 2e2e 2e2c 426c 6f77 5570 ional(...,BlowUp │ │ │ │ -00032f30: 5374 7261 7465 6779 3d3e 2e2e 2e29 220a Strategy=>...)". │ │ │ │ -00032f40: 2020 2a20 2270 726f 6a65 6374 6976 6544 * "projectiveD │ │ │ │ -00032f50: 6567 7265 6573 282e 2e2e 2c42 6c6f 7755 egrees(...,BlowU │ │ │ │ -00032f60: 7053 7472 6174 6567 793d 3e2e 2e2e 2922 pStrategy=>...)" │ │ │ │ -00032f70: 0a20 202a 2022 5365 6772 6543 6c61 7373 . * "SegreClass │ │ │ │ -00032f80: 282e 2e2e 2c42 6c6f 7755 7053 7472 6174 (...,BlowUpStrat │ │ │ │ -00032f90: 6567 793d 3e2e 2e2e 2922 0a0a 466f 7220 egy=>...)"..For │ │ │ │ -00032fa0: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ -00032fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00032fc0: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ -00032fd0: 6f74 6520 426c 6f77 5570 5374 7261 7465 ote BlowUpStrate │ │ │ │ -00032fe0: 6779 3a20 426c 6f77 5570 5374 7261 7465 gy: BlowUpStrate │ │ │ │ -00032ff0: 6779 2c20 6973 2061 202a 6e6f 7465 2073 gy, is a *note s │ │ │ │ -00033000: 796d 626f 6c3a 0a28 4d61 6361 756c 6179 ymbol:.(Macaulay │ │ │ │ -00033010: 3244 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2Doc)Symbol,...- │ │ │ │ +00032e20: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00032e30: 2243 6865 726e 5363 6877 6172 747a 4d61 "ChernSchwartzMa │ │ │ │ +00032e40: 6350 6865 7273 6f6e 282e 2e2e 2c42 6c6f cPherson(...,Blo │ │ │ │ +00032e50: 7755 7053 7472 6174 6567 793d 3e2e 2e2e wUpStrategy=>... │ │ │ │ +00032e60: 2922 0a20 202a 2022 6465 6772 6565 4d61 )". * "degreeMa │ │ │ │ +00032e70: 7028 2e2e 2e2c 426c 6f77 5570 5374 7261 p(...,BlowUpStra │ │ │ │ +00032e80: 7465 6779 3d3e 2e2e 2e29 220a 2020 2a20 tegy=>...)". * │ │ │ │ +00032e90: 2245 756c 6572 4368 6172 6163 7465 7269 "EulerCharacteri │ │ │ │ +00032ea0: 7374 6963 282e 2e2e 2c42 6c6f 7755 7053 stic(...,BlowUpS │ │ │ │ +00032eb0: 7472 6174 6567 793d 3e2e 2e2e 2922 0a20 trategy=>...)". │ │ │ │ +00032ec0: 202a 2022 6772 6170 6828 2e2e 2e2c 426c * "graph(...,Bl │ │ │ │ +00032ed0: 6f77 5570 5374 7261 7465 6779 3d3e 2e2e owUpStrategy=>.. │ │ │ │ +00032ee0: 2e29 220a 2020 2a20 2269 6e76 6572 7365 .)". * "inverse │ │ │ │ +00032ef0: 4d61 7028 2e2e 2e2c 426c 6f77 5570 5374 Map(...,BlowUpSt │ │ │ │ +00032f00: 7261 7465 6779 3d3e 2e2e 2e29 220a 2020 rategy=>...)". │ │ │ │ +00032f10: 2a20 2269 7342 6972 6174 696f 6e61 6c28 * "isBirational( │ │ │ │ +00032f20: 2e2e 2e2c 426c 6f77 5570 5374 7261 7465 ...,BlowUpStrate │ │ │ │ +00032f30: 6779 3d3e 2e2e 2e29 220a 2020 2a20 2270 gy=>...)". * "p │ │ │ │ +00032f40: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ +00032f50: 282e 2e2e 2c42 6c6f 7755 7053 7472 6174 (...,BlowUpStrat │ │ │ │ +00032f60: 6567 793d 3e2e 2e2e 2922 0a20 202a 2022 egy=>...)". * " │ │ │ │ +00032f70: 5365 6772 6543 6c61 7373 282e 2e2e 2c42 SegreClass(...,B │ │ │ │ +00032f80: 6c6f 7755 7053 7472 6174 6567 793d 3e2e lowUpStrategy=>. │ │ │ │ +00032f90: 2e2e 2922 0a0a 466f 7220 7468 6520 7072 ..)"..For the pr │ │ │ │ +00032fa0: 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d ogrammer.======= │ │ │ │ +00032fb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 ===========..The │ │ │ │ +00032fc0: 206f 626a 6563 7420 2a6e 6f74 6520 426c object *note Bl │ │ │ │ +00032fd0: 6f77 5570 5374 7261 7465 6779 3a20 426c owUpStrategy: Bl │ │ │ │ +00032fe0: 6f77 5570 5374 7261 7465 6779 2c20 6973 owUpStrategy, is │ │ │ │ +00032ff0: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ +00033000: 0a28 4d61 6361 756c 6179 3244 6f63 2953 .(Macaulay2Doc)S │ │ │ │ +00033010: 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d ymbol,...------- │ │ │ │ 00033020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00033070: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00033080: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00033090: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -000330a0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -000330b0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -000330c0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -000330d0: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -000330e0: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -000330f0: 3936 333a 302e 0a1f 0a46 696c 653a 2043 963:0....File: C │ │ │ │ -00033100: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -00033110: 653a 2043 6572 7469 6679 2c20 4e65 7874 e: Certify, Next │ │ │ │ -00033120: 3a20 4368 6572 6e53 6368 7761 7274 7a4d : ChernSchwartzM │ │ │ │ -00033130: 6163 5068 6572 736f 6e2c 2050 7265 763a acPherson, Prev: │ │ │ │ -00033140: 2042 6c6f 7755 7053 7472 6174 6567 792c BlowUpStrategy, │ │ │ │ -00033150: 2055 703a 2054 6f70 0a0a 4365 7274 6966 Up: Top..Certif │ │ │ │ -00033160: 7920 2d2d 2077 6865 7468 6572 2074 6f20 y -- whether to │ │ │ │ -00033170: 656e 7375 7265 2063 6f72 7265 6374 6e65 ensure correctne │ │ │ │ -00033180: 7373 206f 6620 6f75 7470 7574 0a2a 2a2a ss of output.*** │ │ │ │ +00033060: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00033070: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00033080: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00033090: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +000330a0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +000330b0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +000330c0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +000330d0: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +000330e0: 7461 7469 6f6e 2e6d 323a 3936 333a 302e tation.m2:963:0. │ │ │ │ +000330f0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +00033100: 2e69 6e66 6f2c 204e 6f64 653a 2043 6572 .info, Node: Cer │ │ │ │ +00033110: 7469 6679 2c20 4e65 7874 3a20 4368 6572 tify, Next: Cher │ │ │ │ +00033120: 6e53 6368 7761 7274 7a4d 6163 5068 6572 nSchwartzMacPher │ │ │ │ +00033130: 736f 6e2c 2050 7265 763a 2042 6c6f 7755 son, Prev: BlowU │ │ │ │ +00033140: 7053 7472 6174 6567 792c 2055 703a 2054 pStrategy, Up: T │ │ │ │ +00033150: 6f70 0a0a 4365 7274 6966 7920 2d2d 2077 op..Certify -- w │ │ │ │ +00033160: 6865 7468 6572 2074 6f20 656e 7375 7265 hether to ensure │ │ │ │ +00033170: 2063 6f72 7265 6374 6e65 7373 206f 6620 correctness of │ │ │ │ +00033180: 6f75 7470 7574 0a2a 2a2a 2a2a 2a2a 2a2a output.********* │ │ │ │ 00033190: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000331a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000331b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -000331c0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -000331d0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ -000331e0: 7074 696f 6e20 6163 6365 7074 7320 6120 ption accepts a │ │ │ │ -000331f0: 2a6e 6f74 6520 426f 6f6c 6561 6e3a 2028 *note Boolean: ( │ │ │ │ -00033200: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ -00033210: 6c65 616e 2c20 7661 6c75 652c 2064 6566 lean, value, def │ │ │ │ -00033220: 6175 6c74 0a76 616c 7565 2066 616c 7365 ault.value false │ │ │ │ -00033230: 2e0a 0a49 6620 7475 726e 6564 206f 6e20 ...If turned on │ │ │ │ -00033240: 696e 2074 6865 206d 6574 686f 6473 202a in the methods * │ │ │ │ -00033250: 6e6f 7465 2069 6e76 6572 7365 4d61 703a note inverseMap: │ │ │ │ -00033260: 2069 6e76 6572 7365 4d61 702c 2061 6e64 inverseMap, and │ │ │ │ -00033270: 202a 6e6f 7465 0a61 7070 726f 7869 6d61 *note.approxima │ │ │ │ -00033280: 7465 496e 7665 7273 654d 6170 3a20 6170 teInverseMap: ap │ │ │ │ -00033290: 7072 6f78 696d 6174 6549 6e76 6572 7365 proximateInverse │ │ │ │ -000332a0: 4d61 702c 2c20 7468 656e 2069 7420 7769 Map,, then it wi │ │ │ │ -000332b0: 6c6c 2062 6520 6368 6563 6b65 6420 7768 ll be checked wh │ │ │ │ -000332c0: 6574 6865 720a 7468 6520 6d61 7073 2069 ether.the maps i │ │ │ │ -000332d0: 6e20 696e 7075 7420 616e 6420 6f75 7470 n input and outp │ │ │ │ -000332e0: 7574 2061 7265 206f 6e65 2074 6865 2069 ut are one the i │ │ │ │ -000332f0: 6e76 6572 7365 206f 6620 7468 6520 6f74 nverse of the ot │ │ │ │ -00033300: 6865 722c 2074 6872 6f77 696e 6720 616e her, throwing an │ │ │ │ -00033310: 0a65 7272 6f72 2069 6620 7468 6579 2061 .error if they a │ │ │ │ -00033320: 7265 206e 6f74 2e20 4163 7475 616c 6c79 re not. Actually │ │ │ │ -00033330: 2c20 2a6e 6f74 6520 6170 7072 6f78 696d , *note approxim │ │ │ │ -00033340: 6174 6549 6e76 6572 7365 4d61 703a 0a61 ateInverseMap:.a │ │ │ │ -00033350: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ -00033360: 654d 6170 2c20 7769 6c6c 2066 6972 7374 eMap, will first │ │ │ │ -00033370: 2074 7279 2074 6f20 6669 7820 7468 6520 try to fix the │ │ │ │ -00033380: 6572 726f 7220 6f66 2074 6865 2061 7070 error of the app │ │ │ │ -00033390: 726f 7869 6d61 7469 6f6e 2e0a 5768 656e roximation..When │ │ │ │ -000333a0: 2074 7572 6e65 6420 6f6e 2069 6e20 7468 turned on in th │ │ │ │ -000333b0: 6520 6d65 7468 6f64 7320 2a6e 6f74 6520 e methods *note │ │ │ │ -000333c0: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -000333d0: 733a 2070 726f 6a65 6374 6976 6544 6567 s: projectiveDeg │ │ │ │ -000333e0: 7265 6573 2c2c 0a2a 6e6f 7465 2064 6567 rees,,.*note deg │ │ │ │ -000333f0: 7265 654d 6170 3a20 6465 6772 6565 4d61 reeMap: degreeMa │ │ │ │ -00033400: 702c 2c20 2a6e 6f74 6520 6973 4269 7261 p,, *note isBira │ │ │ │ -00033410: 7469 6f6e 616c 3a20 6973 4269 7261 7469 tional: isBirati │ │ │ │ -00033420: 6f6e 616c 2c2c 202a 6e6f 7465 0a69 7344 onal,, *note.isD │ │ │ │ -00033430: 6f6d 696e 616e 743a 2069 7344 6f6d 696e ominant: isDomin │ │ │ │ -00033440: 616e 742c 2c20 2a6e 6f74 6520 5365 6772 ant,, *note Segr │ │ │ │ -00033450: 6543 6c61 7373 3a20 5365 6772 6543 6c61 eClass: SegreCla │ │ │ │ -00033460: 7373 2c2c 202a 6e6f 7465 0a45 756c 6572 ss,, *note.Euler │ │ │ │ -00033470: 4368 6172 6163 7465 7269 7374 6963 3a20 Characteristic: │ │ │ │ -00033480: 4575 6c65 7243 6861 7261 6374 6572 6973 EulerCharacteris │ │ │ │ -00033490: 7469 632c 2061 6e64 202a 6e6f 7465 2043 tic, and *note C │ │ │ │ -000334a0: 6865 726e 5363 6877 6172 747a 4d61 6350 hernSchwartzMacP │ │ │ │ -000334b0: 6865 7273 6f6e 3a0a 4368 6572 6e53 6368 herson:.ChernSch │ │ │ │ -000334c0: 7761 7274 7a4d 6163 5068 6572 736f 6e2c wartzMacPherson, │ │ │ │ -000334d0: 2c20 6974 206d 6561 6e73 2077 6865 7468 , it means wheth │ │ │ │ -000334e0: 6572 2074 6f20 7573 6520 6120 6e6f 6e2d er to use a non- │ │ │ │ -000334f0: 7072 6f62 6162 696c 6973 7469 630a 616c probabilistic.al │ │ │ │ -00033500: 676f 7269 7468 6d2e 0a0a 4675 6e63 7469 gorithm...Functi │ │ │ │ -00033510: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ -00033520: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ -00033530: 2043 6572 7469 6679 3a0a 3d3d 3d3d 3d3d Certify:.====== │ │ │ │ +000331b0: 2a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 6372 *********..Descr │ │ │ │ +000331c0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +000331d0: 3d3d 0a0a 5468 6973 206f 7074 696f 6e20 ==..This option │ │ │ │ +000331e0: 6163 6365 7074 7320 6120 2a6e 6f74 6520 accepts a *note │ │ │ │ +000331f0: 426f 6f6c 6561 6e3a 2028 4d61 6361 756c Boolean: (Macaul │ │ │ │ +00033200: 6179 3244 6f63 2942 6f6f 6c65 616e 2c20 ay2Doc)Boolean, │ │ │ │ +00033210: 7661 6c75 652c 2064 6566 6175 6c74 0a76 value, default.v │ │ │ │ +00033220: 616c 7565 2066 616c 7365 2e0a 0a49 6620 alue false...If │ │ │ │ +00033230: 7475 726e 6564 206f 6e20 696e 2074 6865 turned on in the │ │ │ │ +00033240: 206d 6574 686f 6473 202a 6e6f 7465 2069 methods *note i │ │ │ │ +00033250: 6e76 6572 7365 4d61 703a 2069 6e76 6572 nverseMap: inver │ │ │ │ +00033260: 7365 4d61 702c 2061 6e64 202a 6e6f 7465 seMap, and *note │ │ │ │ +00033270: 0a61 7070 726f 7869 6d61 7465 496e 7665 .approximateInve │ │ │ │ +00033280: 7273 654d 6170 3a20 6170 7072 6f78 696d rseMap: approxim │ │ │ │ +00033290: 6174 6549 6e76 6572 7365 4d61 702c 2c20 ateInverseMap,, │ │ │ │ +000332a0: 7468 656e 2069 7420 7769 6c6c 2062 6520 then it will be │ │ │ │ +000332b0: 6368 6563 6b65 6420 7768 6574 6865 720a checked whether. │ │ │ │ +000332c0: 7468 6520 6d61 7073 2069 6e20 696e 7075 the maps in inpu │ │ │ │ +000332d0: 7420 616e 6420 6f75 7470 7574 2061 7265 t and output are │ │ │ │ +000332e0: 206f 6e65 2074 6865 2069 6e76 6572 7365 one the inverse │ │ │ │ +000332f0: 206f 6620 7468 6520 6f74 6865 722c 2074 of the other, t │ │ │ │ +00033300: 6872 6f77 696e 6720 616e 0a65 7272 6f72 hrowing an.error │ │ │ │ +00033310: 2069 6620 7468 6579 2061 7265 206e 6f74 if they are not │ │ │ │ +00033320: 2e20 4163 7475 616c 6c79 2c20 2a6e 6f74 . Actually, *not │ │ │ │ +00033330: 6520 6170 7072 6f78 696d 6174 6549 6e76 e approximateInv │ │ │ │ +00033340: 6572 7365 4d61 703a 0a61 7070 726f 7869 erseMap:.approxi │ │ │ │ +00033350: 6d61 7465 496e 7665 7273 654d 6170 2c20 mateInverseMap, │ │ │ │ +00033360: 7769 6c6c 2066 6972 7374 2074 7279 2074 will first try t │ │ │ │ +00033370: 6f20 6669 7820 7468 6520 6572 726f 7220 o fix the error │ │ │ │ +00033380: 6f66 2074 6865 2061 7070 726f 7869 6d61 of the approxima │ │ │ │ +00033390: 7469 6f6e 2e0a 5768 656e 2074 7572 6e65 tion..When turne │ │ │ │ +000333a0: 6420 6f6e 2069 6e20 7468 6520 6d65 7468 d on in the meth │ │ │ │ +000333b0: 6f64 7320 2a6e 6f74 6520 7072 6f6a 6563 ods *note projec │ │ │ │ +000333c0: 7469 7665 4465 6772 6565 733a 2070 726f tiveDegrees: pro │ │ │ │ +000333d0: 6a65 6374 6976 6544 6567 7265 6573 2c2c jectiveDegrees,, │ │ │ │ +000333e0: 0a2a 6e6f 7465 2064 6567 7265 654d 6170 .*note degreeMap │ │ │ │ +000333f0: 3a20 6465 6772 6565 4d61 702c 2c20 2a6e : degreeMap,, *n │ │ │ │ +00033400: 6f74 6520 6973 4269 7261 7469 6f6e 616c ote isBirational │ │ │ │ +00033410: 3a20 6973 4269 7261 7469 6f6e 616c 2c2c : isBirational,, │ │ │ │ +00033420: 202a 6e6f 7465 0a69 7344 6f6d 696e 616e *note.isDominan │ │ │ │ +00033430: 743a 2069 7344 6f6d 696e 616e 742c 2c20 t: isDominant,, │ │ │ │ +00033440: 2a6e 6f74 6520 5365 6772 6543 6c61 7373 *note SegreClass │ │ │ │ +00033450: 3a20 5365 6772 6543 6c61 7373 2c2c 202a : SegreClass,, * │ │ │ │ +00033460: 6e6f 7465 0a45 756c 6572 4368 6172 6163 note.EulerCharac │ │ │ │ +00033470: 7465 7269 7374 6963 3a20 4575 6c65 7243 teristic: EulerC │ │ │ │ +00033480: 6861 7261 6374 6572 6973 7469 632c 2061 haracteristic, a │ │ │ │ +00033490: 6e64 202a 6e6f 7465 2043 6865 726e 5363 nd *note ChernSc │ │ │ │ +000334a0: 6877 6172 747a 4d61 6350 6865 7273 6f6e hwartzMacPherson │ │ │ │ +000334b0: 3a0a 4368 6572 6e53 6368 7761 7274 7a4d :.ChernSchwartzM │ │ │ │ +000334c0: 6163 5068 6572 736f 6e2c 2c20 6974 206d acPherson,, it m │ │ │ │ +000334d0: 6561 6e73 2077 6865 7468 6572 2074 6f20 eans whether to │ │ │ │ +000334e0: 7573 6520 6120 6e6f 6e2d 7072 6f62 6162 use a non-probab │ │ │ │ +000334f0: 696c 6973 7469 630a 616c 676f 7269 7468 ilistic.algorith │ │ │ │ +00033500: 6d2e 0a0a 4675 6e63 7469 6f6e 7320 7769 m...Functions wi │ │ │ │ +00033510: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ +00033520: 6d65 6e74 206e 616d 6564 2043 6572 7469 ment named Certi │ │ │ │ +00033530: 6679 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d fy:.============ │ │ │ │ 00033540: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00033550: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00033560: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00033570: 6170 7072 6f78 696d 6174 6549 6e76 6572 approximateInver │ │ │ │ -00033580: 7365 4d61 7028 2e2e 2e2c 4365 7274 6966 seMap(...,Certif │ │ │ │ -00033590: 793d 3e2e 2e2e 2922 0a20 202a 2022 4368 y=>...)". * "Ch │ │ │ │ -000335a0: 6572 6e53 6368 7761 7274 7a4d 6163 5068 ernSchwartzMacPh │ │ │ │ -000335b0: 6572 736f 6e28 2e2e 2e2c 4365 7274 6966 erson(...,Certif │ │ │ │ -000335c0: 793d 3e2e 2e2e 2922 0a20 202a 2022 6465 y=>...)". * "de │ │ │ │ -000335d0: 6772 6565 4d61 7028 2e2e 2e2c 4365 7274 greeMap(...,Cert │ │ │ │ -000335e0: 6966 793d 3e2e 2e2e 2922 0a20 202a 2022 ify=>...)". * " │ │ │ │ -000335f0: 4575 6c65 7243 6861 7261 6374 6572 6973 EulerCharacteris │ │ │ │ -00033600: 7469 6328 2e2e 2e2c 4365 7274 6966 793d tic(...,Certify= │ │ │ │ -00033610: 3e2e 2e2e 2922 0a20 202a 2022 6578 6365 >...)". * "exce │ │ │ │ -00033620: 7074 696f 6e61 6c4c 6f63 7573 282e 2e2e ptionalLocus(... │ │ │ │ -00033630: 2c43 6572 7469 6679 3d3e 2e2e 2e29 220a ,Certify=>...)". │ │ │ │ -00033640: 2020 2a20 2269 6e76 6572 7365 4d61 7028 * "inverseMap( │ │ │ │ -00033650: 2e2e 2e2c 4365 7274 6966 793d 3e2e 2e2e ...,Certify=>... │ │ │ │ -00033660: 2922 0a20 202a 2022 6973 4269 7261 7469 )". * "isBirati │ │ │ │ -00033670: 6f6e 616c 282e 2e2e 2c43 6572 7469 6679 onal(...,Certify │ │ │ │ -00033680: 3d3e 2e2e 2e29 220a 2020 2a20 2269 7344 =>...)". * "isD │ │ │ │ -00033690: 6f6d 696e 616e 7428 2e2e 2e2c 4365 7274 ominant(...,Cert │ │ │ │ -000336a0: 6966 793d 3e2e 2e2e 2922 0a20 202a 2022 ify=>...)". * " │ │ │ │ -000336b0: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -000336c0: 7328 2e2e 2e2c 4365 7274 6966 793d 3e2e s(...,Certify=>. │ │ │ │ -000336d0: 2e2e 2922 0a20 202a 2022 5365 6772 6543 ..)". * "SegreC │ │ │ │ -000336e0: 6c61 7373 282e 2e2e 2c43 6572 7469 6679 lass(...,Certify │ │ │ │ -000336f0: 3d3e 2e2e 2e29 220a 0a46 6f72 2074 6865 =>...)"..For the │ │ │ │ -00033700: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00033710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00033720: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00033730: 2043 6572 7469 6679 3a20 4365 7274 6966 Certify: Certif │ │ │ │ -00033740: 792c 2069 7320 6120 2a6e 6f74 6520 7379 y, is a *note sy │ │ │ │ -00033750: 6d62 6f6c 3a20 284d 6163 6175 6c61 7932 mbol: (Macaulay2 │ │ │ │ -00033760: 446f 6329 5379 6d62 6f6c 2c2e 0a0a 2d2d Doc)Symbol,...-- │ │ │ │ +00033560: 3d3d 3d0a 0a20 202a 2022 6170 7072 6f78 ===.. * "approx │ │ │ │ +00033570: 696d 6174 6549 6e76 6572 7365 4d61 7028 imateInverseMap( │ │ │ │ +00033580: 2e2e 2e2c 4365 7274 6966 793d 3e2e 2e2e ...,Certify=>... │ │ │ │ +00033590: 2922 0a20 202a 2022 4368 6572 6e53 6368 )". * "ChernSch │ │ │ │ +000335a0: 7761 7274 7a4d 6163 5068 6572 736f 6e28 wartzMacPherson( │ │ │ │ +000335b0: 2e2e 2e2c 4365 7274 6966 793d 3e2e 2e2e ...,Certify=>... │ │ │ │ +000335c0: 2922 0a20 202a 2022 6465 6772 6565 4d61 )". * "degreeMa │ │ │ │ +000335d0: 7028 2e2e 2e2c 4365 7274 6966 793d 3e2e p(...,Certify=>. │ │ │ │ +000335e0: 2e2e 2922 0a20 202a 2022 4575 6c65 7243 ..)". * "EulerC │ │ │ │ +000335f0: 6861 7261 6374 6572 6973 7469 6328 2e2e haracteristic(.. │ │ │ │ +00033600: 2e2c 4365 7274 6966 793d 3e2e 2e2e 2922 .,Certify=>...)" │ │ │ │ +00033610: 0a20 202a 2022 6578 6365 7074 696f 6e61 . * "exceptiona │ │ │ │ +00033620: 6c4c 6f63 7573 282e 2e2e 2c43 6572 7469 lLocus(...,Certi │ │ │ │ +00033630: 6679 3d3e 2e2e 2e29 220a 2020 2a20 2269 fy=>...)". * "i │ │ │ │ +00033640: 6e76 6572 7365 4d61 7028 2e2e 2e2c 4365 nverseMap(...,Ce │ │ │ │ +00033650: 7274 6966 793d 3e2e 2e2e 2922 0a20 202a rtify=>...)". * │ │ │ │ +00033660: 2022 6973 4269 7261 7469 6f6e 616c 282e "isBirational(. │ │ │ │ +00033670: 2e2e 2c43 6572 7469 6679 3d3e 2e2e 2e29 ..,Certify=>...) │ │ │ │ +00033680: 220a 2020 2a20 2269 7344 6f6d 696e 616e ". * "isDominan │ │ │ │ +00033690: 7428 2e2e 2e2c 4365 7274 6966 793d 3e2e t(...,Certify=>. │ │ │ │ +000336a0: 2e2e 2922 0a20 202a 2022 7072 6f6a 6563 ..)". * "projec │ │ │ │ +000336b0: 7469 7665 4465 6772 6565 7328 2e2e 2e2c tiveDegrees(..., │ │ │ │ +000336c0: 4365 7274 6966 793d 3e2e 2e2e 2922 0a20 Certify=>...)". │ │ │ │ +000336d0: 202a 2022 5365 6772 6543 6c61 7373 282e * "SegreClass(. │ │ │ │ +000336e0: 2e2e 2c43 6572 7469 6679 3d3e 2e2e 2e29 ..,Certify=>...) │ │ │ │ +000336f0: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00033700: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00033710: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00033720: 6a65 6374 202a 6e6f 7465 2043 6572 7469 ject *note Certi │ │ │ │ +00033730: 6679 3a20 4365 7274 6966 792c 2069 7320 fy: Certify, is │ │ │ │ +00033740: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ +00033750: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ +00033760: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ 00033770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000337a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000337b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -000337c0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -000337d0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -000337e0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -000337f0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -00033800: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -00033810: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -00033820: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -00033830: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a38 cumentation.m2:8 │ │ │ │ -00033840: 333a 302e 0a1f 0a46 696c 653a 2043 7265 3:0....File: Cre │ │ │ │ -00033850: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ -00033860: 2043 6865 726e 5363 6877 6172 747a 4d61 ChernSchwartzMa │ │ │ │ -00033870: 6350 6865 7273 6f6e 2c20 4e65 7874 3a20 cPherson, Next: │ │ │ │ -00033880: 436f 6469 6d42 7349 6e76 2c20 5072 6576 CodimBsInv, Prev │ │ │ │ -00033890: 3a20 4365 7274 6966 792c 2055 703a 2054 : Certify, Up: T │ │ │ │ -000338a0: 6f70 0a0a 4368 6572 6e53 6368 7761 7274 op..ChernSchwart │ │ │ │ -000338b0: 7a4d 6163 5068 6572 736f 6e20 2d2d 2043 zMacPherson -- C │ │ │ │ -000338c0: 6865 726e 2d53 6368 7761 7274 7a2d 4d61 hern-Schwartz-Ma │ │ │ │ -000338d0: 6350 6865 7273 6f6e 2063 6c61 7373 206f cPherson class o │ │ │ │ -000338e0: 6620 6120 7072 6f6a 6563 7469 7665 2073 f a projective s │ │ │ │ -000338f0: 6368 656d 650a 2a2a 2a2a 2a2a 2a2a 2a2a cheme.********** │ │ │ │ +000337b0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +000337c0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +000337d0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +000337e0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +000337f0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00033800: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00033810: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +00033820: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +00033830: 6174 696f 6e2e 6d32 3a38 333a 302e 0a1f ation.m2:83:0... │ │ │ │ +00033840: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ +00033850: 6e66 6f2c 204e 6f64 653a 2043 6865 726e nfo, Node: Chern │ │ │ │ +00033860: 5363 6877 6172 747a 4d61 6350 6865 7273 SchwartzMacPhers │ │ │ │ +00033870: 6f6e 2c20 4e65 7874 3a20 436f 6469 6d42 on, Next: CodimB │ │ │ │ +00033880: 7349 6e76 2c20 5072 6576 3a20 4365 7274 sInv, Prev: Cert │ │ │ │ +00033890: 6966 792c 2055 703a 2054 6f70 0a0a 4368 ify, Up: Top..Ch │ │ │ │ +000338a0: 6572 6e53 6368 7761 7274 7a4d 6163 5068 ernSchwartzMacPh │ │ │ │ +000338b0: 6572 736f 6e20 2d2d 2043 6865 726e 2d53 erson -- Chern-S │ │ │ │ +000338c0: 6368 7761 7274 7a2d 4d61 6350 6865 7273 chwartz-MacPhers │ │ │ │ +000338d0: 6f6e 2063 6c61 7373 206f 6620 6120 7072 on class of a pr │ │ │ │ +000338e0: 6f6a 6563 7469 7665 2073 6368 656d 650a ojective scheme. │ │ │ │ +000338f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00033900: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00033910: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00033920: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00033930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00033940: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 7361 *******.. * Usa │ │ │ │ -00033950: 6765 3a20 0a20 2020 2020 2020 2043 6865 ge: . Che │ │ │ │ -00033960: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ -00033970: 7273 6f6e 2049 0a20 202a 2049 6e70 7574 rson I. * Input │ │ │ │ -00033980: 733a 0a20 2020 2020 202a 2049 2c20 616e s:. * I, an │ │ │ │ -00033990: 202a 6e6f 7465 2069 6465 616c 3a20 284d *note ideal: (M │ │ │ │ -000339a0: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ -000339b0: 6c2c 2c20 6120 686f 6d6f 6765 6e65 6f75 l,, a homogeneou │ │ │ │ -000339c0: 7320 6964 6561 6c20 6465 6669 6e69 6e67 s ideal defining │ │ │ │ -000339d0: 2061 0a20 2020 2020 2020 2063 6c6f 7365 a. close │ │ │ │ -000339e0: 6420 7375 6273 6368 656d 6520 2458 5c73 d subscheme $X\s │ │ │ │ -000339f0: 7562 7365 745c 6d61 7468 6262 7b50 7d5e ubset\mathbb{P}^ │ │ │ │ -00033a00: 6e24 0a20 202a 202a 6e6f 7465 204f 7074 n$. * *note Opt │ │ │ │ -00033a10: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -00033a20: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -00033a30: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -00033a40: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -00033a50: 2c3a 0a20 2020 2020 202a 202a 6e6f 7465 ,:. * *note │ │ │ │ -00033a60: 2042 6c6f 7755 7053 7472 6174 6567 793a BlowUpStrategy: │ │ │ │ -00033a70: 2042 6c6f 7755 7053 7472 6174 6567 792c BlowUpStrategy, │ │ │ │ -00033a80: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -00033a90: 2076 616c 7565 0a20 2020 2020 2020 2022 value. " │ │ │ │ -00033aa0: 456c 696d 696e 6174 6522 2c0a 2020 2020 Eliminate",. │ │ │ │ -00033ab0: 2020 2a20 2a6e 6f74 6520 4365 7274 6966 * *note Certif │ │ │ │ -00033ac0: 793a 2043 6572 7469 6679 2c20 3d3e 202e y: Certify, => . │ │ │ │ -00033ad0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -00033ae0: 6520 6661 6c73 652c 2077 6865 7468 6572 e false, whether │ │ │ │ -00033af0: 2074 6f20 656e 7375 7265 0a20 2020 2020 to ensure. │ │ │ │ -00033b00: 2020 2063 6f72 7265 6374 6e65 7373 206f correctness o │ │ │ │ -00033b10: 6620 6f75 7470 7574 0a20 2020 2020 202a f output. * │ │ │ │ -00033b20: 202a 6e6f 7465 2056 6572 626f 7365 3a20 *note Verbose: │ │ │ │ -00033b30: 696e 7665 7273 654d 6170 5f6c 705f 7064 inverseMap_lp_pd │ │ │ │ -00033b40: 5f70 645f 7064 5f63 6d56 6572 626f 7365 _pd_pd_cmVerbose │ │ │ │ -00033b50: 3d3e 5f70 645f 7064 5f70 645f 7270 2c20 =>_pd_pd_pd_rp, │ │ │ │ -00033b60: 3d3e 202e 2e2e 2c0a 2020 2020 2020 2020 => ...,. │ │ │ │ -00033b70: 6465 6661 756c 7420 7661 6c75 6520 7472 default value tr │ │ │ │ -00033b80: 7565 2c0a 2020 2a20 4f75 7470 7574 733a ue,. * Outputs: │ │ │ │ -00033b90: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ -00033ba0: 2072 696e 6720 656c 656d 656e 743a 2028 ring element: ( │ │ │ │ -00033bb0: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ -00033bc0: 6745 6c65 6d65 6e74 2c2c 2074 6865 2070 gElement,, the p │ │ │ │ -00033bd0: 7573 682d 666f 7277 6172 6420 746f 0a20 ush-forward to. │ │ │ │ -00033be0: 2020 2020 2020 2074 6865 2043 686f 7720 the Chow │ │ │ │ -00033bf0: 7269 6e67 206f 6620 245c 6d61 7468 6262 ring of $\mathbb │ │ │ │ -00033c00: 7b50 7d5e 6e24 206f 6620 7468 6520 4368 {P}^n$ of the Ch │ │ │ │ -00033c10: 6572 6e2d 5363 6877 6172 747a 2d4d 6163 ern-Schwartz-Mac │ │ │ │ -00033c20: 5068 6572 736f 6e20 636c 6173 730a 2020 Pherson class. │ │ │ │ -00033c30: 2020 2020 2020 2463 5f7b 534d 7d28 5829 $c_{SM}(X) │ │ │ │ -00033c40: 2420 6f66 2024 5824 2e20 496e 2070 6172 $ of $X$. In par │ │ │ │ -00033c50: 7469 6375 6c61 722c 2074 6865 2063 6f65 ticular, the coe │ │ │ │ -00033c60: 6666 6963 6965 6e74 206f 6620 2448 5e6e fficient of $H^n │ │ │ │ -00033c70: 2420 6769 7665 7320 7468 650a 2020 2020 $ gives the. │ │ │ │ -00033c80: 2020 2020 4575 6c65 7220 6368 6172 6163 Euler charac │ │ │ │ -00033c90: 7465 7269 7374 6963 206f 6620 7468 6520 teristic of the │ │ │ │ -00033ca0: 7375 7070 6f72 7420 6f66 2024 5824 2c20 support of $X$, │ │ │ │ -00033cb0: 7768 6572 6520 2448 2420 6465 6e6f 7465 where $H$ denote │ │ │ │ -00033cc0: 7320 7468 650a 2020 2020 2020 2020 6879 s the. hy │ │ │ │ -00033cd0: 7065 7270 6c61 6e65 2063 6c61 7373 2e0a perplane class.. │ │ │ │ -00033ce0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00033cf0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2069 ========..This i │ │ │ │ -00033d00: 7320 616e 2065 7861 6d70 6c65 206f 6620 s an example of │ │ │ │ -00033d10: 6170 706c 6963 6174 696f 6e20 6f66 2074 application of t │ │ │ │ -00033d20: 6865 206d 6574 686f 6420 2a6e 6f74 6520 he method *note │ │ │ │ -00033d30: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -00033d40: 733a 0a70 726f 6a65 6374 6976 6544 6567 s:.projectiveDeg │ │ │ │ -00033d50: 7265 6573 2c2c 2064 7565 2074 6f20 7265 rees,, due to re │ │ │ │ -00033d60: 7375 6c74 7320 7368 6f77 6e20 696e 2043 sults shown in C │ │ │ │ -00033d70: 6f6d 7075 7469 6e67 2063 6861 7261 6374 omputing charact │ │ │ │ -00033d80: 6572 6973 7469 6320 636c 6173 7365 7320 eristic classes │ │ │ │ -00033d90: 6f66 0a70 726f 6a65 6374 6976 6520 7363 of.projective sc │ │ │ │ -00033da0: 6865 6d65 7320 2873 6565 2068 7474 703a hemes (see http: │ │ │ │ -00033db0: 2f2f 7777 772e 7363 6965 6e63 6564 6972 //www.sciencedir │ │ │ │ -00033dc0: 6563 742e 636f 6d2f 7363 6965 6e63 652f ect.com/science/ │ │ │ │ -00033dd0: 6172 7469 636c 652f 7069 692f 0a53 3037 article/pii/.S07 │ │ │ │ -00033de0: 3437 3731 3731 3032 3030 3038 3935 2029 47717102000895 ) │ │ │ │ -00033df0: 2c20 6279 2050 2e20 416c 7566 6669 2e20 , by P. Aluffi. │ │ │ │ -00033e00: 5365 6520 616c 736f 2074 6865 2063 6f72 See also the cor │ │ │ │ -00033e10: 7265 7370 6f6e 6469 6e67 206d 6574 686f responding metho │ │ │ │ -00033e20: 6473 2069 6e20 7468 650a 7061 636b 6167 ds in the.packag │ │ │ │ -00033e30: 6573 2043 534d 2d41 2028 7365 6520 6874 es CSM-A (see ht │ │ │ │ -00033e40: 7470 3a2f 2f77 7777 2e6d 6174 682e 6673 tp://www.math.fs │ │ │ │ -00033e50: 752e 6564 752f 7e61 6c75 6666 692f 4353 u.edu/~aluffi/CS │ │ │ │ -00033e60: 4d2f 4353 4d2e 6874 6d6c 2029 2c20 6279 M/CSM.html ), by │ │ │ │ -00033e70: 2050 2e0a 416c 7566 6669 2c20 616e 6420 P..Aluffi, and │ │ │ │ -00033e80: 2a6e 6f74 6520 4368 6172 6163 7465 7269 *note Characteri │ │ │ │ -00033e90: 7374 6963 436c 6173 7365 733a 2028 4368 sticClasses: (Ch │ │ │ │ -00033ea0: 6172 6163 7465 7269 7374 6963 436c 6173 aracteristicClas │ │ │ │ -00033eb0: 7365 7329 546f 702c 2c20 6279 204d 2e0a ses)Top,, by M.. │ │ │ │ -00033ec0: 4865 6c6d 6572 2061 6e64 2043 2e20 4a6f Helmer and C. Jo │ │ │ │ -00033ed0: 7374 2e0a 0a49 6e20 7468 6520 6578 616d st...In the exam │ │ │ │ -00033ee0: 706c 6520 6265 6c6f 772c 2077 6520 636f ple below, we co │ │ │ │ -00033ef0: 6d70 7574 6520 7468 6520 7075 7368 2d66 mpute the push-f │ │ │ │ -00033f00: 6f72 7761 7264 2074 6f20 7468 6520 4368 orward to the Ch │ │ │ │ -00033f10: 6f77 2072 696e 6720 6f66 0a24 5c6d 6174 ow ring of.$\mat │ │ │ │ -00033f20: 6862 627b 507d 5e34 2420 6f66 2074 6865 hbb{P}^4$ of the │ │ │ │ -00033f30: 2043 6865 726e 2d53 6368 7761 7274 7a2d Chern-Schwartz- │ │ │ │ -00033f40: 4d61 6350 6865 7273 6f6e 2063 6c61 7373 MacPherson class │ │ │ │ -00033f50: 206f 6620 7468 6520 636f 6e65 206f 7665 of the cone ove │ │ │ │ -00033f60: 7220 7468 650a 7477 6973 7465 6420 6375 r the.twisted cu │ │ │ │ -00033f70: 6269 6320 6375 7276 652c 2075 7369 6e67 bic curve, using │ │ │ │ -00033f80: 2062 6f74 6820 6120 7072 6f62 6162 696c both a probabil │ │ │ │ -00033f90: 6973 7469 6320 616e 6420 6120 6e6f 6e2d istic and a non- │ │ │ │ -00033fa0: 7072 6f62 6162 696c 6973 7469 630a 6170 probabilistic.ap │ │ │ │ -00033fb0: 7072 6f61 6368 2e0a 0a2b 2d2d 2d2d 2d2d proach...+------ │ │ │ │ +00033940: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ +00033950: 2020 2020 2020 2043 6865 726e 5363 6877 ChernSchw │ │ │ │ +00033960: 6172 747a 4d61 6350 6865 7273 6f6e 2049 artzMacPherson I │ │ │ │ +00033970: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00033980: 2020 202a 2049 2c20 616e 202a 6e6f 7465 * I, an *note │ │ │ │ +00033990: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ +000339a0: 7932 446f 6329 4964 6561 6c2c 2c20 6120 y2Doc)Ideal,, a │ │ │ │ +000339b0: 686f 6d6f 6765 6e65 6f75 7320 6964 6561 homogeneous idea │ │ │ │ +000339c0: 6c20 6465 6669 6e69 6e67 2061 0a20 2020 l defining a. │ │ │ │ +000339d0: 2020 2020 2063 6c6f 7365 6420 7375 6273 closed subs │ │ │ │ +000339e0: 6368 656d 6520 2458 5c73 7562 7365 745c cheme $X\subset\ │ │ │ │ +000339f0: 6d61 7468 6262 7b50 7d5e 6e24 0a20 202a mathbb{P}^n$. * │ │ │ │ +00033a00: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +00033a10: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ +00033a20: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ +00033a30: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +00033a40: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ +00033a50: 2020 202a 202a 6e6f 7465 2042 6c6f 7755 * *note BlowU │ │ │ │ +00033a60: 7053 7472 6174 6567 793a 2042 6c6f 7755 pStrategy: BlowU │ │ │ │ +00033a70: 7053 7472 6174 6567 792c 203d 3e20 2e2e pStrategy, => .. │ │ │ │ +00033a80: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +00033a90: 0a20 2020 2020 2020 2022 456c 696d 696e . "Elimin │ │ │ │ +00033aa0: 6174 6522 2c0a 2020 2020 2020 2a20 2a6e ate",. * *n │ │ │ │ +00033ab0: 6f74 6520 4365 7274 6966 793a 2043 6572 ote Certify: Cer │ │ │ │ +00033ac0: 7469 6679 2c20 3d3e 202e 2e2e 2c20 6465 tify, => ..., de │ │ │ │ +00033ad0: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ +00033ae0: 652c 2077 6865 7468 6572 2074 6f20 656e e, whether to en │ │ │ │ +00033af0: 7375 7265 0a20 2020 2020 2020 2063 6f72 sure. cor │ │ │ │ +00033b00: 7265 6374 6e65 7373 206f 6620 6f75 7470 rectness of outp │ │ │ │ +00033b10: 7574 0a20 2020 2020 202a 202a 6e6f 7465 ut. * *note │ │ │ │ +00033b20: 2056 6572 626f 7365 3a20 696e 7665 7273 Verbose: invers │ │ │ │ +00033b30: 654d 6170 5f6c 705f 7064 5f70 645f 7064 eMap_lp_pd_pd_pd │ │ │ │ +00033b40: 5f63 6d56 6572 626f 7365 3d3e 5f70 645f _cmVerbose=>_pd_ │ │ │ │ +00033b50: 7064 5f70 645f 7270 2c20 3d3e 202e 2e2e pd_pd_rp, => ... │ │ │ │ +00033b60: 2c0a 2020 2020 2020 2020 6465 6661 756c ,. defaul │ │ │ │ +00033b70: 7420 7661 6c75 6520 7472 7565 2c0a 2020 t value true,. │ │ │ │ +00033b80: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00033b90: 202a 2061 202a 6e6f 7465 2072 696e 6720 * a *note ring │ │ │ │ +00033ba0: 656c 656d 656e 743a 2028 4d61 6361 756c element: (Macaul │ │ │ │ +00033bb0: 6179 3244 6f63 2952 696e 6745 6c65 6d65 ay2Doc)RingEleme │ │ │ │ +00033bc0: 6e74 2c2c 2074 6865 2070 7573 682d 666f nt,, the push-fo │ │ │ │ +00033bd0: 7277 6172 6420 746f 0a20 2020 2020 2020 rward to. │ │ │ │ +00033be0: 2074 6865 2043 686f 7720 7269 6e67 206f the Chow ring o │ │ │ │ +00033bf0: 6620 245c 6d61 7468 6262 7b50 7d5e 6e24 f $\mathbb{P}^n$ │ │ │ │ +00033c00: 206f 6620 7468 6520 4368 6572 6e2d 5363 of the Chern-Sc │ │ │ │ +00033c10: 6877 6172 747a 2d4d 6163 5068 6572 736f hwartz-MacPherso │ │ │ │ +00033c20: 6e20 636c 6173 730a 2020 2020 2020 2020 n class. │ │ │ │ +00033c30: 2463 5f7b 534d 7d28 5829 2420 6f66 2024 $c_{SM}(X)$ of $ │ │ │ │ +00033c40: 5824 2e20 496e 2070 6172 7469 6375 6c61 X$. In particula │ │ │ │ +00033c50: 722c 2074 6865 2063 6f65 6666 6963 6965 r, the coefficie │ │ │ │ +00033c60: 6e74 206f 6620 2448 5e6e 2420 6769 7665 nt of $H^n$ give │ │ │ │ +00033c70: 7320 7468 650a 2020 2020 2020 2020 4575 s the. Eu │ │ │ │ +00033c80: 6c65 7220 6368 6172 6163 7465 7269 7374 ler characterist │ │ │ │ +00033c90: 6963 206f 6620 7468 6520 7375 7070 6f72 ic of the suppor │ │ │ │ +00033ca0: 7420 6f66 2024 5824 2c20 7768 6572 6520 t of $X$, where │ │ │ │ +00033cb0: 2448 2420 6465 6e6f 7465 7320 7468 650a $H$ denotes the. │ │ │ │ +00033cc0: 2020 2020 2020 2020 6879 7065 7270 6c61 hyperpla │ │ │ │ +00033cd0: 6e65 2063 6c61 7373 2e0a 0a44 6573 6372 ne class...Descr │ │ │ │ +00033ce0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00033cf0: 3d3d 0a0a 5468 6973 2069 7320 616e 2065 ==..This is an e │ │ │ │ +00033d00: 7861 6d70 6c65 206f 6620 6170 706c 6963 xample of applic │ │ │ │ +00033d10: 6174 696f 6e20 6f66 2074 6865 206d 6574 ation of the met │ │ │ │ +00033d20: 686f 6420 2a6e 6f74 6520 7072 6f6a 6563 hod *note projec │ │ │ │ +00033d30: 7469 7665 4465 6772 6565 733a 0a70 726f tiveDegrees:.pro │ │ │ │ +00033d40: 6a65 6374 6976 6544 6567 7265 6573 2c2c jectiveDegrees,, │ │ │ │ +00033d50: 2064 7565 2074 6f20 7265 7375 6c74 7320 due to results │ │ │ │ +00033d60: 7368 6f77 6e20 696e 2043 6f6d 7075 7469 shown in Computi │ │ │ │ +00033d70: 6e67 2063 6861 7261 6374 6572 6973 7469 ng characteristi │ │ │ │ +00033d80: 6320 636c 6173 7365 7320 6f66 0a70 726f c classes of.pro │ │ │ │ +00033d90: 6a65 6374 6976 6520 7363 6865 6d65 7320 jective schemes │ │ │ │ +00033da0: 2873 6565 2068 7474 703a 2f2f 7777 772e (see http://www. │ │ │ │ +00033db0: 7363 6965 6e63 6564 6972 6563 742e 636f sciencedirect.co │ │ │ │ +00033dc0: 6d2f 7363 6965 6e63 652f 6172 7469 636c m/science/articl │ │ │ │ +00033dd0: 652f 7069 692f 0a53 3037 3437 3731 3731 e/pii/.S07477171 │ │ │ │ +00033de0: 3032 3030 3038 3935 2029 2c20 6279 2050 02000895 ), by P │ │ │ │ +00033df0: 2e20 416c 7566 6669 2e20 5365 6520 616c . Aluffi. See al │ │ │ │ +00033e00: 736f 2074 6865 2063 6f72 7265 7370 6f6e so the correspon │ │ │ │ +00033e10: 6469 6e67 206d 6574 686f 6473 2069 6e20 ding methods in │ │ │ │ +00033e20: 7468 650a 7061 636b 6167 6573 2043 534d the.packages CSM │ │ │ │ +00033e30: 2d41 2028 7365 6520 6874 7470 3a2f 2f77 -A (see http://w │ │ │ │ +00033e40: 7777 2e6d 6174 682e 6673 752e 6564 752f ww.math.fsu.edu/ │ │ │ │ +00033e50: 7e61 6c75 6666 692f 4353 4d2f 4353 4d2e ~aluffi/CSM/CSM. │ │ │ │ +00033e60: 6874 6d6c 2029 2c20 6279 2050 2e0a 416c html ), by P..Al │ │ │ │ +00033e70: 7566 6669 2c20 616e 6420 2a6e 6f74 6520 uffi, and *note │ │ │ │ +00033e80: 4368 6172 6163 7465 7269 7374 6963 436c CharacteristicCl │ │ │ │ +00033e90: 6173 7365 733a 2028 4368 6172 6163 7465 asses: (Characte │ │ │ │ +00033ea0: 7269 7374 6963 436c 6173 7365 7329 546f risticClasses)To │ │ │ │ +00033eb0: 702c 2c20 6279 204d 2e0a 4865 6c6d 6572 p,, by M..Helmer │ │ │ │ +00033ec0: 2061 6e64 2043 2e20 4a6f 7374 2e0a 0a49 and C. Jost...I │ │ │ │ +00033ed0: 6e20 7468 6520 6578 616d 706c 6520 6265 n the example be │ │ │ │ +00033ee0: 6c6f 772c 2077 6520 636f 6d70 7574 6520 low, we compute │ │ │ │ +00033ef0: 7468 6520 7075 7368 2d66 6f72 7761 7264 the push-forward │ │ │ │ +00033f00: 2074 6f20 7468 6520 4368 6f77 2072 696e to the Chow rin │ │ │ │ +00033f10: 6720 6f66 0a24 5c6d 6174 6862 627b 507d g of.$\mathbb{P} │ │ │ │ +00033f20: 5e34 2420 6f66 2074 6865 2043 6865 726e ^4$ of the Chern │ │ │ │ +00033f30: 2d53 6368 7761 7274 7a2d 4d61 6350 6865 -Schwartz-MacPhe │ │ │ │ +00033f40: 7273 6f6e 2063 6c61 7373 206f 6620 7468 rson class of th │ │ │ │ +00033f50: 6520 636f 6e65 206f 7665 7220 7468 650a e cone over the. │ │ │ │ +00033f60: 7477 6973 7465 6420 6375 6269 6320 6375 twisted cubic cu │ │ │ │ +00033f70: 7276 652c 2075 7369 6e67 2062 6f74 6820 rve, using both │ │ │ │ +00033f80: 6120 7072 6f62 6162 696c 6973 7469 6320 a probabilistic │ │ │ │ +00033f90: 616e 6420 6120 6e6f 6e2d 7072 6f62 6162 and a non-probab │ │ │ │ +00033fa0: 696c 6973 7469 630a 6170 7072 6f61 6368 ilistic.approach │ │ │ │ +00033fb0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 00033fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00033fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00033ff0: 2b0a 7c69 3120 3a20 4746 2835 5e37 295b +.|i1 : GF(5^7)[ │ │ │ │ -00034000: 785f 302e 2e78 5f34 5d20 2020 2020 2020 x_0..x_4] │ │ │ │ +00033fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +00033ff0: 3a20 4746 2835 5e37 295b 785f 302e 2e78 : GF(5^7)[x_0..x │ │ │ │ +00034000: 5f34 5d20 2020 2020 2020 2020 2020 2020 _4] │ │ │ │ 00034010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00034020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00034030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034060: 2020 7c0a 7c6f 3120 3d20 4746 2037 3831 |.|o1 = GF 781 │ │ │ │ -00034070: 3235 5b78 202e 2e78 205d 2020 2020 2020 25[x ..x ] │ │ │ │ +00034050: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00034060: 3120 3d20 4746 2037 3831 3235 5b78 202e 1 = GF 78125[x . │ │ │ │ +00034070: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ 00034080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034090: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000340a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000340b0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000340c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000340d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00034090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000340a0: 2020 2020 2020 2030 2020 2034 2020 2020 0 4 │ │ │ │ +000340b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000340c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000340d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000340e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000340f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034100: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00034110: 6f31 203a 2050 6f6c 796e 6f6d 6961 6c52 o1 : PolynomialR │ │ │ │ -00034120: 696e 6720 2020 2020 2020 2020 2020 2020 ing │ │ │ │ +00034100: 2020 2020 2020 207c 0a7c 6f31 203a 2050 |.|o1 : P │ │ │ │ +00034110: 6f6c 796e 6f6d 6961 6c52 696e 6720 2020 olynomialRing │ │ │ │ +00034120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034140: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00034140: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00034150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00034180: 0a7c 6932 203a 2043 203d 206d 696e 6f72 .|i2 : C = minor │ │ │ │ -00034190: 7328 322c 6d61 7472 6978 7b7b 785f 302c s(2,matrix{{x_0, │ │ │ │ -000341a0: 785f 312c 785f 327d 2c7b 785f 312c 785f x_1,x_2},{x_1,x_ │ │ │ │ -000341b0: 322c 785f 337d 7d29 7c0a 7c20 2020 2020 2,x_3}})|.| │ │ │ │ +00034170: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00034180: 2043 203d 206d 696e 6f72 7328 322c 6d61 C = minors(2,ma │ │ │ │ +00034190: 7472 6978 7b7b 785f 302c 785f 312c 785f trix{{x_0,x_1,x_ │ │ │ │ +000341a0: 327d 2c7b 785f 312c 785f 322c 785f 337d 2},{x_1,x_2,x_3} │ │ │ │ +000341b0: 7d29 7c0a 7c20 2020 2020 2020 2020 2020 })|.| │ │ │ │ 000341c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000341d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000341f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00034200: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00034210: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00034220: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ -00034230: 3d20 6964 6561 6c20 282d 2078 2020 2b20 = ideal (- x + │ │ │ │ -00034240: 7820 7820 2c20 2d20 7820 7820 202b 2078 x x , - x x + x │ │ │ │ -00034250: 2078 202c 202d 2078 2020 2b20 7820 7820 x , - x + x x │ │ │ │ -00034260: 2920 207c 0a7c 2020 2020 2020 2020 2020 ) |.| │ │ │ │ -00034270: 2020 2020 2031 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ -00034280: 2020 3120 3220 2020 2030 2033 2020 2020 1 2 0 3 │ │ │ │ -00034290: 2032 2020 2020 3120 3320 2020 7c0a 7c20 2 1 3 |.| │ │ │ │ +000341e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000341f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00034200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034210: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +00034220: 2020 2020 7c0a 7c6f 3220 3d20 6964 6561 |.|o2 = idea │ │ │ │ +00034230: 6c20 282d 2078 2020 2b20 7820 7820 2c20 l (- x + x x , │ │ │ │ +00034240: 2d20 7820 7820 202b 2078 2078 202c 202d - x x + x x , - │ │ │ │ +00034250: 2078 2020 2b20 7820 7820 2920 207c 0a7c x + x x ) |.| │ │ │ │ +00034260: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00034270: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +00034280: 2020 2030 2033 2020 2020 2032 2020 2020 0 3 2 │ │ │ │ +00034290: 3120 3320 2020 7c0a 7c20 2020 2020 2020 1 3 |.| │ │ │ │ 000342a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000342b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000342d0: 2020 2020 207c 0a7c 6f32 203a 2049 6465 |.|o2 : Ide │ │ │ │ -000342e0: 616c 206f 6620 4746 2037 3831 3235 5b78 al of GF 78125[x │ │ │ │ -000342f0: 202e 2e78 205d 2020 2020 2020 2020 2020 ..x ] │ │ │ │ -00034300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00034310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00034320: 2020 2020 2020 2020 2030 2020 2034 2020 0 4 │ │ │ │ +000342c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000342d0: 0a7c 6f32 203a 2049 6465 616c 206f 6620 .|o2 : Ideal of │ │ │ │ +000342e0: 4746 2037 3831 3235 5b78 202e 2e78 205d GF 78125[x ..x ] │ │ │ │ +000342f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00034310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034320: 2020 2030 2020 2034 2020 2020 2020 2020 0 4 │ │ │ │ 00034330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034340: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00034340: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00034350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034380: 2b0a 7c69 3320 3a20 7469 6d65 2043 6865 +.|i3 : time Che │ │ │ │ -00034390: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ -000343a0: 7273 6f6e 2043 2020 2020 2020 2020 2020 rson C │ │ │ │ -000343b0: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -000343c0: 7573 6564 2032 2e32 3538 3632 7320 2863 used 2.25862s (c │ │ │ │ -000343d0: 7075 293b 2031 2e31 3833 3232 7320 2874 pu); 1.18322s (t │ │ │ │ -000343e0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -000343f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00034370: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +00034380: 3a20 7469 6d65 2043 6865 726e 5363 6877 : time ChernSchw │ │ │ │ +00034390: 6172 747a 4d61 6350 6865 7273 6f6e 2043 artzMacPherson C │ │ │ │ +000343a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000343b0: 2020 207c 0a7c 202d 2d20 7573 6564 2032 |.| -- used 2 │ │ │ │ +000343c0: 2e35 3433 3433 7320 2863 7075 293b 2031 .54343s (cpu); 1 │ │ │ │ +000343d0: 2e33 3433 3034 7320 2874 6872 6561 6429 .34304s (thread) │ │ │ │ +000343e0: 3b20 3073 2028 6763 2920 2020 7c0a 7c20 ; 0s (gc) |.| │ │ │ │ +000343f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00034430: 2020 2020 2034 2020 2020 2033 2020 2020 4 3 │ │ │ │ -00034440: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00034450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034460: 2020 2020 7c0a 7c6f 3320 3d20 3348 2020 |.|o3 = 3H │ │ │ │ -00034470: 2b20 3548 2020 2b20 3348 2020 2020 2020 + 5H + 3H │ │ │ │ +00034420: 2020 2020 207c 0a7c 2020 2020 2020 2034 |.| 4 │ │ │ │ +00034430: 2020 2020 2033 2020 2020 2032 2020 2020 3 2 │ │ │ │ +00034440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00034460: 7c6f 3320 3d20 3348 2020 2b20 3548 2020 |o3 = 3H + 5H │ │ │ │ +00034470: 2b20 3348 2020 2020 2020 2020 2020 2020 + 3H │ │ │ │ 00034480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034490: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00034490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000344a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000344d0: 2020 2020 2020 7c0a 7c20 2020 2020 5a5a |.| ZZ │ │ │ │ -000344e0: 5b48 5d20 2020 2020 2020 2020 2020 2020 [H] │ │ │ │ +000344d0: 7c0a 7c20 2020 2020 5a5a 5b48 5d20 2020 |.| ZZ[H] │ │ │ │ +000344e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000344f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00034510: 0a7c 6f33 203a 202d 2d2d 2d2d 2020 2020 .|o3 : ----- │ │ │ │ +00034500: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00034510: 202d 2d2d 2d2d 2020 2020 2020 2020 2020 ----- │ │ │ │ 00034520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00034550: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00034540: 2020 7c0a 7c20 2020 2020 2020 2035 2020 |.| 5 │ │ │ │ +00034550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034580: 207c 0a7c 2020 2020 2020 2048 2020 2020 |.| H │ │ │ │ +00034570: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00034580: 2020 2020 2048 2020 2020 2020 2020 2020 H │ │ │ │ 00034590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000345a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000345b0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000345b0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 000345c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000345d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000345e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000345f0: 2d2d 2d2b 0a7c 6934 203a 2074 696d 6520 ---+.|i4 : time │ │ │ │ -00034600: 4368 6572 6e53 6368 7761 7274 7a4d 6163 ChernSchwartzMac │ │ │ │ -00034610: 5068 6572 736f 6e28 432c 4365 7274 6966 Pherson(C,Certif │ │ │ │ -00034620: 793d 3e74 7275 6529 2020 2020 7c0a 7c43 y=>true) |.|C │ │ │ │ -00034630: 6572 7469 6679 3a20 6f75 7470 7574 2063 ertify: output c │ │ │ │ -00034640: 6572 7469 6669 6564 2120 2020 2020 2020 ertified! │ │ │ │ -00034650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034660: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -00034670: 2031 2e36 3137 3834 7320 2863 7075 293b 1.61784s (cpu); │ │ │ │ -00034680: 2031 2e31 3430 3331 7320 2874 6872 6561 1.14031s (threa │ │ │ │ -00034690: 6429 3b20 3073 2028 6763 2920 2020 7c0a d); 0s (gc) |. │ │ │ │ -000346a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000345e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000345f0: 6934 203a 2074 696d 6520 4368 6572 6e53 i4 : time ChernS │ │ │ │ +00034600: 6368 7761 7274 7a4d 6163 5068 6572 736f chwartzMacPherso │ │ │ │ +00034610: 6e28 432c 4365 7274 6966 793d 3e74 7275 n(C,Certify=>tru │ │ │ │ +00034620: 6529 2020 2020 7c0a 7c43 6572 7469 6679 e) |.|Certify │ │ │ │ +00034630: 3a20 6f75 7470 7574 2063 6572 7469 6669 : output certifi │ │ │ │ +00034640: 6564 2120 2020 2020 2020 2020 2020 2020 ed! │ │ │ │ +00034650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00034660: 0a7c 202d 2d20 7573 6564 2031 2e35 3338 .| -- used 1.538 │ │ │ │ +00034670: 3132 7320 2863 7075 293b 2031 2e30 3533 12s (cpu); 1.053 │ │ │ │ +00034680: 3034 7320 2874 6872 6561 6429 3b20 3073 04s (thread); 0s │ │ │ │ +00034690: 2028 6763 2920 2020 7c0a 7c20 2020 2020 (gc) |.| │ │ │ │ +000346a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000346c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000346d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000346e0: 2034 2020 2020 2033 2020 2020 2032 2020 4 3 2 │ │ │ │ +000346d0: 207c 0a7c 2020 2020 2020 2034 2020 2020 |.| 4 │ │ │ │ +000346e0: 2033 2020 2020 2032 2020 2020 2020 2020 3 2 │ │ │ │ 000346f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034710: 7c0a 7c6f 3420 3d20 3348 2020 2b20 3548 |.|o4 = 3H + 5H │ │ │ │ -00034720: 2020 2b20 3348 2020 2020 2020 2020 2020 + 3H │ │ │ │ +00034700: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00034710: 3d20 3348 2020 2b20 3548 2020 2b20 3348 = 3H + 5H + 3H │ │ │ │ +00034720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00034740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 00034750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034780: 2020 7c0a 7c20 2020 2020 5a5a 5b48 5d20 |.| ZZ[H] │ │ │ │ +00034770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00034780: 2020 2020 5a5a 5b48 5d20 2020 2020 2020 ZZ[H] │ │ │ │ 00034790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000347a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000347b0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -000347c0: 203a 202d 2d2d 2d2d 2020 2020 2020 2020 : ----- │ │ │ │ +000347b0: 2020 2020 207c 0a7c 6f34 203a 202d 2d2d |.|o4 : --- │ │ │ │ +000347c0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 000347d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000347e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000347f0: 2020 2020 7c0a 7c20 2020 2020 2020 2035 |.| 5 │ │ │ │ +000347e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000347f0: 7c20 2020 2020 2020 2035 2020 2020 2020 | 5 │ │ │ │ 00034800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034820: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00034830: 2020 2020 2020 2048 2020 2020 2020 2020 H │ │ │ │ +00034820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00034830: 2048 2020 2020 2020 2020 2020 2020 2020 H │ │ │ │ 00034840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034860: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00034860: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00034870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000348a0: 0a7c 6935 203a 206f 6f20 3d3d 206f 6f6f .|i5 : oo == ooo │ │ │ │ +00034890: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +000348a0: 206f 6f20 3d3d 206f 6f6f 2020 2020 2020 oo == ooo │ │ │ │ 000348b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000348c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000348d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000348d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000348e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000348f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034910: 207c 0a7c 6f35 203d 2074 7275 6520 2020 |.|o5 = true │ │ │ │ +00034900: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +00034910: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ 00034920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034940: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00034940: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00034950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034980: 2d2d 2d2b 0a0a 496e 2074 6865 2063 6173 ---+..In the cas │ │ │ │ -00034990: 6520 7768 656e 2074 6865 2069 6e70 7574 e when the input │ │ │ │ -000349a0: 2069 6465 616c 2049 2064 6566 696e 6573 ideal I defines │ │ │ │ -000349b0: 2061 2073 6d6f 6f74 6820 7072 6f6a 6563 a smooth projec │ │ │ │ -000349c0: 7469 7665 2076 6172 6965 7479 2024 5824 tive variety $X$ │ │ │ │ -000349d0: 2c20 7468 650a 7075 7368 2d66 6f72 7761 , the.push-forwa │ │ │ │ -000349e0: 7264 206f 6620 2463 5f7b 534d 7d28 5829 rd of $c_{SM}(X) │ │ │ │ -000349f0: 2420 6361 6e20 6265 2063 6f6d 7075 7465 $ can be compute │ │ │ │ -00034a00: 6420 6d75 6368 206d 6f72 6520 6566 6669 d much more effi │ │ │ │ -00034a10: 6369 656e 746c 7920 7573 696e 6720 2a6e ciently using *n │ │ │ │ -00034a20: 6f74 650a 5365 6772 6543 6c61 7373 3a20 ote.SegreClass: │ │ │ │ -00034a30: 5365 6772 6543 6c61 7373 2c2e 2049 6e64 SegreClass,. Ind │ │ │ │ -00034a40: 6565 642c 2069 6e20 7468 6973 2063 6173 eed, in this cas │ │ │ │ -00034a50: 652c 2024 635f 7b53 4d7d 2858 2924 2063 e, $c_{SM}(X)$ c │ │ │ │ -00034a60: 6f69 6e63 6964 6573 2077 6974 6820 7468 oincides with th │ │ │ │ -00034a70: 650a 2874 6f74 616c 2920 4368 6572 6e20 e.(total) Chern │ │ │ │ -00034a80: 636c 6173 7320 6f66 2074 6865 2074 616e class of the tan │ │ │ │ -00034a90: 6765 6e74 2062 756e 646c 6520 6f66 2024 gent bundle of $ │ │ │ │ -00034aa0: 5824 2061 6e64 2063 616e 2062 6520 6f62 X$ and can be ob │ │ │ │ -00034ab0: 7461 696e 6564 2061 7320 666f 6c6c 6f77 tained as follow │ │ │ │ -00034ac0: 730a 2869 6e20 6765 6e65 7261 6c20 7468 s.(in general th │ │ │ │ -00034ad0: 6520 6d65 7468 6f64 2062 656c 6f77 2067 e method below g │ │ │ │ -00034ae0: 6976 6573 2074 6865 2070 7573 682d 666f ives the push-fo │ │ │ │ -00034af0: 7277 6172 6420 6f66 2074 6865 2073 6f2d rward of the so- │ │ │ │ -00034b00: 6361 6c6c 6564 0a43 6865 726e 2d46 756c called.Chern-Ful │ │ │ │ -00034b10: 746f 6e20 636c 6173 7329 2e0a 0a2b 2d2d ton class)...+-- │ │ │ │ +00034970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00034980: 496e 2074 6865 2063 6173 6520 7768 656e In the case when │ │ │ │ +00034990: 2074 6865 2069 6e70 7574 2069 6465 616c the input ideal │ │ │ │ +000349a0: 2049 2064 6566 696e 6573 2061 2073 6d6f I defines a smo │ │ │ │ +000349b0: 6f74 6820 7072 6f6a 6563 7469 7665 2076 oth projective v │ │ │ │ +000349c0: 6172 6965 7479 2024 5824 2c20 7468 650a ariety $X$, the. │ │ │ │ +000349d0: 7075 7368 2d66 6f72 7761 7264 206f 6620 push-forward of │ │ │ │ +000349e0: 2463 5f7b 534d 7d28 5829 2420 6361 6e20 $c_{SM}(X)$ can │ │ │ │ +000349f0: 6265 2063 6f6d 7075 7465 6420 6d75 6368 be computed much │ │ │ │ +00034a00: 206d 6f72 6520 6566 6669 6369 656e 746c more efficientl │ │ │ │ +00034a10: 7920 7573 696e 6720 2a6e 6f74 650a 5365 y using *note.Se │ │ │ │ +00034a20: 6772 6543 6c61 7373 3a20 5365 6772 6543 greClass: SegreC │ │ │ │ +00034a30: 6c61 7373 2c2e 2049 6e64 6565 642c 2069 lass,. Indeed, i │ │ │ │ +00034a40: 6e20 7468 6973 2063 6173 652c 2024 635f n this case, $c_ │ │ │ │ +00034a50: 7b53 4d7d 2858 2924 2063 6f69 6e63 6964 {SM}(X)$ coincid │ │ │ │ +00034a60: 6573 2077 6974 6820 7468 650a 2874 6f74 es with the.(tot │ │ │ │ +00034a70: 616c 2920 4368 6572 6e20 636c 6173 7320 al) Chern class │ │ │ │ +00034a80: 6f66 2074 6865 2074 616e 6765 6e74 2062 of the tangent b │ │ │ │ +00034a90: 756e 646c 6520 6f66 2024 5824 2061 6e64 undle of $X$ and │ │ │ │ +00034aa0: 2063 616e 2062 6520 6f62 7461 696e 6564 can be obtained │ │ │ │ +00034ab0: 2061 7320 666f 6c6c 6f77 730a 2869 6e20 as follows.(in │ │ │ │ +00034ac0: 6765 6e65 7261 6c20 7468 6520 6d65 7468 general the meth │ │ │ │ +00034ad0: 6f64 2062 656c 6f77 2067 6976 6573 2074 od below gives t │ │ │ │ +00034ae0: 6865 2070 7573 682d 666f 7277 6172 6420 he push-forward │ │ │ │ +00034af0: 6f66 2074 6865 2073 6f2d 6361 6c6c 6564 of the so-called │ │ │ │ +00034b00: 0a43 6865 726e 2d46 756c 746f 6e20 636c .Chern-Fulton cl │ │ │ │ +00034b10: 6173 7329 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ass)...+-------- │ │ │ │ 00034b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ -00034b70: 203a 2043 6865 726e 436c 6173 7320 3d20 : ChernClass = │ │ │ │ -00034b80: 6d65 7468 6f64 284f 7074 696f 6e73 3d3e method(Options=> │ │ │ │ -00034b90: 7b43 6572 7469 6679 3d3e 6661 6c73 657d {Certify=>false} │ │ │ │ -00034ba0: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -00034bb0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00034b60: 2d2d 2d2d 2d2b 0a7c 6936 203a 2043 6865 -----+.|i6 : Che │ │ │ │ +00034b70: 726e 436c 6173 7320 3d20 6d65 7468 6f64 rnClass = method │ │ │ │ +00034b80: 284f 7074 696f 6e73 3d3e 7b43 6572 7469 (Options=>{Certi │ │ │ │ +00034b90: 6679 3d3e 6661 6c73 657d 293b 2020 2020 fy=>false}); │ │ │ │ +00034ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034bb0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00034bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ -00034c10: 203a 2043 6865 726e 436c 6173 7320 2849 : ChernClass (I │ │ │ │ -00034c20: 6465 616c 2920 3a3d 206f 202d 3e20 2849 deal) := o -> (I │ │ │ │ -00034c30: 2920 2d3e 2028 2020 2020 2020 2020 2020 ) -> ( │ │ │ │ +00034c00: 2d2d 2d2d 2d2b 0a7c 6937 203a 2043 6865 -----+.|i7 : Che │ │ │ │ +00034c10: 726e 436c 6173 7320 2849 6465 616c 2920 rnClass (Ideal) │ │ │ │ +00034c20: 3a3d 206f 202d 3e20 2849 2920 2d3e 2028 := o -> (I) -> ( │ │ │ │ +00034c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034c50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00034c60: 2020 2020 2020 7320 3a3d 2053 6567 7265 s := Segre │ │ │ │ -00034c70: 436c 6173 7328 492c 4365 7274 6966 793d Class(I,Certify= │ │ │ │ -00034c80: 3e6f 2e43 6572 7469 6679 293b 2020 2020 >o.Certify); │ │ │ │ +00034c50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00034c60: 7320 3a3d 2053 6567 7265 436c 6173 7328 s := SegreClass( │ │ │ │ +00034c70: 492c 4365 7274 6966 793d 3e6f 2e43 6572 I,Certify=>o.Cer │ │ │ │ +00034c80: 7469 6679 293b 2020 2020 2020 2020 2020 tify); │ │ │ │ 00034c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034ca0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00034cb0: 2020 2020 2020 732a 2831 2b66 6972 7374 s*(1+first │ │ │ │ -00034cc0: 2067 656e 7320 7269 6e67 2073 295e 286e gens ring s)^(n │ │ │ │ -00034cd0: 756d 6765 6e73 2072 696e 6720 4929 293b umgens ring I)); │ │ │ │ +00034ca0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00034cb0: 732a 2831 2b66 6972 7374 2067 656e 7320 s*(1+first gens │ │ │ │ +00034cc0: 7269 6e67 2073 295e 286e 756d 6765 6e73 ring s)^(numgens │ │ │ │ +00034cd0: 2072 696e 6720 4929 293b 2020 2020 2020 ring I)); │ │ │ │ 00034ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034cf0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00034cf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00034d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6938 -----------+.|i8 │ │ │ │ -00034d50: 203a 202d 2d20 6578 616d 706c 653a 2043 : -- example: C │ │ │ │ -00034d60: 6865 726e 2063 6c61 7373 206f 6620 4728 hern class of G( │ │ │ │ -00034d70: 312c 3429 2020 2020 2020 2020 2020 2020 1,4) │ │ │ │ +00034d40: 2d2d 2d2d 2d2b 0a7c 6938 203a 202d 2d20 -----+.|i8 : -- │ │ │ │ +00034d50: 6578 616d 706c 653a 2043 6865 726e 2063 example: Chern c │ │ │ │ +00034d60: 6c61 7373 206f 6620 4728 312c 3429 2020 lass of G(1,4) │ │ │ │ +00034d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034d90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00034da0: 2020 2047 203d 2047 7261 7373 6d61 6e6e G = Grassmann │ │ │ │ -00034db0: 6961 6e28 312c 342c 436f 6566 6669 6369 ian(1,4,Coeffici │ │ │ │ -00034dc0: 656e 7452 696e 673d 3e5a 5a2f 3139 3031 entRing=>ZZ/1901 │ │ │ │ -00034dd0: 3831 2920 2020 2020 2020 2020 2020 2020 81) │ │ │ │ -00034de0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00034d90: 2020 2020 207c 0a7c 2020 2020 2047 203d |.| G = │ │ │ │ +00034da0: 2047 7261 7373 6d61 6e6e 6961 6e28 312c Grassmannian(1, │ │ │ │ +00034db0: 342c 436f 6566 6669 6369 656e 7452 696e 4,CoefficientRin │ │ │ │ +00034dc0: 673d 3e5a 5a2f 3139 3031 3831 2920 2020 g=>ZZ/190181) │ │ │ │ +00034dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00034de0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00034df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00034e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00034e30: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00034e40: 203d 2069 6465 616c 2028 7020 2020 7020 = ideal (p p │ │ │ │ -00034e50: 2020 202d 2070 2020 2070 2020 2020 2b20 - p p + │ │ │ │ -00034e60: 7020 2020 7020 2020 2c20 7020 2020 7020 p p , p p │ │ │ │ -00034e70: 2020 202d 2070 2020 2070 2020 2020 2b20 - p p + │ │ │ │ -00034e80: 7020 2020 7020 2020 2c20 207c 0a7c 2020 p p , |.| │ │ │ │ -00034e90: 2020 2020 2020 2020 2020 2032 2c33 2031 2,3 1 │ │ │ │ -00034ea0: 2c34 2020 2020 312c 3320 322c 3420 2020 ,4 1,3 2,4 │ │ │ │ -00034eb0: 2031 2c32 2033 2c34 2020 2032 2c33 2030 1,2 3,4 2,3 0 │ │ │ │ -00034ec0: 2c34 2020 2020 302c 3320 322c 3420 2020 ,4 0,3 2,4 │ │ │ │ -00034ed0: 2030 2c32 2033 2c34 2020 207c 0a7c 2020 0,2 3,4 |.| │ │ │ │ -00034ee0: 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------- │ │ │ │ +00034e30: 2020 2020 207c 0a7c 6f38 203d 2069 6465 |.|o8 = ide │ │ │ │ +00034e40: 616c 2028 7020 2020 7020 2020 202d 2070 al (p p - p │ │ │ │ +00034e50: 2020 2070 2020 2020 2b20 7020 2020 7020 p + p p │ │ │ │ +00034e60: 2020 2c20 7020 2020 7020 2020 202d 2070 , p p - p │ │ │ │ +00034e70: 2020 2070 2020 2020 2b20 7020 2020 7020 p + p p │ │ │ │ +00034e80: 2020 2c20 207c 0a7c 2020 2020 2020 2020 , |.| │ │ │ │ +00034e90: 2020 2020 2032 2c33 2031 2c34 2020 2020 2,3 1,4 │ │ │ │ +00034ea0: 312c 3320 322c 3420 2020 2031 2c32 2033 1,3 2,4 1,2 3 │ │ │ │ +00034eb0: 2c34 2020 2032 2c33 2030 2c34 2020 2020 ,4 2,3 0,4 │ │ │ │ +00034ec0: 302c 3320 322c 3420 2020 2030 2c32 2033 0,3 2,4 0,2 3 │ │ │ │ +00034ed0: 2c34 2020 207c 0a7c 2020 2020 202d 2d2d ,4 |.| --- │ │ │ │ +00034ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00034f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00034f30: 2020 2070 2020 2070 2020 2020 2d20 7020 p p - p │ │ │ │ -00034f40: 2020 7020 2020 202b 2070 2020 2070 2020 p + p p │ │ │ │ -00034f50: 202c 2070 2020 2070 2020 2020 2d20 7020 , p p - p │ │ │ │ -00034f60: 2020 7020 2020 202b 2070 2020 2070 2020 p + p p │ │ │ │ -00034f70: 202c 2070 2020 2070 2020 207c 0a7c 2020 , p p |.| │ │ │ │ -00034f80: 2020 2020 312c 3320 302c 3420 2020 2030 1,3 0,4 0 │ │ │ │ -00034f90: 2c33 2031 2c34 2020 2020 302c 3120 332c ,3 1,4 0,1 3, │ │ │ │ -00034fa0: 3420 2020 312c 3220 302c 3420 2020 2030 4 1,2 0,4 0 │ │ │ │ -00034fb0: 2c32 2031 2c34 2020 2020 302c 3120 322c ,2 1,4 0,1 2, │ │ │ │ -00034fc0: 3420 2020 312c 3220 302c 337c 0a7c 2020 4 1,2 0,3|.| │ │ │ │ -00034fd0: 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ------------- │ │ │ │ +00034f20: 2d2d 2d2d 2d7c 0a7c 2020 2020 2070 2020 -----|.| p │ │ │ │ +00034f30: 2070 2020 2020 2d20 7020 2020 7020 2020 p - p p │ │ │ │ +00034f40: 202b 2070 2020 2070 2020 202c 2070 2020 + p p , p │ │ │ │ +00034f50: 2070 2020 2020 2d20 7020 2020 7020 2020 p - p p │ │ │ │ +00034f60: 202b 2070 2020 2070 2020 202c 2070 2020 + p p , p │ │ │ │ +00034f70: 2070 2020 207c 0a7c 2020 2020 2020 312c p |.| 1, │ │ │ │ +00034f80: 3320 302c 3420 2020 2030 2c33 2031 2c34 3 0,4 0,3 1,4 │ │ │ │ +00034f90: 2020 2020 302c 3120 332c 3420 2020 312c 0,1 3,4 1, │ │ │ │ +00034fa0: 3220 302c 3420 2020 2030 2c32 2031 2c34 2 0,4 0,2 1,4 │ │ │ │ +00034fb0: 2020 2020 302c 3120 322c 3420 2020 312c 0,1 2,4 1, │ │ │ │ +00034fc0: 3220 302c 337c 0a7c 2020 2020 202d 2d2d 2 0,3|.| --- │ │ │ │ +00034fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00034ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00035020: 2020 202d 2070 2020 2070 2020 2020 2b20 - p p + │ │ │ │ -00035030: 7020 2020 7020 2020 2920 2020 2020 2020 p p ) │ │ │ │ +00035010: 2d2d 2d2d 2d7c 0a7c 2020 2020 202d 2070 -----|.| - p │ │ │ │ +00035020: 2020 2070 2020 2020 2b20 7020 2020 7020 p + p p │ │ │ │ +00035030: 2020 2920 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00035040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035060: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035070: 2020 2020 2020 302c 3220 312c 3320 2020 0,2 1,3 │ │ │ │ -00035080: 2030 2c31 2032 2c33 2020 2020 2020 2020 0,1 2,3 │ │ │ │ +00035060: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00035070: 302c 3220 312c 3320 2020 2030 2c31 2032 0,2 1,3 0,1 2 │ │ │ │ +00035080: 2c33 2020 2020 2020 2020 2020 2020 2020 ,3 │ │ │ │ 00035090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000350a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000350b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000350b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000350c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000350d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000350e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000350f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035100: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035110: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +00035100: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00035110: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 00035120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035150: 2020 2020 2020 2020 2020 207c 0a7c 6f38 |.|o8 │ │ │ │ -00035160: 203a 2049 6465 616c 206f 6620 2d2d 2d2d : Ideal of ---- │ │ │ │ -00035170: 2d2d 5b70 2020 202e 2e70 2020 202c 2070 --[p ..p , p │ │ │ │ +00035150: 2020 2020 207c 0a7c 6f38 203a 2049 6465 |.|o8 : Ide │ │ │ │ +00035160: 616c 206f 6620 2d2d 2d2d 2d2d 5b70 2020 al of ------[p │ │ │ │ +00035170: 202e 2e70 2020 202c 2070 2020 202c 2070 ..p , p , p │ │ │ │ 00035180: 2020 202c 2070 2020 202c 2070 2020 202c , p , p , │ │ │ │ 00035190: 2070 2020 202c 2070 2020 202c 2070 2020 p , p , p │ │ │ │ -000351a0: 202c 2070 2020 202c 2070 207c 0a7c 2020 , p , p |.| │ │ │ │ -000351b0: 2020 2020 2020 2020 2020 2020 3139 3031 1901 │ │ │ │ -000351c0: 3831 2020 302c 3120 2020 302c 3220 2020 81 0,1 0,2 │ │ │ │ -000351d0: 312c 3220 2020 302c 3320 2020 312c 3320 1,2 0,3 1,3 │ │ │ │ -000351e0: 2020 322c 3320 2020 302c 3420 2020 312c 2,3 0,4 1, │ │ │ │ -000351f0: 3420 2020 322c 3420 2020 337c 0a7c 2d2d 4 2,4 3|.|-- │ │ │ │ +000351a0: 202c 2070 207c 0a7c 2020 2020 2020 2020 , p |.| │ │ │ │ +000351b0: 2020 2020 2020 3139 3031 3831 2020 302c 190181 0, │ │ │ │ +000351c0: 3120 2020 302c 3220 2020 312c 3220 2020 1 0,2 1,2 │ │ │ │ +000351d0: 302c 3320 2020 312c 3320 2020 322c 3320 0,3 1,3 2,3 │ │ │ │ +000351e0: 2020 302c 3420 2020 312c 3420 2020 322c 0,4 1,4 2, │ │ │ │ +000351f0: 3420 2020 337c 0a7c 2d2d 2d2d 2d2d 2d2d 4 3|.|-------- │ │ │ │ 00035200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ -00035250: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00035240: 2d2d 2d2d 2d7c 0a7c 2020 5d20 2020 2020 -----|.| ] │ │ │ │ +00035250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035290: 2020 2020 2020 2020 2020 207c 0a7c 2c34 |.|,4 │ │ │ │ +00035290: 2020 2020 207c 0a7c 2c34 2020 2020 2020 |.|,4 │ │ │ │ 000352a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000352b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000352c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000352d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000352e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000352e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000352f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6939 -----------+.|i9 │ │ │ │ -00035340: 203a 2074 696d 6520 4368 6572 6e43 6c61 : time ChernCla │ │ │ │ -00035350: 7373 2047 2020 2020 2020 2020 2020 2020 ss G │ │ │ │ +00035330: 2d2d 2d2d 2d2b 0a7c 6939 203a 2074 696d -----+.|i9 : tim │ │ │ │ +00035340: 6520 4368 6572 6e43 6c61 7373 2047 2020 e ChernClass G │ │ │ │ +00035350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035380: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035390: 2d20 7573 6564 2030 2e34 3339 3935 3273 - used 0.439952s │ │ │ │ -000353a0: 2028 6370 7529 3b20 302e 3235 3839 3332 (cpu); 0.258932 │ │ │ │ -000353b0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -000353c0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -000353d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00035380: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00035390: 2030 2e33 3931 3635 7320 2863 7075 293b 0.39165s (cpu); │ │ │ │ +000353a0: 2030 2e32 3134 3036 3973 2028 7468 7265 0.214069s (thre │ │ │ │ +000353b0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +000353c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000353d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000353e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000353f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035430: 2020 2020 2020 3920 2020 2020 2038 2020 9 8 │ │ │ │ -00035440: 2020 2020 3720 2020 2020 2036 2020 2020 7 6 │ │ │ │ -00035450: 2020 3520 2020 2020 2034 2020 2020 2033 5 4 3 │ │ │ │ +00035420: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00035430: 3920 2020 2020 2038 2020 2020 2020 3720 9 8 7 │ │ │ │ +00035440: 2020 2020 2036 2020 2020 2020 3520 2020 6 5 │ │ │ │ +00035450: 2020 2034 2020 2020 2033 2020 2020 2020 4 3 │ │ │ │ 00035460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035470: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ -00035480: 203d 2031 3048 2020 2b20 3330 4820 202b = 10H + 30H + │ │ │ │ -00035490: 2036 3048 2020 2b20 3735 4820 202b 2035 60H + 75H + 5 │ │ │ │ -000354a0: 3748 2020 2b20 3235 4820 202b 2035 4820 7H + 25H + 5H │ │ │ │ +00035470: 2020 2020 207c 0a7c 6f39 203d 2031 3048 |.|o9 = 10H │ │ │ │ +00035480: 2020 2b20 3330 4820 202b 2036 3048 2020 + 30H + 60H │ │ │ │ +00035490: 2b20 3735 4820 202b 2035 3748 2020 2b20 + 75H + 57H + │ │ │ │ +000354a0: 3235 4820 202b 2035 4820 2020 2020 2020 25H + 5H │ │ │ │ 000354b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000354c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000354c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000354d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000354e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000354f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035510: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035520: 2020 205a 5a5b 485d 2020 2020 2020 2020 ZZ[H] │ │ │ │ +00035510: 2020 2020 207c 0a7c 2020 2020 205a 5a5b |.| ZZ[ │ │ │ │ +00035520: 485d 2020 2020 2020 2020 2020 2020 2020 H] │ │ │ │ 00035530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035560: 2020 2020 2020 2020 2020 207c 0a7c 6f39 |.|o9 │ │ │ │ -00035570: 203a 202d 2d2d 2d2d 2020 2020 2020 2020 : ----- │ │ │ │ +00035560: 2020 2020 207c 0a7c 6f39 203a 202d 2d2d |.|o9 : --- │ │ │ │ +00035570: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 00035580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000355b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000355c0: 2020 2020 2031 3020 2020 2020 2020 2020 10 │ │ │ │ +000355b0: 2020 2020 207c 0a7c 2020 2020 2020 2031 |.| 1 │ │ │ │ +000355c0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 000355d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000355f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035600: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035610: 2020 2020 4820 2020 2020 2020 2020 2020 H │ │ │ │ +00035600: 2020 2020 207c 0a7c 2020 2020 2020 4820 |.| H │ │ │ │ +00035610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035650: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00035650: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00035660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000356a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000356b0: 3020 3a20 7469 6d65 2043 6865 726e 436c 0 : time ChernCl │ │ │ │ -000356c0: 6173 7328 472c 4365 7274 6966 793d 3e74 ass(G,Certify=>t │ │ │ │ -000356d0: 7275 6529 2020 2020 2020 2020 2020 2020 rue) │ │ │ │ +000356a0: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 7469 -----+.|i10 : ti │ │ │ │ +000356b0: 6d65 2043 6865 726e 436c 6173 7328 472c me ChernClass(G, │ │ │ │ +000356c0: 4365 7274 6966 793d 3e74 7275 6529 2020 Certify=>true) │ │ │ │ +000356d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000356e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000356f0: 2020 2020 2020 2020 2020 207c 0a7c 4365 |.|Ce │ │ │ │ -00035700: 7274 6966 793a 206f 7574 7075 7420 6365 rtify: output ce │ │ │ │ -00035710: 7274 6966 6965 6421 2020 2020 2020 2020 rtified! │ │ │ │ +000356f0: 2020 2020 207c 0a7c 4365 7274 6966 793a |.|Certify: │ │ │ │ +00035700: 206f 7574 7075 7420 6365 7274 6966 6965 output certifie │ │ │ │ +00035710: 6421 2020 2020 2020 2020 2020 2020 2020 d! │ │ │ │ 00035720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035740: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ -00035750: 2d20 7573 6564 2030 2e31 3332 3334 3773 - used 0.132347s │ │ │ │ -00035760: 2028 6370 7529 3b20 302e 3034 3439 3738 (cpu); 0.044978 │ │ │ │ -00035770: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ -00035780: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00035790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00035740: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ +00035750: 2030 2e31 3534 3739 3373 2028 6370 7529 0.154793s (cpu) │ │ │ │ +00035760: 3b20 302e 3034 3439 3231 3673 2028 7468 ; 0.0449216s (th │ │ │ │ +00035770: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00035780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035790: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 000357a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000357d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000357e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000357f0: 2020 2020 2020 2039 2020 2020 2020 3820 9 8 │ │ │ │ -00035800: 2020 2020 2037 2020 2020 2020 3620 2020 7 6 │ │ │ │ -00035810: 2020 2035 2020 2020 2020 3420 2020 2020 5 4 │ │ │ │ -00035820: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00035830: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00035840: 3020 3d20 3130 4820 202b 2033 3048 2020 0 = 10H + 30H │ │ │ │ -00035850: 2b20 3630 4820 202b 2037 3548 2020 2b20 + 60H + 75H + │ │ │ │ -00035860: 3537 4820 202b 2032 3548 2020 2b20 3548 57H + 25H + 5H │ │ │ │ +000357e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000357f0: 2039 2020 2020 2020 3820 2020 2020 2037 9 8 7 │ │ │ │ +00035800: 2020 2020 2020 3620 2020 2020 2035 2020 6 5 │ │ │ │ +00035810: 2020 2020 3420 2020 2020 3320 2020 2020 4 3 │ │ │ │ +00035820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00035830: 2020 2020 207c 0a7c 6f31 3020 3d20 3130 |.|o10 = 10 │ │ │ │ +00035840: 4820 202b 2033 3048 2020 2b20 3630 4820 H + 30H + 60H │ │ │ │ +00035850: 202b 2037 3548 2020 2b20 3537 4820 202b + 75H + 57H + │ │ │ │ +00035860: 2032 3548 2020 2b20 3548 2020 2020 2020 25H + 5H │ │ │ │ 00035870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00035880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00035890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000358a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000358b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000358c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000358d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000358e0: 2020 2020 5a5a 5b48 5d20 2020 2020 2020 ZZ[H] │ │ │ │ +000358d0: 2020 2020 207c 0a7c 2020 2020 2020 5a5a |.| ZZ │ │ │ │ +000358e0: 5b48 5d20 2020 2020 2020 2020 2020 2020 [H] │ │ │ │ 000358f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035920: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ -00035930: 3020 3a20 2d2d 2d2d 2d20 2020 2020 2020 0 : ----- │ │ │ │ +00035920: 2020 2020 207c 0a7c 6f31 3020 3a20 2d2d |.|o10 : -- │ │ │ │ +00035930: 2d2d 2d20 2020 2020 2020 2020 2020 2020 --- │ │ │ │ 00035940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035970: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00035980: 2020 2020 2020 3130 2020 2020 2020 2020 10 │ │ │ │ +00035970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00035980: 3130 2020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ 00035990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000359a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000359b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000359c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000359d0: 2020 2020 2048 2020 2020 2020 2020 2020 H │ │ │ │ +000359c0: 2020 2020 207c 0a7c 2020 2020 2020 2048 |.| H │ │ │ │ +000359d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000359e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000359f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00035a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00035a10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00035a10: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00035a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ -00035a70: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ -00035a80: 0a20 202a 202a 6e6f 7465 2053 6567 7265 . * *note Segre │ │ │ │ -00035a90: 436c 6173 733a 2053 6567 7265 436c 6173 Class: SegreClas │ │ │ │ -00035aa0: 732c 202d 2d20 5365 6772 6520 636c 6173 s, -- Segre clas │ │ │ │ -00035ab0: 7320 6f66 2061 2063 6c6f 7365 6420 7375 s of a closed su │ │ │ │ -00035ac0: 6273 6368 656d 6520 6f66 2061 0a20 2020 bscheme of a. │ │ │ │ -00035ad0: 2070 726f 6a65 6374 6976 6520 7661 7269 projective vari │ │ │ │ -00035ae0: 6574 790a 2020 2a20 2a6e 6f74 6520 4575 ety. * *note Eu │ │ │ │ -00035af0: 6c65 7243 6861 7261 6374 6572 6973 7469 lerCharacteristi │ │ │ │ -00035b00: 633a 2045 756c 6572 4368 6172 6163 7465 c: EulerCharacte │ │ │ │ -00035b10: 7269 7374 6963 2c20 2d2d 2074 6f70 6f6c ristic, -- topol │ │ │ │ -00035b20: 6f67 6963 616c 2045 756c 6572 0a20 2020 ogical Euler. │ │ │ │ -00035b30: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ -00035b40: 6f66 2061 2028 736d 6f6f 7468 2920 7072 of a (smooth) pr │ │ │ │ -00035b50: 6f6a 6563 7469 7665 2076 6172 6965 7479 ojective variety │ │ │ │ -00035b60: 0a20 202a 202a 6e6f 7465 2065 756c 6572 . * *note euler │ │ │ │ -00035b70: 2850 726f 6a65 6374 6976 6556 6172 6965 (ProjectiveVarie │ │ │ │ -00035b80: 7479 293a 2028 5661 7269 6574 6965 7329 ty): (Varieties) │ │ │ │ -00035b90: 6575 6c65 725f 6c70 5072 6f6a 6563 7469 euler_lpProjecti │ │ │ │ -00035ba0: 7665 5661 7269 6574 795f 7270 2c20 2d2d veVariety_rp, -- │ │ │ │ -00035bb0: 0a20 2020 2074 6f70 6f6c 6f67 6963 616c . topological │ │ │ │ -00035bc0: 2045 756c 6572 2063 6861 7261 6374 6572 Euler character │ │ │ │ -00035bd0: 6973 7469 6320 6f66 2061 2028 736d 6f6f istic of a (smoo │ │ │ │ -00035be0: 7468 2920 7072 6f6a 6563 7469 7665 2076 th) projective v │ │ │ │ -00035bf0: 6172 6965 7479 0a0a 5761 7973 2074 6f20 ariety..Ways to │ │ │ │ -00035c00: 7573 6520 4368 6572 6e53 6368 7761 7274 use ChernSchwart │ │ │ │ -00035c10: 7a4d 6163 5068 6572 736f 6e3a 0a3d 3d3d zMacPherson:.=== │ │ │ │ +00035a60: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ +00035a70: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ +00035a80: 6e6f 7465 2053 6567 7265 436c 6173 733a note SegreClass: │ │ │ │ +00035a90: 2053 6567 7265 436c 6173 732c 202d 2d20 SegreClass, -- │ │ │ │ +00035aa0: 5365 6772 6520 636c 6173 7320 6f66 2061 Segre class of a │ │ │ │ +00035ab0: 2063 6c6f 7365 6420 7375 6273 6368 656d closed subschem │ │ │ │ +00035ac0: 6520 6f66 2061 0a20 2020 2070 726f 6a65 e of a. proje │ │ │ │ +00035ad0: 6374 6976 6520 7661 7269 6574 790a 2020 ctive variety. │ │ │ │ +00035ae0: 2a20 2a6e 6f74 6520 4575 6c65 7243 6861 * *note EulerCha │ │ │ │ +00035af0: 7261 6374 6572 6973 7469 633a 2045 756c racteristic: Eul │ │ │ │ +00035b00: 6572 4368 6172 6163 7465 7269 7374 6963 erCharacteristic │ │ │ │ +00035b10: 2c20 2d2d 2074 6f70 6f6c 6f67 6963 616c , -- topological │ │ │ │ +00035b20: 2045 756c 6572 0a20 2020 2063 6861 7261 Euler. chara │ │ │ │ +00035b30: 6374 6572 6973 7469 6320 6f66 2061 2028 cteristic of a ( │ │ │ │ +00035b40: 736d 6f6f 7468 2920 7072 6f6a 6563 7469 smooth) projecti │ │ │ │ +00035b50: 7665 2076 6172 6965 7479 0a20 202a 202a ve variety. * * │ │ │ │ +00035b60: 6e6f 7465 2065 756c 6572 2850 726f 6a65 note euler(Proje │ │ │ │ +00035b70: 6374 6976 6556 6172 6965 7479 293a 2028 ctiveVariety): ( │ │ │ │ +00035b80: 5661 7269 6574 6965 7329 6575 6c65 725f Varieties)euler_ │ │ │ │ +00035b90: 6c70 5072 6f6a 6563 7469 7665 5661 7269 lpProjectiveVari │ │ │ │ +00035ba0: 6574 795f 7270 2c20 2d2d 0a20 2020 2074 ety_rp, --. t │ │ │ │ +00035bb0: 6f70 6f6c 6f67 6963 616c 2045 756c 6572 opological Euler │ │ │ │ +00035bc0: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ +00035bd0: 6f66 2061 2028 736d 6f6f 7468 2920 7072 of a (smooth) pr │ │ │ │ +00035be0: 6f6a 6563 7469 7665 2076 6172 6965 7479 ojective variety │ │ │ │ +00035bf0: 0a0a 5761 7973 2074 6f20 7573 6520 4368 ..Ways to use Ch │ │ │ │ +00035c00: 6572 6e53 6368 7761 7274 7a4d 6163 5068 ernSchwartzMacPh │ │ │ │ +00035c10: 6572 736f 6e3a 0a3d 3d3d 3d3d 3d3d 3d3d erson:.========= │ │ │ │ 00035c20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00035c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00035c40: 3d0a 0a20 202a 2022 4368 6572 6e53 6368 =.. * "ChernSch │ │ │ │ -00035c50: 7761 7274 7a4d 6163 5068 6572 736f 6e28 wartzMacPherson( │ │ │ │ -00035c60: 4964 6561 6c29 220a 0a46 6f72 2074 6865 Ideal)"..For the │ │ │ │ -00035c70: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00035c80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00035c90: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00035ca0: 2043 6865 726e 5363 6877 6172 747a 4d61 ChernSchwartzMa │ │ │ │ -00035cb0: 6350 6865 7273 6f6e 3a20 4368 6572 6e53 cPherson: ChernS │ │ │ │ -00035cc0: 6368 7761 7274 7a4d 6163 5068 6572 736f chwartzMacPherso │ │ │ │ -00035cd0: 6e2c 2069 7320 6120 2a6e 6f74 650a 6d65 n, is a *note.me │ │ │ │ -00035ce0: 7468 6f64 2066 756e 6374 696f 6e20 7769 thod function wi │ │ │ │ -00035cf0: 7468 206f 7074 696f 6e73 3a20 284d 6163 th options: (Mac │ │ │ │ -00035d00: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ -00035d10: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ -00035d20: 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ons,...--------- │ │ │ │ +00035c30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00035c40: 2022 4368 6572 6e53 6368 7761 7274 7a4d "ChernSchwartzM │ │ │ │ +00035c50: 6163 5068 6572 736f 6e28 4964 6561 6c29 acPherson(Ideal) │ │ │ │ +00035c60: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00035c70: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00035c80: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00035c90: 6a65 6374 202a 6e6f 7465 2043 6865 726e ject *note Chern │ │ │ │ +00035ca0: 5363 6877 6172 747a 4d61 6350 6865 7273 SchwartzMacPhers │ │ │ │ +00035cb0: 6f6e 3a20 4368 6572 6e53 6368 7761 7274 on: ChernSchwart │ │ │ │ +00035cc0: 7a4d 6163 5068 6572 736f 6e2c 2069 7320 zMacPherson, is │ │ │ │ +00035cd0: 6120 2a6e 6f74 650a 6d65 7468 6f64 2066 a *note.method f │ │ │ │ +00035ce0: 756e 6374 696f 6e20 7769 7468 206f 7074 unction with opt │ │ │ │ +00035cf0: 696f 6e73 3a20 284d 6163 6175 6c61 7932 ions: (Macaulay2 │ │ │ │ +00035d00: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ +00035d10: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ +00035d20: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00035d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00035d70: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00035d80: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00035d90: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00035da0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00035db0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00035dc0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00035dd0: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -00035de0: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -00035df0: 7469 6f6e 2e6d 323a 3332 363a 302e 0a1f tion.m2:326:0... │ │ │ │ -00035e00: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -00035e10: 6e66 6f2c 204e 6f64 653a 2043 6f64 696d nfo, Node: Codim │ │ │ │ -00035e20: 4273 496e 762c 204e 6578 743a 2063 6f65 BsInv, Next: coe │ │ │ │ -00035e30: 6666 6963 6965 6e74 5269 6e67 5f6c 7052 fficientRing_lpR │ │ │ │ -00035e40: 6174 696f 6e61 6c4d 6170 5f72 702c 2050 ationalMap_rp, P │ │ │ │ -00035e50: 7265 763a 2043 6865 726e 5363 6877 6172 rev: ChernSchwar │ │ │ │ -00035e60: 747a 4d61 6350 6865 7273 6f6e 2c20 5570 tzMacPherson, Up │ │ │ │ -00035e70: 3a20 546f 700a 0a43 6f64 696d 4273 496e : Top..CodimBsIn │ │ │ │ -00035e80: 760a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 4465 v.**********..De │ │ │ │ -00035e90: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00035ea0: 3d3d 3d3d 3d0a 0a54 6869 7320 6973 2061 =====..This is a │ │ │ │ -00035eb0: 2074 6563 686e 6963 616c 206f 7074 696f technical optio │ │ │ │ -00035ec0: 6e20 666f 7220 2a6e 6f74 6520 6170 7072 n for *note appr │ │ │ │ -00035ed0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ -00035ee0: 703a 0a61 7070 726f 7869 6d61 7465 496e p:.approximateIn │ │ │ │ -00035ef0: 7665 7273 654d 6170 2c2e 2049 7420 6163 verseMap,. It ac │ │ │ │ -00035f00: 6365 7074 7320 616e 2069 6e74 6567 6572 cepts an integer │ │ │ │ -00035f10: 2077 6869 6368 2073 686f 756c 6420 6265 which should be │ │ │ │ -00035f20: 2061 206c 6f77 6572 2062 6f75 6e64 2066 a lower bound f │ │ │ │ -00035f30: 6f72 0a74 6865 2063 6f64 696d 656e 7369 or.the codimensi │ │ │ │ -00035f40: 6f6e 206f 6620 7468 6520 6261 7365 206c on of the base l │ │ │ │ -00035f50: 6f63 7573 206f 6620 7468 6520 696e 7665 ocus of the inve │ │ │ │ -00035f60: 7273 6520 6d61 702e 2049 6e20 6d6f 7374 rse map. In most │ │ │ │ -00035f70: 2063 6173 6573 2c20 6f6e 6520 6361 6e0a cases, one can. │ │ │ │ -00035f80: 6f62 7461 696e 2074 6865 206f 7074 696d obtain the optim │ │ │ │ -00035f90: 616c 2076 616c 7565 2074 6f20 6265 2070 al value to be p │ │ │ │ -00035fa0: 6173 7365 6420 6173 2069 6e20 7468 6520 assed as in the │ │ │ │ -00035fb0: 666f 6c6c 6f77 696e 6720 6578 616d 706c following exampl │ │ │ │ -00035fc0: 652e 0a0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d e....+---------- │ │ │ │ +00035d70: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00035d80: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00035d90: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00035da0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00035db0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00035dc0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00035dd0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +00035de0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +00035df0: 323a 3332 363a 302e 0a1f 0a46 696c 653a 2:326:0....File: │ │ │ │ +00035e00: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +00035e10: 6f64 653a 2043 6f64 696d 4273 496e 762c ode: CodimBsInv, │ │ │ │ +00035e20: 204e 6578 743a 2063 6f65 6666 6963 6965 Next: coefficie │ │ │ │ +00035e30: 6e74 5269 6e67 5f6c 7052 6174 696f 6e61 ntRing_lpRationa │ │ │ │ +00035e40: 6c4d 6170 5f72 702c 2050 7265 763a 2043 lMap_rp, Prev: C │ │ │ │ +00035e50: 6865 726e 5363 6877 6172 747a 4d61 6350 hernSchwartzMacP │ │ │ │ +00035e60: 6865 7273 6f6e 2c20 5570 3a20 546f 700a herson, Up: Top. │ │ │ │ +00035e70: 0a43 6f64 696d 4273 496e 760a 2a2a 2a2a .CodimBsInv.**** │ │ │ │ +00035e80: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ +00035e90: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00035ea0: 0a54 6869 7320 6973 2061 2074 6563 686e .This is a techn │ │ │ │ +00035eb0: 6963 616c 206f 7074 696f 6e20 666f 7220 ical option for │ │ │ │ +00035ec0: 2a6e 6f74 6520 6170 7072 6f78 696d 6174 *note approximat │ │ │ │ +00035ed0: 6549 6e76 6572 7365 4d61 703a 0a61 7070 eInverseMap:.app │ │ │ │ +00035ee0: 726f 7869 6d61 7465 496e 7665 7273 654d roximateInverseM │ │ │ │ +00035ef0: 6170 2c2e 2049 7420 6163 6365 7074 7320 ap,. It accepts │ │ │ │ +00035f00: 616e 2069 6e74 6567 6572 2077 6869 6368 an integer which │ │ │ │ +00035f10: 2073 686f 756c 6420 6265 2061 206c 6f77 should be a low │ │ │ │ +00035f20: 6572 2062 6f75 6e64 2066 6f72 0a74 6865 er bound for.the │ │ │ │ +00035f30: 2063 6f64 696d 656e 7369 6f6e 206f 6620 codimension of │ │ │ │ +00035f40: 7468 6520 6261 7365 206c 6f63 7573 206f the base locus o │ │ │ │ +00035f50: 6620 7468 6520 696e 7665 7273 6520 6d61 f the inverse ma │ │ │ │ +00035f60: 702e 2049 6e20 6d6f 7374 2063 6173 6573 p. In most cases │ │ │ │ +00035f70: 2c20 6f6e 6520 6361 6e0a 6f62 7461 696e , one can.obtain │ │ │ │ +00035f80: 2074 6865 206f 7074 696d 616c 2076 616c the optimal val │ │ │ │ +00035f90: 7565 2074 6f20 6265 2070 6173 7365 6420 ue to be passed │ │ │ │ +00035fa0: 6173 2069 6e20 7468 6520 666f 6c6c 6f77 as in the follow │ │ │ │ +00035fb0: 696e 6720 6578 616d 706c 652e 0a0a 0a2b ing example....+ │ │ │ │ +00035fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00035ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036010: 2d2d 2d2b 0a7c 6931 203a 2063 6f64 696d ---+.|i1 : codim │ │ │ │ -00036020: 4273 496e 7620 3d20 286d 2920 2d3e 2028 BsInv = (m) -> ( │ │ │ │ +00036000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00036010: 6931 203a 2063 6f64 696d 4273 496e 7620 i1 : codimBsInv │ │ │ │ +00036020: 3d20 286d 2920 2d3e 2028 2020 2020 2020 = (m) -> ( │ │ │ │ 00036030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036060: 2020 207c 0a7c 2020 2020 2020 2020 2d2d |.| -- │ │ │ │ -00036070: 2069 6e70 7574 3a20 6d2c 2074 6865 206c input: m, the l │ │ │ │ -00036080: 6973 7420 6f66 2070 726f 6a65 6374 6976 ist of projectiv │ │ │ │ -00036090: 6520 6465 6772 6565 7320 6f66 2061 2062 e degrees of a b │ │ │ │ -000360a0: 6972 6174 696f 6e61 6c20 6d61 7020 2020 irational map │ │ │ │ -000360b0: 2020 207c 0a7c 2020 2020 2020 2020 2d2d |.| -- │ │ │ │ -000360c0: 206f 7574 7075 743a 2074 6865 2063 6f64 output: the cod │ │ │ │ -000360d0: 696d 656e 7369 6f6e 206f 6620 7468 6520 imension of the │ │ │ │ -000360e0: 6261 7365 206c 6f63 7573 206f 6620 7468 base locus of th │ │ │ │ -000360f0: 6520 696e 7665 7273 6520 6d61 7020 2020 e inverse map │ │ │ │ -00036100: 2020 207c 0a7c 2020 2020 2020 2020 6b3a |.| k: │ │ │ │ -00036110: 3d23 6d20 2d31 3b20 7a3a 3d6d 5f6b 3b20 =#m -1; z:=m_k; │ │ │ │ -00036120: 643a 3d66 6c6f 6f72 286d 5f28 6b2d 3129 d:=floor(m_(k-1) │ │ │ │ -00036130: 2f7a 293b 2020 2020 2020 2020 2020 2020 /z); │ │ │ │ -00036140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036150: 2020 207c 0a7c 2020 2020 2020 2020 666f |.| fo │ │ │ │ -00036160: 7220 6920 6672 6f6d 2032 2074 6f20 6b20 r i from 2 to k │ │ │ │ -00036170: 646f 2069 6620 7a2a 645e 6920 2d20 6d5f do if z*d^i - m_ │ │ │ │ -00036180: 286b 2d69 2920 3e20 3020 7468 656e 2072 (k-i) > 0 then r │ │ │ │ -00036190: 6574 7572 6e20 693b 2020 2020 2020 2020 eturn i; │ │ │ │ -000361a0: 2020 207c 0a7c 2020 2020 2029 3b20 2020 |.| ); │ │ │ │ +00036050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036060: 2020 2020 2020 2020 2d2d 2069 6e70 7574 -- input │ │ │ │ +00036070: 3a20 6d2c 2074 6865 206c 6973 7420 6f66 : m, the list of │ │ │ │ +00036080: 2070 726f 6a65 6374 6976 6520 6465 6772 projective degr │ │ │ │ +00036090: 6565 7320 6f66 2061 2062 6972 6174 696f ees of a biratio │ │ │ │ +000360a0: 6e61 6c20 6d61 7020 2020 2020 207c 0a7c nal map |.| │ │ │ │ +000360b0: 2020 2020 2020 2020 2d2d 206f 7574 7075 -- outpu │ │ │ │ +000360c0: 743a 2074 6865 2063 6f64 696d 656e 7369 t: the codimensi │ │ │ │ +000360d0: 6f6e 206f 6620 7468 6520 6261 7365 206c on of the base l │ │ │ │ +000360e0: 6f63 7573 206f 6620 7468 6520 696e 7665 ocus of the inve │ │ │ │ +000360f0: 7273 6520 6d61 7020 2020 2020 207c 0a7c rse map |.| │ │ │ │ +00036100: 2020 2020 2020 2020 6b3a 3d23 6d20 2d31 k:=#m -1 │ │ │ │ +00036110: 3b20 7a3a 3d6d 5f6b 3b20 643a 3d66 6c6f ; z:=m_k; d:=flo │ │ │ │ +00036120: 6f72 286d 5f28 6b2d 3129 2f7a 293b 2020 or(m_(k-1)/z); │ │ │ │ +00036130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036140: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036150: 2020 2020 2020 2020 666f 7220 6920 6672 for i fr │ │ │ │ +00036160: 6f6d 2032 2074 6f20 6b20 646f 2069 6620 om 2 to k do if │ │ │ │ +00036170: 7a2a 645e 6920 2d20 6d5f 286b 2d69 2920 z*d^i - m_(k-i) │ │ │ │ +00036180: 3e20 3020 7468 656e 2072 6574 7572 6e20 > 0 then return │ │ │ │ +00036190: 693b 2020 2020 2020 2020 2020 207c 0a7c i; |.| │ │ │ │ +000361a0: 2020 2020 2029 3b20 2020 2020 2020 2020 ); │ │ │ │ 000361b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000361d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000361f0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000361e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000361f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036240: 2d2d 2d2b 0a7c 6932 203a 2070 6869 203d ---+.|i2 : phi = │ │ │ │ -00036250: 2074 6f4d 6170 2074 7269 6d20 6d69 6e6f toMap trim mino │ │ │ │ -00036260: 7273 2832 2c67 656e 6572 6963 5379 6d6d rs(2,genericSymm │ │ │ │ -00036270: 6574 7269 634d 6174 7269 7828 5151 5b78 etricMatrix(QQ[x │ │ │ │ -00036280: 5f30 2e2e 785f 355d 2c33 2929 2020 2020 _0..x_5],3)) │ │ │ │ -00036290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00036240: 6932 203a 2070 6869 203d 2074 6f4d 6170 i2 : phi = toMap │ │ │ │ +00036250: 2074 7269 6d20 6d69 6e6f 7273 2832 2c67 trim minors(2,g │ │ │ │ +00036260: 656e 6572 6963 5379 6d6d 6574 7269 634d enericSymmetricM │ │ │ │ +00036270: 6174 7269 7828 5151 5b78 5f30 2e2e 785f atrix(QQ[x_0..x_ │ │ │ │ +00036280: 355d 2c33 2929 2020 2020 2020 207c 0a7c 5],3)) |.| │ │ │ │ +00036290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000362e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000362d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000362e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000362f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036300: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00036300: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00036310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036320: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00036330: 2020 207c 0a7c 6f32 203d 206d 6170 2028 |.|o2 = map ( │ │ │ │ -00036340: 5151 5b78 202e 2e78 205d 2c20 5151 5b78 QQ[x ..x ], QQ[x │ │ │ │ -00036350: 202e 2e78 205d 2c20 7b78 2020 2d20 7820 ..x ], {x - x │ │ │ │ -00036360: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ -00036370: 2078 2078 2020 2d20 7820 7820 2c20 7820 x x - x x , x │ │ │ │ -00036380: 202d 207c 0a7c 2020 2020 2020 2020 2020 - |.| │ │ │ │ -00036390: 2020 2020 3020 2020 3520 2020 2020 2020 0 5 │ │ │ │ -000363a0: 3020 2020 3520 2020 2020 3420 2020 2033 0 5 4 3 │ │ │ │ -000363b0: 2035 2020 2032 2034 2020 2020 3120 3520 5 2 4 1 5 │ │ │ │ -000363c0: 2020 3220 3320 2020 2031 2034 2020 2032 2 3 1 4 2 │ │ │ │ -000363d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036320: 2020 2020 2020 2020 2032 2020 207c 0a7c 2 |.| │ │ │ │ +00036330: 6f32 203d 206d 6170 2028 5151 5b78 202e o2 = map (QQ[x . │ │ │ │ +00036340: 2e78 205d 2c20 5151 5b78 202e 2e78 205d .x ], QQ[x ..x ] │ │ │ │ +00036350: 2c20 7b78 2020 2d20 7820 7820 2c20 7820 , {x - x x , x │ │ │ │ +00036360: 7820 202d 2078 2078 202c 2078 2078 2020 x - x x , x x │ │ │ │ +00036370: 2d20 7820 7820 2c20 7820 202d 207c 0a7c - x x , x - |.| │ │ │ │ +00036380: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00036390: 2020 3520 2020 2020 2020 3020 2020 3520 5 0 5 │ │ │ │ +000363a0: 2020 2020 3420 2020 2033 2035 2020 2032 4 3 5 2 │ │ │ │ +000363b0: 2034 2020 2020 3120 3520 2020 3220 3320 4 1 5 2 3 │ │ │ │ +000363c0: 2020 2031 2034 2020 2032 2020 207c 0a7c 1 4 2 |.| │ │ │ │ +000363d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000363f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036420: 2020 207c 0a7c 6f32 203a 2052 696e 674d |.|o2 : RingM │ │ │ │ -00036430: 6170 2051 515b 7820 2e2e 7820 5d20 3c2d ap QQ[x ..x ] <- │ │ │ │ -00036440: 2d20 5151 5b78 202e 2e78 205d 2020 2020 - QQ[x ..x ] │ │ │ │ +00036410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036420: 6f32 203a 2052 696e 674d 6170 2051 515b o2 : RingMap QQ[ │ │ │ │ +00036430: 7820 2e2e 7820 5d20 3c2d 2d20 5151 5b78 x ..x ] <-- QQ[x │ │ │ │ +00036440: 202e 2e78 205d 2020 2020 2020 2020 2020 ..x ] │ │ │ │ 00036450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00036480: 2020 2020 2020 2030 2020 2035 2020 2020 0 5 │ │ │ │ -00036490: 2020 2020 2020 3020 2020 3520 2020 2020 0 5 │ │ │ │ +00036460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036480: 2030 2020 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +00036490: 3020 2020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 000364a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000364c0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000364b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000364c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000364d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000364e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000364f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036510: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00036520: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00036500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00036510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00036520: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00036530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036560: 2020 207c 0a7c 7820 7820 2c20 7820 7820 |.|x x , x x │ │ │ │ -00036570: 202d 2078 2078 202c 2078 2020 2d20 7820 - x x , x - x │ │ │ │ -00036580: 7820 7d29 2020 2020 2020 2020 2020 2020 x }) │ │ │ │ +00036550: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00036560: 7820 7820 2c20 7820 7820 202d 2078 2078 x x , x x - x x │ │ │ │ +00036570: 202c 2078 2020 2d20 7820 7820 7d29 2020 , x - x x }) │ │ │ │ +00036580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365b0: 2020 207c 0a7c 2030 2035 2020 2031 2032 |.| 0 5 1 2 │ │ │ │ -000365c0: 2020 2020 3020 3420 2020 3120 2020 2030 0 4 1 0 │ │ │ │ -000365d0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000365a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000365b0: 2030 2035 2020 2031 2032 2020 2020 3020 0 5 1 2 0 │ │ │ │ +000365c0: 3420 2020 3120 2020 2030 2033 2020 2020 4 1 0 3 │ │ │ │ +000365d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000365e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000365f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036600: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000365f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00036600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036650: 2d2d 2d2b 0a7c 6933 203a 2063 6f64 696d ---+.|i3 : codim │ │ │ │ -00036660: 4273 496e 7620 7072 6f6a 6563 7469 7665 BsInv projective │ │ │ │ -00036670: 4465 6772 6565 7320 7068 6920 2020 2020 Degrees phi │ │ │ │ +00036640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00036650: 6933 203a 2063 6f64 696d 4273 496e 7620 i3 : codimBsInv │ │ │ │ +00036660: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ +00036670: 7320 7068 6920 2020 2020 2020 2020 2020 s phi │ │ │ │ 00036680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000366a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00036690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000366a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000366b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000366c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000366d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000366e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000366f0: 2020 207c 0a7c 6f33 203d 2033 2020 2020 |.|o3 = 3 │ │ │ │ +000366e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000366f0: 6f33 203d 2033 2020 2020 2020 2020 2020 o3 = 3 │ │ │ │ 00036700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00036720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00036740: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00036730: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00036740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036790: 2d2d 2d2b 0a0a 486f 7765 7665 722c 2073 ---+..However, s │ │ │ │ -000367a0: 6f6d 6574 696d 6573 206c 6172 6765 7220 ometimes larger │ │ │ │ -000367b0: 7661 6c75 6573 206d 6179 2062 6520 7072 values may be pr │ │ │ │ -000367c0: 6566 6572 6162 6c65 2e0a 0a46 756e 6374 eferable...Funct │ │ │ │ -000367d0: 696f 6e73 2077 6974 6820 6f70 7469 6f6e ions with option │ │ │ │ -000367e0: 616c 2061 7267 756d 656e 7420 6e61 6d65 al argument name │ │ │ │ -000367f0: 6420 436f 6469 6d42 7349 6e76 3a0a 3d3d d CodimBsInv:.== │ │ │ │ +00036780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +00036790: 486f 7765 7665 722c 2073 6f6d 6574 696d However, sometim │ │ │ │ +000367a0: 6573 206c 6172 6765 7220 7661 6c75 6573 es larger values │ │ │ │ +000367b0: 206d 6179 2062 6520 7072 6566 6572 6162 may be preferab │ │ │ │ +000367c0: 6c65 2e0a 0a46 756e 6374 696f 6e73 2077 le...Functions w │ │ │ │ +000367d0: 6974 6820 6f70 7469 6f6e 616c 2061 7267 ith optional arg │ │ │ │ +000367e0: 756d 656e 7420 6e61 6d65 6420 436f 6469 ument named Codi │ │ │ │ +000367f0: 6d42 7349 6e76 3a0a 3d3d 3d3d 3d3d 3d3d mBsInv:.======== │ │ │ │ 00036800: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00036810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00036820: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00036830: 0a0a 2020 2a20 2261 7070 726f 7869 6d61 .. * "approxima │ │ │ │ -00036840: 7465 496e 7665 7273 654d 6170 282e 2e2e teInverseMap(... │ │ │ │ -00036850: 2c43 6f64 696d 4273 496e 763d 3e2e 2e2e ,CodimBsInv=>... │ │ │ │ -00036860: 2922 0a0a 466f 7220 7468 6520 7072 6f67 )"..For the prog │ │ │ │ -00036870: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -00036880: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -00036890: 626a 6563 7420 2a6e 6f74 6520 436f 6469 bject *note Codi │ │ │ │ -000368a0: 6d42 7349 6e76 3a20 436f 6469 6d42 7349 mBsInv: CodimBsI │ │ │ │ -000368b0: 6e76 2c20 6973 2061 202a 6e6f 7465 2073 nv, is a *note s │ │ │ │ -000368c0: 796d 626f 6c3a 0a28 4d61 6361 756c 6179 ymbol:.(Macaulay │ │ │ │ -000368d0: 3244 6f63 2953 796d 626f 6c2c 2e0a 0a2d 2Doc)Symbol,...- │ │ │ │ +00036820: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +00036830: 2261 7070 726f 7869 6d61 7465 496e 7665 "approximateInve │ │ │ │ +00036840: 7273 654d 6170 282e 2e2e 2c43 6f64 696d rseMap(...,Codim │ │ │ │ +00036850: 4273 496e 763d 3e2e 2e2e 2922 0a0a 466f BsInv=>...)"..Fo │ │ │ │ +00036860: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +00036870: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00036880: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +00036890: 2a6e 6f74 6520 436f 6469 6d42 7349 6e76 *note CodimBsInv │ │ │ │ +000368a0: 3a20 436f 6469 6d42 7349 6e76 2c20 6973 : CodimBsInv, is │ │ │ │ +000368b0: 2061 202a 6e6f 7465 2073 796d 626f 6c3a a *note symbol: │ │ │ │ +000368c0: 0a28 4d61 6361 756c 6179 3244 6f63 2953 .(Macaulay2Doc)S │ │ │ │ +000368d0: 796d 626f 6c2c 2e0a 0a2d 2d2d 2d2d 2d2d ymbol,...------- │ │ │ │ 000368e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000368f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00036930: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00036940: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00036950: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00036960: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00036970: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00036980: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00036990: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -000369a0: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -000369b0: 3130 373a 302e 0a1f 0a46 696c 653a 2043 107:0....File: C │ │ │ │ -000369c0: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -000369d0: 653a 2063 6f65 6666 6963 6965 6e74 5269 e: coefficientRi │ │ │ │ -000369e0: 6e67 5f6c 7052 6174 696f 6e61 6c4d 6170 ng_lpRationalMap │ │ │ │ -000369f0: 5f72 702c 204e 6578 743a 2063 6f65 6666 _rp, Next: coeff │ │ │ │ -00036a00: 6963 6965 6e74 735f 6c70 5261 7469 6f6e icients_lpRation │ │ │ │ -00036a10: 616c 4d61 705f 7270 2c20 5072 6576 3a20 alMap_rp, Prev: │ │ │ │ -00036a20: 436f 6469 6d42 7349 6e76 2c20 5570 3a20 CodimBsInv, Up: │ │ │ │ -00036a30: 546f 700a 0a63 6f65 6666 6963 6965 6e74 Top..coefficient │ │ │ │ -00036a40: 5269 6e67 2852 6174 696f 6e61 6c4d 6170 Ring(RationalMap │ │ │ │ -00036a50: 2920 2d2d 2063 6f65 6666 6963 6965 6e74 ) -- coefficient │ │ │ │ -00036a60: 2072 696e 6720 6f66 2061 2072 6174 696f ring of a ratio │ │ │ │ -00036a70: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ +00036920: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00036930: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00036940: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00036950: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00036960: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00036970: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00036980: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00036990: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +000369a0: 7461 7469 6f6e 2e6d 323a 3130 373a 302e tation.m2:107:0. │ │ │ │ +000369b0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +000369c0: 2e69 6e66 6f2c 204e 6f64 653a 2063 6f65 .info, Node: coe │ │ │ │ +000369d0: 6666 6963 6965 6e74 5269 6e67 5f6c 7052 fficientRing_lpR │ │ │ │ +000369e0: 6174 696f 6e61 6c4d 6170 5f72 702c 204e ationalMap_rp, N │ │ │ │ +000369f0: 6578 743a 2063 6f65 6666 6963 6965 6e74 ext: coefficient │ │ │ │ +00036a00: 735f 6c70 5261 7469 6f6e 616c 4d61 705f s_lpRationalMap_ │ │ │ │ +00036a10: 7270 2c20 5072 6576 3a20 436f 6469 6d42 rp, Prev: CodimB │ │ │ │ +00036a20: 7349 6e76 2c20 5570 3a20 546f 700a 0a63 sInv, Up: Top..c │ │ │ │ +00036a30: 6f65 6666 6963 6965 6e74 5269 6e67 2852 oefficientRing(R │ │ │ │ +00036a40: 6174 696f 6e61 6c4d 6170 2920 2d2d 2063 ationalMap) -- c │ │ │ │ +00036a50: 6f65 6666 6963 6965 6e74 2072 696e 6720 oefficient ring │ │ │ │ +00036a60: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ +00036a70: 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a p.************** │ │ │ │ 00036a80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00036a90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00036aa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00036ab0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00036ac0: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ -00036ad0: 636f 6566 6669 6369 656e 7452 696e 673a coefficientRing: │ │ │ │ -00036ae0: 2028 4d61 6361 756c 6179 3244 6f63 2963 (Macaulay2Doc)c │ │ │ │ -00036af0: 6f65 6666 6963 6965 6e74 5269 6e67 2c0a oefficientRing,. │ │ │ │ -00036b00: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -00036b10: 2020 2020 636f 6566 6669 6369 656e 7452 coefficientR │ │ │ │ -00036b20: 696e 6720 7068 690a 2020 2a20 496e 7075 ing phi. * Inpu │ │ │ │ -00036b30: 7473 3a0a 2020 2020 2020 2a20 7068 692c ts:. * phi, │ │ │ │ -00036b40: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ -00036b50: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ -00036b60: 6170 2c0a 2020 2a20 4f75 7470 7574 733a ap,. * Outputs: │ │ │ │ -00036b70: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ -00036b80: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ -00036b90: 3244 6f63 2952 696e 672c 2c20 7468 6520 2Doc)Ring,, the │ │ │ │ -00036ba0: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ -00036bb0: 206f 6620 7068 690a 0a53 6565 2061 6c73 of phi..See als │ │ │ │ -00036bc0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00036bd0: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ -00036be0: 7020 2a2a 2052 696e 673a 2052 6174 696f p ** Ring: Ratio │ │ │ │ -00036bf0: 6e61 6c4d 6170 205f 7374 5f73 7420 5269 nalMap _st_st Ri │ │ │ │ -00036c00: 6e67 2c20 2d2d 2063 6861 6e67 6520 7468 ng, -- change th │ │ │ │ -00036c10: 650a 2020 2020 636f 6566 6669 6369 656e e. coefficien │ │ │ │ -00036c20: 7420 7269 6e67 206f 6620 6120 7261 7469 t ring of a rati │ │ │ │ -00036c30: 6f6e 616c 206d 6170 0a0a 5761 7973 2074 onal map..Ways t │ │ │ │ -00036c40: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ -00036c50: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ -00036c60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00036c70: 202a 6e6f 7465 2063 6f65 6666 6963 6965 *note coefficie │ │ │ │ -00036c80: 6e74 5269 6e67 2852 6174 696f 6e61 6c4d ntRing(RationalM │ │ │ │ -00036c90: 6170 293a 2063 6f65 6666 6963 6965 6e74 ap): coefficient │ │ │ │ -00036ca0: 5269 6e67 5f6c 7052 6174 696f 6e61 6c4d Ring_lpRationalM │ │ │ │ -00036cb0: 6170 5f72 702c 202d 2d0a 2020 2020 636f ap_rp, --. co │ │ │ │ -00036cc0: 6566 6669 6369 656e 7420 7269 6e67 206f efficient ring o │ │ │ │ -00036cd0: 6620 6120 7261 7469 6f6e 616c 206d 6170 f a rational map │ │ │ │ -00036ce0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00036ab0: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +00036ac0: 6f6e 3a20 2a6e 6f74 6520 636f 6566 6669 on: *note coeffi │ │ │ │ +00036ad0: 6369 656e 7452 696e 673a 2028 4d61 6361 cientRing: (Maca │ │ │ │ +00036ae0: 756c 6179 3244 6f63 2963 6f65 6666 6963 ulay2Doc)coeffic │ │ │ │ +00036af0: 6965 6e74 5269 6e67 2c0a 2020 2a20 5573 ientRing,. * Us │ │ │ │ +00036b00: 6167 653a 200a 2020 2020 2020 2020 636f age: . co │ │ │ │ +00036b10: 6566 6669 6369 656e 7452 696e 6720 7068 efficientRing ph │ │ │ │ +00036b20: 690a 2020 2a20 496e 7075 7473 3a0a 2020 i. * Inputs:. │ │ │ │ +00036b30: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ +00036b40: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ +00036b50: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ +00036b60: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +00036b70: 202a 2061 202a 6e6f 7465 2072 696e 673a * a *note ring: │ │ │ │ +00036b80: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ +00036b90: 696e 672c 2c20 7468 6520 636f 6566 6669 ing,, the coeffi │ │ │ │ +00036ba0: 6369 656e 7420 7269 6e67 206f 6620 7068 cient ring of ph │ │ │ │ +00036bb0: 690a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d i..See also.==== │ │ │ │ +00036bc0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00036bd0: 5261 7469 6f6e 616c 4d61 7020 2a2a 2052 RationalMap ** R │ │ │ │ +00036be0: 696e 673a 2052 6174 696f 6e61 6c4d 6170 ing: RationalMap │ │ │ │ +00036bf0: 205f 7374 5f73 7420 5269 6e67 2c20 2d2d _st_st Ring, -- │ │ │ │ +00036c00: 2063 6861 6e67 6520 7468 650a 2020 2020 change the. │ │ │ │ +00036c10: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ +00036c20: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ +00036c30: 6170 0a0a 5761 7973 2074 6f20 7573 6520 ap..Ways to use │ │ │ │ +00036c40: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ +00036c50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00036c60: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +00036c70: 2063 6f65 6666 6963 6965 6e74 5269 6e67 coefficientRing │ │ │ │ +00036c80: 2852 6174 696f 6e61 6c4d 6170 293a 2063 (RationalMap): c │ │ │ │ +00036c90: 6f65 6666 6963 6965 6e74 5269 6e67 5f6c oefficientRing_l │ │ │ │ +00036ca0: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +00036cb0: 202d 2d0a 2020 2020 636f 6566 6669 6369 --. coeffici │ │ │ │ +00036cc0: 656e 7420 7269 6e67 206f 6620 6120 7261 ent ring of a ra │ │ │ │ +00036cd0: 7469 6f6e 616c 206d 6170 0a2d 2d2d 2d2d tional map.----- │ │ │ │ +00036ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00036d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00036d30: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00036d40: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00036d50: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00036d60: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00036d70: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00036d80: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00036d90: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ -00036da0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ -00036db0: 323a 3438 323a 302e 0a1f 0a46 696c 653a 2:482:0....File: │ │ │ │ -00036dc0: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ -00036dd0: 6f64 653a 2063 6f65 6666 6963 6965 6e74 ode: coefficient │ │ │ │ -00036de0: 735f 6c70 5261 7469 6f6e 616c 4d61 705f s_lpRationalMap_ │ │ │ │ -00036df0: 7270 2c20 4e65 7874 3a20 6465 6772 6565 rp, Next: degree │ │ │ │ -00036e00: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -00036e10: 702c 2050 7265 763a 2063 6f65 6666 6963 p, Prev: coeffic │ │ │ │ -00036e20: 6965 6e74 5269 6e67 5f6c 7052 6174 696f ientRing_lpRatio │ │ │ │ -00036e30: 6e61 6c4d 6170 5f72 702c 2055 703a 2054 nalMap_rp, Up: T │ │ │ │ -00036e40: 6f70 0a0a 636f 6566 6669 6369 656e 7473 op..coefficients │ │ │ │ -00036e50: 2852 6174 696f 6e61 6c4d 6170 2920 2d2d (RationalMap) -- │ │ │ │ -00036e60: 2063 6f65 6666 6963 6965 6e74 206d 6174 coefficient mat │ │ │ │ -00036e70: 7269 7820 6f66 2061 2072 6174 696f 6e61 rix of a rationa │ │ │ │ -00036e80: 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a l map.********** │ │ │ │ +00036d20: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +00036d30: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +00036d40: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +00036d50: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +00036d60: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +00036d70: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +00036d80: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +00036d90: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +00036da0: 656e 7461 7469 6f6e 2e6d 323a 3438 323a entation.m2:482: │ │ │ │ +00036db0: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +00036dc0: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2063 na.info, Node: c │ │ │ │ +00036dd0: 6f65 6666 6963 6965 6e74 735f 6c70 5261 oefficients_lpRa │ │ │ │ +00036de0: 7469 6f6e 616c 4d61 705f 7270 2c20 4e65 tionalMap_rp, Ne │ │ │ │ +00036df0: 7874 3a20 6465 6772 6565 5f6c 7052 6174 xt: degree_lpRat │ │ │ │ +00036e00: 696f 6e61 6c4d 6170 5f72 702c 2050 7265 ionalMap_rp, Pre │ │ │ │ +00036e10: 763a 2063 6f65 6666 6963 6965 6e74 5269 v: coefficientRi │ │ │ │ +00036e20: 6e67 5f6c 7052 6174 696f 6e61 6c4d 6170 ng_lpRationalMap │ │ │ │ +00036e30: 5f72 702c 2055 703a 2054 6f70 0a0a 636f _rp, Up: Top..co │ │ │ │ +00036e40: 6566 6669 6369 656e 7473 2852 6174 696f efficients(Ratio │ │ │ │ +00036e50: 6e61 6c4d 6170 2920 2d2d 2063 6f65 6666 nalMap) -- coeff │ │ │ │ +00036e60: 6963 6965 6e74 206d 6174 7269 7820 6f66 icient matrix of │ │ │ │ +00036e70: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +00036e80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00036e90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00036ea0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00036eb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00036ec0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 756e *******.. * Fun │ │ │ │ -00036ed0: 6374 696f 6e3a 202a 6e6f 7465 2063 6f65 ction: *note coe │ │ │ │ -00036ee0: 6666 6963 6965 6e74 733a 2028 4d61 6361 fficients: (Maca │ │ │ │ -00036ef0: 756c 6179 3244 6f63 2963 6f65 6666 6963 ulay2Doc)coeffic │ │ │ │ -00036f00: 6965 6e74 732c 0a20 202a 2055 7361 6765 ients,. * Usage │ │ │ │ -00036f10: 3a20 0a20 2020 2020 2020 2063 6f65 6666 : . coeff │ │ │ │ -00036f20: 6963 6965 6e74 7320 7068 690a 2020 2a20 icients phi. * │ │ │ │ -00036f30: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00036f40: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ -00036f50: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00036f60: 6e61 6c4d 6170 2c0a 2020 2a20 2a6e 6f74 nalMap,. * *not │ │ │ │ -00036f70: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -00036f80: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -00036f90: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -00036fa0: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -00036fb0: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -00036fc0: 2a6e 6f74 6520 4d6f 6e6f 6d69 616c 733a *note Monomials: │ │ │ │ -00036fd0: 2028 4d61 6361 756c 6179 3244 6f63 2963 (Macaulay2Doc)c │ │ │ │ -00036fe0: 6f65 6666 6963 6965 6e74 732c 203d 3e20 oefficients, => │ │ │ │ -00036ff0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ -00037000: 7565 0a20 2020 2020 2020 206e 756c 6c2c ue. null, │ │ │ │ -00037010: 0a20 2020 2020 202a 202a 6e6f 7465 2056 . * *note V │ │ │ │ -00037020: 6172 6961 626c 6573 3a20 284d 6163 6175 ariables: (Macau │ │ │ │ -00037030: 6c61 7932 446f 6329 636f 6566 6669 6369 lay2Doc)coeffici │ │ │ │ -00037040: 656e 7473 2c20 3d3e 202e 2e2e 2c20 6465 ents, => ..., de │ │ │ │ -00037050: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -00037060: 2020 2020 6e75 6c6c 2c0a 2020 2a20 4f75 null,. * Ou │ │ │ │ -00037070: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ -00037080: 202a 6e6f 7465 206d 6174 7269 783a 2028 *note matrix: ( │ │ │ │ -00037090: 4d61 6361 756c 6179 3244 6f63 294d 6174 Macaulay2Doc)Mat │ │ │ │ -000370a0: 7269 782c 2c20 7468 6520 636f 6566 6669 rix,, the coeffi │ │ │ │ -000370b0: 6369 656e 7420 6d61 7472 6978 206f 6620 cient matrix of │ │ │ │ -000370c0: 7468 650a 2020 2020 2020 2020 706f 6c79 the. poly │ │ │ │ -000370d0: 6e6f 6d69 616c 7320 6465 6669 6e69 6e67 nomials defining │ │ │ │ -000370e0: 2070 6869 0a0a 4465 7363 7269 7074 696f phi..Descriptio │ │ │ │ -000370f0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b n.===========..+ │ │ │ │ +00036ec0: 2a0a 0a20 202a 2046 756e 6374 696f 6e3a *.. * Function: │ │ │ │ +00036ed0: 202a 6e6f 7465 2063 6f65 6666 6963 6965 *note coefficie │ │ │ │ +00036ee0: 6e74 733a 2028 4d61 6361 756c 6179 3244 nts: (Macaulay2D │ │ │ │ +00036ef0: 6f63 2963 6f65 6666 6963 6965 6e74 732c oc)coefficients, │ │ │ │ +00036f00: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +00036f10: 2020 2020 2063 6f65 6666 6963 6965 6e74 coefficient │ │ │ │ +00036f20: 7320 7068 690a 2020 2a20 496e 7075 7473 s phi. * Inputs │ │ │ │ +00036f30: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ +00036f40: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00036f50: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00036f60: 2c0a 2020 2a20 2a6e 6f74 6520 4f70 7469 ,. * *note Opti │ │ │ │ +00036f70: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ +00036f80: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ +00036f90: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ +00036fa0: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ +00036fb0: 3a0a 2020 2020 2020 2a20 2a6e 6f74 6520 :. * *note │ │ │ │ +00036fc0: 4d6f 6e6f 6d69 616c 733a 2028 4d61 6361 Monomials: (Maca │ │ │ │ +00036fd0: 756c 6179 3244 6f63 2963 6f65 6666 6963 ulay2Doc)coeffic │ │ │ │ +00036fe0: 6965 6e74 732c 203d 3e20 2e2e 2e2c 2064 ients, => ..., d │ │ │ │ +00036ff0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ +00037000: 2020 2020 206e 756c 6c2c 0a20 2020 2020 null,. │ │ │ │ +00037010: 202a 202a 6e6f 7465 2056 6172 6961 626c * *note Variabl │ │ │ │ +00037020: 6573 3a20 284d 6163 6175 6c61 7932 446f es: (Macaulay2Do │ │ │ │ +00037030: 6329 636f 6566 6669 6369 656e 7473 2c20 c)coefficients, │ │ │ │ +00037040: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00037050: 7661 6c75 650a 2020 2020 2020 2020 6e75 value. nu │ │ │ │ +00037060: 6c6c 2c0a 2020 2a20 4f75 7470 7574 733a ll,. * Outputs: │ │ │ │ +00037070: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ +00037080: 206d 6174 7269 783a 2028 4d61 6361 756c matrix: (Macaul │ │ │ │ +00037090: 6179 3244 6f63 294d 6174 7269 782c 2c20 ay2Doc)Matrix,, │ │ │ │ +000370a0: 7468 6520 636f 6566 6669 6369 656e 7420 the coefficient │ │ │ │ +000370b0: 6d61 7472 6978 206f 6620 7468 650a 2020 matrix of the. │ │ │ │ +000370c0: 2020 2020 2020 706f 6c79 6e6f 6d69 616c polynomial │ │ │ │ +000370d0: 7320 6465 6669 6e69 6e67 2070 6869 0a0a s defining phi.. │ │ │ │ +000370e0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +000370f0: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ 00037100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037130: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00037140: 4b20 3d20 5151 3b20 7269 6e67 5039 203d K = QQ; ringP9 = │ │ │ │ -00037150: 204b 5b78 5f30 2e2e 785f 395d 3b20 2020 K[x_0..x_9]; │ │ │ │ -00037160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037170: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00037130: 2d2d 2b0a 7c69 3120 3a20 4b20 3d20 5151 --+.|i1 : K = QQ │ │ │ │ +00037140: 3b20 7269 6e67 5039 203d 204b 5b78 5f30 ; ringP9 = K[x_0 │ │ │ │ +00037150: 2e2e 785f 395d 3b20 2020 2020 2020 2020 ..x_9]; │ │ │ │ +00037160: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00037170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000371a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000371b0: 7c69 3320 3a20 4d20 3d20 7261 6e64 6f6d |i3 : M = random │ │ │ │ -000371c0: 284b 5e31 302c 4b5e 3130 2920 2020 2020 (K^10,K^10) │ │ │ │ +000371a0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +000371b0: 4d20 3d20 7261 6e64 6f6d 284b 5e31 302c M = random(K^10, │ │ │ │ +000371c0: 4b5e 3130 2920 2020 2020 2020 2020 2020 K^10) │ │ │ │ 000371d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000371e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000371e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 000371f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037220: 2020 2020 7c0a 7c6f 3320 3d20 7c20 392f |.|o3 = | 9/ │ │ │ │ -00037230: 3220 2036 2f37 2020 372f 3820 352f 3320 2 6/7 7/8 5/3 │ │ │ │ -00037240: 2035 2f34 2020 392f 3130 2031 3020 2020 5/4 9/10 10 │ │ │ │ -00037250: 342f 3920 2035 2f36 2020 3320 2020 7c7c 4/9 5/6 3 || │ │ │ │ -00037260: 0a7c 2020 2020 207c 2039 2f34 2020 3620 .| | 9/4 6 │ │ │ │ -00037270: 2020 2035 2f36 2031 2f31 3020 322f 3920 5/6 1/10 2/9 │ │ │ │ -00037280: 2035 2f34 2020 3130 2f39 2039 2f31 3020 5/4 10/9 9/10 │ │ │ │ -00037290: 372f 3130 2037 2f35 207c 7c0a 7c20 2020 7/10 7/5 ||.| │ │ │ │ -000372a0: 2020 7c20 332f 3420 2035 2f34 2020 3520 | 3/4 5/4 5 │ │ │ │ -000372b0: 2020 342f 3320 2038 2f35 2020 312f 3720 4/3 8/5 1/7 │ │ │ │ -000372c0: 2038 2f33 2020 332f 3220 2031 2f38 2020 8/3 3/2 1/8 │ │ │ │ -000372d0: 372f 3320 7c7c 0a7c 2020 2020 207c 2037 7/3 ||.| | 7 │ │ │ │ -000372e0: 2f34 2020 322f 3920 2032 2f35 2033 2f37 /4 2/9 2/5 3/7 │ │ │ │ -000372f0: 2020 392f 3420 2037 2f35 2020 332f 3420 9/4 7/5 3/4 │ │ │ │ -00037300: 2034 2f33 2020 382f 3720 2032 2f37 207c 4/3 8/7 2/7 | │ │ │ │ -00037310: 7c0a 7c20 2020 2020 7c20 372f 3920 2033 |.| | 7/9 3 │ │ │ │ -00037320: 2f31 3020 352f 3320 392f 3130 2032 2f39 /10 5/3 9/10 2/9 │ │ │ │ -00037330: 2020 312f 3520 2039 2f35 2020 312f 3820 1/5 9/5 1/8 │ │ │ │ -00037340: 2037 2f33 2020 312f 3520 7c7c 0a7c 2020 7/3 1/5 ||.| │ │ │ │ -00037350: 2020 207c 2037 2f31 3020 332f 3720 2037 | 7/10 3/7 7 │ │ │ │ -00037360: 2f32 2034 2f37 2020 392f 3820 2035 2f37 /2 4/7 9/8 5/7 │ │ │ │ -00037370: 2020 332f 3520 2037 2f38 2020 3130 2f39 3/5 7/8 10/9 │ │ │ │ -00037380: 2035 2f37 207c 7c0a 7c20 2020 2020 7c20 5/7 ||.| | │ │ │ │ -00037390: 372f 3130 2035 2020 2020 322f 3520 352f 7/10 5 2/5 5/ │ │ │ │ -000373a0: 3920 2031 2f38 2020 332f 3820 2034 2020 9 1/8 3/8 4 │ │ │ │ -000373b0: 2020 3130 2f39 2038 2020 2020 372f 3320 10/9 8 7/3 │ │ │ │ -000373c0: 7c7c 0a7c 2020 2020 207c 2037 2f33 2020 ||.| | 7/3 │ │ │ │ -000373d0: 3130 2f39 2036 2f35 2035 2f39 2020 3130 10/9 6/5 5/9 10 │ │ │ │ -000373e0: 2f33 2035 2f32 2020 372f 3520 2036 2f37 /3 5/2 7/5 6/7 │ │ │ │ -000373f0: 2020 3130 2f39 2032 2020 207c 7c0a 7c20 10/9 2 ||.| │ │ │ │ -00037400: 2020 2020 7c20 3720 2020 2031 3020 2020 | 7 10 │ │ │ │ -00037410: 352f 3720 362f 3720 2034 2020 2020 312f 5/7 6/7 4 1/ │ │ │ │ -00037420: 3620 2035 2020 2020 372f 3620 2038 2020 6 5 7/6 8 │ │ │ │ -00037430: 2020 3420 2020 7c7c 0a7c 2020 2020 207c 4 ||.| | │ │ │ │ -00037440: 2033 2f37 2020 332f 3220 2035 2f39 2036 3/7 3/2 5/9 6 │ │ │ │ -00037450: 2020 2020 312f 3320 2038 2f35 2020 372f 1/3 8/5 7/ │ │ │ │ -00037460: 3130 2035 2f36 2020 3220 2020 2038 2f33 10 5/6 2 8/3 │ │ │ │ -00037470: 207c 7c0a 7c20 2020 2020 2020 2020 2020 ||.| │ │ │ │ +00037210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00037220: 7c6f 3320 3d20 7c20 392f 3220 2036 2f37 |o3 = | 9/2 6/7 │ │ │ │ +00037230: 2020 372f 3820 352f 3320 2035 2f34 2020 7/8 5/3 5/4 │ │ │ │ +00037240: 392f 3130 2031 3020 2020 342f 3920 2035 9/10 10 4/9 5 │ │ │ │ +00037250: 2f36 2020 3320 2020 7c7c 0a7c 2020 2020 /6 3 ||.| │ │ │ │ +00037260: 207c 2039 2f34 2020 3620 2020 2035 2f36 | 9/4 6 5/6 │ │ │ │ +00037270: 2031 2f31 3020 322f 3920 2035 2f34 2020 1/10 2/9 5/4 │ │ │ │ +00037280: 3130 2f39 2039 2f31 3020 372f 3130 2037 10/9 9/10 7/10 7 │ │ │ │ +00037290: 2f35 207c 7c0a 7c20 2020 2020 7c20 332f /5 ||.| | 3/ │ │ │ │ +000372a0: 3420 2035 2f34 2020 3520 2020 342f 3320 4 5/4 5 4/3 │ │ │ │ +000372b0: 2038 2f35 2020 312f 3720 2038 2f33 2020 8/5 1/7 8/3 │ │ │ │ +000372c0: 332f 3220 2031 2f38 2020 372f 3320 7c7c 3/2 1/8 7/3 || │ │ │ │ +000372d0: 0a7c 2020 2020 207c 2037 2f34 2020 322f .| | 7/4 2/ │ │ │ │ +000372e0: 3920 2032 2f35 2033 2f37 2020 392f 3420 9 2/5 3/7 9/4 │ │ │ │ +000372f0: 2037 2f35 2020 332f 3420 2034 2f33 2020 7/5 3/4 4/3 │ │ │ │ +00037300: 382f 3720 2032 2f37 207c 7c0a 7c20 2020 8/7 2/7 ||.| │ │ │ │ +00037310: 2020 7c20 372f 3920 2033 2f31 3020 352f | 7/9 3/10 5/ │ │ │ │ +00037320: 3320 392f 3130 2032 2f39 2020 312f 3520 3 9/10 2/9 1/5 │ │ │ │ +00037330: 2039 2f35 2020 312f 3820 2037 2f33 2020 9/5 1/8 7/3 │ │ │ │ +00037340: 312f 3520 7c7c 0a7c 2020 2020 207c 2037 1/5 ||.| | 7 │ │ │ │ +00037350: 2f31 3020 332f 3720 2037 2f32 2034 2f37 /10 3/7 7/2 4/7 │ │ │ │ +00037360: 2020 392f 3820 2035 2f37 2020 332f 3520 9/8 5/7 3/5 │ │ │ │ +00037370: 2037 2f38 2020 3130 2f39 2035 2f37 207c 7/8 10/9 5/7 | │ │ │ │ +00037380: 7c0a 7c20 2020 2020 7c20 372f 3130 2035 |.| | 7/10 5 │ │ │ │ +00037390: 2020 2020 322f 3520 352f 3920 2031 2f38 2/5 5/9 1/8 │ │ │ │ +000373a0: 2020 332f 3820 2034 2020 2020 3130 2f39 3/8 4 10/9 │ │ │ │ +000373b0: 2038 2020 2020 372f 3320 7c7c 0a7c 2020 8 7/3 ||.| │ │ │ │ +000373c0: 2020 207c 2037 2f33 2020 3130 2f39 2036 | 7/3 10/9 6 │ │ │ │ +000373d0: 2f35 2035 2f39 2020 3130 2f33 2035 2f32 /5 5/9 10/3 5/2 │ │ │ │ +000373e0: 2020 372f 3520 2036 2f37 2020 3130 2f39 7/5 6/7 10/9 │ │ │ │ +000373f0: 2032 2020 207c 7c0a 7c20 2020 2020 7c20 2 ||.| | │ │ │ │ +00037400: 3720 2020 2031 3020 2020 352f 3720 362f 7 10 5/7 6/ │ │ │ │ +00037410: 3720 2034 2020 2020 312f 3620 2035 2020 7 4 1/6 5 │ │ │ │ +00037420: 2020 372f 3620 2038 2020 2020 3420 2020 7/6 8 4 │ │ │ │ +00037430: 7c7c 0a7c 2020 2020 207c 2033 2f37 2020 ||.| | 3/7 │ │ │ │ +00037440: 332f 3220 2035 2f39 2036 2020 2020 312f 3/2 5/9 6 1/ │ │ │ │ +00037450: 3320 2038 2f35 2020 372f 3130 2035 2f36 3 8/5 7/10 5/6 │ │ │ │ +00037460: 2020 3220 2020 2038 2f33 207c 7c0a 7c20 2 8/3 ||.| │ │ │ │ +00037470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000374b0: 2020 2020 2020 2020 2020 2020 2020 3130 10 │ │ │ │ -000374c0: 2020 2020 2020 2031 3020 2020 2020 2020 10 │ │ │ │ +000374a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000374b0: 2020 2020 2020 2020 3130 2020 2020 2020 10 │ │ │ │ +000374c0: 2031 3020 2020 2020 2020 2020 2020 2020 10 │ │ │ │ 000374d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000374e0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -000374f0: 4d61 7472 6978 2051 5120 2020 3c2d 2d20 Matrix QQ <-- │ │ │ │ -00037500: 5151 2020 2020 2020 2020 2020 2020 2020 QQ │ │ │ │ -00037510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037520: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +000374e0: 2020 7c0a 7c6f 3320 3a20 4d61 7472 6978 |.|o3 : Matrix │ │ │ │ +000374f0: 2051 5120 2020 3c2d 2d20 5151 2020 2020 QQ <-- QQ │ │ │ │ +00037500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037510: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00037520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00037560: 7c69 3420 3a20 7068 6920 3d20 7261 7469 |i4 : phi = rati │ │ │ │ -00037570: 6f6e 616c 4d61 7020 2828 7661 7273 2072 onalMap ((vars r │ │ │ │ -00037580: 696e 6750 3929 202a 2028 7472 616e 7370 ingP9) * (transp │ │ │ │ -00037590: 6f73 6520 4d29 293b 207c 0a7c 2020 2020 ose M)); |.| │ │ │ │ +00037550: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +00037560: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +00037570: 7020 2828 7661 7273 2072 696e 6750 3929 p ((vars ringP9) │ │ │ │ +00037580: 202a 2028 7472 616e 7370 6f73 6520 4d29 * (transpose M) │ │ │ │ +00037590: 293b 207c 0a7c 2020 2020 2020 2020 2020 ); |.| │ │ │ │ 000375a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000375b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000375d0: 2020 2020 7c0a 7c6f 3420 3a20 5261 7469 |.|o4 : Rati │ │ │ │ -000375e0: 6f6e 616c 4d61 7020 286c 696e 6561 7220 onalMap (linear │ │ │ │ -000375f0: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -00037600: 6d20 5050 5e39 2074 6f20 5050 5e39 297c m PP^9 to PP^9)| │ │ │ │ -00037610: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000375c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000375d0: 7c6f 3420 3a20 5261 7469 6f6e 616c 4d61 |o4 : RationalMa │ │ │ │ +000375e0: 7020 286c 696e 6561 7220 7261 7469 6f6e p (linear ration │ │ │ │ +000375f0: 616c 206d 6170 2066 726f 6d20 5050 5e39 al map from PP^9 │ │ │ │ +00037600: 2074 6f20 5050 5e39 297c 0a2b 2d2d 2d2d to PP^9)|.+---- │ │ │ │ +00037610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037640: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ -00037650: 3a20 4d27 203d 2063 6f65 6666 6963 6965 : M' = coefficie │ │ │ │ -00037660: 6e74 7320 7068 6920 2020 2020 2020 2020 nts phi │ │ │ │ -00037670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00037640: 2d2d 2d2d 2b0a 7c69 3520 3a20 4d27 203d ----+.|i5 : M' = │ │ │ │ +00037650: 2063 6f65 6666 6963 6965 6e74 7320 7068 coefficients ph │ │ │ │ +00037660: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ +00037670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00037690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000376a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000376c0: 7c0a 7c6f 3520 3d20 7c20 392f 3220 2036 |.|o5 = | 9/2 6 │ │ │ │ -000376d0: 2f37 2020 372f 3820 352f 3320 2035 2f34 /7 7/8 5/3 5/4 │ │ │ │ -000376e0: 2020 392f 3130 2031 3020 2020 342f 3920 9/10 10 4/9 │ │ │ │ -000376f0: 2035 2f36 2020 3320 2020 7c7c 0a7c 2020 5/6 3 ||.| │ │ │ │ -00037700: 2020 207c 2039 2f34 2020 3620 2020 2035 | 9/4 6 5 │ │ │ │ -00037710: 2f36 2031 2f31 3020 322f 3920 2035 2f34 /6 1/10 2/9 5/4 │ │ │ │ -00037720: 2020 3130 2f39 2039 2f31 3020 372f 3130 10/9 9/10 7/10 │ │ │ │ -00037730: 2037 2f35 207c 7c0a 7c20 2020 2020 7c20 7/5 ||.| | │ │ │ │ -00037740: 332f 3420 2035 2f34 2020 3520 2020 342f 3/4 5/4 5 4/ │ │ │ │ -00037750: 3320 2038 2f35 2020 312f 3720 2038 2f33 3 8/5 1/7 8/3 │ │ │ │ -00037760: 2020 332f 3220 2031 2f38 2020 372f 3320 3/2 1/8 7/3 │ │ │ │ -00037770: 7c7c 0a7c 2020 2020 207c 2037 2f34 2020 ||.| | 7/4 │ │ │ │ -00037780: 322f 3920 2032 2f35 2033 2f37 2020 392f 2/9 2/5 3/7 9/ │ │ │ │ -00037790: 3420 2037 2f35 2020 332f 3420 2034 2f33 4 7/5 3/4 4/3 │ │ │ │ -000377a0: 2020 382f 3720 2032 2f37 207c 7c0a 7c20 8/7 2/7 ||.| │ │ │ │ -000377b0: 2020 2020 7c20 372f 3920 2033 2f31 3020 | 7/9 3/10 │ │ │ │ -000377c0: 352f 3320 392f 3130 2032 2f39 2020 312f 5/3 9/10 2/9 1/ │ │ │ │ -000377d0: 3520 2039 2f35 2020 312f 3820 2037 2f33 5 9/5 1/8 7/3 │ │ │ │ -000377e0: 2020 312f 3520 7c7c 0a7c 2020 2020 207c 1/5 ||.| | │ │ │ │ -000377f0: 2037 2f31 3020 332f 3720 2037 2f32 2034 7/10 3/7 7/2 4 │ │ │ │ -00037800: 2f37 2020 392f 3820 2035 2f37 2020 332f /7 9/8 5/7 3/ │ │ │ │ -00037810: 3520 2037 2f38 2020 3130 2f39 2035 2f37 5 7/8 10/9 5/7 │ │ │ │ -00037820: 207c 7c0a 7c20 2020 2020 7c20 372f 3130 ||.| | 7/10 │ │ │ │ -00037830: 2035 2020 2020 322f 3520 352f 3920 2031 5 2/5 5/9 1 │ │ │ │ -00037840: 2f38 2020 332f 3820 2034 2020 2020 3130 /8 3/8 4 10 │ │ │ │ -00037850: 2f39 2038 2020 2020 372f 3320 7c7c 0a7c /9 8 7/3 ||.| │ │ │ │ -00037860: 2020 2020 207c 2037 2f33 2020 3130 2f39 | 7/3 10/9 │ │ │ │ -00037870: 2036 2f35 2035 2f39 2020 3130 2f33 2035 6/5 5/9 10/3 5 │ │ │ │ -00037880: 2f32 2020 372f 3520 2036 2f37 2020 3130 /2 7/5 6/7 10 │ │ │ │ -00037890: 2f39 2032 2020 207c 7c0a 7c20 2020 2020 /9 2 ||.| │ │ │ │ -000378a0: 7c20 3720 2020 2031 3020 2020 352f 3720 | 7 10 5/7 │ │ │ │ -000378b0: 362f 3720 2034 2020 2020 312f 3620 2035 6/7 4 1/6 5 │ │ │ │ -000378c0: 2020 2020 372f 3620 2038 2020 2020 3420 7/6 8 4 │ │ │ │ -000378d0: 2020 7c7c 0a7c 2020 2020 207c 2033 2f37 ||.| | 3/7 │ │ │ │ -000378e0: 2020 332f 3220 2035 2f39 2036 2020 2020 3/2 5/9 6 │ │ │ │ -000378f0: 312f 3320 2038 2f35 2020 372f 3130 2035 1/3 8/5 7/10 5 │ │ │ │ -00037900: 2f36 2020 3220 2020 2038 2f33 207c 7c0a /6 2 8/3 ||. │ │ │ │ -00037910: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000376b0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +000376c0: 3d20 7c20 392f 3220 2036 2f37 2020 372f = | 9/2 6/7 7/ │ │ │ │ +000376d0: 3820 352f 3320 2035 2f34 2020 392f 3130 8 5/3 5/4 9/10 │ │ │ │ +000376e0: 2031 3020 2020 342f 3920 2035 2f36 2020 10 4/9 5/6 │ │ │ │ +000376f0: 3320 2020 7c7c 0a7c 2020 2020 207c 2039 3 ||.| | 9 │ │ │ │ +00037700: 2f34 2020 3620 2020 2035 2f36 2031 2f31 /4 6 5/6 1/1 │ │ │ │ +00037710: 3020 322f 3920 2035 2f34 2020 3130 2f39 0 2/9 5/4 10/9 │ │ │ │ +00037720: 2039 2f31 3020 372f 3130 2037 2f35 207c 9/10 7/10 7/5 | │ │ │ │ +00037730: 7c0a 7c20 2020 2020 7c20 332f 3420 2035 |.| | 3/4 5 │ │ │ │ +00037740: 2f34 2020 3520 2020 342f 3320 2038 2f35 /4 5 4/3 8/5 │ │ │ │ +00037750: 2020 312f 3720 2038 2f33 2020 332f 3220 1/7 8/3 3/2 │ │ │ │ +00037760: 2031 2f38 2020 372f 3320 7c7c 0a7c 2020 1/8 7/3 ||.| │ │ │ │ +00037770: 2020 207c 2037 2f34 2020 322f 3920 2032 | 7/4 2/9 2 │ │ │ │ +00037780: 2f35 2033 2f37 2020 392f 3420 2037 2f35 /5 3/7 9/4 7/5 │ │ │ │ +00037790: 2020 332f 3420 2034 2f33 2020 382f 3720 3/4 4/3 8/7 │ │ │ │ +000377a0: 2032 2f37 207c 7c0a 7c20 2020 2020 7c20 2/7 ||.| | │ │ │ │ +000377b0: 372f 3920 2033 2f31 3020 352f 3320 392f 7/9 3/10 5/3 9/ │ │ │ │ +000377c0: 3130 2032 2f39 2020 312f 3520 2039 2f35 10 2/9 1/5 9/5 │ │ │ │ +000377d0: 2020 312f 3820 2037 2f33 2020 312f 3520 1/8 7/3 1/5 │ │ │ │ +000377e0: 7c7c 0a7c 2020 2020 207c 2037 2f31 3020 ||.| | 7/10 │ │ │ │ +000377f0: 332f 3720 2037 2f32 2034 2f37 2020 392f 3/7 7/2 4/7 9/ │ │ │ │ +00037800: 3820 2035 2f37 2020 332f 3520 2037 2f38 8 5/7 3/5 7/8 │ │ │ │ +00037810: 2020 3130 2f39 2035 2f37 207c 7c0a 7c20 10/9 5/7 ||.| │ │ │ │ +00037820: 2020 2020 7c20 372f 3130 2035 2020 2020 | 7/10 5 │ │ │ │ +00037830: 322f 3520 352f 3920 2031 2f38 2020 332f 2/5 5/9 1/8 3/ │ │ │ │ +00037840: 3820 2034 2020 2020 3130 2f39 2038 2020 8 4 10/9 8 │ │ │ │ +00037850: 2020 372f 3320 7c7c 0a7c 2020 2020 207c 7/3 ||.| | │ │ │ │ +00037860: 2037 2f33 2020 3130 2f39 2036 2f35 2035 7/3 10/9 6/5 5 │ │ │ │ +00037870: 2f39 2020 3130 2f33 2035 2f32 2020 372f /9 10/3 5/2 7/ │ │ │ │ +00037880: 3520 2036 2f37 2020 3130 2f39 2032 2020 5 6/7 10/9 2 │ │ │ │ +00037890: 207c 7c0a 7c20 2020 2020 7c20 3720 2020 ||.| | 7 │ │ │ │ +000378a0: 2031 3020 2020 352f 3720 362f 3720 2034 10 5/7 6/7 4 │ │ │ │ +000378b0: 2020 2020 312f 3620 2035 2020 2020 372f 1/6 5 7/ │ │ │ │ +000378c0: 3620 2038 2020 2020 3420 2020 7c7c 0a7c 6 8 4 ||.| │ │ │ │ +000378d0: 2020 2020 207c 2033 2f37 2020 332f 3220 | 3/7 3/2 │ │ │ │ +000378e0: 2035 2f39 2036 2020 2020 312f 3320 2038 5/9 6 1/3 8 │ │ │ │ +000378f0: 2f35 2020 372f 3130 2035 2f36 2020 3220 /5 7/10 5/6 2 │ │ │ │ +00037900: 2020 2038 2f33 207c 7c0a 7c20 2020 2020 8/3 ||.| │ │ │ │ +00037910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037940: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00037950: 2020 2020 2020 2020 2020 3130 2020 2020 10 │ │ │ │ -00037960: 2020 2031 3020 2020 2020 2020 2020 2020 10 │ │ │ │ -00037970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037980: 2020 2020 7c0a 7c6f 3520 3a20 4d61 7472 |.|o5 : Matr │ │ │ │ -00037990: 6978 2051 5120 2020 3c2d 2d20 5151 2020 ix QQ <-- QQ │ │ │ │ +00037940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00037950: 2020 2020 3130 2020 2020 2020 2031 3020 10 10 │ │ │ │ +00037960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00037970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00037980: 7c6f 3520 3a20 4d61 7472 6978 2051 5120 |o5 : Matrix QQ │ │ │ │ +00037990: 2020 3c2d 2d20 5151 2020 2020 2020 2020 <-- QQ │ │ │ │ 000379a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000379b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000379c0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000379b0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000379c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000379d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000379e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000379f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ -00037a00: 3a20 4d20 3d3d 204d 2720 2020 2020 2020 : M == M' │ │ │ │ +000379f0: 2d2d 2d2d 2b0a 7c69 3620 3a20 4d20 3d3d ----+.|i6 : M == │ │ │ │ +00037a00: 204d 2720 2020 2020 2020 2020 2020 2020 M' │ │ │ │ 00037a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00037a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00037a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00037a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037a70: 7c0a 7c6f 3620 3d20 7472 7565 2020 2020 |.|o6 = true │ │ │ │ +00037a60: 2020 2020 2020 2020 2020 7c0a 7c6f 3620 |.|o6 │ │ │ │ +00037a70: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 00037a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00037a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00037aa0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00037aa0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00037ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037ae0: 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 746f ------+..Ways to │ │ │ │ -00037af0: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ -00037b00: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00037b10: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00037b20: 2a6e 6f74 6520 636f 6566 6669 6369 656e *note coefficien │ │ │ │ -00037b30: 7473 2852 6174 696f 6e61 6c4d 6170 293a ts(RationalMap): │ │ │ │ -00037b40: 2063 6f65 6666 6963 6965 6e74 735f 6c70 coefficients_lp │ │ │ │ -00037b50: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -00037b60: 2d2d 0a20 2020 2063 6f65 6666 6963 6965 --. coefficie │ │ │ │ -00037b70: 6e74 206d 6174 7269 7820 6f66 2061 2072 nt matrix of a r │ │ │ │ -00037b80: 6174 696f 6e61 6c20 6d61 700a 2d2d 2d2d ational map.---- │ │ │ │ +00037ae0: 2b0a 0a57 6179 7320 746f 2075 7365 2074 +..Ways to use t │ │ │ │ +00037af0: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ +00037b00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00037b10: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00037b20: 636f 6566 6669 6369 656e 7473 2852 6174 coefficients(Rat │ │ │ │ +00037b30: 696f 6e61 6c4d 6170 293a 2063 6f65 6666 ionalMap): coeff │ │ │ │ +00037b40: 6963 6965 6e74 735f 6c70 5261 7469 6f6e icients_lpRation │ │ │ │ +00037b50: 616c 4d61 705f 7270 2c20 2d2d 0a20 2020 alMap_rp, --. │ │ │ │ +00037b60: 2063 6f65 6666 6963 6965 6e74 206d 6174 coefficient mat │ │ │ │ +00037b70: 7269 7820 6f66 2061 2072 6174 696f 6e61 rix of a rationa │ │ │ │ +00037b80: 6c20 6d61 700a 2d2d 2d2d 2d2d 2d2d 2d2d l map.---------- │ │ │ │ 00037b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00037be0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00037bf0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00037c00: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00037c10: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00037c20: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00037c30: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00037c40: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ -00037c50: 6d65 6e74 6174 696f 6e2e 6d32 3a35 3338 mentation.m2:538 │ │ │ │ -00037c60: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ -00037c70: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ -00037c80: 6465 6772 6565 5f6c 7052 6174 696f 6e61 degree_lpRationa │ │ │ │ -00037c90: 6c4d 6170 5f72 702c 204e 6578 743a 2064 lMap_rp, Next: d │ │ │ │ -00037ca0: 6567 7265 654d 6170 2c20 5072 6576 3a20 egreeMap, Prev: │ │ │ │ -00037cb0: 636f 6566 6669 6369 656e 7473 5f6c 7052 coefficients_lpR │ │ │ │ -00037cc0: 6174 696f 6e61 6c4d 6170 5f72 702c 2055 ationalMap_rp, U │ │ │ │ -00037cd0: 703a 2054 6f70 0a0a 6465 6772 6565 2852 p: Top..degree(R │ │ │ │ -00037ce0: 6174 696f 6e61 6c4d 6170 2920 2d2d 2064 ationalMap) -- d │ │ │ │ -00037cf0: 6567 7265 6520 6f66 2061 2072 6174 696f egree of a ratio │ │ │ │ -00037d00: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ +00037bd0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00037be0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00037bf0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00037c00: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00037c10: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00037c20: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00037c30: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ +00037c40: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ +00037c50: 696f 6e2e 6d32 3a35 3338 3a30 2e0a 1f0a ion.m2:538:0.... │ │ │ │ +00037c60: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ +00037c70: 666f 2c20 4e6f 6465 3a20 6465 6772 6565 fo, Node: degree │ │ │ │ +00037c80: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +00037c90: 702c 204e 6578 743a 2064 6567 7265 654d p, Next: degreeM │ │ │ │ +00037ca0: 6170 2c20 5072 6576 3a20 636f 6566 6669 ap, Prev: coeffi │ │ │ │ +00037cb0: 6369 656e 7473 5f6c 7052 6174 696f 6e61 cients_lpRationa │ │ │ │ +00037cc0: 6c4d 6170 5f72 702c 2055 703a 2054 6f70 lMap_rp, Up: Top │ │ │ │ +00037cd0: 0a0a 6465 6772 6565 2852 6174 696f 6e61 ..degree(Rationa │ │ │ │ +00037ce0: 6c4d 6170 2920 2d2d 2064 6567 7265 6520 lMap) -- degree │ │ │ │ +00037cf0: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ +00037d00: 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a p.************** │ │ │ │ 00037d10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00037d20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00037d30: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 756e *******.. * Fun │ │ │ │ -00037d40: 6374 696f 6e3a 202a 6e6f 7465 2064 6567 ction: *note deg │ │ │ │ -00037d50: 7265 653a 2028 4d61 6361 756c 6179 3244 ree: (Macaulay2D │ │ │ │ -00037d60: 6f63 2964 6567 7265 652c 0a20 202a 2055 oc)degree,. * U │ │ │ │ -00037d70: 7361 6765 3a20 0a20 2020 2020 2020 2064 sage: . d │ │ │ │ -00037d80: 6567 7265 6520 7068 690a 2020 2a20 496e egree phi. * In │ │ │ │ -00037d90: 7075 7473 3a0a 2020 2020 2020 2a20 7068 puts:. * ph │ │ │ │ -00037da0: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ -00037db0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ -00037dc0: 6c4d 6170 2c0a 2020 2a20 4f75 7470 7574 lMap,. * Output │ │ │ │ -00037dd0: 733a 0a20 2020 2020 202a 2061 6e20 2a6e s:. * an *n │ │ │ │ -00037de0: 6f74 6520 696e 7465 6765 723a 2028 4d61 ote integer: (Ma │ │ │ │ -00037df0: 6361 756c 6179 3244 6f63 295a 5a2c 2c20 caulay2Doc)ZZ,, │ │ │ │ -00037e00: 7468 6520 6465 6772 6565 206f 6620 7068 the degree of ph │ │ │ │ -00037e10: 692e 2053 6f20 7468 6973 2076 616c 7565 i. So this value │ │ │ │ -00037e20: 0a20 2020 2020 2020 2069 7320 3120 6966 . is 1 if │ │ │ │ -00037e30: 2061 6e64 206f 6e6c 7920 6966 2074 6865 and only if the │ │ │ │ -00037e40: 206d 6170 2069 7320 6269 7261 7469 6f6e map is biration │ │ │ │ -00037e50: 616c 206f 6e74 6f20 6974 7320 696d 6167 al onto its imag │ │ │ │ -00037e60: 652e 0a0a 4465 7363 7269 7074 696f 6e0a e...Description. │ │ │ │ -00037e70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -00037e80: 7320 6973 2061 2073 686f 7274 6375 7420 s is a shortcut │ │ │ │ -00037e90: 666f 7220 6465 6772 6565 4d61 7028 7068 for degreeMap(ph │ │ │ │ -00037ea0: 692c 4365 7274 6966 793d 3e74 7275 652c i,Certify=>true, │ │ │ │ -00037eb0: 5665 7262 6f73 653d 3e66 616c 7365 292c Verbose=>false), │ │ │ │ -00037ec0: 2073 6565 202a 6e6f 7465 0a64 6567 7265 see *note.degre │ │ │ │ -00037ed0: 654d 6170 2852 6174 696f 6e61 6c4d 6170 eMap(RationalMap │ │ │ │ -00037ee0: 293a 2064 6567 7265 654d 6170 5f6c 7052 ): degreeMap_lpR │ │ │ │ -00037ef0: 6174 696f 6e61 6c4d 6170 5f72 702c 2e0a ationalMap_rp,.. │ │ │ │ -00037f00: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ -00037f10: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ -00037f20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00037f30: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6465 ==.. * *note de │ │ │ │ -00037f40: 6772 6565 2852 6174 696f 6e61 6c4d 6170 gree(RationalMap │ │ │ │ -00037f50: 293a 2064 6567 7265 655f 6c70 5261 7469 ): degree_lpRati │ │ │ │ -00037f60: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2064 onalMap_rp, -- d │ │ │ │ -00037f70: 6567 7265 6520 6f66 2061 2072 6174 696f egree of a ratio │ │ │ │ -00037f80: 6e61 6c0a 2020 2020 6d61 700a 2d2d 2d2d nal. map.---- │ │ │ │ +00037d30: 2a0a 0a20 202a 2046 756e 6374 696f 6e3a *.. * Function: │ │ │ │ +00037d40: 202a 6e6f 7465 2064 6567 7265 653a 2028 *note degree: ( │ │ │ │ +00037d50: 4d61 6361 756c 6179 3244 6f63 2964 6567 Macaulay2Doc)deg │ │ │ │ +00037d60: 7265 652c 0a20 202a 2055 7361 6765 3a20 ree,. * Usage: │ │ │ │ +00037d70: 0a20 2020 2020 2020 2064 6567 7265 6520 . degree │ │ │ │ +00037d80: 7068 690a 2020 2a20 496e 7075 7473 3a0a phi. * Inputs:. │ │ │ │ +00037d90: 2020 2020 2020 2a20 7068 692c 2061 202a * phi, a * │ │ │ │ +00037da0: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ +00037db0: 703a 2052 6174 696f 6e61 6c4d 6170 2c0a p: RationalMap,. │ │ │ │ +00037dc0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00037dd0: 2020 202a 2061 6e20 2a6e 6f74 6520 696e * an *note in │ │ │ │ +00037de0: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ +00037df0: 3244 6f63 295a 5a2c 2c20 7468 6520 6465 2Doc)ZZ,, the de │ │ │ │ +00037e00: 6772 6565 206f 6620 7068 692e 2053 6f20 gree of phi. So │ │ │ │ +00037e10: 7468 6973 2076 616c 7565 0a20 2020 2020 this value. │ │ │ │ +00037e20: 2020 2069 7320 3120 6966 2061 6e64 206f is 1 if and o │ │ │ │ +00037e30: 6e6c 7920 6966 2074 6865 206d 6170 2069 nly if the map i │ │ │ │ +00037e40: 7320 6269 7261 7469 6f6e 616c 206f 6e74 s birational ont │ │ │ │ +00037e50: 6f20 6974 7320 696d 6167 652e 0a0a 4465 o its image...De │ │ │ │ +00037e60: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00037e70: 3d3d 3d3d 3d0a 0a54 6869 7320 6973 2061 =====..This is a │ │ │ │ +00037e80: 2073 686f 7274 6375 7420 666f 7220 6465 shortcut for de │ │ │ │ +00037e90: 6772 6565 4d61 7028 7068 692c 4365 7274 greeMap(phi,Cert │ │ │ │ +00037ea0: 6966 793d 3e74 7275 652c 5665 7262 6f73 ify=>true,Verbos │ │ │ │ +00037eb0: 653d 3e66 616c 7365 292c 2073 6565 202a e=>false), see * │ │ │ │ +00037ec0: 6e6f 7465 0a64 6567 7265 654d 6170 2852 note.degreeMap(R │ │ │ │ +00037ed0: 6174 696f 6e61 6c4d 6170 293a 2064 6567 ationalMap): deg │ │ │ │ +00037ee0: 7265 654d 6170 5f6c 7052 6174 696f 6e61 reeMap_lpRationa │ │ │ │ +00037ef0: 6c4d 6170 5f72 702c 2e0a 0a57 6179 7320 lMap_rp,...Ways │ │ │ │ +00037f00: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ +00037f10: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ +00037f20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00037f30: 2a20 2a6e 6f74 6520 6465 6772 6565 2852 * *note degree(R │ │ │ │ +00037f40: 6174 696f 6e61 6c4d 6170 293a 2064 6567 ationalMap): deg │ │ │ │ +00037f50: 7265 655f 6c70 5261 7469 6f6e 616c 4d61 ree_lpRationalMa │ │ │ │ +00037f60: 705f 7270 2c20 2d2d 2064 6567 7265 6520 p_rp, -- degree │ │ │ │ +00037f70: 6f66 2061 2072 6174 696f 6e61 6c0a 2020 of a rational. │ │ │ │ +00037f80: 2020 6d61 700a 2d2d 2d2d 2d2d 2d2d 2d2d map.---------- │ │ │ │ 00037f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00037fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00037fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ -00037fe0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ -00037ff0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ -00038000: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ -00038010: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ -00038020: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ -00038030: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ -00038040: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ -00038050: 6d65 6e74 6174 696f 6e2e 6d32 3a34 3932 mentation.m2:492 │ │ │ │ -00038060: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ -00038070: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ -00038080: 6465 6772 6565 4d61 702c 204e 6578 743a degreeMap, Next: │ │ │ │ -00038090: 2064 6567 7265 654d 6170 5f6c 7052 6174 degreeMap_lpRat │ │ │ │ -000380a0: 696f 6e61 6c4d 6170 5f72 702c 2050 7265 ionalMap_rp, Pre │ │ │ │ -000380b0: 763a 2064 6567 7265 655f 6c70 5261 7469 v: degree_lpRati │ │ │ │ -000380c0: 6f6e 616c 4d61 705f 7270 2c20 5570 3a20 onalMap_rp, Up: │ │ │ │ -000380d0: 546f 700a 0a64 6567 7265 654d 6170 202d Top..degreeMap - │ │ │ │ -000380e0: 2d20 6465 6772 6565 206f 6620 6120 7261 - degree of a ra │ │ │ │ -000380f0: 7469 6f6e 616c 206d 6170 2062 6574 7765 tional map betwe │ │ │ │ -00038100: 656e 2070 726f 6a65 6374 6976 6520 7661 en projective va │ │ │ │ -00038110: 7269 6574 6965 730a 2a2a 2a2a 2a2a 2a2a rieties.******** │ │ │ │ +00037fd0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ +00037fe0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ +00037ff0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ +00038000: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ +00038010: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ +00038020: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ +00038030: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ +00038040: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ +00038050: 696f 6e2e 6d32 3a34 3932 3a30 2e0a 1f0a ion.m2:492:0.... │ │ │ │ +00038060: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ +00038070: 666f 2c20 4e6f 6465 3a20 6465 6772 6565 fo, Node: degree │ │ │ │ +00038080: 4d61 702c 204e 6578 743a 2064 6567 7265 Map, Next: degre │ │ │ │ +00038090: 654d 6170 5f6c 7052 6174 696f 6e61 6c4d eMap_lpRationalM │ │ │ │ +000380a0: 6170 5f72 702c 2050 7265 763a 2064 6567 ap_rp, Prev: deg │ │ │ │ +000380b0: 7265 655f 6c70 5261 7469 6f6e 616c 4d61 ree_lpRationalMa │ │ │ │ +000380c0: 705f 7270 2c20 5570 3a20 546f 700a 0a64 p_rp, Up: Top..d │ │ │ │ +000380d0: 6567 7265 654d 6170 202d 2d20 6465 6772 egreeMap -- degr │ │ │ │ +000380e0: 6565 206f 6620 6120 7261 7469 6f6e 616c ee of a rational │ │ │ │ +000380f0: 206d 6170 2062 6574 7765 656e 2070 726f map between pro │ │ │ │ +00038100: 6a65 6374 6976 6520 7661 7269 6574 6965 jective varietie │ │ │ │ +00038110: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ 00038120: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00038130: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00038140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00038150: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00038160: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00038170: 6465 6772 6565 4d61 7020 7068 690a 2020 degreeMap phi. │ │ │ │ -00038180: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00038190: 2a20 7068 692c 2061 202a 6e6f 7465 2072 * phi, a *note r │ │ │ │ -000381a0: 696e 6720 6d61 703a 2028 4d61 6361 756c ing map: (Macaul │ │ │ │ -000381b0: 6179 3244 6f63 2952 696e 674d 6170 2c2c ay2Doc)RingMap,, │ │ │ │ -000381c0: 2077 6869 6368 2072 6570 7265 7365 6e74 which represent │ │ │ │ -000381d0: 7320 610a 2020 2020 2020 2020 7261 7469 s a. rati │ │ │ │ -000381e0: 6f6e 616c 206d 6170 2024 5c50 6869 2420 onal map $\Phi$ │ │ │ │ -000381f0: 6265 7477 6565 6e20 7072 6f6a 6563 7469 between projecti │ │ │ │ -00038200: 7665 2076 6172 6965 7469 6573 0a20 202a ve varieties. * │ │ │ │ -00038210: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ -00038220: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ -00038230: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ -00038240: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ -00038250: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ -00038260: 2020 202a 202a 6e6f 7465 2042 6c6f 7755 * *note BlowU │ │ │ │ -00038270: 7053 7472 6174 6567 793a 2042 6c6f 7755 pStrategy: BlowU │ │ │ │ -00038280: 7053 7472 6174 6567 792c 203d 3e20 2e2e pStrategy, => .. │ │ │ │ -00038290: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ -000382a0: 0a20 2020 2020 2020 2022 456c 696d 696e . "Elimin │ │ │ │ -000382b0: 6174 6522 2c0a 2020 2020 2020 2a20 2a6e ate",. * *n │ │ │ │ -000382c0: 6f74 6520 4365 7274 6966 793a 2043 6572 ote Certify: Cer │ │ │ │ -000382d0: 7469 6679 2c20 3d3e 202e 2e2e 2c20 6465 tify, => ..., de │ │ │ │ -000382e0: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -000382f0: 652c 2077 6865 7468 6572 2074 6f20 656e e, whether to en │ │ │ │ -00038300: 7375 7265 0a20 2020 2020 2020 2063 6f72 sure. cor │ │ │ │ -00038310: 7265 6374 6e65 7373 206f 6620 6f75 7470 rectness of outp │ │ │ │ -00038320: 7574 0a20 2020 2020 202a 202a 6e6f 7465 ut. * *note │ │ │ │ -00038330: 2056 6572 626f 7365 3a20 696e 7665 7273 Verbose: invers │ │ │ │ -00038340: 654d 6170 5f6c 705f 7064 5f70 645f 7064 eMap_lp_pd_pd_pd │ │ │ │ -00038350: 5f63 6d56 6572 626f 7365 3d3e 5f70 645f _cmVerbose=>_pd_ │ │ │ │ -00038360: 7064 5f70 645f 7270 2c20 3d3e 202e 2e2e pd_pd_rp, => ... │ │ │ │ -00038370: 2c0a 2020 2020 2020 2020 6465 6661 756c ,. defaul │ │ │ │ -00038380: 7420 7661 6c75 6520 7472 7565 2c0a 2020 t value true,. │ │ │ │ -00038390: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -000383a0: 202a 2061 6e20 2a6e 6f74 6520 696e 7465 * an *note inte │ │ │ │ -000383b0: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ -000383c0: 6f63 295a 5a2c 2c20 7468 6520 6465 6772 oc)ZZ,, the degr │ │ │ │ -000383d0: 6565 206f 6620 245c 5068 6924 2e20 536f ee of $\Phi$. So │ │ │ │ -000383e0: 2074 6869 730a 2020 2020 2020 2020 7661 this. va │ │ │ │ -000383f0: 6c75 6520 6973 2031 2069 6620 616e 6420 lue is 1 if and │ │ │ │ -00038400: 6f6e 6c79 2069 6620 7468 6520 6d61 7020 only if the map │ │ │ │ -00038410: 6973 2062 6972 6174 696f 6e61 6c20 6f6e is birational on │ │ │ │ -00038420: 746f 2069 7473 2069 6d61 6765 2e0a 0a44 to its image...D │ │ │ │ -00038430: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00038440: 3d3d 3d3d 3d3d 0a0a 4f6e 6520 696d 706f ======..One impo │ │ │ │ -00038450: 7274 616e 7420 6361 7365 2069 7320 7768 rtant case is wh │ │ │ │ -00038460: 656e 2024 5c50 6869 3a5c 6d61 7468 6262 en $\Phi:\mathbb │ │ │ │ -00038470: 7b50 7d5e 6e3d 5072 6f6a 284b 5b78 5f30 {P}^n=Proj(K[x_0 │ │ │ │ -00038480: 2c5c 6c64 6f74 732c 785f 6e5d 290a 5c64 ,\ldots,x_n]).\d │ │ │ │ -00038490: 6173 6872 6967 6874 6172 726f 7720 5c6d ashrightarrow \m │ │ │ │ -000384a0: 6174 6862 627b 507d 5e6d 3d50 726f 6a28 athbb{P}^m=Proj( │ │ │ │ -000384b0: 4b5b 795f 302c 5c6c 646f 7473 2c79 5f6d K[y_0,\ldots,y_m │ │ │ │ -000384c0: 5d29 2420 6973 2061 2072 6174 696f 6e61 ])$ is a rationa │ │ │ │ -000384d0: 6c20 6d61 7020 6265 7477 6565 6e0a 7072 l map between.pr │ │ │ │ -000384e0: 6f6a 6563 7469 7665 2073 7061 6365 732c ojective spaces, │ │ │ │ -000384f0: 2063 6f72 7265 7370 6f6e 6469 6e67 2074 corresponding t │ │ │ │ -00038500: 6f20 6120 7269 6e67 206d 6170 2024 5c70 o a ring map $\p │ │ │ │ -00038510: 6869 242e 2049 6620 2470 2420 6973 2061 hi$. If $p$ is a │ │ │ │ -00038520: 2067 656e 6572 616c 0a70 6f69 6e74 206f general.point o │ │ │ │ -00038530: 6620 245c 6d61 7468 6262 7b50 7d5e 6e24 f $\mathbb{P}^n$ │ │ │ │ -00038540: 2c20 6465 6e6f 7465 2062 7920 2446 5f70 , denote by $F_p │ │ │ │ -00038550: 285c 5068 6929 2420 7468 6520 636c 6f73 (\Phi)$ the clos │ │ │ │ -00038560: 7572 6520 6f66 0a24 5c50 6869 5e7b 2d31 ure of.$\Phi^{-1 │ │ │ │ -00038570: 7d28 5c50 6869 2870 2929 5c73 7562 7365 }(\Phi(p))\subse │ │ │ │ -00038580: 7465 7120 5c6d 6174 6862 627b 507d 5e6e teq \mathbb{P}^n │ │ │ │ -00038590: 242e 2054 6865 2064 6567 7265 6520 6f66 $. The degree of │ │ │ │ -000385a0: 2024 5c50 6869 2420 6973 2064 6566 696e $\Phi$ is defin │ │ │ │ -000385b0: 6564 2061 730a 7468 6520 6465 6772 6565 ed as.the degree │ │ │ │ -000385c0: 206f 6620 2446 5f70 285c 5068 6929 2420 of $F_p(\Phi)$ │ │ │ │ -000385d0: 6966 2024 6469 6d20 465f 7028 5c50 6869 if $dim F_p(\Phi │ │ │ │ -000385e0: 2920 3d20 3024 2061 6e64 2024 3024 206f ) = 0$ and $0$ o │ │ │ │ -000385f0: 7468 6572 7769 7365 2e20 4966 2024 5c50 therwise. If $\P │ │ │ │ -00038600: 6869 240a 6973 2064 6566 696e 6564 2062 hi$.is defined b │ │ │ │ -00038610: 7920 666f 726d 7320 2446 5f30 2878 5f30 y forms $F_0(x_0 │ │ │ │ -00038620: 2c5c 6c64 6f74 732c 785f 6e29 2c5c 6c64 ,\ldots,x_n),\ld │ │ │ │ -00038630: 6f74 732c 465f 6d28 785f 302c 5c6c 646f ots,F_m(x_0,\ldo │ │ │ │ -00038640: 7473 2c78 5f6e 2924 2061 6e64 2024 495f ts,x_n)$ and $I_ │ │ │ │ -00038650: 7024 0a69 7320 7468 6520 6964 6561 6c20 p$.is the ideal │ │ │ │ -00038660: 6f66 2074 6865 2070 6f69 6e74 2024 7024 of the point $p$ │ │ │ │ -00038670: 2c20 7468 656e 2074 6865 2069 6465 616c , then the ideal │ │ │ │ -00038680: 206f 6620 2446 5f70 285c 5068 6929 2420 of $F_p(\Phi)$ │ │ │ │ -00038690: 6973 206e 6f74 6869 6e67 2062 7574 2074 is nothing but t │ │ │ │ -000386a0: 6865 0a73 6174 7572 6174 696f 6e20 247b he.saturation ${ │ │ │ │ -000386b0: 285c 7068 6928 5c70 6869 5e7b 2d31 7d28 (\phi(\phi^{-1}( │ │ │ │ -000386c0: 495f 7029 2929 3a28 465f 302c 2e2e 2e2e I_p))):(F_0,.... │ │ │ │ -000386d0: 2c46 5f6d 297d 5e7b 5c69 6e66 7479 7d24 ,F_m)}^{\infty}$ │ │ │ │ -000386e0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +00038150: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +00038160: 200a 2020 2020 2020 2020 6465 6772 6565 . degree │ │ │ │ +00038170: 4d61 7020 7068 690a 2020 2a20 496e 7075 Map phi. * Inpu │ │ │ │ +00038180: 7473 3a0a 2020 2020 2020 2a20 7068 692c ts:. * phi, │ │ │ │ +00038190: 2061 202a 6e6f 7465 2072 696e 6720 6d61 a *note ring ma │ │ │ │ +000381a0: 703a 2028 4d61 6361 756c 6179 3244 6f63 p: (Macaulay2Doc │ │ │ │ +000381b0: 2952 696e 674d 6170 2c2c 2077 6869 6368 )RingMap,, which │ │ │ │ +000381c0: 2072 6570 7265 7365 6e74 7320 610a 2020 represents a. │ │ │ │ +000381d0: 2020 2020 2020 7261 7469 6f6e 616c 206d rational m │ │ │ │ +000381e0: 6170 2024 5c50 6869 2420 6265 7477 6565 ap $\Phi$ betwee │ │ │ │ +000381f0: 6e20 7072 6f6a 6563 7469 7665 2076 6172 n projective var │ │ │ │ +00038200: 6965 7469 6573 0a20 202a 202a 6e6f 7465 ieties. * *note │ │ │ │ +00038210: 204f 7074 696f 6e61 6c20 696e 7075 7473 Optional inputs │ │ │ │ +00038220: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00038230: 7573 696e 6720 6675 6e63 7469 6f6e 7320 using functions │ │ │ │ +00038240: 7769 7468 206f 7074 696f 6e61 6c20 696e with optional in │ │ │ │ +00038250: 7075 7473 2c3a 0a20 2020 2020 202a 202a puts,:. * * │ │ │ │ +00038260: 6e6f 7465 2042 6c6f 7755 7053 7472 6174 note BlowUpStrat │ │ │ │ +00038270: 6567 793a 2042 6c6f 7755 7053 7472 6174 egy: BlowUpStrat │ │ │ │ +00038280: 6567 792c 203d 3e20 2e2e 2e2c 2064 6566 egy, => ..., def │ │ │ │ +00038290: 6175 6c74 2076 616c 7565 0a20 2020 2020 ault value. │ │ │ │ +000382a0: 2020 2022 456c 696d 696e 6174 6522 2c0a "Eliminate",. │ │ │ │ +000382b0: 2020 2020 2020 2a20 2a6e 6f74 6520 4365 * *note Ce │ │ │ │ +000382c0: 7274 6966 793a 2043 6572 7469 6679 2c20 rtify: Certify, │ │ │ │ +000382d0: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +000382e0: 7661 6c75 6520 6661 6c73 652c 2077 6865 value false, whe │ │ │ │ +000382f0: 7468 6572 2074 6f20 656e 7375 7265 0a20 ther to ensure. │ │ │ │ +00038300: 2020 2020 2020 2063 6f72 7265 6374 6e65 correctne │ │ │ │ +00038310: 7373 206f 6620 6f75 7470 7574 0a20 2020 ss of output. │ │ │ │ +00038320: 2020 202a 202a 6e6f 7465 2056 6572 626f * *note Verbo │ │ │ │ +00038330: 7365 3a20 696e 7665 7273 654d 6170 5f6c se: inverseMap_l │ │ │ │ +00038340: 705f 7064 5f70 645f 7064 5f63 6d56 6572 p_pd_pd_pd_cmVer │ │ │ │ +00038350: 626f 7365 3d3e 5f70 645f 7064 5f70 645f bose=>_pd_pd_pd_ │ │ │ │ +00038360: 7270 2c20 3d3e 202e 2e2e 2c0a 2020 2020 rp, => ...,. │ │ │ │ +00038370: 2020 2020 6465 6661 756c 7420 7661 6c75 default valu │ │ │ │ +00038380: 6520 7472 7565 2c0a 2020 2a20 4f75 7470 e true,. * Outp │ │ │ │ +00038390: 7574 733a 0a20 2020 2020 202a 2061 6e20 uts:. * an │ │ │ │ +000383a0: 2a6e 6f74 6520 696e 7465 6765 723a 2028 *note integer: ( │ │ │ │ +000383b0: 4d61 6361 756c 6179 3244 6f63 295a 5a2c Macaulay2Doc)ZZ, │ │ │ │ +000383c0: 2c20 7468 6520 6465 6772 6565 206f 6620 , the degree of │ │ │ │ +000383d0: 245c 5068 6924 2e20 536f 2074 6869 730a $\Phi$. So this. │ │ │ │ +000383e0: 2020 2020 2020 2020 7661 6c75 6520 6973 value is │ │ │ │ +000383f0: 2031 2069 6620 616e 6420 6f6e 6c79 2069 1 if and only i │ │ │ │ +00038400: 6620 7468 6520 6d61 7020 6973 2062 6972 f the map is bir │ │ │ │ +00038410: 6174 696f 6e61 6c20 6f6e 746f 2069 7473 ational onto its │ │ │ │ +00038420: 2069 6d61 6765 2e0a 0a44 6573 6372 6970 image...Descrip │ │ │ │ +00038430: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00038440: 0a0a 4f6e 6520 696d 706f 7274 616e 7420 ..One important │ │ │ │ +00038450: 6361 7365 2069 7320 7768 656e 2024 5c50 case is when $\P │ │ │ │ +00038460: 6869 3a5c 6d61 7468 6262 7b50 7d5e 6e3d hi:\mathbb{P}^n= │ │ │ │ +00038470: 5072 6f6a 284b 5b78 5f30 2c5c 6c64 6f74 Proj(K[x_0,\ldot │ │ │ │ +00038480: 732c 785f 6e5d 290a 5c64 6173 6872 6967 s,x_n]).\dashrig │ │ │ │ +00038490: 6874 6172 726f 7720 5c6d 6174 6862 627b htarrow \mathbb{ │ │ │ │ +000384a0: 507d 5e6d 3d50 726f 6a28 4b5b 795f 302c P}^m=Proj(K[y_0, │ │ │ │ +000384b0: 5c6c 646f 7473 2c79 5f6d 5d29 2420 6973 \ldots,y_m])$ is │ │ │ │ +000384c0: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ +000384d0: 6265 7477 6565 6e0a 7072 6f6a 6563 7469 between.projecti │ │ │ │ +000384e0: 7665 2073 7061 6365 732c 2063 6f72 7265 ve spaces, corre │ │ │ │ +000384f0: 7370 6f6e 6469 6e67 2074 6f20 6120 7269 sponding to a ri │ │ │ │ +00038500: 6e67 206d 6170 2024 5c70 6869 242e 2049 ng map $\phi$. I │ │ │ │ +00038510: 6620 2470 2420 6973 2061 2067 656e 6572 f $p$ is a gener │ │ │ │ +00038520: 616c 0a70 6f69 6e74 206f 6620 245c 6d61 al.point of $\ma │ │ │ │ +00038530: 7468 6262 7b50 7d5e 6e24 2c20 6465 6e6f thbb{P}^n$, deno │ │ │ │ +00038540: 7465 2062 7920 2446 5f70 285c 5068 6929 te by $F_p(\Phi) │ │ │ │ +00038550: 2420 7468 6520 636c 6f73 7572 6520 6f66 $ the closure of │ │ │ │ +00038560: 0a24 5c50 6869 5e7b 2d31 7d28 5c50 6869 .$\Phi^{-1}(\Phi │ │ │ │ +00038570: 2870 2929 5c73 7562 7365 7465 7120 5c6d (p))\subseteq \m │ │ │ │ +00038580: 6174 6862 627b 507d 5e6e 242e 2054 6865 athbb{P}^n$. The │ │ │ │ +00038590: 2064 6567 7265 6520 6f66 2024 5c50 6869 degree of $\Phi │ │ │ │ +000385a0: 2420 6973 2064 6566 696e 6564 2061 730a $ is defined as. │ │ │ │ +000385b0: 7468 6520 6465 6772 6565 206f 6620 2446 the degree of $F │ │ │ │ +000385c0: 5f70 285c 5068 6929 2420 6966 2024 6469 _p(\Phi)$ if $di │ │ │ │ +000385d0: 6d20 465f 7028 5c50 6869 2920 3d20 3024 m F_p(\Phi) = 0$ │ │ │ │ +000385e0: 2061 6e64 2024 3024 206f 7468 6572 7769 and $0$ otherwi │ │ │ │ +000385f0: 7365 2e20 4966 2024 5c50 6869 240a 6973 se. If $\Phi$.is │ │ │ │ +00038600: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ +00038610: 7320 2446 5f30 2878 5f30 2c5c 6c64 6f74 s $F_0(x_0,\ldot │ │ │ │ +00038620: 732c 785f 6e29 2c5c 6c64 6f74 732c 465f s,x_n),\ldots,F_ │ │ │ │ +00038630: 6d28 785f 302c 5c6c 646f 7473 2c78 5f6e m(x_0,\ldots,x_n │ │ │ │ +00038640: 2924 2061 6e64 2024 495f 7024 0a69 7320 )$ and $I_p$.is │ │ │ │ +00038650: 7468 6520 6964 6561 6c20 6f66 2074 6865 the ideal of the │ │ │ │ +00038660: 2070 6f69 6e74 2024 7024 2c20 7468 656e point $p$, then │ │ │ │ +00038670: 2074 6865 2069 6465 616c 206f 6620 2446 the ideal of $F │ │ │ │ +00038680: 5f70 285c 5068 6929 2420 6973 206e 6f74 _p(\Phi)$ is not │ │ │ │ +00038690: 6869 6e67 2062 7574 2074 6865 0a73 6174 hing but the.sat │ │ │ │ +000386a0: 7572 6174 696f 6e20 247b 285c 7068 6928 uration ${(\phi( │ │ │ │ +000386b0: 5c70 6869 5e7b 2d31 7d28 495f 7029 2929 \phi^{-1}(I_p))) │ │ │ │ +000386c0: 3a28 465f 302c 2e2e 2e2e 2c46 5f6d 297d :(F_0,....,F_m)} │ │ │ │ +000386d0: 5e7b 5c69 6e66 7479 7d24 2e0a 0a2b 2d2d ^{\infty}$...+-- │ │ │ │ +000386e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000386f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038730: 2d2b 0a7c 6931 203a 202d 2d20 5461 6b65 -+.|i1 : -- Take │ │ │ │ -00038740: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -00038750: 7068 693a 505e 382d 2d2d 3e47 2831 2c35 phi:P^8--->G(1,5 │ │ │ │ -00038760: 2920 7375 6273 6574 2050 5e31 3420 6465 ) subset P^14 de │ │ │ │ -00038770: 6669 6e65 6420 6279 2020 2020 2020 2020 fined by │ │ │ │ -00038780: 207c 0a7c 2020 2020 202d 2d20 6f66 2061 |.| -- of a │ │ │ │ -00038790: 2067 656e 6572 6963 2032 2078 2036 206d generic 2 x 6 m │ │ │ │ -000387a0: 6174 7269 7820 6f66 206c 696e 6561 7220 atrix of linear │ │ │ │ -000387b0: 666f 726d 7320 6f6e 2050 5e38 2028 7468 forms on P^8 (th │ │ │ │ -000387c0: 7573 2070 6869 2069 7320 2020 2020 2020 us phi is │ │ │ │ -000387d0: 207c 0a7c 2020 2020 204b 3d5a 5a2f 3333 |.| K=ZZ/33 │ │ │ │ -000387e0: 3331 3b20 7269 6e67 5038 3d4b 5b78 5f30 31; ringP8=K[x_0 │ │ │ │ -000387f0: 2e2e 785f 385d 3b20 7269 6e67 5031 343d ..x_8]; ringP14= │ │ │ │ -00038800: 4b5b 745f 302e 2e74 5f31 345d 3b20 2020 K[t_0..t_14]; │ │ │ │ -00038810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038820: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00038720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +00038730: 203a 202d 2d20 5461 6b65 2061 2072 6174 : -- Take a rat │ │ │ │ +00038740: 696f 6e61 6c20 6d61 7020 7068 693a 505e ional map phi:P^ │ │ │ │ +00038750: 382d 2d2d 3e47 2831 2c35 2920 7375 6273 8--->G(1,5) subs │ │ │ │ +00038760: 6574 2050 5e31 3420 6465 6669 6e65 6420 et P^14 defined │ │ │ │ +00038770: 6279 2020 2020 2020 2020 207c 0a7c 2020 by |.| │ │ │ │ +00038780: 2020 202d 2d20 6f66 2061 2067 656e 6572 -- of a gener │ │ │ │ +00038790: 6963 2032 2078 2036 206d 6174 7269 7820 ic 2 x 6 matrix │ │ │ │ +000387a0: 6f66 206c 696e 6561 7220 666f 726d 7320 of linear forms │ │ │ │ +000387b0: 6f6e 2050 5e38 2028 7468 7573 2070 6869 on P^8 (thus phi │ │ │ │ +000387c0: 2069 7320 2020 2020 2020 207c 0a7c 2020 is |.| │ │ │ │ +000387d0: 2020 204b 3d5a 5a2f 3333 3331 3b20 7269 K=ZZ/3331; ri │ │ │ │ +000387e0: 6e67 5038 3d4b 5b78 5f30 2e2e 785f 385d ngP8=K[x_0..x_8] │ │ │ │ +000387f0: 3b20 7269 6e67 5031 343d 4b5b 745f 302e ; ringP14=K[t_0. │ │ │ │ +00038800: 2e74 5f31 345d 3b20 2020 2020 2020 2020 .t_14]; │ │ │ │ +00038810: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00038820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038870: 2d7c 0a7c 7468 6520 6d61 7869 6d61 6c20 -|.|the maximal │ │ │ │ -00038880: 6d69 6e6f 7273 2020 2020 2020 2020 2020 minors │ │ │ │ +00038860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7468 -----------|.|th │ │ │ │ +00038870: 6520 6d61 7869 6d61 6c20 6d69 6e6f 7273 e maximal minors │ │ │ │ +00038880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000388c0: 207c 0a7c 2062 6972 6174 696f 6e61 6c20 |.| birational │ │ │ │ -000388d0: 6f6e 746f 2069 7473 2069 6d61 6765 2920 onto its image) │ │ │ │ +000388b0: 2020 2020 2020 2020 2020 207c 0a7c 2062 |.| b │ │ │ │ +000388c0: 6972 6174 696f 6e61 6c20 6f6e 746f 2069 irational onto i │ │ │ │ +000388d0: 7473 2069 6d61 6765 2920 2020 2020 2020 ts image) │ │ │ │ 000388e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000388f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038910: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00038900: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00038910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038960: 2d2b 0a7c 6934 203a 2070 6869 3d6d 6170 -+.|i4 : phi=map │ │ │ │ -00038970: 2872 696e 6750 382c 7269 6e67 5031 342c (ringP8,ringP14, │ │ │ │ -00038980: 6765 6e73 206d 696e 6f72 7328 322c 6d61 gens minors(2,ma │ │ │ │ -00038990: 7472 6978 2070 6163 6b28 362c 666f 7220 trix pack(6,for │ │ │ │ -000389a0: 6920 746f 2020 2020 2020 2020 2020 2020 i to │ │ │ │ -000389b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +00038960: 203a 2070 6869 3d6d 6170 2872 696e 6750 : phi=map(ringP │ │ │ │ +00038970: 382c 7269 6e67 5031 342c 6765 6e73 206d 8,ringP14,gens m │ │ │ │ +00038980: 696e 6f72 7328 322c 6d61 7472 6978 2070 inors(2,matrix p │ │ │ │ +00038990: 6163 6b28 362c 666f 7220 6920 746f 2020 ack(6,for i to │ │ │ │ +000389a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000389b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000389e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000389f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00038a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a20: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00038a30: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00038a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038a50: 207c 0a7c 6f34 203d 206d 6170 2028 7269 |.|o4 = map (ri │ │ │ │ -00038a60: 6e67 5038 2c20 7269 6e67 5031 342c 207b ngP8, ringP14, { │ │ │ │ -00038a70: 2d20 3935 7820 202b 2031 3831 7820 7820 - 95x + 181x x │ │ │ │ -00038a80: 202b 2031 3032 3878 2020 2d20 3133 3834 + 1028x - 1384 │ │ │ │ -00038a90: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00038aa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00038ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038ac0: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -00038ad0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00038ae0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ -00038af0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000389f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038a10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00038a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038a30: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00038a40: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +00038a50: 203d 206d 6170 2028 7269 6e67 5038 2c20 = map (ringP8, │ │ │ │ +00038a60: 7269 6e67 5031 342c 207b 2d20 3935 7820 ringP14, {- 95x │ │ │ │ +00038a70: 202b 2031 3831 7820 7820 202b 2031 3032 + 181x x + 102 │ │ │ │ +00038a80: 3878 2020 2d20 3133 3834 7820 7820 2020 8x - 1384x x │ │ │ │ +00038a90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00038ab0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00038ac0: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +00038ad0: 2020 3120 2020 2020 2020 2030 2032 2020 1 0 2 │ │ │ │ +00038ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b40: 207c 0a7c 6f34 203a 2052 696e 674d 6170 |.|o4 : RingMap │ │ │ │ -00038b50: 2072 696e 6750 3820 3c2d 2d20 7269 6e67 ringP8 <-- ring │ │ │ │ -00038b60: 5031 3420 2020 2020 2020 2020 2020 2020 P14 │ │ │ │ +00038b30: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +00038b40: 203a 2052 696e 674d 6170 2072 696e 6750 : RingMap ringP │ │ │ │ +00038b50: 3820 3c2d 2d20 7269 6e67 5031 3420 2020 8 <-- ringP14 │ │ │ │ +00038b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038b90: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00038b80: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00038b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038be0: 2d7c 0a7c 3131 206c 6973 7420 7261 6e64 -|.|11 list rand │ │ │ │ -00038bf0: 6f6d 2831 2c72 696e 6750 3829 2929 2920 om(1,ringP8)))) │ │ │ │ +00038bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3131 -----------|.|11 │ │ │ │ +00038be0: 206c 6973 7420 7261 6e64 6f6d 2831 2c72 list random(1,r │ │ │ │ +00038bf0: 696e 6750 3829 2929 2920 2020 2020 2020 ingP8)))) │ │ │ │ 00038c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00038c20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038c80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00038c90: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00038c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00038c80: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00038c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038cb0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00038cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038cd0: 207c 0a7c 2d20 3134 3535 7820 7820 202b |.|- 1455x x + │ │ │ │ -00038ce0: 2035 3539 7820 202d 2035 3032 7820 7820 559x - 502x x │ │ │ │ -00038cf0: 202b 2031 3236 3478 2078 2020 2d20 3136 + 1264x x - 16 │ │ │ │ -00038d00: 3278 2078 2020 2b20 3132 3039 7820 202d 2x x + 1209x - │ │ │ │ -00038d10: 2031 3830 7820 7820 202d 2020 2020 2020 180x x - │ │ │ │ -00038d20: 207c 0a7c 2020 2020 2020 2031 2032 2020 |.| 1 2 │ │ │ │ -00038d30: 2020 2020 2032 2020 2020 2020 2030 2033 2 0 3 │ │ │ │ -00038d40: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ -00038d50: 2020 3220 3320 2020 2020 2020 2033 2020 2 3 3 │ │ │ │ -00038d60: 2020 2020 2030 2034 2020 2020 2020 2020 0 4 │ │ │ │ -00038d70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00038cb0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00038cc0: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00038cd0: 3134 3535 7820 7820 202b 2035 3539 7820 1455x x + 559x │ │ │ │ +00038ce0: 202d 2035 3032 7820 7820 202b 2031 3236 - 502x x + 126 │ │ │ │ +00038cf0: 3478 2078 2020 2d20 3136 3278 2078 2020 4x x - 162x x │ │ │ │ +00038d00: 2b20 3132 3039 7820 202d 2031 3830 7820 + 1209x - 180x │ │ │ │ +00038d10: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +00038d20: 2020 2020 2031 2032 2020 2020 2020 2032 1 2 2 │ │ │ │ +00038d30: 2020 2020 2020 2030 2033 2020 2020 2020 0 3 │ │ │ │ +00038d40: 2020 3120 3320 2020 2020 2020 3220 3320 1 3 2 3 │ │ │ │ +00038d50: 2020 2020 2020 2033 2020 2020 2020 2030 3 0 │ │ │ │ +00038d60: 2034 2020 2020 2020 2020 207c 0a7c 2d2d 4 |.|-- │ │ │ │ +00038d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038dc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00038db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00038dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038de0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00038de0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00038df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038e10: 207c 0a7c 3530 3478 2078 2020 2d20 3131 |.|504x x - 11 │ │ │ │ -00038e20: 3638 7820 7820 202d 2036 3736 7820 7820 68x x - 676x x │ │ │ │ -00038e30: 202b 2035 3031 7820 202b 2037 3378 2078 + 501x + 73x x │ │ │ │ -00038e40: 2020 2b20 3132 3633 7820 7820 202b 2031 + 1263x x + 1 │ │ │ │ -00038e50: 3033 3578 2078 2020 2b20 3834 3478 2078 035x x + 844x x │ │ │ │ -00038e60: 207c 0a7c 2020 2020 3120 3420 2020 2020 |.| 1 4 │ │ │ │ -00038e70: 2020 2032 2034 2020 2020 2020 2033 2034 2 4 3 4 │ │ │ │ -00038e80: 2020 2020 2020 2034 2020 2020 2020 3020 4 0 │ │ │ │ -00038e90: 3520 2020 2020 2020 2031 2035 2020 2020 5 1 5 │ │ │ │ -00038ea0: 2020 2020 3220 3520 2020 2020 2020 3320 2 5 3 │ │ │ │ -00038eb0: 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 5|.|------------ │ │ │ │ +00038e00: 2020 2020 2020 2020 2020 207c 0a7c 3530 |.|50 │ │ │ │ +00038e10: 3478 2078 2020 2d20 3131 3638 7820 7820 4x x - 1168x x │ │ │ │ +00038e20: 202d 2036 3736 7820 7820 202b 2035 3031 - 676x x + 501 │ │ │ │ +00038e30: 7820 202b 2037 3378 2078 2020 2b20 3132 x + 73x x + 12 │ │ │ │ +00038e40: 3633 7820 7820 202b 2031 3033 3578 2078 63x x + 1035x x │ │ │ │ +00038e50: 2020 2b20 3834 3478 2078 207c 0a7c 2020 + 844x x |.| │ │ │ │ +00038e60: 2020 3120 3420 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ +00038e70: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ +00038e80: 2034 2020 2020 2020 3020 3520 2020 2020 4 0 5 │ │ │ │ +00038e90: 2020 2031 2035 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ +00038ea0: 3520 2020 2020 2020 3320 357c 0a7c 2d2d 5 3 5|.|-- │ │ │ │ +00038eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00038ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00038f00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00038f10: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00038ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00038f00: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00038f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00038f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00038f50: 207c 0a7c 2b20 3135 3933 7820 7820 202b |.|+ 1593x x + │ │ │ │ -00038f60: 2037 3835 7820 202b 2039 3832 7820 7820 785x + 982x x │ │ │ │ -00038f70: 202d 2034 3132 7820 7820 202b 2031 3333 - 412x x + 133 │ │ │ │ -00038f80: 3578 2078 2020 2b20 3131 3336 7820 7820 5x x + 1136x x │ │ │ │ -00038f90: 202b 2038 3236 7820 7820 202b 2020 2020 + 826x x + │ │ │ │ -00038fa0: 207c 0a7c 2020 2020 2020 2034 2035 2020 |.| 4 5 │ │ │ │ -00038fb0: 2020 2020 2035 2020 2020 2020 2030 2036 5 0 6 │ │ │ │ -00038fc0: 2020 2020 2020 2031 2036 2020 2020 2020 1 6 │ │ │ │ -00038fd0: 2020 3220 3620 2020 2020 2020 2033 2036 2 6 3 6 │ │ │ │ -00038fe0: 2020 2020 2020 2034 2036 2020 2020 2020 4 6 │ │ │ │ -00038ff0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00038f40: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00038f50: 3135 3933 7820 7820 202b 2037 3835 7820 1593x x + 785x │ │ │ │ +00038f60: 202b 2039 3832 7820 7820 202d 2034 3132 + 982x x - 412 │ │ │ │ +00038f70: 7820 7820 202b 2031 3333 3578 2078 2020 x x + 1335x x │ │ │ │ +00038f80: 2b20 3131 3336 7820 7820 202b 2038 3236 + 1136x x + 826 │ │ │ │ +00038f90: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00038fa0: 2020 2020 2034 2035 2020 2020 2020 2035 4 5 5 │ │ │ │ +00038fb0: 2020 2020 2020 2030 2036 2020 2020 2020 0 6 │ │ │ │ +00038fc0: 2031 2036 2020 2020 2020 2020 3220 3620 1 6 2 6 │ │ │ │ +00038fd0: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ +00038fe0: 2034 2036 2020 2020 2020 207c 0a7c 2d2d 4 6 |.|-- │ │ │ │ +00038ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039040: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039050: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00039030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039040: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00039050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039090: 207c 0a7c 3130 3738 7820 7820 202b 2031 |.|1078x x + 1 │ │ │ │ -000390a0: 3135 3878 2020 2b20 3333 3578 2078 2020 158x + 335x x │ │ │ │ -000390b0: 2d20 3938 3278 2078 2020 2d20 3134 3739 - 982x x - 1479 │ │ │ │ -000390c0: 7820 7820 202d 2031 3578 2078 2020 2b20 x x - 15x x + │ │ │ │ -000390d0: 3133 3633 7820 7820 202b 2020 2020 2020 1363x x + │ │ │ │ -000390e0: 207c 0a7c 2020 2020 2035 2036 2020 2020 |.| 5 6 │ │ │ │ -000390f0: 2020 2020 3620 2020 2020 2020 3020 3720 6 0 7 │ │ │ │ -00039100: 2020 2020 2020 3120 3720 2020 2020 2020 1 7 │ │ │ │ -00039110: 2032 2037 2020 2020 2020 3320 3720 2020 2 7 3 7 │ │ │ │ -00039120: 2020 2020 2034 2037 2020 2020 2020 2020 4 7 │ │ │ │ -00039130: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039080: 2020 2020 2020 2020 2020 207c 0a7c 3130 |.|10 │ │ │ │ +00039090: 3738 7820 7820 202b 2031 3135 3878 2020 78x x + 1158x │ │ │ │ +000390a0: 2b20 3333 3578 2078 2020 2d20 3938 3278 + 335x x - 982x │ │ │ │ +000390b0: 2078 2020 2d20 3134 3739 7820 7820 202d x - 1479x x - │ │ │ │ +000390c0: 2031 3578 2078 2020 2b20 3133 3633 7820 15x x + 1363x │ │ │ │ +000390d0: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +000390e0: 2020 2035 2036 2020 2020 2020 2020 3620 5 6 6 │ │ │ │ +000390f0: 2020 2020 2020 3020 3720 2020 2020 2020 0 7 │ │ │ │ +00039100: 3120 3720 2020 2020 2020 2032 2037 2020 1 7 2 7 │ │ │ │ +00039110: 2020 2020 3320 3720 2020 2020 2020 2034 3 7 4 │ │ │ │ +00039120: 2037 2020 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +00039130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039180: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039190: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00039170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039190: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000391a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000391b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000391d0: 207c 0a7c 3133 3937 7820 7820 202d 2035 |.|1397x x - 5 │ │ │ │ -000391e0: 3735 7820 7820 202d 2037 3178 2020 2b20 75x x - 71x + │ │ │ │ -000391f0: 3132 3535 7820 7820 202d 2031 3133 3878 1255x x - 1138x │ │ │ │ -00039200: 2078 2020 2d20 3135 3930 7820 7820 202b x - 1590x x + │ │ │ │ -00039210: 2036 3034 7820 7820 202b 2020 2020 2020 604x x + │ │ │ │ -00039220: 207c 0a7c 2020 2020 2035 2037 2020 2020 |.| 5 7 │ │ │ │ -00039230: 2020 2036 2037 2020 2020 2020 3720 2020 6 7 7 │ │ │ │ -00039240: 2020 2020 2030 2038 2020 2020 2020 2020 0 8 │ │ │ │ -00039250: 3120 3820 2020 2020 2020 2032 2038 2020 1 8 2 8 │ │ │ │ -00039260: 2020 2020 2033 2038 2020 2020 2020 2020 3 8 │ │ │ │ -00039270: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000391c0: 2020 2020 2020 2020 2020 207c 0a7c 3133 |.|13 │ │ │ │ +000391d0: 3937 7820 7820 202d 2035 3735 7820 7820 97x x - 575x x │ │ │ │ +000391e0: 202d 2037 3178 2020 2b20 3132 3535 7820 - 71x + 1255x │ │ │ │ +000391f0: 7820 202d 2031 3133 3878 2078 2020 2d20 x - 1138x x - │ │ │ │ +00039200: 3135 3930 7820 7820 202b 2036 3034 7820 1590x x + 604x │ │ │ │ +00039210: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00039220: 2020 2035 2037 2020 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +00039230: 2020 2020 2020 3720 2020 2020 2020 2030 7 0 │ │ │ │ +00039240: 2038 2020 2020 2020 2020 3120 3820 2020 8 1 8 │ │ │ │ +00039250: 2020 2020 2032 2038 2020 2020 2020 2033 2 8 3 │ │ │ │ +00039260: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +00039270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000392a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000392b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000392c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000392b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000392c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000392d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000392e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000392f0: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00039300: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00039310: 207c 0a7c 3131 3832 7820 7820 202d 2036 |.|1182x x - 6 │ │ │ │ -00039320: 3378 2078 2020 2d20 3133 3832 7820 7820 3x x - 1382x x │ │ │ │ -00039330: 202d 2031 3235 3578 2078 2020 2d20 3631 - 1255x x - 61 │ │ │ │ -00039340: 3378 202c 202d 2031 3434 3478 2020 2b20 3x , - 1444x + │ │ │ │ -00039350: 3537 3578 2078 2020 2b20 3736 3778 2020 575x x + 767x │ │ │ │ -00039360: 2d7c 0a7c 2020 2020 2034 2038 2020 2020 -|.| 4 8 │ │ │ │ -00039370: 2020 3520 3820 2020 2020 2020 2036 2038 5 8 6 8 │ │ │ │ -00039380: 2020 2020 2020 2020 3720 3820 2020 2020 7 8 │ │ │ │ -00039390: 2020 3820 2020 2020 2020 2020 3020 2020 8 0 │ │ │ │ -000393a0: 2020 2020 3020 3120 2020 2020 2020 3120 0 1 1 │ │ │ │ -000393b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000392e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000392f0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00039300: 2020 2020 2020 2020 3220 207c 0a7c 3131 2 |.|11 │ │ │ │ +00039310: 3832 7820 7820 202d 2036 3378 2078 2020 82x x - 63x x │ │ │ │ +00039320: 2d20 3133 3832 7820 7820 202d 2031 3235 - 1382x x - 125 │ │ │ │ +00039330: 3578 2078 2020 2d20 3631 3378 202c 202d 5x x - 613x , - │ │ │ │ +00039340: 2031 3434 3478 2020 2b20 3537 3578 2078 1444x + 575x x │ │ │ │ +00039350: 2020 2b20 3736 3778 2020 2d7c 0a7c 2020 + 767x -|.| │ │ │ │ +00039360: 2020 2034 2038 2020 2020 2020 3520 3820 4 8 5 8 │ │ │ │ +00039370: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ +00039380: 2020 3720 3820 2020 2020 2020 3820 2020 7 8 8 │ │ │ │ +00039390: 2020 2020 2020 3020 2020 2020 2020 3020 0 0 │ │ │ │ +000393a0: 3120 2020 2020 2020 3120 207c 0a7c 2d2d 1 1 |.|-- │ │ │ │ +000393b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000393e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000393f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039400: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039410: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000393f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039410: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00039420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039440: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00039450: 207c 0a7c 3134 3935 7820 7820 202b 2031 |.|1495x x + 1 │ │ │ │ -00039460: 3633 3178 2078 2020 2d20 3231 3778 2020 631x x - 217x │ │ │ │ -00039470: 2d20 3239 3478 2078 2020 2d20 3135 3131 - 294x x - 1511 │ │ │ │ -00039480: 7820 7820 202d 2035 3034 7820 7820 202d x x - 504x x - │ │ │ │ -00039490: 2031 3238 3478 2020 2d20 2020 2020 2020 1284x - │ │ │ │ -000394a0: 207c 0a7c 2020 2020 2030 2032 2020 2020 |.| 0 2 │ │ │ │ -000394b0: 2020 2020 3120 3220 2020 2020 2020 3220 1 2 2 │ │ │ │ -000394c0: 2020 2020 2020 3020 3320 2020 2020 2020 0 3 │ │ │ │ -000394d0: 2031 2033 2020 2020 2020 2032 2033 2020 1 3 2 3 │ │ │ │ -000394e0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -000394f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039440: 3220 2020 2020 2020 2020 207c 0a7c 3134 2 |.|14 │ │ │ │ +00039450: 3935 7820 7820 202b 2031 3633 3178 2078 95x x + 1631x x │ │ │ │ +00039460: 2020 2d20 3231 3778 2020 2d20 3239 3478 - 217x - 294x │ │ │ │ +00039470: 2078 2020 2d20 3135 3131 7820 7820 202d x - 1511x x - │ │ │ │ +00039480: 2035 3034 7820 7820 202d 2031 3238 3478 504x x - 1284x │ │ │ │ +00039490: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +000394a0: 2020 2030 2032 2020 2020 2020 2020 3120 0 2 1 │ │ │ │ +000394b0: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +000394c0: 3020 3320 2020 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ +000394d0: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ +000394e0: 3320 2020 2020 2020 2020 207c 0a7c 2d2d 3 |.|-- │ │ │ │ +000394f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039540: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00039530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039560: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00039560: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00039570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039590: 207c 0a7c 3134 3539 7820 7820 202b 2031 |.|1459x x + 1 │ │ │ │ -000395a0: 3532 7820 7820 202b 2031 3431 7820 7820 52x x + 141x x │ │ │ │ -000395b0: 202d 2031 3078 2078 2020 2d20 3935 7820 - 10x x - 95x │ │ │ │ -000395c0: 202b 2031 3035 3678 2078 2020 2b20 3635 + 1056x x + 65 │ │ │ │ -000395d0: 3478 2078 2020 2b20 3133 3937 7820 7820 4x x + 1397x x │ │ │ │ -000395e0: 207c 0a7c 2020 2020 2030 2034 2020 2020 |.| 0 4 │ │ │ │ -000395f0: 2020 2031 2034 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ -00039600: 2020 2020 2020 3320 3420 2020 2020 2034 3 4 4 │ │ │ │ -00039610: 2020 2020 2020 2020 3020 3520 2020 2020 0 5 │ │ │ │ -00039620: 2020 3120 3520 2020 2020 2020 2032 2035 1 5 2 5 │ │ │ │ -00039630: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039580: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +00039590: 3539 7820 7820 202b 2031 3532 7820 7820 59x x + 152x x │ │ │ │ +000395a0: 202b 2031 3431 7820 7820 202d 2031 3078 + 141x x - 10x │ │ │ │ +000395b0: 2078 2020 2d20 3935 7820 202b 2031 3035 x - 95x + 105 │ │ │ │ +000395c0: 3678 2078 2020 2b20 3635 3478 2078 2020 6x x + 654x x │ │ │ │ +000395d0: 2b20 3133 3937 7820 7820 207c 0a7c 2020 + 1397x x |.| │ │ │ │ +000395e0: 2020 2030 2034 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ +000395f0: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ +00039600: 3320 3420 2020 2020 2034 2020 2020 2020 3 4 4 │ │ │ │ +00039610: 2020 3020 3520 2020 2020 2020 3120 3520 0 5 1 5 │ │ │ │ +00039620: 2020 2020 2020 2032 2035 207c 0a7c 2d2d 2 5 |.|-- │ │ │ │ +00039630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039680: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039690: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00039670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039690: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000396a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000396b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000396d0: 207c 0a7c 2d20 3933 3078 2078 2020 2b20 |.|- 930x x + │ │ │ │ -000396e0: 3537 3878 2078 2020 2d20 3639 3678 2020 578x x - 696x │ │ │ │ -000396f0: 2b20 3735 3978 2078 2020 2b20 3733 3378 + 759x x + 733x │ │ │ │ -00039700: 2078 2020 2b20 3530 3578 2078 2020 2d20 x + 505x x - │ │ │ │ -00039710: 3630 3978 2078 2020 2b20 3532 3678 2078 609x x + 526x x │ │ │ │ -00039720: 207c 0a7c 2020 2020 2020 3320 3520 2020 |.| 3 5 │ │ │ │ -00039730: 2020 2020 3420 3520 2020 2020 2020 3520 4 5 5 │ │ │ │ -00039740: 2020 2020 2020 3020 3620 2020 2020 2020 0 6 │ │ │ │ -00039750: 3120 3620 2020 2020 2020 3220 3620 2020 1 6 2 6 │ │ │ │ -00039760: 2020 2020 3320 3620 2020 2020 2020 3420 3 6 4 │ │ │ │ -00039770: 367c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 6|.|------------ │ │ │ │ +000396c0: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +000396d0: 3933 3078 2078 2020 2b20 3537 3878 2078 930x x + 578x x │ │ │ │ +000396e0: 2020 2d20 3639 3678 2020 2b20 3735 3978 - 696x + 759x │ │ │ │ +000396f0: 2078 2020 2b20 3733 3378 2078 2020 2b20 x + 733x x + │ │ │ │ +00039700: 3530 3578 2078 2020 2d20 3630 3978 2078 505x x - 609x x │ │ │ │ +00039710: 2020 2b20 3532 3678 2078 207c 0a7c 2020 + 526x x |.| │ │ │ │ +00039720: 2020 2020 3320 3520 2020 2020 2020 3420 3 5 4 │ │ │ │ +00039730: 3520 2020 2020 2020 3520 2020 2020 2020 5 5 │ │ │ │ +00039740: 3020 3620 2020 2020 2020 3120 3620 2020 0 6 1 6 │ │ │ │ +00039750: 2020 2020 3220 3620 2020 2020 2020 3320 2 6 3 │ │ │ │ +00039760: 3620 2020 2020 2020 3420 367c 0a7c 2d2d 6 4 6|.|-- │ │ │ │ +00039770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000397a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000397b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000397c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -000397d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000397b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000397c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000397d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000397f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039810: 207c 0a7c 2d20 3635 3978 2078 2020 2b20 |.|- 659x x + │ │ │ │ -00039820: 3834 3678 2020 2b20 3132 3533 7820 7820 846x + 1253x x │ │ │ │ -00039830: 202d 2031 3531 3978 2078 2020 2b20 3633 - 1519x x + 63 │ │ │ │ -00039840: 3578 2078 2020 2b20 3537 3678 2078 2020 5x x + 576x x │ │ │ │ -00039850: 2b20 3534 7820 7820 202d 2020 2020 2020 + 54x x - │ │ │ │ -00039860: 207c 0a7c 2020 2020 2020 3520 3620 2020 |.| 5 6 │ │ │ │ -00039870: 2020 2020 3620 2020 2020 2020 2030 2037 6 0 7 │ │ │ │ -00039880: 2020 2020 2020 2020 3120 3720 2020 2020 1 7 │ │ │ │ -00039890: 2020 3220 3720 2020 2020 2020 3320 3720 2 7 3 7 │ │ │ │ -000398a0: 2020 2020 2034 2037 2020 2020 2020 2020 4 7 │ │ │ │ -000398b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039800: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00039810: 3635 3978 2078 2020 2b20 3834 3678 2020 659x x + 846x │ │ │ │ +00039820: 2b20 3132 3533 7820 7820 202d 2031 3531 + 1253x x - 151 │ │ │ │ +00039830: 3978 2078 2020 2b20 3633 3578 2078 2020 9x x + 635x x │ │ │ │ +00039840: 2b20 3537 3678 2078 2020 2b20 3534 7820 + 576x x + 54x │ │ │ │ +00039850: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +00039860: 2020 2020 3520 3620 2020 2020 2020 3620 5 6 6 │ │ │ │ +00039870: 2020 2020 2020 2030 2037 2020 2020 2020 0 7 │ │ │ │ +00039880: 2020 3120 3720 2020 2020 2020 3220 3720 1 7 2 7 │ │ │ │ +00039890: 2020 2020 2020 3320 3720 2020 2020 2034 3 7 4 │ │ │ │ +000398a0: 2037 2020 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +000398b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000398c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000398d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000398e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000398f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039900: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039910: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000398f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039910: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00039920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039950: 207c 0a7c 3132 3631 7820 7820 202d 2038 |.|1261x x - 8 │ │ │ │ -00039960: 3232 7820 7820 202d 2032 3537 7820 202d 22x x - 257x - │ │ │ │ -00039970: 2039 3836 7820 7820 202b 2033 3536 7820 986x x + 356x │ │ │ │ -00039980: 7820 202d 2031 3438 3878 2078 2020 2d20 x - 1488x x - │ │ │ │ -00039990: 3135 3631 7820 7820 202d 2020 2020 2020 1561x x - │ │ │ │ -000399a0: 207c 0a7c 2020 2020 2035 2037 2020 2020 |.| 5 7 │ │ │ │ -000399b0: 2020 2036 2037 2020 2020 2020 2037 2020 6 7 7 │ │ │ │ -000399c0: 2020 2020 2030 2038 2020 2020 2020 2031 0 8 1 │ │ │ │ -000399d0: 2038 2020 2020 2020 2020 3220 3820 2020 8 2 8 │ │ │ │ -000399e0: 2020 2020 2033 2038 2020 2020 2020 2020 3 8 │ │ │ │ -000399f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039940: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +00039950: 3631 7820 7820 202d 2038 3232 7820 7820 61x x - 822x x │ │ │ │ +00039960: 202d 2032 3537 7820 202d 2039 3836 7820 - 257x - 986x │ │ │ │ +00039970: 7820 202b 2033 3536 7820 7820 202d 2031 x + 356x x - 1 │ │ │ │ +00039980: 3438 3878 2078 2020 2d20 3135 3631 7820 488x x - 1561x │ │ │ │ +00039990: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +000399a0: 2020 2035 2037 2020 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +000399b0: 2020 2020 2020 2037 2020 2020 2020 2030 7 0 │ │ │ │ +000399c0: 2038 2020 2020 2020 2031 2038 2020 2020 8 1 8 │ │ │ │ +000399d0: 2020 2020 3220 3820 2020 2020 2020 2033 2 8 3 │ │ │ │ +000399e0: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +000399f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039a40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00039a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039a70: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -00039a80: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00039a90: 207c 0a7c 3835 3078 2078 2020 2d20 3835 |.|850x x - 85 │ │ │ │ -00039aa0: 7820 7820 202d 2031 3335 3078 2078 2020 x x - 1350x x │ │ │ │ -00039ab0: 2d20 3738 3378 2078 2020 2d20 3133 3335 - 783x x - 1335 │ │ │ │ -00039ac0: 7820 2c20 2d20 3837 3178 2020 2b20 3130 x , - 871x + 10 │ │ │ │ -00039ad0: 3036 7820 7820 202d 2031 3339 3978 2020 06x x - 1399x │ │ │ │ -00039ae0: 2d7c 0a7c 2020 2020 3420 3820 2020 2020 -|.| 4 8 │ │ │ │ -00039af0: 2035 2038 2020 2020 2020 2020 3620 3820 5 8 6 8 │ │ │ │ -00039b00: 2020 2020 2020 3720 3820 2020 2020 2020 7 8 │ │ │ │ -00039b10: 2038 2020 2020 2020 2020 3020 2020 2020 8 0 │ │ │ │ -00039b20: 2020 2030 2031 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ -00039b30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039a60: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00039a70: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00039a80: 2020 2020 2020 2020 3220 207c 0a7c 3835 2 |.|85 │ │ │ │ +00039a90: 3078 2078 2020 2d20 3835 7820 7820 202d 0x x - 85x x - │ │ │ │ +00039aa0: 2031 3335 3078 2078 2020 2d20 3738 3378 1350x x - 783x │ │ │ │ +00039ab0: 2078 2020 2d20 3133 3335 7820 2c20 2d20 x - 1335x , - │ │ │ │ +00039ac0: 3837 3178 2020 2b20 3130 3036 7820 7820 871x + 1006x x │ │ │ │ +00039ad0: 202d 2031 3339 3978 2020 2d7c 0a7c 2020 - 1399x -|.| │ │ │ │ +00039ae0: 2020 3420 3820 2020 2020 2035 2038 2020 4 8 5 8 │ │ │ │ +00039af0: 2020 2020 2020 3620 3820 2020 2020 2020 6 8 │ │ │ │ +00039b00: 3720 3820 2020 2020 2020 2038 2020 2020 7 8 8 │ │ │ │ +00039b10: 2020 2020 3020 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ +00039b20: 2020 2020 2020 2020 3120 207c 0a7c 2d2d 1 |.|-- │ │ │ │ +00039b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039b80: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039b90: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00039b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039b90: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00039ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039bc0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00039bd0: 207c 0a7c 3136 3336 7820 7820 202d 2036 |.|1636x x - 6 │ │ │ │ -00039be0: 3939 7820 7820 202d 2037 3639 7820 202d 99x x - 769x - │ │ │ │ -00039bf0: 2033 3037 7820 7820 202d 2031 3634 3578 307x x - 1645x │ │ │ │ -00039c00: 2078 2020 2d20 3530 3278 2078 2020 2d20 x - 502x x - │ │ │ │ -00039c10: 3731 3978 2020 2b20 3134 3035 7820 7820 719x + 1405x x │ │ │ │ -00039c20: 207c 0a7c 2020 2020 2030 2032 2020 2020 |.| 0 2 │ │ │ │ -00039c30: 2020 2031 2032 2020 2020 2020 2032 2020 1 2 2 │ │ │ │ -00039c40: 2020 2020 2030 2033 2020 2020 2020 2020 0 3 │ │ │ │ -00039c50: 3120 3320 2020 2020 2020 3220 3320 2020 1 3 2 3 │ │ │ │ -00039c60: 2020 2020 3320 2020 2020 2020 2030 2034 3 0 4 │ │ │ │ -00039c70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039bb0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00039bc0: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +00039bd0: 3336 7820 7820 202d 2036 3939 7820 7820 36x x - 699x x │ │ │ │ +00039be0: 202d 2037 3639 7820 202d 2033 3037 7820 - 769x - 307x │ │ │ │ +00039bf0: 7820 202d 2031 3634 3578 2078 2020 2d20 x - 1645x x - │ │ │ │ +00039c00: 3530 3278 2078 2020 2d20 3731 3978 2020 502x x - 719x │ │ │ │ +00039c10: 2b20 3134 3035 7820 7820 207c 0a7c 2020 + 1405x x |.| │ │ │ │ +00039c20: 2020 2030 2032 2020 2020 2020 2031 2032 0 2 1 2 │ │ │ │ +00039c30: 2020 2020 2020 2032 2020 2020 2020 2030 2 0 │ │ │ │ +00039c40: 2033 2020 2020 2020 2020 3120 3320 2020 3 1 3 │ │ │ │ +00039c50: 2020 2020 3220 3320 2020 2020 2020 3320 2 3 3 │ │ │ │ +00039c60: 2020 2020 2020 2030 2034 207c 0a7c 2d2d 0 4 |.|-- │ │ │ │ +00039c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039cc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00039cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039ce0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00039ce0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00039cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039d10: 207c 0a7c 2b20 3837 3078 2078 2020 2d20 |.|+ 870x x - │ │ │ │ -00039d20: 3131 3333 7820 7820 202b 2034 3235 7820 1133x x + 425x │ │ │ │ -00039d30: 7820 202d 2031 3230 3378 2020 2d20 3136 x - 1203x - 16 │ │ │ │ -00039d40: 3031 7820 7820 202b 2031 3137 7820 7820 01x x + 117x x │ │ │ │ -00039d50: 202d 2033 3832 7820 7820 202b 2020 2020 - 382x x + │ │ │ │ -00039d60: 207c 0a7c 2020 2020 2020 3120 3420 2020 |.| 1 4 │ │ │ │ -00039d70: 2020 2020 2032 2034 2020 2020 2020 2033 2 4 3 │ │ │ │ -00039d80: 2034 2020 2020 2020 2020 3420 2020 2020 4 4 │ │ │ │ -00039d90: 2020 2030 2035 2020 2020 2020 2031 2035 0 5 1 5 │ │ │ │ -00039da0: 2020 2020 2020 2032 2035 2020 2020 2020 2 5 │ │ │ │ -00039db0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039d00: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00039d10: 3837 3078 2078 2020 2d20 3131 3333 7820 870x x - 1133x │ │ │ │ +00039d20: 7820 202b 2034 3235 7820 7820 202d 2031 x + 425x x - 1 │ │ │ │ +00039d30: 3230 3378 2020 2d20 3136 3031 7820 7820 203x - 1601x x │ │ │ │ +00039d40: 202b 2031 3137 7820 7820 202d 2033 3832 + 117x x - 382 │ │ │ │ +00039d50: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00039d60: 2020 2020 3120 3420 2020 2020 2020 2032 1 4 2 │ │ │ │ +00039d70: 2034 2020 2020 2020 2033 2034 2020 2020 4 3 4 │ │ │ │ +00039d80: 2020 2020 3420 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ +00039d90: 2020 2020 2020 2031 2035 2020 2020 2020 1 5 │ │ │ │ +00039da0: 2032 2035 2020 2020 2020 207c 0a7c 2d2d 2 5 |.|-- │ │ │ │ +00039db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039e00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039e10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00039df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00039e10: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00039e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039e50: 207c 0a7c 3331 3878 2078 2020 2d20 3131 |.|318x x - 11 │ │ │ │ -00039e60: 3778 2078 2020 2d20 3536 3078 2020 2b20 7x x - 560x + │ │ │ │ -00039e70: 3131 3335 7820 7820 202b 2031 3436 3878 1135x x + 1468x │ │ │ │ -00039e80: 2078 2020 2b20 3836 3978 2078 2020 2d20 x + 869x x - │ │ │ │ -00039e90: 3934 3378 2078 2020 2d20 3333 3578 2078 943x x - 335x x │ │ │ │ -00039ea0: 207c 0a7c 2020 2020 3320 3520 2020 2020 |.| 3 5 │ │ │ │ -00039eb0: 2020 3420 3520 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ -00039ec0: 2020 2020 2030 2036 2020 2020 2020 2020 0 6 │ │ │ │ -00039ed0: 3120 3620 2020 2020 2020 3220 3620 2020 1 6 2 6 │ │ │ │ -00039ee0: 2020 2020 3320 3620 2020 2020 2020 3420 3 6 4 │ │ │ │ -00039ef0: 367c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 6|.|------------ │ │ │ │ +00039e40: 2020 2020 2020 2020 2020 207c 0a7c 3331 |.|31 │ │ │ │ +00039e50: 3878 2078 2020 2d20 3131 3778 2078 2020 8x x - 117x x │ │ │ │ +00039e60: 2d20 3536 3078 2020 2b20 3131 3335 7820 - 560x + 1135x │ │ │ │ +00039e70: 7820 202b 2031 3436 3878 2078 2020 2b20 x + 1468x x + │ │ │ │ +00039e80: 3836 3978 2078 2020 2d20 3934 3378 2078 869x x - 943x x │ │ │ │ +00039e90: 2020 2d20 3333 3578 2078 207c 0a7c 2020 - 335x x |.| │ │ │ │ +00039ea0: 2020 3320 3520 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +00039eb0: 2020 2020 2020 3520 2020 2020 2020 2030 5 0 │ │ │ │ +00039ec0: 2036 2020 2020 2020 2020 3120 3620 2020 6 1 6 │ │ │ │ +00039ed0: 2020 2020 3220 3620 2020 2020 2020 3320 2 6 3 │ │ │ │ +00039ee0: 3620 2020 2020 2020 3420 367c 0a7c 2d2d 6 4 6|.|-- │ │ │ │ +00039ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00039f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00039f40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00039f50: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00039f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00039f40: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00039f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00039f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00039f90: 207c 0a7c 2d20 3132 3138 7820 7820 202b |.|- 1218x x + │ │ │ │ -00039fa0: 2032 3031 7820 202d 2031 3178 2078 2020 201x - 11x x │ │ │ │ -00039fb0: 2b20 3534 3078 2078 2020 2d20 3731 3078 + 540x x - 710x │ │ │ │ -00039fc0: 2078 2020 2d20 3438 3978 2078 2020 2b20 x - 489x x + │ │ │ │ -00039fd0: 3136 3035 7820 7820 202b 2020 2020 2020 1605x x + │ │ │ │ -00039fe0: 207c 0a7c 2020 2020 2020 2035 2036 2020 |.| 5 6 │ │ │ │ -00039ff0: 2020 2020 2036 2020 2020 2020 3020 3720 6 0 7 │ │ │ │ -0003a000: 2020 2020 2020 3120 3720 2020 2020 2020 1 7 │ │ │ │ -0003a010: 3220 3720 2020 2020 2020 3320 3720 2020 2 7 3 7 │ │ │ │ -0003a020: 2020 2020 2034 2037 2020 2020 2020 2020 4 7 │ │ │ │ -0003a030: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00039f80: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00039f90: 3132 3138 7820 7820 202b 2032 3031 7820 1218x x + 201x │ │ │ │ +00039fa0: 202d 2031 3178 2078 2020 2b20 3534 3078 - 11x x + 540x │ │ │ │ +00039fb0: 2078 2020 2d20 3731 3078 2078 2020 2d20 x - 710x x - │ │ │ │ +00039fc0: 3438 3978 2078 2020 2b20 3136 3035 7820 489x x + 1605x │ │ │ │ +00039fd0: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00039fe0: 2020 2020 2035 2036 2020 2020 2020 2036 5 6 6 │ │ │ │ +00039ff0: 2020 2020 2020 3020 3720 2020 2020 2020 0 7 │ │ │ │ +0003a000: 3120 3720 2020 2020 2020 3220 3720 2020 1 7 2 7 │ │ │ │ +0003a010: 2020 2020 3320 3720 2020 2020 2020 2034 3 7 4 │ │ │ │ +0003a020: 2037 2020 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +0003a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a080: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003a090: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a090: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a0d0: 207c 0a7c 3136 3633 7820 7820 202d 2034 |.|1663x x - 4 │ │ │ │ -0003a0e0: 3233 7820 7820 202b 2031 3234 3678 2020 23x x + 1246x │ │ │ │ -0003a0f0: 2b20 3937 7820 7820 202d 2036 3434 7820 + 97x x - 644x │ │ │ │ -0003a100: 7820 202b 2031 3635 3578 2078 2020 2b20 x + 1655x x + │ │ │ │ -0003a110: 3132 3139 7820 7820 202b 2020 2020 2020 1219x x + │ │ │ │ -0003a120: 207c 0a7c 2020 2020 2035 2037 2020 2020 |.| 5 7 │ │ │ │ -0003a130: 2020 2036 2037 2020 2020 2020 2020 3720 6 7 7 │ │ │ │ -0003a140: 2020 2020 2030 2038 2020 2020 2020 2031 0 8 1 │ │ │ │ -0003a150: 2038 2020 2020 2020 2020 3220 3820 2020 8 2 8 │ │ │ │ -0003a160: 2020 2020 2033 2038 2020 2020 2020 2020 3 8 │ │ │ │ -0003a170: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a0c0: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +0003a0d0: 3633 7820 7820 202d 2034 3233 7820 7820 63x x - 423x x │ │ │ │ +0003a0e0: 202b 2031 3234 3678 2020 2b20 3937 7820 + 1246x + 97x │ │ │ │ +0003a0f0: 7820 202d 2036 3434 7820 7820 202b 2031 x - 644x x + 1 │ │ │ │ +0003a100: 3635 3578 2078 2020 2b20 3132 3139 7820 655x x + 1219x │ │ │ │ +0003a110: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003a120: 2020 2035 2037 2020 2020 2020 2036 2037 5 7 6 7 │ │ │ │ +0003a130: 2020 2020 2020 2020 3720 2020 2020 2030 7 0 │ │ │ │ +0003a140: 2038 2020 2020 2020 2031 2038 2020 2020 8 1 8 │ │ │ │ +0003a150: 2020 2020 3220 3820 2020 2020 2020 2033 2 8 3 │ │ │ │ +0003a160: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +0003a170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a1c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a1f0: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -0003a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a210: 207c 0a7c 3134 3736 7820 7820 202b 2031 |.|1476x x + 1 │ │ │ │ -0003a220: 3335 3578 2078 2020 2b20 3135 3934 7820 355x x + 1594x │ │ │ │ -0003a230: 7820 202b 2038 3933 7820 7820 202b 2031 x + 893x x + 1 │ │ │ │ -0003a240: 3135 3078 202c 202d 2031 3433 7820 202b 150x , - 143x + │ │ │ │ -0003a250: 2031 3234 3078 2078 2020 2d20 2020 2020 1240x x - │ │ │ │ -0003a260: 207c 0a7c 2020 2020 2034 2038 2020 2020 |.| 4 8 │ │ │ │ -0003a270: 2020 2020 3520 3820 2020 2020 2020 2036 5 8 6 │ │ │ │ -0003a280: 2038 2020 2020 2020 2037 2038 2020 2020 8 7 8 │ │ │ │ -0003a290: 2020 2020 3820 2020 2020 2020 2030 2020 8 0 │ │ │ │ -0003a2a0: 2020 2020 2020 3020 3120 2020 2020 2020 0 1 │ │ │ │ -0003a2b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a1e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003a1f0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003a200: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +0003a210: 3736 7820 7820 202b 2031 3335 3578 2078 76x x + 1355x x │ │ │ │ +0003a220: 2020 2b20 3135 3934 7820 7820 202b 2038 + 1594x x + 8 │ │ │ │ +0003a230: 3933 7820 7820 202b 2031 3135 3078 202c 93x x + 1150x , │ │ │ │ +0003a240: 202d 2031 3433 7820 202b 2031 3234 3078 - 143x + 1240x │ │ │ │ +0003a250: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003a260: 2020 2034 2038 2020 2020 2020 2020 3520 4 8 5 │ │ │ │ +0003a270: 3820 2020 2020 2020 2036 2038 2020 2020 8 6 8 │ │ │ │ +0003a280: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ +0003a290: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +0003a2a0: 3020 3120 2020 2020 2020 207c 0a7c 2d2d 0 1 |.|-- │ │ │ │ +0003a2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a300: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +0003a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a300: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a320: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003a320: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a340: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003a350: 207c 0a7c 3130 3432 7820 202b 2031 3634 |.|1042x + 164 │ │ │ │ -0003a360: 3978 2078 2020 2b20 3130 3234 7820 7820 9x x + 1024x x │ │ │ │ -0003a370: 202b 2037 3934 7820 202b 2031 3434 3278 + 794x + 1442x │ │ │ │ -0003a380: 2078 2020 2d20 3132 3633 7820 7820 202b x - 1263x x + │ │ │ │ -0003a390: 2035 3337 7820 7820 202d 2038 3278 2020 537x x - 82x │ │ │ │ -0003a3a0: 2d7c 0a7c 2020 2020 2031 2020 2020 2020 -|.| 1 │ │ │ │ -0003a3b0: 2020 3020 3220 2020 2020 2020 2031 2032 0 2 1 2 │ │ │ │ -0003a3c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0003a3d0: 3020 3320 2020 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -0003a3e0: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ -0003a3f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a340: 2020 2020 2020 2020 3220 207c 0a7c 3130 2 |.|10 │ │ │ │ +0003a350: 3432 7820 202b 2031 3634 3978 2078 2020 42x + 1649x x │ │ │ │ +0003a360: 2b20 3130 3234 7820 7820 202b 2037 3934 + 1024x x + 794 │ │ │ │ +0003a370: 7820 202b 2031 3434 3278 2078 2020 2d20 x + 1442x x - │ │ │ │ +0003a380: 3132 3633 7820 7820 202b 2035 3337 7820 1263x x + 537x │ │ │ │ +0003a390: 7820 202d 2038 3278 2020 2d7c 0a7c 2020 x - 82x -|.| │ │ │ │ +0003a3a0: 2020 2031 2020 2020 2020 2020 3020 3220 1 0 2 │ │ │ │ +0003a3b0: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ +0003a3c0: 2032 2020 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ +0003a3d0: 2020 2020 2031 2033 2020 2020 2020 2032 1 3 2 │ │ │ │ +0003a3e0: 2033 2020 2020 2020 3320 207c 0a7c 2d2d 3 3 |.|-- │ │ │ │ +0003a3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a440: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003a430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a470: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a490: 207c 0a7c 3733 3478 2078 2020 2d20 3135 |.|734x x - 15 │ │ │ │ -0003a4a0: 3639 7820 7820 202d 2037 3938 7820 7820 69x x - 798x x │ │ │ │ -0003a4b0: 202d 2033 3636 7820 7820 202b 2031 3238 - 366x x + 128 │ │ │ │ -0003a4c0: 3978 2020 2d20 3536 3978 2078 2020 2d20 9x - 569x x - │ │ │ │ -0003a4d0: 3235 3478 2078 2020 2b20 3233 3778 2078 254x x + 237x x │ │ │ │ -0003a4e0: 207c 0a7c 2020 2020 3020 3420 2020 2020 |.| 0 4 │ │ │ │ -0003a4f0: 2020 2031 2034 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ -0003a500: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ -0003a510: 2020 3420 2020 2020 2020 3020 3520 2020 4 0 5 │ │ │ │ -0003a520: 2020 2020 3120 3520 2020 2020 2020 3220 1 5 2 │ │ │ │ -0003a530: 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 5|.|------------ │ │ │ │ +0003a460: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a480: 2020 2020 2020 2020 2020 207c 0a7c 3733 |.|73 │ │ │ │ +0003a490: 3478 2078 2020 2d20 3135 3639 7820 7820 4x x - 1569x x │ │ │ │ +0003a4a0: 202d 2037 3938 7820 7820 202d 2033 3636 - 798x x - 366 │ │ │ │ +0003a4b0: 7820 7820 202b 2031 3238 3978 2020 2d20 x x + 1289x - │ │ │ │ +0003a4c0: 3536 3978 2078 2020 2d20 3235 3478 2078 569x x - 254x x │ │ │ │ +0003a4d0: 2020 2b20 3233 3778 2078 207c 0a7c 2020 + 237x x |.| │ │ │ │ +0003a4e0: 2020 3020 3420 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ +0003a4f0: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ +0003a500: 2033 2034 2020 2020 2020 2020 3420 2020 3 4 4 │ │ │ │ +0003a510: 2020 2020 3020 3520 2020 2020 2020 3120 0 5 1 │ │ │ │ +0003a520: 3520 2020 2020 2020 3220 357c 0a7c 2d2d 5 2 5|.|-- │ │ │ │ +0003a530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a580: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003a590: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0003a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a590: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0003a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a5d0: 207c 0a7c 2d20 3132 3334 7820 7820 202d |.|- 1234x x - │ │ │ │ -0003a5e0: 2038 3037 7820 7820 202b 2032 3634 7820 807x x + 264x │ │ │ │ -0003a5f0: 202d 2032 3032 7820 7820 202d 2036 3136 - 202x x - 616 │ │ │ │ -0003a600: 7820 7820 202b 2034 3478 2078 2020 2b20 x x + 44x x + │ │ │ │ -0003a610: 3134 3635 7820 7820 202b 2020 2020 2020 1465x x + │ │ │ │ -0003a620: 207c 0a7c 2020 2020 2020 2033 2035 2020 |.| 3 5 │ │ │ │ -0003a630: 2020 2020 2034 2035 2020 2020 2020 2035 4 5 5 │ │ │ │ -0003a640: 2020 2020 2020 2030 2036 2020 2020 2020 0 6 │ │ │ │ -0003a650: 2031 2036 2020 2020 2020 3220 3620 2020 1 6 2 6 │ │ │ │ -0003a660: 2020 2020 2033 2036 2020 2020 2020 2020 3 6 │ │ │ │ -0003a670: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a5c0: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +0003a5d0: 3132 3334 7820 7820 202d 2038 3037 7820 1234x x - 807x │ │ │ │ +0003a5e0: 7820 202b 2032 3634 7820 202d 2032 3032 x + 264x - 202 │ │ │ │ +0003a5f0: 7820 7820 202d 2036 3136 7820 7820 202b x x - 616x x + │ │ │ │ +0003a600: 2034 3478 2078 2020 2b20 3134 3635 7820 44x x + 1465x │ │ │ │ +0003a610: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003a620: 2020 2020 2033 2035 2020 2020 2020 2034 3 5 4 │ │ │ │ +0003a630: 2035 2020 2020 2020 2035 2020 2020 2020 5 5 │ │ │ │ +0003a640: 2030 2036 2020 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ +0003a650: 2020 2020 3220 3620 2020 2020 2020 2033 2 6 3 │ │ │ │ +0003a660: 2036 2020 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a6c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003a6d0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a6d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 0003a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a710: 207c 0a7c 3638 3578 2078 2020 2b20 3136 |.|685x x + 16 │ │ │ │ -0003a720: 3330 7820 7820 202d 2034 3036 7820 202d 30x x - 406x - │ │ │ │ -0003a730: 2031 3233 7820 7820 202d 2034 7820 7820 123x x - 4x x │ │ │ │ -0003a740: 202b 2031 3538 3378 2078 2020 2b20 3132 + 1583x x + 12 │ │ │ │ -0003a750: 3335 7820 7820 202b 2031 3632 7820 7820 35x x + 162x x │ │ │ │ -0003a760: 207c 0a7c 2020 2020 3420 3620 2020 2020 |.| 4 6 │ │ │ │ -0003a770: 2020 2035 2036 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ -0003a780: 2020 2020 2030 2037 2020 2020 2031 2037 0 7 1 7 │ │ │ │ -0003a790: 2020 2020 2020 2020 3220 3720 2020 2020 2 7 │ │ │ │ -0003a7a0: 2020 2033 2037 2020 2020 2020 2034 2037 3 7 4 7 │ │ │ │ -0003a7b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a700: 2020 2020 2020 2020 2020 207c 0a7c 3638 |.|68 │ │ │ │ +0003a710: 3578 2078 2020 2b20 3136 3330 7820 7820 5x x + 1630x x │ │ │ │ +0003a720: 202d 2034 3036 7820 202d 2031 3233 7820 - 406x - 123x │ │ │ │ +0003a730: 7820 202d 2034 7820 7820 202b 2031 3538 x - 4x x + 158 │ │ │ │ +0003a740: 3378 2078 2020 2b20 3132 3335 7820 7820 3x x + 1235x x │ │ │ │ +0003a750: 202b 2031 3632 7820 7820 207c 0a7c 2020 + 162x x |.| │ │ │ │ +0003a760: 2020 3420 3620 2020 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +0003a770: 2020 2020 2020 2036 2020 2020 2020 2030 6 0 │ │ │ │ +0003a780: 2037 2020 2020 2031 2037 2020 2020 2020 7 1 7 │ │ │ │ +0003a790: 2020 3220 3720 2020 2020 2020 2033 2037 2 7 3 7 │ │ │ │ +0003a7a0: 2020 2020 2020 2034 2037 207c 0a7c 2d2d 4 7 |.|-- │ │ │ │ +0003a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a800: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a820: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003a810: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0003a820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a850: 207c 0a7c 2b20 3130 3334 7820 7820 202d |.|+ 1034x x - │ │ │ │ -0003a860: 2031 3033 3578 2078 2020 2b20 3733 3778 1035x x + 737x │ │ │ │ -0003a870: 2020 2b20 3636 3078 2078 2020 2b20 3134 + 660x x + 14 │ │ │ │ -0003a880: 3539 7820 7820 202d 2033 3539 7820 7820 59x x - 359x x │ │ │ │ -0003a890: 202d 2031 3239 3178 2078 2020 2b20 2020 - 1291x x + │ │ │ │ -0003a8a0: 207c 0a7c 2020 2020 2020 2035 2037 2020 |.| 5 7 │ │ │ │ -0003a8b0: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ -0003a8c0: 3720 2020 2020 2020 3020 3820 2020 2020 7 0 8 │ │ │ │ -0003a8d0: 2020 2031 2038 2020 2020 2020 2032 2038 1 8 2 8 │ │ │ │ -0003a8e0: 2020 2020 2020 2020 3320 3820 2020 2020 3 8 │ │ │ │ -0003a8f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a840: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +0003a850: 3130 3334 7820 7820 202d 2031 3033 3578 1034x x - 1035x │ │ │ │ +0003a860: 2078 2020 2b20 3733 3778 2020 2b20 3636 x + 737x + 66 │ │ │ │ +0003a870: 3078 2078 2020 2b20 3134 3539 7820 7820 0x x + 1459x x │ │ │ │ +0003a880: 202d 2033 3539 7820 7820 202d 2031 3239 - 359x x - 129 │ │ │ │ +0003a890: 3178 2078 2020 2b20 2020 207c 0a7c 2020 1x x + |.| │ │ │ │ +0003a8a0: 2020 2020 2035 2037 2020 2020 2020 2020 5 7 │ │ │ │ +0003a8b0: 3620 3720 2020 2020 2020 3720 2020 2020 6 7 7 │ │ │ │ +0003a8c0: 2020 3020 3820 2020 2020 2020 2031 2038 0 8 1 8 │ │ │ │ +0003a8d0: 2020 2020 2020 2032 2038 2020 2020 2020 2 8 │ │ │ │ +0003a8e0: 2020 3320 3820 2020 2020 207c 0a7c 2d2d 3 8 |.|-- │ │ │ │ +0003a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003a920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003a940: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003a940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003a970: 2032 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0003a980: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0003a990: 207c 0a7c 3136 3338 7820 7820 202d 2033 |.|1638x x - 3 │ │ │ │ -0003a9a0: 3235 7820 7820 202d 2036 3331 7820 7820 25x x - 631x x │ │ │ │ -0003a9b0: 202b 2037 3378 2078 2020 2d20 3134 3731 + 73x x - 1471 │ │ │ │ -0003a9c0: 7820 2c20 2d20 3133 3430 7820 202b 2033 x , - 1340x + 3 │ │ │ │ -0003a9d0: 3178 2078 2020 2d20 3939 3478 2020 2d20 1x x - 994x - │ │ │ │ -0003a9e0: 207c 0a7c 2020 2020 2034 2038 2020 2020 |.| 4 8 │ │ │ │ -0003a9f0: 2020 2035 2038 2020 2020 2020 2036 2038 5 8 6 8 │ │ │ │ -0003aa00: 2020 2020 2020 3720 3820 2020 2020 2020 7 8 │ │ │ │ -0003aa10: 2038 2020 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ -0003aa20: 2020 3020 3120 2020 2020 2020 3120 2020 0 1 1 │ │ │ │ -0003aa30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003a960: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0003a970: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003a980: 2020 2020 2020 3220 2020 207c 0a7c 3136 2 |.|16 │ │ │ │ +0003a990: 3338 7820 7820 202d 2033 3235 7820 7820 38x x - 325x x │ │ │ │ +0003a9a0: 202d 2036 3331 7820 7820 202b 2037 3378 - 631x x + 73x │ │ │ │ +0003a9b0: 2078 2020 2d20 3134 3731 7820 2c20 2d20 x - 1471x , - │ │ │ │ +0003a9c0: 3133 3430 7820 202b 2033 3178 2078 2020 1340x + 31x x │ │ │ │ +0003a9d0: 2d20 3939 3478 2020 2d20 207c 0a7c 2020 - 994x - |.| │ │ │ │ +0003a9e0: 2020 2034 2038 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +0003a9f0: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ +0003aa00: 3720 3820 2020 2020 2020 2038 2020 2020 7 8 8 │ │ │ │ +0003aa10: 2020 2020 2030 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ +0003aa20: 2020 2020 2020 3120 2020 207c 0a7c 2d2d 1 |.|-- │ │ │ │ +0003aa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003aa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003aa80: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003aa90: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0003aa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003aa90: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 0003aaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003aac0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003aad0: 207c 0a7c 3838 3078 2078 2020 2d20 3839 |.|880x x - 89 │ │ │ │ -0003aae0: 7820 7820 202b 2035 3734 7820 202b 2037 x x + 574x + 7 │ │ │ │ -0003aaf0: 3630 7820 7820 202d 2031 3035 3478 2078 60x x - 1054x x │ │ │ │ -0003ab00: 2020 2b20 3737 3278 2078 2020 2d20 3233 + 772x x - 23 │ │ │ │ -0003ab10: 3978 2020 2d20 3434 3378 2078 2020 2b20 9x - 443x x + │ │ │ │ -0003ab20: 207c 0a7c 2020 2020 3020 3220 2020 2020 |.| 0 2 │ │ │ │ -0003ab30: 2031 2032 2020 2020 2020 2032 2020 2020 1 2 2 │ │ │ │ -0003ab40: 2020 2030 2033 2020 2020 2020 2020 3120 0 3 1 │ │ │ │ -0003ab50: 3320 2020 2020 2020 3220 3320 2020 2020 3 2 3 │ │ │ │ -0003ab60: 2020 3320 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ -0003ab70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003aab0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003aac0: 2020 2020 2020 2020 2020 207c 0a7c 3838 |.|88 │ │ │ │ +0003aad0: 3078 2078 2020 2d20 3839 7820 7820 202b 0x x - 89x x + │ │ │ │ +0003aae0: 2035 3734 7820 202b 2037 3630 7820 7820 574x + 760x x │ │ │ │ +0003aaf0: 202d 2031 3035 3478 2078 2020 2b20 3737 - 1054x x + 77 │ │ │ │ +0003ab00: 3278 2078 2020 2d20 3233 3978 2020 2d20 2x x - 239x - │ │ │ │ +0003ab10: 3434 3378 2078 2020 2b20 207c 0a7c 2020 443x x + |.| │ │ │ │ +0003ab20: 2020 3020 3220 2020 2020 2031 2032 2020 0 2 1 2 │ │ │ │ +0003ab30: 2020 2020 2032 2020 2020 2020 2030 2033 2 0 3 │ │ │ │ +0003ab40: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ +0003ab50: 2020 3220 3320 2020 2020 2020 3320 2020 2 3 3 │ │ │ │ +0003ab60: 2020 2020 3020 3420 2020 207c 0a7c 2d2d 0 4 |.|-- │ │ │ │ +0003ab70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ab90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003aba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003abc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003abc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003abd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003abe0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0003abe0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003abf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ac10: 207c 0a7c 3132 3430 7820 7820 202b 2036 |.|1240x x + 6 │ │ │ │ -0003ac20: 3337 7820 7820 202d 2031 3432 3378 2078 37x x - 1423x x │ │ │ │ -0003ac30: 2020 2b20 3332 3078 2020 2d20 3133 3633 + 320x - 1363 │ │ │ │ -0003ac40: 7820 7820 202d 2031 3133 3978 2078 2020 x x - 1139x x │ │ │ │ -0003ac50: 2d20 3135 3878 2078 2020 2d20 2020 2020 - 158x x - │ │ │ │ -0003ac60: 207c 0a7c 2020 2020 2031 2034 2020 2020 |.| 1 4 │ │ │ │ -0003ac70: 2020 2032 2034 2020 2020 2020 2020 3320 2 4 3 │ │ │ │ -0003ac80: 3420 2020 2020 2020 3420 2020 2020 2020 4 4 │ │ │ │ -0003ac90: 2030 2035 2020 2020 2020 2020 3120 3520 0 5 1 5 │ │ │ │ -0003aca0: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ -0003acb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ac00: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +0003ac10: 3430 7820 7820 202b 2036 3337 7820 7820 40x x + 637x x │ │ │ │ +0003ac20: 202d 2031 3432 3378 2078 2020 2b20 3332 - 1423x x + 32 │ │ │ │ +0003ac30: 3078 2020 2d20 3133 3633 7820 7820 202d 0x - 1363x x - │ │ │ │ +0003ac40: 2031 3133 3978 2078 2020 2d20 3135 3878 1139x x - 158x │ │ │ │ +0003ac50: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003ac60: 2020 2031 2034 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ +0003ac70: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ +0003ac80: 2020 3420 2020 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ +0003ac90: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ +0003aca0: 3220 3520 2020 2020 2020 207c 0a7c 2d2d 2 5 |.|-- │ │ │ │ +0003acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003acc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003acd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ace0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003acf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ad00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ad10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003acf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ad00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ad10: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0003ad20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ad30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ad50: 207c 0a7c 3332 3578 2078 2020 2d20 3135 |.|325x x - 15 │ │ │ │ -0003ad60: 3738 7820 7820 202b 2033 3278 2020 2b20 78x x + 32x + │ │ │ │ -0003ad70: 3639 3578 2078 2020 2b20 3330 3578 2078 695x x + 305x x │ │ │ │ -0003ad80: 2020 2b20 3130 3132 7820 7820 202b 2031 + 1012x x + 1 │ │ │ │ -0003ad90: 3439 3278 2078 2020 2b20 2020 2020 2020 492x x + │ │ │ │ -0003ada0: 207c 0a7c 2020 2020 3320 3520 2020 2020 |.| 3 5 │ │ │ │ -0003adb0: 2020 2034 2035 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ -0003adc0: 2020 2020 3020 3620 2020 2020 2020 3120 0 6 1 │ │ │ │ -0003add0: 3620 2020 2020 2020 2032 2036 2020 2020 6 2 6 │ │ │ │ -0003ade0: 2020 2020 3320 3620 2020 2020 2020 2020 3 6 │ │ │ │ -0003adf0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ad40: 2020 2020 2020 2020 2020 207c 0a7c 3332 |.|32 │ │ │ │ +0003ad50: 3578 2078 2020 2d20 3135 3738 7820 7820 5x x - 1578x x │ │ │ │ +0003ad60: 202b 2033 3278 2020 2b20 3639 3578 2078 + 32x + 695x x │ │ │ │ +0003ad70: 2020 2b20 3330 3578 2078 2020 2b20 3130 + 305x x + 10 │ │ │ │ +0003ad80: 3132 7820 7820 202b 2031 3439 3278 2078 12x x + 1492x x │ │ │ │ +0003ad90: 2020 2b20 2020 2020 2020 207c 0a7c 2020 + |.| │ │ │ │ +0003ada0: 2020 3320 3520 2020 2020 2020 2034 2035 3 5 4 5 │ │ │ │ +0003adb0: 2020 2020 2020 3520 2020 2020 2020 3020 5 0 │ │ │ │ +0003adc0: 3620 2020 2020 2020 3120 3620 2020 2020 6 1 6 │ │ │ │ +0003add0: 2020 2032 2036 2020 2020 2020 2020 3320 2 6 3 │ │ │ │ +0003ade0: 3620 2020 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003adf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ae20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ae30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ae40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ae50: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003ae30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ae40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ae50: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003ae60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ae70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ae90: 207c 0a7c 3132 3930 7820 7820 202b 2031 |.|1290x x + 1 │ │ │ │ -0003aea0: 3537 3978 2078 2020 2d20 3334 3278 2020 579x x - 342x │ │ │ │ -0003aeb0: 2d20 3833 7820 7820 202d 2031 3034 7820 - 83x x - 104x │ │ │ │ -0003aec0: 7820 202b 2039 3938 7820 7820 202d 2039 x + 998x x - 9 │ │ │ │ -0003aed0: 3278 2078 2020 2b20 3135 3534 7820 7820 2x x + 1554x x │ │ │ │ -0003aee0: 207c 0a7c 2020 2020 2034 2036 2020 2020 |.| 4 6 │ │ │ │ -0003aef0: 2020 2020 3520 3620 2020 2020 2020 3620 5 6 6 │ │ │ │ -0003af00: 2020 2020 2030 2037 2020 2020 2020 2031 0 7 1 │ │ │ │ -0003af10: 2037 2020 2020 2020 2032 2037 2020 2020 7 2 7 │ │ │ │ -0003af20: 2020 3320 3720 2020 2020 2020 2034 2037 3 7 4 7 │ │ │ │ -0003af30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ae80: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +0003ae90: 3930 7820 7820 202b 2031 3537 3978 2078 90x x + 1579x x │ │ │ │ +0003aea0: 2020 2d20 3334 3278 2020 2d20 3833 7820 - 342x - 83x │ │ │ │ +0003aeb0: 7820 202d 2031 3034 7820 7820 202b 2039 x - 104x x + 9 │ │ │ │ +0003aec0: 3938 7820 7820 202d 2039 3278 2078 2020 98x x - 92x x │ │ │ │ +0003aed0: 2b20 3135 3534 7820 7820 207c 0a7c 2020 + 1554x x |.| │ │ │ │ +0003aee0: 2020 2034 2036 2020 2020 2020 2020 3520 4 6 5 │ │ │ │ +0003aef0: 3620 2020 2020 2020 3620 2020 2020 2030 6 6 0 │ │ │ │ +0003af00: 2037 2020 2020 2020 2031 2037 2020 2020 7 1 7 │ │ │ │ +0003af10: 2020 2032 2037 2020 2020 2020 3320 3720 2 7 3 7 │ │ │ │ +0003af20: 2020 2020 2020 2034 2037 207c 0a7c 2d2d 4 7 |.|-- │ │ │ │ +0003af30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003af40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003af50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003af60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003af80: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003af90: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003af80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003af90: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003afa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003afb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003afd0: 207c 0a7c 2b20 3230 3178 2078 2020 2d20 |.|+ 201x x - │ │ │ │ -0003afe0: 3233 3778 2078 2020 2b20 3136 3078 2020 237x x + 160x │ │ │ │ -0003aff0: 2d20 3232 3878 2078 2020 2d20 3534 3378 - 228x x - 543x │ │ │ │ -0003b000: 2078 2020 2d20 3131 3437 7820 7820 202d x - 1147x x - │ │ │ │ -0003b010: 2033 3736 7820 7820 202b 2020 2020 2020 376x x + │ │ │ │ -0003b020: 207c 0a7c 2020 2020 2020 3520 3720 2020 |.| 5 7 │ │ │ │ -0003b030: 2020 2020 3620 3720 2020 2020 2020 3720 6 7 7 │ │ │ │ -0003b040: 2020 2020 2020 3020 3820 2020 2020 2020 0 8 │ │ │ │ -0003b050: 3120 3820 2020 2020 2020 2032 2038 2020 1 8 2 8 │ │ │ │ -0003b060: 2020 2020 2033 2038 2020 2020 2020 2020 3 8 │ │ │ │ -0003b070: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003afc0: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +0003afd0: 3230 3178 2078 2020 2d20 3233 3778 2078 201x x - 237x x │ │ │ │ +0003afe0: 2020 2b20 3136 3078 2020 2d20 3232 3878 + 160x - 228x │ │ │ │ +0003aff0: 2078 2020 2d20 3534 3378 2078 2020 2d20 x - 543x x - │ │ │ │ +0003b000: 3131 3437 7820 7820 202d 2033 3736 7820 1147x x - 376x │ │ │ │ +0003b010: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003b020: 2020 2020 3520 3720 2020 2020 2020 3620 5 7 6 │ │ │ │ +0003b030: 3720 2020 2020 2020 3720 2020 2020 2020 7 7 │ │ │ │ +0003b040: 3020 3820 2020 2020 2020 3120 3820 2020 0 8 1 8 │ │ │ │ +0003b050: 2020 2020 2032 2038 2020 2020 2020 2033 2 8 3 │ │ │ │ +0003b060: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +0003b070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b0c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b0f0: 2020 3220 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0003b100: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003b110: 207c 0a7c 3133 3133 7820 7820 202b 2036 |.|1313x x + 6 │ │ │ │ -0003b120: 3033 7820 7820 202b 2031 3036 7820 7820 03x x + 106x x │ │ │ │ -0003b130: 202d 2031 3336 3178 2078 2020 2b20 3639 - 1361x x + 69 │ │ │ │ -0003b140: 3978 202c 202d 2032 3238 7820 202d 2031 9x , - 228x - 1 │ │ │ │ -0003b150: 3531 3078 2078 2020 2b20 3237 3778 2020 510x x + 277x │ │ │ │ -0003b160: 2d7c 0a7c 2020 2020 2034 2038 2020 2020 -|.| 4 8 │ │ │ │ -0003b170: 2020 2035 2038 2020 2020 2020 2036 2038 5 8 6 8 │ │ │ │ -0003b180: 2020 2020 2020 2020 3720 3820 2020 2020 7 8 │ │ │ │ -0003b190: 2020 3820 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ -0003b1a0: 2020 2020 3020 3120 2020 2020 2020 3120 0 1 1 │ │ │ │ -0003b1b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b0e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003b0f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b100: 2020 2020 2020 2020 3220 207c 0a7c 3133 2 |.|13 │ │ │ │ +0003b110: 3133 7820 7820 202b 2036 3033 7820 7820 13x x + 603x x │ │ │ │ +0003b120: 202b 2031 3036 7820 7820 202d 2031 3336 + 106x x - 136 │ │ │ │ +0003b130: 3178 2078 2020 2b20 3639 3978 202c 202d 1x x + 699x , - │ │ │ │ +0003b140: 2032 3238 7820 202d 2031 3531 3078 2078 228x - 1510x x │ │ │ │ +0003b150: 2020 2b20 3237 3778 2020 2d7c 0a7c 2020 + 277x -|.| │ │ │ │ +0003b160: 2020 2034 2038 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +0003b170: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ +0003b180: 2020 3720 3820 2020 2020 2020 3820 2020 7 8 8 │ │ │ │ +0003b190: 2020 2020 2030 2020 2020 2020 2020 3020 0 0 │ │ │ │ +0003b1a0: 3120 2020 2020 2020 3120 207c 0a7c 2d2d 1 1 |.|-- │ │ │ │ +0003b1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b200: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003b210: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0003b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003b210: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0003b220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b240: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003b250: 207c 0a7c 3478 2078 2020 2d20 3232 7820 |.|4x x - 22x │ │ │ │ -0003b260: 7820 202d 2031 3532 3678 2020 2b20 3233 x - 1526x + 23 │ │ │ │ -0003b270: 3478 2078 2020 2b20 3936 3978 2078 2020 4x x + 969x x │ │ │ │ -0003b280: 2b20 3132 3533 7820 7820 202d 2031 3432 + 1253x x - 142 │ │ │ │ -0003b290: 3678 2020 2d20 3134 3734 7820 7820 202b 6x - 1474x x + │ │ │ │ -0003b2a0: 207c 0a7c 2020 3020 3220 2020 2020 2031 |.| 0 2 1 │ │ │ │ -0003b2b0: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0003b2c0: 2020 3020 3320 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ -0003b2d0: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ -0003b2e0: 2020 3320 2020 2020 2020 2030 2034 2020 3 0 4 │ │ │ │ -0003b2f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b230: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003b240: 2020 2020 2020 2020 2020 207c 0a7c 3478 |.|4x │ │ │ │ +0003b250: 2078 2020 2d20 3232 7820 7820 202d 2031 x - 22x x - 1 │ │ │ │ +0003b260: 3532 3678 2020 2b20 3233 3478 2078 2020 526x + 234x x │ │ │ │ +0003b270: 2b20 3936 3978 2078 2020 2b20 3132 3533 + 969x x + 1253 │ │ │ │ +0003b280: 7820 7820 202d 2031 3432 3678 2020 2d20 x x - 1426x - │ │ │ │ +0003b290: 3134 3734 7820 7820 202b 207c 0a7c 2020 1474x x + |.| │ │ │ │ +0003b2a0: 3020 3220 2020 2020 2031 2032 2020 2020 0 2 1 2 │ │ │ │ +0003b2b0: 2020 2020 3220 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ +0003b2c0: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ +0003b2d0: 2032 2033 2020 2020 2020 2020 3320 2020 2 3 3 │ │ │ │ +0003b2e0: 2020 2020 2030 2034 2020 207c 0a7c 2d2d 0 4 |.|-- │ │ │ │ +0003b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b340: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003b330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b360: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0003b360: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b390: 207c 0a7c 3934 3778 2078 2020 2b20 3139 |.|947x x + 19 │ │ │ │ -0003b3a0: 3478 2078 2020 2d20 3331 3678 2078 2020 4x x - 316x x │ │ │ │ -0003b3b0: 2d20 3938 3878 2020 2d20 3132 3131 7820 - 988x - 1211x │ │ │ │ -0003b3c0: 7820 202b 2031 3038 3778 2078 2020 2b20 x + 1087x x + │ │ │ │ -0003b3d0: 3533 3678 2078 2020 2d20 3439 3178 2078 536x x - 491x x │ │ │ │ -0003b3e0: 207c 0a7c 2020 2020 3120 3420 2020 2020 |.| 1 4 │ │ │ │ -0003b3f0: 2020 3220 3420 2020 2020 2020 3320 3420 2 4 3 4 │ │ │ │ -0003b400: 2020 2020 2020 3420 2020 2020 2020 2030 4 0 │ │ │ │ -0003b410: 2035 2020 2020 2020 2020 3120 3520 2020 5 1 5 │ │ │ │ -0003b420: 2020 2020 3220 3520 2020 2020 2020 3320 2 5 3 │ │ │ │ -0003b430: 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 5|.|------------ │ │ │ │ +0003b380: 2020 2020 2020 2020 2020 207c 0a7c 3934 |.|94 │ │ │ │ +0003b390: 3778 2078 2020 2b20 3139 3478 2078 2020 7x x + 194x x │ │ │ │ +0003b3a0: 2d20 3331 3678 2078 2020 2d20 3938 3878 - 316x x - 988x │ │ │ │ +0003b3b0: 2020 2d20 3132 3131 7820 7820 202b 2031 - 1211x x + 1 │ │ │ │ +0003b3c0: 3038 3778 2078 2020 2b20 3533 3678 2078 087x x + 536x x │ │ │ │ +0003b3d0: 2020 2d20 3439 3178 2078 207c 0a7c 2020 - 491x x |.| │ │ │ │ +0003b3e0: 2020 3120 3420 2020 2020 2020 3220 3420 1 4 2 4 │ │ │ │ +0003b3f0: 2020 2020 2020 3320 3420 2020 2020 2020 3 4 │ │ │ │ +0003b400: 3420 2020 2020 2020 2030 2035 2020 2020 4 0 5 │ │ │ │ +0003b410: 2020 2020 3120 3520 2020 2020 2020 3220 1 5 2 │ │ │ │ +0003b420: 3520 2020 2020 2020 3320 357c 0a7c 2d2d 5 3 5|.|-- │ │ │ │ +0003b430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b480: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003b490: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b480: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b4d0: 207c 0a7c 2b20 3837 3078 2078 2020 2d20 |.|+ 870x x - │ │ │ │ -0003b4e0: 3635 3978 2020 2b20 3134 3930 7820 7820 659x + 1490x x │ │ │ │ -0003b4f0: 202d 2034 3639 7820 7820 202b 2031 3139 - 469x x + 119 │ │ │ │ -0003b500: 3078 2078 2020 2b20 3830 3778 2078 2020 0x x + 807x x │ │ │ │ -0003b510: 2b20 3635 3078 2078 2020 2b20 2020 2020 + 650x x + │ │ │ │ -0003b520: 207c 0a7c 2020 2020 2020 3420 3520 2020 |.| 4 5 │ │ │ │ -0003b530: 2020 2020 3520 2020 2020 2020 2030 2036 5 0 6 │ │ │ │ -0003b540: 2020 2020 2020 2031 2036 2020 2020 2020 1 6 │ │ │ │ -0003b550: 2020 3220 3620 2020 2020 2020 3320 3620 2 6 3 6 │ │ │ │ -0003b560: 2020 2020 2020 3420 3620 2020 2020 2020 4 6 │ │ │ │ -0003b570: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b4c0: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +0003b4d0: 3837 3078 2078 2020 2d20 3635 3978 2020 870x x - 659x │ │ │ │ +0003b4e0: 2b20 3134 3930 7820 7820 202d 2034 3639 + 1490x x - 469 │ │ │ │ +0003b4f0: 7820 7820 202b 2031 3139 3078 2078 2020 x x + 1190x x │ │ │ │ +0003b500: 2b20 3830 3778 2078 2020 2b20 3635 3078 + 807x x + 650x │ │ │ │ +0003b510: 2078 2020 2b20 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003b520: 2020 2020 3420 3520 2020 2020 2020 3520 4 5 5 │ │ │ │ +0003b530: 2020 2020 2020 2030 2036 2020 2020 2020 0 6 │ │ │ │ +0003b540: 2031 2036 2020 2020 2020 2020 3220 3620 1 6 2 6 │ │ │ │ +0003b550: 2020 2020 2020 3320 3620 2020 2020 2020 3 6 │ │ │ │ +0003b560: 3420 3620 2020 2020 2020 207c 0a7c 2d2d 4 6 |.|-- │ │ │ │ +0003b570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b5c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003b5d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b5c0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b610: 207c 0a7c 3434 3878 2078 2020 2d20 3133 |.|448x x - 13 │ │ │ │ -0003b620: 3533 7820 202d 2032 3138 7820 7820 202b 53x - 218x x + │ │ │ │ -0003b630: 2037 3539 7820 7820 202d 2032 3533 7820 759x x - 253x │ │ │ │ -0003b640: 7820 202b 2038 3330 7820 7820 202d 2031 x + 830x x - 1 │ │ │ │ -0003b650: 3038 3078 2078 2020 2d20 3134 3378 2078 080x x - 143x x │ │ │ │ -0003b660: 207c 0a7c 2020 2020 3520 3620 2020 2020 |.| 5 6 │ │ │ │ -0003b670: 2020 2036 2020 2020 2020 2030 2037 2020 6 0 7 │ │ │ │ -0003b680: 2020 2020 2031 2037 2020 2020 2020 2032 1 7 2 │ │ │ │ -0003b690: 2037 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ -0003b6a0: 2020 2020 3420 3720 2020 2020 2020 3520 4 7 5 │ │ │ │ -0003b6b0: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +0003b600: 2020 2020 2020 2020 2020 207c 0a7c 3434 |.|44 │ │ │ │ +0003b610: 3878 2078 2020 2d20 3133 3533 7820 202d 8x x - 1353x - │ │ │ │ +0003b620: 2032 3138 7820 7820 202b 2037 3539 7820 218x x + 759x │ │ │ │ +0003b630: 7820 202d 2032 3533 7820 7820 202b 2038 x - 253x x + 8 │ │ │ │ +0003b640: 3330 7820 7820 202d 2031 3038 3078 2078 30x x - 1080x x │ │ │ │ +0003b650: 2020 2d20 3134 3378 2078 207c 0a7c 2020 - 143x x |.| │ │ │ │ +0003b660: 2020 3520 3620 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ +0003b670: 2020 2020 2030 2037 2020 2020 2020 2031 0 7 1 │ │ │ │ +0003b680: 2037 2020 2020 2020 2032 2037 2020 2020 7 2 7 │ │ │ │ +0003b690: 2020 2033 2037 2020 2020 2020 2020 3420 3 7 4 │ │ │ │ +0003b6a0: 3720 2020 2020 2020 3520 377c 0a7c 2d2d 7 5 7|.|-- │ │ │ │ +0003b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b700: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003b710: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b700: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0003b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b750: 207c 0a7c 2d20 3133 3133 7820 7820 202d |.|- 1313x x - │ │ │ │ -0003b760: 2033 3734 7820 202d 2031 3830 7820 7820 374x - 180x x │ │ │ │ -0003b770: 202b 2037 3431 7820 7820 202b 2037 3432 + 741x x + 742 │ │ │ │ -0003b780: 7820 7820 202d 2031 3235 3478 2078 2020 x x - 1254x x │ │ │ │ -0003b790: 2b20 3435 3878 2078 2020 2d20 2020 2020 + 458x x - │ │ │ │ -0003b7a0: 207c 0a7c 2020 2020 2020 2036 2037 2020 |.| 6 7 │ │ │ │ -0003b7b0: 2020 2020 2037 2020 2020 2020 2030 2038 7 0 8 │ │ │ │ -0003b7c0: 2020 2020 2020 2031 2038 2020 2020 2020 1 8 │ │ │ │ -0003b7d0: 2032 2038 2020 2020 2020 2020 3320 3820 2 8 3 8 │ │ │ │ -0003b7e0: 2020 2020 2020 3420 3820 2020 2020 2020 4 8 │ │ │ │ -0003b7f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b740: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +0003b750: 3133 3133 7820 7820 202d 2033 3734 7820 1313x x - 374x │ │ │ │ +0003b760: 202d 2031 3830 7820 7820 202b 2037 3431 - 180x x + 741 │ │ │ │ +0003b770: 7820 7820 202b 2037 3432 7820 7820 202d x x + 742x x - │ │ │ │ +0003b780: 2031 3235 3478 2078 2020 2b20 3435 3878 1254x x + 458x │ │ │ │ +0003b790: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003b7a0: 2020 2020 2036 2037 2020 2020 2020 2037 6 7 7 │ │ │ │ +0003b7b0: 2020 2020 2020 2030 2038 2020 2020 2020 0 8 │ │ │ │ +0003b7c0: 2031 2038 2020 2020 2020 2032 2038 2020 1 8 2 8 │ │ │ │ +0003b7d0: 2020 2020 2020 3320 3820 2020 2020 2020 3 8 │ │ │ │ +0003b7e0: 3420 3820 2020 2020 2020 207c 0a7c 2d2d 4 8 |.|-- │ │ │ │ +0003b7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b840: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b860: 2020 2020 2020 3220 2020 2020 2020 3220 2 2 │ │ │ │ -0003b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b880: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003b890: 207c 0a7c 3334 3578 2078 2020 2b20 3539 |.|345x x + 59 │ │ │ │ -0003b8a0: 3778 2078 2020 2b20 3135 3637 7820 7820 7x x + 1567x x │ │ │ │ -0003b8b0: 202d 2033 3178 202c 2031 3132 3078 2020 - 31x , 1120x │ │ │ │ -0003b8c0: 2b20 3730 3978 2078 2020 2d20 3135 3338 + 709x x - 1538 │ │ │ │ -0003b8d0: 7820 202d 2031 3034 3878 2078 2020 2d20 x - 1048x x - │ │ │ │ -0003b8e0: 207c 0a7c 2020 2020 3520 3820 2020 2020 |.| 5 8 │ │ │ │ -0003b8f0: 2020 3620 3820 2020 2020 2020 2037 2038 6 8 7 8 │ │ │ │ -0003b900: 2020 2020 2020 3820 2020 2020 2020 3020 8 0 │ │ │ │ -0003b910: 2020 2020 2020 3020 3120 2020 2020 2020 0 1 │ │ │ │ -0003b920: 2031 2020 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ -0003b930: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b860: 3220 2020 2020 2020 3220 2020 2020 2020 2 2 │ │ │ │ +0003b870: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0003b880: 2020 2020 2020 2020 2020 207c 0a7c 3334 |.|34 │ │ │ │ +0003b890: 3578 2078 2020 2b20 3539 3778 2078 2020 5x x + 597x x │ │ │ │ +0003b8a0: 2b20 3135 3637 7820 7820 202d 2033 3178 + 1567x x - 31x │ │ │ │ +0003b8b0: 202c 2031 3132 3078 2020 2b20 3730 3978 , 1120x + 709x │ │ │ │ +0003b8c0: 2078 2020 2d20 3135 3338 7820 202d 2031 x - 1538x - 1 │ │ │ │ +0003b8d0: 3034 3878 2078 2020 2d20 207c 0a7c 2020 048x x - |.| │ │ │ │ +0003b8e0: 2020 3520 3820 2020 2020 2020 3620 3820 5 8 6 8 │ │ │ │ +0003b8f0: 2020 2020 2020 2037 2038 2020 2020 2020 7 8 │ │ │ │ +0003b900: 3820 2020 2020 2020 3020 2020 2020 2020 8 0 │ │ │ │ +0003b910: 3020 3120 2020 2020 2020 2031 2020 2020 0 1 1 │ │ │ │ +0003b920: 2020 2020 3020 3220 2020 207c 0a7c 2d2d 0 2 |.|-- │ │ │ │ +0003b930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003b960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003b980: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003b990: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003b980: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b9b0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0003b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003b9d0: 207c 0a7c 3136 3278 2078 2020 2d20 3135 |.|162x x - 15 │ │ │ │ -0003b9e0: 3138 7820 202d 2037 3378 2078 2020 2b20 18x - 73x x + │ │ │ │ -0003b9f0: 3338 3078 2078 2020 2b20 3533 3378 2078 380x x + 533x x │ │ │ │ -0003ba00: 2020 2d20 3238 3678 2020 2b20 3133 3734 - 286x + 1374 │ │ │ │ -0003ba10: 7820 7820 202d 2037 3478 2078 2020 2d20 x x - 74x x - │ │ │ │ -0003ba20: 207c 0a7c 2020 2020 3120 3220 2020 2020 |.| 1 2 │ │ │ │ -0003ba30: 2020 2032 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ -0003ba40: 2020 2020 3120 3320 2020 2020 2020 3220 1 3 2 │ │ │ │ -0003ba50: 3320 2020 2020 2020 3320 2020 2020 2020 3 3 │ │ │ │ -0003ba60: 2030 2034 2020 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ -0003ba70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003b9b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003b9c0: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +0003b9d0: 3278 2078 2020 2d20 3135 3138 7820 202d 2x x - 1518x - │ │ │ │ +0003b9e0: 2037 3378 2078 2020 2b20 3338 3078 2078 73x x + 380x x │ │ │ │ +0003b9f0: 2020 2b20 3533 3378 2078 2020 2d20 3238 + 533x x - 28 │ │ │ │ +0003ba00: 3678 2020 2b20 3133 3734 7820 7820 202d 6x + 1374x x - │ │ │ │ +0003ba10: 2037 3478 2078 2020 2d20 207c 0a7c 2020 74x x - |.| │ │ │ │ +0003ba20: 2020 3120 3220 2020 2020 2020 2032 2020 1 2 2 │ │ │ │ +0003ba30: 2020 2020 3020 3320 2020 2020 2020 3120 0 3 1 │ │ │ │ +0003ba40: 3320 2020 2020 2020 3220 3320 2020 2020 3 2 3 │ │ │ │ +0003ba50: 2020 3320 2020 2020 2020 2030 2034 2020 3 0 4 │ │ │ │ +0003ba60: 2020 2020 3120 3420 2020 207c 0a7c 2d2d 1 4 |.|-- │ │ │ │ +0003ba70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ba80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ba90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003baa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bac0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003bad0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003bab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003bad0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 0003bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bb10: 207c 0a7c 3232 7820 7820 202b 2031 3533 |.|22x x + 153 │ │ │ │ -0003bb20: 3578 2078 2020 2d20 3130 3731 7820 202d 5x x - 1071x - │ │ │ │ -0003bb30: 2038 3339 7820 7820 202d 2035 3630 7820 839x x - 560x │ │ │ │ -0003bb40: 7820 202b 2039 3238 7820 7820 202b 2033 x + 928x x + 3 │ │ │ │ -0003bb50: 3335 7820 7820 202d 2031 3030 3878 2078 35x x - 1008x x │ │ │ │ -0003bb60: 207c 0a7c 2020 2032 2034 2020 2020 2020 |.| 2 4 │ │ │ │ -0003bb70: 2020 3320 3420 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ -0003bb80: 2020 2020 2030 2035 2020 2020 2020 2031 0 5 1 │ │ │ │ -0003bb90: 2035 2020 2020 2020 2032 2035 2020 2020 5 2 5 │ │ │ │ -0003bba0: 2020 2033 2035 2020 2020 2020 2020 3420 3 5 4 │ │ │ │ -0003bbb0: 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 5|.|------------ │ │ │ │ +0003bb00: 2020 2020 2020 2020 2020 207c 0a7c 3232 |.|22 │ │ │ │ +0003bb10: 7820 7820 202b 2031 3533 3578 2078 2020 x x + 1535x x │ │ │ │ +0003bb20: 2d20 3130 3731 7820 202d 2038 3339 7820 - 1071x - 839x │ │ │ │ +0003bb30: 7820 202d 2035 3630 7820 7820 202b 2039 x - 560x x + 9 │ │ │ │ +0003bb40: 3238 7820 7820 202b 2033 3335 7820 7820 28x x + 335x x │ │ │ │ +0003bb50: 202d 2031 3030 3878 2078 207c 0a7c 2020 - 1008x x |.| │ │ │ │ +0003bb60: 2032 2034 2020 2020 2020 2020 3320 3420 2 4 3 4 │ │ │ │ +0003bb70: 2020 2020 2020 2034 2020 2020 2020 2030 4 0 │ │ │ │ +0003bb80: 2035 2020 2020 2020 2031 2035 2020 2020 5 1 5 │ │ │ │ +0003bb90: 2020 2032 2035 2020 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +0003bba0: 2020 2020 2020 2020 3420 357c 0a7c 2d2d 4 5|.|-- │ │ │ │ +0003bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bc00: 2d7c 0a7c 2020 2020 2020 3220 2020 2020 -|.| 2 │ │ │ │ +0003bbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003bc00: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0003bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bc40: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -0003bc50: 207c 0a7c 2b20 3831 3078 2020 2d20 3434 |.|+ 810x - 44 │ │ │ │ -0003bc60: 3878 2078 2020 2d20 3335 3778 2078 2020 8x x - 357x x │ │ │ │ -0003bc70: 2d20 3130 3778 2078 2020 2b20 3430 7820 - 107x x + 40x │ │ │ │ -0003bc80: 7820 202b 2037 3834 7820 7820 202d 2031 x + 784x x - 1 │ │ │ │ -0003bc90: 3432 3378 2078 2020 2b20 3132 3736 7820 423x x + 1276x │ │ │ │ -0003bca0: 207c 0a7c 2020 2020 2020 3520 2020 2020 |.| 5 │ │ │ │ -0003bcb0: 2020 3020 3620 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -0003bcc0: 2020 2020 2020 3220 3620 2020 2020 2033 2 6 3 │ │ │ │ -0003bcd0: 2036 2020 2020 2020 2034 2036 2020 2020 6 4 6 │ │ │ │ -0003bce0: 2020 2020 3520 3620 2020 2020 2020 2036 5 6 6 │ │ │ │ -0003bcf0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003bc40: 2020 2020 2020 2020 2032 207c 0a7c 2b20 2 |.|+ │ │ │ │ +0003bc50: 3831 3078 2020 2d20 3434 3878 2078 2020 810x - 448x x │ │ │ │ +0003bc60: 2d20 3335 3778 2078 2020 2d20 3130 3778 - 357x x - 107x │ │ │ │ +0003bc70: 2078 2020 2b20 3430 7820 7820 202b 2037 x + 40x x + 7 │ │ │ │ +0003bc80: 3834 7820 7820 202d 2031 3432 3378 2078 84x x - 1423x x │ │ │ │ +0003bc90: 2020 2b20 3132 3736 7820 207c 0a7c 2020 + 1276x |.| │ │ │ │ +0003bca0: 2020 2020 3520 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ +0003bcb0: 2020 2020 2020 3120 3620 2020 2020 2020 1 6 │ │ │ │ +0003bcc0: 3220 3620 2020 2020 2033 2036 2020 2020 2 6 3 6 │ │ │ │ +0003bcd0: 2020 2034 2036 2020 2020 2020 2020 3520 4 6 5 │ │ │ │ +0003bce0: 3620 2020 2020 2020 2036 207c 0a7c 2d2d 6 6 |.|-- │ │ │ │ +0003bcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bd40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003bd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bd90: 207c 0a7c 2b20 3134 3778 2078 2020 2b20 |.|+ 147x x + │ │ │ │ -0003bda0: 3434 3378 2078 2020 2d20 3539 3878 2078 443x x - 598x x │ │ │ │ -0003bdb0: 2020 2d20 3130 3737 7820 7820 202d 2031 - 1077x x - 1 │ │ │ │ -0003bdc0: 3231 3478 2078 2020 2b20 3332 3278 2078 214x x + 322x x │ │ │ │ -0003bdd0: 2020 2d20 3134 3038 7820 7820 202b 2020 - 1408x x + │ │ │ │ -0003bde0: 207c 0a7c 2020 2020 2020 3020 3720 2020 |.| 0 7 │ │ │ │ -0003bdf0: 2020 2020 3120 3720 2020 2020 2020 3220 1 7 2 │ │ │ │ -0003be00: 3720 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ -0003be10: 2020 2020 3420 3720 2020 2020 2020 3520 4 7 5 │ │ │ │ -0003be20: 3720 2020 2020 2020 2036 2037 2020 2020 7 6 7 │ │ │ │ -0003be30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003bd80: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +0003bd90: 3134 3778 2078 2020 2b20 3434 3378 2078 147x x + 443x x │ │ │ │ +0003bda0: 2020 2d20 3539 3878 2078 2020 2d20 3130 - 598x x - 10 │ │ │ │ +0003bdb0: 3737 7820 7820 202d 2031 3231 3478 2078 77x x - 1214x x │ │ │ │ +0003bdc0: 2020 2b20 3332 3278 2078 2020 2d20 3134 + 322x x - 14 │ │ │ │ +0003bdd0: 3038 7820 7820 202b 2020 207c 0a7c 2020 08x x + |.| │ │ │ │ +0003bde0: 2020 2020 3020 3720 2020 2020 2020 3120 0 7 1 │ │ │ │ +0003bdf0: 3720 2020 2020 2020 3220 3720 2020 2020 7 2 7 │ │ │ │ +0003be00: 2020 2033 2037 2020 2020 2020 2020 3420 3 7 4 │ │ │ │ +0003be10: 3720 2020 2020 2020 3520 3720 2020 2020 7 5 7 │ │ │ │ +0003be20: 2020 2036 2037 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +0003be30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003be40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003be50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003be60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003be70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003be80: 2d7c 0a7c 2020 2032 2020 2020 2020 2020 -|.| 2 │ │ │ │ +0003be70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003be80: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003bed0: 207c 0a7c 3732 7820 202d 2036 3378 2078 |.|72x - 63x x │ │ │ │ -0003bee0: 2020 2d20 3135 3133 7820 7820 202d 2037 - 1513x x - 7 │ │ │ │ -0003bef0: 3931 7820 7820 202b 2031 3178 2078 2020 91x x + 11x x │ │ │ │ -0003bf00: 2b20 3737 7820 7820 202b 2038 3336 7820 + 77x x + 836x │ │ │ │ -0003bf10: 7820 202d 2031 3130 3078 2078 2020 2b20 x - 1100x x + │ │ │ │ -0003bf20: 207c 0a7c 2020 2037 2020 2020 2020 3020 |.| 7 0 │ │ │ │ -0003bf30: 3820 2020 2020 2020 2031 2038 2020 2020 8 1 8 │ │ │ │ -0003bf40: 2020 2032 2038 2020 2020 2020 3320 3820 2 8 3 8 │ │ │ │ -0003bf50: 2020 2020 2034 2038 2020 2020 2020 2035 4 8 5 │ │ │ │ -0003bf60: 2038 2020 2020 2020 2020 3620 3820 2020 8 6 8 │ │ │ │ -0003bf70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003bec0: 2020 2020 2020 2020 2020 207c 0a7c 3732 |.|72 │ │ │ │ +0003bed0: 7820 202d 2036 3378 2078 2020 2d20 3135 x - 63x x - 15 │ │ │ │ +0003bee0: 3133 7820 7820 202d 2037 3931 7820 7820 13x x - 791x x │ │ │ │ +0003bef0: 202b 2031 3178 2078 2020 2b20 3737 7820 + 11x x + 77x │ │ │ │ +0003bf00: 7820 202b 2038 3336 7820 7820 202d 2031 x + 836x x - 1 │ │ │ │ +0003bf10: 3130 3078 2078 2020 2b20 207c 0a7c 2020 100x x + |.| │ │ │ │ +0003bf20: 2037 2020 2020 2020 3020 3820 2020 2020 7 0 8 │ │ │ │ +0003bf30: 2020 2031 2038 2020 2020 2020 2032 2038 1 8 2 8 │ │ │ │ +0003bf40: 2020 2020 2020 3320 3820 2020 2020 2034 3 8 4 │ │ │ │ +0003bf50: 2038 2020 2020 2020 2035 2038 2020 2020 8 5 8 │ │ │ │ +0003bf60: 2020 2020 3620 3820 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +0003bf70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bf80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003bfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003bfc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003bfd0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0003bfe0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003bfc0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003bfd0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003bfe0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 0003bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c000: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0003c010: 207c 0a7c 3136 3337 7820 7820 202d 2037 |.|1637x x - 7 │ │ │ │ -0003c020: 3838 7820 2c20 3133 3331 7820 202b 2033 88x , 1331x + 3 │ │ │ │ -0003c030: 3138 7820 7820 202d 2037 3034 7820 202b 18x x - 704x + │ │ │ │ -0003c040: 2035 3178 2078 2020 2b20 3237 3578 2078 51x x + 275x x │ │ │ │ -0003c050: 2020 2b20 3131 3439 7820 202b 2020 2020 + 1149x + │ │ │ │ -0003c060: 207c 0a7c 2020 2020 2037 2038 2020 2020 |.| 7 8 │ │ │ │ -0003c070: 2020 2038 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ -0003c080: 2020 2030 2031 2020 2020 2020 2031 2020 0 1 1 │ │ │ │ -0003c090: 2020 2020 3020 3220 2020 2020 2020 3120 0 2 1 │ │ │ │ -0003c0a0: 3220 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -0003c0b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c000: 2020 2032 2020 2020 2020 207c 0a7c 3136 2 |.|16 │ │ │ │ +0003c010: 3337 7820 7820 202d 2037 3838 7820 2c20 37x x - 788x , │ │ │ │ +0003c020: 3133 3331 7820 202b 2033 3138 7820 7820 1331x + 318x x │ │ │ │ +0003c030: 202d 2037 3034 7820 202b 2035 3178 2078 - 704x + 51x x │ │ │ │ +0003c040: 2020 2b20 3237 3578 2078 2020 2b20 3131 + 275x x + 11 │ │ │ │ +0003c050: 3439 7820 202b 2020 2020 207c 0a7c 2020 49x + |.| │ │ │ │ +0003c060: 2020 2037 2038 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ +0003c070: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ +0003c080: 2020 2020 2020 2031 2020 2020 2020 3020 1 0 │ │ │ │ +0003c090: 3220 2020 2020 2020 3120 3220 2020 2020 2 1 2 │ │ │ │ +0003c0a0: 2020 2032 2020 2020 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003c0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c100: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003c0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c120: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003c120: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003c130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c150: 207c 0a7c 3135 3236 7820 7820 202b 2037 |.|1526x x + 7 │ │ │ │ -0003c160: 3638 7820 7820 202b 2034 3134 7820 7820 68x x + 414x x │ │ │ │ -0003c170: 202d 2037 3832 7820 202d 2032 3632 7820 - 782x - 262x │ │ │ │ -0003c180: 7820 202b 2036 3836 7820 7820 202d 2033 x + 686x x - 3 │ │ │ │ -0003c190: 3830 7820 7820 202b 2031 3337 3778 2078 80x x + 1377x x │ │ │ │ -0003c1a0: 207c 0a7c 2020 2020 2030 2033 2020 2020 |.| 0 3 │ │ │ │ -0003c1b0: 2020 2031 2033 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -0003c1c0: 2020 2020 2020 2033 2020 2020 2020 2030 3 0 │ │ │ │ -0003c1d0: 2034 2020 2020 2020 2031 2034 2020 2020 4 1 4 │ │ │ │ -0003c1e0: 2020 2032 2034 2020 2020 2020 2020 3320 2 4 3 │ │ │ │ -0003c1f0: 347c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 4|.|------------ │ │ │ │ +0003c140: 2020 2020 2020 2020 2020 207c 0a7c 3135 |.|15 │ │ │ │ +0003c150: 3236 7820 7820 202b 2037 3638 7820 7820 26x x + 768x x │ │ │ │ +0003c160: 202b 2034 3134 7820 7820 202d 2037 3832 + 414x x - 782 │ │ │ │ +0003c170: 7820 202d 2032 3632 7820 7820 202b 2036 x - 262x x + 6 │ │ │ │ +0003c180: 3836 7820 7820 202d 2033 3830 7820 7820 86x x - 380x x │ │ │ │ +0003c190: 202b 2031 3337 3778 2078 207c 0a7c 2020 + 1377x x |.| │ │ │ │ +0003c1a0: 2020 2030 2033 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +0003c1b0: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ +0003c1c0: 2033 2020 2020 2020 2030 2034 2020 2020 3 0 4 │ │ │ │ +0003c1d0: 2020 2031 2034 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ +0003c1e0: 2020 2020 2020 2020 3320 347c 0a7c 2d2d 3 4|.|-- │ │ │ │ +0003c1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c240: 2d7c 0a7c 2020 2020 2020 2032 2020 2020 -|.| 2 │ │ │ │ +0003c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c240: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 0003c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c280: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0003c290: 207c 0a7c 2b20 3130 3737 7820 202b 2031 |.|+ 1077x + 1 │ │ │ │ -0003c2a0: 3635 3078 2078 2020 2d20 3131 3239 7820 650x x - 1129x │ │ │ │ -0003c2b0: 7820 202d 2035 3038 7820 7820 202b 2038 x - 508x x + 8 │ │ │ │ -0003c2c0: 3436 7820 7820 202b 2031 3531 3378 2078 46x x + 1513x x │ │ │ │ -0003c2d0: 2020 2b20 3436 3078 2020 2d20 2020 2020 + 460x - │ │ │ │ -0003c2e0: 207c 0a7c 2020 2020 2020 2034 2020 2020 |.| 4 │ │ │ │ -0003c2f0: 2020 2020 3020 3520 2020 2020 2020 2031 0 5 1 │ │ │ │ -0003c300: 2035 2020 2020 2020 2032 2035 2020 2020 5 2 5 │ │ │ │ -0003c310: 2020 2033 2035 2020 2020 2020 2020 3420 3 5 4 │ │ │ │ -0003c320: 3520 2020 2020 2020 3520 2020 2020 2020 5 5 │ │ │ │ -0003c330: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c280: 2020 3220 2020 2020 2020 207c 0a7c 2b20 2 |.|+ │ │ │ │ +0003c290: 3130 3737 7820 202b 2031 3635 3078 2078 1077x + 1650x x │ │ │ │ +0003c2a0: 2020 2d20 3131 3239 7820 7820 202d 2035 - 1129x x - 5 │ │ │ │ +0003c2b0: 3038 7820 7820 202b 2038 3436 7820 7820 08x x + 846x x │ │ │ │ +0003c2c0: 202b 2031 3531 3378 2078 2020 2b20 3436 + 1513x x + 46 │ │ │ │ +0003c2d0: 3078 2020 2d20 2020 2020 207c 0a7c 2020 0x - |.| │ │ │ │ +0003c2e0: 2020 2020 2034 2020 2020 2020 2020 3020 4 0 │ │ │ │ +0003c2f0: 3520 2020 2020 2020 2031 2035 2020 2020 5 1 5 │ │ │ │ +0003c300: 2020 2032 2035 2020 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +0003c310: 2020 2020 2020 2020 3420 3520 2020 2020 4 5 │ │ │ │ +0003c320: 2020 3520 2020 2020 2020 207c 0a7c 2d2d 5 |.|-- │ │ │ │ +0003c330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c380: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003c370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c3c0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0003c3d0: 207c 0a7c 3136 3236 7820 7820 202d 2031 |.|1626x x - 1 │ │ │ │ -0003c3e0: 3032 3478 2078 2020 2b20 3836 3278 2078 024x x + 862x x │ │ │ │ -0003c3f0: 2020 2b20 3133 3532 7820 7820 202d 2031 + 1352x x - 1 │ │ │ │ -0003c400: 3838 7820 7820 202d 2031 3338 3278 2078 88x x - 1382x x │ │ │ │ -0003c410: 2020 2d20 3635 3078 2020 2b20 2020 2020 - 650x + │ │ │ │ -0003c420: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -0003c430: 2020 2020 3120 3620 2020 2020 2020 3220 1 6 2 │ │ │ │ -0003c440: 3620 2020 2020 2020 2033 2036 2020 2020 6 3 6 │ │ │ │ -0003c450: 2020 2034 2036 2020 2020 2020 2020 3520 4 6 5 │ │ │ │ -0003c460: 3620 2020 2020 2020 3620 2020 2020 2020 6 6 │ │ │ │ -0003c470: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c3c0: 2020 3220 2020 2020 2020 207c 0a7c 3136 2 |.|16 │ │ │ │ +0003c3d0: 3236 7820 7820 202d 2031 3032 3478 2078 26x x - 1024x x │ │ │ │ +0003c3e0: 2020 2b20 3836 3278 2078 2020 2b20 3133 + 862x x + 13 │ │ │ │ +0003c3f0: 3532 7820 7820 202d 2031 3838 7820 7820 52x x - 188x x │ │ │ │ +0003c400: 202d 2031 3338 3278 2078 2020 2d20 3635 - 1382x x - 65 │ │ │ │ +0003c410: 3078 2020 2b20 2020 2020 207c 0a7c 2020 0x + |.| │ │ │ │ +0003c420: 2020 2030 2036 2020 2020 2020 2020 3120 0 6 1 │ │ │ │ +0003c430: 3620 2020 2020 2020 3220 3620 2020 2020 6 2 6 │ │ │ │ +0003c440: 2020 2033 2036 2020 2020 2020 2034 2036 3 6 4 6 │ │ │ │ +0003c450: 2020 2020 2020 2020 3520 3620 2020 2020 5 6 │ │ │ │ +0003c460: 2020 3620 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003c470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c4c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003c4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c510: 207c 0a7c 3535 7820 7820 202d 2033 3236 |.|55x x - 326 │ │ │ │ -0003c520: 7820 7820 202b 2031 3033 3778 2078 2020 x x + 1037x x │ │ │ │ -0003c530: 2b20 3730 3578 2078 2020 2d20 3636 3778 + 705x x - 667x │ │ │ │ -0003c540: 2078 2020 2b20 3134 3833 7820 7820 202b x + 1483x x + │ │ │ │ -0003c550: 2031 3636 3178 2078 2020 2d20 2020 2020 1661x x - │ │ │ │ -0003c560: 207c 0a7c 2020 2030 2037 2020 2020 2020 |.| 0 7 │ │ │ │ -0003c570: 2031 2037 2020 2020 2020 2020 3220 3720 1 7 2 7 │ │ │ │ -0003c580: 2020 2020 2020 3320 3720 2020 2020 2020 3 7 │ │ │ │ -0003c590: 3420 3720 2020 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ -0003c5a0: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ -0003c5b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c500: 2020 2020 2020 2020 2020 207c 0a7c 3535 |.|55 │ │ │ │ +0003c510: 7820 7820 202d 2033 3236 7820 7820 202b x x - 326x x + │ │ │ │ +0003c520: 2031 3033 3778 2078 2020 2b20 3730 3578 1037x x + 705x │ │ │ │ +0003c530: 2078 2020 2d20 3636 3778 2078 2020 2b20 x - 667x x + │ │ │ │ +0003c540: 3134 3833 7820 7820 202b 2031 3636 3178 1483x x + 1661x │ │ │ │ +0003c550: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003c560: 2030 2037 2020 2020 2020 2031 2037 2020 0 7 1 7 │ │ │ │ +0003c570: 2020 2020 2020 3220 3720 2020 2020 2020 2 7 │ │ │ │ +0003c580: 3320 3720 2020 2020 2020 3420 3720 2020 3 7 4 7 │ │ │ │ +0003c590: 2020 2020 2035 2037 2020 2020 2020 2020 5 7 │ │ │ │ +0003c5a0: 3620 3720 2020 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +0003c5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c600: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +0003c5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c600: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c650: 207c 0a7c 3136 3532 7820 202d 2031 3035 |.|1652x - 105 │ │ │ │ -0003c660: 3278 2078 2020 2d20 3639 3278 2078 2020 2x x - 692x x │ │ │ │ -0003c670: 2d20 3534 3278 2078 2020 2b20 3136 3278 - 542x x + 162x │ │ │ │ -0003c680: 2078 2020 2b20 3538 3278 2078 2020 2d20 x + 582x x - │ │ │ │ -0003c690: 3133 3639 7820 7820 202b 2020 2020 2020 1369x x + │ │ │ │ -0003c6a0: 207c 0a7c 2020 2020 2037 2020 2020 2020 |.| 7 │ │ │ │ -0003c6b0: 2020 3020 3820 2020 2020 2020 3120 3820 0 8 1 8 │ │ │ │ -0003c6c0: 2020 2020 2020 3220 3820 2020 2020 2020 2 8 │ │ │ │ -0003c6d0: 3320 3820 2020 2020 2020 3420 3820 2020 3 8 4 8 │ │ │ │ -0003c6e0: 2020 2020 2035 2038 2020 2020 2020 2020 5 8 │ │ │ │ -0003c6f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c640: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +0003c650: 3532 7820 202d 2031 3035 3278 2078 2020 52x - 1052x x │ │ │ │ +0003c660: 2d20 3639 3278 2078 2020 2d20 3534 3278 - 692x x - 542x │ │ │ │ +0003c670: 2078 2020 2b20 3136 3278 2078 2020 2b20 x + 162x x + │ │ │ │ +0003c680: 3538 3278 2078 2020 2d20 3133 3639 7820 582x x - 1369x │ │ │ │ +0003c690: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003c6a0: 2020 2037 2020 2020 2020 2020 3020 3820 7 0 8 │ │ │ │ +0003c6b0: 2020 2020 2020 3120 3820 2020 2020 2020 1 8 │ │ │ │ +0003c6c0: 3220 3820 2020 2020 2020 3320 3820 2020 2 8 3 8 │ │ │ │ +0003c6d0: 2020 2020 3420 3820 2020 2020 2020 2035 4 8 5 │ │ │ │ +0003c6e0: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +0003c6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c740: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003c750: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003c760: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0003c770: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0003c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c790: 207c 0a7c 3933 3478 2078 2020 2b20 3133 |.|934x x + 13 │ │ │ │ -0003c7a0: 3932 7820 7820 202b 2031 3232 3778 202c 92x x + 1227x , │ │ │ │ -0003c7b0: 202d 2033 3436 7820 202b 2031 3430 3878 - 346x + 1408x │ │ │ │ -0003c7c0: 2078 2020 2d20 3132 3235 7820 202d 2031 x - 1225x - 1 │ │ │ │ -0003c7d0: 3533 3678 2078 2020 2d20 2020 2020 2020 536x x - │ │ │ │ -0003c7e0: 207c 0a7c 2020 2020 3620 3820 2020 2020 |.| 6 8 │ │ │ │ -0003c7f0: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ -0003c800: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ -0003c810: 3020 3120 2020 2020 2020 2031 2020 2020 0 1 1 │ │ │ │ -0003c820: 2020 2020 3020 3220 2020 2020 2020 2020 0 2 │ │ │ │ -0003c830: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003c730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c750: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0003c760: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c770: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c780: 2020 2020 2020 2020 2020 207c 0a7c 3933 |.|93 │ │ │ │ +0003c790: 3478 2078 2020 2b20 3133 3932 7820 7820 4x x + 1392x x │ │ │ │ +0003c7a0: 202b 2031 3232 3778 202c 202d 2033 3436 + 1227x , - 346 │ │ │ │ +0003c7b0: 7820 202b 2031 3430 3878 2078 2020 2d20 x + 1408x x - │ │ │ │ +0003c7c0: 3132 3235 7820 202d 2031 3533 3678 2078 1225x - 1536x x │ │ │ │ +0003c7d0: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +0003c7e0: 2020 3620 3820 2020 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +0003c7f0: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ +0003c800: 2030 2020 2020 2020 2020 3020 3120 2020 0 0 1 │ │ │ │ +0003c810: 2020 2020 2031 2020 2020 2020 2020 3020 1 0 │ │ │ │ +0003c820: 3220 2020 2020 2020 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003c830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c880: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003c890: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c880: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c8b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0003c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c8d0: 207c 0a7c 3130 3238 7820 7820 202d 2039 |.|1028x x - 9 │ │ │ │ -0003c8e0: 3835 7820 202d 2032 3130 7820 7820 202d 85x - 210x x - │ │ │ │ -0003c8f0: 2031 3331 3278 2078 2020 2b20 3931 3578 1312x x + 915x │ │ │ │ -0003c900: 2078 2020 2b20 3136 3333 7820 202d 2032 x + 1633x - 2 │ │ │ │ -0003c910: 3032 7820 7820 202d 2031 3633 3678 2078 02x x - 1636x x │ │ │ │ -0003c920: 207c 0a7c 2020 2020 2031 2032 2020 2020 |.| 1 2 │ │ │ │ -0003c930: 2020 2032 2020 2020 2020 2030 2033 2020 2 0 3 │ │ │ │ -0003c940: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ -0003c950: 3220 3320 2020 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ -0003c960: 2020 2030 2034 2020 2020 2020 2020 3120 0 4 1 │ │ │ │ -0003c970: 347c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 4|.|------------ │ │ │ │ +0003c8b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c8c0: 2020 2020 2020 2020 2020 207c 0a7c 3130 |.|10 │ │ │ │ +0003c8d0: 3238 7820 7820 202d 2039 3835 7820 202d 28x x - 985x - │ │ │ │ +0003c8e0: 2032 3130 7820 7820 202d 2031 3331 3278 210x x - 1312x │ │ │ │ +0003c8f0: 2078 2020 2b20 3931 3578 2078 2020 2b20 x + 915x x + │ │ │ │ +0003c900: 3136 3333 7820 202d 2032 3032 7820 7820 1633x - 202x x │ │ │ │ +0003c910: 202d 2031 3633 3678 2078 207c 0a7c 2020 - 1636x x |.| │ │ │ │ +0003c920: 2020 2031 2032 2020 2020 2020 2032 2020 1 2 2 │ │ │ │ +0003c930: 2020 2020 2030 2033 2020 2020 2020 2020 0 3 │ │ │ │ +0003c940: 3120 3320 2020 2020 2020 3220 3320 2020 1 3 2 3 │ │ │ │ +0003c950: 2020 2020 2033 2020 2020 2020 2030 2034 3 0 4 │ │ │ │ +0003c960: 2020 2020 2020 2020 3120 347c 0a7c 2d2d 1 4|.|-- │ │ │ │ +0003c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003c9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003c9c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003c9e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003c9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003c9d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0003c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ca10: 207c 0a7c 2d20 3136 3533 7820 7820 202d |.|- 1653x x - │ │ │ │ -0003ca20: 2034 3830 7820 7820 202d 2031 3236 3078 480x x - 1260x │ │ │ │ -0003ca30: 2020 2d20 3831 3378 2078 2020 2d20 3136 - 813x x - 16 │ │ │ │ -0003ca40: 3233 7820 7820 202d 2031 3432 3978 2078 23x x - 1429x x │ │ │ │ -0003ca50: 2020 2b20 3130 3934 7820 7820 202d 2020 + 1094x x - │ │ │ │ -0003ca60: 207c 0a7c 2020 2020 2020 2032 2034 2020 |.| 2 4 │ │ │ │ -0003ca70: 2020 2020 2033 2034 2020 2020 2020 2020 3 4 │ │ │ │ -0003ca80: 3420 2020 2020 2020 3020 3520 2020 2020 4 0 5 │ │ │ │ -0003ca90: 2020 2031 2035 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ -0003caa0: 3520 2020 2020 2020 2033 2035 2020 2020 5 3 5 │ │ │ │ -0003cab0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ca00: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +0003ca10: 3136 3533 7820 7820 202d 2034 3830 7820 1653x x - 480x │ │ │ │ +0003ca20: 7820 202d 2031 3236 3078 2020 2d20 3831 x - 1260x - 81 │ │ │ │ +0003ca30: 3378 2078 2020 2d20 3136 3233 7820 7820 3x x - 1623x x │ │ │ │ +0003ca40: 202d 2031 3432 3978 2078 2020 2b20 3130 - 1429x x + 10 │ │ │ │ +0003ca50: 3934 7820 7820 202d 2020 207c 0a7c 2020 94x x - |.| │ │ │ │ +0003ca60: 2020 2020 2032 2034 2020 2020 2020 2033 2 4 3 │ │ │ │ +0003ca70: 2034 2020 2020 2020 2020 3420 2020 2020 4 4 │ │ │ │ +0003ca80: 2020 3020 3520 2020 2020 2020 2031 2035 0 5 1 5 │ │ │ │ +0003ca90: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ +0003caa0: 2020 2033 2035 2020 2020 207c 0a7c 2d2d 3 5 |.|-- │ │ │ │ +0003cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003caf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cb00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003cb10: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003caf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003cb00: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cb50: 207c 0a7c 3734 3778 2078 2020 2b20 3935 |.|747x x + 95 │ │ │ │ -0003cb60: 3578 2020 2b20 3839 3878 2078 2020 2d20 5x + 898x x - │ │ │ │ -0003cb70: 3739 3578 2078 2020 2d20 3335 7820 7820 795x x - 35x x │ │ │ │ -0003cb80: 202d 2035 3636 7820 7820 202b 2031 3633 - 566x x + 163 │ │ │ │ -0003cb90: 3178 2078 2020 2d20 3332 3478 2078 2020 1x x - 324x x │ │ │ │ -0003cba0: 2b7c 0a7c 2020 2020 3420 3520 2020 2020 +|.| 4 5 │ │ │ │ -0003cbb0: 2020 3520 2020 2020 2020 3020 3620 2020 5 0 6 │ │ │ │ -0003cbc0: 2020 2020 3120 3620 2020 2020 2032 2036 1 6 2 6 │ │ │ │ -0003cbd0: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ -0003cbe0: 2020 3420 3620 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -0003cbf0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003cb40: 2020 2020 2020 2020 2020 207c 0a7c 3734 |.|74 │ │ │ │ +0003cb50: 3778 2078 2020 2b20 3935 3578 2020 2b20 7x x + 955x + │ │ │ │ +0003cb60: 3839 3878 2078 2020 2d20 3739 3578 2078 898x x - 795x x │ │ │ │ +0003cb70: 2020 2d20 3335 7820 7820 202d 2035 3636 - 35x x - 566 │ │ │ │ +0003cb80: 7820 7820 202b 2031 3633 3178 2078 2020 x x + 1631x x │ │ │ │ +0003cb90: 2d20 3332 3478 2078 2020 2b7c 0a7c 2020 - 324x x +|.| │ │ │ │ +0003cba0: 2020 3420 3520 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +0003cbb0: 2020 2020 3020 3620 2020 2020 2020 3120 0 6 1 │ │ │ │ +0003cbc0: 3620 2020 2020 2032 2036 2020 2020 2020 6 2 6 │ │ │ │ +0003cbd0: 2033 2036 2020 2020 2020 2020 3420 3620 3 6 4 6 │ │ │ │ +0003cbe0: 2020 2020 2020 3520 3620 207c 0a7c 2d2d 5 6 |.|-- │ │ │ │ +0003cbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cc10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cc40: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +0003cc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003cc40: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cc90: 207c 0a7c 3932 3678 2020 2d20 3133 3278 |.|926x - 132x │ │ │ │ -0003cca0: 2078 2020 2d20 3978 2078 2020 2d20 3132 x - 9x x - 12 │ │ │ │ -0003ccb0: 3930 7820 7820 202d 2035 3433 7820 7820 90x x - 543x x │ │ │ │ -0003ccc0: 202b 2039 3032 7820 7820 202b 2037 3335 + 902x x + 735 │ │ │ │ -0003ccd0: 7820 7820 202d 2033 3432 7820 7820 202d x x - 342x x - │ │ │ │ -0003cce0: 207c 0a7c 2020 2020 3620 2020 2020 2020 |.| 6 │ │ │ │ -0003ccf0: 3020 3720 2020 2020 3120 3720 2020 2020 0 7 1 7 │ │ │ │ -0003cd00: 2020 2032 2037 2020 2020 2020 2033 2037 2 7 3 7 │ │ │ │ -0003cd10: 2020 2020 2020 2034 2037 2020 2020 2020 4 7 │ │ │ │ -0003cd20: 2035 2037 2020 2020 2020 2036 2037 2020 5 7 6 7 │ │ │ │ -0003cd30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003cc80: 2020 2020 2020 2020 2020 207c 0a7c 3932 |.|92 │ │ │ │ +0003cc90: 3678 2020 2d20 3133 3278 2078 2020 2d20 6x - 132x x - │ │ │ │ +0003cca0: 3978 2078 2020 2d20 3132 3930 7820 7820 9x x - 1290x x │ │ │ │ +0003ccb0: 202d 2035 3433 7820 7820 202b 2039 3032 - 543x x + 902 │ │ │ │ +0003ccc0: 7820 7820 202b 2037 3335 7820 7820 202d x x + 735x x - │ │ │ │ +0003ccd0: 2033 3432 7820 7820 202d 207c 0a7c 2020 342x x - |.| │ │ │ │ +0003cce0: 2020 3620 2020 2020 2020 3020 3720 2020 6 0 7 │ │ │ │ +0003ccf0: 2020 3120 3720 2020 2020 2020 2032 2037 1 7 2 7 │ │ │ │ +0003cd00: 2020 2020 2020 2033 2037 2020 2020 2020 3 7 │ │ │ │ +0003cd10: 2034 2037 2020 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ +0003cd20: 2020 2020 2036 2037 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +0003cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cd80: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +0003cd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003cd80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cdd0: 207c 0a7c 3430 3078 2020 2b20 3930 3078 |.|400x + 900x │ │ │ │ -0003cde0: 2078 2020 2d20 3436 3378 2078 2020 2b20 x - 463x x + │ │ │ │ -0003cdf0: 3639 3478 2078 2020 2d20 3132 3632 7820 694x x - 1262x │ │ │ │ -0003ce00: 7820 202d 2031 3434 3978 2078 2020 2d20 x - 1449x x - │ │ │ │ -0003ce10: 3434 3878 2078 2020 2d20 2020 2020 2020 448x x - │ │ │ │ -0003ce20: 207c 0a7c 2020 2020 3720 2020 2020 2020 |.| 7 │ │ │ │ -0003ce30: 3020 3820 2020 2020 2020 3120 3820 2020 0 8 1 8 │ │ │ │ -0003ce40: 2020 2020 3220 3820 2020 2020 2020 2033 2 8 3 │ │ │ │ -0003ce50: 2038 2020 2020 2020 2020 3420 3820 2020 8 4 8 │ │ │ │ -0003ce60: 2020 2020 3520 3820 2020 2020 2020 2020 5 8 │ │ │ │ -0003ce70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003cdc0: 2020 2020 2020 2020 2020 207c 0a7c 3430 |.|40 │ │ │ │ +0003cdd0: 3078 2020 2b20 3930 3078 2078 2020 2d20 0x + 900x x - │ │ │ │ +0003cde0: 3436 3378 2078 2020 2b20 3639 3478 2078 463x x + 694x x │ │ │ │ +0003cdf0: 2020 2d20 3132 3632 7820 7820 202d 2031 - 1262x x - 1 │ │ │ │ +0003ce00: 3434 3978 2078 2020 2d20 3434 3878 2078 449x x - 448x x │ │ │ │ +0003ce10: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +0003ce20: 2020 3720 2020 2020 2020 3020 3820 2020 7 0 8 │ │ │ │ +0003ce30: 2020 2020 3120 3820 2020 2020 2020 3220 1 8 2 │ │ │ │ +0003ce40: 3820 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ +0003ce50: 2020 2020 3420 3820 2020 2020 2020 3520 4 8 5 │ │ │ │ +0003ce60: 3820 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +0003ce70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ce80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ce90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cec0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ced0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0003cee0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -0003cef0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0003cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003cf10: 207c 0a7c 3134 3032 7820 7820 202d 2037 |.|1402x x - 7 │ │ │ │ -0003cf20: 3331 7820 7820 202d 2039 3936 7820 2c20 31x x - 996x , │ │ │ │ -0003cf30: 3330 3178 2020 2b20 3136 3678 2078 2020 301x + 166x x │ │ │ │ -0003cf40: 2d20 3935 3578 2020 2d20 3733 3978 2078 - 955x - 739x x │ │ │ │ -0003cf50: 2020 2d20 3131 3939 7820 7820 202d 2020 - 1199x x - │ │ │ │ -0003cf60: 207c 0a7c 2020 2020 2036 2038 2020 2020 |.| 6 8 │ │ │ │ -0003cf70: 2020 2037 2038 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ -0003cf80: 2020 2020 3020 2020 2020 2020 3020 3120 0 0 1 │ │ │ │ -0003cf90: 2020 2020 2020 3120 2020 2020 2020 3020 1 0 │ │ │ │ -0003cfa0: 3220 2020 2020 2020 2031 2032 2020 2020 2 1 2 │ │ │ │ -0003cfb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ceb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ced0: 2020 2020 2020 2032 2020 2020 2020 3220 2 2 │ │ │ │ +0003cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003cef0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003cf00: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +0003cf10: 3032 7820 7820 202d 2037 3331 7820 7820 02x x - 731x x │ │ │ │ +0003cf20: 202d 2039 3936 7820 2c20 3330 3178 2020 - 996x , 301x │ │ │ │ +0003cf30: 2b20 3136 3678 2078 2020 2d20 3935 3578 + 166x x - 955x │ │ │ │ +0003cf40: 2020 2d20 3733 3978 2078 2020 2d20 3131 - 739x x - 11 │ │ │ │ +0003cf50: 3939 7820 7820 202d 2020 207c 0a7c 2020 99x x - |.| │ │ │ │ +0003cf60: 2020 2036 2038 2020 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +0003cf70: 2020 2020 2020 2038 2020 2020 2020 3020 8 0 │ │ │ │ +0003cf80: 2020 2020 2020 3020 3120 2020 2020 2020 0 1 │ │ │ │ +0003cf90: 3120 2020 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ +0003cfa0: 2020 2031 2032 2020 2020 207c 0a7c 2d2d 1 2 |.|-- │ │ │ │ +0003cfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003cfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d000: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +0003cff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d000: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d030: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d050: 207c 0a7c 3331 3978 2020 2b20 3130 3437 |.|319x + 1047 │ │ │ │ -0003d060: 7820 7820 202d 2035 3332 7820 7820 202b x x - 532x x + │ │ │ │ -0003d070: 2039 3032 7820 7820 202b 2031 3139 3578 902x x + 1195x │ │ │ │ -0003d080: 2020 2d20 3636 3378 2078 2020 2b20 3132 - 663x x + 12 │ │ │ │ -0003d090: 3135 7820 7820 202d 2035 3334 7820 7820 15x x - 534x x │ │ │ │ -0003d0a0: 207c 0a7c 2020 2020 3220 2020 2020 2020 |.| 2 │ │ │ │ -0003d0b0: 2030 2033 2020 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -0003d0c0: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ -0003d0d0: 3320 2020 2020 2020 3020 3420 2020 2020 3 0 4 │ │ │ │ -0003d0e0: 2020 2031 2034 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ -0003d0f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d020: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0003d030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003d040: 2020 2020 2020 2020 2020 207c 0a7c 3331 |.|31 │ │ │ │ +0003d050: 3978 2020 2b20 3130 3437 7820 7820 202d 9x + 1047x x - │ │ │ │ +0003d060: 2035 3332 7820 7820 202b 2039 3032 7820 532x x + 902x │ │ │ │ +0003d070: 7820 202b 2031 3139 3578 2020 2d20 3636 x + 1195x - 66 │ │ │ │ +0003d080: 3378 2078 2020 2b20 3132 3135 7820 7820 3x x + 1215x x │ │ │ │ +0003d090: 202d 2035 3334 7820 7820 207c 0a7c 2020 - 534x x |.| │ │ │ │ +0003d0a0: 2020 3220 2020 2020 2020 2030 2033 2020 2 0 3 │ │ │ │ +0003d0b0: 2020 2020 2031 2033 2020 2020 2020 2032 1 3 2 │ │ │ │ +0003d0c0: 2033 2020 2020 2020 2020 3320 2020 2020 3 3 │ │ │ │ +0003d0d0: 2020 3020 3420 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ +0003d0e0: 2020 2020 2020 2032 2034 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +0003d0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d140: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003d150: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0003d130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d140: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d180: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003d190: 207c 0a7c 2d20 3333 3278 2078 2020 2d20 |.|- 332x x - │ │ │ │ -0003d1a0: 3937 3378 2020 2b20 3737 3278 2078 2020 973x + 772x x │ │ │ │ -0003d1b0: 2d20 3330 3878 2078 2020 2b20 3331 3578 - 308x x + 315x │ │ │ │ -0003d1c0: 2078 2020 2d20 3435 3478 2078 2020 2d20 x - 454x x - │ │ │ │ -0003d1d0: 3438 3378 2078 2020 2d20 3233 3978 2020 483x x - 239x │ │ │ │ -0003d1e0: 2d7c 0a7c 2020 2020 2020 3320 3420 2020 -|.| 3 4 │ │ │ │ -0003d1f0: 2020 2020 3420 2020 2020 2020 3020 3520 4 0 5 │ │ │ │ -0003d200: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -0003d210: 3220 3520 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ -0003d220: 2020 2020 3420 3520 2020 2020 2020 3520 4 5 5 │ │ │ │ -0003d230: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d180: 2020 2020 2020 2020 3220 207c 0a7c 2d20 2 |.|- │ │ │ │ +0003d190: 3333 3278 2078 2020 2d20 3937 3378 2020 332x x - 973x │ │ │ │ +0003d1a0: 2b20 3737 3278 2078 2020 2d20 3330 3878 + 772x x - 308x │ │ │ │ +0003d1b0: 2078 2020 2b20 3331 3578 2078 2020 2d20 x + 315x x - │ │ │ │ +0003d1c0: 3435 3478 2078 2020 2d20 3438 3378 2078 454x x - 483x x │ │ │ │ +0003d1d0: 2020 2d20 3233 3978 2020 2d7c 0a7c 2020 - 239x -|.| │ │ │ │ +0003d1e0: 2020 2020 3320 3420 2020 2020 2020 3420 3 4 4 │ │ │ │ +0003d1f0: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ +0003d200: 3120 3520 2020 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +0003d210: 2020 2020 3320 3520 2020 2020 2020 3420 3 5 4 │ │ │ │ +0003d220: 3520 2020 2020 2020 3520 207c 0a7c 2d2d 5 5 |.|-- │ │ │ │ +0003d230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d280: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003d270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d2c0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0003d2d0: 207c 0a7c 3133 3133 7820 7820 202d 2034 |.|1313x x - 4 │ │ │ │ -0003d2e0: 3139 7820 7820 202d 2031 3334 3078 2078 19x x - 1340x x │ │ │ │ -0003d2f0: 2020 2d20 3133 3838 7820 7820 202d 2031 - 1388x x - 1 │ │ │ │ -0003d300: 3334 3078 2078 2020 2d20 3136 3635 7820 340x x - 1665x │ │ │ │ -0003d310: 7820 202d 2033 3333 7820 202d 2020 2020 x - 333x - │ │ │ │ -0003d320: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -0003d330: 2020 2031 2036 2020 2020 2020 2020 3220 1 6 2 │ │ │ │ -0003d340: 3620 2020 2020 2020 2033 2036 2020 2020 6 3 6 │ │ │ │ -0003d350: 2020 2020 3420 3620 2020 2020 2020 2035 4 6 5 │ │ │ │ -0003d360: 2036 2020 2020 2020 2036 2020 2020 2020 6 6 │ │ │ │ -0003d370: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d2c0: 2020 2032 2020 2020 2020 207c 0a7c 3133 2 |.|13 │ │ │ │ +0003d2d0: 3133 7820 7820 202d 2034 3139 7820 7820 13x x - 419x x │ │ │ │ +0003d2e0: 202d 2031 3334 3078 2078 2020 2d20 3133 - 1340x x - 13 │ │ │ │ +0003d2f0: 3838 7820 7820 202d 2031 3334 3078 2078 88x x - 1340x x │ │ │ │ +0003d300: 2020 2d20 3136 3635 7820 7820 202d 2033 - 1665x x - 3 │ │ │ │ +0003d310: 3333 7820 202d 2020 2020 207c 0a7c 2020 33x - |.| │ │ │ │ +0003d320: 2020 2030 2036 2020 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +0003d330: 2020 2020 2020 2020 3220 3620 2020 2020 2 6 │ │ │ │ +0003d340: 2020 2033 2036 2020 2020 2020 2020 3420 3 6 4 │ │ │ │ +0003d350: 3620 2020 2020 2020 2035 2036 2020 2020 6 5 6 │ │ │ │ +0003d360: 2020 2036 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003d370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d3c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003d3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d410: 327c 0a7c 3436 3578 2078 2020 2d20 3130 2|.|465x x - 10 │ │ │ │ -0003d420: 3834 7820 7820 202b 2036 3736 7820 7820 84x x + 676x x │ │ │ │ -0003d430: 202d 2031 3631 3278 2078 2020 2d20 3238 - 1612x x - 28 │ │ │ │ -0003d440: 3878 2078 2020 2b20 3131 7820 7820 202d 8x x + 11x x - │ │ │ │ -0003d450: 2031 3137 3078 2078 2020 2d20 3138 3978 1170x x - 189x │ │ │ │ -0003d460: 207c 0a7c 2020 2020 3020 3720 2020 2020 |.| 0 7 │ │ │ │ -0003d470: 2020 2031 2037 2020 2020 2020 2032 2037 1 7 2 7 │ │ │ │ -0003d480: 2020 2020 2020 2020 3320 3720 2020 2020 3 7 │ │ │ │ -0003d490: 2020 3420 3720 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ -0003d4a0: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ -0003d4b0: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +0003d400: 2020 2020 2020 2020 2020 327c 0a7c 3436 2|.|46 │ │ │ │ +0003d410: 3578 2078 2020 2d20 3130 3834 7820 7820 5x x - 1084x x │ │ │ │ +0003d420: 202b 2036 3736 7820 7820 202d 2031 3631 + 676x x - 161 │ │ │ │ +0003d430: 3278 2078 2020 2d20 3238 3878 2078 2020 2x x - 288x x │ │ │ │ +0003d440: 2b20 3131 7820 7820 202d 2031 3137 3078 + 11x x - 1170x │ │ │ │ +0003d450: 2078 2020 2d20 3138 3978 207c 0a7c 2020 x - 189x |.| │ │ │ │ +0003d460: 2020 3020 3720 2020 2020 2020 2031 2037 0 7 1 7 │ │ │ │ +0003d470: 2020 2020 2020 2032 2037 2020 2020 2020 2 7 │ │ │ │ +0003d480: 2020 3320 3720 2020 2020 2020 3420 3720 3 7 4 7 │ │ │ │ +0003d490: 2020 2020 2035 2037 2020 2020 2020 2020 5 7 │ │ │ │ +0003d4a0: 3620 3720 2020 2020 2020 377c 0a7c 2d2d 6 7 7|.|-- │ │ │ │ +0003d4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d500: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003d4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d550: 207c 0a7c 2b20 3439 3878 2078 2020 2d20 |.|+ 498x x - │ │ │ │ -0003d560: 3838 3978 2078 2020 2b20 3639 3378 2078 889x x + 693x x │ │ │ │ -0003d570: 2020 2b20 3134 3630 7820 7820 202d 2034 + 1460x x - 4 │ │ │ │ -0003d580: 3733 7820 7820 202d 2034 3134 7820 7820 73x x - 414x x │ │ │ │ -0003d590: 202d 2031 3232 7820 7820 202d 2020 2020 - 122x x - │ │ │ │ -0003d5a0: 207c 0a7c 2020 2020 2020 3020 3820 2020 |.| 0 8 │ │ │ │ -0003d5b0: 2020 2020 3120 3820 2020 2020 2020 3220 1 8 2 │ │ │ │ -0003d5c0: 3820 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ -0003d5d0: 2020 2034 2038 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -0003d5e0: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ -0003d5f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d540: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +0003d550: 3439 3878 2078 2020 2d20 3838 3978 2078 498x x - 889x x │ │ │ │ +0003d560: 2020 2b20 3639 3378 2078 2020 2b20 3134 + 693x x + 14 │ │ │ │ +0003d570: 3630 7820 7820 202d 2034 3733 7820 7820 60x x - 473x x │ │ │ │ +0003d580: 202d 2034 3134 7820 7820 202d 2031 3232 - 414x x - 122 │ │ │ │ +0003d590: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ +0003d5a0: 2020 2020 3020 3820 2020 2020 2020 3120 0 8 1 │ │ │ │ +0003d5b0: 3820 2020 2020 2020 3220 3820 2020 2020 8 2 8 │ │ │ │ +0003d5c0: 2020 2033 2038 2020 2020 2020 2034 2038 3 8 4 8 │ │ │ │ +0003d5d0: 2020 2020 2020 2035 2038 2020 2020 2020 5 8 │ │ │ │ +0003d5e0: 2036 2038 2020 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +0003d5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d640: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003d650: 2020 2020 3220 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0003d660: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003d630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d640: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003d650: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0003d660: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d680: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0003d690: 207c 0a7c 3136 3539 7820 7820 202d 2031 |.|1659x x - 1 │ │ │ │ -0003d6a0: 3432 3178 202c 2031 3478 2020 2d20 3130 421x , 14x - 10 │ │ │ │ -0003d6b0: 3439 7820 7820 202b 2031 3530 3678 2020 49x x + 1506x │ │ │ │ -0003d6c0: 2b20 3132 3335 7820 7820 202b 2036 3432 + 1235x x + 642 │ │ │ │ -0003d6d0: 7820 7820 202d 2031 3033 3478 2020 2b20 x x - 1034x + │ │ │ │ -0003d6e0: 207c 0a7c 2020 2020 2037 2038 2020 2020 |.| 7 8 │ │ │ │ -0003d6f0: 2020 2020 3820 2020 2020 3020 2020 2020 8 0 │ │ │ │ -0003d700: 2020 2030 2031 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ -0003d710: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ -0003d720: 2031 2032 2020 2020 2020 2020 3220 2020 1 2 2 │ │ │ │ -0003d730: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d680: 2020 2020 2020 3220 2020 207c 0a7c 3136 2 |.|16 │ │ │ │ +0003d690: 3539 7820 7820 202d 2031 3432 3178 202c 59x x - 1421x , │ │ │ │ +0003d6a0: 2031 3478 2020 2d20 3130 3439 7820 7820 14x - 1049x x │ │ │ │ +0003d6b0: 202b 2031 3530 3678 2020 2b20 3132 3335 + 1506x + 1235 │ │ │ │ +0003d6c0: 7820 7820 202b 2036 3432 7820 7820 202d x x + 642x x - │ │ │ │ +0003d6d0: 2031 3033 3478 2020 2b20 207c 0a7c 2020 1034x + |.| │ │ │ │ +0003d6e0: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ +0003d6f0: 2020 2020 3020 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ +0003d700: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0003d710: 2030 2032 2020 2020 2020 2031 2032 2020 0 2 1 2 │ │ │ │ +0003d720: 2020 2020 2020 3220 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003d730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d780: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003d770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003d7a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d7d0: 207c 0a7c 3436 3078 2078 2020 2b20 3135 |.|460x x + 15 │ │ │ │ -0003d7e0: 3078 2078 2020 2b20 3736 3078 2078 2020 0x x + 760x x │ │ │ │ -0003d7f0: 2d20 3132 3436 7820 202d 2031 3430 3778 - 1246x - 1407x │ │ │ │ -0003d800: 2078 2020 2b20 3135 3730 7820 7820 202b x + 1570x x + │ │ │ │ -0003d810: 2031 3430 3378 2078 2020 2d20 2020 2020 1403x x - │ │ │ │ -0003d820: 207c 0a7c 2020 2020 3020 3320 2020 2020 |.| 0 3 │ │ │ │ -0003d830: 2020 3120 3320 2020 2020 2020 3220 3320 1 3 2 3 │ │ │ │ -0003d840: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -0003d850: 3020 3420 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ -0003d860: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -0003d870: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d7c0: 2020 2020 2020 2020 2020 207c 0a7c 3436 |.|46 │ │ │ │ +0003d7d0: 3078 2078 2020 2b20 3135 3078 2078 2020 0x x + 150x x │ │ │ │ +0003d7e0: 2b20 3736 3078 2078 2020 2d20 3132 3436 + 760x x - 1246 │ │ │ │ +0003d7f0: 7820 202d 2031 3430 3778 2078 2020 2b20 x - 1407x x + │ │ │ │ +0003d800: 3135 3730 7820 7820 202b 2031 3430 3378 1570x x + 1403x │ │ │ │ +0003d810: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003d820: 2020 3020 3320 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +0003d830: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +0003d840: 2033 2020 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ +0003d850: 2020 2020 2031 2034 2020 2020 2020 2020 1 4 │ │ │ │ +0003d860: 3220 3420 2020 2020 2020 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +0003d870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d8c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003d8d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003d8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003d8c0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003d900: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003d910: 207c 0a7c 3136 3130 7820 7820 202d 2034 |.|1610x x - 4 │ │ │ │ -0003d920: 3331 7820 202b 2035 3734 7820 7820 202b 31x + 574x x + │ │ │ │ -0003d930: 2038 3933 7820 7820 202d 2036 3537 7820 893x x - 657x │ │ │ │ -0003d940: 7820 202b 2034 3137 7820 7820 202b 2031 x + 417x x + 1 │ │ │ │ -0003d950: 3336 3278 2078 2020 2b20 3232 3478 2020 362x x + 224x │ │ │ │ -0003d960: 2b7c 0a7c 2020 2020 2033 2034 2020 2020 +|.| 3 4 │ │ │ │ -0003d970: 2020 2034 2020 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ -0003d980: 2020 2020 2031 2035 2020 2020 2020 2032 1 5 2 │ │ │ │ -0003d990: 2035 2020 2020 2020 2033 2035 2020 2020 5 3 5 │ │ │ │ -0003d9a0: 2020 2020 3420 3520 2020 2020 2020 3520 4 5 5 │ │ │ │ -0003d9b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003d900: 2020 2020 2020 2020 3220 207c 0a7c 3136 2 |.|16 │ │ │ │ +0003d910: 3130 7820 7820 202d 2034 3331 7820 202b 10x x - 431x + │ │ │ │ +0003d920: 2035 3734 7820 7820 202b 2038 3933 7820 574x x + 893x │ │ │ │ +0003d930: 7820 202d 2036 3537 7820 7820 202b 2034 x - 657x x + 4 │ │ │ │ +0003d940: 3137 7820 7820 202b 2031 3336 3278 2078 17x x + 1362x x │ │ │ │ +0003d950: 2020 2b20 3232 3478 2020 2b7c 0a7c 2020 + 224x +|.| │ │ │ │ +0003d960: 2020 2033 2034 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ +0003d970: 2020 2020 2030 2035 2020 2020 2020 2031 0 5 1 │ │ │ │ +0003d980: 2035 2020 2020 2020 2032 2035 2020 2020 5 2 5 │ │ │ │ +0003d990: 2020 2033 2035 2020 2020 2020 2020 3420 3 5 4 │ │ │ │ +0003d9a0: 3520 2020 2020 2020 3520 207c 0a7c 2d2d 5 5 |.|-- │ │ │ │ +0003d9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003d9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003d9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003da00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003d9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003da40: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0003da50: 207c 0a7c 3236 3878 2078 2020 2b20 3130 |.|268x x + 10 │ │ │ │ -0003da60: 3937 7820 7820 202b 2031 3133 3278 2078 97x x + 1132x x │ │ │ │ -0003da70: 2020 2b20 3134 3878 2078 2020 2b20 3133 + 148x x + 13 │ │ │ │ -0003da80: 3331 7820 7820 202d 2037 3778 2078 2020 31x x - 77x x │ │ │ │ -0003da90: 2d20 3735 3678 2020 2b20 3232 3878 2078 - 756x + 228x x │ │ │ │ -0003daa0: 207c 0a7c 2020 2020 3020 3620 2020 2020 |.| 0 6 │ │ │ │ -0003dab0: 2020 2031 2036 2020 2020 2020 2020 3220 1 6 2 │ │ │ │ -0003dac0: 3620 2020 2020 2020 3320 3620 2020 2020 6 3 6 │ │ │ │ -0003dad0: 2020 2034 2036 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -0003dae0: 2020 2020 2020 3620 2020 2020 2020 3020 6 0 │ │ │ │ -0003daf0: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +0003da40: 3220 2020 2020 2020 2020 207c 0a7c 3236 2 |.|26 │ │ │ │ +0003da50: 3878 2078 2020 2b20 3130 3937 7820 7820 8x x + 1097x x │ │ │ │ +0003da60: 202b 2031 3133 3278 2078 2020 2b20 3134 + 1132x x + 14 │ │ │ │ +0003da70: 3878 2078 2020 2b20 3133 3331 7820 7820 8x x + 1331x x │ │ │ │ +0003da80: 202d 2037 3778 2078 2020 2d20 3735 3678 - 77x x - 756x │ │ │ │ +0003da90: 2020 2b20 3232 3878 2078 207c 0a7c 2020 + 228x x |.| │ │ │ │ +0003daa0: 2020 3020 3620 2020 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +0003dab0: 2020 2020 2020 2020 3220 3620 2020 2020 2 6 │ │ │ │ +0003dac0: 2020 3320 3620 2020 2020 2020 2034 2036 3 6 4 6 │ │ │ │ +0003dad0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ +0003dae0: 3620 2020 2020 2020 3020 377c 0a7c 2d2d 6 0 7|.|-- │ │ │ │ +0003daf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003db00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003db10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003db20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003db40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003db30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003db80: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0003db90: 207c 0a7c 2b20 3133 3678 2078 2020 2d20 |.|+ 136x x - │ │ │ │ -0003dba0: 3134 3834 7820 7820 202d 2031 3437 3878 1484x x - 1478x │ │ │ │ -0003dbb0: 2078 2020 2d20 3133 7820 7820 202b 2031 x - 13x x + 1 │ │ │ │ -0003dbc0: 3632 3078 2078 2020 2d20 3730 3178 2078 620x x - 701x x │ │ │ │ -0003dbd0: 2020 2d20 3736 3978 2020 2d20 2020 2020 - 769x - │ │ │ │ -0003dbe0: 207c 0a7c 2020 2020 2020 3120 3720 2020 |.| 1 7 │ │ │ │ -0003dbf0: 2020 2020 2032 2037 2020 2020 2020 2020 2 7 │ │ │ │ -0003dc00: 3320 3720 2020 2020 2034 2037 2020 2020 3 7 4 7 │ │ │ │ -0003dc10: 2020 2020 3520 3720 2020 2020 2020 3620 5 7 6 │ │ │ │ -0003dc20: 3720 2020 2020 2020 3720 2020 2020 2020 7 7 │ │ │ │ -0003dc30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003db80: 2020 3220 2020 2020 2020 207c 0a7c 2b20 2 |.|+ │ │ │ │ +0003db90: 3133 3678 2078 2020 2d20 3134 3834 7820 136x x - 1484x │ │ │ │ +0003dba0: 7820 202d 2031 3437 3878 2078 2020 2d20 x - 1478x x - │ │ │ │ +0003dbb0: 3133 7820 7820 202b 2031 3632 3078 2078 13x x + 1620x x │ │ │ │ +0003dbc0: 2020 2d20 3730 3178 2078 2020 2d20 3736 - 701x x - 76 │ │ │ │ +0003dbd0: 3978 2020 2d20 2020 2020 207c 0a7c 2020 9x - |.| │ │ │ │ +0003dbe0: 2020 2020 3120 3720 2020 2020 2020 2032 1 7 2 │ │ │ │ +0003dbf0: 2037 2020 2020 2020 2020 3320 3720 2020 7 3 7 │ │ │ │ +0003dc00: 2020 2034 2037 2020 2020 2020 2020 3520 4 7 5 │ │ │ │ +0003dc10: 3720 2020 2020 2020 3620 3720 2020 2020 7 6 7 │ │ │ │ +0003dc20: 2020 3720 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +0003dc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003dc80: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003dc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003dcd0: 207c 0a7c 3736 3078 2078 2020 2d20 3439 |.|760x x - 49 │ │ │ │ -0003dce0: 3278 2078 2020 2d20 3130 3737 7820 7820 2x x - 1077x x │ │ │ │ -0003dcf0: 202d 2031 3234 3978 2078 2020 2d20 3833 - 1249x x - 83 │ │ │ │ -0003dd00: 3478 2078 2020 2d20 3339 3578 2078 2020 4x x - 395x x │ │ │ │ -0003dd10: 2d20 3133 3538 7820 7820 202d 2020 2020 - 1358x x - │ │ │ │ -0003dd20: 207c 0a7c 2020 2020 3020 3820 2020 2020 |.| 0 8 │ │ │ │ -0003dd30: 2020 3120 3820 2020 2020 2020 2032 2038 1 8 2 8 │ │ │ │ -0003dd40: 2020 2020 2020 2020 3320 3820 2020 2020 3 8 │ │ │ │ -0003dd50: 2020 3420 3820 2020 2020 2020 3520 3820 4 8 5 8 │ │ │ │ -0003dd60: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ -0003dd70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003dcc0: 2020 2020 2020 2020 2020 207c 0a7c 3736 |.|76 │ │ │ │ +0003dcd0: 3078 2078 2020 2d20 3439 3278 2078 2020 0x x - 492x x │ │ │ │ +0003dce0: 2d20 3130 3737 7820 7820 202d 2031 3234 - 1077x x - 124 │ │ │ │ +0003dcf0: 3978 2078 2020 2d20 3833 3478 2078 2020 9x x - 834x x │ │ │ │ +0003dd00: 2d20 3339 3578 2078 2020 2d20 3133 3538 - 395x x - 1358 │ │ │ │ +0003dd10: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ +0003dd20: 2020 3020 3820 2020 2020 2020 3120 3820 0 8 1 8 │ │ │ │ +0003dd30: 2020 2020 2020 2032 2038 2020 2020 2020 2 8 │ │ │ │ +0003dd40: 2020 3320 3820 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ +0003dd50: 2020 2020 2020 3520 3820 2020 2020 2020 5 8 │ │ │ │ +0003dd60: 2036 2038 2020 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +0003dd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ddc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ddd0: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -0003dde0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003ddb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ddc0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0003ddd0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0003dde0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 0003ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003de00: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0003de10: 207c 0a7c 3938 3878 2078 2020 2b20 3131 |.|988x x + 11 │ │ │ │ -0003de20: 3378 202c 202d 2031 3633 3478 2020 2d20 3x , - 1634x - │ │ │ │ -0003de30: 3133 7820 7820 202b 2038 3035 7820 202d 13x x + 805x - │ │ │ │ -0003de40: 2032 3178 2078 2020 2d20 3136 3535 7820 21x x - 1655x │ │ │ │ -0003de50: 7820 202b 2031 3437 3978 2020 2d20 2020 x + 1479x - │ │ │ │ -0003de60: 207c 0a7c 2020 2020 3720 3820 2020 2020 |.| 7 8 │ │ │ │ -0003de70: 2020 3820 2020 2020 2020 2020 3020 2020 8 0 │ │ │ │ -0003de80: 2020 2030 2031 2020 2020 2020 2031 2020 0 1 1 │ │ │ │ -0003de90: 2020 2020 3020 3220 2020 2020 2020 2031 0 2 1 │ │ │ │ -0003dea0: 2032 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ -0003deb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003de00: 2020 2020 3220 2020 2020 207c 0a7c 3938 2 |.|98 │ │ │ │ +0003de10: 3878 2078 2020 2b20 3131 3378 202c 202d 8x x + 113x , - │ │ │ │ +0003de20: 2031 3633 3478 2020 2d20 3133 7820 7820 1634x - 13x x │ │ │ │ +0003de30: 202b 2038 3035 7820 202d 2032 3178 2078 + 805x - 21x x │ │ │ │ +0003de40: 2020 2d20 3136 3535 7820 7820 202b 2031 - 1655x x + 1 │ │ │ │ +0003de50: 3437 3978 2020 2d20 2020 207c 0a7c 2020 479x - |.| │ │ │ │ +0003de60: 2020 3720 3820 2020 2020 2020 3820 2020 7 8 8 │ │ │ │ +0003de70: 2020 2020 2020 3020 2020 2020 2030 2031 0 0 1 │ │ │ │ +0003de80: 2020 2020 2020 2031 2020 2020 2020 3020 1 0 │ │ │ │ +0003de90: 3220 2020 2020 2020 2031 2032 2020 2020 2 1 2 │ │ │ │ +0003dea0: 2020 2020 3220 2020 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ded0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003dee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003df00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003def0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df20: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0003df20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003df50: 207c 0a7c 3135 3130 7820 7820 202d 2036 |.|1510x x - 6 │ │ │ │ -0003df60: 3436 7820 7820 202b 2032 3235 7820 7820 46x x + 225x x │ │ │ │ -0003df70: 202d 2031 3431 3178 2020 2b20 3132 3237 - 1411x + 1227 │ │ │ │ -0003df80: 7820 7820 202d 2031 3130 3878 2078 2020 x x - 1108x x │ │ │ │ -0003df90: 2b20 3132 3931 7820 7820 202d 2020 2020 + 1291x x - │ │ │ │ -0003dfa0: 207c 0a7c 2020 2020 2030 2033 2020 2020 |.| 0 3 │ │ │ │ -0003dfb0: 2020 2031 2033 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -0003dfc0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -0003dfd0: 2030 2034 2020 2020 2020 2020 3120 3420 0 4 1 4 │ │ │ │ -0003dfe0: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ -0003dff0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003df40: 2020 2020 2020 2020 2020 207c 0a7c 3135 |.|15 │ │ │ │ +0003df50: 3130 7820 7820 202d 2036 3436 7820 7820 10x x - 646x x │ │ │ │ +0003df60: 202b 2032 3235 7820 7820 202d 2031 3431 + 225x x - 141 │ │ │ │ +0003df70: 3178 2020 2b20 3132 3237 7820 7820 202d 1x + 1227x x - │ │ │ │ +0003df80: 2031 3130 3878 2078 2020 2b20 3132 3931 1108x x + 1291 │ │ │ │ +0003df90: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ +0003dfa0: 2020 2030 2033 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +0003dfb0: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ +0003dfc0: 2020 3320 2020 2020 2020 2030 2034 2020 3 0 4 │ │ │ │ +0003dfd0: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ +0003dfe0: 2032 2034 2020 2020 2020 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +0003dff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e040: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003e050: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003e030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e040: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0003e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e080: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0003e090: 207c 0a7c 3539 7820 7820 202d 2031 3432 |.|59x x - 142 │ │ │ │ -0003e0a0: 7820 202b 2035 3836 7820 7820 202d 2036 x + 586x x - 6 │ │ │ │ -0003e0b0: 3736 7820 7820 202b 2036 3535 7820 7820 76x x + 655x x │ │ │ │ -0003e0c0: 202d 2031 3437 3678 2078 2020 2b20 3435 - 1476x x + 45 │ │ │ │ -0003e0d0: 3378 2078 2020 2d20 3130 3736 7820 202d 3x x - 1076x - │ │ │ │ -0003e0e0: 207c 0a7c 2020 2033 2034 2020 2020 2020 |.| 3 4 │ │ │ │ -0003e0f0: 2034 2020 2020 2020 2030 2035 2020 2020 4 0 5 │ │ │ │ -0003e100: 2020 2031 2035 2020 2020 2020 2032 2035 1 5 2 5 │ │ │ │ -0003e110: 2020 2020 2020 2020 3320 3520 2020 2020 3 5 │ │ │ │ -0003e120: 2020 3420 3520 2020 2020 2020 2035 2020 4 5 5 │ │ │ │ -0003e130: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e080: 2020 2020 2020 2032 2020 207c 0a7c 3539 2 |.|59 │ │ │ │ +0003e090: 7820 7820 202d 2031 3432 7820 202b 2035 x x - 142x + 5 │ │ │ │ +0003e0a0: 3836 7820 7820 202d 2036 3736 7820 7820 86x x - 676x x │ │ │ │ +0003e0b0: 202b 2036 3535 7820 7820 202d 2031 3437 + 655x x - 147 │ │ │ │ +0003e0c0: 3678 2078 2020 2b20 3435 3378 2078 2020 6x x + 453x x │ │ │ │ +0003e0d0: 2d20 3130 3736 7820 202d 207c 0a7c 2020 - 1076x - |.| │ │ │ │ +0003e0e0: 2033 2034 2020 2020 2020 2034 2020 2020 3 4 4 │ │ │ │ +0003e0f0: 2020 2030 2035 2020 2020 2020 2031 2035 0 5 1 5 │ │ │ │ +0003e100: 2020 2020 2020 2032 2035 2020 2020 2020 2 5 │ │ │ │ +0003e110: 2020 3320 3520 2020 2020 2020 3420 3520 3 5 4 5 │ │ │ │ +0003e120: 2020 2020 2020 2035 2020 207c 0a7c 2d2d 5 |.|-- │ │ │ │ +0003e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e180: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e1c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0003e1d0: 207c 0a7c 3131 3532 7820 7820 202b 2031 |.|1152x x + 1 │ │ │ │ -0003e1e0: 3337 3378 2078 2020 2d20 3131 3931 7820 373x x - 1191x │ │ │ │ -0003e1f0: 7820 202d 2034 3136 7820 7820 202b 2036 x - 416x x + 6 │ │ │ │ -0003e200: 3939 7820 7820 202b 2033 3137 7820 7820 99x x + 317x x │ │ │ │ -0003e210: 202b 2038 3235 7820 202d 2020 2020 2020 + 825x - │ │ │ │ -0003e220: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -0003e230: 2020 2020 3120 3620 2020 2020 2020 2032 1 6 2 │ │ │ │ -0003e240: 2036 2020 2020 2020 2033 2036 2020 2020 6 3 6 │ │ │ │ -0003e250: 2020 2034 2036 2020 2020 2020 2035 2036 4 6 5 6 │ │ │ │ -0003e260: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ -0003e270: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e1c0: 2032 2020 2020 2020 2020 207c 0a7c 3131 2 |.|11 │ │ │ │ +0003e1d0: 3532 7820 7820 202b 2031 3337 3378 2078 52x x + 1373x x │ │ │ │ +0003e1e0: 2020 2d20 3131 3931 7820 7820 202d 2034 - 1191x x - 4 │ │ │ │ +0003e1f0: 3136 7820 7820 202b 2036 3939 7820 7820 16x x + 699x x │ │ │ │ +0003e200: 202b 2033 3137 7820 7820 202b 2038 3235 + 317x x + 825 │ │ │ │ +0003e210: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +0003e220: 2020 2030 2036 2020 2020 2020 2020 3120 0 6 1 │ │ │ │ +0003e230: 3620 2020 2020 2020 2032 2036 2020 2020 6 2 6 │ │ │ │ +0003e240: 2020 2033 2036 2020 2020 2020 2034 2036 3 6 4 6 │ │ │ │ +0003e250: 2020 2020 2020 2035 2036 2020 2020 2020 5 6 │ │ │ │ +0003e260: 2036 2020 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e2c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003e2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e310: 207c 0a7c 3135 3630 7820 7820 202d 2034 |.|1560x x - 4 │ │ │ │ -0003e320: 3838 7820 7820 202d 2031 3033 3578 2078 88x x - 1035x x │ │ │ │ -0003e330: 2020 2d20 3135 3631 7820 7820 202d 2036 - 1561x x - 6 │ │ │ │ -0003e340: 3434 7820 7820 202d 2031 3137 3878 2078 44x x - 1178x x │ │ │ │ -0003e350: 2020 2d20 3133 3230 7820 7820 202b 2020 - 1320x x + │ │ │ │ -0003e360: 207c 0a7c 2020 2020 2030 2037 2020 2020 |.| 0 7 │ │ │ │ -0003e370: 2020 2031 2037 2020 2020 2020 2020 3220 1 7 2 │ │ │ │ -0003e380: 3720 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ -0003e390: 2020 2034 2037 2020 2020 2020 2020 3520 4 7 5 │ │ │ │ -0003e3a0: 3720 2020 2020 2020 2036 2037 2020 2020 7 6 7 │ │ │ │ -0003e3b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e300: 2020 2020 2020 2020 2020 207c 0a7c 3135 |.|15 │ │ │ │ +0003e310: 3630 7820 7820 202d 2034 3838 7820 7820 60x x - 488x x │ │ │ │ +0003e320: 202d 2031 3033 3578 2078 2020 2d20 3135 - 1035x x - 15 │ │ │ │ +0003e330: 3631 7820 7820 202d 2036 3434 7820 7820 61x x - 644x x │ │ │ │ +0003e340: 202d 2031 3137 3878 2078 2020 2d20 3133 - 1178x x - 13 │ │ │ │ +0003e350: 3230 7820 7820 202b 2020 207c 0a7c 2020 20x x + |.| │ │ │ │ +0003e360: 2020 2030 2037 2020 2020 2020 2031 2037 0 7 1 7 │ │ │ │ +0003e370: 2020 2020 2020 2020 3220 3720 2020 2020 2 7 │ │ │ │ +0003e380: 2020 2033 2037 2020 2020 2020 2034 2037 3 7 4 7 │ │ │ │ +0003e390: 2020 2020 2020 2020 3520 3720 2020 2020 5 7 │ │ │ │ +0003e3a0: 2020 2036 2037 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +0003e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e400: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +0003e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e400: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e450: 207c 0a7c 3135 3878 2020 2b20 3838 3978 |.|158x + 889x │ │ │ │ -0003e460: 2078 2020 2b20 3134 3434 7820 7820 202d x + 1444x x - │ │ │ │ -0003e470: 2031 3438 3678 2078 2020 2d20 3132 3131 1486x x - 1211 │ │ │ │ -0003e480: 7820 7820 202b 2031 3236 3978 2078 2020 x x + 1269x x │ │ │ │ -0003e490: 2d20 3132 3238 7820 7820 202b 2020 2020 - 1228x x + │ │ │ │ -0003e4a0: 207c 0a7c 2020 2020 3720 2020 2020 2020 |.| 7 │ │ │ │ -0003e4b0: 3020 3820 2020 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -0003e4c0: 2020 2020 2020 3220 3820 2020 2020 2020 2 8 │ │ │ │ -0003e4d0: 2033 2038 2020 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -0003e4e0: 2020 2020 2020 2035 2038 2020 2020 2020 5 8 │ │ │ │ -0003e4f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e440: 2020 2020 2020 2020 2020 207c 0a7c 3135 |.|15 │ │ │ │ +0003e450: 3878 2020 2b20 3838 3978 2078 2020 2b20 8x + 889x x + │ │ │ │ +0003e460: 3134 3434 7820 7820 202d 2031 3438 3678 1444x x - 1486x │ │ │ │ +0003e470: 2078 2020 2d20 3132 3131 7820 7820 202b x - 1211x x + │ │ │ │ +0003e480: 2031 3236 3978 2078 2020 2d20 3132 3238 1269x x - 1228 │ │ │ │ +0003e490: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +0003e4a0: 2020 3720 2020 2020 2020 3020 3820 2020 7 0 8 │ │ │ │ +0003e4b0: 2020 2020 2031 2038 2020 2020 2020 2020 1 8 │ │ │ │ +0003e4c0: 3220 3820 2020 2020 2020 2033 2038 2020 2 8 3 8 │ │ │ │ +0003e4d0: 2020 2020 2020 3420 3820 2020 2020 2020 4 8 │ │ │ │ +0003e4e0: 2035 2038 2020 2020 2020 207c 0a7c 2d2d 5 8 |.|-- │ │ │ │ +0003e4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e540: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003e550: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0003e560: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0003e570: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0003e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e590: 207c 0a7c 3536 3878 2078 2020 2b20 3135 |.|568x x + 15 │ │ │ │ -0003e5a0: 3931 7820 7820 202b 2031 3230 3778 202c 91x x + 1207x , │ │ │ │ -0003e5b0: 2031 3035 7820 202d 2035 3338 7820 7820 105x - 538x x │ │ │ │ -0003e5c0: 202d 2031 3232 3278 2020 2d20 3237 3778 - 1222x - 277x │ │ │ │ -0003e5d0: 2078 2020 2b20 3731 3678 2078 2020 2d20 x + 716x x - │ │ │ │ -0003e5e0: 207c 0a7c 2020 2020 3620 3820 2020 2020 |.| 6 8 │ │ │ │ -0003e5f0: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ -0003e600: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -0003e610: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -0003e620: 3020 3220 2020 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -0003e630: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e550: 2020 2020 2020 2020 3220 2020 2020 2032 2 2 │ │ │ │ +0003e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003e570: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003e580: 2020 2020 2020 2020 2020 207c 0a7c 3536 |.|56 │ │ │ │ +0003e590: 3878 2078 2020 2b20 3135 3931 7820 7820 8x x + 1591x x │ │ │ │ +0003e5a0: 202b 2031 3230 3778 202c 2031 3035 7820 + 1207x , 105x │ │ │ │ +0003e5b0: 202d 2035 3338 7820 7820 202d 2031 3232 - 538x x - 122 │ │ │ │ +0003e5c0: 3278 2020 2d20 3237 3778 2078 2020 2b20 2x - 277x x + │ │ │ │ +0003e5d0: 3731 3678 2078 2020 2d20 207c 0a7c 2020 716x x - |.| │ │ │ │ +0003e5e0: 2020 3620 3820 2020 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +0003e5f0: 2020 2020 2020 2020 3820 2020 2020 2030 8 0 │ │ │ │ +0003e600: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +0003e610: 2020 3120 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +0003e620: 2020 2020 3120 3220 2020 207c 0a7c 2d2d 1 2 |.|-- │ │ │ │ +0003e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e680: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +0003e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e680: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6a0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003e6a0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003e6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e6d0: 207c 0a7c 3130 3637 7820 202d 2034 3238 |.|1067x - 428 │ │ │ │ -0003e6e0: 7820 7820 202b 2031 3534 7820 7820 202d x x + 154x x - │ │ │ │ -0003e6f0: 2034 3639 7820 7820 202b 2037 3778 2020 469x x + 77x │ │ │ │ -0003e700: 2b20 3533 3878 2078 2020 2d20 3137 3978 + 538x x - 179x │ │ │ │ -0003e710: 2078 2020 2b20 3932 3178 2078 2020 2d20 x + 921x x - │ │ │ │ -0003e720: 207c 0a7c 2020 2020 2032 2020 2020 2020 |.| 2 │ │ │ │ -0003e730: 2030 2033 2020 2020 2020 2031 2033 2020 0 3 1 3 │ │ │ │ -0003e740: 2020 2020 2032 2033 2020 2020 2020 3320 2 3 3 │ │ │ │ -0003e750: 2020 2020 2020 3020 3420 2020 2020 2020 0 4 │ │ │ │ -0003e760: 3120 3420 2020 2020 2020 3220 3420 2020 1 4 2 4 │ │ │ │ -0003e770: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e6c0: 2020 2020 2020 2020 2020 207c 0a7c 3130 |.|10 │ │ │ │ +0003e6d0: 3637 7820 202d 2034 3238 7820 7820 202b 67x - 428x x + │ │ │ │ +0003e6e0: 2031 3534 7820 7820 202d 2034 3639 7820 154x x - 469x │ │ │ │ +0003e6f0: 7820 202b 2037 3778 2020 2b20 3533 3878 x + 77x + 538x │ │ │ │ +0003e700: 2078 2020 2d20 3137 3978 2078 2020 2b20 x - 179x x + │ │ │ │ +0003e710: 3932 3178 2078 2020 2d20 207c 0a7c 2020 921x x - |.| │ │ │ │ +0003e720: 2020 2032 2020 2020 2020 2030 2033 2020 2 0 3 │ │ │ │ +0003e730: 2020 2020 2031 2033 2020 2020 2020 2032 1 3 2 │ │ │ │ +0003e740: 2033 2020 2020 2020 3320 2020 2020 2020 3 3 │ │ │ │ +0003e750: 3020 3420 2020 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ +0003e760: 2020 2020 3220 3420 2020 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +0003e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e7c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003e7d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e7c0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e810: 327c 0a7c 3232 3378 2078 2020 2b20 3130 2|.|223x x + 10 │ │ │ │ -0003e820: 3933 7820 202d 2032 3632 7820 7820 202b 93x - 262x x + │ │ │ │ -0003e830: 2031 3239 3978 2078 2020 2b20 3633 3178 1299x x + 631x │ │ │ │ -0003e840: 2078 2020 2b20 3134 3836 7820 7820 202d x + 1486x x - │ │ │ │ -0003e850: 2031 3238 3078 2078 2020 2d20 3132 3178 1280x x - 121x │ │ │ │ -0003e860: 207c 0a7c 2020 2020 3320 3420 2020 2020 |.| 3 4 │ │ │ │ -0003e870: 2020 2034 2020 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ -0003e880: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -0003e890: 3220 3520 2020 2020 2020 2033 2035 2020 2 5 3 5 │ │ │ │ -0003e8a0: 2020 2020 2020 3420 3520 2020 2020 2020 4 5 │ │ │ │ -0003e8b0: 357c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 5|.|------------ │ │ │ │ +0003e800: 2020 2020 2020 2020 2020 327c 0a7c 3232 2|.|22 │ │ │ │ +0003e810: 3378 2078 2020 2b20 3130 3933 7820 202d 3x x + 1093x - │ │ │ │ +0003e820: 2032 3632 7820 7820 202b 2031 3239 3978 262x x + 1299x │ │ │ │ +0003e830: 2078 2020 2b20 3633 3178 2078 2020 2b20 x + 631x x + │ │ │ │ +0003e840: 3134 3836 7820 7820 202d 2031 3238 3078 1486x x - 1280x │ │ │ │ +0003e850: 2078 2020 2d20 3132 3178 207c 0a7c 2020 x - 121x |.| │ │ │ │ +0003e860: 2020 3320 3420 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ +0003e870: 2020 2020 2030 2035 2020 2020 2020 2020 0 5 │ │ │ │ +0003e880: 3120 3520 2020 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +0003e890: 2020 2020 2033 2035 2020 2020 2020 2020 3 5 │ │ │ │ +0003e8a0: 3420 3520 2020 2020 2020 357c 0a7c 2d2d 4 5 5|.|-- │ │ │ │ +0003e8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003e8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003e900: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003e8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003e940: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0003e950: 207c 0a7c 2d20 3530 7820 7820 202d 2039 |.|- 50x x - 9 │ │ │ │ -0003e960: 3738 7820 7820 202d 2036 3934 7820 7820 78x x - 694x x │ │ │ │ -0003e970: 202d 2035 3331 7820 7820 202b 2035 3035 - 531x x + 505 │ │ │ │ -0003e980: 7820 7820 202b 2031 3431 3278 2078 2020 x x + 1412x x │ │ │ │ -0003e990: 2d20 3130 3631 7820 202b 2020 2020 2020 - 1061x + │ │ │ │ -0003e9a0: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -0003e9b0: 2020 2031 2036 2020 2020 2020 2032 2036 1 6 2 6 │ │ │ │ -0003e9c0: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ -0003e9d0: 2034 2036 2020 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -0003e9e0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ -0003e9f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003e940: 2032 2020 2020 2020 2020 207c 0a7c 2d20 2 |.|- │ │ │ │ +0003e950: 3530 7820 7820 202d 2039 3738 7820 7820 50x x - 978x x │ │ │ │ +0003e960: 202d 2036 3934 7820 7820 202d 2035 3331 - 694x x - 531 │ │ │ │ +0003e970: 7820 7820 202b 2035 3035 7820 7820 202b x x + 505x x + │ │ │ │ +0003e980: 2031 3431 3278 2078 2020 2d20 3130 3631 1412x x - 1061 │ │ │ │ +0003e990: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +0003e9a0: 2020 2030 2036 2020 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +0003e9b0: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ +0003e9c0: 2033 2036 2020 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ +0003e9d0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ +0003e9e0: 2036 2020 2020 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003e9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ea20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ea40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003ea30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ea90: 207c 0a7c 3132 3032 7820 7820 202b 2034 |.|1202x x + 4 │ │ │ │ -0003eaa0: 3438 7820 7820 202d 2031 3837 7820 7820 48x x - 187x x │ │ │ │ -0003eab0: 202b 2031 3237 3678 2078 2020 2d20 3132 + 1276x x - 12 │ │ │ │ -0003eac0: 3178 2078 2020 2b20 3133 3631 7820 7820 1x x + 1361x x │ │ │ │ -0003ead0: 202b 2036 3937 7820 7820 202b 2020 2020 + 697x x + │ │ │ │ -0003eae0: 207c 0a7c 2020 2020 2030 2037 2020 2020 |.| 0 7 │ │ │ │ -0003eaf0: 2020 2031 2037 2020 2020 2020 2032 2037 1 7 2 7 │ │ │ │ -0003eb00: 2020 2020 2020 2020 3320 3720 2020 2020 3 7 │ │ │ │ -0003eb10: 2020 3420 3720 2020 2020 2020 2035 2037 4 7 5 7 │ │ │ │ -0003eb20: 2020 2020 2020 2036 2037 2020 2020 2020 6 7 │ │ │ │ -0003eb30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ea80: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +0003ea90: 3032 7820 7820 202b 2034 3438 7820 7820 02x x + 448x x │ │ │ │ +0003eaa0: 202d 2031 3837 7820 7820 202b 2031 3237 - 187x x + 127 │ │ │ │ +0003eab0: 3678 2078 2020 2d20 3132 3178 2078 2020 6x x - 121x x │ │ │ │ +0003eac0: 2b20 3133 3631 7820 7820 202b 2036 3937 + 1361x x + 697 │ │ │ │ +0003ead0: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +0003eae0: 2020 2030 2037 2020 2020 2020 2031 2037 0 7 1 7 │ │ │ │ +0003eaf0: 2020 2020 2020 2032 2037 2020 2020 2020 2 7 │ │ │ │ +0003eb00: 2020 3320 3720 2020 2020 2020 3420 3720 3 7 4 7 │ │ │ │ +0003eb10: 2020 2020 2020 2035 2037 2020 2020 2020 5 7 │ │ │ │ +0003eb20: 2036 2037 2020 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +0003eb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003eb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003eb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003eb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003eb80: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +0003eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003eb80: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ebd0: 207c 0a7c 3638 3278 2020 2b20 3135 3932 |.|682x + 1592 │ │ │ │ -0003ebe0: 7820 7820 202b 2037 3035 7820 7820 202d x x + 705x x - │ │ │ │ -0003ebf0: 2032 3237 7820 7820 202d 2037 7820 7820 227x x - 7x x │ │ │ │ -0003ec00: 202d 2031 3432 3378 2078 2020 2d20 3134 - 1423x x - 14 │ │ │ │ -0003ec10: 3436 7820 7820 202d 2031 3537 3878 2078 46x x - 1578x x │ │ │ │ -0003ec20: 207c 0a7c 2020 2020 3720 2020 2020 2020 |.| 7 │ │ │ │ -0003ec30: 2030 2038 2020 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -0003ec40: 2020 2020 2032 2038 2020 2020 2033 2038 2 8 3 8 │ │ │ │ -0003ec50: 2020 2020 2020 2020 3420 3820 2020 2020 4 8 │ │ │ │ -0003ec60: 2020 2035 2038 2020 2020 2020 2020 3620 5 8 6 │ │ │ │ -0003ec70: 387c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 8|.|------------ │ │ │ │ +0003ebc0: 2020 2020 2020 2020 2020 207c 0a7c 3638 |.|68 │ │ │ │ +0003ebd0: 3278 2020 2b20 3135 3932 7820 7820 202b 2x + 1592x x + │ │ │ │ +0003ebe0: 2037 3035 7820 7820 202d 2032 3237 7820 705x x - 227x │ │ │ │ +0003ebf0: 7820 202d 2037 7820 7820 202d 2031 3432 x - 7x x - 142 │ │ │ │ +0003ec00: 3378 2078 2020 2d20 3134 3436 7820 7820 3x x - 1446x x │ │ │ │ +0003ec10: 202d 2031 3537 3878 2078 207c 0a7c 2020 - 1578x x |.| │ │ │ │ +0003ec20: 2020 3720 2020 2020 2020 2030 2038 2020 7 0 8 │ │ │ │ +0003ec30: 2020 2020 2031 2038 2020 2020 2020 2032 1 8 2 │ │ │ │ +0003ec40: 2038 2020 2020 2033 2038 2020 2020 2020 8 3 8 │ │ │ │ +0003ec50: 2020 3420 3820 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +0003ec60: 2020 2020 2020 2020 3620 387c 0a7c 2d2d 6 8|.|-- │ │ │ │ +0003ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ec80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ec90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003eca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ecc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ecd0: 2020 2020 2032 2020 2020 2020 2032 2020 2 2 │ │ │ │ -0003ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ecf0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0003ed00: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -0003ed10: 207c 0a7c 2b20 3135 3131 7820 7820 202b |.|+ 1511x x + │ │ │ │ -0003ed20: 2039 3137 7820 2c20 3132 3730 7820 202d 917x , 1270x - │ │ │ │ -0003ed30: 2033 3931 7820 7820 202d 2031 3131 3678 391x x - 1116x │ │ │ │ -0003ed40: 2020 2d20 3238 3778 2078 2020 2b20 3635 - 287x x + 65 │ │ │ │ -0003ed50: 3378 2078 2020 2b20 3136 3433 7820 202b 3x x + 1643x + │ │ │ │ -0003ed60: 207c 0a7c 2020 2020 2020 2037 2038 2020 |.| 7 8 │ │ │ │ -0003ed70: 2020 2020 2038 2020 2020 2020 2030 2020 8 0 │ │ │ │ -0003ed80: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ -0003ed90: 3120 2020 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ -0003eda0: 2020 3120 3220 2020 2020 2020 2032 2020 1 2 2 │ │ │ │ -0003edb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ecb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ecc0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0003ecd0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0003ece0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0003ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ed00: 2020 2020 2020 2032 2020 207c 0a7c 2b20 2 |.|+ │ │ │ │ +0003ed10: 3135 3131 7820 7820 202b 2039 3137 7820 1511x x + 917x │ │ │ │ +0003ed20: 2c20 3132 3730 7820 202d 2033 3931 7820 , 1270x - 391x │ │ │ │ +0003ed30: 7820 202d 2031 3131 3678 2020 2d20 3238 x - 1116x - 28 │ │ │ │ +0003ed40: 3778 2078 2020 2b20 3635 3378 2078 2020 7x x + 653x x │ │ │ │ +0003ed50: 2b20 3136 3433 7820 202b 207c 0a7c 2020 + 1643x + |.| │ │ │ │ +0003ed60: 2020 2020 2037 2038 2020 2020 2020 2038 7 8 8 │ │ │ │ +0003ed70: 2020 2020 2020 2030 2020 2020 2020 2030 0 0 │ │ │ │ +0003ed80: 2031 2020 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ +0003ed90: 2020 3020 3220 2020 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +0003eda0: 2020 2020 2020 2032 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003edb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003edc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003edd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ede0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ee00: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee20: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003edf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ee10: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0003ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ee50: 207c 0a7c 3136 3233 7820 7820 202b 2035 |.|1623x x + 5 │ │ │ │ -0003ee60: 3134 7820 7820 202d 2031 3478 2078 2020 14x x - 14x x │ │ │ │ -0003ee70: 2d20 3930 7820 202b 2031 3233 3278 2078 - 90x + 1232x x │ │ │ │ -0003ee80: 2020 2d20 3134 3334 7820 7820 202b 2031 - 1434x x + 1 │ │ │ │ -0003ee90: 3239 3678 2078 2020 2b20 2020 2020 2020 296x x + │ │ │ │ -0003eea0: 207c 0a7c 2020 2020 2030 2033 2020 2020 |.| 0 3 │ │ │ │ -0003eeb0: 2020 2031 2033 2020 2020 2020 3220 3320 1 3 2 3 │ │ │ │ -0003eec0: 2020 2020 2033 2020 2020 2020 2020 3020 3 0 │ │ │ │ -0003eed0: 3420 2020 2020 2020 2031 2034 2020 2020 4 1 4 │ │ │ │ -0003eee0: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -0003eef0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ee40: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +0003ee50: 3233 7820 7820 202b 2035 3134 7820 7820 23x x + 514x x │ │ │ │ +0003ee60: 202d 2031 3478 2078 2020 2d20 3930 7820 - 14x x - 90x │ │ │ │ +0003ee70: 202b 2031 3233 3278 2078 2020 2d20 3134 + 1232x x - 14 │ │ │ │ +0003ee80: 3334 7820 7820 202b 2031 3239 3678 2078 34x x + 1296x x │ │ │ │ +0003ee90: 2020 2b20 2020 2020 2020 207c 0a7c 2020 + |.| │ │ │ │ +0003eea0: 2020 2030 2033 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +0003eeb0: 2020 2020 2020 3220 3320 2020 2020 2033 2 3 3 │ │ │ │ +0003eec0: 2020 2020 2020 2020 3020 3420 2020 2020 0 4 │ │ │ │ +0003eed0: 2020 2031 2034 2020 2020 2020 2020 3220 1 4 2 │ │ │ │ +0003eee0: 3420 2020 2020 2020 2020 207c 0a7c 2d2d 4 |.|-- │ │ │ │ +0003eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003ef40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003ef50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003ef40: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ef80: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0003ef90: 207c 0a7c 3135 3232 7820 7820 202b 2031 |.|1522x x + 1 │ │ │ │ -0003efa0: 3336 7820 202d 2036 3233 7820 7820 202d 36x - 623x x - │ │ │ │ -0003efb0: 2036 3037 7820 7820 202b 2031 3878 2078 607x x + 18x x │ │ │ │ -0003efc0: 2020 2b20 3839 3678 2078 2020 2d20 3239 + 896x x - 29 │ │ │ │ -0003efd0: 7820 7820 202b 2031 3035 3978 2020 2d20 x x + 1059x - │ │ │ │ -0003efe0: 207c 0a7c 2020 2020 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -0003eff0: 2020 2034 2020 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ -0003f000: 2020 2020 2031 2035 2020 2020 2020 3220 1 5 2 │ │ │ │ -0003f010: 3520 2020 2020 2020 3320 3520 2020 2020 5 3 5 │ │ │ │ -0003f020: 2034 2035 2020 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ -0003f030: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003ef80: 2020 2020 2020 3220 2020 207c 0a7c 3135 2 |.|15 │ │ │ │ +0003ef90: 3232 7820 7820 202b 2031 3336 7820 202d 22x x + 136x - │ │ │ │ +0003efa0: 2036 3233 7820 7820 202d 2036 3037 7820 623x x - 607x │ │ │ │ +0003efb0: 7820 202b 2031 3878 2078 2020 2b20 3839 x + 18x x + 89 │ │ │ │ +0003efc0: 3678 2078 2020 2d20 3239 7820 7820 202b 6x x - 29x x + │ │ │ │ +0003efd0: 2031 3035 3978 2020 2d20 207c 0a7c 2020 1059x - |.| │ │ │ │ +0003efe0: 2020 2033 2034 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ +0003eff0: 2020 2020 2030 2035 2020 2020 2020 2031 0 5 1 │ │ │ │ +0003f000: 2035 2020 2020 2020 3220 3520 2020 2020 5 2 5 │ │ │ │ +0003f010: 2020 3320 3520 2020 2020 2034 2035 2020 3 5 4 5 │ │ │ │ +0003f020: 2020 2020 2020 3520 2020 207c 0a7c 2d2d 5 |.|-- │ │ │ │ +0003f030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f080: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f0c0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0003f0d0: 207c 0a7c 3130 3533 7820 7820 202b 2031 |.|1053x x + 1 │ │ │ │ -0003f0e0: 3634 3378 2078 2020 2b20 3136 3532 7820 643x x + 1652x │ │ │ │ -0003f0f0: 7820 202d 2031 3139 3078 2078 2020 2d20 x - 1190x x - │ │ │ │ -0003f100: 3130 3733 7820 7820 202b 2031 3437 3078 1073x x + 1470x │ │ │ │ -0003f110: 2078 2020 2d20 3934 3478 2020 2d20 2020 x - 944x - │ │ │ │ -0003f120: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -0003f130: 2020 2020 3120 3620 2020 2020 2020 2032 1 6 2 │ │ │ │ -0003f140: 2036 2020 2020 2020 2020 3320 3620 2020 6 3 6 │ │ │ │ -0003f150: 2020 2020 2034 2036 2020 2020 2020 2020 4 6 │ │ │ │ -0003f160: 3520 3620 2020 2020 2020 3620 2020 2020 5 6 6 │ │ │ │ -0003f170: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f0c0: 2020 2020 3220 2020 2020 207c 0a7c 3130 2 |.|10 │ │ │ │ +0003f0d0: 3533 7820 7820 202b 2031 3634 3378 2078 53x x + 1643x x │ │ │ │ +0003f0e0: 2020 2b20 3136 3532 7820 7820 202d 2031 + 1652x x - 1 │ │ │ │ +0003f0f0: 3139 3078 2078 2020 2d20 3130 3733 7820 190x x - 1073x │ │ │ │ +0003f100: 7820 202b 2031 3437 3078 2078 2020 2d20 x + 1470x x - │ │ │ │ +0003f110: 3934 3478 2020 2d20 2020 207c 0a7c 2020 944x - |.| │ │ │ │ +0003f120: 2020 2030 2036 2020 2020 2020 2020 3120 0 6 1 │ │ │ │ +0003f130: 3620 2020 2020 2020 2032 2036 2020 2020 6 2 6 │ │ │ │ +0003f140: 2020 2020 3320 3620 2020 2020 2020 2034 3 6 4 │ │ │ │ +0003f150: 2036 2020 2020 2020 2020 3520 3620 2020 6 5 6 │ │ │ │ +0003f160: 2020 2020 3620 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003f170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f1c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f210: 327c 0a7c 3933 7820 7820 202d 2031 3837 2|.|93x x - 187 │ │ │ │ -0003f220: 7820 7820 202d 2039 3934 7820 7820 202d x x - 994x x - │ │ │ │ -0003f230: 2031 3431 3578 2078 2020 2d20 3232 3978 1415x x - 229x │ │ │ │ -0003f240: 2078 2020 2d20 3739 3678 2078 2020 2b20 x - 796x x + │ │ │ │ -0003f250: 3136 3432 7820 7820 202b 2031 3630 3078 1642x x + 1600x │ │ │ │ -0003f260: 207c 0a7c 2020 2030 2037 2020 2020 2020 |.| 0 7 │ │ │ │ -0003f270: 2031 2037 2020 2020 2020 2032 2037 2020 1 7 2 7 │ │ │ │ -0003f280: 2020 2020 2020 3320 3720 2020 2020 2020 3 7 │ │ │ │ -0003f290: 3420 3720 2020 2020 2020 3520 3720 2020 4 7 5 7 │ │ │ │ -0003f2a0: 2020 2020 2036 2037 2020 2020 2020 2020 6 7 │ │ │ │ -0003f2b0: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +0003f200: 2020 2020 2020 2020 2020 327c 0a7c 3933 2|.|93 │ │ │ │ +0003f210: 7820 7820 202d 2031 3837 7820 7820 202d x x - 187x x - │ │ │ │ +0003f220: 2039 3934 7820 7820 202d 2031 3431 3578 994x x - 1415x │ │ │ │ +0003f230: 2078 2020 2d20 3232 3978 2078 2020 2d20 x - 229x x - │ │ │ │ +0003f240: 3739 3678 2078 2020 2b20 3136 3432 7820 796x x + 1642x │ │ │ │ +0003f250: 7820 202b 2031 3630 3078 207c 0a7c 2020 x + 1600x |.| │ │ │ │ +0003f260: 2030 2037 2020 2020 2020 2031 2037 2020 0 7 1 7 │ │ │ │ +0003f270: 2020 2020 2032 2037 2020 2020 2020 2020 2 7 │ │ │ │ +0003f280: 3320 3720 2020 2020 2020 3420 3720 2020 3 7 4 7 │ │ │ │ +0003f290: 2020 2020 3520 3720 2020 2020 2020 2036 5 7 6 │ │ │ │ +0003f2a0: 2037 2020 2020 2020 2020 377c 0a7c 2d2d 7 7|.|-- │ │ │ │ +0003f2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f300: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f350: 207c 0a7c 2d20 3334 3478 2078 2020 2b20 |.|- 344x x + │ │ │ │ -0003f360: 3930 3578 2078 2020 2b20 3130 3332 7820 905x x + 1032x │ │ │ │ -0003f370: 7820 202d 2035 3338 7820 7820 202d 2038 x - 538x x - 8 │ │ │ │ -0003f380: 3931 7820 7820 202b 2031 3234 3378 2078 91x x + 1243x x │ │ │ │ -0003f390: 2020 2b20 3132 3930 7820 7820 202b 2020 + 1290x x + │ │ │ │ -0003f3a0: 207c 0a7c 2020 2020 2020 3020 3820 2020 |.| 0 8 │ │ │ │ -0003f3b0: 2020 2020 3120 3820 2020 2020 2020 2032 1 8 2 │ │ │ │ -0003f3c0: 2038 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ -0003f3d0: 2020 2034 2038 2020 2020 2020 2020 3520 4 8 5 │ │ │ │ -0003f3e0: 3820 2020 2020 2020 2036 2038 2020 2020 8 6 8 │ │ │ │ -0003f3f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f340: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +0003f350: 3334 3478 2078 2020 2b20 3930 3578 2078 344x x + 905x x │ │ │ │ +0003f360: 2020 2b20 3130 3332 7820 7820 202d 2035 + 1032x x - 5 │ │ │ │ +0003f370: 3338 7820 7820 202d 2038 3931 7820 7820 38x x - 891x x │ │ │ │ +0003f380: 202b 2031 3234 3378 2078 2020 2b20 3132 + 1243x x + 12 │ │ │ │ +0003f390: 3930 7820 7820 202b 2020 207c 0a7c 2020 90x x + |.| │ │ │ │ +0003f3a0: 2020 2020 3020 3820 2020 2020 2020 3120 0 8 1 │ │ │ │ +0003f3b0: 3820 2020 2020 2020 2032 2038 2020 2020 8 2 8 │ │ │ │ +0003f3c0: 2020 2033 2038 2020 2020 2020 2034 2038 3 8 4 8 │ │ │ │ +0003f3d0: 2020 2020 2020 2020 3520 3820 2020 2020 5 8 │ │ │ │ +0003f3e0: 2020 2036 2038 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +0003f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f440: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003f450: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -0003f460: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003f430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f440: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0003f450: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0003f460: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0003f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f480: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0003f490: 207c 0a7c 3439 3078 2078 2020 2d20 3131 |.|490x x - 11 │ │ │ │ -0003f4a0: 3438 7820 2c20 3136 3133 7820 202b 2031 48x , 1613x + 1 │ │ │ │ -0003f4b0: 3735 7820 7820 202d 2031 3334 3678 2020 75x x - 1346x │ │ │ │ -0003f4c0: 2d20 3130 3030 7820 7820 202d 2031 3231 - 1000x x - 121 │ │ │ │ -0003f4d0: 3778 2078 2020 2d20 3732 3978 2020 2d20 7x x - 729x - │ │ │ │ -0003f4e0: 207c 0a7c 2020 2020 3720 3820 2020 2020 |.| 7 8 │ │ │ │ -0003f4f0: 2020 2038 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ -0003f500: 2020 2030 2031 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ -0003f510: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ -0003f520: 2020 3120 3220 2020 2020 2020 3220 2020 1 2 2 │ │ │ │ -0003f530: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f480: 2020 2020 2020 3220 2020 207c 0a7c 3439 2 |.|49 │ │ │ │ +0003f490: 3078 2078 2020 2d20 3131 3438 7820 2c20 0x x - 1148x , │ │ │ │ +0003f4a0: 3136 3133 7820 202b 2031 3735 7820 7820 1613x + 175x x │ │ │ │ +0003f4b0: 202d 2031 3334 3678 2020 2d20 3130 3030 - 1346x - 1000 │ │ │ │ +0003f4c0: 7820 7820 202d 2031 3231 3778 2078 2020 x x - 1217x x │ │ │ │ +0003f4d0: 2d20 3732 3978 2020 2d20 207c 0a7c 2020 - 729x - |.| │ │ │ │ +0003f4e0: 2020 3720 3820 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ +0003f4f0: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ +0003f500: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0003f510: 2030 2032 2020 2020 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +0003f520: 2020 2020 2020 3220 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +0003f530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f580: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5a0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0003f5a0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0003f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f5d0: 207c 0a7c 3132 3936 7820 7820 202b 2031 |.|1296x x + 1 │ │ │ │ -0003f5e0: 3435 3678 2078 2020 2b20 3734 3578 2078 456x x + 745x x │ │ │ │ -0003f5f0: 2020 2b20 3533 3978 2020 2b20 3532 3578 + 539x + 525x │ │ │ │ -0003f600: 2078 2020 2d20 3831 3178 2078 2020 2b20 x - 811x x + │ │ │ │ -0003f610: 3735 3378 2078 2020 2b20 2020 2020 2020 753x x + │ │ │ │ -0003f620: 207c 0a7c 2020 2020 2030 2033 2020 2020 |.| 0 3 │ │ │ │ -0003f630: 2020 2020 3120 3320 2020 2020 2020 3220 1 3 2 │ │ │ │ -0003f640: 3320 2020 2020 2020 3320 2020 2020 2020 3 3 │ │ │ │ -0003f650: 3020 3420 2020 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ -0003f660: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -0003f670: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f5c0: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +0003f5d0: 3936 7820 7820 202b 2031 3435 3678 2078 96x x + 1456x x │ │ │ │ +0003f5e0: 2020 2b20 3734 3578 2078 2020 2b20 3533 + 745x x + 53 │ │ │ │ +0003f5f0: 3978 2020 2b20 3532 3578 2078 2020 2d20 9x + 525x x - │ │ │ │ +0003f600: 3831 3178 2078 2020 2b20 3735 3378 2078 811x x + 753x x │ │ │ │ +0003f610: 2020 2b20 2020 2020 2020 207c 0a7c 2020 + |.| │ │ │ │ +0003f620: 2020 2030 2033 2020 2020 2020 2020 3120 0 3 1 │ │ │ │ +0003f630: 3320 2020 2020 2020 3220 3320 2020 2020 3 2 3 │ │ │ │ +0003f640: 2020 3320 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ +0003f650: 2020 2020 3120 3420 2020 2020 2020 3220 1 4 2 │ │ │ │ +0003f660: 3420 2020 2020 2020 2020 207c 0a7c 2d2d 4 |.|-- │ │ │ │ +0003f670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f6c0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003f6d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0003f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f6c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0003f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f700: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -0003f710: 207c 0a7c 3133 3632 7820 7820 202b 2031 |.|1362x x + 1 │ │ │ │ -0003f720: 3632 3978 2020 2d20 3834 3078 2078 2020 629x - 840x x │ │ │ │ -0003f730: 2b20 3531 3378 2078 2020 2b20 3432 3978 + 513x x + 429x │ │ │ │ -0003f740: 2078 2020 2b20 3834 3278 2078 2020 2b20 x + 842x x + │ │ │ │ -0003f750: 3134 3134 7820 7820 202d 2033 3038 7820 1414x x - 308x │ │ │ │ -0003f760: 207c 0a7c 2020 2020 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -0003f770: 2020 2020 3420 2020 2020 2020 3020 3520 4 0 5 │ │ │ │ -0003f780: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -0003f790: 3220 3520 2020 2020 2020 3320 3520 2020 2 5 3 5 │ │ │ │ -0003f7a0: 2020 2020 2034 2035 2020 2020 2020 2035 4 5 5 │ │ │ │ -0003f7b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f700: 2020 2020 2020 2020 2032 207c 0a7c 3133 2 |.|13 │ │ │ │ +0003f710: 3632 7820 7820 202b 2031 3632 3978 2020 62x x + 1629x │ │ │ │ +0003f720: 2d20 3834 3078 2078 2020 2b20 3531 3378 - 840x x + 513x │ │ │ │ +0003f730: 2078 2020 2b20 3432 3978 2078 2020 2b20 x + 429x x + │ │ │ │ +0003f740: 3834 3278 2078 2020 2b20 3134 3134 7820 842x x + 1414x │ │ │ │ +0003f750: 7820 202d 2033 3038 7820 207c 0a7c 2020 x - 308x |.| │ │ │ │ +0003f760: 2020 2033 2034 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ +0003f770: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ +0003f780: 3120 3520 2020 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +0003f790: 2020 2020 3320 3520 2020 2020 2020 2034 3 5 4 │ │ │ │ +0003f7a0: 2035 2020 2020 2020 2035 207c 0a7c 2d2d 5 5 |.|-- │ │ │ │ +0003f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f800: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f840: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0003f850: 207c 0a7c 2b20 3134 3135 7820 7820 202d |.|+ 1415x x - │ │ │ │ -0003f860: 2031 3436 3178 2078 2020 2d20 3131 3335 1461x x - 1135 │ │ │ │ -0003f870: 7820 7820 202b 2037 3031 7820 7820 202b x x + 701x x + │ │ │ │ -0003f880: 2037 3636 7820 7820 202b 2037 3835 7820 766x x + 785x │ │ │ │ -0003f890: 7820 202b 2031 3530 3378 2020 2b20 2020 x + 1503x + │ │ │ │ -0003f8a0: 207c 0a7c 2020 2020 2020 2030 2036 2020 |.| 0 6 │ │ │ │ -0003f8b0: 2020 2020 2020 3120 3620 2020 2020 2020 1 6 │ │ │ │ -0003f8c0: 2032 2036 2020 2020 2020 2033 2036 2020 2 6 3 6 │ │ │ │ -0003f8d0: 2020 2020 2034 2036 2020 2020 2020 2035 4 6 5 │ │ │ │ -0003f8e0: 2036 2020 2020 2020 2020 3620 2020 2020 6 6 │ │ │ │ -0003f8f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003f840: 2020 2020 3220 2020 2020 207c 0a7c 2b20 2 |.|+ │ │ │ │ +0003f850: 3134 3135 7820 7820 202d 2031 3436 3178 1415x x - 1461x │ │ │ │ +0003f860: 2078 2020 2d20 3131 3335 7820 7820 202b x - 1135x x + │ │ │ │ +0003f870: 2037 3031 7820 7820 202b 2037 3636 7820 701x x + 766x │ │ │ │ +0003f880: 7820 202b 2037 3835 7820 7820 202b 2031 x + 785x x + 1 │ │ │ │ +0003f890: 3530 3378 2020 2b20 2020 207c 0a7c 2020 503x + |.| │ │ │ │ +0003f8a0: 2020 2020 2030 2036 2020 2020 2020 2020 0 6 │ │ │ │ +0003f8b0: 3120 3620 2020 2020 2020 2032 2036 2020 1 6 2 6 │ │ │ │ +0003f8c0: 2020 2020 2033 2036 2020 2020 2020 2034 3 6 4 │ │ │ │ +0003f8d0: 2036 2020 2020 2020 2035 2036 2020 2020 6 5 6 │ │ │ │ +0003f8e0: 2020 2020 3620 2020 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +0003f8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003f920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003f940: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003f930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003f990: 327c 0a7c 3134 3778 2078 2020 2b20 3932 2|.|147x x + 92 │ │ │ │ -0003f9a0: 3978 2078 2020 2d20 3132 3230 7820 7820 9x x - 1220x x │ │ │ │ -0003f9b0: 202d 2038 3533 7820 7820 202b 2034 3933 - 853x x + 493 │ │ │ │ -0003f9c0: 7820 7820 202b 2032 3236 7820 7820 202b x x + 226x x + │ │ │ │ -0003f9d0: 2031 3431 3678 2078 2020 2b20 3238 3078 1416x x + 280x │ │ │ │ -0003f9e0: 207c 0a7c 2020 2020 3020 3720 2020 2020 |.| 0 7 │ │ │ │ -0003f9f0: 2020 3120 3720 2020 2020 2020 2032 2037 1 7 2 7 │ │ │ │ -0003fa00: 2020 2020 2020 2033 2037 2020 2020 2020 3 7 │ │ │ │ -0003fa10: 2034 2037 2020 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ -0003fa20: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ -0003fa30: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +0003f980: 2020 2020 2020 2020 2020 327c 0a7c 3134 2|.|14 │ │ │ │ +0003f990: 3778 2078 2020 2b20 3932 3978 2078 2020 7x x + 929x x │ │ │ │ +0003f9a0: 2d20 3132 3230 7820 7820 202d 2038 3533 - 1220x x - 853 │ │ │ │ +0003f9b0: 7820 7820 202b 2034 3933 7820 7820 202b x x + 493x x + │ │ │ │ +0003f9c0: 2032 3236 7820 7820 202b 2031 3431 3678 226x x + 1416x │ │ │ │ +0003f9d0: 2078 2020 2b20 3238 3078 207c 0a7c 2020 x + 280x |.| │ │ │ │ +0003f9e0: 2020 3020 3720 2020 2020 2020 3120 3720 0 7 1 7 │ │ │ │ +0003f9f0: 2020 2020 2020 2032 2037 2020 2020 2020 2 7 │ │ │ │ +0003fa00: 2033 2037 2020 2020 2020 2034 2037 2020 3 7 4 7 │ │ │ │ +0003fa10: 2020 2020 2035 2037 2020 2020 2020 2020 5 7 │ │ │ │ +0003fa20: 3620 3720 2020 2020 2020 377c 0a7c 2d2d 6 7 7|.|-- │ │ │ │ +0003fa30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fa80: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0003fa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fad0: 207c 0a7c 2d20 3778 2078 2020 2b20 3136 |.|- 7x x + 16 │ │ │ │ -0003fae0: 3332 7820 7820 202b 2035 3230 7820 7820 32x x + 520x x │ │ │ │ -0003faf0: 202b 2031 3235 3978 2078 2020 2b20 3135 + 1259x x + 15 │ │ │ │ -0003fb00: 3778 2078 2020 2b20 3135 3936 7820 7820 7x x + 1596x x │ │ │ │ -0003fb10: 202b 2036 3535 7820 7820 202d 2020 2020 + 655x x - │ │ │ │ -0003fb20: 207c 0a7c 2020 2020 3020 3820 2020 2020 |.| 0 8 │ │ │ │ -0003fb30: 2020 2031 2038 2020 2020 2020 2032 2038 1 8 2 8 │ │ │ │ -0003fb40: 2020 2020 2020 2020 3320 3820 2020 2020 3 8 │ │ │ │ -0003fb50: 2020 3420 3820 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -0003fb60: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ -0003fb70: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0003fac0: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +0003fad0: 3778 2078 2020 2b20 3136 3332 7820 7820 7x x + 1632x x │ │ │ │ +0003fae0: 202b 2035 3230 7820 7820 202b 2031 3235 + 520x x + 125 │ │ │ │ +0003faf0: 3978 2078 2020 2b20 3135 3778 2078 2020 9x x + 157x x │ │ │ │ +0003fb00: 2b20 3135 3936 7820 7820 202b 2036 3535 + 1596x x + 655 │ │ │ │ +0003fb10: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ +0003fb20: 2020 3020 3820 2020 2020 2020 2031 2038 0 8 1 8 │ │ │ │ +0003fb30: 2020 2020 2020 2032 2038 2020 2020 2020 2 8 │ │ │ │ +0003fb40: 2020 3320 3820 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ +0003fb50: 2020 2020 2020 2035 2038 2020 2020 2020 5 8 │ │ │ │ +0003fb60: 2036 2038 2020 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +0003fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fbc0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -0003fbd0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0003fbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +0003fbc0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0003fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc10: 207c 0a7c 3432 7820 7820 202d 2035 3836 |.|42x x - 586 │ │ │ │ -0003fc20: 7820 7d29 2020 2020 2020 2020 2020 2020 x }) │ │ │ │ +0003fc00: 2020 2020 2020 2020 2020 207c 0a7c 3432 |.|42 │ │ │ │ +0003fc10: 7820 7820 202d 2035 3836 7820 7d29 2020 x x - 586x }) │ │ │ │ +0003fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fc60: 207c 0a7c 2020 2037 2038 2020 2020 2020 |.| 7 8 │ │ │ │ -0003fc70: 2038 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +0003fc50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003fc60: 2037 2038 2020 2020 2020 2038 2020 2020 7 8 8 │ │ │ │ +0003fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fcb0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0003fca0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003fcb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fcc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fcd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fd00: 2d2b 0a7c 6935 203a 2074 696d 6520 6465 -+.|i5 : time de │ │ │ │ -0003fd10: 6772 6565 4d61 7020 7068 6920 2020 2020 greeMap phi │ │ │ │ +0003fcf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +0003fd00: 203a 2074 696d 6520 6465 6772 6565 4d61 : time degreeMa │ │ │ │ +0003fd10: 7020 7068 6920 2020 2020 2020 2020 2020 p phi │ │ │ │ 0003fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fd50: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -0003fd60: 3435 3336 3936 7320 2863 7075 293b 2030 453696s (cpu); 0 │ │ │ │ -0003fd70: 2e30 3435 3337 3037 7320 2874 6872 6561 .0453707s (threa │ │ │ │ -0003fd80: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ -0003fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fda0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003fd40: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +0003fd50: 2d20 7573 6564 2030 2e30 3533 3735 3732 - used 0.0537572 │ │ │ │ +0003fd60: 7320 2863 7075 293b 2030 2e30 3533 3735 s (cpu); 0.05375 │ │ │ │ +0003fd70: 3539 7320 2874 6872 6561 6429 3b20 3073 59s (thread); 0s │ │ │ │ +0003fd80: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0003fd90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fdf0: 207c 0a7c 6f35 203d 2031 2020 2020 2020 |.|o5 = 1 │ │ │ │ +0003fde0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +0003fdf0: 203d 2031 2020 2020 2020 2020 2020 2020 = 1 │ │ │ │ 0003fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fe40: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0003fe30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0003fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fe50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fe60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0003fe70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0003fe90: 2d2b 0a7c 6936 203a 202d 2d20 436f 6d70 -+.|i6 : -- Comp │ │ │ │ -0003fea0: 6f73 6520 7068 693a 505e 382d 2d2d 3e50 ose phi:P^8--->P │ │ │ │ -0003feb0: 5e31 3420 7769 7468 2061 206c 696e 6561 ^14 with a linea │ │ │ │ -0003fec0: 7220 7072 6f6a 6563 7469 6f6e 2050 5e31 r projection P^1 │ │ │ │ -0003fed0: 342d 2d2d 3e50 5e38 2066 726f 6d20 2020 4--->P^8 from │ │ │ │ -0003fee0: 207c 0a7c 2020 2020 202d 2d20 6f66 2064 |.| -- of d │ │ │ │ -0003fef0: 696d 656e 7369 6f6e 2035 2028 736f 2074 imension 5 (so t │ │ │ │ -0003ff00: 6861 7420 7468 6520 636f 6d70 6f73 6974 hat the composit │ │ │ │ -0003ff10: 696f 6e20 7068 6927 3a50 5e38 2d2d 2d3e ion phi':P^8---> │ │ │ │ -0003ff20: 505e 3820 6d75 7374 2068 6176 6520 2020 P^8 must have │ │ │ │ -0003ff30: 207c 0a7c 2020 2020 2070 6869 273d 7068 |.| phi'=ph │ │ │ │ -0003ff40: 692a 6d61 7028 7269 6e67 5031 342c 7269 i*map(ringP14,ri │ │ │ │ -0003ff50: 6e67 5038 2c66 6f72 2069 2074 6f20 3820 ngP8,for i to 8 │ │ │ │ -0003ff60: 6c69 7374 2072 616e 646f 6d28 312c 7269 list random(1,ri │ │ │ │ -0003ff70: 6e67 5031 3429 2920 2020 2020 2020 2020 ngP14)) │ │ │ │ -0003ff80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +0003fe90: 203a 202d 2d20 436f 6d70 6f73 6520 7068 : -- Compose ph │ │ │ │ +0003fea0: 693a 505e 382d 2d2d 3e50 5e31 3420 7769 i:P^8--->P^14 wi │ │ │ │ +0003feb0: 7468 2061 206c 696e 6561 7220 7072 6f6a th a linear proj │ │ │ │ +0003fec0: 6563 7469 6f6e 2050 5e31 342d 2d2d 3e50 ection P^14--->P │ │ │ │ +0003fed0: 5e38 2066 726f 6d20 2020 207c 0a7c 2020 ^8 from |.| │ │ │ │ +0003fee0: 2020 202d 2d20 6f66 2064 696d 656e 7369 -- of dimensi │ │ │ │ +0003fef0: 6f6e 2035 2028 736f 2074 6861 7420 7468 on 5 (so that th │ │ │ │ +0003ff00: 6520 636f 6d70 6f73 6974 696f 6e20 7068 e composition ph │ │ │ │ +0003ff10: 6927 3a50 5e38 2d2d 2d3e 505e 3820 6d75 i':P^8--->P^8 mu │ │ │ │ +0003ff20: 7374 2068 6176 6520 2020 207c 0a7c 2020 st have |.| │ │ │ │ +0003ff30: 2020 2070 6869 273d 7068 692a 6d61 7028 phi'=phi*map( │ │ │ │ +0003ff40: 7269 6e67 5031 342c 7269 6e67 5038 2c66 ringP14,ringP8,f │ │ │ │ +0003ff50: 6f72 2069 2074 6f20 3820 6c69 7374 2072 or i to 8 list r │ │ │ │ +0003ff60: 616e 646f 6d28 312c 7269 6e67 5031 3429 andom(1,ringP14) │ │ │ │ +0003ff70: 2920 2020 2020 2020 2020 207c 0a7c 2020 ) |.| │ │ │ │ +0003ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0003ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003ffd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0003ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0003fff0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00040000: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00040010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040020: 207c 0a7c 6f36 203d 206d 6170 2028 7269 |.|o6 = map (ri │ │ │ │ -00040030: 6e67 5038 2c20 7269 6e67 5038 2c20 7b2d ngP8, ringP8, {- │ │ │ │ -00040040: 2037 3830 7820 202d 2035 3036 7820 7820 780x - 506x x │ │ │ │ -00040050: 202b 2031 3533 3778 2020 2d20 3133 3278 + 1537x - 132x │ │ │ │ -00040060: 2078 2020 2d20 3932 3878 2078 2020 2020 x - 928x x │ │ │ │ -00040070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00040080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040090: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -000400a0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -000400b0: 3020 3220 2020 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ -000400c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0003ffc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0003ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0003ffe0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0003fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040000: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00040010: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00040020: 203d 206d 6170 2028 7269 6e67 5038 2c20 = map (ringP8, │ │ │ │ +00040030: 7269 6e67 5038 2c20 7b2d 2037 3830 7820 ringP8, {- 780x │ │ │ │ +00040040: 202d 2035 3036 7820 7820 202b 2031 3533 - 506x x + 153 │ │ │ │ +00040050: 3778 2020 2d20 3133 3278 2078 2020 2d20 7x - 132x x - │ │ │ │ +00040060: 3932 3878 2078 2020 2020 207c 0a7c 2020 928x x |.| │ │ │ │ +00040070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040080: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00040090: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +000400a0: 2020 3120 2020 2020 2020 3020 3220 2020 1 0 2 │ │ │ │ +000400b0: 2020 2020 3120 3220 2020 207c 0a7c 2020 1 2 |.| │ │ │ │ +000400c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000400d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000400e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000400f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040110: 207c 0a7c 6f36 203a 2052 696e 674d 6170 |.|o6 : RingMap │ │ │ │ -00040120: 2072 696e 6750 3820 3c2d 2d20 7269 6e67 ringP8 <-- ring │ │ │ │ -00040130: 5038 2020 2020 2020 2020 2020 2020 2020 P8 │ │ │ │ +00040100: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +00040110: 203a 2052 696e 674d 6170 2072 696e 6750 : RingMap ringP │ │ │ │ +00040120: 3820 3c2d 2d20 7269 6e67 5038 2020 2020 8 <-- ringP8 │ │ │ │ +00040130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040160: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040150: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00040160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000401a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000401b0: 2d7c 0a7c 6120 6765 6e65 7261 6c20 7375 -|.|a general su │ │ │ │ -000401c0: 6273 7061 6365 206f 6620 505e 3134 2020 bspace of P^14 │ │ │ │ +000401a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6120 -----------|.|a │ │ │ │ +000401b0: 6765 6e65 7261 6c20 7375 6273 7061 6365 general subspace │ │ │ │ +000401c0: 206f 6620 505e 3134 2020 2020 2020 2020 of P^14 │ │ │ │ 000401d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000401e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000401f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040200: 207c 0a7c 6465 6772 6565 2065 7175 616c |.|degree equal │ │ │ │ -00040210: 2074 6f20 6465 6728 4728 312c 3529 293d to deg(G(1,5))= │ │ │ │ -00040220: 3134 2920 2020 2020 2020 2020 2020 2020 14) │ │ │ │ +000401f0: 2020 2020 2020 2020 2020 207c 0a7c 6465 |.|de │ │ │ │ +00040200: 6772 6565 2065 7175 616c 2074 6f20 6465 gree equal to de │ │ │ │ +00040210: 6728 4728 312c 3529 293d 3134 2920 2020 g(G(1,5))=14) │ │ │ │ +00040220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040240: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00040250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000402a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00040290: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000402a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000402b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000402c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000402d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000402e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000402f0: 207c 0a7c 2020 2020 2020 3220 2020 2020 |.| 2 │ │ │ │ +000402e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000402f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00040300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040320: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00040330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040340: 207c 0a7c 2b20 3338 3678 2020 2d20 3130 |.|+ 386x - 10 │ │ │ │ -00040350: 3278 2078 2020 2b20 3432 3278 2078 2020 2x x + 422x x │ │ │ │ -00040360: 2b20 3732 3578 2078 2020 2d20 3130 3733 + 725x x - 1073 │ │ │ │ -00040370: 7820 202d 2039 3035 7820 7820 202d 2038 x - 905x x - 8 │ │ │ │ -00040380: 3330 7820 7820 202b 2031 3530 3078 2078 30x x + 1500x x │ │ │ │ -00040390: 207c 0a7c 2020 2020 2020 3220 2020 2020 |.| 2 │ │ │ │ -000403a0: 2020 3020 3320 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ -000403b0: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ -000403c0: 2033 2020 2020 2020 2030 2034 2020 2020 3 0 4 │ │ │ │ -000403d0: 2020 2031 2034 2020 2020 2020 2020 3220 1 4 2 │ │ │ │ -000403e0: 347c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 4|.|------------ │ │ │ │ +00040310: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00040320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00040330: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00040340: 3338 3678 2020 2d20 3130 3278 2078 2020 386x - 102x x │ │ │ │ +00040350: 2b20 3432 3278 2078 2020 2b20 3732 3578 + 422x x + 725x │ │ │ │ +00040360: 2078 2020 2d20 3130 3733 7820 202d 2039 x - 1073x - 9 │ │ │ │ +00040370: 3035 7820 7820 202d 2038 3330 7820 7820 05x x - 830x x │ │ │ │ +00040380: 202b 2031 3530 3078 2078 207c 0a7c 2020 + 1500x x |.| │ │ │ │ +00040390: 2020 2020 3220 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ +000403a0: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ +000403b0: 3220 3320 2020 2020 2020 2033 2020 2020 2 3 3 │ │ │ │ +000403c0: 2020 2030 2034 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ +000403d0: 2020 2020 2020 2020 3220 347c 0a7c 2d2d 2 4|.|-- │ │ │ │ +000403e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000403f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040430: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00040440: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00040420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040430: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00040440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040480: 207c 0a7c 2b20 3237 3678 2078 2020 2b20 |.|+ 276x x + │ │ │ │ -00040490: 3135 3333 7820 202d 2036 3533 7820 7820 1533x - 653x x │ │ │ │ -000404a0: 202b 2031 3535 3878 2078 2020 2b20 3933 + 1558x x + 93 │ │ │ │ -000404b0: 3978 2078 2020 2d20 3134 3332 7820 7820 9x x - 1432x x │ │ │ │ -000404c0: 202b 2034 3632 7820 7820 202d 2020 2020 + 462x x - │ │ │ │ -000404d0: 207c 0a7c 2020 2020 2020 3320 3420 2020 |.| 3 4 │ │ │ │ -000404e0: 2020 2020 2034 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ -000404f0: 2020 2020 2020 2020 3120 3520 2020 2020 1 5 │ │ │ │ -00040500: 2020 3220 3520 2020 2020 2020 2033 2035 2 5 3 5 │ │ │ │ -00040510: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ -00040520: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040470: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00040480: 3237 3678 2078 2020 2b20 3135 3333 7820 276x x + 1533x │ │ │ │ +00040490: 202d 2036 3533 7820 7820 202b 2031 3535 - 653x x + 155 │ │ │ │ +000404a0: 3878 2078 2020 2b20 3933 3978 2078 2020 8x x + 939x x │ │ │ │ +000404b0: 2d20 3134 3332 7820 7820 202b 2034 3632 - 1432x x + 462 │ │ │ │ +000404c0: 7820 7820 202d 2020 2020 207c 0a7c 2020 x x - |.| │ │ │ │ +000404d0: 2020 2020 3320 3420 2020 2020 2020 2034 3 4 4 │ │ │ │ +000404e0: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ +000404f0: 2020 3120 3520 2020 2020 2020 3220 3520 1 5 2 5 │ │ │ │ +00040500: 2020 2020 2020 2033 2035 2020 2020 2020 3 5 │ │ │ │ +00040510: 2034 2035 2020 2020 2020 207c 0a7c 2d2d 4 5 |.|-- │ │ │ │ +00040520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040570: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +00040560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040570: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00040580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000405a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000405b0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000405c0: 207c 0a7c 3332 3978 2020 2d20 3932 7820 |.|329x - 92x │ │ │ │ -000405d0: 7820 202b 2036 3631 7820 7820 202d 2031 x + 661x x - 1 │ │ │ │ -000405e0: 3239 3878 2078 2020 2d20 3638 3478 2078 298x x - 684x x │ │ │ │ -000405f0: 2020 2b20 3730 7820 7820 202d 2037 3135 + 70x x - 715 │ │ │ │ -00040600: 7820 7820 202b 2031 3039 3378 2020 2b20 x x + 1093x + │ │ │ │ -00040610: 207c 0a7c 2020 2020 3520 2020 2020 2030 |.| 5 0 │ │ │ │ -00040620: 2036 2020 2020 2020 2031 2036 2020 2020 6 1 6 │ │ │ │ -00040630: 2020 2020 3220 3620 2020 2020 2020 3320 2 6 3 │ │ │ │ -00040640: 3620 2020 2020 2034 2036 2020 2020 2020 6 4 6 │ │ │ │ -00040650: 2035 2036 2020 2020 2020 2020 3620 2020 5 6 6 │ │ │ │ -00040660: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000405b0: 2020 2020 2020 3220 2020 207c 0a7c 3332 2 |.|32 │ │ │ │ +000405c0: 3978 2020 2d20 3932 7820 7820 202b 2036 9x - 92x x + 6 │ │ │ │ +000405d0: 3631 7820 7820 202d 2031 3239 3878 2078 61x x - 1298x x │ │ │ │ +000405e0: 2020 2d20 3638 3478 2078 2020 2b20 3730 - 684x x + 70 │ │ │ │ +000405f0: 7820 7820 202d 2037 3135 7820 7820 202b x x - 715x x + │ │ │ │ +00040600: 2031 3039 3378 2020 2b20 207c 0a7c 2020 1093x + |.| │ │ │ │ +00040610: 2020 3520 2020 2020 2030 2036 2020 2020 5 0 6 │ │ │ │ +00040620: 2020 2031 2036 2020 2020 2020 2020 3220 1 6 2 │ │ │ │ +00040630: 3620 2020 2020 2020 3320 3620 2020 2020 6 3 6 │ │ │ │ +00040640: 2034 2036 2020 2020 2020 2035 2036 2020 4 6 5 6 │ │ │ │ +00040650: 2020 2020 2020 3620 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +00040660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000406a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000406b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000406a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000406b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000406c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000406d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000406e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000406f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00040700: 207c 0a7c 3538 3178 2078 2020 2b20 3332 |.|581x x + 32 │ │ │ │ -00040710: 3978 2078 2020 2b20 3435 3478 2078 2020 9x x + 454x x │ │ │ │ -00040720: 2d20 3931 3178 2078 2020 2d20 3834 7820 - 911x x - 84x │ │ │ │ -00040730: 7820 202d 2031 3435 3278 2078 2020 2d20 x - 1452x x - │ │ │ │ -00040740: 3830 3978 2078 2020 2b20 3132 3032 7820 809x x + 1202x │ │ │ │ -00040750: 207c 0a7c 2020 2020 3020 3720 2020 2020 |.| 0 7 │ │ │ │ -00040760: 2020 3120 3720 2020 2020 2020 3220 3720 1 7 2 7 │ │ │ │ -00040770: 2020 2020 2020 3320 3720 2020 2020 2034 3 7 4 │ │ │ │ -00040780: 2037 2020 2020 2020 2020 3520 3720 2020 7 5 7 │ │ │ │ -00040790: 2020 2020 3620 3720 2020 2020 2020 2037 6 7 7 │ │ │ │ -000407a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000406f0: 2020 2020 2020 2020 2032 207c 0a7c 3538 2 |.|58 │ │ │ │ +00040700: 3178 2078 2020 2b20 3332 3978 2078 2020 1x x + 329x x │ │ │ │ +00040710: 2b20 3435 3478 2078 2020 2d20 3931 3178 + 454x x - 911x │ │ │ │ +00040720: 2078 2020 2d20 3834 7820 7820 202d 2031 x - 84x x - 1 │ │ │ │ +00040730: 3435 3278 2078 2020 2d20 3830 3978 2078 452x x - 809x x │ │ │ │ +00040740: 2020 2b20 3132 3032 7820 207c 0a7c 2020 + 1202x |.| │ │ │ │ +00040750: 2020 3020 3720 2020 2020 2020 3120 3720 0 7 1 7 │ │ │ │ +00040760: 2020 2020 2020 3220 3720 2020 2020 2020 2 7 │ │ │ │ +00040770: 3320 3720 2020 2020 2034 2037 2020 2020 3 7 4 7 │ │ │ │ +00040780: 2020 2020 3520 3720 2020 2020 2020 3620 5 7 6 │ │ │ │ +00040790: 3720 2020 2020 2020 2037 207c 0a7c 2d2d 7 7 |.|-- │ │ │ │ +000407a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000407b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000407c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000407d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000407e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000407f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000407e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000407f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040840: 207c 0a7c 2b20 3133 3533 7820 7820 202b |.|+ 1353x x + │ │ │ │ -00040850: 2031 3530 3378 2078 2020 2b20 3438 3278 1503x x + 482x │ │ │ │ -00040860: 2078 2020 2b20 3839 3378 2078 2020 2d20 x + 893x x - │ │ │ │ -00040870: 3634 3378 2078 2020 2b20 3539 3878 2078 643x x + 598x x │ │ │ │ -00040880: 2020 2b20 3131 3078 2078 2020 2b20 2020 + 110x x + │ │ │ │ -00040890: 207c 0a7c 2020 2020 2020 2030 2038 2020 |.| 0 8 │ │ │ │ -000408a0: 2020 2020 2020 3120 3820 2020 2020 2020 1 8 │ │ │ │ -000408b0: 3220 3820 2020 2020 2020 3320 3820 2020 2 8 3 8 │ │ │ │ -000408c0: 2020 2020 3420 3820 2020 2020 2020 3520 4 8 5 │ │ │ │ -000408d0: 3820 2020 2020 2020 3620 3820 2020 2020 8 6 8 │ │ │ │ -000408e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040830: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00040840: 3133 3533 7820 7820 202b 2031 3530 3378 1353x x + 1503x │ │ │ │ +00040850: 2078 2020 2b20 3438 3278 2078 2020 2b20 x + 482x x + │ │ │ │ +00040860: 3839 3378 2078 2020 2d20 3634 3378 2078 893x x - 643x x │ │ │ │ +00040870: 2020 2b20 3539 3878 2078 2020 2b20 3131 + 598x x + 11 │ │ │ │ +00040880: 3078 2078 2020 2b20 2020 207c 0a7c 2020 0x x + |.| │ │ │ │ +00040890: 2020 2020 2030 2038 2020 2020 2020 2020 0 8 │ │ │ │ +000408a0: 3120 3820 2020 2020 2020 3220 3820 2020 1 8 2 8 │ │ │ │ +000408b0: 2020 2020 3320 3820 2020 2020 2020 3420 3 8 4 │ │ │ │ +000408c0: 3820 2020 2020 2020 3520 3820 2020 2020 8 5 8 │ │ │ │ +000408d0: 2020 3620 3820 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +000408e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000408f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040930: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00040940: 2020 2032 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ -00040950: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00040920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040930: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00040940: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00040950: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00040960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040970: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00040980: 207c 0a7c 3130 3634 7820 7820 202d 2034 |.|1064x x - 4 │ │ │ │ -00040990: 3732 7820 2c20 2d20 3532 3278 2020 2d20 72x , - 522x - │ │ │ │ -000409a0: 3538 3378 2078 2020 2b20 3133 3339 7820 583x x + 1339x │ │ │ │ -000409b0: 202b 2031 3533 3578 2078 2020 2d20 3133 + 1535x x - 13 │ │ │ │ -000409c0: 3137 7820 7820 202b 2031 3131 3378 2020 17x x + 1113x │ │ │ │ -000409d0: 2d7c 0a7c 2020 2020 2037 2038 2020 2020 -|.| 7 8 │ │ │ │ -000409e0: 2020 2038 2020 2020 2020 2020 3020 2020 8 0 │ │ │ │ -000409f0: 2020 2020 3020 3120 2020 2020 2020 2031 0 1 1 │ │ │ │ -00040a00: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ -00040a10: 2020 2031 2032 2020 2020 2020 2020 3220 1 2 2 │ │ │ │ -00040a20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040970: 2020 2020 2020 2020 3220 207c 0a7c 3130 2 |.|10 │ │ │ │ +00040980: 3634 7820 7820 202d 2034 3732 7820 2c20 64x x - 472x , │ │ │ │ +00040990: 2d20 3532 3278 2020 2d20 3538 3378 2078 - 522x - 583x x │ │ │ │ +000409a0: 2020 2b20 3133 3339 7820 202b 2031 3533 + 1339x + 153 │ │ │ │ +000409b0: 3578 2078 2020 2d20 3133 3137 7820 7820 5x x - 1317x x │ │ │ │ +000409c0: 202b 2031 3131 3378 2020 2d7c 0a7c 2020 + 1113x -|.| │ │ │ │ +000409d0: 2020 2037 2038 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ +000409e0: 2020 2020 2020 3020 2020 2020 2020 3020 0 0 │ │ │ │ +000409f0: 3120 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00040a00: 2020 3020 3220 2020 2020 2020 2031 2032 0 2 1 2 │ │ │ │ +00040a10: 2020 2020 2020 2020 3220 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +00040a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040a70: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00040a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040a90: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00040a90: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00040aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040ac0: 207c 0a7c 3136 3978 2078 2020 2b20 3134 |.|169x x + 14 │ │ │ │ -00040ad0: 3430 7820 7820 202d 2031 3635 3778 2078 40x x - 1657x x │ │ │ │ -00040ae0: 2020 2b20 3732 3178 2020 2b20 3430 7820 + 721x + 40x │ │ │ │ -00040af0: 7820 202d 2031 3537 3678 2078 2020 2d20 x - 1576x x - │ │ │ │ -00040b00: 3336 3778 2078 2020 2b20 3235 3778 2078 367x x + 257x x │ │ │ │ -00040b10: 207c 0a7c 2020 2020 3020 3320 2020 2020 |.| 0 3 │ │ │ │ -00040b20: 2020 2031 2033 2020 2020 2020 2020 3220 1 3 2 │ │ │ │ -00040b30: 3320 2020 2020 2020 3320 2020 2020 2030 3 3 0 │ │ │ │ -00040b40: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ -00040b50: 2020 2020 3220 3420 2020 2020 2020 3320 2 4 3 │ │ │ │ -00040b60: 347c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 4|.|------------ │ │ │ │ +00040ab0: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +00040ac0: 3978 2078 2020 2b20 3134 3430 7820 7820 9x x + 1440x x │ │ │ │ +00040ad0: 202d 2031 3635 3778 2078 2020 2b20 3732 - 1657x x + 72 │ │ │ │ +00040ae0: 3178 2020 2b20 3430 7820 7820 202d 2031 1x + 40x x - 1 │ │ │ │ +00040af0: 3537 3678 2078 2020 2d20 3336 3778 2078 576x x - 367x x │ │ │ │ +00040b00: 2020 2b20 3235 3778 2078 207c 0a7c 2020 + 257x x |.| │ │ │ │ +00040b10: 2020 3020 3320 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +00040b20: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ +00040b30: 2020 3320 2020 2020 2030 2034 2020 2020 3 0 4 │ │ │ │ +00040b40: 2020 2020 3120 3420 2020 2020 2020 3220 1 4 2 │ │ │ │ +00040b50: 3420 2020 2020 2020 3320 347c 0a7c 2d2d 4 3 4|.|-- │ │ │ │ +00040b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040bb0: 2d7c 0a7c 2020 2020 2020 2032 2020 2020 -|.| 2 │ │ │ │ +00040ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040bb0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00040bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040bf0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00040c00: 207c 0a7c 2d20 3134 3534 7820 202b 2031 |.|- 1454x + 1 │ │ │ │ -00040c10: 3631 3278 2078 2020 2b20 3135 3239 7820 612x x + 1529x │ │ │ │ -00040c20: 7820 202d 2031 3036 3878 2078 2020 2b20 x - 1068x x + │ │ │ │ -00040c30: 3536 3078 2078 2020 2d20 3134 3431 7820 560x x - 1441x │ │ │ │ -00040c40: 7820 202b 2036 3038 7820 202d 2020 2020 x + 608x - │ │ │ │ -00040c50: 207c 0a7c 2020 2020 2020 2034 2020 2020 |.| 4 │ │ │ │ -00040c60: 2020 2020 3020 3520 2020 2020 2020 2031 0 5 1 │ │ │ │ -00040c70: 2035 2020 2020 2020 2020 3220 3520 2020 5 2 5 │ │ │ │ -00040c80: 2020 2020 3320 3520 2020 2020 2020 2034 3 5 4 │ │ │ │ -00040c90: 2035 2020 2020 2020 2035 2020 2020 2020 5 5 │ │ │ │ -00040ca0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040bf0: 2020 2032 2020 2020 2020 207c 0a7c 2d20 2 |.|- │ │ │ │ +00040c00: 3134 3534 7820 202b 2031 3631 3278 2078 1454x + 1612x x │ │ │ │ +00040c10: 2020 2b20 3135 3239 7820 7820 202d 2031 + 1529x x - 1 │ │ │ │ +00040c20: 3036 3878 2078 2020 2b20 3536 3078 2078 068x x + 560x x │ │ │ │ +00040c30: 2020 2d20 3134 3431 7820 7820 202b 2036 - 1441x x + 6 │ │ │ │ +00040c40: 3038 7820 202d 2020 2020 207c 0a7c 2020 08x - |.| │ │ │ │ +00040c50: 2020 2020 2034 2020 2020 2020 2020 3020 4 0 │ │ │ │ +00040c60: 3520 2020 2020 2020 2031 2035 2020 2020 5 1 5 │ │ │ │ +00040c70: 2020 2020 3220 3520 2020 2020 2020 3320 2 5 3 │ │ │ │ +00040c80: 3520 2020 2020 2020 2034 2035 2020 2020 5 4 5 │ │ │ │ +00040c90: 2020 2035 2020 2020 2020 207c 0a7c 2d2d 5 |.|-- │ │ │ │ +00040ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040cf0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00040ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040d30: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00040d40: 207c 0a7c 3932 7820 7820 202d 2031 3030 |.|92x x - 100 │ │ │ │ -00040d50: 3678 2078 2020 2b20 3238 3578 2078 2020 6x x + 285x x │ │ │ │ -00040d60: 2b20 3130 3278 2078 2020 2d20 3339 3778 + 102x x - 397x │ │ │ │ -00040d70: 2078 2020 2b20 3636 7820 7820 202d 2036 x + 66x x - 6 │ │ │ │ -00040d80: 3433 7820 202d 2033 3878 2078 2020 2b20 43x - 38x x + │ │ │ │ -00040d90: 207c 0a7c 2020 2030 2036 2020 2020 2020 |.| 0 6 │ │ │ │ -00040da0: 2020 3120 3620 2020 2020 2020 3220 3620 1 6 2 6 │ │ │ │ -00040db0: 2020 2020 2020 3320 3620 2020 2020 2020 3 6 │ │ │ │ -00040dc0: 3420 3620 2020 2020 2035 2036 2020 2020 4 6 5 6 │ │ │ │ -00040dd0: 2020 2036 2020 2020 2020 3020 3720 2020 6 0 7 │ │ │ │ -00040de0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040d20: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00040d30: 2020 2020 2020 2020 2020 207c 0a7c 3932 |.|92 │ │ │ │ +00040d40: 7820 7820 202d 2031 3030 3678 2078 2020 x x - 1006x x │ │ │ │ +00040d50: 2b20 3238 3578 2078 2020 2b20 3130 3278 + 285x x + 102x │ │ │ │ +00040d60: 2078 2020 2d20 3339 3778 2078 2020 2b20 x - 397x x + │ │ │ │ +00040d70: 3636 7820 7820 202d 2036 3433 7820 202d 66x x - 643x - │ │ │ │ +00040d80: 2033 3878 2078 2020 2b20 207c 0a7c 2020 38x x + |.| │ │ │ │ +00040d90: 2030 2036 2020 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +00040da0: 2020 2020 2020 3220 3620 2020 2020 2020 2 6 │ │ │ │ +00040db0: 3320 3620 2020 2020 2020 3420 3620 2020 3 6 4 6 │ │ │ │ +00040dc0: 2020 2035 2036 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ +00040dd0: 2020 2020 3020 3720 2020 207c 0a7c 2d2d 0 7 |.|-- │ │ │ │ +00040de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040e30: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00040e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040e70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00040e80: 207c 0a7c 3133 3830 7820 7820 202b 2031 |.|1380x x + 1 │ │ │ │ -00040e90: 3036 3978 2078 2020 2d20 3432 3678 2078 069x x - 426x x │ │ │ │ -00040ea0: 2020 2b20 3131 3437 7820 7820 202b 2039 + 1147x x + 9 │ │ │ │ -00040eb0: 3832 7820 7820 202b 2031 3078 2078 2020 82x x + 10x x │ │ │ │ -00040ec0: 2d20 3636 3278 2020 2b20 3136 7820 7820 - 662x + 16x x │ │ │ │ -00040ed0: 207c 0a7c 2020 2020 2031 2037 2020 2020 |.| 1 7 │ │ │ │ -00040ee0: 2020 2020 3220 3720 2020 2020 2020 3320 2 7 3 │ │ │ │ -00040ef0: 3720 2020 2020 2020 2034 2037 2020 2020 7 4 7 │ │ │ │ -00040f00: 2020 2035 2037 2020 2020 2020 3620 3720 5 7 6 7 │ │ │ │ -00040f10: 2020 2020 2020 3720 2020 2020 2030 2038 7 0 8 │ │ │ │ -00040f20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040e70: 3220 2020 2020 2020 2020 207c 0a7c 3133 2 |.|13 │ │ │ │ +00040e80: 3830 7820 7820 202b 2031 3036 3978 2078 80x x + 1069x x │ │ │ │ +00040e90: 2020 2d20 3432 3678 2078 2020 2b20 3131 - 426x x + 11 │ │ │ │ +00040ea0: 3437 7820 7820 202b 2039 3832 7820 7820 47x x + 982x x │ │ │ │ +00040eb0: 202b 2031 3078 2078 2020 2d20 3636 3278 + 10x x - 662x │ │ │ │ +00040ec0: 2020 2b20 3136 7820 7820 207c 0a7c 2020 + 16x x |.| │ │ │ │ +00040ed0: 2020 2031 2037 2020 2020 2020 2020 3220 1 7 2 │ │ │ │ +00040ee0: 3720 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ +00040ef0: 2020 2034 2037 2020 2020 2020 2035 2037 4 7 5 7 │ │ │ │ +00040f00: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ +00040f10: 3720 2020 2020 2030 2038 207c 0a7c 2d2d 7 0 8 |.|-- │ │ │ │ +00040f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00040f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00040f70: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00040f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00040f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00040fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00040fc0: 207c 0a7c 2b20 3135 3631 7820 7820 202b |.|+ 1561x x + │ │ │ │ -00040fd0: 2031 3539 3778 2078 2020 2b20 3531 3278 1597x x + 512x │ │ │ │ -00040fe0: 2078 2020 2b20 3132 3838 7820 7820 202d x + 1288x x - │ │ │ │ -00040ff0: 2031 3235 3378 2078 2020 2b20 3133 3137 1253x x + 1317 │ │ │ │ -00041000: 7820 7820 202b 2031 3438 3178 2078 2020 x x + 1481x x │ │ │ │ -00041010: 2d7c 0a7c 2020 2020 2020 2031 2038 2020 -|.| 1 8 │ │ │ │ -00041020: 2020 2020 2020 3220 3820 2020 2020 2020 2 8 │ │ │ │ -00041030: 3320 3820 2020 2020 2020 2034 2038 2020 3 8 4 8 │ │ │ │ -00041040: 2020 2020 2020 3520 3820 2020 2020 2020 5 8 │ │ │ │ -00041050: 2036 2038 2020 2020 2020 2020 3720 3820 6 8 7 8 │ │ │ │ -00041060: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00040fb0: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00040fc0: 3135 3631 7820 7820 202b 2031 3539 3778 1561x x + 1597x │ │ │ │ +00040fd0: 2078 2020 2b20 3531 3278 2078 2020 2b20 x + 512x x + │ │ │ │ +00040fe0: 3132 3838 7820 7820 202d 2031 3235 3378 1288x x - 1253x │ │ │ │ +00040ff0: 2078 2020 2b20 3133 3137 7820 7820 202b x + 1317x x + │ │ │ │ +00041000: 2031 3438 3178 2078 2020 2d7c 0a7c 2020 1481x x -|.| │ │ │ │ +00041010: 2020 2020 2031 2038 2020 2020 2020 2020 1 8 │ │ │ │ +00041020: 3220 3820 2020 2020 2020 3320 3820 2020 2 8 3 8 │ │ │ │ +00041030: 2020 2020 2034 2038 2020 2020 2020 2020 4 8 │ │ │ │ +00041040: 3520 3820 2020 2020 2020 2036 2038 2020 5 8 6 8 │ │ │ │ +00041050: 2020 2020 2020 3720 3820 207c 0a7c 2d2d 7 8 |.|-- │ │ │ │ +00041060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000410a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000410b0: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ -000410c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000410d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000410e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000410f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00041100: 207c 0a7c 3335 3478 202c 202d 2036 3430 |.|354x , - 640 │ │ │ │ -00041110: 7820 202d 2031 3535 3178 2078 2020 2b20 x - 1551x x + │ │ │ │ -00041120: 3436 3978 2020 2b20 3134 3832 7820 7820 469x + 1482x x │ │ │ │ -00041130: 202d 2031 3539 3378 2078 2020 2d20 3938 - 1593x x - 98 │ │ │ │ -00041140: 3678 2020 2b20 3437 3178 2078 2020 2b20 6x + 471x x + │ │ │ │ -00041150: 207c 0a7c 2020 2020 3820 2020 2020 2020 |.| 8 │ │ │ │ -00041160: 2030 2020 2020 2020 2020 3020 3120 2020 0 0 1 │ │ │ │ -00041170: 2020 2020 3120 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -00041180: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00041190: 2020 3220 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ -000411a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000410a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000410b0: 2020 3220 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ +000410c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000410d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000410e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000410f0: 2020 2020 2020 2020 2020 207c 0a7c 3335 |.|35 │ │ │ │ +00041100: 3478 202c 202d 2036 3430 7820 202d 2031 4x , - 640x - 1 │ │ │ │ +00041110: 3535 3178 2078 2020 2b20 3436 3978 2020 551x x + 469x │ │ │ │ +00041120: 2b20 3134 3832 7820 7820 202d 2031 3539 + 1482x x - 159 │ │ │ │ +00041130: 3378 2078 2020 2d20 3938 3678 2020 2b20 3x x - 986x + │ │ │ │ +00041140: 3437 3178 2078 2020 2b20 207c 0a7c 2020 471x x + |.| │ │ │ │ +00041150: 2020 3820 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ +00041160: 2020 2020 3020 3120 2020 2020 2020 3120 0 1 1 │ │ │ │ +00041170: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +00041180: 2020 3120 3220 2020 2020 2020 3220 2020 1 2 2 │ │ │ │ +00041190: 2020 2020 3020 3320 2020 207c 0a7c 2d2d 0 3 |.|-- │ │ │ │ +000411a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000411b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000411c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000411d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000411e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000411f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00041200: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000411e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000411f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041200: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00041210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041230: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00041240: 207c 0a7c 3631 3278 2078 2020 2b20 3132 |.|612x x + 12 │ │ │ │ -00041250: 3238 7820 7820 202b 2031 3135 3678 2020 28x x + 1156x │ │ │ │ -00041260: 2d20 3733 3178 2078 2020 2b20 3135 3033 - 731x x + 1503 │ │ │ │ -00041270: 7820 7820 202d 2036 3238 7820 7820 202b x x - 628x x + │ │ │ │ -00041280: 2036 3734 7820 7820 202d 2037 3939 7820 674x x - 799x │ │ │ │ -00041290: 207c 0a7c 2020 2020 3120 3320 2020 2020 |.| 1 3 │ │ │ │ -000412a0: 2020 2032 2033 2020 2020 2020 2020 3320 2 3 3 │ │ │ │ -000412b0: 2020 2020 2020 3020 3420 2020 2020 2020 0 4 │ │ │ │ -000412c0: 2031 2034 2020 2020 2020 2032 2034 2020 1 4 2 4 │ │ │ │ -000412d0: 2020 2020 2033 2034 2020 2020 2020 2034 3 4 4 │ │ │ │ -000412e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041230: 2020 2020 2020 2020 2032 207c 0a7c 3631 2 |.|61 │ │ │ │ +00041240: 3278 2078 2020 2b20 3132 3238 7820 7820 2x x + 1228x x │ │ │ │ +00041250: 202b 2031 3135 3678 2020 2d20 3733 3178 + 1156x - 731x │ │ │ │ +00041260: 2078 2020 2b20 3135 3033 7820 7820 202d x + 1503x x - │ │ │ │ +00041270: 2036 3238 7820 7820 202b 2036 3734 7820 628x x + 674x │ │ │ │ +00041280: 7820 202d 2037 3939 7820 207c 0a7c 2020 x - 799x |.| │ │ │ │ +00041290: 2020 3120 3320 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ +000412a0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +000412b0: 3020 3420 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ +000412c0: 2020 2020 2032 2034 2020 2020 2020 2033 2 4 3 │ │ │ │ +000412d0: 2034 2020 2020 2020 2034 207c 0a7c 2d2d 4 4 |.|-- │ │ │ │ +000412e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000412f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041330: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00041320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041360: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00041370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041380: 207c 0a7c 2b20 3131 3337 7820 7820 202b |.|+ 1137x x + │ │ │ │ -00041390: 2038 3434 7820 7820 202b 2035 3839 7820 844x x + 589x │ │ │ │ -000413a0: 7820 202d 2036 3636 7820 7820 202b 2038 x - 666x x + 8 │ │ │ │ -000413b0: 3239 7820 7820 202d 2031 3032 3478 2020 29x x - 1024x │ │ │ │ -000413c0: 2d20 3137 3078 2078 2020 2b20 2020 2020 - 170x x + │ │ │ │ -000413d0: 207c 0a7c 2020 2020 2020 2030 2035 2020 |.| 0 5 │ │ │ │ -000413e0: 2020 2020 2031 2035 2020 2020 2020 2032 1 5 2 │ │ │ │ -000413f0: 2035 2020 2020 2020 2033 2035 2020 2020 5 3 5 │ │ │ │ -00041400: 2020 2034 2035 2020 2020 2020 2020 3520 4 5 5 │ │ │ │ -00041410: 2020 2020 2020 3020 3620 2020 2020 2020 0 6 │ │ │ │ -00041420: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041360: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00041370: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00041380: 3131 3337 7820 7820 202b 2038 3434 7820 1137x x + 844x │ │ │ │ +00041390: 7820 202b 2035 3839 7820 7820 202d 2036 x + 589x x - 6 │ │ │ │ +000413a0: 3636 7820 7820 202b 2038 3239 7820 7820 66x x + 829x x │ │ │ │ +000413b0: 202d 2031 3032 3478 2020 2d20 3137 3078 - 1024x - 170x │ │ │ │ +000413c0: 2078 2020 2b20 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +000413d0: 2020 2020 2030 2035 2020 2020 2020 2031 0 5 1 │ │ │ │ +000413e0: 2035 2020 2020 2020 2032 2035 2020 2020 5 2 5 │ │ │ │ +000413f0: 2020 2033 2035 2020 2020 2020 2034 2035 3 5 4 5 │ │ │ │ +00041400: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +00041410: 3020 3620 2020 2020 2020 207c 0a7c 2d2d 0 6 |.|-- │ │ │ │ +00041420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041470: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00041460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414a0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000414b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000414c0: 207c 0a7c 3435 3078 2078 2020 2b20 3134 |.|450x x + 14 │ │ │ │ -000414d0: 3937 7820 7820 202b 2031 3230 3478 2078 97x x + 1204x x │ │ │ │ -000414e0: 2020 2d20 3930 3778 2078 2020 2b20 3136 - 907x x + 16 │ │ │ │ -000414f0: 3231 7820 7820 202d 2034 3137 7820 202b 21x x - 417x + │ │ │ │ -00041500: 2031 3239 3778 2078 2020 2b20 2020 2020 1297x x + │ │ │ │ -00041510: 207c 0a7c 2020 2020 3120 3620 2020 2020 |.| 1 6 │ │ │ │ -00041520: 2020 2032 2036 2020 2020 2020 2020 3320 2 6 3 │ │ │ │ -00041530: 3620 2020 2020 2020 3420 3620 2020 2020 6 4 6 │ │ │ │ -00041540: 2020 2035 2036 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ -00041550: 2020 2020 2020 3020 3720 2020 2020 2020 0 7 │ │ │ │ -00041560: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000414a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000414b0: 2020 2020 2020 2020 2020 207c 0a7c 3435 |.|45 │ │ │ │ +000414c0: 3078 2078 2020 2b20 3134 3937 7820 7820 0x x + 1497x x │ │ │ │ +000414d0: 202b 2031 3230 3478 2078 2020 2d20 3930 + 1204x x - 90 │ │ │ │ +000414e0: 3778 2078 2020 2b20 3136 3231 7820 7820 7x x + 1621x x │ │ │ │ +000414f0: 202d 2034 3137 7820 202b 2031 3239 3778 - 417x + 1297x │ │ │ │ +00041500: 2078 2020 2b20 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00041510: 2020 3120 3620 2020 2020 2020 2032 2036 1 6 2 6 │ │ │ │ +00041520: 2020 2020 2020 2020 3320 3620 2020 2020 3 6 │ │ │ │ +00041530: 2020 3420 3620 2020 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +00041540: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ +00041550: 3020 3720 2020 2020 2020 207c 0a7c 2d2d 0 7 |.|-- │ │ │ │ +00041560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000415a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000415b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000415a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000415b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000415d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000415e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000415f0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00041600: 207c 0a7c 3134 3434 7820 7820 202b 2034 |.|1444x x + 4 │ │ │ │ -00041610: 7820 7820 202b 2033 3938 7820 7820 202b x x + 398x x + │ │ │ │ -00041620: 2039 3936 7820 7820 202d 2031 3033 3178 996x x - 1031x │ │ │ │ -00041630: 2078 2020 2b20 3233 3978 2078 2020 2b20 x + 239x x + │ │ │ │ -00041640: 3330 3378 2020 2b20 3132 3135 7820 7820 303x + 1215x x │ │ │ │ -00041650: 207c 0a7c 2020 2020 2031 2037 2020 2020 |.| 1 7 │ │ │ │ -00041660: 2032 2037 2020 2020 2020 2033 2037 2020 2 7 3 7 │ │ │ │ -00041670: 2020 2020 2034 2037 2020 2020 2020 2020 4 7 │ │ │ │ -00041680: 3520 3720 2020 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -00041690: 2020 2020 3720 2020 2020 2020 2030 2038 7 0 8 │ │ │ │ -000416a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000415e0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000415f0: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +00041600: 3434 7820 7820 202b 2034 7820 7820 202b 44x x + 4x x + │ │ │ │ +00041610: 2033 3938 7820 7820 202b 2039 3936 7820 398x x + 996x │ │ │ │ +00041620: 7820 202d 2031 3033 3178 2078 2020 2b20 x - 1031x x + │ │ │ │ +00041630: 3233 3978 2078 2020 2b20 3330 3378 2020 239x x + 303x │ │ │ │ +00041640: 2b20 3132 3135 7820 7820 207c 0a7c 2020 + 1215x x |.| │ │ │ │ +00041650: 2020 2031 2037 2020 2020 2032 2037 2020 1 7 2 7 │ │ │ │ +00041660: 2020 2020 2033 2037 2020 2020 2020 2034 3 7 4 │ │ │ │ +00041670: 2037 2020 2020 2020 2020 3520 3720 2020 7 5 7 │ │ │ │ +00041680: 2020 2020 3620 3720 2020 2020 2020 3720 6 7 7 │ │ │ │ +00041690: 2020 2020 2020 2030 2038 207c 0a7c 2d2d 0 8 |.|-- │ │ │ │ +000416a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000416d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000416e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000416f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000416e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000416f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041740: 207c 0a7c 2d20 3833 7820 7820 202b 2031 |.|- 83x x + 1 │ │ │ │ -00041750: 3537 3178 2078 2020 2d20 3135 3433 7820 571x x - 1543x │ │ │ │ -00041760: 7820 202d 2039 3235 7820 7820 202d 2036 x - 925x x - 6 │ │ │ │ -00041770: 3934 7820 7820 202b 2031 3531 7820 7820 94x x + 151x x │ │ │ │ -00041780: 202d 2035 3230 7820 7820 202b 2020 2020 - 520x x + │ │ │ │ -00041790: 207c 0a7c 2020 2020 2031 2038 2020 2020 |.| 1 8 │ │ │ │ -000417a0: 2020 2020 3220 3820 2020 2020 2020 2033 2 8 3 │ │ │ │ -000417b0: 2038 2020 2020 2020 2034 2038 2020 2020 8 4 8 │ │ │ │ -000417c0: 2020 2035 2038 2020 2020 2020 2036 2038 5 8 6 8 │ │ │ │ -000417d0: 2020 2020 2020 2037 2038 2020 2020 2020 7 8 │ │ │ │ -000417e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041730: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00041740: 3833 7820 7820 202b 2031 3537 3178 2078 83x x + 1571x x │ │ │ │ +00041750: 2020 2d20 3135 3433 7820 7820 202d 2039 - 1543x x - 9 │ │ │ │ +00041760: 3235 7820 7820 202d 2036 3934 7820 7820 25x x - 694x x │ │ │ │ +00041770: 202b 2031 3531 7820 7820 202d 2035 3230 + 151x x - 520 │ │ │ │ +00041780: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00041790: 2020 2031 2038 2020 2020 2020 2020 3220 1 8 2 │ │ │ │ +000417a0: 3820 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ +000417b0: 2020 2034 2038 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ +000417c0: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ +000417d0: 2037 2038 2020 2020 2020 207c 0a7c 2d2d 7 8 |.|-- │ │ │ │ +000417e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000417f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041830: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ -00041840: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00041850: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00041860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041870: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00041880: 207c 0a7c 3838 3078 202c 202d 2031 3231 |.|880x , - 121 │ │ │ │ -00041890: 3078 2020 2d20 3232 3278 2078 2020 2b20 0x - 222x x + │ │ │ │ -000418a0: 3138 3578 2020 2b20 3234 3578 2078 2020 185x + 245x x │ │ │ │ -000418b0: 2b20 3130 3539 7820 7820 202d 2033 3232 + 1059x x - 322 │ │ │ │ -000418c0: 7820 202b 2032 3338 7820 7820 202b 2020 x + 238x x + │ │ │ │ -000418d0: 207c 0a7c 2020 2020 3820 2020 2020 2020 |.| 8 │ │ │ │ -000418e0: 2020 3020 2020 2020 2020 3020 3120 2020 0 0 1 │ │ │ │ -000418f0: 2020 2020 3120 2020 2020 2020 3020 3220 1 0 2 │ │ │ │ -00041900: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00041910: 2032 2020 2020 2020 2030 2033 2020 2020 2 0 3 │ │ │ │ -00041920: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041830: 2020 3220 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00041840: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00041850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041860: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00041870: 2020 2020 2020 2020 2020 207c 0a7c 3838 |.|88 │ │ │ │ +00041880: 3078 202c 202d 2031 3231 3078 2020 2d20 0x , - 1210x - │ │ │ │ +00041890: 3232 3278 2078 2020 2b20 3138 3578 2020 222x x + 185x │ │ │ │ +000418a0: 2b20 3234 3578 2078 2020 2b20 3130 3539 + 245x x + 1059 │ │ │ │ +000418b0: 7820 7820 202d 2033 3232 7820 202b 2032 x x - 322x + 2 │ │ │ │ +000418c0: 3338 7820 7820 202b 2020 207c 0a7c 2020 38x x + |.| │ │ │ │ +000418d0: 2020 3820 2020 2020 2020 2020 3020 2020 8 0 │ │ │ │ +000418e0: 2020 2020 3020 3120 2020 2020 2020 3120 0 1 1 │ │ │ │ +000418f0: 2020 2020 2020 3020 3220 2020 2020 2020 0 2 │ │ │ │ +00041900: 2031 2032 2020 2020 2020 2032 2020 2020 1 2 2 │ │ │ │ +00041910: 2020 2030 2033 2020 2020 207c 0a7c 2d2d 0 3 |.|-- │ │ │ │ +00041920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041970: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00041980: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00041960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00041980: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00041990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000419a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000419c0: 207c 0a7c 3936 3278 2078 2020 2b20 3132 |.|962x x + 12 │ │ │ │ -000419d0: 3630 7820 7820 202d 2031 3538 3178 2020 60x x - 1581x │ │ │ │ -000419e0: 2b20 3530 7820 7820 202b 2031 3335 3278 + 50x x + 1352x │ │ │ │ -000419f0: 2078 2020 2d20 3134 3635 7820 7820 202b x - 1465x x + │ │ │ │ -00041a00: 2031 3535 3578 2078 2020 2b20 2020 2020 1555x x + │ │ │ │ -00041a10: 207c 0a7c 2020 2020 3120 3320 2020 2020 |.| 1 3 │ │ │ │ -00041a20: 2020 2032 2033 2020 2020 2020 2020 3320 2 3 3 │ │ │ │ -00041a30: 2020 2020 2030 2034 2020 2020 2020 2020 0 4 │ │ │ │ -00041a40: 3120 3420 2020 2020 2020 2032 2034 2020 1 4 2 4 │ │ │ │ -00041a50: 2020 2020 2020 3320 3420 2020 2020 2020 3 4 │ │ │ │ -00041a60: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000419b0: 2020 2020 2020 2020 2020 207c 0a7c 3936 |.|96 │ │ │ │ +000419c0: 3278 2078 2020 2b20 3132 3630 7820 7820 2x x + 1260x x │ │ │ │ +000419d0: 202d 2031 3538 3178 2020 2b20 3530 7820 - 1581x + 50x │ │ │ │ +000419e0: 7820 202b 2031 3335 3278 2078 2020 2d20 x + 1352x x - │ │ │ │ +000419f0: 3134 3635 7820 7820 202b 2031 3535 3578 1465x x + 1555x │ │ │ │ +00041a00: 2078 2020 2b20 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00041a10: 2020 3120 3320 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ +00041a20: 2020 2020 2020 2020 3320 2020 2020 2030 3 0 │ │ │ │ +00041a30: 2034 2020 2020 2020 2020 3120 3420 2020 4 1 4 │ │ │ │ +00041a40: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ +00041a50: 3320 3420 2020 2020 2020 207c 0a7c 2d2d 3 4 |.|-- │ │ │ │ +00041a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041ab0: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +00041aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041ab0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00041ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041af0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00041b00: 207c 0a7c 3133 3333 7820 202b 2031 3336 |.|1333x + 136 │ │ │ │ -00041b10: 3278 2078 2020 2b20 3133 3635 7820 7820 2x x + 1365x x │ │ │ │ -00041b20: 202b 2031 3136 3878 2078 2020 2d20 3134 + 1168x x - 14 │ │ │ │ -00041b30: 3031 7820 7820 202b 2031 3439 7820 7820 01x x + 149x x │ │ │ │ -00041b40: 202d 2036 3532 7820 202b 2020 2020 2020 - 652x + │ │ │ │ -00041b50: 207c 0a7c 2020 2020 2034 2020 2020 2020 |.| 4 │ │ │ │ -00041b60: 2020 3020 3520 2020 2020 2020 2031 2035 0 5 1 5 │ │ │ │ -00041b70: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ -00041b80: 2020 2033 2035 2020 2020 2020 2034 2035 3 5 4 5 │ │ │ │ -00041b90: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -00041ba0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041af0: 2032 2020 2020 2020 2020 207c 0a7c 3133 2 |.|13 │ │ │ │ +00041b00: 3333 7820 202b 2031 3336 3278 2078 2020 33x + 1362x x │ │ │ │ +00041b10: 2b20 3133 3635 7820 7820 202b 2031 3136 + 1365x x + 116 │ │ │ │ +00041b20: 3878 2078 2020 2d20 3134 3031 7820 7820 8x x - 1401x x │ │ │ │ +00041b30: 202b 2031 3439 7820 7820 202d 2036 3532 + 149x x - 652 │ │ │ │ +00041b40: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00041b50: 2020 2034 2020 2020 2020 2020 3020 3520 4 0 5 │ │ │ │ +00041b60: 2020 2020 2020 2031 2035 2020 2020 2020 1 5 │ │ │ │ +00041b70: 2020 3220 3520 2020 2020 2020 2033 2035 2 5 3 5 │ │ │ │ +00041b80: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ +00041b90: 2035 2020 2020 2020 2020 207c 0a7c 2d2d 5 |.|-- │ │ │ │ +00041ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041bf0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00041be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041c30: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00041c40: 207c 0a7c 3133 3738 7820 7820 202d 2035 |.|1378x x - 5 │ │ │ │ -00041c50: 3537 7820 7820 202d 2031 3132 7820 7820 57x x - 112x x │ │ │ │ -00041c60: 202b 2032 3678 2078 2020 2b20 3331 3578 + 26x x + 315x │ │ │ │ -00041c70: 2078 2020 2b20 3131 3178 2078 2020 2b20 x + 111x x + │ │ │ │ -00041c80: 3135 3932 7820 202d 2032 3833 7820 7820 1592x - 283x x │ │ │ │ -00041c90: 207c 0a7c 2020 2020 2030 2036 2020 2020 |.| 0 6 │ │ │ │ -00041ca0: 2020 2031 2036 2020 2020 2020 2032 2036 1 6 2 6 │ │ │ │ -00041cb0: 2020 2020 2020 3320 3620 2020 2020 2020 3 6 │ │ │ │ -00041cc0: 3420 3620 2020 2020 2020 3520 3620 2020 4 6 5 6 │ │ │ │ -00041cd0: 2020 2020 2036 2020 2020 2020 2030 2037 6 0 7 │ │ │ │ -00041ce0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041c20: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00041c30: 2020 2020 2020 2020 2020 207c 0a7c 3133 |.|13 │ │ │ │ +00041c40: 3738 7820 7820 202d 2035 3537 7820 7820 78x x - 557x x │ │ │ │ +00041c50: 202d 2031 3132 7820 7820 202b 2032 3678 - 112x x + 26x │ │ │ │ +00041c60: 2078 2020 2b20 3331 3578 2078 2020 2b20 x + 315x x + │ │ │ │ +00041c70: 3131 3178 2078 2020 2b20 3135 3932 7820 111x x + 1592x │ │ │ │ +00041c80: 202d 2032 3833 7820 7820 207c 0a7c 2020 - 283x x |.| │ │ │ │ +00041c90: 2020 2030 2036 2020 2020 2020 2031 2036 0 6 1 6 │ │ │ │ +00041ca0: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ +00041cb0: 3320 3620 2020 2020 2020 3420 3620 2020 3 6 4 6 │ │ │ │ +00041cc0: 2020 2020 3520 3620 2020 2020 2020 2036 5 6 6 │ │ │ │ +00041cd0: 2020 2020 2020 2030 2037 207c 0a7c 2d2d 0 7 |.|-- │ │ │ │ +00041ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041d30: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00041d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041d70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00041d80: 207c 0a7c 2d20 3134 3534 7820 7820 202b |.|- 1454x x + │ │ │ │ -00041d90: 2039 3037 7820 7820 202b 2032 3132 7820 907x x + 212x │ │ │ │ -00041da0: 7820 202b 2034 3030 7820 7820 202b 2031 x + 400x x + 1 │ │ │ │ -00041db0: 3034 3978 2078 2020 2d20 3838 3278 2078 049x x - 882x x │ │ │ │ -00041dc0: 2020 2d20 3134 3239 7820 202d 2020 2020 - 1429x - │ │ │ │ -00041dd0: 207c 0a7c 2020 2020 2020 2031 2037 2020 |.| 1 7 │ │ │ │ -00041de0: 2020 2020 2032 2037 2020 2020 2020 2033 2 7 3 │ │ │ │ -00041df0: 2037 2020 2020 2020 2034 2037 2020 2020 7 4 7 │ │ │ │ -00041e00: 2020 2020 3520 3720 2020 2020 2020 3620 5 7 6 │ │ │ │ -00041e10: 3720 2020 2020 2020 2037 2020 2020 2020 7 7 │ │ │ │ -00041e20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041d70: 2020 2032 2020 2020 2020 207c 0a7c 2d20 2 |.|- │ │ │ │ +00041d80: 3134 3534 7820 7820 202b 2039 3037 7820 1454x x + 907x │ │ │ │ +00041d90: 7820 202b 2032 3132 7820 7820 202b 2034 x + 212x x + 4 │ │ │ │ +00041da0: 3030 7820 7820 202b 2031 3034 3978 2078 00x x + 1049x x │ │ │ │ +00041db0: 2020 2d20 3838 3278 2078 2020 2d20 3134 - 882x x - 14 │ │ │ │ +00041dc0: 3239 7820 202d 2020 2020 207c 0a7c 2020 29x - |.| │ │ │ │ +00041dd0: 2020 2020 2031 2037 2020 2020 2020 2032 1 7 2 │ │ │ │ +00041de0: 2037 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ +00041df0: 2020 2034 2037 2020 2020 2020 2020 3520 4 7 5 │ │ │ │ +00041e00: 3720 2020 2020 2020 3620 3720 2020 2020 7 6 7 │ │ │ │ +00041e10: 2020 2037 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +00041e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041e70: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00041e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00041ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ec0: 207c 0a7c 3138 3378 2078 2020 2b20 3135 |.|183x x + 15 │ │ │ │ -00041ed0: 3731 7820 7820 202d 2031 3238 3678 2078 71x x - 1286x x │ │ │ │ -00041ee0: 2020 2d20 3131 3739 7820 7820 202b 2031 - 1179x x + 1 │ │ │ │ -00041ef0: 3331 3978 2078 2020 2b20 3234 3078 2078 319x x + 240x x │ │ │ │ -00041f00: 2020 2d20 3131 3030 7820 7820 202b 2020 - 1100x x + │ │ │ │ -00041f10: 207c 0a7c 2020 2020 3020 3820 2020 2020 |.| 0 8 │ │ │ │ -00041f20: 2020 2031 2038 2020 2020 2020 2020 3220 1 8 2 │ │ │ │ -00041f30: 3820 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ -00041f40: 2020 2020 3420 3820 2020 2020 2020 3520 4 8 5 │ │ │ │ -00041f50: 3820 2020 2020 2020 2036 2038 2020 2020 8 6 8 │ │ │ │ -00041f60: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041eb0: 2020 2020 2020 2020 2020 207c 0a7c 3138 |.|18 │ │ │ │ +00041ec0: 3378 2078 2020 2b20 3135 3731 7820 7820 3x x + 1571x x │ │ │ │ +00041ed0: 202d 2031 3238 3678 2078 2020 2d20 3131 - 1286x x - 11 │ │ │ │ +00041ee0: 3739 7820 7820 202b 2031 3331 3978 2078 79x x + 1319x x │ │ │ │ +00041ef0: 2020 2b20 3234 3078 2078 2020 2d20 3131 + 240x x - 11 │ │ │ │ +00041f00: 3030 7820 7820 202b 2020 207c 0a7c 2020 00x x + |.| │ │ │ │ +00041f10: 2020 3020 3820 2020 2020 2020 2031 2038 0 8 1 8 │ │ │ │ +00041f20: 2020 2020 2020 2020 3220 3820 2020 2020 2 8 │ │ │ │ +00041f30: 2020 2033 2038 2020 2020 2020 2020 3420 3 8 4 │ │ │ │ +00041f40: 3820 2020 2020 2020 3520 3820 2020 2020 8 5 8 │ │ │ │ +00041f50: 2020 2036 2038 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +00041f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00041f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00041fb0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00041fc0: 2020 2032 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00041fd0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00041fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00041fb0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00041fc0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00041fd0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00041fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00041ff0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00042000: 207c 0a7c 3135 3030 7820 7820 202d 2033 |.|1500x x - 3 │ │ │ │ -00042010: 3438 7820 2c20 3130 3531 7820 202d 2031 48x , 1051x - 1 │ │ │ │ -00042020: 3332 3578 2078 2020 2b20 3133 3534 7820 325x x + 1354x │ │ │ │ -00042030: 202d 2033 3436 7820 7820 202d 2031 3533 - 346x x - 153 │ │ │ │ -00042040: 3278 2078 2020 2d20 3436 3678 2020 2b20 2x x - 466x + │ │ │ │ -00042050: 207c 0a7c 2020 2020 2037 2038 2020 2020 |.| 7 8 │ │ │ │ -00042060: 2020 2038 2020 2020 2020 2030 2020 2020 8 0 │ │ │ │ -00042070: 2020 2020 3020 3120 2020 2020 2020 2031 0 1 1 │ │ │ │ -00042080: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ -00042090: 2020 3120 3220 2020 2020 2020 3220 2020 1 2 2 │ │ │ │ -000420a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00041ff0: 2020 2020 2020 3220 2020 207c 0a7c 3135 2 |.|15 │ │ │ │ +00042000: 3030 7820 7820 202d 2033 3438 7820 2c20 00x x - 348x , │ │ │ │ +00042010: 3130 3531 7820 202d 2031 3332 3578 2078 1051x - 1325x x │ │ │ │ +00042020: 2020 2b20 3133 3534 7820 202d 2033 3436 + 1354x - 346 │ │ │ │ +00042030: 7820 7820 202d 2031 3533 3278 2078 2020 x x - 1532x x │ │ │ │ +00042040: 2d20 3436 3678 2020 2b20 207c 0a7c 2020 - 466x + |.| │ │ │ │ +00042050: 2020 2037 2038 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ +00042060: 2020 2020 2030 2020 2020 2020 2020 3020 0 0 │ │ │ │ +00042070: 3120 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ +00042080: 2030 2032 2020 2020 2020 2020 3120 3220 0 2 1 2 │ │ │ │ +00042090: 2020 2020 2020 3220 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +000420a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000420b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000420c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000420d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000420e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000420f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000420e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000420f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042110: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00042110: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00042120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042140: 207c 0a7c 3136 3378 2078 2020 2d20 3635 |.|163x x - 65 │ │ │ │ -00042150: 3978 2078 2020 2d20 3239 3178 2078 2020 9x x - 291x x │ │ │ │ -00042160: 2b20 3936 3678 2020 2b20 3738 3978 2078 + 966x + 789x x │ │ │ │ -00042170: 2020 2b20 3339 3378 2078 2020 2b20 3430 + 393x x + 40 │ │ │ │ -00042180: 3378 2078 2020 2d20 3131 3939 7820 7820 3x x - 1199x x │ │ │ │ -00042190: 207c 0a7c 2020 2020 3020 3320 2020 2020 |.| 0 3 │ │ │ │ -000421a0: 2020 3120 3320 2020 2020 2020 3220 3320 1 3 2 3 │ │ │ │ -000421b0: 2020 2020 2020 3320 2020 2020 2020 3020 3 0 │ │ │ │ -000421c0: 3420 2020 2020 2020 3120 3420 2020 2020 4 1 4 │ │ │ │ -000421d0: 2020 3220 3420 2020 2020 2020 2033 2034 2 4 3 4 │ │ │ │ -000421e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042130: 2020 2020 2020 2020 2020 207c 0a7c 3136 |.|16 │ │ │ │ +00042140: 3378 2078 2020 2d20 3635 3978 2078 2020 3x x - 659x x │ │ │ │ +00042150: 2d20 3239 3178 2078 2020 2b20 3936 3678 - 291x x + 966x │ │ │ │ +00042160: 2020 2b20 3738 3978 2078 2020 2b20 3339 + 789x x + 39 │ │ │ │ +00042170: 3378 2078 2020 2b20 3430 3378 2078 2020 3x x + 403x x │ │ │ │ +00042180: 2d20 3131 3939 7820 7820 207c 0a7c 2020 - 1199x x |.| │ │ │ │ +00042190: 2020 3020 3320 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +000421a0: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +000421b0: 3320 2020 2020 2020 3020 3420 2020 2020 3 0 4 │ │ │ │ +000421c0: 2020 3120 3420 2020 2020 2020 3220 3420 1 4 2 4 │ │ │ │ +000421d0: 2020 2020 2020 2033 2034 207c 0a7c 2d2d 3 4 |.|-- │ │ │ │ +000421e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000421f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042230: 2d7c 0a7c 2020 2020 2020 3220 2020 2020 -|.| 2 │ │ │ │ +00042220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042230: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00042240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042270: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00042280: 207c 0a7c 2d20 3537 3078 2020 2d20 3933 |.|- 570x - 93 │ │ │ │ -00042290: 7820 7820 202d 2034 3932 7820 7820 202d x x - 492x x - │ │ │ │ -000422a0: 2034 3138 7820 7820 202b 2037 3133 7820 418x x + 713x │ │ │ │ -000422b0: 7820 202d 2031 3332 3378 2078 2020 2d20 x - 1323x x - │ │ │ │ -000422c0: 3133 3834 7820 202d 2038 3330 7820 7820 1384x - 830x x │ │ │ │ -000422d0: 207c 0a7c 2020 2020 2020 3420 2020 2020 |.| 4 │ │ │ │ -000422e0: 2030 2035 2020 2020 2020 2031 2035 2020 0 5 1 5 │ │ │ │ -000422f0: 2020 2020 2032 2035 2020 2020 2020 2033 2 5 3 │ │ │ │ -00042300: 2035 2020 2020 2020 2020 3420 3520 2020 5 4 5 │ │ │ │ -00042310: 2020 2020 2035 2020 2020 2020 2030 2036 5 0 6 │ │ │ │ -00042320: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042260: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00042270: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00042280: 3537 3078 2020 2d20 3933 7820 7820 202d 570x - 93x x - │ │ │ │ +00042290: 2034 3932 7820 7820 202d 2034 3138 7820 492x x - 418x │ │ │ │ +000422a0: 7820 202b 2037 3133 7820 7820 202d 2031 x + 713x x - 1 │ │ │ │ +000422b0: 3332 3378 2078 2020 2d20 3133 3834 7820 323x x - 1384x │ │ │ │ +000422c0: 202d 2038 3330 7820 7820 207c 0a7c 2020 - 830x x |.| │ │ │ │ +000422d0: 2020 2020 3420 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ +000422e0: 2020 2020 2031 2035 2020 2020 2020 2032 1 5 2 │ │ │ │ +000422f0: 2035 2020 2020 2020 2033 2035 2020 2020 5 3 5 │ │ │ │ +00042300: 2020 2020 3420 3520 2020 2020 2020 2035 4 5 5 │ │ │ │ +00042310: 2020 2020 2020 2030 2036 207c 0a7c 2d2d 0 6 |.|-- │ │ │ │ +00042320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042370: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00042360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000423a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000423b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000423c0: 207c 0a7c 2d20 3534 7820 7820 202d 2033 |.|- 54x x - 3 │ │ │ │ -000423d0: 3036 7820 7820 202b 2037 3039 7820 7820 06x x + 709x x │ │ │ │ -000423e0: 202b 2034 3231 7820 7820 202d 2039 3534 + 421x x - 954 │ │ │ │ -000423f0: 7820 7820 202d 2032 3939 7820 202b 2031 x x - 299x + 1 │ │ │ │ -00042400: 3035 3378 2078 2020 2d20 2020 2020 2020 053x x - │ │ │ │ -00042410: 207c 0a7c 2020 2020 2031 2036 2020 2020 |.| 1 6 │ │ │ │ -00042420: 2020 2032 2036 2020 2020 2020 2033 2036 2 6 3 6 │ │ │ │ -00042430: 2020 2020 2020 2034 2036 2020 2020 2020 4 6 │ │ │ │ -00042440: 2035 2036 2020 2020 2020 2036 2020 2020 5 6 6 │ │ │ │ -00042450: 2020 2020 3020 3720 2020 2020 2020 2020 0 7 │ │ │ │ -00042460: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000423a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000423b0: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +000423c0: 3534 7820 7820 202d 2033 3036 7820 7820 54x x - 306x x │ │ │ │ +000423d0: 202b 2037 3039 7820 7820 202b 2034 3231 + 709x x + 421 │ │ │ │ +000423e0: 7820 7820 202d 2039 3534 7820 7820 202d x x - 954x x - │ │ │ │ +000423f0: 2032 3939 7820 202b 2031 3035 3378 2078 299x + 1053x x │ │ │ │ +00042400: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +00042410: 2020 2031 2036 2020 2020 2020 2032 2036 1 6 2 6 │ │ │ │ +00042420: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ +00042430: 2034 2036 2020 2020 2020 2035 2036 2020 4 6 5 6 │ │ │ │ +00042440: 2020 2020 2036 2020 2020 2020 2020 3020 6 0 │ │ │ │ +00042450: 3720 2020 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +00042460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000424a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000424b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000424a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000424b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000424c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000424d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000424e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000424f0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00042500: 207c 0a7c 3130 3830 7820 7820 202b 2036 |.|1080x x + 6 │ │ │ │ -00042510: 3836 7820 7820 202b 2031 3730 7820 7820 86x x + 170x x │ │ │ │ -00042520: 202d 2031 3237 3278 2078 2020 2d20 3136 - 1272x x - 16 │ │ │ │ -00042530: 3631 7820 7820 202b 2031 3233 3578 2078 61x x + 1235x x │ │ │ │ -00042540: 2020 2b20 3135 3533 7820 202d 2020 2020 + 1553x - │ │ │ │ -00042550: 207c 0a7c 2020 2020 2031 2037 2020 2020 |.| 1 7 │ │ │ │ -00042560: 2020 2032 2037 2020 2020 2020 2033 2037 2 7 3 7 │ │ │ │ -00042570: 2020 2020 2020 2020 3420 3720 2020 2020 4 7 │ │ │ │ -00042580: 2020 2035 2037 2020 2020 2020 2020 3620 5 7 6 │ │ │ │ -00042590: 3720 2020 2020 2020 2037 2020 2020 2020 7 7 │ │ │ │ -000425a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000424f0: 2020 2032 2020 2020 2020 207c 0a7c 3130 2 |.|10 │ │ │ │ +00042500: 3830 7820 7820 202b 2036 3836 7820 7820 80x x + 686x x │ │ │ │ +00042510: 202b 2031 3730 7820 7820 202d 2031 3237 + 170x x - 127 │ │ │ │ +00042520: 3278 2078 2020 2d20 3136 3631 7820 7820 2x x - 1661x x │ │ │ │ +00042530: 202b 2031 3233 3578 2078 2020 2b20 3135 + 1235x x + 15 │ │ │ │ +00042540: 3533 7820 202d 2020 2020 207c 0a7c 2020 53x - |.| │ │ │ │ +00042550: 2020 2031 2037 2020 2020 2020 2032 2037 1 7 2 7 │ │ │ │ +00042560: 2020 2020 2020 2033 2037 2020 2020 2020 3 7 │ │ │ │ +00042570: 2020 3420 3720 2020 2020 2020 2035 2037 4 7 5 7 │ │ │ │ +00042580: 2020 2020 2020 2020 3620 3720 2020 2020 6 7 │ │ │ │ +00042590: 2020 2037 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +000425a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000425b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000425c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000425d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000425e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000425f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000425e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000425f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042640: 207c 0a7c 3134 3534 7820 7820 202d 2031 |.|1454x x - 1 │ │ │ │ -00042650: 3431 3178 2078 2020 2d20 3131 3935 7820 411x x - 1195x │ │ │ │ -00042660: 7820 202d 2039 3632 7820 7820 202b 2037 x - 962x x + 7 │ │ │ │ -00042670: 3337 7820 7820 202d 2033 3930 7820 7820 37x x - 390x x │ │ │ │ -00042680: 202b 2039 3537 7820 7820 202b 2020 2020 + 957x x + │ │ │ │ -00042690: 207c 0a7c 2020 2020 2030 2038 2020 2020 |.| 0 8 │ │ │ │ -000426a0: 2020 2020 3120 3820 2020 2020 2020 2032 1 8 2 │ │ │ │ -000426b0: 2038 2020 2020 2020 2033 2038 2020 2020 8 3 8 │ │ │ │ -000426c0: 2020 2034 2038 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -000426d0: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ -000426e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042630: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +00042640: 3534 7820 7820 202d 2031 3431 3178 2078 54x x - 1411x x │ │ │ │ +00042650: 2020 2d20 3131 3935 7820 7820 202d 2039 - 1195x x - 9 │ │ │ │ +00042660: 3632 7820 7820 202b 2037 3337 7820 7820 62x x + 737x x │ │ │ │ +00042670: 202d 2033 3930 7820 7820 202b 2039 3537 - 390x x + 957 │ │ │ │ +00042680: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00042690: 2020 2030 2038 2020 2020 2020 2020 3120 0 8 1 │ │ │ │ +000426a0: 3820 2020 2020 2020 2032 2038 2020 2020 8 2 8 │ │ │ │ +000426b0: 2020 2033 2038 2020 2020 2020 2034 2038 3 8 4 8 │ │ │ │ +000426c0: 2020 2020 2020 2035 2038 2020 2020 2020 5 8 │ │ │ │ +000426d0: 2036 2038 2020 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +000426e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000426f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042730: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00042740: 2020 2020 3220 2020 2020 2020 2032 2020 2 2 │ │ │ │ -00042750: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00042720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042730: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00042740: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00042750: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00042760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042770: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00042780: 207c 0a7c 3135 3338 7820 7820 202b 2031 |.|1538x x + 1 │ │ │ │ -00042790: 3233 3478 202c 202d 2035 3039 7820 202b 234x , - 509x + │ │ │ │ -000427a0: 2039 7820 7820 202d 2031 3536 3378 2020 9x x - 1563x │ │ │ │ -000427b0: 2d20 3731 3078 2078 2020 2d20 3634 3278 - 710x x - 642x │ │ │ │ -000427c0: 2078 2020 2b20 3534 3178 2020 2b20 2020 x + 541x + │ │ │ │ -000427d0: 207c 0a7c 2020 2020 2037 2038 2020 2020 |.| 7 8 │ │ │ │ -000427e0: 2020 2020 3820 2020 2020 2020 2030 2020 8 0 │ │ │ │ -000427f0: 2020 2030 2031 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ -00042800: 2020 2020 2020 3020 3220 2020 2020 2020 0 2 │ │ │ │ -00042810: 3120 3220 2020 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ -00042820: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042770: 2020 2020 3220 2020 2020 207c 0a7c 3135 2 |.|15 │ │ │ │ +00042780: 3338 7820 7820 202b 2031 3233 3478 202c 38x x + 1234x , │ │ │ │ +00042790: 202d 2035 3039 7820 202b 2039 7820 7820 - 509x + 9x x │ │ │ │ +000427a0: 202d 2031 3536 3378 2020 2d20 3731 3078 - 1563x - 710x │ │ │ │ +000427b0: 2078 2020 2d20 3634 3278 2078 2020 2b20 x - 642x x + │ │ │ │ +000427c0: 3534 3178 2020 2b20 2020 207c 0a7c 2020 541x + |.| │ │ │ │ +000427d0: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ +000427e0: 2020 2020 2020 2030 2020 2020 2030 2031 0 0 1 │ │ │ │ +000427f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00042800: 3020 3220 2020 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ +00042810: 2020 2020 3220 2020 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +00042820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042870: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00042860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042890: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00042890: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000428a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000428c0: 207c 0a7c 3232 3078 2078 2020 2d20 3132 |.|220x x - 12 │ │ │ │ -000428d0: 3134 7820 7820 202d 2031 3678 2078 2020 14x x - 16x x │ │ │ │ -000428e0: 2b20 3130 3038 7820 202d 2031 3038 3878 + 1008x - 1088x │ │ │ │ -000428f0: 2078 2020 2b20 3735 3578 2078 2020 2d20 x + 755x x - │ │ │ │ -00042900: 3838 3678 2078 2020 2d20 2020 2020 2020 886x x - │ │ │ │ -00042910: 207c 0a7c 2020 2020 3020 3320 2020 2020 |.| 0 3 │ │ │ │ -00042920: 2020 2031 2033 2020 2020 2020 3220 3320 1 3 2 3 │ │ │ │ -00042930: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00042940: 3020 3420 2020 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ -00042950: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -00042960: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000428b0: 2020 2020 2020 2020 2020 207c 0a7c 3232 |.|22 │ │ │ │ +000428c0: 3078 2078 2020 2d20 3132 3134 7820 7820 0x x - 1214x x │ │ │ │ +000428d0: 202d 2031 3678 2078 2020 2b20 3130 3038 - 16x x + 1008 │ │ │ │ +000428e0: 7820 202d 2031 3038 3878 2078 2020 2b20 x - 1088x x + │ │ │ │ +000428f0: 3735 3578 2078 2020 2d20 3838 3678 2078 755x x - 886x x │ │ │ │ +00042900: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +00042910: 2020 3020 3320 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ +00042920: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +00042930: 2033 2020 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ +00042940: 2020 2020 3120 3420 2020 2020 2020 3220 1 4 2 │ │ │ │ +00042950: 3420 2020 2020 2020 2020 207c 0a7c 2d2d 4 |.|-- │ │ │ │ +00042960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000429a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000429b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -000429c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000429a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000429b0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000429c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000429e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000429f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042a00: 207c 0a7c 3134 3333 7820 7820 202b 2031 |.|1433x x + 1 │ │ │ │ -00042a10: 3135 3478 2020 2b20 3136 3237 7820 7820 154x + 1627x x │ │ │ │ -00042a20: 202d 2031 3534 3778 2078 2020 2d20 3935 - 1547x x - 95 │ │ │ │ -00042a30: 3178 2078 2020 2b20 3836 3678 2078 2020 1x x + 866x x │ │ │ │ -00042a40: 2b20 3136 3378 2078 2020 2d20 2020 2020 + 163x x - │ │ │ │ -00042a50: 207c 0a7c 2020 2020 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -00042a60: 2020 2020 3420 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ -00042a70: 2020 2020 2020 2020 3120 3520 2020 2020 1 5 │ │ │ │ -00042a80: 2020 3220 3520 2020 2020 2020 3320 3520 2 5 3 5 │ │ │ │ -00042a90: 2020 2020 2020 3420 3520 2020 2020 2020 4 5 │ │ │ │ -00042aa0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000429f0: 2020 2020 2020 2020 2020 207c 0a7c 3134 |.|14 │ │ │ │ +00042a00: 3333 7820 7820 202b 2031 3135 3478 2020 33x x + 1154x │ │ │ │ +00042a10: 2b20 3136 3237 7820 7820 202d 2031 3534 + 1627x x - 154 │ │ │ │ +00042a20: 3778 2078 2020 2d20 3935 3178 2078 2020 7x x - 951x x │ │ │ │ +00042a30: 2b20 3836 3678 2078 2020 2b20 3136 3378 + 866x x + 163x │ │ │ │ +00042a40: 2078 2020 2d20 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +00042a50: 2020 2033 2034 2020 2020 2020 2020 3420 3 4 4 │ │ │ │ +00042a60: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ +00042a70: 2020 3120 3520 2020 2020 2020 3220 3520 1 5 2 5 │ │ │ │ +00042a80: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ +00042a90: 3420 3520 2020 2020 2020 207c 0a7c 2d2d 4 5 |.|-- │ │ │ │ +00042aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042af0: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +00042ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042af0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00042b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042b40: 327c 0a7c 3131 3432 7820 202d 2036 3638 2|.|1142x - 668 │ │ │ │ -00042b50: 7820 7820 202b 2031 3336 3178 2078 2020 x x + 1361x x │ │ │ │ -00042b60: 2b20 3133 3234 7820 7820 202d 2034 3930 + 1324x x - 490 │ │ │ │ -00042b70: 7820 7820 202b 2032 3832 7820 7820 202d x x + 282x x - │ │ │ │ -00042b80: 2031 3133 3378 2078 2020 2d20 3631 3278 1133x x - 612x │ │ │ │ -00042b90: 207c 0a7c 2020 2020 2035 2020 2020 2020 |.| 5 │ │ │ │ -00042ba0: 2030 2036 2020 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -00042bb0: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ -00042bc0: 2033 2036 2020 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ -00042bd0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ -00042be0: 367c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 6|.|------------ │ │ │ │ +00042b30: 2020 2020 2020 2020 2020 327c 0a7c 3131 2|.|11 │ │ │ │ +00042b40: 3432 7820 202d 2036 3638 7820 7820 202b 42x - 668x x + │ │ │ │ +00042b50: 2031 3336 3178 2078 2020 2b20 3133 3234 1361x x + 1324 │ │ │ │ +00042b60: 7820 7820 202d 2034 3930 7820 7820 202b x x - 490x x + │ │ │ │ +00042b70: 2032 3832 7820 7820 202d 2031 3133 3378 282x x - 1133x │ │ │ │ +00042b80: 2078 2020 2d20 3631 3278 207c 0a7c 2020 x - 612x |.| │ │ │ │ +00042b90: 2020 2035 2020 2020 2020 2030 2036 2020 5 0 6 │ │ │ │ +00042ba0: 2020 2020 2020 3120 3620 2020 2020 2020 1 6 │ │ │ │ +00042bb0: 2032 2036 2020 2020 2020 2033 2036 2020 2 6 3 6 │ │ │ │ +00042bc0: 2020 2020 2034 2036 2020 2020 2020 2020 4 6 │ │ │ │ +00042bd0: 3520 3620 2020 2020 2020 367c 0a7c 2d2d 5 6 6|.|-- │ │ │ │ +00042be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042c30: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00042c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042c80: 207c 0a7c 2b20 3830 3578 2078 2020 2d20 |.|+ 805x x - │ │ │ │ -00042c90: 3132 3678 2078 2020 2b20 3132 3936 7820 126x x + 1296x │ │ │ │ -00042ca0: 7820 202d 2039 3733 7820 7820 202b 2031 x - 973x x + 1 │ │ │ │ -00042cb0: 3237 3178 2078 2020 2d20 3136 3436 7820 271x x - 1646x │ │ │ │ -00042cc0: 7820 202b 2038 3434 7820 7820 202b 2020 x + 844x x + │ │ │ │ -00042cd0: 207c 0a7c 2020 2020 2020 3020 3720 2020 |.| 0 7 │ │ │ │ -00042ce0: 2020 2020 3120 3720 2020 2020 2020 2032 1 7 2 │ │ │ │ -00042cf0: 2037 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ -00042d00: 2020 2020 3420 3720 2020 2020 2020 2035 4 7 5 │ │ │ │ -00042d10: 2037 2020 2020 2020 2036 2037 2020 2020 7 6 7 │ │ │ │ -00042d20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042c70: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00042c80: 3830 3578 2078 2020 2d20 3132 3678 2078 805x x - 126x x │ │ │ │ +00042c90: 2020 2b20 3132 3936 7820 7820 202d 2039 + 1296x x - 9 │ │ │ │ +00042ca0: 3733 7820 7820 202b 2031 3237 3178 2078 73x x + 1271x x │ │ │ │ +00042cb0: 2020 2d20 3136 3436 7820 7820 202b 2038 - 1646x x + 8 │ │ │ │ +00042cc0: 3434 7820 7820 202b 2020 207c 0a7c 2020 44x x + |.| │ │ │ │ +00042cd0: 2020 2020 3020 3720 2020 2020 2020 3120 0 7 1 │ │ │ │ +00042ce0: 3720 2020 2020 2020 2032 2037 2020 2020 7 2 7 │ │ │ │ +00042cf0: 2020 2033 2037 2020 2020 2020 2020 3420 3 7 4 │ │ │ │ +00042d00: 3720 2020 2020 2020 2035 2037 2020 2020 7 5 7 │ │ │ │ +00042d10: 2020 2036 2037 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +00042d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042d70: 2d7c 0a7c 2020 2020 2032 2020 2020 2020 -|.| 2 │ │ │ │ +00042d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042d70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00042d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00042da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042dc0: 207c 0a7c 3130 3733 7820 202d 2031 3435 |.|1073x - 145 │ │ │ │ -00042dd0: 3278 2078 2020 2d20 3131 3132 7820 7820 2x x - 1112x x │ │ │ │ -00042de0: 202d 2031 3431 7820 7820 202b 2031 3736 - 141x x + 176 │ │ │ │ -00042df0: 7820 7820 202d 2031 3537 3978 2078 2020 x x - 1579x x │ │ │ │ -00042e00: 2d20 3738 7820 7820 202b 2020 2020 2020 - 78x x + │ │ │ │ -00042e10: 207c 0a7c 2020 2020 2037 2020 2020 2020 |.| 7 │ │ │ │ -00042e20: 2020 3020 3820 2020 2020 2020 2031 2038 0 8 1 8 │ │ │ │ -00042e30: 2020 2020 2020 2032 2038 2020 2020 2020 2 8 │ │ │ │ -00042e40: 2033 2038 2020 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ -00042e50: 2020 2020 2035 2038 2020 2020 2020 2020 5 8 │ │ │ │ -00042e60: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042db0: 2020 2020 2020 2020 2020 207c 0a7c 3130 |.|10 │ │ │ │ +00042dc0: 3733 7820 202d 2031 3435 3278 2078 2020 73x - 1452x x │ │ │ │ +00042dd0: 2d20 3131 3132 7820 7820 202d 2031 3431 - 1112x x - 141 │ │ │ │ +00042de0: 7820 7820 202b 2031 3736 7820 7820 202d x x + 176x x - │ │ │ │ +00042df0: 2031 3537 3978 2078 2020 2d20 3738 7820 1579x x - 78x │ │ │ │ +00042e00: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00042e10: 2020 2037 2020 2020 2020 2020 3020 3820 7 0 8 │ │ │ │ +00042e20: 2020 2020 2020 2031 2038 2020 2020 2020 1 8 │ │ │ │ +00042e30: 2032 2038 2020 2020 2020 2033 2038 2020 2 8 3 8 │ │ │ │ +00042e40: 2020 2020 2020 3420 3820 2020 2020 2035 4 8 5 │ │ │ │ +00042e50: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +00042e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042eb0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00042ec0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00042ed0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00042ee0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00042ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00042f00: 207c 0a7c 3834 3878 2078 2020 2d20 3133 |.|848x x - 13 │ │ │ │ -00042f10: 3635 7820 7820 202b 2037 3131 7820 2c20 65x x + 711x , │ │ │ │ -00042f20: 7820 202b 2031 3534 3378 2078 2020 2d20 x + 1543x x - │ │ │ │ -00042f30: 3130 3736 7820 202b 2034 3933 7820 7820 1076x + 493x x │ │ │ │ -00042f40: 202d 2035 3236 7820 7820 202b 2020 2020 - 526x x + │ │ │ │ -00042f50: 207c 0a7c 2020 2020 3620 3820 2020 2020 |.| 6 8 │ │ │ │ -00042f60: 2020 2037 2038 2020 2020 2020 2038 2020 7 8 8 │ │ │ │ -00042f70: 2030 2020 2020 2020 2020 3020 3120 2020 0 0 1 │ │ │ │ -00042f80: 2020 2020 2031 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -00042f90: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00042fa0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00042ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042ec0: 2020 2020 2020 2032 2020 2032 2020 2020 2 2 │ │ │ │ +00042ed0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00042ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00042ef0: 2020 2020 2020 2020 2020 207c 0a7c 3834 |.|84 │ │ │ │ +00042f00: 3878 2078 2020 2d20 3133 3635 7820 7820 8x x - 1365x x │ │ │ │ +00042f10: 202b 2037 3131 7820 2c20 7820 202b 2031 + 711x , x + 1 │ │ │ │ +00042f20: 3534 3378 2078 2020 2d20 3130 3736 7820 543x x - 1076x │ │ │ │ +00042f30: 202b 2034 3933 7820 7820 202d 2035 3236 + 493x x - 526 │ │ │ │ +00042f40: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00042f50: 2020 3620 3820 2020 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +00042f60: 2020 2020 2020 2038 2020 2030 2020 2020 8 0 │ │ │ │ +00042f70: 2020 2020 3020 3120 2020 2020 2020 2031 0 1 1 │ │ │ │ +00042f80: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +00042f90: 2031 2032 2020 2020 2020 207c 0a7c 2d2d 1 2 |.|-- │ │ │ │ +00042fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00042fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00042ff0: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +00042fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00042ff0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00043000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043010: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00043010: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00043020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043040: 207c 0a7c 3836 3878 2020 2d20 3538 3278 |.|868x - 582x │ │ │ │ -00043050: 2078 2020 2d20 3939 3678 2078 2020 2b20 x - 996x x + │ │ │ │ -00043060: 3230 3678 2078 2020 2d20 3431 3978 2020 206x x - 419x │ │ │ │ -00043070: 2b20 3132 3538 7820 7820 202d 2033 3931 + 1258x x - 391 │ │ │ │ -00043080: 7820 7820 202b 2031 3030 3278 2078 2020 x x + 1002x x │ │ │ │ -00043090: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ -000430a0: 3020 3320 2020 2020 2020 3120 3320 2020 0 3 1 3 │ │ │ │ -000430b0: 2020 2020 3220 3320 2020 2020 2020 3320 2 3 3 │ │ │ │ -000430c0: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ -000430d0: 2031 2034 2020 2020 2020 2020 3220 3420 1 4 2 4 │ │ │ │ -000430e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043030: 2020 2020 2020 2020 2020 207c 0a7c 3836 |.|86 │ │ │ │ +00043040: 3878 2020 2d20 3538 3278 2078 2020 2d20 8x - 582x x - │ │ │ │ +00043050: 3939 3678 2078 2020 2b20 3230 3678 2078 996x x + 206x x │ │ │ │ +00043060: 2020 2d20 3431 3978 2020 2b20 3132 3538 - 419x + 1258 │ │ │ │ +00043070: 7820 7820 202d 2033 3931 7820 7820 202b x x - 391x x + │ │ │ │ +00043080: 2031 3030 3278 2078 2020 2d7c 0a7c 2020 1002x x -|.| │ │ │ │ +00043090: 2020 3220 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ +000430a0: 2020 2020 3120 3320 2020 2020 2020 3220 1 3 2 │ │ │ │ +000430b0: 3320 2020 2020 2020 3320 2020 2020 2020 3 3 │ │ │ │ +000430c0: 2030 2034 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ +000430d0: 2020 2020 2020 3220 3420 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +000430e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000430f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043130: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00043140: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00043120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043130: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00043140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043170: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00043180: 207c 0a7c 3135 3339 7820 7820 202b 2039 |.|1539x x + 9 │ │ │ │ -00043190: 3331 7820 202d 2031 3530 3478 2078 2020 31x - 1504x x │ │ │ │ -000431a0: 2b20 3831 3078 2078 2020 2b20 3332 3478 + 810x x + 324x │ │ │ │ -000431b0: 2078 2020 2b20 3133 3536 7820 7820 202b x + 1356x x + │ │ │ │ -000431c0: 2033 3133 7820 7820 202b 2037 3732 7820 313x x + 772x │ │ │ │ -000431d0: 207c 0a7c 2020 2020 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -000431e0: 2020 2034 2020 2020 2020 2020 3020 3520 4 0 5 │ │ │ │ -000431f0: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -00043200: 3220 3520 2020 2020 2020 2033 2035 2020 2 5 3 5 │ │ │ │ -00043210: 2020 2020 2034 2035 2020 2020 2020 2035 4 5 5 │ │ │ │ -00043220: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043170: 2020 2020 2020 2020 2032 207c 0a7c 3135 2 |.|15 │ │ │ │ +00043180: 3339 7820 7820 202b 2039 3331 7820 202d 39x x + 931x - │ │ │ │ +00043190: 2031 3530 3478 2078 2020 2b20 3831 3078 1504x x + 810x │ │ │ │ +000431a0: 2078 2020 2b20 3332 3478 2078 2020 2b20 x + 324x x + │ │ │ │ +000431b0: 3133 3536 7820 7820 202b 2033 3133 7820 1356x x + 313x │ │ │ │ +000431c0: 7820 202b 2037 3732 7820 207c 0a7c 2020 x + 772x |.| │ │ │ │ +000431d0: 2020 2033 2034 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ +000431e0: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ +000431f0: 3120 3520 2020 2020 2020 3220 3520 2020 1 5 2 5 │ │ │ │ +00043200: 2020 2020 2033 2035 2020 2020 2020 2034 3 5 4 │ │ │ │ +00043210: 2035 2020 2020 2020 2035 207c 0a7c 2d2d 5 5 |.|-- │ │ │ │ +00043220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043270: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00043260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000432a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000432b0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -000432c0: 207c 0a7c 2b20 3239 3978 2078 2020 2b20 |.|+ 299x x + │ │ │ │ -000432d0: 3131 3836 7820 7820 202b 2037 3138 7820 1186x x + 718x │ │ │ │ -000432e0: 7820 202b 2034 3037 7820 7820 202d 2036 x + 407x x - 6 │ │ │ │ -000432f0: 3478 2078 2020 2d20 3832 3878 2078 2020 4x x - 828x x │ │ │ │ -00043300: 2d20 3133 3933 7820 202b 2039 3478 2078 - 1393x + 94x x │ │ │ │ -00043310: 207c 0a7c 2020 2020 2020 3020 3620 2020 |.| 0 6 │ │ │ │ -00043320: 2020 2020 2031 2036 2020 2020 2020 2032 1 6 2 │ │ │ │ -00043330: 2036 2020 2020 2020 2033 2036 2020 2020 6 3 6 │ │ │ │ -00043340: 2020 3420 3620 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -00043350: 2020 2020 2020 2036 2020 2020 2020 3020 6 0 │ │ │ │ -00043360: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +000432b0: 2032 2020 2020 2020 2020 207c 0a7c 2b20 2 |.|+ │ │ │ │ +000432c0: 3239 3978 2078 2020 2b20 3131 3836 7820 299x x + 1186x │ │ │ │ +000432d0: 7820 202b 2037 3138 7820 7820 202b 2034 x + 718x x + 4 │ │ │ │ +000432e0: 3037 7820 7820 202d 2036 3478 2078 2020 07x x - 64x x │ │ │ │ +000432f0: 2d20 3832 3878 2078 2020 2d20 3133 3933 - 828x x - 1393 │ │ │ │ +00043300: 7820 202b 2039 3478 2078 207c 0a7c 2020 x + 94x x |.| │ │ │ │ +00043310: 2020 2020 3020 3620 2020 2020 2020 2031 0 6 1 │ │ │ │ +00043320: 2036 2020 2020 2020 2032 2036 2020 2020 6 2 6 │ │ │ │ +00043330: 2020 2033 2036 2020 2020 2020 3420 3620 3 6 4 6 │ │ │ │ +00043340: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ +00043350: 2036 2020 2020 2020 3020 377c 0a7c 2d2d 6 0 7|.|-- │ │ │ │ +00043360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000433a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000433b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000433a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000433b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000433e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000433f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00043400: 207c 0a7c 2d20 3239 3078 2078 2020 2d20 |.|- 290x x - │ │ │ │ -00043410: 3736 3678 2078 2020 2b20 3935 3078 2078 766x x + 950x x │ │ │ │ -00043420: 2020 2d20 3634 3078 2078 2020 2b20 3236 - 640x x + 26 │ │ │ │ -00043430: 3578 2078 2020 2d20 3136 3430 7820 7820 5x x - 1640x x │ │ │ │ -00043440: 202d 2031 3430 3378 2020 2d20 2020 2020 - 1403x - │ │ │ │ -00043450: 207c 0a7c 2020 2020 2020 3120 3720 2020 |.| 1 7 │ │ │ │ -00043460: 2020 2020 3220 3720 2020 2020 2020 3320 2 7 3 │ │ │ │ -00043470: 3720 2020 2020 2020 3420 3720 2020 2020 7 4 7 │ │ │ │ -00043480: 2020 3520 3720 2020 2020 2020 2036 2037 5 7 6 7 │ │ │ │ -00043490: 2020 2020 2020 2020 3720 2020 2020 2020 7 │ │ │ │ -000434a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000433f0: 2020 3220 2020 2020 2020 207c 0a7c 2d20 2 |.|- │ │ │ │ +00043400: 3239 3078 2078 2020 2d20 3736 3678 2078 290x x - 766x x │ │ │ │ +00043410: 2020 2b20 3935 3078 2078 2020 2d20 3634 + 950x x - 64 │ │ │ │ +00043420: 3078 2078 2020 2b20 3236 3578 2078 2020 0x x + 265x x │ │ │ │ +00043430: 2d20 3136 3430 7820 7820 202d 2031 3430 - 1640x x - 140 │ │ │ │ +00043440: 3378 2020 2d20 2020 2020 207c 0a7c 2020 3x - |.| │ │ │ │ +00043450: 2020 2020 3120 3720 2020 2020 2020 3220 1 7 2 │ │ │ │ +00043460: 3720 2020 2020 2020 3320 3720 2020 2020 7 3 7 │ │ │ │ +00043470: 2020 3420 3720 2020 2020 2020 3520 3720 4 7 5 7 │ │ │ │ +00043480: 2020 2020 2020 2036 2037 2020 2020 2020 6 7 │ │ │ │ +00043490: 2020 3720 2020 2020 2020 207c 0a7c 2d2d 7 |.|-- │ │ │ │ +000434a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000434b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000434c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000434d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000434e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000434f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000434e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000434f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043540: 207c 0a7c 3132 3678 2078 2020 2b20 3839 |.|126x x + 89 │ │ │ │ -00043550: 3178 2078 2020 2d20 3135 3139 7820 7820 1x x - 1519x x │ │ │ │ -00043560: 202d 2039 3237 7820 7820 202d 2031 3333 - 927x x - 133 │ │ │ │ -00043570: 3578 2078 2020 2d20 3134 3438 7820 7820 5x x - 1448x x │ │ │ │ -00043580: 202d 2078 2078 2020 2d20 2020 2020 2020 - x x - │ │ │ │ -00043590: 207c 0a7c 2020 2020 3020 3820 2020 2020 |.| 0 8 │ │ │ │ -000435a0: 2020 3120 3820 2020 2020 2020 2032 2038 1 8 2 8 │ │ │ │ -000435b0: 2020 2020 2020 2033 2038 2020 2020 2020 3 8 │ │ │ │ -000435c0: 2020 3420 3820 2020 2020 2020 2035 2038 4 8 5 8 │ │ │ │ -000435d0: 2020 2020 3620 3820 2020 2020 2020 2020 6 8 │ │ │ │ -000435e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043530: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +00043540: 3678 2078 2020 2b20 3839 3178 2078 2020 6x x + 891x x │ │ │ │ +00043550: 2d20 3135 3139 7820 7820 202d 2039 3237 - 1519x x - 927 │ │ │ │ +00043560: 7820 7820 202d 2031 3333 3578 2078 2020 x x - 1335x x │ │ │ │ +00043570: 2d20 3134 3438 7820 7820 202d 2078 2078 - 1448x x - x x │ │ │ │ +00043580: 2020 2d20 2020 2020 2020 207c 0a7c 2020 - |.| │ │ │ │ +00043590: 2020 3020 3820 2020 2020 2020 3120 3820 0 8 1 8 │ │ │ │ +000435a0: 2020 2020 2020 2032 2038 2020 2020 2020 2 8 │ │ │ │ +000435b0: 2033 2038 2020 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ +000435c0: 2020 2020 2020 2035 2038 2020 2020 3620 5 8 6 │ │ │ │ +000435d0: 3820 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +000435e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000435f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043630: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00043640: 2020 2020 3220 2020 2020 2032 2020 2020 2 2 │ │ │ │ -00043650: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00043620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043630: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00043640: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00043650: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00043660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043670: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00043680: 207c 0a7c 3131 3033 7820 7820 202d 2031 |.|1103x x - 1 │ │ │ │ -00043690: 3135 3278 202c 2038 3231 7820 202b 2035 152x , 821x + 5 │ │ │ │ -000436a0: 3538 7820 7820 202d 2031 3137 3478 2020 58x x - 1174x │ │ │ │ -000436b0: 2d20 3136 3878 2078 2020 2b20 3938 3678 - 168x x + 986x │ │ │ │ -000436c0: 2078 2020 2b20 3739 3078 2020 2b20 2020 x + 790x + │ │ │ │ -000436d0: 207c 0a7c 2020 2020 2037 2038 2020 2020 |.| 7 8 │ │ │ │ -000436e0: 2020 2020 3820 2020 2020 2030 2020 2020 8 0 │ │ │ │ -000436f0: 2020 2030 2031 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ -00043700: 2020 2020 2020 3020 3220 2020 2020 2020 0 2 │ │ │ │ -00043710: 3120 3220 2020 2020 2020 3220 2020 2020 1 2 2 │ │ │ │ -00043720: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043670: 2020 2020 3220 2020 2020 207c 0a7c 3131 2 |.|11 │ │ │ │ +00043680: 3033 7820 7820 202d 2031 3135 3278 202c 03x x - 1152x , │ │ │ │ +00043690: 2038 3231 7820 202b 2035 3538 7820 7820 821x + 558x x │ │ │ │ +000436a0: 202d 2031 3137 3478 2020 2d20 3136 3878 - 1174x - 168x │ │ │ │ +000436b0: 2078 2020 2b20 3938 3678 2078 2020 2b20 x + 986x x + │ │ │ │ +000436c0: 3739 3078 2020 2b20 2020 207c 0a7c 2020 790x + |.| │ │ │ │ +000436d0: 2020 2037 2038 2020 2020 2020 2020 3820 7 8 8 │ │ │ │ +000436e0: 2020 2020 2030 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ +000436f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +00043700: 3020 3220 2020 2020 2020 3120 3220 2020 0 2 1 2 │ │ │ │ +00043710: 2020 2020 3220 2020 2020 207c 0a7c 2d2d 2 |.|-- │ │ │ │ +00043720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043770: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00043760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043790: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00043790: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000437a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000437b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000437c0: 207c 0a7c 3534 3978 2078 2020 2b20 3831 |.|549x x + 81 │ │ │ │ -000437d0: 3778 2078 2020 2b20 3133 3936 7820 7820 7x x + 1396x x │ │ │ │ -000437e0: 202b 2036 3935 7820 202b 2031 3231 3178 + 695x + 1211x │ │ │ │ -000437f0: 2078 2020 2b20 3837 3878 2078 2020 2d20 x + 878x x - │ │ │ │ -00043800: 3130 3631 7820 7820 202d 2020 2020 2020 1061x x - │ │ │ │ -00043810: 207c 0a7c 2020 2020 3020 3320 2020 2020 |.| 0 3 │ │ │ │ -00043820: 2020 3120 3320 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -00043830: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00043840: 3020 3420 2020 2020 2020 3120 3420 2020 0 4 1 4 │ │ │ │ -00043850: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ -00043860: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000437b0: 2020 2020 2020 2020 2020 207c 0a7c 3534 |.|54 │ │ │ │ +000437c0: 3978 2078 2020 2b20 3831 3778 2078 2020 9x x + 817x x │ │ │ │ +000437d0: 2b20 3133 3936 7820 7820 202b 2036 3935 + 1396x x + 695 │ │ │ │ +000437e0: 7820 202b 2031 3231 3178 2078 2020 2b20 x + 1211x x + │ │ │ │ +000437f0: 3837 3878 2078 2020 2d20 3130 3631 7820 878x x - 1061x │ │ │ │ +00043800: 7820 202d 2020 2020 2020 207c 0a7c 2020 x - |.| │ │ │ │ +00043810: 2020 3020 3320 2020 2020 2020 3120 3320 0 3 1 3 │ │ │ │ +00043820: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ +00043830: 2033 2020 2020 2020 2020 3020 3420 2020 3 0 4 │ │ │ │ +00043840: 2020 2020 3120 3420 2020 2020 2020 2032 1 4 2 │ │ │ │ +00043850: 2034 2020 2020 2020 2020 207c 0a7c 2d2d 4 |.|-- │ │ │ │ +00043860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000438a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000438b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -000438c0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000438a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000438b0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000438c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000438e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000438f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043900: 207c 0a7c 3132 3434 7820 7820 202d 2038 |.|1244x x - 8 │ │ │ │ -00043910: 3830 7820 202b 2031 3430 3978 2078 2020 80x + 1409x x │ │ │ │ -00043920: 2d20 3536 3778 2078 2020 2b20 3132 3430 - 567x x + 1240 │ │ │ │ -00043930: 7820 7820 202b 2031 3132 3678 2078 2020 x x + 1126x x │ │ │ │ -00043940: 2d20 3132 3632 7820 7820 202b 2020 2020 - 1262x x + │ │ │ │ -00043950: 207c 0a7c 2020 2020 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -00043960: 2020 2034 2020 2020 2020 2020 3020 3520 4 0 5 │ │ │ │ -00043970: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -00043980: 2032 2035 2020 2020 2020 2020 3320 3520 2 5 3 5 │ │ │ │ -00043990: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ -000439a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000438f0: 2020 2020 2020 2020 2020 207c 0a7c 3132 |.|12 │ │ │ │ +00043900: 3434 7820 7820 202d 2038 3830 7820 202b 44x x - 880x + │ │ │ │ +00043910: 2031 3430 3978 2078 2020 2d20 3536 3778 1409x x - 567x │ │ │ │ +00043920: 2078 2020 2b20 3132 3430 7820 7820 202b x + 1240x x + │ │ │ │ +00043930: 2031 3132 3678 2078 2020 2d20 3132 3632 1126x x - 1262 │ │ │ │ +00043940: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00043950: 2020 2033 2034 2020 2020 2020 2034 2020 3 4 4 │ │ │ │ +00043960: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ +00043970: 3120 3520 2020 2020 2020 2032 2035 2020 1 5 2 5 │ │ │ │ +00043980: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ +00043990: 2034 2035 2020 2020 2020 207c 0a7c 2d2d 4 5 |.|-- │ │ │ │ +000439a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000439b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000439c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000439d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000439e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000439f0: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +000439e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000439f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00043a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043a40: 327c 0a7c 3439 3078 2020 2b20 3135 3533 2|.|490x + 1553 │ │ │ │ -00043a50: 7820 7820 202b 2031 3237 3678 2078 2020 x x + 1276x x │ │ │ │ -00043a60: 2b20 3830 3578 2078 2020 2b20 3537 3678 + 805x x + 576x │ │ │ │ -00043a70: 2078 2020 2d20 3130 3736 7820 7820 202b x - 1076x x + │ │ │ │ -00043a80: 2031 3631 3778 2078 2020 2d20 3439 3578 1617x x - 495x │ │ │ │ -00043a90: 207c 0a7c 2020 2020 3520 2020 2020 2020 |.| 5 │ │ │ │ -00043aa0: 2030 2036 2020 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -00043ab0: 2020 2020 2020 3220 3620 2020 2020 2020 2 6 │ │ │ │ -00043ac0: 3320 3620 2020 2020 2020 2034 2036 2020 3 6 4 6 │ │ │ │ -00043ad0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ -00043ae0: 367c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 6|.|------------ │ │ │ │ +00043a30: 2020 2020 2020 2020 2020 327c 0a7c 3439 2|.|49 │ │ │ │ +00043a40: 3078 2020 2b20 3135 3533 7820 7820 202b 0x + 1553x x + │ │ │ │ +00043a50: 2031 3237 3678 2078 2020 2b20 3830 3578 1276x x + 805x │ │ │ │ +00043a60: 2078 2020 2b20 3537 3678 2078 2020 2d20 x + 576x x - │ │ │ │ +00043a70: 3130 3736 7820 7820 202b 2031 3631 3778 1076x x + 1617x │ │ │ │ +00043a80: 2078 2020 2d20 3439 3578 207c 0a7c 2020 x - 495x |.| │ │ │ │ +00043a90: 2020 3520 2020 2020 2020 2030 2036 2020 5 0 6 │ │ │ │ +00043aa0: 2020 2020 2020 3120 3620 2020 2020 2020 1 6 │ │ │ │ +00043ab0: 3220 3620 2020 2020 2020 3320 3620 2020 2 6 3 6 │ │ │ │ +00043ac0: 2020 2020 2034 2036 2020 2020 2020 2020 4 6 │ │ │ │ +00043ad0: 3520 3620 2020 2020 2020 367c 0a7c 2d2d 5 6 6|.|-- │ │ │ │ +00043ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043b30: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00043b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043b80: 207c 0a7c 2d20 3735 3078 2078 2020 2d20 |.|- 750x x - │ │ │ │ -00043b90: 3237 3778 2078 2020 2b20 3534 3478 2078 277x x + 544x x │ │ │ │ -00043ba0: 2020 2b20 3134 3739 7820 7820 202d 2037 + 1479x x - 7 │ │ │ │ -00043bb0: 3834 7820 7820 202d 2036 3478 2078 2020 84x x - 64x x │ │ │ │ -00043bc0: 2d20 3132 3033 7820 7820 202b 2020 2020 - 1203x x + │ │ │ │ -00043bd0: 207c 0a7c 2020 2020 2020 3020 3720 2020 |.| 0 7 │ │ │ │ -00043be0: 2020 2020 3120 3720 2020 2020 2020 3220 1 7 2 │ │ │ │ -00043bf0: 3720 2020 2020 2020 2033 2037 2020 2020 7 3 7 │ │ │ │ -00043c00: 2020 2034 2037 2020 2020 2020 3520 3720 4 7 5 7 │ │ │ │ -00043c10: 2020 2020 2020 2036 2037 2020 2020 2020 6 7 │ │ │ │ -00043c20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043b70: 2020 2020 2020 2020 2020 207c 0a7c 2d20 |.|- │ │ │ │ +00043b80: 3735 3078 2078 2020 2d20 3237 3778 2078 750x x - 277x x │ │ │ │ +00043b90: 2020 2b20 3534 3478 2078 2020 2b20 3134 + 544x x + 14 │ │ │ │ +00043ba0: 3739 7820 7820 202d 2037 3834 7820 7820 79x x - 784x x │ │ │ │ +00043bb0: 202d 2036 3478 2078 2020 2d20 3132 3033 - 64x x - 1203 │ │ │ │ +00043bc0: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00043bd0: 2020 2020 3020 3720 2020 2020 2020 3120 0 7 1 │ │ │ │ +00043be0: 3720 2020 2020 2020 3220 3720 2020 2020 7 2 7 │ │ │ │ +00043bf0: 2020 2033 2037 2020 2020 2020 2034 2037 3 7 4 7 │ │ │ │ +00043c00: 2020 2020 2020 3520 3720 2020 2020 2020 5 7 │ │ │ │ +00043c10: 2036 2037 2020 2020 2020 207c 0a7c 2d2d 6 7 |.|-- │ │ │ │ +00043c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043c70: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +00043c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043c70: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00043c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00043ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043cc0: 207c 0a7c 3430 3578 2020 2b20 3130 3133 |.|405x + 1013 │ │ │ │ -00043cd0: 7820 7820 202b 2036 3034 7820 7820 202b x x + 604x x + │ │ │ │ -00043ce0: 2031 3330 3178 2078 2020 2b20 3130 3033 1301x x + 1003 │ │ │ │ -00043cf0: 7820 7820 202b 2032 3335 7820 7820 202b x x + 235x x + │ │ │ │ -00043d00: 2036 3936 7820 7820 202b 2020 2020 2020 696x x + │ │ │ │ -00043d10: 207c 0a7c 2020 2020 3720 2020 2020 2020 |.| 7 │ │ │ │ -00043d20: 2030 2038 2020 2020 2020 2031 2038 2020 0 8 1 8 │ │ │ │ -00043d30: 2020 2020 2020 3220 3820 2020 2020 2020 2 8 │ │ │ │ -00043d40: 2033 2038 2020 2020 2020 2034 2038 2020 3 8 4 8 │ │ │ │ -00043d50: 2020 2020 2035 2038 2020 2020 2020 2020 5 8 │ │ │ │ -00043d60: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043cb0: 2020 2020 2020 2020 2020 207c 0a7c 3430 |.|40 │ │ │ │ +00043cc0: 3578 2020 2b20 3130 3133 7820 7820 202b 5x + 1013x x + │ │ │ │ +00043cd0: 2036 3034 7820 7820 202b 2031 3330 3178 604x x + 1301x │ │ │ │ +00043ce0: 2078 2020 2b20 3130 3033 7820 7820 202b x + 1003x x + │ │ │ │ +00043cf0: 2032 3335 7820 7820 202b 2036 3936 7820 235x x + 696x │ │ │ │ +00043d00: 7820 202b 2020 2020 2020 207c 0a7c 2020 x + |.| │ │ │ │ +00043d10: 2020 3720 2020 2020 2020 2030 2038 2020 7 0 8 │ │ │ │ +00043d20: 2020 2020 2031 2038 2020 2020 2020 2020 1 8 │ │ │ │ +00043d30: 3220 3820 2020 2020 2020 2033 2038 2020 2 8 3 8 │ │ │ │ +00043d40: 2020 2020 2034 2038 2020 2020 2020 2035 4 8 5 │ │ │ │ +00043d50: 2038 2020 2020 2020 2020 207c 0a7c 2d2d 8 |.|-- │ │ │ │ +00043d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043db0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00043dc0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00043dd0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00043de0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00043df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043e00: 207c 0a7c 3933 3978 2078 2020 2d20 3731 |.|939x x - 71 │ │ │ │ -00043e10: 3478 2078 2020 2d20 3837 3978 202c 202d 4x x - 879x , - │ │ │ │ -00043e20: 2031 3435 3278 2020 2b20 3732 3778 2078 1452x + 727x x │ │ │ │ -00043e30: 2020 2d20 3131 3539 7820 202b 2034 3439 - 1159x + 449 │ │ │ │ -00043e40: 7820 7820 202d 2031 3136 3978 2078 2020 x x - 1169x x │ │ │ │ -00043e50: 2b7c 0a7c 2020 2020 3620 3820 2020 2020 +|.| 6 8 │ │ │ │ -00043e60: 2020 3720 3820 2020 2020 2020 3820 2020 7 8 8 │ │ │ │ -00043e70: 2020 2020 2020 3020 2020 2020 2020 3020 0 0 │ │ │ │ -00043e80: 3120 2020 2020 2020 2031 2020 2020 2020 1 1 │ │ │ │ -00043e90: 2030 2032 2020 2020 2020 2020 3120 3220 0 2 1 2 │ │ │ │ -00043ea0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00043dc0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00043dd0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00043de0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00043df0: 2020 2020 2020 2020 2020 207c 0a7c 3933 |.|93 │ │ │ │ +00043e00: 3978 2078 2020 2d20 3731 3478 2078 2020 9x x - 714x x │ │ │ │ +00043e10: 2d20 3837 3978 202c 202d 2031 3435 3278 - 879x , - 1452x │ │ │ │ +00043e20: 2020 2b20 3732 3778 2078 2020 2d20 3131 + 727x x - 11 │ │ │ │ +00043e30: 3539 7820 202b 2034 3439 7820 7820 202d 59x + 449x x - │ │ │ │ +00043e40: 2031 3136 3978 2078 2020 2b7c 0a7c 2020 1169x x +|.| │ │ │ │ +00043e50: 2020 3620 3820 2020 2020 2020 3720 3820 6 8 7 8 │ │ │ │ +00043e60: 2020 2020 2020 3820 2020 2020 2020 2020 8 │ │ │ │ +00043e70: 3020 2020 2020 2020 3020 3120 2020 2020 0 0 1 │ │ │ │ +00043e80: 2020 2031 2020 2020 2020 2030 2032 2020 1 0 2 │ │ │ │ +00043e90: 2020 2020 2020 3120 3220 207c 0a7c 2d2d 1 2 |.|-- │ │ │ │ +00043ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00043ef0: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +00043ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00043ef0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00043f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f10: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00043f10: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00043f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00043f40: 207c 0a7c 3733 3278 2020 2b20 3537 3578 |.|732x + 575x │ │ │ │ -00043f50: 2078 2020 2d20 3630 3078 2078 2020 2b20 x - 600x x + │ │ │ │ -00043f60: 3932 3478 2078 2020 2d20 3833 3778 2020 924x x - 837x │ │ │ │ -00043f70: 2b20 3132 3938 7820 7820 202d 2038 3630 + 1298x x - 860 │ │ │ │ -00043f80: 7820 7820 202b 2031 3031 3078 2078 2020 x x + 1010x x │ │ │ │ -00043f90: 2b7c 0a7c 2020 2020 3220 2020 2020 2020 +|.| 2 │ │ │ │ -00043fa0: 3020 3320 2020 2020 2020 3120 3320 2020 0 3 1 3 │ │ │ │ -00043fb0: 2020 2020 3220 3320 2020 2020 2020 3320 2 3 3 │ │ │ │ -00043fc0: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ -00043fd0: 2031 2034 2020 2020 2020 2020 3220 3420 1 4 2 4 │ │ │ │ -00043fe0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00043f30: 2020 2020 2020 2020 2020 207c 0a7c 3733 |.|73 │ │ │ │ +00043f40: 3278 2020 2b20 3537 3578 2078 2020 2d20 2x + 575x x - │ │ │ │ +00043f50: 3630 3078 2078 2020 2b20 3932 3478 2078 600x x + 924x x │ │ │ │ +00043f60: 2020 2d20 3833 3778 2020 2b20 3132 3938 - 837x + 1298 │ │ │ │ +00043f70: 7820 7820 202d 2038 3630 7820 7820 202b x x - 860x x + │ │ │ │ +00043f80: 2031 3031 3078 2078 2020 2b7c 0a7c 2020 1010x x +|.| │ │ │ │ +00043f90: 2020 3220 2020 2020 2020 3020 3320 2020 2 0 3 │ │ │ │ +00043fa0: 2020 2020 3120 3320 2020 2020 2020 3220 1 3 2 │ │ │ │ +00043fb0: 3320 2020 2020 2020 3320 2020 2020 2020 3 3 │ │ │ │ +00043fc0: 2030 2034 2020 2020 2020 2031 2034 2020 0 4 1 4 │ │ │ │ +00043fd0: 2020 2020 2020 3220 3420 207c 0a7c 2d2d 2 4 |.|-- │ │ │ │ +00043fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00043ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044030: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00044040: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00044020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00044030: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00044040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044080: 207c 0a7c 3737 3478 2078 2020 2b20 3331 |.|774x x + 31 │ │ │ │ -00044090: 3978 2020 2b20 3130 3837 7820 7820 202d 9x + 1087x x - │ │ │ │ -000440a0: 2031 3132 3078 2078 2020 2b20 3134 3339 1120x x + 1439 │ │ │ │ -000440b0: 7820 7820 202b 2031 3137 3578 2078 2020 x x + 1175x x │ │ │ │ -000440c0: 2d20 3136 3438 7820 7820 202b 2020 2020 - 1648x x + │ │ │ │ -000440d0: 207c 0a7c 2020 2020 3320 3420 2020 2020 |.| 3 4 │ │ │ │ -000440e0: 2020 3420 2020 2020 2020 2030 2035 2020 4 0 5 │ │ │ │ -000440f0: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ -00044100: 2032 2035 2020 2020 2020 2020 3320 3520 2 5 3 5 │ │ │ │ -00044110: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ -00044120: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00044070: 2020 2020 2020 2020 2020 207c 0a7c 3737 |.|77 │ │ │ │ +00044080: 3478 2078 2020 2b20 3331 3978 2020 2b20 4x x + 319x + │ │ │ │ +00044090: 3130 3837 7820 7820 202d 2031 3132 3078 1087x x - 1120x │ │ │ │ +000440a0: 2078 2020 2b20 3134 3339 7820 7820 202b x + 1439x x + │ │ │ │ +000440b0: 2031 3137 3578 2078 2020 2d20 3136 3438 1175x x - 1648 │ │ │ │ +000440c0: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +000440d0: 2020 3320 3420 2020 2020 2020 3420 2020 3 4 4 │ │ │ │ +000440e0: 2020 2020 2030 2035 2020 2020 2020 2020 0 5 │ │ │ │ +000440f0: 3120 3520 2020 2020 2020 2032 2035 2020 1 5 2 5 │ │ │ │ +00044100: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ +00044110: 2034 2035 2020 2020 2020 207c 0a7c 2d2d 4 5 |.|-- │ │ │ │ +00044120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044170: 2d7c 0a7c 2020 2020 3220 2020 2020 2020 -|.| 2 │ │ │ │ +00044160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00044170: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00044180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000441a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000441b0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000441c0: 207c 0a7c 3938 3578 2020 2d20 3133 3137 |.|985x - 1317 │ │ │ │ -000441d0: 7820 7820 202d 2038 3738 7820 7820 202b x x - 878x x + │ │ │ │ -000441e0: 2033 3939 7820 7820 202d 2031 3333 3978 399x x - 1339x │ │ │ │ -000441f0: 2078 2020 2b20 3730 7820 7820 202d 2034 x + 70x x - 4 │ │ │ │ -00044200: 3633 7820 7820 202b 2034 3730 7820 202d 63x x + 470x - │ │ │ │ -00044210: 207c 0a7c 2020 2020 3520 2020 2020 2020 |.| 5 │ │ │ │ -00044220: 2030 2036 2020 2020 2020 2031 2036 2020 0 6 1 6 │ │ │ │ -00044230: 2020 2020 2032 2036 2020 2020 2020 2020 2 6 │ │ │ │ -00044240: 3320 3620 2020 2020 2034 2036 2020 2020 3 6 4 6 │ │ │ │ -00044250: 2020 2035 2036 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ -00044260: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000441b0: 2020 2020 2020 2032 2020 207c 0a7c 3938 2 |.|98 │ │ │ │ +000441c0: 3578 2020 2d20 3133 3137 7820 7820 202d 5x - 1317x x - │ │ │ │ +000441d0: 2038 3738 7820 7820 202b 2033 3939 7820 878x x + 399x │ │ │ │ +000441e0: 7820 202d 2031 3333 3978 2078 2020 2b20 x - 1339x x + │ │ │ │ +000441f0: 3730 7820 7820 202d 2034 3633 7820 7820 70x x - 463x x │ │ │ │ +00044200: 202b 2034 3730 7820 202d 207c 0a7c 2020 + 470x - |.| │ │ │ │ +00044210: 2020 3520 2020 2020 2020 2030 2036 2020 5 0 6 │ │ │ │ +00044220: 2020 2020 2031 2036 2020 2020 2020 2032 1 6 2 │ │ │ │ +00044230: 2036 2020 2020 2020 2020 3320 3620 2020 6 3 6 │ │ │ │ +00044240: 2020 2034 2036 2020 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +00044250: 2020 2020 2020 2036 2020 207c 0a7c 2d2d 6 |.|-- │ │ │ │ +00044260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000442a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000442b0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000442a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000442b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000442e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000442f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044300: 327c 0a7c 3632 3878 2078 2020 2d20 3930 2|.|628x x - 90 │ │ │ │ -00044310: 3778 2078 2020 2b20 3734 3878 2078 2020 7x x + 748x x │ │ │ │ -00044320: 2b20 3938 7820 7820 202b 2031 3135 3078 + 98x x + 1150x │ │ │ │ -00044330: 2078 2020 2b20 3131 3430 7820 7820 202b x + 1140x x + │ │ │ │ -00044340: 2031 3330 3878 2078 2020 2b20 3632 3178 1308x x + 621x │ │ │ │ -00044350: 207c 0a7c 2020 2020 3020 3720 2020 2020 |.| 0 7 │ │ │ │ -00044360: 2020 3120 3720 2020 2020 2020 3220 3720 1 7 2 7 │ │ │ │ -00044370: 2020 2020 2033 2037 2020 2020 2020 2020 3 7 │ │ │ │ -00044380: 3420 3720 2020 2020 2020 2035 2037 2020 4 7 5 7 │ │ │ │ -00044390: 2020 2020 2020 3620 3720 2020 2020 2020 6 7 │ │ │ │ -000443a0: 377c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7|.|------------ │ │ │ │ +000442f0: 2020 2020 2020 2020 2020 327c 0a7c 3632 2|.|62 │ │ │ │ +00044300: 3878 2078 2020 2d20 3930 3778 2078 2020 8x x - 907x x │ │ │ │ +00044310: 2b20 3734 3878 2078 2020 2b20 3938 7820 + 748x x + 98x │ │ │ │ +00044320: 7820 202b 2031 3135 3078 2078 2020 2b20 x + 1150x x + │ │ │ │ +00044330: 3131 3430 7820 7820 202b 2031 3330 3878 1140x x + 1308x │ │ │ │ +00044340: 2078 2020 2b20 3632 3178 207c 0a7c 2020 x + 621x |.| │ │ │ │ +00044350: 2020 3020 3720 2020 2020 2020 3120 3720 0 7 1 7 │ │ │ │ +00044360: 2020 2020 2020 3220 3720 2020 2020 2033 2 7 3 │ │ │ │ +00044370: 2037 2020 2020 2020 2020 3420 3720 2020 7 4 7 │ │ │ │ +00044380: 2020 2020 2035 2037 2020 2020 2020 2020 5 7 │ │ │ │ +00044390: 3620 3720 2020 2020 2020 377c 0a7c 2d2d 6 7 7|.|-- │ │ │ │ +000443a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000443b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000443c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000443d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000443e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000443f0: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +000443e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +000443f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044440: 207c 0a7c 2b20 3336 3978 2078 2020 2d20 |.|+ 369x x - │ │ │ │ -00044450: 3939 3178 2078 2020 2d20 3131 3836 7820 991x x - 1186x │ │ │ │ -00044460: 7820 202b 2036 3178 2078 2020 2d20 3930 x + 61x x - 90 │ │ │ │ -00044470: 3778 2078 2020 2d20 3638 3178 2078 2020 7x x - 681x x │ │ │ │ -00044480: 2d20 3135 3238 7820 7820 202b 2020 2020 - 1528x x + │ │ │ │ -00044490: 207c 0a7c 2020 2020 2020 3020 3820 2020 |.| 0 8 │ │ │ │ -000444a0: 2020 2020 3120 3820 2020 2020 2020 2032 1 8 2 │ │ │ │ -000444b0: 2038 2020 2020 2020 3320 3820 2020 2020 8 3 8 │ │ │ │ -000444c0: 2020 3420 3820 2020 2020 2020 3520 3820 4 8 5 8 │ │ │ │ -000444d0: 2020 2020 2020 2036 2038 2020 2020 2020 6 8 │ │ │ │ -000444e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00044430: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +00044440: 3336 3978 2078 2020 2d20 3939 3178 2078 369x x - 991x x │ │ │ │ +00044450: 2020 2d20 3131 3836 7820 7820 202b 2036 - 1186x x + 6 │ │ │ │ +00044460: 3178 2078 2020 2d20 3930 3778 2078 2020 1x x - 907x x │ │ │ │ +00044470: 2d20 3638 3178 2078 2020 2d20 3135 3238 - 681x x - 1528 │ │ │ │ +00044480: 7820 7820 202b 2020 2020 207c 0a7c 2020 x x + |.| │ │ │ │ +00044490: 2020 2020 3020 3820 2020 2020 2020 3120 0 8 1 │ │ │ │ +000444a0: 3820 2020 2020 2020 2032 2038 2020 2020 8 2 8 │ │ │ │ +000444b0: 2020 3320 3820 2020 2020 2020 3420 3820 3 8 4 8 │ │ │ │ +000444c0: 2020 2020 2020 3520 3820 2020 2020 2020 5 8 │ │ │ │ +000444d0: 2036 2038 2020 2020 2020 207c 0a7c 2d2d 6 8 |.|-- │ │ │ │ +000444e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000444f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044530: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ -00044540: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00044520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2020 -----------|.| │ │ │ │ +00044530: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00044540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044580: 207c 0a7c 3731 3778 2078 2020 2b20 3835 |.|717x x + 85 │ │ │ │ -00044590: 3478 207d 2920 2020 2020 2020 2020 2020 4x }) │ │ │ │ +00044570: 2020 2020 2020 2020 2020 207c 0a7c 3731 |.|71 │ │ │ │ +00044580: 3778 2078 2020 2b20 3835 3478 207d 2920 7x x + 854x }) │ │ │ │ +00044590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000445a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000445b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000445c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000445d0: 207c 0a7c 2020 2020 3720 3820 2020 2020 |.| 7 8 │ │ │ │ -000445e0: 2020 3820 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +000445c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000445d0: 2020 3720 3820 2020 2020 2020 3820 2020 7 8 8 │ │ │ │ +000445e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000445f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044620: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00044610: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00044620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044670: 2d2b 0a7c 6937 203a 2074 696d 6520 6465 -+.|i7 : time de │ │ │ │ -00044680: 6772 6565 4d61 7020 7068 6927 2020 2020 greeMap phi' │ │ │ │ +00044660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 -----------+.|i7 │ │ │ │ +00044670: 203a 2074 696d 6520 6465 6772 6565 4d61 : time degreeMa │ │ │ │ +00044680: 7020 7068 6927 2020 2020 2020 2020 2020 p phi' │ │ │ │ 00044690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000446a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000446b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000446c0: 207c 0a7c 202d 2d20 7573 6564 2031 2e32 |.| -- used 1.2 │ │ │ │ -000446d0: 3438 3839 7320 2863 7075 293b 2030 2e37 4889s (cpu); 0.7 │ │ │ │ -000446e0: 3036 3430 3173 2028 7468 7265 6164 293b 06401s (thread); │ │ │ │ -000446f0: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -00044700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000446b0: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +000446c0: 2d20 7573 6564 2031 2e35 3632 3035 7320 - used 1.56205s │ │ │ │ +000446d0: 2863 7075 293b 2030 2e38 3632 3237 3873 (cpu); 0.862278s │ │ │ │ +000446e0: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +000446f0: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +00044700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00044710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00044760: 207c 0a7c 6f37 203d 2031 3420 2020 2020 |.|o7 = 14 │ │ │ │ +00044750: 2020 2020 2020 2020 2020 207c 0a7c 6f37 |.|o7 │ │ │ │ +00044760: 203d 2031 3420 2020 2020 2020 2020 2020 = 14 │ │ │ │ 00044770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00044790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000447a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000447b0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000447a0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000447b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000447c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000447d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000447e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000447f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044800: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -00044810: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00044820: 2064 6567 7265 6528 5261 7469 6f6e 616c degree(Rational │ │ │ │ -00044830: 4d61 7029 3a20 6465 6772 6565 5f6c 7052 Map): degree_lpR │ │ │ │ -00044840: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ -00044850: 2d20 6465 6772 6565 206f 6620 6120 7261 - degree of a ra │ │ │ │ -00044860: 7469 6f6e 616c 0a20 2020 206d 6170 0a20 tional. map. │ │ │ │ -00044870: 202a 202a 6e6f 7465 2070 726f 6a65 6374 * *note project │ │ │ │ -00044880: 6976 6544 6567 7265 6573 3a20 7072 6f6a iveDegrees: proj │ │ │ │ -00044890: 6563 7469 7665 4465 6772 6565 732c 202d ectiveDegrees, - │ │ │ │ -000448a0: 2d20 7072 6f6a 6563 7469 7665 2064 6567 - projective deg │ │ │ │ -000448b0: 7265 6573 206f 6620 610a 2020 2020 7261 rees of a. ra │ │ │ │ -000448c0: 7469 6f6e 616c 206d 6170 2062 6574 7765 tional map betwe │ │ │ │ -000448d0: 656e 2070 726f 6a65 6374 6976 6520 7661 en projective va │ │ │ │ -000448e0: 7269 6574 6965 730a 0a57 6179 7320 746f rieties..Ways to │ │ │ │ -000448f0: 2075 7365 2064 6567 7265 654d 6170 3a0a use degreeMap:. │ │ │ │ +000447f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +00044800: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00044810: 0a20 202a 202a 6e6f 7465 2064 6567 7265 . * *note degre │ │ │ │ +00044820: 6528 5261 7469 6f6e 616c 4d61 7029 3a20 e(RationalMap): │ │ │ │ +00044830: 6465 6772 6565 5f6c 7052 6174 696f 6e61 degree_lpRationa │ │ │ │ +00044840: 6c4d 6170 5f72 702c 202d 2d20 6465 6772 lMap_rp, -- degr │ │ │ │ +00044850: 6565 206f 6620 6120 7261 7469 6f6e 616c ee of a rational │ │ │ │ +00044860: 0a20 2020 206d 6170 0a20 202a 202a 6e6f . map. * *no │ │ │ │ +00044870: 7465 2070 726f 6a65 6374 6976 6544 6567 te projectiveDeg │ │ │ │ +00044880: 7265 6573 3a20 7072 6f6a 6563 7469 7665 rees: projective │ │ │ │ +00044890: 4465 6772 6565 732c 202d 2d20 7072 6f6a Degrees, -- proj │ │ │ │ +000448a0: 6563 7469 7665 2064 6567 7265 6573 206f ective degrees o │ │ │ │ +000448b0: 6620 610a 2020 2020 7261 7469 6f6e 616c f a. rational │ │ │ │ +000448c0: 206d 6170 2062 6574 7765 656e 2070 726f map between pro │ │ │ │ +000448d0: 6a65 6374 6976 6520 7661 7269 6574 6965 jective varietie │ │ │ │ +000448e0: 730a 0a57 6179 7320 746f 2075 7365 2064 s..Ways to use d │ │ │ │ +000448f0: 6567 7265 654d 6170 3a0a 3d3d 3d3d 3d3d egreeMap:.====== │ │ │ │ 00044900: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00044910: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2264 6567 ======.. * "deg │ │ │ │ -00044920: 7265 654d 6170 2852 696e 674d 6170 2922 reeMap(RingMap)" │ │ │ │ -00044930: 0a20 202a 202a 6e6f 7465 2064 6567 7265 . * *note degre │ │ │ │ -00044940: 654d 6170 2852 6174 696f 6e61 6c4d 6170 eMap(RationalMap │ │ │ │ -00044950: 293a 2064 6567 7265 654d 6170 5f6c 7052 ): degreeMap_lpR │ │ │ │ -00044960: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ -00044970: 2d20 6465 6772 6565 206f 6620 610a 2020 - degree of a. │ │ │ │ -00044980: 2020 7261 7469 6f6e 616c 206d 6170 0a0a rational map.. │ │ │ │ -00044990: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -000449a0: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -000449b0: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -000449c0: 7420 2a6e 6f74 6520 6465 6772 6565 4d61 t *note degreeMa │ │ │ │ -000449d0: 703a 2064 6567 7265 654d 6170 2c20 6973 p: degreeMap, is │ │ │ │ -000449e0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -000449f0: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ -00044a00: 7469 6f6e 733a 0a28 4d61 6361 756c 6179 tions:.(Macaulay │ │ │ │ -00044a10: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00044a20: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -00044a30: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +00044910: 0a0a 2020 2a20 2264 6567 7265 654d 6170 .. * "degreeMap │ │ │ │ +00044920: 2852 696e 674d 6170 2922 0a20 202a 202a (RingMap)". * * │ │ │ │ +00044930: 6e6f 7465 2064 6567 7265 654d 6170 2852 note degreeMap(R │ │ │ │ +00044940: 6174 696f 6e61 6c4d 6170 293a 2064 6567 ationalMap): deg │ │ │ │ +00044950: 7265 654d 6170 5f6c 7052 6174 696f 6e61 reeMap_lpRationa │ │ │ │ +00044960: 6c4d 6170 5f72 702c 202d 2d20 6465 6772 lMap_rp, -- degr │ │ │ │ +00044970: 6565 206f 6620 610a 2020 2020 7261 7469 ee of a. rati │ │ │ │ +00044980: 6f6e 616c 206d 6170 0a0a 466f 7220 7468 onal map..For th │ │ │ │ +00044990: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +000449a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +000449b0: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +000449c0: 6520 6465 6772 6565 4d61 703a 2064 6567 e degreeMap: deg │ │ │ │ +000449d0: 7265 654d 6170 2c20 6973 2061 202a 6e6f reeMap, is a *no │ │ │ │ +000449e0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +000449f0: 6f6e 2077 6974 6820 6f70 7469 6f6e 733a on with options: │ │ │ │ +00044a00: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00044a10: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +00044a20: 684f 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d hOptions,...---- │ │ │ │ +00044a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00044a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00044a80: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00044a90: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00044aa0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00044ab0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00044ac0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00044ad0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00044ae0: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -00044af0: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -00044b00: 6d32 3a35 343a 302e 0a1f 0a46 696c 653a m2:54:0....File: │ │ │ │ -00044b10: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ -00044b20: 6f64 653a 2064 6567 7265 654d 6170 5f6c ode: degreeMap_l │ │ │ │ -00044b30: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -00044b40: 204e 6578 743a 2064 6567 7265 6573 5f6c Next: degrees_l │ │ │ │ -00044b50: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -00044b60: 2050 7265 763a 2064 6567 7265 654d 6170 Prev: degreeMap │ │ │ │ -00044b70: 2c20 5570 3a20 546f 700a 0a64 6567 7265 , Up: Top..degre │ │ │ │ -00044b80: 654d 6170 2852 6174 696f 6e61 6c4d 6170 eMap(RationalMap │ │ │ │ -00044b90: 2920 2d2d 2064 6567 7265 6520 6f66 2061 ) -- degree of a │ │ │ │ -00044ba0: 2072 6174 696f 6e61 6c20 6d61 700a 2a2a rational map.** │ │ │ │ +00044a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00044a80: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00044a90: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00044aa0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00044ab0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00044ac0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00044ad0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00044ae0: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ +00044af0: 6d65 6e74 6174 696f 6e2e 6d32 3a35 343a mentation.m2:54: │ │ │ │ +00044b00: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +00044b10: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2064 na.info, Node: d │ │ │ │ +00044b20: 6567 7265 654d 6170 5f6c 7052 6174 696f egreeMap_lpRatio │ │ │ │ +00044b30: 6e61 6c4d 6170 5f72 702c 204e 6578 743a nalMap_rp, Next: │ │ │ │ +00044b40: 2064 6567 7265 6573 5f6c 7052 6174 696f degrees_lpRatio │ │ │ │ +00044b50: 6e61 6c4d 6170 5f72 702c 2050 7265 763a nalMap_rp, Prev: │ │ │ │ +00044b60: 2064 6567 7265 654d 6170 2c20 5570 3a20 degreeMap, Up: │ │ │ │ +00044b70: 546f 700a 0a64 6567 7265 654d 6170 2852 Top..degreeMap(R │ │ │ │ +00044b80: 6174 696f 6e61 6c4d 6170 2920 2d2d 2064 ationalMap) -- d │ │ │ │ +00044b90: 6567 7265 6520 6f66 2061 2072 6174 696f egree of a ratio │ │ │ │ +00044ba0: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ 00044bb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00044bc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00044bd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00044be0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -00044bf0: 2a6e 6f74 6520 6465 6772 6565 4d61 703a *note degreeMap: │ │ │ │ -00044c00: 2064 6567 7265 654d 6170 2c0a 2020 2a20 degreeMap,. * │ │ │ │ -00044c10: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00044c20: 6465 6772 6565 4d61 7020 5068 690a 2020 degreeMap Phi. │ │ │ │ -00044c30: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00044c40: 2a20 5068 692c 2061 202a 6e6f 7465 2072 * Phi, a *note r │ │ │ │ -00044c50: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -00044c60: 696f 6e61 6c4d 6170 2c0a 2020 2a20 2a6e ionalMap,. * *n │ │ │ │ -00044c70: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ -00044c80: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ -00044c90: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ -00044ca0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00044cb0: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ -00044cc0: 2a20 2a6e 6f74 6520 426c 6f77 5570 5374 * *note BlowUpSt │ │ │ │ -00044cd0: 7261 7465 6779 3a20 426c 6f77 5570 5374 rategy: BlowUpSt │ │ │ │ -00044ce0: 7261 7465 6779 2c20 3d3e 202e 2e2e 2c20 rategy, => ..., │ │ │ │ -00044cf0: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ -00044d00: 2020 2020 2020 2245 6c69 6d69 6e61 7465 "Eliminate │ │ │ │ -00044d10: 222c 0a20 2020 2020 202a 202a 6e6f 7465 ",. * *note │ │ │ │ -00044d20: 2043 6572 7469 6679 3a20 4365 7274 6966 Certify: Certif │ │ │ │ -00044d30: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ -00044d40: 6c74 2076 616c 7565 2066 616c 7365 2c20 lt value false, │ │ │ │ -00044d50: 7768 6574 6865 7220 746f 2065 6e73 7572 whether to ensur │ │ │ │ -00044d60: 650a 2020 2020 2020 2020 636f 7272 6563 e. correc │ │ │ │ -00044d70: 746e 6573 7320 6f66 206f 7574 7075 740a tness of output. │ │ │ │ -00044d80: 2020 2020 2020 2a20 2a6e 6f74 6520 5665 * *note Ve │ │ │ │ -00044d90: 7262 6f73 653a 2069 6e76 6572 7365 4d61 rbose: inverseMa │ │ │ │ -00044da0: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ -00044db0: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ -00044dc0: 7064 5f72 702c 203d 3e20 2e2e 2e2c 0a20 pd_rp, => ...,. │ │ │ │ -00044dd0: 2020 2020 2020 2064 6566 6175 6c74 2076 default v │ │ │ │ -00044de0: 616c 7565 2074 7275 652c 0a20 202a 204f alue true,. * O │ │ │ │ -00044df0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -00044e00: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -00044e10: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00044e20: 5a5a 2c2c 2074 6865 2064 6567 7265 6520 ZZ,, the degree │ │ │ │ -00044e30: 6f66 2050 6869 2e20 536f 2074 6869 7320 of Phi. So this │ │ │ │ -00044e40: 7661 6c75 650a 2020 2020 2020 2020 6973 value. is │ │ │ │ -00044e50: 2031 2069 6620 616e 6420 6f6e 6c79 2069 1 if and only i │ │ │ │ -00044e60: 6620 7468 6520 6d61 7020 6973 2062 6972 f the map is bir │ │ │ │ -00044e70: 6174 696f 6e61 6c20 6f6e 746f 2069 7473 ational onto its │ │ │ │ -00044e80: 2069 6d61 6765 2e0a 0a44 6573 6372 6970 image...Descrip │ │ │ │ -00044e90: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00044ea0: 0a0a 5468 6973 2063 6f6d 7075 7461 7469 ..This computati │ │ │ │ -00044eb0: 6f6e 2069 7320 646f 6e65 2074 6872 6f75 on is done throu │ │ │ │ -00044ec0: 6768 2074 6865 2063 6f72 7265 7370 6f6e gh the correspon │ │ │ │ -00044ed0: 6469 6e67 206d 6574 686f 6420 666f 7220 ding method for │ │ │ │ -00044ee0: 7269 6e67 206d 6170 732e 2053 6565 0a2a ring maps. See.* │ │ │ │ -00044ef0: 6e6f 7465 2064 6567 7265 654d 6170 2852 note degreeMap(R │ │ │ │ -00044f00: 696e 674d 6170 293a 2064 6567 7265 654d ingMap): degreeM │ │ │ │ -00044f10: 6170 2c20 666f 7220 6d6f 7265 2064 6574 ap, for more det │ │ │ │ -00044f20: 6169 6c73 2061 6e64 2065 7861 6d70 6c65 ails and example │ │ │ │ -00044f30: 732e 0a0a 5365 6520 616c 736f 0a3d 3d3d s...See also.=== │ │ │ │ -00044f40: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00044f50: 2064 6567 7265 654d 6170 2852 696e 674d degreeMap(RingM │ │ │ │ -00044f60: 6170 293a 2064 6567 7265 654d 6170 2c20 ap): degreeMap, │ │ │ │ -00044f70: 2d2d 2064 6567 7265 6520 6f66 2061 2072 -- degree of a r │ │ │ │ -00044f80: 6174 696f 6e61 6c20 6d61 7020 6265 7477 ational map betw │ │ │ │ -00044f90: 6565 6e0a 2020 2020 7072 6f6a 6563 7469 een. projecti │ │ │ │ -00044fa0: 7665 2076 6172 6965 7469 6573 0a20 202a ve varieties. * │ │ │ │ -00044fb0: 202a 6e6f 7465 2070 726f 6a65 6374 6976 *note projectiv │ │ │ │ -00044fc0: 6544 6567 7265 6573 3a20 7072 6f6a 6563 eDegrees: projec │ │ │ │ -00044fd0: 7469 7665 4465 6772 6565 732c 202d 2d20 tiveDegrees, -- │ │ │ │ -00044fe0: 7072 6f6a 6563 7469 7665 2064 6567 7265 projective degre │ │ │ │ -00044ff0: 6573 206f 6620 610a 2020 2020 7261 7469 es of a. rati │ │ │ │ -00045000: 6f6e 616c 206d 6170 2062 6574 7765 656e onal map between │ │ │ │ -00045010: 2070 726f 6a65 6374 6976 6520 7661 7269 projective vari │ │ │ │ -00045020: 6574 6965 730a 2020 2a20 2a6e 6f74 6520 eties. * *note │ │ │ │ -00045030: 6465 6772 6565 2852 6174 696f 6e61 6c4d degree(RationalM │ │ │ │ -00045040: 6170 293a 2064 6567 7265 655f 6c70 5261 ap): degree_lpRa │ │ │ │ -00045050: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -00045060: 2064 6567 7265 6520 6f66 2061 2072 6174 degree of a rat │ │ │ │ -00045070: 696f 6e61 6c0a 2020 2020 6d61 700a 0a57 ional. map..W │ │ │ │ -00045080: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -00045090: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -000450a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000450b0: 0a0a 2020 2a20 2a6e 6f74 6520 6465 6772 .. * *note degr │ │ │ │ -000450c0: 6565 4d61 7028 5261 7469 6f6e 616c 4d61 eeMap(RationalMa │ │ │ │ -000450d0: 7029 3a20 6465 6772 6565 4d61 705f 6c70 p): degreeMap_lp │ │ │ │ -000450e0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -000450f0: 2d2d 2064 6567 7265 6520 6f66 2061 0a20 -- degree of a. │ │ │ │ -00045100: 2020 2072 6174 696f 6e61 6c20 6d61 700a rational map. │ │ │ │ +00044bd0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00044be0: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +00044bf0: 6465 6772 6565 4d61 703a 2064 6567 7265 degreeMap: degre │ │ │ │ +00044c00: 654d 6170 2c0a 2020 2a20 5573 6167 653a eMap,. * Usage: │ │ │ │ +00044c10: 200a 2020 2020 2020 2020 6465 6772 6565 . degree │ │ │ │ +00044c20: 4d61 7020 5068 690a 2020 2a20 496e 7075 Map Phi. * Inpu │ │ │ │ +00044c30: 7473 3a0a 2020 2020 2020 2a20 5068 692c ts:. * Phi, │ │ │ │ +00044c40: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +00044c50: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +00044c60: 6170 2c0a 2020 2a20 2a6e 6f74 6520 4f70 ap,. * *note Op │ │ │ │ +00044c70: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +00044c80: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +00044c90: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +00044ca0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00044cb0: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ +00044cc0: 6520 426c 6f77 5570 5374 7261 7465 6779 e BlowUpStrategy │ │ │ │ +00044cd0: 3a20 426c 6f77 5570 5374 7261 7465 6779 : BlowUpStrategy │ │ │ │ +00044ce0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +00044cf0: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +00044d00: 2245 6c69 6d69 6e61 7465 222c 0a20 2020 "Eliminate",. │ │ │ │ +00044d10: 2020 202a 202a 6e6f 7465 2043 6572 7469 * *note Certi │ │ │ │ +00044d20: 6679 3a20 4365 7274 6966 792c 203d 3e20 fy: Certify, => │ │ │ │ +00044d30: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00044d40: 7565 2066 616c 7365 2c20 7768 6574 6865 ue false, whethe │ │ │ │ +00044d50: 7220 746f 2065 6e73 7572 650a 2020 2020 r to ensure. │ │ │ │ +00044d60: 2020 2020 636f 7272 6563 746e 6573 7320 correctness │ │ │ │ +00044d70: 6f66 206f 7574 7075 740a 2020 2020 2020 of output. │ │ │ │ +00044d80: 2a20 2a6e 6f74 6520 5665 7262 6f73 653a * *note Verbose: │ │ │ │ +00044d90: 2069 6e76 6572 7365 4d61 705f 6c70 5f70 inverseMap_lp_p │ │ │ │ +00044da0: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ +00044db0: 653d 3e5f 7064 5f70 645f 7064 5f72 702c e=>_pd_pd_pd_rp, │ │ │ │ +00044dc0: 203d 3e20 2e2e 2e2c 0a20 2020 2020 2020 => ...,. │ │ │ │ +00044dd0: 2064 6566 6175 6c74 2076 616c 7565 2074 default value t │ │ │ │ +00044de0: 7275 652c 0a20 202a 204f 7574 7075 7473 rue,. * Outputs │ │ │ │ +00044df0: 3a0a 2020 2020 2020 2a20 616e 202a 6e6f :. * an *no │ │ │ │ +00044e00: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +00044e10: 6175 6c61 7932 446f 6329 5a5a 2c2c 2074 aulay2Doc)ZZ,, t │ │ │ │ +00044e20: 6865 2064 6567 7265 6520 6f66 2050 6869 he degree of Phi │ │ │ │ +00044e30: 2e20 536f 2074 6869 7320 7661 6c75 650a . So this value. │ │ │ │ +00044e40: 2020 2020 2020 2020 6973 2031 2069 6620 is 1 if │ │ │ │ +00044e50: 616e 6420 6f6e 6c79 2069 6620 7468 6520 and only if the │ │ │ │ +00044e60: 6d61 7020 6973 2062 6972 6174 696f 6e61 map is birationa │ │ │ │ +00044e70: 6c20 6f6e 746f 2069 7473 2069 6d61 6765 l onto its image │ │ │ │ +00044e80: 2e0a 0a44 6573 6372 6970 7469 6f6e 0a3d ...Description.= │ │ │ │ +00044e90: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +00044ea0: 2063 6f6d 7075 7461 7469 6f6e 2069 7320 computation is │ │ │ │ +00044eb0: 646f 6e65 2074 6872 6f75 6768 2074 6865 done through the │ │ │ │ +00044ec0: 2063 6f72 7265 7370 6f6e 6469 6e67 206d corresponding m │ │ │ │ +00044ed0: 6574 686f 6420 666f 7220 7269 6e67 206d ethod for ring m │ │ │ │ +00044ee0: 6170 732e 2053 6565 0a2a 6e6f 7465 2064 aps. See.*note d │ │ │ │ +00044ef0: 6567 7265 654d 6170 2852 696e 674d 6170 egreeMap(RingMap │ │ │ │ +00044f00: 293a 2064 6567 7265 654d 6170 2c20 666f ): degreeMap, fo │ │ │ │ +00044f10: 7220 6d6f 7265 2064 6574 6169 6c73 2061 r more details a │ │ │ │ +00044f20: 6e64 2065 7861 6d70 6c65 732e 0a0a 5365 nd examples...Se │ │ │ │ +00044f30: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +00044f40: 0a20 202a 202a 6e6f 7465 2064 6567 7265 . * *note degre │ │ │ │ +00044f50: 654d 6170 2852 696e 674d 6170 293a 2064 eMap(RingMap): d │ │ │ │ +00044f60: 6567 7265 654d 6170 2c20 2d2d 2064 6567 egreeMap, -- deg │ │ │ │ +00044f70: 7265 6520 6f66 2061 2072 6174 696f 6e61 ree of a rationa │ │ │ │ +00044f80: 6c20 6d61 7020 6265 7477 6565 6e0a 2020 l map between. │ │ │ │ +00044f90: 2020 7072 6f6a 6563 7469 7665 2076 6172 projective var │ │ │ │ +00044fa0: 6965 7469 6573 0a20 202a 202a 6e6f 7465 ieties. * *note │ │ │ │ +00044fb0: 2070 726f 6a65 6374 6976 6544 6567 7265 projectiveDegre │ │ │ │ +00044fc0: 6573 3a20 7072 6f6a 6563 7469 7665 4465 es: projectiveDe │ │ │ │ +00044fd0: 6772 6565 732c 202d 2d20 7072 6f6a 6563 grees, -- projec │ │ │ │ +00044fe0: 7469 7665 2064 6567 7265 6573 206f 6620 tive degrees of │ │ │ │ +00044ff0: 610a 2020 2020 7261 7469 6f6e 616c 206d a. rational m │ │ │ │ +00045000: 6170 2062 6574 7765 656e 2070 726f 6a65 ap between proje │ │ │ │ +00045010: 6374 6976 6520 7661 7269 6574 6965 730a ctive varieties. │ │ │ │ +00045020: 2020 2a20 2a6e 6f74 6520 6465 6772 6565 * *note degree │ │ │ │ +00045030: 2852 6174 696f 6e61 6c4d 6170 293a 2064 (RationalMap): d │ │ │ │ +00045040: 6567 7265 655f 6c70 5261 7469 6f6e 616c egree_lpRational │ │ │ │ +00045050: 4d61 705f 7270 2c20 2d2d 2064 6567 7265 Map_rp, -- degre │ │ │ │ +00045060: 6520 6f66 2061 2072 6174 696f 6e61 6c0a e of a rational. │ │ │ │ +00045070: 2020 2020 6d61 700a 0a57 6179 7320 746f map..Ways to │ │ │ │ +00045080: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ +00045090: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +000450a0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +000450b0: 2a6e 6f74 6520 6465 6772 6565 4d61 7028 *note degreeMap( │ │ │ │ +000450c0: 5261 7469 6f6e 616c 4d61 7029 3a20 6465 RationalMap): de │ │ │ │ +000450d0: 6772 6565 4d61 705f 6c70 5261 7469 6f6e greeMap_lpRation │ │ │ │ +000450e0: 616c 4d61 705f 7270 2c20 2d2d 2064 6567 alMap_rp, -- deg │ │ │ │ +000450f0: 7265 6520 6f66 2061 0a20 2020 2072 6174 ree of a. rat │ │ │ │ +00045100: 696f 6e61 6c20 6d61 700a 2d2d 2d2d 2d2d ional map.------ │ │ │ │ 00045110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00045160: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00045170: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00045180: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00045190: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -000451a0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -000451b0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -000451c0: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ -000451d0: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ -000451e0: 3a36 3132 3a30 2e0a 1f0a 4669 6c65 3a20 :612:0....File: │ │ │ │ -000451f0: 4372 656d 6f6e 612e 696e 666f 2c20 4e6f Cremona.info, No │ │ │ │ -00045200: 6465 3a20 6465 6772 6565 735f 6c70 5261 de: degrees_lpRa │ │ │ │ -00045210: 7469 6f6e 616c 4d61 705f 7270 2c20 4e65 tionalMap_rp, Ne │ │ │ │ -00045220: 7874 3a20 6465 7363 7269 6265 5f6c 7052 xt: describe_lpR │ │ │ │ -00045230: 6174 696f 6e61 6c4d 6170 5f72 702c 2050 ationalMap_rp, P │ │ │ │ -00045240: 7265 763a 2064 6567 7265 654d 6170 5f6c rev: degreeMap_l │ │ │ │ -00045250: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -00045260: 2055 703a 2054 6f70 0a0a 6465 6772 6565 Up: Top..degree │ │ │ │ -00045270: 7328 5261 7469 6f6e 616c 4d61 7029 202d s(RationalMap) - │ │ │ │ -00045280: 2d20 7072 6f6a 6563 7469 7665 2064 6567 - projective deg │ │ │ │ -00045290: 7265 6573 206f 6620 6120 7261 7469 6f6e rees of a ration │ │ │ │ -000452a0: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ +00045150: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00045160: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00045170: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00045180: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00045190: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +000451a0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +000451b0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +000451c0: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ +000451d0: 6e74 6174 696f 6e2e 6d32 3a36 3132 3a30 ntation.m2:612:0 │ │ │ │ +000451e0: 2e0a 1f0a 4669 6c65 3a20 4372 656d 6f6e ....File: Cremon │ │ │ │ +000451f0: 612e 696e 666f 2c20 4e6f 6465 3a20 6465 a.info, Node: de │ │ │ │ +00045200: 6772 6565 735f 6c70 5261 7469 6f6e 616c grees_lpRational │ │ │ │ +00045210: 4d61 705f 7270 2c20 4e65 7874 3a20 6465 Map_rp, Next: de │ │ │ │ +00045220: 7363 7269 6265 5f6c 7052 6174 696f 6e61 scribe_lpRationa │ │ │ │ +00045230: 6c4d 6170 5f72 702c 2050 7265 763a 2064 lMap_rp, Prev: d │ │ │ │ +00045240: 6567 7265 654d 6170 5f6c 7052 6174 696f egreeMap_lpRatio │ │ │ │ +00045250: 6e61 6c4d 6170 5f72 702c 2055 703a 2054 nalMap_rp, Up: T │ │ │ │ +00045260: 6f70 0a0a 6465 6772 6565 7328 5261 7469 op..degrees(Rati │ │ │ │ +00045270: 6f6e 616c 4d61 7029 202d 2d20 7072 6f6a onalMap) -- proj │ │ │ │ +00045280: 6563 7469 7665 2064 6567 7265 6573 206f ective degrees o │ │ │ │ +00045290: 6620 6120 7261 7469 6f6e 616c 206d 6170 f a rational map │ │ │ │ +000452a0: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 000452b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000452c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000452d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000452e0: 2a2a 2a0a 0a20 202a 2046 756e 6374 696f ***.. * Functio │ │ │ │ -000452f0: 6e3a 202a 6e6f 7465 2064 6567 7265 6573 n: *note degrees │ │ │ │ -00045300: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00045310: 6465 6772 6565 732c 0a20 202a 2055 7361 degrees,. * Usa │ │ │ │ -00045320: 6765 3a20 0a20 2020 2020 2020 2064 6567 ge: . deg │ │ │ │ -00045330: 7265 6573 2070 6869 200a 2020 2020 2020 rees phi . │ │ │ │ -00045340: 2020 6d75 6c74 6964 6567 7265 6520 7068 multidegree ph │ │ │ │ -00045350: 690a 2020 2a20 496e 7075 7473 3a0a 2020 i. * Inputs:. │ │ │ │ -00045360: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ -00045370: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ -00045380: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ -00045390: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -000453a0: 202a 2061 202a 6e6f 7465 206c 6973 743a * a *note list: │ │ │ │ -000453b0: 2028 4d61 6361 756c 6179 3244 6f63 294c (Macaulay2Doc)L │ │ │ │ -000453c0: 6973 742c 2c20 7468 6520 6c69 7374 206f ist,, the list o │ │ │ │ -000453d0: 6620 7072 6f6a 6563 7469 7665 2064 6567 f projective deg │ │ │ │ -000453e0: 7265 6573 206f 660a 2020 2020 2020 2020 rees of. │ │ │ │ -000453f0: 7068 690a 0a44 6573 6372 6970 7469 6f6e phi..Description │ │ │ │ -00045400: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -00045410: 6973 2069 7320 6120 7368 6f72 7463 7574 is is a shortcut │ │ │ │ -00045420: 2066 6f72 2070 726f 6a65 6374 6976 6544 for projectiveD │ │ │ │ -00045430: 6567 7265 6573 2870 6869 2c43 6572 7469 egrees(phi,Certi │ │ │ │ -00045440: 6679 3d3e 7472 7565 2c56 6572 626f 7365 fy=>true,Verbose │ │ │ │ -00045450: 3d3e 6661 6c73 6529 2c20 7365 650a 2a6e =>false), see.*n │ │ │ │ -00045460: 6f74 6520 7072 6f6a 6563 7469 7665 4465 ote projectiveDe │ │ │ │ -00045470: 6772 6565 7328 5261 7469 6f6e 616c 4d61 grees(RationalMa │ │ │ │ -00045480: 7029 3a20 7072 6f6a 6563 7469 7665 4465 p): projectiveDe │ │ │ │ -00045490: 6772 6565 735f 6c70 5261 7469 6f6e 616c grees_lpRational │ │ │ │ -000454a0: 4d61 705f 7270 2c2e 0a0a 5761 7973 2074 Map_rp,...Ways t │ │ │ │ -000454b0: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ -000454c0: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ -000454d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -000454e0: 202a 6e6f 7465 2064 6567 7265 6573 2852 *note degrees(R │ │ │ │ -000454f0: 6174 696f 6e61 6c4d 6170 293a 2064 6567 ationalMap): deg │ │ │ │ -00045500: 7265 6573 5f6c 7052 6174 696f 6e61 6c4d rees_lpRationalM │ │ │ │ -00045510: 6170 5f72 702c 202d 2d20 7072 6f6a 6563 ap_rp, -- projec │ │ │ │ -00045520: 7469 7665 2064 6567 7265 6573 0a20 2020 tive degrees. │ │ │ │ -00045530: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ -00045540: 6170 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ap.------------- │ │ │ │ +000452d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +000452e0: 202a 2046 756e 6374 696f 6e3a 202a 6e6f * Function: *no │ │ │ │ +000452f0: 7465 2064 6567 7265 6573 3a20 284d 6163 te degrees: (Mac │ │ │ │ +00045300: 6175 6c61 7932 446f 6329 6465 6772 6565 aulay2Doc)degree │ │ │ │ +00045310: 732c 0a20 202a 2055 7361 6765 3a20 0a20 s,. * Usage: . │ │ │ │ +00045320: 2020 2020 2020 2064 6567 7265 6573 2070 degrees p │ │ │ │ +00045330: 6869 200a 2020 2020 2020 2020 6d75 6c74 hi . mult │ │ │ │ +00045340: 6964 6567 7265 6520 7068 690a 2020 2a20 idegree phi. * │ │ │ │ +00045350: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00045360: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ +00045370: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ +00045380: 6e61 6c4d 6170 2c0a 2020 2a20 4f75 7470 nalMap,. * Outp │ │ │ │ +00045390: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +000453a0: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ +000453b0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ +000453c0: 7468 6520 6c69 7374 206f 6620 7072 6f6a the list of proj │ │ │ │ +000453d0: 6563 7469 7665 2064 6567 7265 6573 206f ective degrees o │ │ │ │ +000453e0: 660a 2020 2020 2020 2020 7068 690a 0a44 f. phi..D │ │ │ │ +000453f0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00045400: 3d3d 3d3d 3d3d 0a0a 5468 6973 2069 7320 ======..This is │ │ │ │ +00045410: 6120 7368 6f72 7463 7574 2066 6f72 2070 a shortcut for p │ │ │ │ +00045420: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ +00045430: 2870 6869 2c43 6572 7469 6679 3d3e 7472 (phi,Certify=>tr │ │ │ │ +00045440: 7565 2c56 6572 626f 7365 3d3e 6661 6c73 ue,Verbose=>fals │ │ │ │ +00045450: 6529 2c20 7365 650a 2a6e 6f74 6520 7072 e), see.*note pr │ │ │ │ +00045460: 6f6a 6563 7469 7665 4465 6772 6565 7328 ojectiveDegrees( │ │ │ │ +00045470: 5261 7469 6f6e 616c 4d61 7029 3a20 7072 RationalMap): pr │ │ │ │ +00045480: 6f6a 6563 7469 7665 4465 6772 6565 735f ojectiveDegrees_ │ │ │ │ +00045490: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +000454a0: 2c2e 0a0a 5761 7973 2074 6f20 7573 6520 ,...Ways to use │ │ │ │ +000454b0: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ +000454c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000454d0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +000454e0: 2064 6567 7265 6573 2852 6174 696f 6e61 degrees(Rationa │ │ │ │ +000454f0: 6c4d 6170 293a 2064 6567 7265 6573 5f6c lMap): degrees_l │ │ │ │ +00045500: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +00045510: 202d 2d20 7072 6f6a 6563 7469 7665 2064 -- projective d │ │ │ │ +00045520: 6567 7265 6573 0a20 2020 206f 6620 6120 egrees. of a │ │ │ │ +00045530: 7261 7469 6f6e 616c 206d 6170 0a2d 2d2d rational map.--- │ │ │ │ +00045540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045590: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -000455a0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -000455b0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -000455c0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -000455d0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -000455e0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -000455f0: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ -00045600: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ -00045610: 2e6d 323a 3532 333a 302e 0a1f 0a46 696c .m2:523:0....Fil │ │ │ │ -00045620: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ -00045630: 204e 6f64 653a 2064 6573 6372 6962 655f Node: describe_ │ │ │ │ -00045640: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -00045650: 2c20 4e65 7874 3a20 446f 6d69 6e61 6e74 , Next: Dominant │ │ │ │ -00045660: 2c20 5072 6576 3a20 6465 6772 6565 735f , Prev: degrees_ │ │ │ │ -00045670: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -00045680: 2c20 5570 3a20 546f 700a 0a64 6573 6372 , Up: Top..descr │ │ │ │ -00045690: 6962 6528 5261 7469 6f6e 616c 4d61 7029 ibe(RationalMap) │ │ │ │ -000456a0: 202d 2d20 6465 7363 7269 6265 2061 2072 -- describe a r │ │ │ │ -000456b0: 6174 696f 6e61 6c20 6d61 700a 2a2a 2a2a ational map.**** │ │ │ │ +00045580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00045590: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +000455a0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +000455b0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +000455c0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +000455d0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +000455e0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +000455f0: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ +00045600: 756d 656e 7461 7469 6f6e 2e6d 323a 3532 umentation.m2:52 │ │ │ │ +00045610: 333a 302e 0a1f 0a46 696c 653a 2043 7265 3:0....File: Cre │ │ │ │ +00045620: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ +00045630: 2064 6573 6372 6962 655f 6c70 5261 7469 describe_lpRati │ │ │ │ +00045640: 6f6e 616c 4d61 705f 7270 2c20 4e65 7874 onalMap_rp, Next │ │ │ │ +00045650: 3a20 446f 6d69 6e61 6e74 2c20 5072 6576 : Dominant, Prev │ │ │ │ +00045660: 3a20 6465 6772 6565 735f 6c70 5261 7469 : degrees_lpRati │ │ │ │ +00045670: 6f6e 616c 4d61 705f 7270 2c20 5570 3a20 onalMap_rp, Up: │ │ │ │ +00045680: 546f 700a 0a64 6573 6372 6962 6528 5261 Top..describe(Ra │ │ │ │ +00045690: 7469 6f6e 616c 4d61 7029 202d 2d20 6465 tionalMap) -- de │ │ │ │ +000456a0: 7363 7269 6265 2061 2072 6174 696f 6e61 scribe a rationa │ │ │ │ +000456b0: 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a l map.********** │ │ │ │ 000456c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000456d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000456e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ -000456f0: 2a20 4675 6e63 7469 6f6e 3a20 2a6e 6f74 * Function: *not │ │ │ │ -00045700: 6520 6465 7363 7269 6265 3a20 284d 6163 e describe: (Mac │ │ │ │ -00045710: 6175 6c61 7932 446f 6329 6465 7363 7269 aulay2Doc)descri │ │ │ │ -00045720: 6265 2c0a 2020 2a20 5573 6167 653a 200a be,. * Usage: . │ │ │ │ -00045730: 2020 2020 2020 2020 6465 7363 7269 6265 describe │ │ │ │ -00045740: 2070 6869 0a20 202a 2049 6e70 7574 733a phi. * Inputs: │ │ │ │ -00045750: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ -00045760: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ -00045770: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ -00045780: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00045790: 2020 2020 2a20 6120 6465 7363 7269 7074 * a descript │ │ │ │ -000457a0: 696f 6e20 6f66 2070 6869 2c20 6769 7669 ion of phi, givi │ │ │ │ -000457b0: 6e67 2073 6f6d 6520 696e 6469 6361 7469 ng some indicati │ │ │ │ -000457c0: 6f6e 206f 6620 7768 6174 2068 6173 2061 on of what has a │ │ │ │ -000457d0: 6c72 6561 6479 2062 6565 6e0a 2020 2020 lready been. │ │ │ │ -000457e0: 2020 2020 6361 6c63 756c 6174 6564 2e0a calculated.. │ │ │ │ -000457f0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ -00045800: 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d ========..+----- │ │ │ │ +000456e0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ +000456f0: 7469 6f6e 3a20 2a6e 6f74 6520 6465 7363 tion: *note desc │ │ │ │ +00045700: 7269 6265 3a20 284d 6163 6175 6c61 7932 ribe: (Macaulay2 │ │ │ │ +00045710: 446f 6329 6465 7363 7269 6265 2c0a 2020 Doc)describe,. │ │ │ │ +00045720: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00045730: 2020 6465 7363 7269 6265 2070 6869 0a20 describe phi. │ │ │ │ +00045740: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00045750: 202a 2070 6869 2c20 6120 2a6e 6f74 6520 * phi, a *note │ │ │ │ +00045760: 7261 7469 6f6e 616c 206d 6170 3a20 5261 rational map: Ra │ │ │ │ +00045770: 7469 6f6e 616c 4d61 702c 0a20 202a 204f tionalMap,. * O │ │ │ │ +00045780: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00045790: 6120 6465 7363 7269 7074 696f 6e20 6f66 a description of │ │ │ │ +000457a0: 2070 6869 2c20 6769 7669 6e67 2073 6f6d phi, giving som │ │ │ │ +000457b0: 6520 696e 6469 6361 7469 6f6e 206f 6620 e indication of │ │ │ │ +000457c0: 7768 6174 2068 6173 2061 6c72 6561 6479 what has already │ │ │ │ +000457d0: 2062 6565 6e0a 2020 2020 2020 2020 6361 been. ca │ │ │ │ +000457e0: 6c63 756c 6174 6564 2e0a 0a44 6573 6372 lculated...Descr │ │ │ │ +000457f0: 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d iption.========= │ │ │ │ +00045800: 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ==..+----------- │ │ │ │ 00045810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045840: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ -00045850: 3a20 5a5a 2f33 3333 3331 5b74 5f30 2e2e : ZZ/33331[t_0.. │ │ │ │ -00045860: 745f 345d 3b20 2020 2020 2020 2020 2020 t_4]; │ │ │ │ +00045840: 2d2d 2d2d 2b0a 7c69 3120 3a20 5a5a 2f33 ----+.|i1 : ZZ/3 │ │ │ │ +00045850: 3333 3331 5b74 5f30 2e2e 745f 345d 3b20 3331[t_0..t_4]; │ │ │ │ +00045860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045880: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00045880: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00045890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000458a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000458b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000458c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000458d0: 7c69 3220 3a20 7068 6920 3d20 7261 7469 |i2 : phi = rati │ │ │ │ -000458e0: 6f6e 616c 4d61 7020 6d69 6e6f 7273 2832 onalMap minors(2 │ │ │ │ -000458f0: 2c6d 6174 7269 787b 7b74 5f30 2e2e 745f ,matrix{{t_0..t_ │ │ │ │ -00045900: 337d 2c7b 745f 312e 2e74 5f34 7d7d 293b 3},{t_1..t_4}}); │ │ │ │ -00045910: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000458c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +000458d0: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +000458e0: 7020 6d69 6e6f 7273 2832 2c6d 6174 7269 p minors(2,matri │ │ │ │ +000458f0: 787b 7b74 5f30 2e2e 745f 337d 2c7b 745f x{{t_0..t_3},{t_ │ │ │ │ +00045900: 312e 2e74 5f34 7d7d 293b 7c0a 7c20 2020 1..t_4}});|.| │ │ │ │ +00045910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045950: 2020 7c0a 7c6f 3220 3a20 5261 7469 6f6e |.|o2 : Ration │ │ │ │ -00045960: 616c 4d61 7020 2871 7561 6472 6174 6963 alMap (quadratic │ │ │ │ -00045970: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ -00045980: 6f6d 2050 505e 3420 746f 2050 505e 3529 om PP^4 to PP^5) │ │ │ │ -00045990: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00045940: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00045950: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ +00045960: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ +00045970: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ +00045980: 3420 746f 2050 505e 3529 2020 2020 7c0a 4 to PP^5) |. │ │ │ │ +00045990: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 000459a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000459b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000459c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000459d0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 6465 ------+.|i3 : de │ │ │ │ -000459e0: 7363 7269 6265 2070 6869 2020 2020 2020 scribe phi │ │ │ │ +000459d0: 2b0a 7c69 3320 3a20 6465 7363 7269 6265 +.|i3 : describe │ │ │ │ +000459e0: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ 000459f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045a10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045a50: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -00045a60: 3d20 7261 7469 6f6e 616c 206d 6170 2064 = rational map d │ │ │ │ -00045a70: 6566 696e 6564 2062 7920 666f 726d 7320 efined by forms │ │ │ │ -00045a80: 6f66 2064 6567 7265 6520 3220 2020 2020 of degree 2 │ │ │ │ -00045a90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00045aa0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -00045ab0: 7479 3a20 5050 5e34 2020 2020 2020 2020 ty: PP^4 │ │ │ │ +00045a50: 2020 2020 7c0a 7c6f 3320 3d20 7261 7469 |.|o3 = rati │ │ │ │ +00045a60: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ +00045a70: 2062 7920 666f 726d 7320 6f66 2064 6567 by forms of deg │ │ │ │ +00045a80: 7265 6520 3220 2020 2020 2020 2020 2020 ree 2 │ │ │ │ +00045a90: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +00045aa0: 7572 6365 2076 6172 6965 7479 3a20 5050 urce variety: PP │ │ │ │ +00045ab0: 5e34 2020 2020 2020 2020 2020 2020 2020 ^4 │ │ │ │ 00045ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00045ae0: 7c20 2020 2020 7461 7267 6574 2076 6172 | target var │ │ │ │ -00045af0: 6965 7479 3a20 5050 5e35 2020 2020 2020 iety: PP^5 │ │ │ │ +00045ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045ae0: 7461 7267 6574 2076 6172 6965 7479 3a20 target variety: │ │ │ │ +00045af0: 5050 5e35 2020 2020 2020 2020 2020 2020 PP^5 │ │ │ │ 00045b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b20: 7c0a 7c20 2020 2020 636f 6566 6669 6369 |.| coeffici │ │ │ │ -00045b30: 656e 7420 7269 6e67 3a20 5a5a 2f33 3333 ent ring: ZZ/333 │ │ │ │ -00045b40: 3331 2020 2020 2020 2020 2020 2020 2020 31 │ │ │ │ -00045b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045b60: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00045b10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00045b20: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00045b30: 6e67 3a20 5a5a 2f33 3333 3331 2020 2020 ng: ZZ/33331 │ │ │ │ +00045b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045b50: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00045b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045ba0: 2d2d 2d2d 2b0a 7c69 3420 3a20 4920 3d20 ----+.|i4 : I = │ │ │ │ -00045bb0: 696d 6167 6520 7068 693b 2020 2020 2020 image phi; │ │ │ │ +00045b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00045ba0: 7c69 3420 3a20 4920 3d20 696d 6167 6520 |i4 : I = image │ │ │ │ +00045bb0: 7068 693b 2020 2020 2020 2020 2020 2020 phi; │ │ │ │ 00045bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045be0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00045be0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00045bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00045c30: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +00045c20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045c30: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ 00045c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045c60: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ -00045c70: 3a20 4964 6561 6c20 6f66 202d 2d2d 2d2d : Ideal of ----- │ │ │ │ -00045c80: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ +00045c60: 2020 2020 7c0a 7c6f 3420 3a20 4964 6561 |.|o4 : Idea │ │ │ │ +00045c70: 6c20 6f66 202d 2d2d 2d2d 5b78 202e 2e78 l of -----[x ..x │ │ │ │ +00045c80: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00045c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ca0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00045cb0: 2020 2020 2020 2020 2020 2020 2033 3333 333 │ │ │ │ -00045cc0: 3331 2020 3020 2020 3520 2020 2020 2020 31 0 5 │ │ │ │ +00045ca0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00045cb0: 2020 2020 2020 2033 3333 3331 2020 3020 33331 0 │ │ │ │ +00045cc0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 00045cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ce0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00045cf0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00045ce0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00045cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045d30: 2b0a 7c69 3520 3a20 6465 7363 7269 6265 +.|i5 : describe │ │ │ │ -00045d40: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ +00045d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +00045d30: 3a20 6465 7363 7269 6265 2070 6869 2020 : describe phi │ │ │ │ +00045d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045d70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00045d60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00045d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045db0: 2020 2020 7c0a 7c6f 3520 3d20 7261 7469 |.|o5 = rati │ │ │ │ -00045dc0: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ -00045dd0: 2062 7920 666f 726d 7320 6f66 2064 6567 by forms of deg │ │ │ │ -00045de0: 7265 6520 3220 2020 2020 2020 2020 2020 ree 2 │ │ │ │ -00045df0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ -00045e00: 7572 6365 2076 6172 6965 7479 3a20 5050 urce variety: PP │ │ │ │ -00045e10: 5e34 2020 2020 2020 2020 2020 2020 2020 ^4 │ │ │ │ +00045da0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00045db0: 7c6f 3520 3d20 7261 7469 6f6e 616c 206d |o5 = rational m │ │ │ │ +00045dc0: 6170 2064 6566 696e 6564 2062 7920 666f ap defined by fo │ │ │ │ +00045dd0: 726d 7320 6f66 2064 6567 7265 6520 3220 rms of degree 2 │ │ │ │ +00045de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045df0: 7c0a 7c20 2020 2020 736f 7572 6365 2076 |.| source v │ │ │ │ +00045e00: 6172 6965 7479 3a20 5050 5e34 2020 2020 ariety: PP^4 │ │ │ │ +00045e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00045e40: 7461 7267 6574 2076 6172 6965 7479 3a20 target variety: │ │ │ │ -00045e50: 5050 5e35 2020 2020 2020 2020 2020 2020 PP^5 │ │ │ │ +00045e30: 2020 7c0a 7c20 2020 2020 7461 7267 6574 |.| target │ │ │ │ +00045e40: 2076 6172 6965 7479 3a20 5050 5e35 2020 variety: PP^5 │ │ │ │ +00045e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045e70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00045e80: 2020 696d 6167 653a 2073 6d6f 6f74 6820 image: smooth │ │ │ │ -00045e90: 7175 6164 7269 6320 6879 7065 7273 7572 quadric hypersur │ │ │ │ -00045ea0: 6661 6365 2069 6e20 5050 5e35 2020 2020 face in PP^5 │ │ │ │ -00045eb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00045ec0: 2020 2020 646f 6d69 6e61 6e63 653a 2066 dominance: f │ │ │ │ -00045ed0: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ +00045e70: 2020 2020 7c0a 7c20 2020 2020 696d 6167 |.| imag │ │ │ │ +00045e80: 653a 2073 6d6f 6f74 6820 7175 6164 7269 e: smooth quadri │ │ │ │ +00045e90: 6320 6879 7065 7273 7572 6661 6365 2069 c hypersurface i │ │ │ │ +00045ea0: 6e20 5050 5e35 2020 2020 2020 2020 2020 n PP^5 │ │ │ │ +00045eb0: 2020 2020 2020 7c0a 7c20 2020 2020 646f |.| do │ │ │ │ +00045ec0: 6d69 6e61 6e63 653a 2066 616c 7365 2020 minance: false │ │ │ │ +00045ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00045f00: 7c20 2020 2020 6269 7261 7469 6f6e 616c | birational │ │ │ │ -00045f10: 6974 793a 2066 616c 7365 2020 2020 2020 ity: false │ │ │ │ +00045ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00045f00: 6269 7261 7469 6f6e 616c 6974 793a 2066 birationality: f │ │ │ │ +00045f10: 616c 7365 2020 2020 2020 2020 2020 2020 alse │ │ │ │ 00045f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f40: 7c0a 7c20 2020 2020 636f 6566 6669 6369 |.| coeffici │ │ │ │ -00045f50: 656e 7420 7269 6e67 3a20 5a5a 2f33 3333 ent ring: ZZ/333 │ │ │ │ -00045f60: 3331 2020 2020 2020 2020 2020 2020 2020 31 │ │ │ │ -00045f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00045f80: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00045f30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00045f40: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00045f50: 6e67 3a20 5a5a 2f33 3333 3331 2020 2020 ng: ZZ/33331 │ │ │ │ +00045f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00045f70: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00045f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00045fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00045fc0: 2d2d 2d2d 2b0a 7c69 3620 3a20 3f20 4920 ----+.|i6 : ? I │ │ │ │ +00045fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00045fc0: 7c69 3620 3a20 3f20 4920 2020 2020 2020 |i6 : ? I │ │ │ │ 00045fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00045ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046000: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00046000: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046040: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00046050: 736d 6f6f 7468 2071 7561 6472 6963 2068 smooth quadric h │ │ │ │ -00046060: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ -00046070: 505e 3520 2020 2020 2020 2020 2020 2020 P^5 │ │ │ │ -00046080: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00046040: 2020 7c0a 7c6f 3620 3d20 736d 6f6f 7468 |.|o6 = smooth │ │ │ │ +00046050: 2071 7561 6472 6963 2068 7970 6572 7375 quadric hypersu │ │ │ │ +00046060: 7266 6163 6520 696e 2050 505e 3520 2020 rface in PP^5 │ │ │ │ +00046070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046080: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00046090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000460a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000460b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000460c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000460d0: 3720 3a20 7068 6921 3b20 2020 2020 2020 7 : phi!; │ │ │ │ +000460c0: 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 7068 ------+.|i7 : ph │ │ │ │ +000460d0: 6921 3b20 2020 2020 2020 2020 2020 2020 i!; │ │ │ │ 000460e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000460f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00046110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00046100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046150: 7c0a 7c6f 3720 3a20 5261 7469 6f6e 616c |.|o7 : Rational │ │ │ │ -00046160: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -00046170: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -00046180: 2050 505e 3420 746f 2050 505e 3529 2020 PP^4 to PP^5) │ │ │ │ -00046190: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00046140: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +00046150: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +00046160: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +00046170: 6c20 6d61 7020 6672 6f6d 2050 505e 3420 l map from PP^4 │ │ │ │ +00046180: 746f 2050 505e 3529 2020 2020 7c0a 2b2d to PP^5) |.+- │ │ │ │ +00046190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000461a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000461b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000461c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000461d0: 2d2d 2d2d 2b0a 7c69 3820 3a20 6465 7363 ----+.|i8 : desc │ │ │ │ -000461e0: 7269 6265 2070 6869 2020 2020 2020 2020 ribe phi │ │ │ │ +000461c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000461d0: 7c69 3820 3a20 6465 7363 7269 6265 2070 |i8 : describe p │ │ │ │ +000461e0: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ 000461f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046210: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00046210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00046220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046250: 2020 2020 2020 2020 7c0a 7c6f 3820 3d20 |.|o8 = │ │ │ │ -00046260: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ -00046270: 696e 6564 2062 7920 666f 726d 7320 6f66 ined by forms of │ │ │ │ -00046280: 2064 6567 7265 6520 3220 2020 2020 2020 degree 2 │ │ │ │ -00046290: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000462a0: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ -000462b0: 3a20 5050 5e34 2020 2020 2020 2020 2020 : PP^4 │ │ │ │ +00046250: 2020 7c0a 7c6f 3820 3d20 7261 7469 6f6e |.|o8 = ration │ │ │ │ +00046260: 616c 206d 6170 2064 6566 696e 6564 2062 al map defined b │ │ │ │ +00046270: 7920 666f 726d 7320 6f66 2064 6567 7265 y forms of degre │ │ │ │ +00046280: 6520 3220 2020 2020 2020 2020 2020 2020 e 2 │ │ │ │ +00046290: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ +000462a0: 6365 2076 6172 6965 7479 3a20 5050 5e34 ce variety: PP^4 │ │ │ │ +000462b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000462c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000462d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000462e0: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000462f0: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ +000462d0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +000462e0: 7267 6574 2076 6172 6965 7479 3a20 5050 rget variety: PP │ │ │ │ +000462f0: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ 00046300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00046320: 7c20 2020 2020 696d 6167 653a 2073 6d6f | image: smo │ │ │ │ -00046330: 6f74 6820 7175 6164 7269 6320 6879 7065 oth quadric hype │ │ │ │ -00046340: 7273 7572 6661 6365 2069 6e20 5050 5e35 rsurface in PP^5 │ │ │ │ -00046350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046360: 7c0a 7c20 2020 2020 646f 6d69 6e61 6e63 |.| dominanc │ │ │ │ -00046370: 653a 2066 616c 7365 2020 2020 2020 2020 e: false │ │ │ │ +00046310: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046320: 696d 6167 653a 2073 6d6f 6f74 6820 7175 image: smooth qu │ │ │ │ +00046330: 6164 7269 6320 6879 7065 7273 7572 6661 adric hypersurfa │ │ │ │ +00046340: 6365 2069 6e20 5050 5e35 2020 2020 2020 ce in PP^5 │ │ │ │ +00046350: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00046360: 2020 646f 6d69 6e61 6e63 653a 2066 616c dominance: fal │ │ │ │ +00046370: 7365 2020 2020 2020 2020 2020 2020 2020 se │ │ │ │ 00046380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463a0: 2020 7c0a 7c20 2020 2020 6269 7261 7469 |.| birati │ │ │ │ -000463b0: 6f6e 616c 6974 793a 2066 616c 7365 2020 onality: false │ │ │ │ +00046390: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000463a0: 2020 2020 6269 7261 7469 6f6e 616c 6974 birationalit │ │ │ │ +000463b0: 793a 2066 616c 7365 2020 2020 2020 2020 y: false │ │ │ │ 000463c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000463e0: 2020 2020 7c0a 7c20 2020 2020 6465 6772 |.| degr │ │ │ │ -000463f0: 6565 206f 6620 6d61 703a 2031 2020 2020 ee of map: 1 │ │ │ │ +000463d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000463e0: 7c20 2020 2020 6465 6772 6565 206f 6620 | degree of │ │ │ │ +000463f0: 6d61 703a 2031 2020 2020 2020 2020 2020 map: 1 │ │ │ │ 00046400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00046410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046420: 2020 2020 2020 7c0a 7c20 2020 2020 7072 |.| pr │ │ │ │ -00046430: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ -00046440: 3a20 7b31 2c20 322c 2034 2c20 342c 2032 : {1, 2, 4, 4, 2 │ │ │ │ -00046450: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ -00046460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00046470: 6e75 6d62 6572 206f 6620 6d69 6e69 6d61 number of minima │ │ │ │ -00046480: 6c20 7265 7072 6573 656e 7461 7469 7665 l representative │ │ │ │ -00046490: 733a 2031 2020 2020 2020 2020 2020 2020 s: 1 │ │ │ │ -000464a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000464b0: 2020 6469 6d65 6e73 696f 6e20 6261 7365 dimension base │ │ │ │ -000464c0: 206c 6f63 7573 3a20 3120 2020 2020 2020 locus: 1 │ │ │ │ +00046420: 7c0a 7c20 2020 2020 7072 6f6a 6563 7469 |.| projecti │ │ │ │ +00046430: 7665 2064 6567 7265 6573 3a20 7b31 2c20 ve degrees: {1, │ │ │ │ +00046440: 322c 2034 2c20 342c 2032 7d20 2020 2020 2, 4, 4, 2} │ │ │ │ +00046450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00046460: 2020 7c0a 7c20 2020 2020 6e75 6d62 6572 |.| number │ │ │ │ +00046470: 206f 6620 6d69 6e69 6d61 6c20 7265 7072 of minimal repr │ │ │ │ +00046480: 6573 656e 7461 7469 7665 733a 2031 2020 esentatives: 1 │ │ │ │ +00046490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000464a0: 2020 2020 7c0a 7c20 2020 2020 6469 6d65 |.| dime │ │ │ │ +000464b0: 6e73 696f 6e20 6261 7365 206c 6f63 7573 nsion base locus │ │ │ │ +000464c0: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ 000464d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000464e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000464f0: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ -00046500: 6c6f 6375 733a 2034 2020 2020 2020 2020 locus: 4 │ │ │ │ +000464e0: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +000464f0: 6772 6565 2062 6173 6520 6c6f 6375 733a gree base locus: │ │ │ │ +00046500: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00046510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00046530: 7c20 2020 2020 636f 6566 6669 6369 656e | coefficien │ │ │ │ -00046540: 7420 7269 6e67 3a20 5a5a 2f33 3333 3331 t ring: ZZ/33331 │ │ │ │ +00046520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00046530: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ +00046540: 3a20 5a5a 2f33 3333 3331 2020 2020 2020 : ZZ/33331 │ │ │ │ 00046550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00046570: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00046560: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00046570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000465a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000465b0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ -000465c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -000465d0: 6520 5261 7469 6f6e 616c 4d61 7020 213a e RationalMap !: │ │ │ │ -000465e0: 2052 6174 696f 6e61 6c4d 6170 2021 2c20 RationalMap !, │ │ │ │ -000465f0: 2d2d 2063 616c 6375 6c61 7465 7320 6576 -- calculates ev │ │ │ │ -00046600: 6572 7920 706f 7373 6962 6c65 2074 6869 ery possible thi │ │ │ │ -00046610: 6e67 0a0a 5761 7973 2074 6f20 7573 6520 ng..Ways to use │ │ │ │ -00046620: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ -00046630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00046640: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -00046650: 2064 6573 6372 6962 6528 5261 7469 6f6e describe(Ration │ │ │ │ -00046660: 616c 4d61 7029 3a20 6465 7363 7269 6265 alMap): describe │ │ │ │ -00046670: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -00046680: 702c 202d 2d20 6465 7363 7269 6265 2061 p, -- describe a │ │ │ │ -00046690: 0a20 2020 2072 6174 696f 6e61 6c20 6d61 . rational ma │ │ │ │ -000466a0: 700a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d p.-------------- │ │ │ │ +000465a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ +000465b0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +000465c0: 0a0a 2020 2a20 2a6e 6f74 6520 5261 7469 .. * *note Rati │ │ │ │ +000465d0: 6f6e 616c 4d61 7020 213a 2052 6174 696f onalMap !: Ratio │ │ │ │ +000465e0: 6e61 6c4d 6170 2021 2c20 2d2d 2063 616c nalMap !, -- cal │ │ │ │ +000465f0: 6375 6c61 7465 7320 6576 6572 7920 706f culates every po │ │ │ │ +00046600: 7373 6962 6c65 2074 6869 6e67 0a0a 5761 ssible thing..Wa │ │ │ │ +00046610: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ +00046620: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ +00046630: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00046640: 0a20 202a 202a 6e6f 7465 2064 6573 6372 . * *note descr │ │ │ │ +00046650: 6962 6528 5261 7469 6f6e 616c 4d61 7029 ibe(RationalMap) │ │ │ │ +00046660: 3a20 6465 7363 7269 6265 5f6c 7052 6174 : describe_lpRat │ │ │ │ +00046670: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ +00046680: 6465 7363 7269 6265 2061 0a20 2020 2072 describe a. r │ │ │ │ +00046690: 6174 696f 6e61 6c20 6d61 700a 2d2d 2d2d ational map.---- │ │ │ │ +000466a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000466b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000466c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000466d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000466e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000466f0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00046700: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00046710: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00046720: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00046730: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00046740: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00046750: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -00046760: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -00046770: 6d32 3a39 3833 3a30 2e0a 1f0a 4669 6c65 m2:983:0....File │ │ │ │ -00046780: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -00046790: 4e6f 6465 3a20 446f 6d69 6e61 6e74 2c20 Node: Dominant, │ │ │ │ -000467a0: 4e65 7874 3a20 656e 7472 6965 735f 6c70 Next: entries_lp │ │ │ │ -000467b0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -000467c0: 5072 6576 3a20 6465 7363 7269 6265 5f6c Prev: describe_l │ │ │ │ -000467d0: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -000467e0: 2055 703a 2054 6f70 0a0a 446f 6d69 6e61 Up: Top..Domina │ │ │ │ -000467f0: 6e74 0a2a 2a2a 2a2a 2a2a 2a0a 0a44 6573 nt.********..Des │ │ │ │ -00046800: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00046810: 3d3d 3d3d 0a0a 5468 6973 2069 7320 616e ====..This is an │ │ │ │ -00046820: 206f 7074 696f 6e61 6c20 6172 6775 6d65 optional argume │ │ │ │ -00046830: 6e74 2066 6f72 202a 6e6f 7465 2074 6f4d nt for *note toM │ │ │ │ -00046840: 6170 3a20 746f 4d61 702c 2e20 5768 656e ap: toMap,. When │ │ │ │ -00046850: 202a 6e6f 7465 2074 7275 653a 0a28 4d61 *note true:.(Ma │ │ │ │ -00046860: 6361 756c 6179 3244 6f63 2974 7275 652c caulay2Doc)true, │ │ │ │ -00046870: 206f 7220 2a6e 6f74 6520 696e 6669 6e69 or *note infini │ │ │ │ -00046880: 7479 3a20 284d 6163 6175 6c61 7932 446f ty: (Macaulay2Do │ │ │ │ -00046890: 6329 696e 6669 6e69 7479 2c20 6973 2070 c)infinity, is p │ │ │ │ -000468a0: 6173 7365 6420 746f 0a74 6869 7320 6f70 assed to.this op │ │ │ │ -000468b0: 7469 6f6e 2c20 7468 6520 6b65 726e 656c tion, the kernel │ │ │ │ -000468c0: 206f 6620 7468 6520 7265 7475 726e 6564 of the returned │ │ │ │ -000468d0: 2072 696e 6720 6d61 7020 7769 6c6c 2062 ring map will b │ │ │ │ -000468e0: 6520 7a65 726f 2e0a 0a46 756e 6374 696f e zero...Functio │ │ │ │ -000468f0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00046900: 2061 7267 756d 656e 7420 6e61 6d65 6420 argument named │ │ │ │ -00046910: 446f 6d69 6e61 6e74 3a0a 3d3d 3d3d 3d3d Dominant:.====== │ │ │ │ +000466e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +000466f0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00046700: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00046710: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00046720: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00046730: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00046740: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00046750: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ +00046760: 6d65 6e74 6174 696f 6e2e 6d32 3a39 3833 mentation.m2:983 │ │ │ │ +00046770: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ +00046780: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ +00046790: 446f 6d69 6e61 6e74 2c20 4e65 7874 3a20 Dominant, Next: │ │ │ │ +000467a0: 656e 7472 6965 735f 6c70 5261 7469 6f6e entries_lpRation │ │ │ │ +000467b0: 616c 4d61 705f 7270 2c20 5072 6576 3a20 alMap_rp, Prev: │ │ │ │ +000467c0: 6465 7363 7269 6265 5f6c 7052 6174 696f describe_lpRatio │ │ │ │ +000467d0: 6e61 6c4d 6170 5f72 702c 2055 703a 2054 nalMap_rp, Up: T │ │ │ │ +000467e0: 6f70 0a0a 446f 6d69 6e61 6e74 0a2a 2a2a op..Dominant.*** │ │ │ │ +000467f0: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ +00046800: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00046810: 5468 6973 2069 7320 616e 206f 7074 696f This is an optio │ │ │ │ +00046820: 6e61 6c20 6172 6775 6d65 6e74 2066 6f72 nal argument for │ │ │ │ +00046830: 202a 6e6f 7465 2074 6f4d 6170 3a20 746f *note toMap: to │ │ │ │ +00046840: 4d61 702c 2e20 5768 656e 202a 6e6f 7465 Map,. When *note │ │ │ │ +00046850: 2074 7275 653a 0a28 4d61 6361 756c 6179 true:.(Macaulay │ │ │ │ +00046860: 3244 6f63 2974 7275 652c 206f 7220 2a6e 2Doc)true, or *n │ │ │ │ +00046870: 6f74 6520 696e 6669 6e69 7479 3a20 284d ote infinity: (M │ │ │ │ +00046880: 6163 6175 6c61 7932 446f 6329 696e 6669 acaulay2Doc)infi │ │ │ │ +00046890: 6e69 7479 2c20 6973 2070 6173 7365 6420 nity, is passed │ │ │ │ +000468a0: 746f 0a74 6869 7320 6f70 7469 6f6e 2c20 to.this option, │ │ │ │ +000468b0: 7468 6520 6b65 726e 656c 206f 6620 7468 the kernel of th │ │ │ │ +000468c0: 6520 7265 7475 726e 6564 2072 696e 6720 e returned ring │ │ │ │ +000468d0: 6d61 7020 7769 6c6c 2062 6520 7a65 726f map will be zero │ │ │ │ +000468e0: 2e0a 0a46 756e 6374 696f 6e73 2077 6974 ...Functions wit │ │ │ │ +000468f0: 6820 6f70 7469 6f6e 616c 2061 7267 756d h optional argum │ │ │ │ +00046900: 656e 7420 6e61 6d65 6420 446f 6d69 6e61 ent named Domina │ │ │ │ +00046910: 6e74 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d nt:.============ │ │ │ │ 00046920: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00046930: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00046940: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00046950: 2272 6174 696f 6e61 6c4d 6170 282e 2e2e "rationalMap(... │ │ │ │ -00046960: 2c44 6f6d 696e 616e 743d 3e2e 2e2e 2922 ,Dominant=>...)" │ │ │ │ -00046970: 0a20 202a 2022 746f 4d61 7028 2e2e 2e2c . * "toMap(..., │ │ │ │ -00046980: 446f 6d69 6e61 6e74 3d3e 2e2e 2e29 220a Dominant=>...)". │ │ │ │ -00046990: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -000469a0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -000469b0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -000469c0: 6374 202a 6e6f 7465 2044 6f6d 696e 616e ct *note Dominan │ │ │ │ -000469d0: 743a 2044 6f6d 696e 616e 742c 2069 7320 t: Dominant, is │ │ │ │ -000469e0: 6120 2a6e 6f74 6520 7379 6d62 6f6c 3a20 a *note symbol: │ │ │ │ -000469f0: 284d 6163 6175 6c61 7932 446f 6329 5379 (Macaulay2Doc)Sy │ │ │ │ -00046a00: 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d mbol,...-------- │ │ │ │ +00046940: 3d3d 3d3d 0a0a 2020 2a20 2272 6174 696f ====.. * "ratio │ │ │ │ +00046950: 6e61 6c4d 6170 282e 2e2e 2c44 6f6d 696e nalMap(...,Domin │ │ │ │ +00046960: 616e 743d 3e2e 2e2e 2922 0a20 202a 2022 ant=>...)". * " │ │ │ │ +00046970: 746f 4d61 7028 2e2e 2e2c 446f 6d69 6e61 toMap(...,Domina │ │ │ │ +00046980: 6e74 3d3e 2e2e 2e29 220a 0a46 6f72 2074 nt=>...)"..For t │ │ │ │ +00046990: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +000469a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000469b0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +000469c0: 7465 2044 6f6d 696e 616e 743a 2044 6f6d te Dominant: Dom │ │ │ │ +000469d0: 696e 616e 742c 2069 7320 6120 2a6e 6f74 inant, is a *not │ │ │ │ +000469e0: 6520 7379 6d62 6f6c 3a20 284d 6163 6175 e symbol: (Macau │ │ │ │ +000469f0: 6c61 7932 446f 6329 5379 6d62 6f6c 2c2e lay2Doc)Symbol,. │ │ │ │ +00046a00: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 00046a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00046a50: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00046a60: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00046a70: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00046a80: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00046a90: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00046aa0: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00046ab0: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ -00046ac0: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ -00046ad0: 6174 696f 6e2e 6d32 3a38 383a 302e 0a1f ation.m2:88:0... │ │ │ │ -00046ae0: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -00046af0: 6e66 6f2c 204e 6f64 653a 2065 6e74 7269 nfo, Node: entri │ │ │ │ -00046b00: 6573 5f6c 7052 6174 696f 6e61 6c4d 6170 es_lpRationalMap │ │ │ │ -00046b10: 5f72 702c 204e 6578 743a 2045 756c 6572 _rp, Next: Euler │ │ │ │ -00046b20: 4368 6172 6163 7465 7269 7374 6963 2c20 Characteristic, │ │ │ │ -00046b30: 5072 6576 3a20 446f 6d69 6e61 6e74 2c20 Prev: Dominant, │ │ │ │ -00046b40: 5570 3a20 546f 700a 0a65 6e74 7269 6573 Up: Top..entries │ │ │ │ -00046b50: 2852 6174 696f 6e61 6c4d 6170 2920 2d2d (RationalMap) -- │ │ │ │ -00046b60: 2074 6865 2065 6e74 7269 6573 206f 6620 the entries of │ │ │ │ -00046b70: 7468 6520 6d61 7472 6978 2061 7373 6f63 the matrix assoc │ │ │ │ -00046b80: 6961 7465 6420 746f 2061 2072 6174 696f iated to a ratio │ │ │ │ -00046b90: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ +00046a50: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00046a60: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00046a70: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00046a80: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00046a90: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00046aa0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +00046ab0: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ +00046ac0: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ +00046ad0: 6d32 3a38 383a 302e 0a1f 0a46 696c 653a m2:88:0....File: │ │ │ │ +00046ae0: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +00046af0: 6f64 653a 2065 6e74 7269 6573 5f6c 7052 ode: entries_lpR │ │ │ │ +00046b00: 6174 696f 6e61 6c4d 6170 5f72 702c 204e ationalMap_rp, N │ │ │ │ +00046b10: 6578 743a 2045 756c 6572 4368 6172 6163 ext: EulerCharac │ │ │ │ +00046b20: 7465 7269 7374 6963 2c20 5072 6576 3a20 teristic, Prev: │ │ │ │ +00046b30: 446f 6d69 6e61 6e74 2c20 5570 3a20 546f Dominant, Up: To │ │ │ │ +00046b40: 700a 0a65 6e74 7269 6573 2852 6174 696f p..entries(Ratio │ │ │ │ +00046b50: 6e61 6c4d 6170 2920 2d2d 2074 6865 2065 nalMap) -- the e │ │ │ │ +00046b60: 6e74 7269 6573 206f 6620 7468 6520 6d61 ntries of the ma │ │ │ │ +00046b70: 7472 6978 2061 7373 6f63 6961 7465 6420 trix associated │ │ │ │ +00046b80: 746f 2061 2072 6174 696f 6e61 6c20 6d61 to a rational ma │ │ │ │ +00046b90: 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a p.************** │ │ │ │ 00046ba0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00046bb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00046bc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00046bd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00046be0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ -00046bf0: 7469 6f6e 3a20 2a6e 6f74 6520 656e 7472 tion: *note entr │ │ │ │ -00046c00: 6965 733a 2028 4d61 6361 756c 6179 3244 ies: (Macaulay2D │ │ │ │ -00046c10: 6f63 2965 6e74 7269 6573 2c0a 2020 2a20 oc)entries,. * │ │ │ │ -00046c20: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00046c30: 656e 7472 6965 7320 5068 690a 2020 2a20 entries Phi. * │ │ │ │ -00046c40: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00046c50: 5068 692c 2061 202a 6e6f 7465 2072 6174 Phi, a *note rat │ │ │ │ -00046c60: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00046c70: 6e61 6c4d 6170 2c0a 2020 2a20 4f75 7470 nalMap,. * Outp │ │ │ │ -00046c80: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -00046c90: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00046ca0: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -00046cb0: 7468 6520 656e 7472 6965 7320 6f66 2074 the entries of t │ │ │ │ -00046cc0: 6865 206d 6174 7269 7820 6173 736f 6369 he matrix associ │ │ │ │ -00046cd0: 6174 6564 0a20 2020 2020 2020 2074 6f20 ated. to │ │ │ │ -00046ce0: 7468 6520 7269 6e67 206d 6170 2064 6566 the ring map def │ │ │ │ -00046cf0: 696e 696e 6720 7468 6520 7261 7469 6f6e ining the ration │ │ │ │ -00046d00: 616c 206d 6170 2050 6869 0a0a 4465 7363 al map Phi..Desc │ │ │ │ -00046d10: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00046d20: 3d3d 3d0a 0a54 6869 7320 6973 2065 7175 ===..This is equ │ │ │ │ -00046d30: 6976 616c 656e 7420 746f 2066 6c61 7474 ivalent to flatt │ │ │ │ -00046d40: 656e 2065 6e74 7269 6573 206d 6174 7269 en entries matri │ │ │ │ -00046d50: 7820 5068 692e 0a0a 5365 6520 616c 736f x Phi...See also │ │ │ │ -00046d60: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00046d70: 6e6f 7465 206d 6174 7269 7828 5261 7469 note matrix(Rati │ │ │ │ -00046d80: 6f6e 616c 4d61 7029 3a20 6d61 7472 6978 onalMap): matrix │ │ │ │ -00046d90: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -00046da0: 702c 202d 2d20 7468 6520 6d61 7472 6978 p, -- the matrix │ │ │ │ -00046db0: 0a20 2020 2061 7373 6f63 6961 7465 6420 . associated │ │ │ │ -00046dc0: 746f 2061 2072 6174 696f 6e61 6c20 6d61 to a rational ma │ │ │ │ -00046dd0: 700a 0a57 6179 7320 746f 2075 7365 2074 p..Ways to use t │ │ │ │ -00046de0: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -00046df0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00046e00: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00046e10: 656e 7472 6965 7328 5261 7469 6f6e 616c entries(Rational │ │ │ │ -00046e20: 4d61 7029 3a20 656e 7472 6965 735f 6c70 Map): entries_lp │ │ │ │ -00046e30: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -00046e40: 2d2d 2074 6865 2065 6e74 7269 6573 206f -- the entries o │ │ │ │ -00046e50: 6620 7468 650a 2020 2020 6d61 7472 6978 f the. matrix │ │ │ │ -00046e60: 2061 7373 6f63 6961 7465 6420 746f 2061 associated to a │ │ │ │ -00046e70: 2072 6174 696f 6e61 6c20 6d61 700a 2d2d rational map.-- │ │ │ │ +00046be0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ +00046bf0: 2a6e 6f74 6520 656e 7472 6965 733a 2028 *note entries: ( │ │ │ │ +00046c00: 4d61 6361 756c 6179 3244 6f63 2965 6e74 Macaulay2Doc)ent │ │ │ │ +00046c10: 7269 6573 2c0a 2020 2a20 5573 6167 653a ries,. * Usage: │ │ │ │ +00046c20: 200a 2020 2020 2020 2020 656e 7472 6965 . entrie │ │ │ │ +00046c30: 7320 5068 690a 2020 2a20 496e 7075 7473 s Phi. * Inputs │ │ │ │ +00046c40: 3a0a 2020 2020 2020 2a20 5068 692c 2061 :. * Phi, a │ │ │ │ +00046c50: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00046c60: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00046c70: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ +00046c80: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ +00046c90: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00046ca0: 6f63 294c 6973 742c 2c20 7468 6520 656e oc)List,, the en │ │ │ │ +00046cb0: 7472 6965 7320 6f66 2074 6865 206d 6174 tries of the mat │ │ │ │ +00046cc0: 7269 7820 6173 736f 6369 6174 6564 0a20 rix associated. │ │ │ │ +00046cd0: 2020 2020 2020 2074 6f20 7468 6520 7269 to the ri │ │ │ │ +00046ce0: 6e67 206d 6170 2064 6566 696e 696e 6720 ng map defining │ │ │ │ +00046cf0: 7468 6520 7261 7469 6f6e 616c 206d 6170 the rational map │ │ │ │ +00046d00: 2050 6869 0a0a 4465 7363 7269 7074 696f Phi..Descriptio │ │ │ │ +00046d10: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00046d20: 6869 7320 6973 2065 7175 6976 616c 656e his is equivalen │ │ │ │ +00046d30: 7420 746f 2066 6c61 7474 656e 2065 6e74 t to flatten ent │ │ │ │ +00046d40: 7269 6573 206d 6174 7269 7820 5068 692e ries matrix Phi. │ │ │ │ +00046d50: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00046d60: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 206d ===.. * *note m │ │ │ │ +00046d70: 6174 7269 7828 5261 7469 6f6e 616c 4d61 atrix(RationalMa │ │ │ │ +00046d80: 7029 3a20 6d61 7472 6978 5f6c 7052 6174 p): matrix_lpRat │ │ │ │ +00046d90: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ +00046da0: 7468 6520 6d61 7472 6978 0a20 2020 2061 the matrix. a │ │ │ │ +00046db0: 7373 6f63 6961 7465 6420 746f 2061 2072 ssociated to a r │ │ │ │ +00046dc0: 6174 696f 6e61 6c20 6d61 700a 0a57 6179 ational map..Way │ │ │ │ +00046dd0: 7320 746f 2075 7365 2074 6869 7320 6d65 s to use this me │ │ │ │ +00046de0: 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d thod:.========== │ │ │ │ +00046df0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00046e00: 2020 2a20 2a6e 6f74 6520 656e 7472 6965 * *note entrie │ │ │ │ +00046e10: 7328 5261 7469 6f6e 616c 4d61 7029 3a20 s(RationalMap): │ │ │ │ +00046e20: 656e 7472 6965 735f 6c70 5261 7469 6f6e entries_lpRation │ │ │ │ +00046e30: 616c 4d61 705f 7270 2c20 2d2d 2074 6865 alMap_rp, -- the │ │ │ │ +00046e40: 2065 6e74 7269 6573 206f 6620 7468 650a entries of the. │ │ │ │ +00046e50: 2020 2020 6d61 7472 6978 2061 7373 6f63 matrix assoc │ │ │ │ +00046e60: 6961 7465 6420 746f 2061 2072 6174 696f iated to a ratio │ │ │ │ +00046e70: 6e61 6c20 6d61 700a 2d2d 2d2d 2d2d 2d2d nal map.-------- │ │ │ │ 00046e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00046eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00046ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00046ed0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00046ee0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00046ef0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00046f00: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -00046f10: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -00046f20: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -00046f30: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -00046f40: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a37 cumentation.m2:7 │ │ │ │ -00046f50: 3430 3a30 2e0a 1f0a 4669 6c65 3a20 4372 40:0....File: Cr │ │ │ │ -00046f60: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -00046f70: 3a20 4575 6c65 7243 6861 7261 6374 6572 : EulerCharacter │ │ │ │ -00046f80: 6973 7469 632c 204e 6578 743a 2065 7863 istic, Next: exc │ │ │ │ -00046f90: 6570 7469 6f6e 616c 4c6f 6375 732c 2050 eptionalLocus, P │ │ │ │ -00046fa0: 7265 763a 2065 6e74 7269 6573 5f6c 7052 rev: entries_lpR │ │ │ │ -00046fb0: 6174 696f 6e61 6c4d 6170 5f72 702c 2055 ationalMap_rp, U │ │ │ │ -00046fc0: 703a 2054 6f70 0a0a 4575 6c65 7243 6861 p: Top..EulerCha │ │ │ │ -00046fd0: 7261 6374 6572 6973 7469 6320 2d2d 2074 racteristic -- t │ │ │ │ -00046fe0: 6f70 6f6c 6f67 6963 616c 2045 756c 6572 opological Euler │ │ │ │ -00046ff0: 2063 6861 7261 6374 6572 6973 7469 6320 characteristic │ │ │ │ -00047000: 6f66 2061 2028 736d 6f6f 7468 2920 7072 of a (smooth) pr │ │ │ │ -00047010: 6f6a 6563 7469 7665 2076 6172 6965 7479 ojective variety │ │ │ │ -00047020: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ +00046ec0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00046ed0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00046ee0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00046ef0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00046f00: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00046f10: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00046f20: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +00046f30: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +00046f40: 6174 696f 6e2e 6d32 3a37 3430 3a30 2e0a ation.m2:740:0.. │ │ │ │ +00046f50: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ +00046f60: 696e 666f 2c20 4e6f 6465 3a20 4575 6c65 info, Node: Eule │ │ │ │ +00046f70: 7243 6861 7261 6374 6572 6973 7469 632c rCharacteristic, │ │ │ │ +00046f80: 204e 6578 743a 2065 7863 6570 7469 6f6e Next: exception │ │ │ │ +00046f90: 616c 4c6f 6375 732c 2050 7265 763a 2065 alLocus, Prev: e │ │ │ │ +00046fa0: 6e74 7269 6573 5f6c 7052 6174 696f 6e61 ntries_lpRationa │ │ │ │ +00046fb0: 6c4d 6170 5f72 702c 2055 703a 2054 6f70 lMap_rp, Up: Top │ │ │ │ +00046fc0: 0a0a 4575 6c65 7243 6861 7261 6374 6572 ..EulerCharacter │ │ │ │ +00046fd0: 6973 7469 6320 2d2d 2074 6f70 6f6c 6f67 istic -- topolog │ │ │ │ +00046fe0: 6963 616c 2045 756c 6572 2063 6861 7261 ical Euler chara │ │ │ │ +00046ff0: 6374 6572 6973 7469 6320 6f66 2061 2028 cteristic of a ( │ │ │ │ +00047000: 736d 6f6f 7468 2920 7072 6f6a 6563 7469 smooth) projecti │ │ │ │ +00047010: 7665 2076 6172 6965 7479 0a2a 2a2a 2a2a ve variety.***** │ │ │ │ +00047020: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00047030: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00047040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00047050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00047060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00047070: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2055 *********.. * U │ │ │ │ -00047080: 7361 6765 3a20 0a20 2020 2020 2020 2045 sage: . E │ │ │ │ -00047090: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ -000470a0: 6963 2049 0a20 202a 2049 6e70 7574 733a ic I. * Inputs: │ │ │ │ -000470b0: 0a20 2020 2020 202a 2049 2c20 616e 202a . * I, an * │ │ │ │ -000470c0: 6e6f 7465 2069 6465 616c 3a20 284d 6163 note ideal: (Mac │ │ │ │ -000470d0: 6175 6c61 7932 446f 6329 4964 6561 6c2c aulay2Doc)Ideal, │ │ │ │ -000470e0: 2c20 6120 686f 6d6f 6765 6e65 6f75 7320 , a homogeneous │ │ │ │ -000470f0: 6964 6561 6c20 6465 6669 6e69 6e67 2061 ideal defining a │ │ │ │ -00047100: 0a20 2020 2020 2020 2073 6d6f 6f74 6820 . smooth │ │ │ │ -00047110: 7072 6f6a 6563 7469 7665 2076 6172 6965 projective varie │ │ │ │ -00047120: 7479 2024 585c 7375 6273 6574 5c6d 6174 ty $X\subset\mat │ │ │ │ -00047130: 6862 627b 507d 5e6e 240a 2020 2a20 2a6e hbb{P}^n$. * *n │ │ │ │ -00047140: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ -00047150: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ -00047160: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ -00047170: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ -00047180: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ -00047190: 2a20 2a6e 6f74 6520 426c 6f77 5570 5374 * *note BlowUpSt │ │ │ │ -000471a0: 7261 7465 6779 3a20 426c 6f77 5570 5374 rategy: BlowUpSt │ │ │ │ -000471b0: 7261 7465 6779 2c20 3d3e 202e 2e2e 2c20 rategy, => ..., │ │ │ │ -000471c0: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ -000471d0: 2020 2020 2020 2245 6c69 6d69 6e61 7465 "Eliminate │ │ │ │ -000471e0: 222c 0a20 2020 2020 202a 202a 6e6f 7465 ",. * *note │ │ │ │ -000471f0: 2043 6572 7469 6679 3a20 4365 7274 6966 Certify: Certif │ │ │ │ -00047200: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ -00047210: 6c74 2076 616c 7565 2066 616c 7365 2c20 lt value false, │ │ │ │ -00047220: 7768 6574 6865 7220 746f 2065 6e73 7572 whether to ensur │ │ │ │ -00047230: 650a 2020 2020 2020 2020 636f 7272 6563 e. correc │ │ │ │ -00047240: 746e 6573 7320 6f66 206f 7574 7075 740a tness of output. │ │ │ │ -00047250: 2020 2020 2020 2a20 2a6e 6f74 6520 5665 * *note Ve │ │ │ │ -00047260: 7262 6f73 653a 2069 6e76 6572 7365 4d61 rbose: inverseMa │ │ │ │ -00047270: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ -00047280: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ -00047290: 7064 5f72 702c 203d 3e20 2e2e 2e2c 0a20 pd_rp, => ...,. │ │ │ │ -000472a0: 2020 2020 2020 2064 6566 6175 6c74 2076 default v │ │ │ │ -000472b0: 616c 7565 2074 7275 652c 0a20 202a 204f alue true,. * O │ │ │ │ -000472c0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ -000472d0: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -000472e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000472f0: 5a5a 2c2c 2074 6865 2074 6f70 6f6c 6f67 ZZ,, the topolog │ │ │ │ -00047300: 6963 616c 2045 756c 6572 0a20 2020 2020 ical Euler. │ │ │ │ -00047310: 2020 2063 6861 7261 6374 6572 6973 7469 characteristi │ │ │ │ -00047320: 6373 206f 6620 2458 242e 0a0a 4465 7363 cs of $X$...Desc │ │ │ │ -00047330: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -00047340: 3d3d 3d0a 0a54 6869 7320 6973 2061 6e20 ===..This is an │ │ │ │ -00047350: 6170 706c 6963 6174 696f 6e20 6f66 2074 application of t │ │ │ │ -00047360: 6865 206d 6574 686f 6420 2a6e 6f74 6520 he method *note │ │ │ │ -00047370: 5365 6772 6543 6c61 7373 3a20 5365 6772 SegreClass: Segr │ │ │ │ -00047380: 6543 6c61 7373 2c2e 2053 6565 2061 6c73 eClass,. See als │ │ │ │ -00047390: 6f0a 7468 6520 636f 7272 6573 706f 6e64 o.the correspond │ │ │ │ -000473a0: 696e 6720 6d65 7468 6f64 7320 696e 2074 ing methods in t │ │ │ │ -000473b0: 6865 2070 6163 6b61 6765 7320 4353 4d2d he packages CSM- │ │ │ │ -000473c0: 4120 2873 6565 0a68 7474 703a 2f2f 7777 A (see.http://ww │ │ │ │ -000473d0: 772e 6d61 7468 2e66 7375 2e65 6475 2f7e w.math.fsu.edu/~ │ │ │ │ -000473e0: 616c 7566 6669 2f43 534d 2f43 534d 2e68 aluffi/CSM/CSM.h │ │ │ │ -000473f0: 746d 6c20 292c 2062 7920 502e 2041 6c75 tml ), by P. Alu │ │ │ │ -00047400: 6666 692c 2061 6e64 202a 6e6f 7465 0a43 ffi, and *note.C │ │ │ │ -00047410: 6861 7261 6374 6572 6973 7469 6343 6c61 haracteristicCla │ │ │ │ -00047420: 7373 6573 3a20 2843 6861 7261 6374 6572 sses: (Character │ │ │ │ -00047430: 6973 7469 6343 6c61 7373 6573 2954 6f70 isticClasses)Top │ │ │ │ -00047440: 2c2c 2062 7920 4d2e 2048 656c 6d65 7220 ,, by M. Helmer │ │ │ │ -00047450: 616e 6420 432e 204a 6f73 742e 0a0a 496e and C. Jost...In │ │ │ │ -00047460: 2067 656e 6572 616c 2c20 6576 656e 2069 general, even i │ │ │ │ -00047470: 6620 7468 6520 696e 7075 7420 6964 6561 f the input idea │ │ │ │ -00047480: 6c20 6465 6669 6e65 7320 6120 7369 6e67 l defines a sing │ │ │ │ -00047490: 756c 6172 2076 6172 6965 7479 2024 5824 ular variety $X$ │ │ │ │ -000474a0: 2c20 7468 650a 7265 7475 726e 6564 2076 , the.returned v │ │ │ │ -000474b0: 616c 7565 2065 7175 616c 7320 7468 6520 alue equals the │ │ │ │ -000474c0: 6465 6772 6565 206f 6620 7468 6520 636f degree of the co │ │ │ │ -000474d0: 6d70 6f6e 656e 7420 6f66 2064 696d 656e mponent of dimen │ │ │ │ -000474e0: 7369 6f6e 2030 206f 6620 7468 650a 4368 sion 0 of the.Ch │ │ │ │ -000474f0: 6572 6e2d 4675 6c74 6f6e 2063 6c61 7373 ern-Fulton class │ │ │ │ -00047500: 206f 6620 2458 242e 2054 6865 2045 756c of $X$. The Eul │ │ │ │ -00047510: 6572 2063 6861 7261 6374 6572 6973 7469 er characteristi │ │ │ │ -00047520: 6320 6f66 2061 2073 696e 6775 6c61 7220 c of a singular │ │ │ │ -00047530: 7661 7269 6574 7920 6361 6e0a 6265 2063 variety can.be c │ │ │ │ -00047540: 6f6d 7075 7465 6420 7669 6120 7468 6520 omputed via the │ │ │ │ -00047550: 6d65 7468 6f64 202a 6e6f 7465 2043 6865 method *note Che │ │ │ │ -00047560: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ -00047570: 7273 6f6e 3a0a 4368 6572 6e53 6368 7761 rson:.ChernSchwa │ │ │ │ -00047580: 7274 7a4d 6163 5068 6572 736f 6e2c 2e0a rtzMacPherson,.. │ │ │ │ -00047590: 0a49 6e20 7468 6520 6578 616d 706c 6520 .In the example │ │ │ │ -000475a0: 6265 6c6f 772c 2077 6520 636f 6d70 7574 below, we comput │ │ │ │ -000475b0: 6520 7468 6520 4575 6c65 7220 6368 6172 e the Euler char │ │ │ │ -000475c0: 6163 7465 7269 7374 6963 206f 660a 245c acteristic of.$\ │ │ │ │ -000475d0: 6d61 7468 6262 7b47 7d28 312c 3429 5c73 mathbb{G}(1,4)\s │ │ │ │ -000475e0: 7562 7365 745c 6d61 7468 6262 7b50 7d5e ubset\mathbb{P}^ │ │ │ │ -000475f0: 7b39 7d24 2c20 7573 696e 6720 626f 7468 {9}$, using both │ │ │ │ -00047600: 2061 2070 726f 6261 6269 6c69 7374 6963 a probabilistic │ │ │ │ -00047610: 2061 6e64 2061 0a6e 6f6e 2d70 726f 6261 and a.non-proba │ │ │ │ -00047620: 6269 6c69 7374 6963 2061 7070 726f 6163 bilistic approac │ │ │ │ -00047630: 682e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d h...+----------- │ │ │ │ +00047070: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ +00047080: 0a20 2020 2020 2020 2045 756c 6572 4368 . EulerCh │ │ │ │ +00047090: 6172 6163 7465 7269 7374 6963 2049 0a20 aracteristic I. │ │ │ │ +000470a0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +000470b0: 202a 2049 2c20 616e 202a 6e6f 7465 2069 * I, an *note i │ │ │ │ +000470c0: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ +000470d0: 446f 6329 4964 6561 6c2c 2c20 6120 686f Doc)Ideal,, a ho │ │ │ │ +000470e0: 6d6f 6765 6e65 6f75 7320 6964 6561 6c20 mogeneous ideal │ │ │ │ +000470f0: 6465 6669 6e69 6e67 2061 0a20 2020 2020 defining a. │ │ │ │ +00047100: 2020 2073 6d6f 6f74 6820 7072 6f6a 6563 smooth projec │ │ │ │ +00047110: 7469 7665 2076 6172 6965 7479 2024 585c tive variety $X\ │ │ │ │ +00047120: 7375 6273 6574 5c6d 6174 6862 627b 507d subset\mathbb{P} │ │ │ │ +00047130: 5e6e 240a 2020 2a20 2a6e 6f74 6520 4f70 ^n$. * *note Op │ │ │ │ +00047140: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ +00047150: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ +00047160: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ +00047170: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ +00047180: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ +00047190: 6520 426c 6f77 5570 5374 7261 7465 6779 e BlowUpStrategy │ │ │ │ +000471a0: 3a20 426c 6f77 5570 5374 7261 7465 6779 : BlowUpStrategy │ │ │ │ +000471b0: 2c20 3d3e 202e 2e2e 2c20 6465 6661 756c , => ..., defaul │ │ │ │ +000471c0: 7420 7661 6c75 650a 2020 2020 2020 2020 t value. │ │ │ │ +000471d0: 2245 6c69 6d69 6e61 7465 222c 0a20 2020 "Eliminate",. │ │ │ │ +000471e0: 2020 202a 202a 6e6f 7465 2043 6572 7469 * *note Certi │ │ │ │ +000471f0: 6679 3a20 4365 7274 6966 792c 203d 3e20 fy: Certify, => │ │ │ │ +00047200: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00047210: 7565 2066 616c 7365 2c20 7768 6574 6865 ue false, whethe │ │ │ │ +00047220: 7220 746f 2065 6e73 7572 650a 2020 2020 r to ensure. │ │ │ │ +00047230: 2020 2020 636f 7272 6563 746e 6573 7320 correctness │ │ │ │ +00047240: 6f66 206f 7574 7075 740a 2020 2020 2020 of output. │ │ │ │ +00047250: 2a20 2a6e 6f74 6520 5665 7262 6f73 653a * *note Verbose: │ │ │ │ +00047260: 2069 6e76 6572 7365 4d61 705f 6c70 5f70 inverseMap_lp_p │ │ │ │ +00047270: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ +00047280: 653d 3e5f 7064 5f70 645f 7064 5f72 702c e=>_pd_pd_pd_rp, │ │ │ │ +00047290: 203d 3e20 2e2e 2e2c 0a20 2020 2020 2020 => ...,. │ │ │ │ +000472a0: 2064 6566 6175 6c74 2076 616c 7565 2074 default value t │ │ │ │ +000472b0: 7275 652c 0a20 202a 204f 7574 7075 7473 rue,. * Outputs │ │ │ │ +000472c0: 3a0a 2020 2020 2020 2a20 616e 202a 6e6f :. * an *no │ │ │ │ +000472d0: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +000472e0: 6175 6c61 7932 446f 6329 5a5a 2c2c 2074 aulay2Doc)ZZ,, t │ │ │ │ +000472f0: 6865 2074 6f70 6f6c 6f67 6963 616c 2045 he topological E │ │ │ │ +00047300: 756c 6572 0a20 2020 2020 2020 2063 6861 uler. cha │ │ │ │ +00047310: 7261 6374 6572 6973 7469 6373 206f 6620 racteristics of │ │ │ │ +00047320: 2458 242e 0a0a 4465 7363 7269 7074 696f $X$...Descriptio │ │ │ │ +00047330: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +00047340: 6869 7320 6973 2061 6e20 6170 706c 6963 his is an applic │ │ │ │ +00047350: 6174 696f 6e20 6f66 2074 6865 206d 6574 ation of the met │ │ │ │ +00047360: 686f 6420 2a6e 6f74 6520 5365 6772 6543 hod *note SegreC │ │ │ │ +00047370: 6c61 7373 3a20 5365 6772 6543 6c61 7373 lass: SegreClass │ │ │ │ +00047380: 2c2e 2053 6565 2061 6c73 6f0a 7468 6520 ,. See also.the │ │ │ │ +00047390: 636f 7272 6573 706f 6e64 696e 6720 6d65 corresponding me │ │ │ │ +000473a0: 7468 6f64 7320 696e 2074 6865 2070 6163 thods in the pac │ │ │ │ +000473b0: 6b61 6765 7320 4353 4d2d 4120 2873 6565 kages CSM-A (see │ │ │ │ +000473c0: 0a68 7474 703a 2f2f 7777 772e 6d61 7468 .http://www.math │ │ │ │ +000473d0: 2e66 7375 2e65 6475 2f7e 616c 7566 6669 .fsu.edu/~aluffi │ │ │ │ +000473e0: 2f43 534d 2f43 534d 2e68 746d 6c20 292c /CSM/CSM.html ), │ │ │ │ +000473f0: 2062 7920 502e 2041 6c75 6666 692c 2061 by P. Aluffi, a │ │ │ │ +00047400: 6e64 202a 6e6f 7465 0a43 6861 7261 6374 nd *note.Charact │ │ │ │ +00047410: 6572 6973 7469 6343 6c61 7373 6573 3a20 eristicClasses: │ │ │ │ +00047420: 2843 6861 7261 6374 6572 6973 7469 6343 (CharacteristicC │ │ │ │ +00047430: 6c61 7373 6573 2954 6f70 2c2c 2062 7920 lasses)Top,, by │ │ │ │ +00047440: 4d2e 2048 656c 6d65 7220 616e 6420 432e M. Helmer and C. │ │ │ │ +00047450: 204a 6f73 742e 0a0a 496e 2067 656e 6572 Jost...In gener │ │ │ │ +00047460: 616c 2c20 6576 656e 2069 6620 7468 6520 al, even if the │ │ │ │ +00047470: 696e 7075 7420 6964 6561 6c20 6465 6669 input ideal defi │ │ │ │ +00047480: 6e65 7320 6120 7369 6e67 756c 6172 2076 nes a singular v │ │ │ │ +00047490: 6172 6965 7479 2024 5824 2c20 7468 650a ariety $X$, the. │ │ │ │ +000474a0: 7265 7475 726e 6564 2076 616c 7565 2065 returned value e │ │ │ │ +000474b0: 7175 616c 7320 7468 6520 6465 6772 6565 quals the degree │ │ │ │ +000474c0: 206f 6620 7468 6520 636f 6d70 6f6e 656e of the componen │ │ │ │ +000474d0: 7420 6f66 2064 696d 656e 7369 6f6e 2030 t of dimension 0 │ │ │ │ +000474e0: 206f 6620 7468 650a 4368 6572 6e2d 4675 of the.Chern-Fu │ │ │ │ +000474f0: 6c74 6f6e 2063 6c61 7373 206f 6620 2458 lton class of $X │ │ │ │ +00047500: 242e 2054 6865 2045 756c 6572 2063 6861 $. The Euler cha │ │ │ │ +00047510: 7261 6374 6572 6973 7469 6320 6f66 2061 racteristic of a │ │ │ │ +00047520: 2073 696e 6775 6c61 7220 7661 7269 6574 singular variet │ │ │ │ +00047530: 7920 6361 6e0a 6265 2063 6f6d 7075 7465 y can.be compute │ │ │ │ +00047540: 6420 7669 6120 7468 6520 6d65 7468 6f64 d via the method │ │ │ │ +00047550: 202a 6e6f 7465 2043 6865 726e 5363 6877 *note ChernSchw │ │ │ │ +00047560: 6172 747a 4d61 6350 6865 7273 6f6e 3a0a artzMacPherson:. │ │ │ │ +00047570: 4368 6572 6e53 6368 7761 7274 7a4d 6163 ChernSchwartzMac │ │ │ │ +00047580: 5068 6572 736f 6e2c 2e0a 0a49 6e20 7468 Pherson,...In th │ │ │ │ +00047590: 6520 6578 616d 706c 6520 6265 6c6f 772c e example below, │ │ │ │ +000475a0: 2077 6520 636f 6d70 7574 6520 7468 6520 we compute the │ │ │ │ +000475b0: 4575 6c65 7220 6368 6172 6163 7465 7269 Euler characteri │ │ │ │ +000475c0: 7374 6963 206f 660a 245c 6d61 7468 6262 stic of.$\mathbb │ │ │ │ +000475d0: 7b47 7d28 312c 3429 5c73 7562 7365 745c {G}(1,4)\subset\ │ │ │ │ +000475e0: 6d61 7468 6262 7b50 7d5e 7b39 7d24 2c20 mathbb{P}^{9}$, │ │ │ │ +000475f0: 7573 696e 6720 626f 7468 2061 2070 726f using both a pro │ │ │ │ +00047600: 6261 6269 6c69 7374 6963 2061 6e64 2061 babilistic and a │ │ │ │ +00047610: 0a6e 6f6e 2d70 726f 6261 6269 6c69 7374 .non-probabilist │ │ │ │ +00047620: 6963 2061 7070 726f 6163 682e 0a0a 2b2d ic approach...+- │ │ │ │ +00047630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047680: 2d2d 2b0a 7c69 3120 3a20 4920 3d20 4772 --+.|i1 : I = Gr │ │ │ │ -00047690: 6173 736d 616e 6e69 616e 2831 2c34 2c43 assmannian(1,4,C │ │ │ │ -000476a0: 6f65 6666 6963 6965 6e74 5269 6e67 3d3e oefficientRing=> │ │ │ │ -000476b0: 5a5a 2f31 3930 3138 3129 3b20 2020 2020 ZZ/190181); │ │ │ │ -000476c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000476d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00047680: 3120 3a20 4920 3d20 4772 6173 736d 616e 1 : I = Grassman │ │ │ │ +00047690: 6e69 616e 2831 2c34 2c43 6f65 6666 6963 nian(1,4,Coeffic │ │ │ │ +000476a0: 6965 6e74 5269 6e67 3d3e 5a5a 2f31 3930 ientRing=>ZZ/190 │ │ │ │ +000476b0: 3138 3129 3b20 2020 2020 2020 2020 2020 181); │ │ │ │ +000476c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000476d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000476f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047720: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00047730: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ +00047710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00047720: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ +00047730: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ 00047740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047770: 2020 7c0a 7c6f 3120 3a20 4964 6561 6c20 |.|o1 : Ideal │ │ │ │ -00047780: 6f66 202d 2d2d 2d2d 2d5b 7020 2020 2e2e of ------[p .. │ │ │ │ +00047760: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00047770: 3120 3a20 4964 6561 6c20 6f66 202d 2d2d 1 : Ideal of --- │ │ │ │ +00047780: 2d2d 2d5b 7020 2020 2e2e 7020 2020 2c20 ---[p ..p , │ │ │ │ 00047790: 7020 2020 2c20 7020 2020 2c20 7020 2020 p , p , p │ │ │ │ 000477a0: 2c20 7020 2020 2c20 7020 2020 2c20 7020 , p , p , p │ │ │ │ -000477b0: 2020 2c20 7020 2020 2c20 7020 2020 2c20 , p , p , │ │ │ │ -000477c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000477d0: 2020 2031 3930 3138 3120 2030 2c31 2020 190181 0,1 │ │ │ │ -000477e0: 2030 2c32 2020 2031 2c32 2020 2030 2c33 0,2 1,2 0,3 │ │ │ │ -000477f0: 2020 2031 2c33 2020 2032 2c33 2020 2030 1,3 2,3 0 │ │ │ │ -00047800: 2c34 2020 2031 2c34 2020 2032 2c34 2020 ,4 1,4 2,4 │ │ │ │ -00047810: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ +000477b0: 2020 2c20 7020 2020 2c20 2020 7c0a 7c20 , p , |.| │ │ │ │ +000477c0: 2020 2020 2020 2020 2020 2020 2031 3930 190 │ │ │ │ +000477d0: 3138 3120 2030 2c31 2020 2030 2c32 2020 181 0,1 0,2 │ │ │ │ +000477e0: 2031 2c32 2020 2030 2c33 2020 2031 2c33 1,2 0,3 1,3 │ │ │ │ +000477f0: 2020 2032 2c33 2020 2030 2c34 2020 2031 2,3 0,4 1 │ │ │ │ +00047800: 2c34 2020 2032 2c34 2020 2020 7c0a 7c2d ,4 2,4 |.|- │ │ │ │ +00047810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047860: 2d2d 7c0a 7c70 2020 205d 2020 2020 2020 --|.|p ] │ │ │ │ +00047850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c70 ------------|.|p │ │ │ │ +00047860: 2020 205d 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00047870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478b0: 2020 7c0a 7c20 332c 3420 2020 2020 2020 |.| 3,4 │ │ │ │ +000478a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000478b0: 332c 3420 2020 2020 2020 2020 2020 2020 3,4 │ │ │ │ 000478c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000478e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000478f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047900: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000478f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00047900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047950: 2d2d 2b0a 7c69 3220 3a20 7469 6d65 2045 --+.|i2 : time E │ │ │ │ -00047960: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ -00047970: 6963 2049 2020 2020 2020 2020 2020 2020 ic I │ │ │ │ +00047940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00047950: 3220 3a20 7469 6d65 2045 756c 6572 4368 2 : time EulerCh │ │ │ │ +00047960: 6172 6163 7465 7269 7374 6963 2049 2020 aracteristic I │ │ │ │ +00047970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000479a0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -000479b0: 3236 3537 3436 7320 2863 7075 293b 2030 265746s (cpu); 0 │ │ │ │ -000479c0: 2e31 3532 3938 7320 2874 6872 6561 6429 .15298s (thread) │ │ │ │ -000479d0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -000479e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000479f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047990: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000479a0: 2d2d 2075 7365 6420 302e 3335 3834 3931 -- used 0.358491 │ │ │ │ +000479b0: 7320 2863 7075 293b 2030 2e31 3932 3035 s (cpu); 0.19205 │ │ │ │ +000479c0: 3973 2028 7468 7265 6164 293b 2030 7320 9s (thread); 0s │ │ │ │ +000479d0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +000479e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000479f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a40: 2020 7c0a 7c6f 3220 3d20 3130 2020 2020 |.|o2 = 10 │ │ │ │ +00047a30: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00047a40: 3220 3d20 3130 2020 2020 2020 2020 2020 2 = 10 │ │ │ │ 00047a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047a90: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00047a80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00047a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047ae0: 2d2d 2b0a 7c69 3320 3a20 7469 6d65 2045 --+.|i3 : time E │ │ │ │ -00047af0: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ -00047b00: 6963 2849 2c43 6572 7469 6679 3d3e 7472 ic(I,Certify=>tr │ │ │ │ -00047b10: 7565 2920 2020 2020 2020 2020 2020 2020 ue) │ │ │ │ -00047b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b30: 2020 7c0a 7c43 6572 7469 6679 3a20 6f75 |.|Certify: ou │ │ │ │ -00047b40: 7470 7574 2063 6572 7469 6669 6564 2120 tput certified! │ │ │ │ +00047ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ +00047ae0: 3320 3a20 7469 6d65 2045 756c 6572 4368 3 : time EulerCh │ │ │ │ +00047af0: 6172 6163 7465 7269 7374 6963 2849 2c43 aracteristic(I,C │ │ │ │ +00047b00: 6572 7469 6679 3d3e 7472 7565 2920 2020 ertify=>true) │ │ │ │ +00047b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00047b20: 2020 2020 2020 2020 2020 2020 7c0a 7c43 |.|C │ │ │ │ +00047b30: 6572 7469 6679 3a20 6f75 7470 7574 2063 ertify: output c │ │ │ │ +00047b40: 6572 7469 6669 6564 2120 2020 2020 2020 ertified! │ │ │ │ 00047b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047b80: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ -00047b90: 3031 3135 3135 3873 2028 6370 7529 3b20 0115158s (cpu); │ │ │ │ -00047ba0: 302e 3031 3039 3731 3573 2028 7468 7265 0.0109715s (thre │ │ │ │ -00047bb0: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ -00047bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047bd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00047b70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00047b80: 2d2d 2075 7365 6420 302e 3033 3033 3731 -- used 0.030371 │ │ │ │ +00047b90: 3773 2028 6370 7529 3b20 302e 3031 3732 7s (cpu); 0.0172 │ │ │ │ +00047ba0: 3731 3673 2028 7468 7265 6164 293b 2030 716s (thread); 0 │ │ │ │ +00047bb0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ +00047bc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00047bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c20: 2020 7c0a 7c6f 3320 3d20 3130 2020 2020 |.|o3 = 10 │ │ │ │ +00047c10: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00047c20: 3320 3d20 3130 2020 2020 2020 2020 2020 3 = 10 │ │ │ │ 00047c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00047c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00047c70: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00047c60: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00047c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047cc0: 2d2d 2b0a 0a43 6176 6561 740a 3d3d 3d3d --+..Caveat.==== │ │ │ │ -00047cd0: 3d3d 0a0a 4e6f 2074 6573 7420 6973 206d ==..No test is m │ │ │ │ -00047ce0: 6164 6520 746f 2073 6565 2069 6620 7468 ade to see if th │ │ │ │ -00047cf0: 6520 7072 6f6a 6563 7469 7665 2076 6172 e projective var │ │ │ │ -00047d00: 6965 7479 2069 7320 736d 6f6f 7468 2e0a iety is smooth.. │ │ │ │ -00047d10: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -00047d20: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6575 ==.. * *note eu │ │ │ │ -00047d30: 6c65 7228 5072 6f6a 6563 7469 7665 5661 ler(ProjectiveVa │ │ │ │ -00047d40: 7269 6574 7929 3a20 2856 6172 6965 7469 riety): (Varieti │ │ │ │ -00047d50: 6573 2965 756c 6572 5f6c 7050 726f 6a65 es)euler_lpProje │ │ │ │ -00047d60: 6374 6976 6556 6172 6965 7479 5f72 702c ctiveVariety_rp, │ │ │ │ -00047d70: 202d 2d0a 2020 2020 746f 706f 6c6f 6769 --. topologi │ │ │ │ -00047d80: 6361 6c20 4575 6c65 7220 6368 6172 6163 cal Euler charac │ │ │ │ -00047d90: 7465 7269 7374 6963 206f 6620 6120 2873 teristic of a (s │ │ │ │ -00047da0: 6d6f 6f74 6829 2070 726f 6a65 6374 6976 mooth) projectiv │ │ │ │ -00047db0: 6520 7661 7269 6574 790a 2020 2a20 2a6e e variety. * *n │ │ │ │ -00047dc0: 6f74 6520 4368 6572 6e53 6368 7761 7274 ote ChernSchwart │ │ │ │ -00047dd0: 7a4d 6163 5068 6572 736f 6e3a 2043 6865 zMacPherson: Che │ │ │ │ -00047de0: 726e 5363 6877 6172 747a 4d61 6350 6865 rnSchwartzMacPhe │ │ │ │ -00047df0: 7273 6f6e 2c20 2d2d 0a20 2020 2043 6865 rson, --. Che │ │ │ │ -00047e00: 726e 2d53 6368 7761 7274 7a2d 4d61 6350 rn-Schwartz-MacP │ │ │ │ -00047e10: 6865 7273 6f6e 2063 6c61 7373 206f 6620 herson class of │ │ │ │ -00047e20: 6120 7072 6f6a 6563 7469 7665 2073 6368 a projective sch │ │ │ │ -00047e30: 656d 650a 2020 2a20 2a6e 6f74 6520 5365 eme. * *note Se │ │ │ │ -00047e40: 6772 6543 6c61 7373 3a20 5365 6772 6543 greClass: SegreC │ │ │ │ -00047e50: 6c61 7373 2c20 2d2d 2053 6567 7265 2063 lass, -- Segre c │ │ │ │ -00047e60: 6c61 7373 206f 6620 6120 636c 6f73 6564 lass of a closed │ │ │ │ -00047e70: 2073 7562 7363 6865 6d65 206f 6620 610a subscheme of a. │ │ │ │ -00047e80: 2020 2020 7072 6f6a 6563 7469 7665 2076 projective v │ │ │ │ -00047e90: 6172 6965 7479 0a0a 5761 7973 2074 6f20 ariety..Ways to │ │ │ │ -00047ea0: 7573 6520 4575 6c65 7243 6861 7261 6374 use EulerCharact │ │ │ │ -00047eb0: 6572 6973 7469 633a 0a3d 3d3d 3d3d 3d3d eristic:.======= │ │ │ │ +00047cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ +00047cc0: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4e6f aveat.======..No │ │ │ │ +00047cd0: 2074 6573 7420 6973 206d 6164 6520 746f test is made to │ │ │ │ +00047ce0: 2073 6565 2069 6620 7468 6520 7072 6f6a see if the proj │ │ │ │ +00047cf0: 6563 7469 7665 2076 6172 6965 7479 2069 ective variety i │ │ │ │ +00047d00: 7320 736d 6f6f 7468 2e0a 0a53 6565 2061 s smooth...See a │ │ │ │ +00047d10: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +00047d20: 2a20 2a6e 6f74 6520 6575 6c65 7228 5072 * *note euler(Pr │ │ │ │ +00047d30: 6f6a 6563 7469 7665 5661 7269 6574 7929 ojectiveVariety) │ │ │ │ +00047d40: 3a20 2856 6172 6965 7469 6573 2965 756c : (Varieties)eul │ │ │ │ +00047d50: 6572 5f6c 7050 726f 6a65 6374 6976 6556 er_lpProjectiveV │ │ │ │ +00047d60: 6172 6965 7479 5f72 702c 202d 2d0a 2020 ariety_rp, --. │ │ │ │ +00047d70: 2020 746f 706f 6c6f 6769 6361 6c20 4575 topological Eu │ │ │ │ +00047d80: 6c65 7220 6368 6172 6163 7465 7269 7374 ler characterist │ │ │ │ +00047d90: 6963 206f 6620 6120 2873 6d6f 6f74 6829 ic of a (smooth) │ │ │ │ +00047da0: 2070 726f 6a65 6374 6976 6520 7661 7269 projective vari │ │ │ │ +00047db0: 6574 790a 2020 2a20 2a6e 6f74 6520 4368 ety. * *note Ch │ │ │ │ +00047dc0: 6572 6e53 6368 7761 7274 7a4d 6163 5068 ernSchwartzMacPh │ │ │ │ +00047dd0: 6572 736f 6e3a 2043 6865 726e 5363 6877 erson: ChernSchw │ │ │ │ +00047de0: 6172 747a 4d61 6350 6865 7273 6f6e 2c20 artzMacPherson, │ │ │ │ +00047df0: 2d2d 0a20 2020 2043 6865 726e 2d53 6368 --. Chern-Sch │ │ │ │ +00047e00: 7761 7274 7a2d 4d61 6350 6865 7273 6f6e wartz-MacPherson │ │ │ │ +00047e10: 2063 6c61 7373 206f 6620 6120 7072 6f6a class of a proj │ │ │ │ +00047e20: 6563 7469 7665 2073 6368 656d 650a 2020 ective scheme. │ │ │ │ +00047e30: 2a20 2a6e 6f74 6520 5365 6772 6543 6c61 * *note SegreCla │ │ │ │ +00047e40: 7373 3a20 5365 6772 6543 6c61 7373 2c20 ss: SegreClass, │ │ │ │ +00047e50: 2d2d 2053 6567 7265 2063 6c61 7373 206f -- Segre class o │ │ │ │ +00047e60: 6620 6120 636c 6f73 6564 2073 7562 7363 f a closed subsc │ │ │ │ +00047e70: 6865 6d65 206f 6620 610a 2020 2020 7072 heme of a. pr │ │ │ │ +00047e80: 6f6a 6563 7469 7665 2076 6172 6965 7479 ojective variety │ │ │ │ +00047e90: 0a0a 5761 7973 2074 6f20 7573 6520 4575 ..Ways to use Eu │ │ │ │ +00047ea0: 6c65 7243 6861 7261 6374 6572 6973 7469 lerCharacteristi │ │ │ │ +00047eb0: 633a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d c:.============= │ │ │ │ 00047ec0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00047ed0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -00047ee0: 4575 6c65 7243 6861 7261 6374 6572 6973 EulerCharacteris │ │ │ │ -00047ef0: 7469 6328 4964 6561 6c29 220a 0a46 6f72 tic(Ideal)"..For │ │ │ │ -00047f00: 2074 6865 2070 726f 6772 616d 6d65 720a the programmer. │ │ │ │ -00047f10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00047f20: 3d3d 0a0a 5468 6520 6f62 6a65 6374 202a ==..The object * │ │ │ │ -00047f30: 6e6f 7465 2045 756c 6572 4368 6172 6163 note EulerCharac │ │ │ │ -00047f40: 7465 7269 7374 6963 3a20 4575 6c65 7243 teristic: EulerC │ │ │ │ -00047f50: 6861 7261 6374 6572 6973 7469 632c 2069 haracteristic, i │ │ │ │ -00047f60: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -00047f70: 0a66 756e 6374 696f 6e20 7769 7468 206f .function with o │ │ │ │ -00047f80: 7074 696f 6e73 3a20 284d 6163 6175 6c61 ptions: (Macaula │ │ │ │ -00047f90: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ -00047fa0: 7469 6f6e 5769 7468 4f70 7469 6f6e 732c tionWithOptions, │ │ │ │ -00047fb0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ +00047ed0: 3d3d 3d0a 0a20 202a 2022 4575 6c65 7243 ===.. * "EulerC │ │ │ │ +00047ee0: 6861 7261 6374 6572 6973 7469 6328 4964 haracteristic(Id │ │ │ │ +00047ef0: 6561 6c29 220a 0a46 6f72 2074 6865 2070 eal)"..For the p │ │ │ │ +00047f00: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ +00047f10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ +00047f20: 6520 6f62 6a65 6374 202a 6e6f 7465 2045 e object *note E │ │ │ │ +00047f30: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ +00047f40: 6963 3a20 4575 6c65 7243 6861 7261 6374 ic: EulerCharact │ │ │ │ +00047f50: 6572 6973 7469 632c 2069 7320 6120 2a6e eristic, is a *n │ │ │ │ +00047f60: 6f74 6520 6d65 7468 6f64 0a66 756e 6374 ote method.funct │ │ │ │ +00047f70: 696f 6e20 7769 7468 206f 7074 696f 6e73 ion with options │ │ │ │ +00047f80: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00047f90: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ +00047fa0: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +00047fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00047fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00047ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048000: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00048010: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00048020: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00048030: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00048040: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00048050: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00048060: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ -00048070: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ -00048080: 2e6d 323a 3334 343a 302e 0a1f 0a46 696c .m2:344:0....Fil │ │ │ │ -00048090: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ -000480a0: 204e 6f64 653a 2065 7863 6570 7469 6f6e Node: exception │ │ │ │ -000480b0: 616c 4c6f 6375 732c 204e 6578 743a 2066 alLocus, Next: f │ │ │ │ -000480c0: 6c61 7474 656e 5f6c 7052 6174 696f 6e61 latten_lpRationa │ │ │ │ -000480d0: 6c4d 6170 5f72 702c 2050 7265 763a 2045 lMap_rp, Prev: E │ │ │ │ -000480e0: 756c 6572 4368 6172 6163 7465 7269 7374 ulerCharacterist │ │ │ │ -000480f0: 6963 2c20 5570 3a20 546f 700a 0a65 7863 ic, Up: Top..exc │ │ │ │ -00048100: 6570 7469 6f6e 616c 4c6f 6375 7320 2d2d eptionalLocus -- │ │ │ │ -00048110: 2065 7863 6570 7469 6f6e 616c 206c 6f63 exceptional loc │ │ │ │ -00048120: 7573 206f 6620 6120 6269 7261 7469 6f6e us of a biration │ │ │ │ -00048130: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ +00047ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00048000: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00048010: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00048020: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00048030: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00048040: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00048050: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00048060: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ +00048070: 756d 656e 7461 7469 6f6e 2e6d 323a 3334 umentation.m2:34 │ │ │ │ +00048080: 343a 302e 0a1f 0a46 696c 653a 2043 7265 4:0....File: Cre │ │ │ │ +00048090: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ +000480a0: 2065 7863 6570 7469 6f6e 616c 4c6f 6375 exceptionalLocu │ │ │ │ +000480b0: 732c 204e 6578 743a 2066 6c61 7474 656e s, Next: flatten │ │ │ │ +000480c0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +000480d0: 702c 2050 7265 763a 2045 756c 6572 4368 p, Prev: EulerCh │ │ │ │ +000480e0: 6172 6163 7465 7269 7374 6963 2c20 5570 aracteristic, Up │ │ │ │ +000480f0: 3a20 546f 700a 0a65 7863 6570 7469 6f6e : Top..exception │ │ │ │ +00048100: 616c 4c6f 6375 7320 2d2d 2065 7863 6570 alLocus -- excep │ │ │ │ +00048110: 7469 6f6e 616c 206c 6f63 7573 206f 6620 tional locus of │ │ │ │ +00048120: 6120 6269 7261 7469 6f6e 616c 206d 6170 a birational map │ │ │ │ +00048130: 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .*************** │ │ │ │ 00048140: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00048150: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00048160: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00048170: 0a0a 2020 2a20 5573 6167 653a 200a 2020 .. * Usage: . │ │ │ │ -00048180: 2020 2020 2020 6578 6365 7074 696f 6e61 exceptiona │ │ │ │ -00048190: 6c4c 6f63 7573 2070 6869 0a20 202a 2049 lLocus phi. * I │ │ │ │ -000481a0: 6e70 7574 733a 0a20 2020 2020 202a 2070 nputs:. * p │ │ │ │ -000481b0: 6869 2c20 6120 2a6e 6f74 6520 7261 7469 hi, a *note rati │ │ │ │ -000481c0: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -000481d0: 616c 4d61 702c 2c20 6120 6269 7261 7469 alMap,, a birati │ │ │ │ -000481e0: 6f6e 616c 206d 6170 0a20 2020 2020 2020 onal map. │ │ │ │ -000481f0: 2024 585c 6461 7368 7269 6768 7461 7272 $X\dashrightarr │ │ │ │ -00048200: 6f77 2059 240a 2020 2a20 2a6e 6f74 6520 ow Y$. * *note │ │ │ │ -00048210: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -00048220: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -00048230: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -00048240: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -00048250: 7574 732c 3a0a 2020 2020 2020 2a20 2a6e uts,:. * *n │ │ │ │ -00048260: 6f74 6520 4365 7274 6966 793a 2043 6572 ote Certify: Cer │ │ │ │ -00048270: 7469 6679 2c20 3d3e 202e 2e2e 2c20 6465 tify, => ..., de │ │ │ │ -00048280: 6661 756c 7420 7661 6c75 6520 6661 6c73 fault value fals │ │ │ │ -00048290: 652c 2077 6865 7468 6572 2074 6f20 656e e, whether to en │ │ │ │ -000482a0: 7375 7265 0a20 2020 2020 2020 2063 6f72 sure. cor │ │ │ │ -000482b0: 7265 6374 6e65 7373 206f 6620 6f75 7470 rectness of outp │ │ │ │ -000482c0: 7574 0a20 202a 204f 7574 7075 7473 3a0a ut. * Outputs:. │ │ │ │ -000482d0: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ -000482e0: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ -000482f0: 7932 446f 6329 4964 6561 6c2c 2c20 7468 y2Doc)Ideal,, th │ │ │ │ -00048300: 6520 6964 6561 6c20 6465 6669 6e69 6e67 e ideal defining │ │ │ │ -00048310: 2074 6865 2063 6c6f 7375 7265 2069 6e0a the closure in. │ │ │ │ -00048320: 2020 2020 2020 2020 5820 6f66 2074 6865 X of the │ │ │ │ -00048330: 206c 6f63 7573 2077 6865 7265 2070 6869 locus where phi │ │ │ │ -00048340: 2069 7320 6e6f 7420 6120 6c6f 6361 6c20 is not a local │ │ │ │ -00048350: 6973 6f6d 6f72 7068 6973 6d0a 0a44 6573 isomorphism..Des │ │ │ │ -00048360: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00048370: 3d3d 3d3d 0a0a 5468 6973 206d 6574 686f ====..This metho │ │ │ │ -00048380: 6420 7369 6d70 6c79 2063 616c 6375 6c61 d simply calcula │ │ │ │ -00048390: 7465 7320 7468 6520 2a6e 6f74 6520 696e tes the *note in │ │ │ │ -000483a0: 7665 7273 6520 696d 6167 653a 2052 6174 verse image: Rat │ │ │ │ -000483b0: 696f 6e61 6c4d 6170 205e 5f73 745f 7374 ionalMap ^_st_st │ │ │ │ -000483c0: 0a49 6465 616c 2c20 6f66 2074 6865 202a .Ideal, of the * │ │ │ │ -000483d0: 6e6f 7465 2062 6173 6520 6c6f 6375 733a note base locus: │ │ │ │ -000483e0: 2069 6465 616c 5f6c 7052 6174 696f 6e61 ideal_lpRationa │ │ │ │ -000483f0: 6c4d 6170 5f72 702c 206f 6620 7468 6520 lMap_rp, of the │ │ │ │ -00048400: 696e 7665 7273 6520 6d61 702c 0a77 6869 inverse map,.whi │ │ │ │ -00048410: 6368 2069 6e20 7475 726e 2069 7320 6465 ch in turn is de │ │ │ │ -00048420: 7465 726d 696e 6564 2074 6872 6f75 6768 termined through │ │ │ │ -00048430: 2074 6865 206d 6574 686f 6420 2a6e 6f74 the method *not │ │ │ │ -00048440: 6520 696e 7665 7273 653a 0a69 6e76 6572 e inverse:.inver │ │ │ │ -00048450: 7365 5f6c 7052 6174 696f 6e61 6c4d 6170 se_lpRationalMap │ │ │ │ -00048460: 5f72 702c 2e0a 0a42 656c 6f77 2c20 7765 _rp,...Below, we │ │ │ │ -00048470: 2063 6f6d 7075 7465 2074 6865 2065 7863 compute the exc │ │ │ │ -00048480: 6570 7469 6f6e 616c 206c 6f63 7573 206f eptional locus o │ │ │ │ -00048490: 6620 7468 6520 6d61 7020 6465 6669 6e65 f the map define │ │ │ │ -000484a0: 6420 6279 2074 6865 206c 696e 6561 7220 d by the linear │ │ │ │ -000484b0: 7379 7374 656d 0a6f 6620 7175 6164 7269 system.of quadri │ │ │ │ -000484c0: 6373 2074 6872 6f75 6768 2074 6865 2071 cs through the q │ │ │ │ -000484d0: 7569 6e74 6963 2072 6174 696f 6e61 6c20 uintic rational │ │ │ │ -000484e0: 6e6f 726d 616c 2063 7572 7665 2069 6e20 normal curve in │ │ │ │ -000484f0: 245c 6d61 7468 6262 7b50 7d5e 3524 2e0a $\mathbb{P}^5$.. │ │ │ │ -00048500: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00048160: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00048170: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00048180: 6578 6365 7074 696f 6e61 6c4c 6f63 7573 exceptionalLocus │ │ │ │ +00048190: 2070 6869 0a20 202a 2049 6e70 7574 733a phi. * Inputs: │ │ │ │ +000481a0: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ +000481b0: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +000481c0: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +000481d0: 2c20 6120 6269 7261 7469 6f6e 616c 206d , a birational m │ │ │ │ +000481e0: 6170 0a20 2020 2020 2020 2024 585c 6461 ap. $X\da │ │ │ │ +000481f0: 7368 7269 6768 7461 7272 6f77 2059 240a shrightarrow Y$. │ │ │ │ +00048200: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ +00048210: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ +00048220: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ +00048230: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +00048240: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ +00048250: 2020 2020 2020 2a20 2a6e 6f74 6520 4365 * *note Ce │ │ │ │ +00048260: 7274 6966 793a 2043 6572 7469 6679 2c20 rtify: Certify, │ │ │ │ +00048270: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +00048280: 7661 6c75 6520 6661 6c73 652c 2077 6865 value false, whe │ │ │ │ +00048290: 7468 6572 2074 6f20 656e 7375 7265 0a20 ther to ensure. │ │ │ │ +000482a0: 2020 2020 2020 2063 6f72 7265 6374 6e65 correctne │ │ │ │ +000482b0: 7373 206f 6620 6f75 7470 7574 0a20 202a ss of output. * │ │ │ │ +000482c0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +000482d0: 2a20 616e 202a 6e6f 7465 2069 6465 616c * an *note ideal │ │ │ │ +000482e0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000482f0: 4964 6561 6c2c 2c20 7468 6520 6964 6561 Ideal,, the idea │ │ │ │ +00048300: 6c20 6465 6669 6e69 6e67 2074 6865 2063 l defining the c │ │ │ │ +00048310: 6c6f 7375 7265 2069 6e0a 2020 2020 2020 losure in. │ │ │ │ +00048320: 2020 5820 6f66 2074 6865 206c 6f63 7573 X of the locus │ │ │ │ +00048330: 2077 6865 7265 2070 6869 2069 7320 6e6f where phi is no │ │ │ │ +00048340: 7420 6120 6c6f 6361 6c20 6973 6f6d 6f72 t a local isomor │ │ │ │ +00048350: 7068 6973 6d0a 0a44 6573 6372 6970 7469 phism..Descripti │ │ │ │ +00048360: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00048370: 5468 6973 206d 6574 686f 6420 7369 6d70 This method simp │ │ │ │ +00048380: 6c79 2063 616c 6375 6c61 7465 7320 7468 ly calculates th │ │ │ │ +00048390: 6520 2a6e 6f74 6520 696e 7665 7273 6520 e *note inverse │ │ │ │ +000483a0: 696d 6167 653a 2052 6174 696f 6e61 6c4d image: RationalM │ │ │ │ +000483b0: 6170 205e 5f73 745f 7374 0a49 6465 616c ap ^_st_st.Ideal │ │ │ │ +000483c0: 2c20 6f66 2074 6865 202a 6e6f 7465 2062 , of the *note b │ │ │ │ +000483d0: 6173 6520 6c6f 6375 733a 2069 6465 616c ase locus: ideal │ │ │ │ +000483e0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +000483f0: 702c 206f 6620 7468 6520 696e 7665 7273 p, of the invers │ │ │ │ +00048400: 6520 6d61 702c 0a77 6869 6368 2069 6e20 e map,.which in │ │ │ │ +00048410: 7475 726e 2069 7320 6465 7465 726d 696e turn is determin │ │ │ │ +00048420: 6564 2074 6872 6f75 6768 2074 6865 206d ed through the m │ │ │ │ +00048430: 6574 686f 6420 2a6e 6f74 6520 696e 7665 ethod *note inve │ │ │ │ +00048440: 7273 653a 0a69 6e76 6572 7365 5f6c 7052 rse:.inverse_lpR │ │ │ │ +00048450: 6174 696f 6e61 6c4d 6170 5f72 702c 2e0a ationalMap_rp,.. │ │ │ │ +00048460: 0a42 656c 6f77 2c20 7765 2063 6f6d 7075 .Below, we compu │ │ │ │ +00048470: 7465 2074 6865 2065 7863 6570 7469 6f6e te the exception │ │ │ │ +00048480: 616c 206c 6f63 7573 206f 6620 7468 6520 al locus of the │ │ │ │ +00048490: 6d61 7020 6465 6669 6e65 6420 6279 2074 map defined by t │ │ │ │ +000484a0: 6865 206c 696e 6561 7220 7379 7374 656d he linear system │ │ │ │ +000484b0: 0a6f 6620 7175 6164 7269 6373 2074 6872 .of quadrics thr │ │ │ │ +000484c0: 6f75 6768 2074 6865 2071 7569 6e74 6963 ough the quintic │ │ │ │ +000484d0: 2072 6174 696f 6e61 6c20 6e6f 726d 616c rational normal │ │ │ │ +000484e0: 2063 7572 7665 2069 6e20 245c 6d61 7468 curve in $\math │ │ │ │ +000484f0: 6262 7b50 7d5e 3524 2e0a 0a2b 2d2d 2d2d bb{P}^5$...+---- │ │ │ │ +00048500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00048550: 0a7c 6931 203a 2050 3520 3a3d 205a 5a2f .|i1 : P5 := ZZ/ │ │ │ │ -00048560: 3130 3030 3033 5b78 5f30 2e2e 785f 355d 100003[x_0..x_5] │ │ │ │ -00048570: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00048540: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00048550: 2050 3520 3a3d 205a 5a2f 3130 3030 3033 P5 := ZZ/100003 │ │ │ │ +00048560: 5b78 5f30 2e2e 785f 355d 3b20 2020 2020 [x_0..x_5]; │ │ │ │ +00048570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000485a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00048590: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000485a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000485b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000485c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000485d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000485e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000485f0: 0a7c 6932 203a 2070 6869 203d 2072 6174 .|i2 : phi = rat │ │ │ │ -00048600: 696f 6e61 6c4d 6170 286d 696e 6f72 7328 ionalMap(minors( │ │ │ │ -00048610: 322c 6d61 7472 6978 7b7b 785f 302c 785f 2,matrix{{x_0,x_ │ │ │ │ -00048620: 312c 785f 322c 785f 332c 785f 347d 2c7b 1,x_2,x_3,x_4},{ │ │ │ │ -00048630: 785f 312c 785f 2020 2020 2020 2020 207c x_1,x_ | │ │ │ │ -00048640: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000485e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +000485f0: 2070 6869 203d 2072 6174 696f 6e61 6c4d phi = rationalM │ │ │ │ +00048600: 6170 286d 696e 6f72 7328 322c 6d61 7472 ap(minors(2,matr │ │ │ │ +00048610: 6978 7b7b 785f 302c 785f 312c 785f 322c ix{{x_0,x_1,x_2, │ │ │ │ +00048620: 785f 332c 785f 347d 2c7b 785f 312c 785f x_3,x_4},{x_1,x_ │ │ │ │ +00048630: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00048640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048690: 0a7c 6f32 203a 2052 6174 696f 6e61 6c4d .|o2 : RationalM │ │ │ │ -000486a0: 6170 2028 7175 6164 7261 7469 6320 7261 ap (quadratic ra │ │ │ │ -000486b0: 7469 6f6e 616c 206d 6170 2066 726f 6d20 tional map from │ │ │ │ -000486c0: 5050 5e35 2074 6f20 352d 6469 6d65 6e73 PP^5 to 5-dimens │ │ │ │ -000486d0: 696f 6e61 6c20 2020 2020 2020 2020 207c ional | │ │ │ │ -000486e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00048680: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +00048690: 2052 6174 696f 6e61 6c4d 6170 2028 7175 RationalMap (qu │ │ │ │ +000486a0: 6164 7261 7469 6320 7261 7469 6f6e 616c adratic rational │ │ │ │ +000486b0: 206d 6170 2066 726f 6d20 5050 5e35 2074 map from PP^5 t │ │ │ │ +000486c0: 6f20 352d 6469 6d65 6e73 696f 6e61 6c20 o 5-dimensional │ │ │ │ +000486d0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000486e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000486f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00048730: 0a7c 322c 785f 332c 785f 342c 785f 357d .|2,x_3,x_4,x_5} │ │ │ │ -00048740: 7d29 2c44 6f6d 696e 616e 743d 3e32 293b }),Dominant=>2); │ │ │ │ +00048720: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 322c 785f ---------|.|2,x_ │ │ │ │ +00048730: 332c 785f 342c 785f 357d 7d29 2c44 6f6d 3,x_4,x_5}}),Dom │ │ │ │ +00048740: 696e 616e 743d 3e32 293b 2020 2020 2020 inant=>2); │ │ │ │ 00048750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048780: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00048770: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00048780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000487c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000487d0: 0a7c 7375 6276 6172 6965 7479 206f 6620 .|subvariety of │ │ │ │ -000487e0: 5050 5e39 2920 2020 2020 2020 2020 2020 PP^9) │ │ │ │ +000487c0: 2020 2020 2020 2020 207c 0a7c 7375 6276 |.|subv │ │ │ │ +000487d0: 6172 6965 7479 206f 6620 5050 5e39 2920 ariety of PP^9) │ │ │ │ +000487e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000487f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048820: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00048810: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00048820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00048870: 0a7c 6933 203a 2045 203d 2065 7863 6570 .|i3 : E = excep │ │ │ │ -00048880: 7469 6f6e 616c 4c6f 6375 7320 7068 693b tionalLocus phi; │ │ │ │ +00048860: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00048870: 2045 203d 2065 7863 6570 7469 6f6e 616c E = exceptional │ │ │ │ +00048880: 4c6f 6375 7320 7068 693b 2020 2020 2020 Locus phi; │ │ │ │ 00048890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000488a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000488b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000488c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000488b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000488c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000488d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000488e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000488f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048910: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -00048920: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00048900: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00048910: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +00048920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048960: 0a7c 6f33 203a 2049 6465 616c 206f 6620 .|o3 : Ideal of │ │ │ │ -00048970: 2d2d 2d2d 2d2d 5b78 202e 2e78 205d 2020 ------[x ..x ] │ │ │ │ +00048950: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00048960: 2049 6465 616c 206f 6620 2d2d 2d2d 2d2d Ideal of ------ │ │ │ │ +00048970: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ 00048980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000489a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000489b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000489c0: 3130 3030 3033 2020 3020 2020 3520 2020 100003 0 5 │ │ │ │ +000489a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000489b0: 2020 2020 2020 2020 2020 3130 3030 3033 100003 │ │ │ │ +000489c0: 2020 3020 2020 3520 2020 2020 2020 2020 0 5 │ │ │ │ 000489d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000489e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000489f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048a00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000489f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00048a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00048a50: 0a7c 6934 203a 2061 7373 6572 7428 4520 .|i4 : assert(E │ │ │ │ -00048a60: 3d3d 2070 6869 5e2a 2069 6465 616c 2070 == phi^* ideal p │ │ │ │ -00048a70: 6869 5e2d 3129 2020 2020 2020 2020 2020 hi^-1) │ │ │ │ +00048a40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00048a50: 2061 7373 6572 7428 4520 3d3d 2070 6869 assert(E == phi │ │ │ │ +00048a60: 5e2a 2069 6465 616c 2070 6869 5e2d 3129 ^* ideal phi^-1) │ │ │ │ +00048a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048aa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00048a90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00048aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00048af0: 0a7c 6935 203a 2061 7373 6572 7428 4520 .|i5 : assert(E │ │ │ │ -00048b00: 3d3d 206d 696e 6f72 7328 332c 6d61 7472 == minors(3,matr │ │ │ │ -00048b10: 6978 7b7b 785f 302c 785f 312c 785f 322c ix{{x_0,x_1,x_2, │ │ │ │ -00048b20: 785f 337d 2c7b 785f 312c 785f 322c 785f x_3},{x_1,x_2,x_ │ │ │ │ -00048b30: 332c 785f 347d 2c7b 785f 322c 785f 337c 3,x_4},{x_2,x_3| │ │ │ │ -00048b40: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00048ae0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +00048af0: 2061 7373 6572 7428 4520 3d3d 206d 696e assert(E == min │ │ │ │ +00048b00: 6f72 7328 332c 6d61 7472 6978 7b7b 785f ors(3,matrix{{x_ │ │ │ │ +00048b10: 302c 785f 312c 785f 322c 785f 337d 2c7b 0,x_1,x_2,x_3},{ │ │ │ │ +00048b20: 785f 312c 785f 322c 785f 332c 785f 347d x_1,x_2,x_3,x_4} │ │ │ │ +00048b30: 2c7b 785f 322c 785f 337c 0a7c 2d2d 2d2d ,{x_2,x_3|.|---- │ │ │ │ +00048b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00048b90: 0a7c 2c78 5f34 2c78 5f35 7d7d 2929 2020 .|,x_4,x_5}})) │ │ │ │ +00048b80: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2c78 5f34 ---------|.|,x_4 │ │ │ │ +00048b90: 2c78 5f35 7d7d 2929 2020 2020 2020 2020 ,x_5}})) │ │ │ │ 00048ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00048bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00048bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00048be0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00048bd0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00048be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00048c30: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00048c40: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2069 ===.. * *note i │ │ │ │ -00048c50: 6465 616c 2852 6174 696f 6e61 6c4d 6170 deal(RationalMap │ │ │ │ -00048c60: 293a 2069 6465 616c 5f6c 7052 6174 696f ): ideal_lpRatio │ │ │ │ -00048c70: 6e61 6c4d 6170 5f72 702c 202d 2d20 6261 nalMap_rp, -- ba │ │ │ │ -00048c80: 7365 206c 6f63 7573 206f 6620 610a 2020 se locus of a. │ │ │ │ -00048c90: 2020 7261 7469 6f6e 616c 206d 6170 0a20 rational map. │ │ │ │ -00048ca0: 202a 202a 6e6f 7465 2069 6e76 6572 7365 * *note inverse │ │ │ │ -00048cb0: 4d61 7028 5261 7469 6f6e 616c 4d61 7029 Map(RationalMap) │ │ │ │ -00048cc0: 3a20 696e 7665 7273 654d 6170 2c20 2d2d : inverseMap, -- │ │ │ │ -00048cd0: 2069 6e76 6572 7365 206f 6620 6120 6269 inverse of a bi │ │ │ │ -00048ce0: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -00048cf0: 202a 6e6f 7465 2052 6174 696f 6e61 6c4d *note RationalM │ │ │ │ -00048d00: 6170 205e 2a2a 2049 6465 616c 3a20 5261 ap ^** Ideal: Ra │ │ │ │ -00048d10: 7469 6f6e 616c 4d61 7020 5e5f 7374 5f73 tionalMap ^_st_s │ │ │ │ -00048d20: 7420 4964 6561 6c2c 202d 2d20 696e 7665 t Ideal, -- inve │ │ │ │ -00048d30: 7273 6520 696d 6167 650a 2020 2020 7669 rse image. vi │ │ │ │ -00048d40: 6120 6120 7261 7469 6f6e 616c 206d 6170 a a rational map │ │ │ │ -00048d50: 0a20 202a 202a 6e6f 7465 2069 7349 736f . * *note isIso │ │ │ │ -00048d60: 6d6f 7270 6869 736d 2852 6174 696f 6e61 morphism(Rationa │ │ │ │ -00048d70: 6c4d 6170 293a 2069 7349 736f 6d6f 7270 lMap): isIsomorp │ │ │ │ -00048d80: 6869 736d 5f6c 7052 6174 696f 6e61 6c4d hism_lpRationalM │ │ │ │ -00048d90: 6170 5f72 702c 202d 2d0a 2020 2020 7768 ap_rp, --. wh │ │ │ │ -00048da0: 6574 6865 7220 6120 6269 7261 7469 6f6e ether a biration │ │ │ │ -00048db0: 616c 206d 6170 2069 7320 616e 2069 736f al map is an iso │ │ │ │ -00048dc0: 6d6f 7270 6869 736d 0a20 202a 202a 6e6f morphism. * *no │ │ │ │ -00048dd0: 7465 2066 6f72 6365 496e 7665 7273 654d te forceInverseM │ │ │ │ -00048de0: 6170 3a20 666f 7263 6549 6e76 6572 7365 ap: forceInverse │ │ │ │ -00048df0: 4d61 702c 202d 2d20 6465 636c 6172 6520 Map, -- declare │ │ │ │ -00048e00: 7468 6174 2074 776f 2072 6174 696f 6e61 that two rationa │ │ │ │ -00048e10: 6c20 6d61 7073 0a20 2020 2061 7265 206f l maps. are o │ │ │ │ -00048e20: 6e65 2074 6865 2069 6e76 6572 7365 206f ne the inverse o │ │ │ │ -00048e30: 6620 7468 6520 6f74 6865 720a 0a57 6179 f the other..Way │ │ │ │ -00048e40: 7320 746f 2075 7365 2065 7863 6570 7469 s to use excepti │ │ │ │ -00048e50: 6f6e 616c 4c6f 6375 733a 0a3d 3d3d 3d3d onalLocus:.===== │ │ │ │ +00048c20: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +00048c30: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +00048c40: 202a 202a 6e6f 7465 2069 6465 616c 2852 * *note ideal(R │ │ │ │ +00048c50: 6174 696f 6e61 6c4d 6170 293a 2069 6465 ationalMap): ide │ │ │ │ +00048c60: 616c 5f6c 7052 6174 696f 6e61 6c4d 6170 al_lpRationalMap │ │ │ │ +00048c70: 5f72 702c 202d 2d20 6261 7365 206c 6f63 _rp, -- base loc │ │ │ │ +00048c80: 7573 206f 6620 610a 2020 2020 7261 7469 us of a. rati │ │ │ │ +00048c90: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ +00048ca0: 7465 2069 6e76 6572 7365 4d61 7028 5261 te inverseMap(Ra │ │ │ │ +00048cb0: 7469 6f6e 616c 4d61 7029 3a20 696e 7665 tionalMap): inve │ │ │ │ +00048cc0: 7273 654d 6170 2c20 2d2d 2069 6e76 6572 rseMap, -- inver │ │ │ │ +00048cd0: 7365 206f 6620 6120 6269 7261 7469 6f6e se of a biration │ │ │ │ +00048ce0: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +00048cf0: 2052 6174 696f 6e61 6c4d 6170 205e 2a2a RationalMap ^** │ │ │ │ +00048d00: 2049 6465 616c 3a20 5261 7469 6f6e 616c Ideal: Rational │ │ │ │ +00048d10: 4d61 7020 5e5f 7374 5f73 7420 4964 6561 Map ^_st_st Idea │ │ │ │ +00048d20: 6c2c 202d 2d20 696e 7665 7273 6520 696d l, -- inverse im │ │ │ │ +00048d30: 6167 650a 2020 2020 7669 6120 6120 7261 age. via a ra │ │ │ │ +00048d40: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ +00048d50: 6e6f 7465 2069 7349 736f 6d6f 7270 6869 note isIsomorphi │ │ │ │ +00048d60: 736d 2852 6174 696f 6e61 6c4d 6170 293a sm(RationalMap): │ │ │ │ +00048d70: 2069 7349 736f 6d6f 7270 6869 736d 5f6c isIsomorphism_l │ │ │ │ +00048d80: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +00048d90: 202d 2d0a 2020 2020 7768 6574 6865 7220 --. whether │ │ │ │ +00048da0: 6120 6269 7261 7469 6f6e 616c 206d 6170 a birational map │ │ │ │ +00048db0: 2069 7320 616e 2069 736f 6d6f 7270 6869 is an isomorphi │ │ │ │ +00048dc0: 736d 0a20 202a 202a 6e6f 7465 2066 6f72 sm. * *note for │ │ │ │ +00048dd0: 6365 496e 7665 7273 654d 6170 3a20 666f ceInverseMap: fo │ │ │ │ +00048de0: 7263 6549 6e76 6572 7365 4d61 702c 202d rceInverseMap, - │ │ │ │ +00048df0: 2d20 6465 636c 6172 6520 7468 6174 2074 - declare that t │ │ │ │ +00048e00: 776f 2072 6174 696f 6e61 6c20 6d61 7073 wo rational maps │ │ │ │ +00048e10: 0a20 2020 2061 7265 206f 6e65 2074 6865 . are one the │ │ │ │ +00048e20: 2069 6e76 6572 7365 206f 6620 7468 6520 inverse of the │ │ │ │ +00048e30: 6f74 6865 720a 0a57 6179 7320 746f 2075 other..Ways to u │ │ │ │ +00048e40: 7365 2065 7863 6570 7469 6f6e 616c 4c6f se exceptionalLo │ │ │ │ +00048e50: 6375 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d cus:.=========== │ │ │ │ 00048e60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00048e70: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2265 ========.. * "e │ │ │ │ -00048e80: 7863 6570 7469 6f6e 616c 4c6f 6375 7328 xceptionalLocus( │ │ │ │ -00048e90: 5261 7469 6f6e 616c 4d61 7029 220a 0a46 RationalMap)"..F │ │ │ │ -00048ea0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ -00048eb0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ -00048ec0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ -00048ed0: 202a 6e6f 7465 2065 7863 6570 7469 6f6e *note exception │ │ │ │ -00048ee0: 616c 4c6f 6375 733a 2065 7863 6570 7469 alLocus: excepti │ │ │ │ -00048ef0: 6f6e 616c 4c6f 6375 732c 2069 7320 6120 onalLocus, is a │ │ │ │ -00048f00: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -00048f10: 6374 696f 6e0a 7769 7468 206f 7074 696f ction.with optio │ │ │ │ -00048f20: 6e73 3a20 284d 6163 6175 6c61 7932 446f ns: (Macaulay2Do │ │ │ │ -00048f30: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ -00048f40: 5769 7468 4f70 7469 6f6e 732c 2e0a 0a2d WithOptions,...- │ │ │ │ +00048e70: 3d3d 0a0a 2020 2a20 2265 7863 6570 7469 ==.. * "excepti │ │ │ │ +00048e80: 6f6e 616c 4c6f 6375 7328 5261 7469 6f6e onalLocus(Ration │ │ │ │ +00048e90: 616c 4d61 7029 220a 0a46 6f72 2074 6865 alMap)"..For the │ │ │ │ +00048ea0: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ +00048eb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00048ec0: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ +00048ed0: 2065 7863 6570 7469 6f6e 616c 4c6f 6375 exceptionalLocu │ │ │ │ +00048ee0: 733a 2065 7863 6570 7469 6f6e 616c 4c6f s: exceptionalLo │ │ │ │ +00048ef0: 6375 732c 2069 7320 6120 2a6e 6f74 6520 cus, is a *note │ │ │ │ +00048f00: 6d65 7468 6f64 2066 756e 6374 696f 6e0a method function. │ │ │ │ +00048f10: 7769 7468 206f 7074 696f 6e73 3a20 284d with options: (M │ │ │ │ +00048f20: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ +00048f30: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ +00048f40: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ 00048f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00048f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00048f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -00048fa0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -00048fb0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -00048fc0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -00048fd0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -00048fe0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -00048ff0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -00049000: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -00049010: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -00049020: 3435 303a 302e 0a1f 0a46 696c 653a 2043 450:0....File: C │ │ │ │ -00049030: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -00049040: 653a 2066 6c61 7474 656e 5f6c 7052 6174 e: flatten_lpRat │ │ │ │ -00049050: 696f 6e61 6c4d 6170 5f72 702c 204e 6578 ionalMap_rp, Nex │ │ │ │ -00049060: 743a 2066 6f72 6365 496d 6167 652c 2050 t: forceImage, P │ │ │ │ -00049070: 7265 763a 2065 7863 6570 7469 6f6e 616c rev: exceptional │ │ │ │ -00049080: 4c6f 6375 732c 2055 703a 2054 6f70 0a0a Locus, Up: Top.. │ │ │ │ -00049090: 666c 6174 7465 6e28 5261 7469 6f6e 616c flatten(Rational │ │ │ │ -000490a0: 4d61 7029 202d 2d20 7772 6974 6520 736f Map) -- write so │ │ │ │ -000490b0: 7572 6365 2061 6e64 2074 6172 6765 7420 urce and target │ │ │ │ -000490c0: 6173 206e 6f6e 6465 6765 6e65 7261 7465 as nondegenerate │ │ │ │ -000490d0: 2076 6172 6965 7469 6573 0a2a 2a2a 2a2a varieties.***** │ │ │ │ +00048f90: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +00048fa0: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +00048fb0: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +00048fc0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +00048fd0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +00048fe0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +00048ff0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +00049000: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +00049010: 7461 7469 6f6e 2e6d 323a 3435 303a 302e tation.m2:450:0. │ │ │ │ +00049020: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +00049030: 2e69 6e66 6f2c 204e 6f64 653a 2066 6c61 .info, Node: fla │ │ │ │ +00049040: 7474 656e 5f6c 7052 6174 696f 6e61 6c4d tten_lpRationalM │ │ │ │ +00049050: 6170 5f72 702c 204e 6578 743a 2066 6f72 ap_rp, Next: for │ │ │ │ +00049060: 6365 496d 6167 652c 2050 7265 763a 2065 ceImage, Prev: e │ │ │ │ +00049070: 7863 6570 7469 6f6e 616c 4c6f 6375 732c xceptionalLocus, │ │ │ │ +00049080: 2055 703a 2054 6f70 0a0a 666c 6174 7465 Up: Top..flatte │ │ │ │ +00049090: 6e28 5261 7469 6f6e 616c 4d61 7029 202d n(RationalMap) - │ │ │ │ +000490a0: 2d20 7772 6974 6520 736f 7572 6365 2061 - write source a │ │ │ │ +000490b0: 6e64 2074 6172 6765 7420 6173 206e 6f6e nd target as non │ │ │ │ +000490c0: 6465 6765 6e65 7261 7465 2076 6172 6965 degenerate varie │ │ │ │ +000490d0: 7469 6573 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ties.*********** │ │ │ │ 000490e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000490f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00049100: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00049110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00049120: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ -00049130: 696f 6e3a 202a 6e6f 7465 2066 6c61 7474 ion: *note flatt │ │ │ │ -00049140: 656e 3a20 284d 6163 6175 6c61 7932 446f en: (Macaulay2Do │ │ │ │ -00049150: 6329 666c 6174 7465 6e2c 0a20 202a 2055 c)flatten,. * U │ │ │ │ -00049160: 7361 6765 3a20 0a20 2020 2020 2020 2066 sage: . f │ │ │ │ -00049170: 6c61 7474 656e 2070 6869 0a20 202a 2049 latten phi. * I │ │ │ │ -00049180: 6e70 7574 733a 0a20 2020 2020 202a 2070 nputs:. * p │ │ │ │ -00049190: 6869 2c20 6120 2a6e 6f74 6520 7261 7469 hi, a *note rati │ │ │ │ -000491a0: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -000491b0: 616c 4d61 702c 0a20 202a 204f 7574 7075 alMap,. * Outpu │ │ │ │ -000491c0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -000491d0: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ -000491e0: 3a20 5261 7469 6f6e 616c 4d61 702c 2c20 : RationalMap,, │ │ │ │ -000491f0: 6120 7261 7469 6f6e 616c 206d 6170 2069 a rational map i │ │ │ │ -00049200: 736f 6d6f 7270 6869 6320 746f 2074 6865 somorphic to the │ │ │ │ -00049210: 0a20 2020 2020 2020 206f 7269 6769 6e61 . origina │ │ │ │ -00049220: 6c20 6d61 702c 2066 6c61 7474 656e 6564 l map, flattened │ │ │ │ -00049230: 2069 6e20 7468 6520 7365 6e73 6520 7468 in the sense th │ │ │ │ -00049240: 6174 2074 6865 2069 6465 616c 7320 6f66 at the ideals of │ │ │ │ -00049250: 2073 6f75 7263 6520 616e 640a 2020 2020 source and. │ │ │ │ -00049260: 2020 2020 7461 7267 6574 2063 6f6e 7461 target conta │ │ │ │ -00049270: 696e 206e 6f20 6c69 6e65 6172 2066 6f72 in no linear for │ │ │ │ -00049280: 6d73 0a0a 4465 7363 7269 7074 696f 6e0a ms..Description. │ │ │ │ -00049290: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ +00049110: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00049120: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ +00049130: 6e6f 7465 2066 6c61 7474 656e 3a20 284d note flatten: (M │ │ │ │ +00049140: 6163 6175 6c61 7932 446f 6329 666c 6174 acaulay2Doc)flat │ │ │ │ +00049150: 7465 6e2c 0a20 202a 2055 7361 6765 3a20 ten,. * Usage: │ │ │ │ +00049160: 0a20 2020 2020 2020 2066 6c61 7474 656e . flatten │ │ │ │ +00049170: 2070 6869 0a20 202a 2049 6e70 7574 733a phi. * Inputs: │ │ │ │ +00049180: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ +00049190: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +000491a0: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +000491b0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +000491c0: 2020 2020 2a20 6120 2a6e 6f74 6520 7261 * a *note ra │ │ │ │ +000491d0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ +000491e0: 6f6e 616c 4d61 702c 2c20 6120 7261 7469 onalMap,, a rati │ │ │ │ +000491f0: 6f6e 616c 206d 6170 2069 736f 6d6f 7270 onal map isomorp │ │ │ │ +00049200: 6869 6320 746f 2074 6865 0a20 2020 2020 hic to the. │ │ │ │ +00049210: 2020 206f 7269 6769 6e61 6c20 6d61 702c original map, │ │ │ │ +00049220: 2066 6c61 7474 656e 6564 2069 6e20 7468 flattened in th │ │ │ │ +00049230: 6520 7365 6e73 6520 7468 6174 2074 6865 e sense that the │ │ │ │ +00049240: 2069 6465 616c 7320 6f66 2073 6f75 7263 ideals of sourc │ │ │ │ +00049250: 6520 616e 640a 2020 2020 2020 2020 7461 e and. ta │ │ │ │ +00049260: 7267 6574 2063 6f6e 7461 696e 206e 6f20 rget contain no │ │ │ │ +00049270: 6c69 6e65 6172 2066 6f72 6d73 0a0a 4465 linear forms..De │ │ │ │ +00049280: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +00049290: 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d =====..+-------- │ │ │ │ 000492a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000492b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000492c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000492d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000492e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ -000492f0: 203a 2050 3520 3d20 5151 5b74 5f30 2e2e : P5 = QQ[t_0.. │ │ │ │ -00049300: 745f 355d 3b20 7068 6920 3d20 7261 7469 t_5]; phi = rati │ │ │ │ -00049310: 6f6e 616c 4d61 7028 5035 2f28 3335 2a74 onalMap(P5/(35*t │ │ │ │ -00049320: 5f31 2b34 352a 745f 322b 3231 2a74 2020 _1+45*t_2+21*t │ │ │ │ -00049330: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000492e0: 2d2d 2d2d 2d2b 0a7c 6931 203a 2050 3520 -----+.|i1 : P5 │ │ │ │ +000492f0: 3d20 5151 5b74 5f30 2e2e 745f 355d 3b20 = QQ[t_0..t_5]; │ │ │ │ +00049300: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +00049310: 7028 5035 2f28 3335 2a74 5f31 2b34 352a p(P5/(35*t_1+45* │ │ │ │ +00049320: 745f 322b 3231 2a74 2020 2020 2020 2020 t_2+21*t │ │ │ │ +00049330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00049340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049380: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ -00049390: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -000493a0: 6c69 6e65 6172 2072 6174 696f 6e61 6c20 linear rational │ │ │ │ -000493b0: 6d61 7020 6672 6f6d 2074 6872 6565 666f map from threefo │ │ │ │ -000493c0: 6c64 2069 6e20 5050 5e35 2074 6f20 2020 ld in PP^5 to │ │ │ │ -000493d0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00049380: 2020 2020 207c 0a7c 6f32 203a 2052 6174 |.|o2 : Rat │ │ │ │ +00049390: 696f 6e61 6c4d 6170 2028 6c69 6e65 6172 ionalMap (linear │ │ │ │ +000493a0: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +000493b0: 6f6d 2074 6872 6565 666f 6c64 2069 6e20 om threefold in │ │ │ │ +000493c0: 5050 5e35 2074 6f20 2020 2020 2020 2020 PP^5 to │ │ │ │ +000493d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 000493e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000493f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f33 -----------|.|_3 │ │ │ │ -00049430: 2b35 3235 2a74 5f34 2b31 3336 352a 745f +525*t_4+1365*t_ │ │ │ │ -00049440: 352c 3135 3735 2a74 5f30 2a74 5f32 2d33 5,1575*t_0*t_2-3 │ │ │ │ -00049450: 3235 302a 745f 325e 322b 3733 352a 745f 250*t_2^2+735*t_ │ │ │ │ -00049460: 302a 745f 332d 3138 3930 2a74 5f32 2a74 0*t_3-1890*t_2*t │ │ │ │ -00049470: 5f33 2d31 3636 362a 745f 337c 0a7c 2020 _3-1666*t_3|.| │ │ │ │ +00049420: 2d2d 2d2d 2d7c 0a7c 5f33 2b35 3235 2a74 -----|.|_3+525*t │ │ │ │ +00049430: 5f34 2b31 3336 352a 745f 352c 3135 3735 _4+1365*t_5,1575 │ │ │ │ +00049440: 2a74 5f30 2a74 5f32 2d33 3235 302a 745f *t_0*t_2-3250*t_ │ │ │ │ +00049450: 325e 322b 3733 352a 745f 302a 745f 332d 2^2+735*t_0*t_3- │ │ │ │ +00049460: 3138 3930 2a74 5f32 2a74 5f33 2d31 3636 1890*t_2*t_3-166 │ │ │ │ +00049470: 362a 745f 337c 0a7c 2020 2020 2020 2020 6*t_3|.| │ │ │ │ 00049480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000494c0: 2020 2020 2020 2020 2020 207c 0a7c 6879 |.|hy │ │ │ │ -000494d0: 7065 7273 7572 6661 6365 2069 6e20 5050 persurface in PP │ │ │ │ -000494e0: 5e35 2920 2020 2020 2020 2020 2020 2020 ^5) │ │ │ │ +000494c0: 2020 2020 207c 0a7c 6879 7065 7273 7572 |.|hypersur │ │ │ │ +000494d0: 6661 6365 2069 6e20 5050 5e35 2920 2020 face in PP^5) │ │ │ │ +000494e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000494f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049510: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +00049510: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 00049520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5e32 -----------|.|^2 │ │ │ │ -00049570: 2b31 3731 3530 2a74 5f30 2a74 5f34 2d34 +17150*t_0*t_4-4 │ │ │ │ -00049580: 3732 3530 2a74 5f32 2a74 5f34 2d32 3230 7250*t_2*t_4-220 │ │ │ │ -00049590: 3530 2a74 5f33 2a74 5f34 2d32 3736 3835 50*t_3*t_4-27685 │ │ │ │ -000495a0: 302a 745f 345e 322b 3436 3535 302a 745f 0*t_4^2+46550*t_ │ │ │ │ -000495b0: 302a 745f 352d 2020 2020 207c 0a7c 2d2d 0*t_5- |.|-- │ │ │ │ +00049560: 2d2d 2d2d 2d7c 0a7c 5e32 2b31 3731 3530 -----|.|^2+17150 │ │ │ │ +00049570: 2a74 5f30 2a74 5f34 2d34 3732 3530 2a74 *t_0*t_4-47250*t │ │ │ │ +00049580: 5f32 2a74 5f34 2d32 3230 3530 2a74 5f33 _2*t_4-22050*t_3 │ │ │ │ +00049590: 2a74 5f34 2d32 3736 3835 302a 745f 345e *t_4-276850*t_4^ │ │ │ │ +000495a0: 322b 3436 3535 302a 745f 302a 745f 352d 2+46550*t_0*t_5- │ │ │ │ +000495b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 000495c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000495d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000495e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000495f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3132 -----------|.|12 │ │ │ │ -00049610: 3238 3530 2a74 5f32 2a74 5f35 2d35 3733 2850*t_2*t_5-573 │ │ │ │ -00049620: 3330 2a74 5f33 2a74 5f35 2d31 3433 3332 30*t_3*t_5-14332 │ │ │ │ -00049630: 3530 2a74 5f34 2a74 5f35 2d31 3836 3434 50*t_4*t_5-18644 │ │ │ │ -00049640: 3530 2a74 5f35 5e32 292c 5035 2f28 3331 50*t_5^2),P5/(31 │ │ │ │ -00049650: 352a 745f 302b 3238 302a 747c 0a7c 2d2d 5*t_0+280*t|.|-- │ │ │ │ +00049600: 2d2d 2d2d 2d7c 0a7c 3132 3238 3530 2a74 -----|.|122850*t │ │ │ │ +00049610: 5f32 2a74 5f35 2d35 3733 3330 2a74 5f33 _2*t_5-57330*t_3 │ │ │ │ +00049620: 2a74 5f35 2d31 3433 3332 3530 2a74 5f34 *t_5-1433250*t_4 │ │ │ │ +00049630: 2a74 5f35 2d31 3836 3434 3530 2a74 5f35 *t_5-1864450*t_5 │ │ │ │ +00049640: 5e32 292c 5035 2f28 3331 352a 745f 302b ^2),P5/(315*t_0+ │ │ │ │ +00049650: 3238 302a 747c 0a7c 2d2d 2d2d 2d2d 2d2d 280*t|.|-------- │ │ │ │ 00049660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000496a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f31 -----------|.|_1 │ │ │ │ -000496b0: 2b34 352a 745f 322b 3231 2a74 5f33 2b32 +45*t_2+21*t_3+2 │ │ │ │ -000496c0: 3130 2a74 5f34 2b31 3035 302a 745f 3529 10*t_4+1050*t_5) │ │ │ │ -000496d0: 2c7b 2d34 352a 745f 322d 3231 2a74 5f33 ,{-45*t_2-21*t_3 │ │ │ │ -000496e0: 2d34 3930 2a74 5f34 2d31 3333 302a 745f -490*t_4-1330*t_ │ │ │ │ -000496f0: 352c 2020 2020 2020 2020 207c 0a7c 2d2d 5, |.|-- │ │ │ │ +000496a0: 2d2d 2d2d 2d7c 0a7c 5f31 2b34 352a 745f -----|.|_1+45*t_ │ │ │ │ +000496b0: 322b 3231 2a74 5f33 2b32 3130 2a74 5f34 2+21*t_3+210*t_4 │ │ │ │ +000496c0: 2b31 3035 302a 745f 3529 2c7b 2d34 352a +1050*t_5),{-45* │ │ │ │ +000496d0: 745f 322d 3231 2a74 5f33 2d34 3930 2a74 t_2-21*t_3-490*t │ │ │ │ +000496e0: 5f34 2d31 3333 302a 745f 352c 2020 2020 _4-1330*t_5, │ │ │ │ +000496f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ 00049700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3435 -----------|.|45 │ │ │ │ -00049750: 2a74 5f32 2b32 312a 745f 332b 3532 352a *t_2+21*t_3+525* │ │ │ │ -00049760: 745f 342b 3133 3635 2a74 5f35 2c20 3335 t_4+1365*t_5, 35 │ │ │ │ -00049770: 2a74 5f32 2c20 3335 2a74 5f33 2c20 3335 *t_2, 35*t_3, 35 │ │ │ │ -00049780: 2a74 5f34 2c20 3335 2a74 5f35 7d29 3b20 *t_4, 35*t_5}); │ │ │ │ -00049790: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00049740: 2d2d 2d2d 2d7c 0a7c 3435 2a74 5f32 2b32 -----|.|45*t_2+2 │ │ │ │ +00049750: 312a 745f 332b 3532 352a 745f 342b 3133 1*t_3+525*t_4+13 │ │ │ │ +00049760: 3635 2a74 5f35 2c20 3335 2a74 5f32 2c20 65*t_5, 35*t_2, │ │ │ │ +00049770: 3335 2a74 5f33 2c20 3335 2a74 5f34 2c20 35*t_3, 35*t_4, │ │ │ │ +00049780: 3335 2a74 5f35 7d29 3b20 2020 2020 2020 35*t_5}); │ │ │ │ +00049790: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000497a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000497b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000497c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000497d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000497e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ -000497f0: 203a 2064 6573 6372 6962 6520 7068 6920 : describe phi │ │ │ │ +000497e0: 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 6573 -----+.|i3 : des │ │ │ │ +000497f0: 6372 6962 6520 7068 6920 2020 2020 2020 cribe phi │ │ │ │ 00049800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00049830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00049840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049880: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ -00049890: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ -000498a0: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ -000498b0: 206f 6620 6465 6772 6565 2031 2020 2020 of degree 1 │ │ │ │ +00049880: 2020 2020 207c 0a7c 6f33 203d 2072 6174 |.|o3 = rat │ │ │ │ +00049890: 696f 6e61 6c20 6d61 7020 6465 6669 6e65 ional map define │ │ │ │ +000498a0: 6420 6279 2066 6f72 6d73 206f 6620 6465 d by forms of de │ │ │ │ +000498b0: 6772 6565 2031 2020 2020 2020 2020 2020 gree 1 │ │ │ │ 000498c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000498d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -000498e0: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ -000498f0: 793a 2073 6d6f 6f74 6820 636f 6d70 6c65 y: smooth comple │ │ │ │ -00049900: 7465 2069 6e74 6572 7365 6374 696f 6e20 te intersection │ │ │ │ -00049910: 6f66 2074 7970 6520 2831 2c32 2920 696e of type (1,2) in │ │ │ │ -00049920: 2050 505e 3520 2020 2020 207c 0a7c 2020 PP^5 |.| │ │ │ │ -00049930: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ -00049940: 793a 2068 7970 6572 706c 616e 6520 696e y: hyperplane in │ │ │ │ -00049950: 2050 505e 3520 2020 2020 2020 2020 2020 PP^5 │ │ │ │ +000498d0: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ +000498e0: 7263 6520 7661 7269 6574 793a 2073 6d6f rce variety: smo │ │ │ │ +000498f0: 6f74 6820 636f 6d70 6c65 7465 2069 6e74 oth complete int │ │ │ │ +00049900: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ +00049910: 6520 2831 2c32 2920 696e 2050 505e 3520 e (1,2) in PP^5 │ │ │ │ +00049920: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ +00049930: 6765 7420 7661 7269 6574 793a 2068 7970 get variety: hyp │ │ │ │ +00049940: 6572 706c 616e 6520 696e 2050 505e 3520 erplane in PP^5 │ │ │ │ +00049950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049970: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00049980: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -00049990: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ +00049970: 2020 2020 207c 0a7c 2020 2020 2063 6f65 |.| coe │ │ │ │ +00049980: 6666 6963 6965 6e74 2072 696e 673a 2051 fficient ring: Q │ │ │ │ +00049990: 5120 2020 2020 2020 2020 2020 2020 2020 Q │ │ │ │ 000499a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000499b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000499c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000499c0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 000499d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000499e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000499f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ -00049a20: 203a 2070 7369 203d 2066 6c61 7474 656e : psi = flatten │ │ │ │ -00049a30: 2070 6869 3b20 2020 2020 2020 2020 2020 phi; │ │ │ │ +00049a10: 2d2d 2d2d 2d2b 0a7c 6934 203a 2070 7369 -----+.|i4 : psi │ │ │ │ +00049a20: 203d 2066 6c61 7474 656e 2070 6869 3b20 = flatten phi; │ │ │ │ +00049a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049a60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00049a60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00049a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ab0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -00049ac0: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ -00049ad0: 6c69 6e65 6172 2072 6174 696f 6e61 6c20 linear rational │ │ │ │ -00049ae0: 6d61 7020 6672 6f6d 2068 7970 6572 7375 map from hypersu │ │ │ │ -00049af0: 7266 6163 6520 696e 2050 505e 3420 746f rface in PP^4 to │ │ │ │ -00049b00: 2050 505e 3429 2020 2020 207c 0a2b 2d2d PP^4) |.+-- │ │ │ │ +00049ab0: 2020 2020 207c 0a7c 6f34 203a 2052 6174 |.|o4 : Rat │ │ │ │ +00049ac0: 696f 6e61 6c4d 6170 2028 6c69 6e65 6172 ionalMap (linear │ │ │ │ +00049ad0: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +00049ae0: 6f6d 2068 7970 6572 7375 7266 6163 6520 om hypersurface │ │ │ │ +00049af0: 696e 2050 505e 3420 746f 2050 505e 3429 in PP^4 to PP^4) │ │ │ │ +00049b00: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00049b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ -00049b60: 203a 2064 6573 6372 6962 6520 7073 6920 : describe psi │ │ │ │ +00049b50: 2d2d 2d2d 2d2b 0a7c 6935 203a 2064 6573 -----+.|i5 : des │ │ │ │ +00049b60: 6372 6962 6520 7073 6920 2020 2020 2020 cribe psi │ │ │ │ 00049b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00049ba0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 00049bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049bf0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -00049c00: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ -00049c10: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ -00049c20: 206f 6620 6465 6772 6565 2031 2020 2020 of degree 1 │ │ │ │ +00049bf0: 2020 2020 207c 0a7c 6f35 203d 2072 6174 |.|o5 = rat │ │ │ │ +00049c00: 696f 6e61 6c20 6d61 7020 6465 6669 6e65 ional map define │ │ │ │ +00049c10: 6420 6279 2066 6f72 6d73 206f 6620 6465 d by forms of de │ │ │ │ +00049c20: 6772 6565 2031 2020 2020 2020 2020 2020 gree 1 │ │ │ │ 00049c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049c40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00049c50: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ -00049c60: 793a 2073 6d6f 6f74 6820 7175 6164 7269 y: smooth quadri │ │ │ │ -00049c70: 6320 6879 7065 7273 7572 6661 6365 2069 c hypersurface i │ │ │ │ -00049c80: 6e20 5050 5e34 2020 2020 2020 2020 2020 n PP^4 │ │ │ │ -00049c90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00049ca0: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ -00049cb0: 793a 2050 505e 3420 2020 2020 2020 2020 y: PP^4 │ │ │ │ +00049c40: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ +00049c50: 7263 6520 7661 7269 6574 793a 2073 6d6f rce variety: smo │ │ │ │ +00049c60: 6f74 6820 7175 6164 7269 6320 6879 7065 oth quadric hype │ │ │ │ +00049c70: 7273 7572 6661 6365 2069 6e20 5050 5e34 rsurface in PP^4 │ │ │ │ +00049c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00049c90: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ +00049ca0: 6765 7420 7661 7269 6574 793a 2050 505e get variety: PP^ │ │ │ │ +00049cb0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00049cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049ce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00049cf0: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -00049d00: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ +00049ce0: 2020 2020 207c 0a7c 2020 2020 2063 6f65 |.| coe │ │ │ │ +00049cf0: 6666 6963 6965 6e74 2072 696e 673a 2051 fficient ring: Q │ │ │ │ +00049d00: 5120 2020 2020 2020 2020 2020 2020 2020 Q │ │ │ │ 00049d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00049d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00049d30: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00049d30: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ 00049d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5761 -----------+..Wa │ │ │ │ -00049d90: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ -00049da0: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ -00049db0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -00049dc0: 0a20 202a 202a 6e6f 7465 2066 6c61 7474 . * *note flatt │ │ │ │ -00049dd0: 656e 2852 6174 696f 6e61 6c4d 6170 293a en(RationalMap): │ │ │ │ -00049de0: 2066 6c61 7474 656e 5f6c 7052 6174 696f flatten_lpRatio │ │ │ │ -00049df0: 6e61 6c4d 6170 5f72 702c 202d 2d20 7772 nalMap_rp, -- wr │ │ │ │ -00049e00: 6974 6520 736f 7572 6365 2061 6e64 0a20 ite source and. │ │ │ │ -00049e10: 2020 2074 6172 6765 7420 6173 206e 6f6e target as non │ │ │ │ -00049e20: 6465 6765 6e65 7261 7465 2076 6172 6965 degenerate varie │ │ │ │ -00049e30: 7469 6573 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d ties.----------- │ │ │ │ +00049d80: 2d2d 2d2d 2d2b 0a0a 5761 7973 2074 6f20 -----+..Ways to │ │ │ │ +00049d90: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ +00049da0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +00049db0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ +00049dc0: 6e6f 7465 2066 6c61 7474 656e 2852 6174 note flatten(Rat │ │ │ │ +00049dd0: 696f 6e61 6c4d 6170 293a 2066 6c61 7474 ionalMap): flatt │ │ │ │ +00049de0: 656e 5f6c 7052 6174 696f 6e61 6c4d 6170 en_lpRationalMap │ │ │ │ +00049df0: 5f72 702c 202d 2d20 7772 6974 6520 736f _rp, -- write so │ │ │ │ +00049e00: 7572 6365 2061 6e64 0a20 2020 2074 6172 urce and. tar │ │ │ │ +00049e10: 6765 7420 6173 206e 6f6e 6465 6765 6e65 get as nondegene │ │ │ │ +00049e20: 7261 7465 2076 6172 6965 7469 6573 0a2d rate varieties.- │ │ │ │ +00049e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00049e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00049e80: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00049e90: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00049ea0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00049eb0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00049ec0: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00049ed0: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00049ee0: 7932 2f70 6163 6b61 6765 732f 4372 656d y2/packages/Crem │ │ │ │ -00049ef0: 6f6e 612f 0a64 6f63 756d 656e 7461 7469 ona/.documentati │ │ │ │ -00049f00: 6f6e 2e6d 323a 3535 323a 302e 0a1f 0a46 on.m2:552:0....F │ │ │ │ -00049f10: 696c 653a 2043 7265 6d6f 6e61 2e69 6e66 ile: Cremona.inf │ │ │ │ -00049f20: 6f2c 204e 6f64 653a 2066 6f72 6365 496d o, Node: forceIm │ │ │ │ -00049f30: 6167 652c 204e 6578 743a 2066 6f72 6365 age, Next: force │ │ │ │ -00049f40: 496e 7665 7273 654d 6170 2c20 5072 6576 InverseMap, Prev │ │ │ │ -00049f50: 3a20 666c 6174 7465 6e5f 6c70 5261 7469 : flatten_lpRati │ │ │ │ -00049f60: 6f6e 616c 4d61 705f 7270 2c20 5570 3a20 onalMap_rp, Up: │ │ │ │ -00049f70: 546f 700a 0a66 6f72 6365 496d 6167 6520 Top..forceImage │ │ │ │ -00049f80: 2d2d 2064 6563 6c61 7265 2077 6869 6368 -- declare which │ │ │ │ -00049f90: 2069 7320 7468 6520 696d 6167 6520 6f66 is the image of │ │ │ │ -00049fa0: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +00049e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00049e80: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00049e90: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00049ea0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00049eb0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00049ec0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00049ed0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00049ee0: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ +00049ef0: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ +00049f00: 3535 323a 302e 0a1f 0a46 696c 653a 2043 552:0....File: C │ │ │ │ +00049f10: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ +00049f20: 653a 2066 6f72 6365 496d 6167 652c 204e e: forceImage, N │ │ │ │ +00049f30: 6578 743a 2066 6f72 6365 496e 7665 7273 ext: forceInvers │ │ │ │ +00049f40: 654d 6170 2c20 5072 6576 3a20 666c 6174 eMap, Prev: flat │ │ │ │ +00049f50: 7465 6e5f 6c70 5261 7469 6f6e 616c 4d61 ten_lpRationalMa │ │ │ │ +00049f60: 705f 7270 2c20 5570 3a20 546f 700a 0a66 p_rp, Up: Top..f │ │ │ │ +00049f70: 6f72 6365 496d 6167 6520 2d2d 2064 6563 orceImage -- dec │ │ │ │ +00049f80: 6c61 7265 2077 6869 6368 2069 7320 7468 lare which is th │ │ │ │ +00049f90: 6520 696d 6167 6520 6f66 2061 2072 6174 e image of a rat │ │ │ │ +00049fa0: 696f 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a ional map.****** │ │ │ │ 00049fb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00049fc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00049fd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00049fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00049ff0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0004a000: 666f 7263 6549 6d61 6765 2850 6869 2c49 forceImage(Phi,I │ │ │ │ -0004a010: 290a 2020 2a20 496e 7075 7473 3a0a 2020 ). * Inputs:. │ │ │ │ -0004a020: 2020 2020 2a20 5068 692c 2061 202a 6e6f * Phi, a *no │ │ │ │ -0004a030: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ -0004a040: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ -0004a050: 2020 2020 2a20 492c 2061 6e20 2a6e 6f74 * I, an *not │ │ │ │ -0004a060: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ -0004a070: 6179 3244 6f63 2949 6465 616c 2c0a 2020 ay2Doc)Ideal,. │ │ │ │ -0004a080: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0004a090: 202a 202a 6e6f 7465 206e 756c 6c3a 2028 * *note null: ( │ │ │ │ -0004a0a0: 4d61 6361 756c 6179 3244 6f63 296e 756c Macaulay2Doc)nul │ │ │ │ -0004a0b0: 6c2c 0a0a 4465 7363 7269 7074 696f 6e0a l,..Description. │ │ │ │ -0004a0c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -0004a0d0: 7320 6d65 7468 6f64 2061 6c6c 6f77 7320 s method allows │ │ │ │ -0004a0e0: 746f 2069 6e66 6f72 6d20 7468 6520 7379 to inform the sy │ │ │ │ -0004a0f0: 7374 656d 2061 626f 7574 2074 6865 2069 stem about the i │ │ │ │ -0004a100: 6d61 6765 206f 6620 6120 6769 7665 6e20 mage of a given │ │ │ │ -0004a110: 7261 7469 6f6e 616c 206d 6170 0a77 6974 rational map.wit │ │ │ │ -0004a120: 686f 7574 2070 6572 666f 726d 696e 6720 hout performing │ │ │ │ -0004a130: 616e 7920 636f 6d70 7574 6174 696f 6e2e any computation. │ │ │ │ -0004a140: 2049 6e20 7061 7274 6963 756c 6172 2c20 In particular, │ │ │ │ -0004a150: 7468 6973 2063 616e 2062 6520 7573 6564 this can be used │ │ │ │ -0004a160: 2074 6f20 6465 636c 6172 650a 7468 6174 to declare.that │ │ │ │ -0004a170: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -0004a180: 6973 2064 6f6d 696e 616e 742e 0a0a 2b2d is dominant...+- │ │ │ │ +00049fe0: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +00049ff0: 200a 2020 2020 2020 2020 666f 7263 6549 . forceI │ │ │ │ +0004a000: 6d61 6765 2850 6869 2c49 290a 2020 2a20 mage(Phi,I). * │ │ │ │ +0004a010: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0004a020: 5068 692c 2061 202a 6e6f 7465 2072 6174 Phi, a *note rat │ │ │ │ +0004a030: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ +0004a040: 6e61 6c4d 6170 2c0a 2020 2020 2020 2a20 nalMap,. * │ │ │ │ +0004a050: 492c 2061 6e20 2a6e 6f74 6520 6964 6561 I, an *note idea │ │ │ │ +0004a060: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +0004a070: 2949 6465 616c 2c0a 2020 2a20 4f75 7470 )Ideal,. * Outp │ │ │ │ +0004a080: 7574 733a 0a20 2020 2020 202a 202a 6e6f uts:. * *no │ │ │ │ +0004a090: 7465 206e 756c 6c3a 2028 4d61 6361 756c te null: (Macaul │ │ │ │ +0004a0a0: 6179 3244 6f63 296e 756c 6c2c 0a0a 4465 ay2Doc)null,..De │ │ │ │ +0004a0b0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0004a0c0: 3d3d 3d3d 3d0a 0a54 6869 7320 6d65 7468 =====..This meth │ │ │ │ +0004a0d0: 6f64 2061 6c6c 6f77 7320 746f 2069 6e66 od allows to inf │ │ │ │ +0004a0e0: 6f72 6d20 7468 6520 7379 7374 656d 2061 orm the system a │ │ │ │ +0004a0f0: 626f 7574 2074 6865 2069 6d61 6765 206f bout the image o │ │ │ │ +0004a100: 6620 6120 6769 7665 6e20 7261 7469 6f6e f a given ration │ │ │ │ +0004a110: 616c 206d 6170 0a77 6974 686f 7574 2070 al map.without p │ │ │ │ +0004a120: 6572 666f 726d 696e 6720 616e 7920 636f erforming any co │ │ │ │ +0004a130: 6d70 7574 6174 696f 6e2e 2049 6e20 7061 mputation. In pa │ │ │ │ +0004a140: 7274 6963 756c 6172 2c20 7468 6973 2063 rticular, this c │ │ │ │ +0004a150: 616e 2062 6520 7573 6564 2074 6f20 6465 an be used to de │ │ │ │ +0004a160: 636c 6172 650a 7468 6174 2061 2072 6174 clare.that a rat │ │ │ │ +0004a170: 696f 6e61 6c20 6d61 7020 6973 2064 6f6d ional map is dom │ │ │ │ +0004a180: 696e 616e 742e 0a0a 2b2d 2d2d 2d2d 2d2d inant...+------- │ │ │ │ 0004a190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0004a1e0: 3120 3a20 5036 203d 2051 515b 745f 302e 1 : P6 = QQ[t_0. │ │ │ │ -0004a1f0: 2e74 5f36 5d3b 2058 203d 2020 2020 2020 .t_6]; X = │ │ │ │ +0004a1d0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5036 ------+.|i1 : P6 │ │ │ │ +0004a1e0: 203d 2051 515b 745f 302e 2e74 5f36 5d3b = QQ[t_0..t_6]; │ │ │ │ +0004a1f0: 2058 203d 2020 2020 2020 2020 2020 2020 X = │ │ │ │ 0004a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a220: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0004a220: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0004a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a270: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0004a280: 3220 3a20 4964 6561 6c20 6f66 2050 3620 2 : Ideal of P6 │ │ │ │ +0004a270: 2020 2020 2020 7c0a 7c6f 3220 3a20 4964 |.|o2 : Id │ │ │ │ +0004a280: 6561 6c20 6f66 2050 3620 2020 2020 2020 eal of P6 │ │ │ │ 0004a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a2c0: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0004a2c0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0004a2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c6d ------------|.|m │ │ │ │ -0004a320: 696e 6f72 7328 332c 6d61 7472 6978 7b7b inors(3,matrix{{ │ │ │ │ -0004a330: 745f 302e 2e74 5f34 7d2c 7b74 5f31 2e2e t_0..t_4},{t_1.. │ │ │ │ -0004a340: 745f 357d 2c7b 745f 322e 2e74 5f36 7d7d t_5},{t_2..t_6}} │ │ │ │ -0004a350: 293b 2020 2020 2020 2020 2020 2020 2020 ); │ │ │ │ -0004a360: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0004a310: 2d2d 2d2d 2d2d 7c0a 7c6d 696e 6f72 7328 ------|.|minors( │ │ │ │ +0004a320: 332c 6d61 7472 6978 7b7b 745f 302e 2e74 3,matrix{{t_0..t │ │ │ │ +0004a330: 5f34 7d2c 7b74 5f31 2e2e 745f 357d 2c7b _4},{t_1..t_5},{ │ │ │ │ +0004a340: 745f 322e 2e74 5f36 7d7d 293b 2020 2020 t_2..t_6}}); │ │ │ │ +0004a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004a360: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0004a370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0004a3c0: 3320 3a20 5068 6920 3d20 7261 7469 6f6e 3 : Phi = ration │ │ │ │ -0004a3d0: 616c 4d61 7028 582c 446f 6d69 6e61 6e74 alMap(X,Dominant │ │ │ │ -0004a3e0: 3d3e 3229 3b20 2020 2020 2020 2020 2020 =>2); │ │ │ │ +0004a3b0: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 5068 ------+.|i3 : Ph │ │ │ │ +0004a3c0: 6920 3d20 7261 7469 6f6e 616c 4d61 7028 i = rationalMap( │ │ │ │ +0004a3d0: 582c 446f 6d69 6e61 6e74 3d3e 3229 3b20 X,Dominant=>2); │ │ │ │ +0004a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0004a400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0004a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a450: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0004a460: 3320 3a20 5261 7469 6f6e 616c 4d61 7020 3 : RationalMap │ │ │ │ -0004a470: 2863 7562 6963 2072 6174 696f 6e61 6c20 (cubic rational │ │ │ │ -0004a480: 6d61 7020 6672 6f6d 2050 505e 3620 746f map from PP^6 to │ │ │ │ -0004a490: 2036 2d64 696d 656e 7369 6f6e 616c 2073 6-dimensional s │ │ │ │ -0004a4a0: 7562 7661 7269 6574 7920 6f66 7c0a 7c2d ubvariety of|.|- │ │ │ │ +0004a450: 2020 2020 2020 7c0a 7c6f 3320 3a20 5261 |.|o3 : Ra │ │ │ │ +0004a460: 7469 6f6e 616c 4d61 7020 2863 7562 6963 tionalMap (cubic │ │ │ │ +0004a470: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +0004a480: 6f6d 2050 505e 3620 746f 2036 2d64 696d om PP^6 to 6-dim │ │ │ │ +0004a490: 656e 7369 6f6e 616c 2073 7562 7661 7269 ensional subvari │ │ │ │ +0004a4a0: 6574 7920 6f66 7c0a 7c2d 2d2d 2d2d 2d2d ety of|.|------- │ │ │ │ 0004a4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c50 ------------|.|P │ │ │ │ -0004a500: 505e 3929 2020 2020 2020 2020 2020 2020 P^9) │ │ │ │ +0004a4f0: 2d2d 2d2d 2d2d 7c0a 7c50 505e 3929 2020 ------|.|PP^9) │ │ │ │ +0004a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a540: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0004a540: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0004a550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0004a5a0: 3420 3a20 7469 6d65 2066 6f72 6365 496d 4 : time forceIm │ │ │ │ -0004a5b0: 6167 6528 5068 692c 6964 6561 6c20 305f age(Phi,ideal 0_ │ │ │ │ -0004a5c0: 2874 6172 6765 7420 5068 6929 2920 2020 (target Phi)) │ │ │ │ +0004a590: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7469 ------+.|i4 : ti │ │ │ │ +0004a5a0: 6d65 2066 6f72 6365 496d 6167 6528 5068 me forceImage(Ph │ │ │ │ +0004a5b0: 692c 6964 6561 6c20 305f 2874 6172 6765 i,ideal 0_(targe │ │ │ │ +0004a5c0: 7420 5068 6929 2920 2020 2020 2020 2020 t Phi)) │ │ │ │ 0004a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0004a5f0: 2d2d 2075 7365 6420 302e 3030 3036 3037 -- used 0.000607 │ │ │ │ -0004a600: 3231 3973 2028 6370 7529 3b20 302e 3030 219s (cpu); 0.00 │ │ │ │ -0004a610: 3036 3031 3933 3973 2028 7468 7265 6164 0601939s (thread │ │ │ │ -0004a620: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -0004a630: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0004a5e0: 2020 2020 2020 7c0a 7c20 2d2d 2075 7365 |.| -- use │ │ │ │ +0004a5f0: 6420 302e 3030 3038 3132 3534 7320 2863 d 0.00081254s (c │ │ │ │ +0004a600: 7075 293b 2030 2e30 3030 3830 3433 3439 pu); 0.000804349 │ │ │ │ +0004a610: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0004a620: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +0004a630: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0004a640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0004a690: 3520 3a20 5068 693b 2020 2020 2020 2020 5 : Phi; │ │ │ │ +0004a680: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 5068 ------+.|i5 : Ph │ │ │ │ +0004a690: 693b 2020 2020 2020 2020 2020 2020 2020 i; │ │ │ │ 0004a6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a6d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0004a6d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0004a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a720: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0004a730: 3520 3a20 5261 7469 6f6e 616c 4d61 7020 5 : RationalMap │ │ │ │ -0004a740: 2863 7562 6963 2064 6f6d 696e 616e 7420 (cubic dominant │ │ │ │ -0004a750: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -0004a760: 6d20 5050 5e36 2074 6f20 362d 6469 6d65 m PP^6 to 6-dime │ │ │ │ -0004a770: 6e73 696f 6e61 6c20 2020 2020 7c0a 7c2d nsional |.|- │ │ │ │ +0004a720: 2020 2020 2020 7c0a 7c6f 3520 3a20 5261 |.|o5 : Ra │ │ │ │ +0004a730: 7469 6f6e 616c 4d61 7020 2863 7562 6963 tionalMap (cubic │ │ │ │ +0004a740: 2064 6f6d 696e 616e 7420 7261 7469 6f6e dominant ration │ │ │ │ +0004a750: 616c 206d 6170 2066 726f 6d20 5050 5e36 al map from PP^6 │ │ │ │ +0004a760: 2074 6f20 362d 6469 6d65 6e73 696f 6e61 to 6-dimensiona │ │ │ │ +0004a770: 6c20 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d l |.|------- │ │ │ │ 0004a780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c73 ------------|.|s │ │ │ │ -0004a7d0: 7562 7661 7269 6574 7920 6f66 2050 505e ubvariety of PP^ │ │ │ │ -0004a7e0: 3929 2020 2020 2020 2020 2020 2020 2020 9) │ │ │ │ +0004a7c0: 2d2d 2d2d 2d2d 7c0a 7c73 7562 7661 7269 ------|.|subvari │ │ │ │ +0004a7d0: 6574 7920 6f66 2050 505e 3929 2020 2020 ety of PP^9) │ │ │ │ +0004a7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004a800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004a810: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0004a810: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0004a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004a850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004a860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a43 ------------+..C │ │ │ │ -0004a870: 6176 6561 740a 3d3d 3d3d 3d3d 0a0a 4966 aveat.======..If │ │ │ │ -0004a880: 2074 6865 2064 6563 6c61 7261 7469 6f6e the declaration │ │ │ │ -0004a890: 2069 7320 6661 6c73 652c 206e 6f6e 7365 is false, nonse │ │ │ │ -0004a8a0: 6e73 6963 616c 2061 6e73 7765 7273 206d nsical answers m │ │ │ │ -0004a8b0: 6179 2072 6573 756c 742e 0a0a 5365 6520 ay result...See │ │ │ │ -0004a8c0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -0004a8d0: 202a 202a 6e6f 7465 2069 6d61 6765 2852 * *note image(R │ │ │ │ -0004a8e0: 6174 696f 6e61 6c4d 6170 293a 2069 6d61 ationalMap): ima │ │ │ │ -0004a8f0: 6765 5f6c 7052 6174 696f 6e61 6c4d 6170 ge_lpRationalMap │ │ │ │ -0004a900: 5f63 6d5a 5a5f 7270 2c20 2d2d 2063 6c6f _cmZZ_rp, -- clo │ │ │ │ -0004a910: 7375 7265 206f 6620 7468 650a 2020 2020 sure of the. │ │ │ │ -0004a920: 696d 6167 6520 6f66 2061 2072 6174 696f image of a ratio │ │ │ │ -0004a930: 6e61 6c20 6d61 700a 2020 2a20 2a6e 6f74 nal map. * *not │ │ │ │ -0004a940: 6520 666f 7263 6549 6e76 6572 7365 4d61 e forceInverseMa │ │ │ │ -0004a950: 703a 2066 6f72 6365 496e 7665 7273 654d p: forceInverseM │ │ │ │ -0004a960: 6170 2c20 2d2d 2064 6563 6c61 7265 2074 ap, -- declare t │ │ │ │ -0004a970: 6861 7420 7477 6f20 7261 7469 6f6e 616c hat two rational │ │ │ │ -0004a980: 206d 6170 730a 2020 2020 6172 6520 6f6e maps. are on │ │ │ │ -0004a990: 6520 7468 6520 696e 7665 7273 6520 6f66 e the inverse of │ │ │ │ -0004a9a0: 2074 6865 206f 7468 6572 0a0a 5761 7973 the other..Ways │ │ │ │ -0004a9b0: 2074 6f20 7573 6520 666f 7263 6549 6d61 to use forceIma │ │ │ │ -0004a9c0: 6765 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ge:.============ │ │ │ │ -0004a9d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0004a9e0: 2022 666f 7263 6549 6d61 6765 2852 6174 "forceImage(Rat │ │ │ │ -0004a9f0: 696f 6e61 6c4d 6170 2c49 6465 616c 2922 ionalMap,Ideal)" │ │ │ │ -0004aa00: 0a0a 466f 7220 7468 6520 7072 6f67 7261 ..For the progra │ │ │ │ -0004aa10: 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d mmer.=========== │ │ │ │ -0004aa20: 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f 626a =======..The obj │ │ │ │ -0004aa30: 6563 7420 2a6e 6f74 6520 666f 7263 6549 ect *note forceI │ │ │ │ -0004aa40: 6d61 6765 3a20 666f 7263 6549 6d61 6765 mage: forceImage │ │ │ │ -0004aa50: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0004aa60: 686f 6420 6675 6e63 7469 6f6e 3a0a 284d hod function:.(M │ │ │ │ -0004aa70: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -0004aa80: 6f64 4675 6e63 7469 6f6e 2c2e 0a0a 2d2d odFunction,...-- │ │ │ │ +0004a860: 2d2d 2d2d 2d2d 2b0a 0a43 6176 6561 740a ------+..Caveat. │ │ │ │ +0004a870: 3d3d 3d3d 3d3d 0a0a 4966 2074 6865 2064 ======..If the d │ │ │ │ +0004a880: 6563 6c61 7261 7469 6f6e 2069 7320 6661 eclaration is fa │ │ │ │ +0004a890: 6c73 652c 206e 6f6e 7365 6e73 6963 616c lse, nonsensical │ │ │ │ +0004a8a0: 2061 6e73 7765 7273 206d 6179 2072 6573 answers may res │ │ │ │ +0004a8b0: 756c 742e 0a0a 5365 6520 616c 736f 0a3d ult...See also.= │ │ │ │ +0004a8c0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +0004a8d0: 7465 2069 6d61 6765 2852 6174 696f 6e61 te image(Rationa │ │ │ │ +0004a8e0: 6c4d 6170 293a 2069 6d61 6765 5f6c 7052 lMap): image_lpR │ │ │ │ +0004a8f0: 6174 696f 6e61 6c4d 6170 5f63 6d5a 5a5f ationalMap_cmZZ_ │ │ │ │ +0004a900: 7270 2c20 2d2d 2063 6c6f 7375 7265 206f rp, -- closure o │ │ │ │ +0004a910: 6620 7468 650a 2020 2020 696d 6167 6520 f the. image │ │ │ │ +0004a920: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ +0004a930: 700a 2020 2a20 2a6e 6f74 6520 666f 7263 p. * *note forc │ │ │ │ +0004a940: 6549 6e76 6572 7365 4d61 703a 2066 6f72 eInverseMap: for │ │ │ │ +0004a950: 6365 496e 7665 7273 654d 6170 2c20 2d2d ceInverseMap, -- │ │ │ │ +0004a960: 2064 6563 6c61 7265 2074 6861 7420 7477 declare that tw │ │ │ │ +0004a970: 6f20 7261 7469 6f6e 616c 206d 6170 730a o rational maps. │ │ │ │ +0004a980: 2020 2020 6172 6520 6f6e 6520 7468 6520 are one the │ │ │ │ +0004a990: 696e 7665 7273 6520 6f66 2074 6865 206f inverse of the o │ │ │ │ +0004a9a0: 7468 6572 0a0a 5761 7973 2074 6f20 7573 ther..Ways to us │ │ │ │ +0004a9b0: 6520 666f 7263 6549 6d61 6765 3a0a 3d3d e forceImage:.== │ │ │ │ +0004a9c0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0004a9d0: 3d3d 3d3d 3d0a 0a20 202a 2022 666f 7263 =====.. * "forc │ │ │ │ +0004a9e0: 6549 6d61 6765 2852 6174 696f 6e61 6c4d eImage(RationalM │ │ │ │ +0004a9f0: 6170 2c49 6465 616c 2922 0a0a 466f 7220 ap,Ideal)"..For │ │ │ │ +0004aa00: 7468 6520 7072 6f67 7261 6d6d 6572 0a3d the programmer.= │ │ │ │ +0004aa10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0004aa20: 3d0a 0a54 6865 206f 626a 6563 7420 2a6e =..The object *n │ │ │ │ +0004aa30: 6f74 6520 666f 7263 6549 6d61 6765 3a20 ote forceImage: │ │ │ │ +0004aa40: 666f 7263 6549 6d61 6765 2c20 6973 2061 forceImage, is a │ │ │ │ +0004aa50: 202a 6e6f 7465 206d 6574 686f 6420 6675 *note method fu │ │ │ │ +0004aa60: 6e63 7469 6f6e 3a0a 284d 6163 6175 6c61 nction:.(Macaula │ │ │ │ +0004aa70: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +0004aa80: 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d tion,...-------- │ │ │ │ 0004aa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004aac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004aad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0004aae0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0004aaf0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0004ab00: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0004ab10: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0004ab20: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0004ab30: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0004ab40: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -0004ab50: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a31 cumentation.m2:1 │ │ │ │ -0004ab60: 3031 323a 302e 0a1f 0a46 696c 653a 2043 012:0....File: C │ │ │ │ -0004ab70: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -0004ab80: 653a 2066 6f72 6365 496e 7665 7273 654d e: forceInverseM │ │ │ │ -0004ab90: 6170 2c20 4e65 7874 3a20 6772 6170 682c ap, Next: graph, │ │ │ │ -0004aba0: 2050 7265 763a 2066 6f72 6365 496d 6167 Prev: forceImag │ │ │ │ -0004abb0: 652c 2055 703a 2054 6f70 0a0a 666f 7263 e, Up: Top..forc │ │ │ │ -0004abc0: 6549 6e76 6572 7365 4d61 7020 2d2d 2064 eInverseMap -- d │ │ │ │ -0004abd0: 6563 6c61 7265 2074 6861 7420 7477 6f20 eclare that two │ │ │ │ -0004abe0: 7261 7469 6f6e 616c 206d 6170 7320 6172 rational maps ar │ │ │ │ -0004abf0: 6520 6f6e 6520 7468 6520 696e 7665 7273 e one the invers │ │ │ │ -0004ac00: 6520 6f66 2074 6865 206f 7468 6572 0a2a e of the other.* │ │ │ │ +0004aad0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0004aae0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0004aaf0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0004ab00: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0004ab10: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0004ab20: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0004ab30: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +0004ab40: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +0004ab50: 6174 696f 6e2e 6d32 3a31 3031 323a 302e ation.m2:1012:0. │ │ │ │ +0004ab60: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +0004ab70: 2e69 6e66 6f2c 204e 6f64 653a 2066 6f72 .info, Node: for │ │ │ │ +0004ab80: 6365 496e 7665 7273 654d 6170 2c20 4e65 ceInverseMap, Ne │ │ │ │ +0004ab90: 7874 3a20 6772 6170 682c 2050 7265 763a xt: graph, Prev: │ │ │ │ +0004aba0: 2066 6f72 6365 496d 6167 652c 2055 703a forceImage, Up: │ │ │ │ +0004abb0: 2054 6f70 0a0a 666f 7263 6549 6e76 6572 Top..forceInver │ │ │ │ +0004abc0: 7365 4d61 7020 2d2d 2064 6563 6c61 7265 seMap -- declare │ │ │ │ +0004abd0: 2074 6861 7420 7477 6f20 7261 7469 6f6e that two ration │ │ │ │ +0004abe0: 616c 206d 6170 7320 6172 6520 6f6e 6520 al maps are one │ │ │ │ +0004abf0: 7468 6520 696e 7665 7273 6520 6f66 2074 the inverse of t │ │ │ │ +0004ac00: 6865 206f 7468 6572 0a2a 2a2a 2a2a 2a2a he other.******* │ │ │ │ 0004ac10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0004ac20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0004ac30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0004ac40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0004ac50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0004ac60: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ -0004ac70: 2020 2020 2020 2066 6f72 6365 496e 7665 forceInve │ │ │ │ -0004ac80: 7273 654d 6170 2850 6869 2c50 7369 290a rseMap(Phi,Psi). │ │ │ │ -0004ac90: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -0004aca0: 2020 2a20 5068 692c 2061 202a 6e6f 7465 * Phi, a *note │ │ │ │ -0004acb0: 2072 6174 696f 6e61 6c20 6d61 703a 2052 rational map: R │ │ │ │ -0004acc0: 6174 696f 6e61 6c4d 6170 2c0a 2020 2020 ationalMap,. │ │ │ │ -0004acd0: 2020 2a20 5073 692c 2061 202a 6e6f 7465 * Psi, a *note │ │ │ │ -0004ace0: 2072 6174 696f 6e61 6c20 6d61 703a 2052 rational map: R │ │ │ │ -0004acf0: 6174 696f 6e61 6c4d 6170 2c0a 2020 2a20 ationalMap,. * │ │ │ │ -0004ad00: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -0004ad10: 202a 6e6f 7465 206e 756c 6c3a 2028 4d61 *note null: (Ma │ │ │ │ -0004ad20: 6361 756c 6179 3244 6f63 296e 756c 6c2c caulay2Doc)null, │ │ │ │ -0004ad30: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0004ad40: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ -0004ad50: 6d65 7468 6f64 2061 6c6c 6f77 7320 746f method allows to │ │ │ │ -0004ad60: 2069 6e66 6f72 6d20 7468 6520 7379 7374 inform the syst │ │ │ │ -0004ad70: 656d 2074 6861 7420 7477 6f20 6d61 7073 em that two maps │ │ │ │ -0004ad80: 2061 7265 206f 6e65 2074 6865 2069 6e76 are one the inv │ │ │ │ -0004ad90: 6572 7365 206f 660a 7468 6520 6f74 6865 erse of.the othe │ │ │ │ -0004ada0: 7220 7769 7468 6f75 7420 7065 7266 6f72 r without perfor │ │ │ │ -0004adb0: 6d69 6e67 2061 6e79 2063 6f6d 7075 7461 ming any computa │ │ │ │ -0004adc0: 7469 6f6e 2e20 5468 6973 2069 7320 7573 tion. This is us │ │ │ │ -0004add0: 6566 756c 2069 6e20 7061 7274 6963 756c eful in particul │ │ │ │ -0004ade0: 6172 2069 660a 796f 7520 6361 6c63 756c ar if.you calcul │ │ │ │ -0004adf0: 6174 6520 7468 6520 696e 7665 7273 6520 ate the inverse │ │ │ │ -0004ae00: 6d61 7020 7573 696e 6720 796f 7572 206f map using your o │ │ │ │ -0004ae10: 776e 206d 6574 686f 642e 0a0a 4361 7665 wn method...Cave │ │ │ │ -0004ae20: 6174 0a3d 3d3d 3d3d 3d0a 0a49 6620 7468 at.======..If th │ │ │ │ -0004ae30: 6520 6465 636c 6172 6174 696f 6e20 6973 e declaration is │ │ │ │ -0004ae40: 2066 616c 7365 2c20 6e6f 6e73 656e 7369 false, nonsensi │ │ │ │ -0004ae50: 6361 6c20 616e 7377 6572 7320 6d61 7920 cal answers may │ │ │ │ -0004ae60: 7265 7375 6c74 2e0a 0a53 6565 2061 6c73 result...See als │ │ │ │ -0004ae70: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -0004ae80: 2a6e 6f74 6520 6973 496e 7665 7273 654d *note isInverseM │ │ │ │ -0004ae90: 6170 2852 6174 696f 6e61 6c4d 6170 2c52 ap(RationalMap,R │ │ │ │ -0004aea0: 6174 696f 6e61 6c4d 6170 293a 0a20 2020 ationalMap):. │ │ │ │ -0004aeb0: 2069 7349 6e76 6572 7365 4d61 705f 6c70 isInverseMap_lp │ │ │ │ -0004aec0: 5261 7469 6f6e 616c 4d61 705f 636d 5261 RationalMap_cmRa │ │ │ │ -0004aed0: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -0004aee0: 2063 6865 636b 7320 7768 6574 6865 7220 checks whether │ │ │ │ -0004aef0: 7477 6f20 7261 7469 6f6e 616c 0a20 2020 two rational. │ │ │ │ -0004af00: 206d 6170 7320 6172 6520 6f6e 6520 7468 maps are one th │ │ │ │ -0004af10: 6520 696e 7665 7273 6520 6f66 2074 6865 e inverse of the │ │ │ │ -0004af20: 206f 7468 6572 0a20 202a 202a 6e6f 7465 other. * *note │ │ │ │ -0004af30: 2069 6e76 6572 7365 2852 6174 696f 6e61 inverse(Rationa │ │ │ │ -0004af40: 6c4d 6170 293a 2069 6e76 6572 7365 5f6c lMap): inverse_l │ │ │ │ -0004af50: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -0004af60: 202d 2d20 696e 7665 7273 6520 6f66 2061 -- inverse of a │ │ │ │ -0004af70: 0a20 2020 2062 6972 6174 696f 6e61 6c20 . birational │ │ │ │ -0004af80: 6d61 700a 0a57 6179 7320 746f 2075 7365 map..Ways to use │ │ │ │ -0004af90: 2066 6f72 6365 496e 7665 7273 654d 6170 forceInverseMap │ │ │ │ -0004afa0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -0004afb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -0004afc0: 2020 2a20 2266 6f72 6365 496e 7665 7273 * "forceInvers │ │ │ │ -0004afd0: 654d 6170 2852 6174 696f 6e61 6c4d 6170 eMap(RationalMap │ │ │ │ -0004afe0: 2c52 6174 696f 6e61 6c4d 6170 2922 0a0a ,RationalMap)".. │ │ │ │ -0004aff0: 466f 7220 7468 6520 7072 6f67 7261 6d6d For the programm │ │ │ │ -0004b000: 6572 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d er.============= │ │ │ │ -0004b010: 3d3d 3d3d 3d0a 0a54 6865 206f 626a 6563 =====..The objec │ │ │ │ -0004b020: 7420 2a6e 6f74 6520 666f 7263 6549 6e76 t *note forceInv │ │ │ │ -0004b030: 6572 7365 4d61 703a 2066 6f72 6365 496e erseMap: forceIn │ │ │ │ -0004b040: 7665 7273 654d 6170 2c20 6973 2061 202a verseMap, is a * │ │ │ │ -0004b050: 6e6f 7465 206d 6574 686f 6420 6675 6e63 note method func │ │ │ │ -0004b060: 7469 6f6e 3a0a 284d 6163 6175 6c61 7932 tion:.(Macaulay2 │ │ │ │ -0004b070: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -0004b080: 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d on,...---------- │ │ │ │ +0004ac50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +0004ac60: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +0004ac70: 2066 6f72 6365 496e 7665 7273 654d 6170 forceInverseMap │ │ │ │ +0004ac80: 2850 6869 2c50 7369 290a 2020 2a20 496e (Phi,Psi). * In │ │ │ │ +0004ac90: 7075 7473 3a0a 2020 2020 2020 2a20 5068 puts:. * Ph │ │ │ │ +0004aca0: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ +0004acb0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ +0004acc0: 6c4d 6170 2c0a 2020 2020 2020 2a20 5073 lMap,. * Ps │ │ │ │ +0004acd0: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ +0004ace0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ +0004acf0: 6c4d 6170 2c0a 2020 2a20 4f75 7470 7574 lMap,. * Output │ │ │ │ +0004ad00: 733a 0a20 2020 2020 202a 202a 6e6f 7465 s:. * *note │ │ │ │ +0004ad10: 206e 756c 6c3a 2028 4d61 6361 756c 6179 null: (Macaulay │ │ │ │ +0004ad20: 3244 6f63 296e 756c 6c2c 0a0a 4465 7363 2Doc)null,..Desc │ │ │ │ +0004ad30: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0004ad40: 3d3d 3d0a 0a54 6869 7320 6d65 7468 6f64 ===..This method │ │ │ │ +0004ad50: 2061 6c6c 6f77 7320 746f 2069 6e66 6f72 allows to infor │ │ │ │ +0004ad60: 6d20 7468 6520 7379 7374 656d 2074 6861 m the system tha │ │ │ │ +0004ad70: 7420 7477 6f20 6d61 7073 2061 7265 206f t two maps are o │ │ │ │ +0004ad80: 6e65 2074 6865 2069 6e76 6572 7365 206f ne the inverse o │ │ │ │ +0004ad90: 660a 7468 6520 6f74 6865 7220 7769 7468 f.the other with │ │ │ │ +0004ada0: 6f75 7420 7065 7266 6f72 6d69 6e67 2061 out performing a │ │ │ │ +0004adb0: 6e79 2063 6f6d 7075 7461 7469 6f6e 2e20 ny computation. │ │ │ │ +0004adc0: 5468 6973 2069 7320 7573 6566 756c 2069 This is useful i │ │ │ │ +0004add0: 6e20 7061 7274 6963 756c 6172 2069 660a n particular if. │ │ │ │ +0004ade0: 796f 7520 6361 6c63 756c 6174 6520 7468 you calculate th │ │ │ │ +0004adf0: 6520 696e 7665 7273 6520 6d61 7020 7573 e inverse map us │ │ │ │ +0004ae00: 696e 6720 796f 7572 206f 776e 206d 6574 ing your own met │ │ │ │ +0004ae10: 686f 642e 0a0a 4361 7665 6174 0a3d 3d3d hod...Caveat.=== │ │ │ │ +0004ae20: 3d3d 3d0a 0a49 6620 7468 6520 6465 636c ===..If the decl │ │ │ │ +0004ae30: 6172 6174 696f 6e20 6973 2066 616c 7365 aration is false │ │ │ │ +0004ae40: 2c20 6e6f 6e73 656e 7369 6361 6c20 616e , nonsensical an │ │ │ │ +0004ae50: 7377 6572 7320 6d61 7920 7265 7375 6c74 swers may result │ │ │ │ +0004ae60: 2e0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d ...See also.==== │ │ │ │ +0004ae70: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +0004ae80: 6973 496e 7665 7273 654d 6170 2852 6174 isInverseMap(Rat │ │ │ │ +0004ae90: 696f 6e61 6c4d 6170 2c52 6174 696f 6e61 ionalMap,Rationa │ │ │ │ +0004aea0: 6c4d 6170 293a 0a20 2020 2069 7349 6e76 lMap):. isInv │ │ │ │ +0004aeb0: 6572 7365 4d61 705f 6c70 5261 7469 6f6e erseMap_lpRation │ │ │ │ +0004aec0: 616c 4d61 705f 636d 5261 7469 6f6e 616c alMap_cmRational │ │ │ │ +0004aed0: 4d61 705f 7270 2c20 2d2d 2063 6865 636b Map_rp, -- check │ │ │ │ +0004aee0: 7320 7768 6574 6865 7220 7477 6f20 7261 s whether two ra │ │ │ │ +0004aef0: 7469 6f6e 616c 0a20 2020 206d 6170 7320 tional. maps │ │ │ │ +0004af00: 6172 6520 6f6e 6520 7468 6520 696e 7665 are one the inve │ │ │ │ +0004af10: 7273 6520 6f66 2074 6865 206f 7468 6572 rse of the other │ │ │ │ +0004af20: 0a20 202a 202a 6e6f 7465 2069 6e76 6572 . * *note inver │ │ │ │ +0004af30: 7365 2852 6174 696f 6e61 6c4d 6170 293a se(RationalMap): │ │ │ │ +0004af40: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ +0004af50: 6e61 6c4d 6170 5f72 702c 202d 2d20 696e nalMap_rp, -- in │ │ │ │ +0004af60: 7665 7273 6520 6f66 2061 0a20 2020 2062 verse of a. b │ │ │ │ +0004af70: 6972 6174 696f 6e61 6c20 6d61 700a 0a57 irational map..W │ │ │ │ +0004af80: 6179 7320 746f 2075 7365 2066 6f72 6365 ays to use force │ │ │ │ +0004af90: 496e 7665 7273 654d 6170 3a0a 3d3d 3d3d InverseMap:.==== │ │ │ │ +0004afa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0004afb0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2266 ========.. * "f │ │ │ │ +0004afc0: 6f72 6365 496e 7665 7273 654d 6170 2852 orceInverseMap(R │ │ │ │ +0004afd0: 6174 696f 6e61 6c4d 6170 2c52 6174 696f ationalMap,Ratio │ │ │ │ +0004afe0: 6e61 6c4d 6170 2922 0a0a 466f 7220 7468 nalMap)"..For th │ │ │ │ +0004aff0: 6520 7072 6f67 7261 6d6d 6572 0a3d 3d3d e programmer.=== │ │ │ │ +0004b000: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0004b010: 0a54 6865 206f 626a 6563 7420 2a6e 6f74 .The object *not │ │ │ │ +0004b020: 6520 666f 7263 6549 6e76 6572 7365 4d61 e forceInverseMa │ │ │ │ +0004b030: 703a 2066 6f72 6365 496e 7665 7273 654d p: forceInverseM │ │ │ │ +0004b040: 6170 2c20 6973 2061 202a 6e6f 7465 206d ap, is a *note m │ │ │ │ +0004b050: 6574 686f 6420 6675 6e63 7469 6f6e 3a0a ethod function:. │ │ │ │ +0004b060: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +0004b070: 7468 6f64 4675 6e63 7469 6f6e 2c2e 0a0a thodFunction,... │ │ │ │ +0004b080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004b0d0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0004b0e0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0004b0f0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0004b100: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0004b110: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0004b120: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0004b130: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ -0004b140: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ -0004b150: 696f 6e2e 6d32 3a39 3935 3a30 2e0a 1f0a ion.m2:995:0.... │ │ │ │ -0004b160: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ -0004b170: 666f 2c20 4e6f 6465 3a20 6772 6170 682c fo, Node: graph, │ │ │ │ -0004b180: 204e 6578 743a 2067 7261 7068 5f6c 7052 Next: graph_lpR │ │ │ │ -0004b190: 696e 674d 6170 5f72 702c 2050 7265 763a ingMap_rp, Prev: │ │ │ │ -0004b1a0: 2066 6f72 6365 496e 7665 7273 654d 6170 forceInverseMap │ │ │ │ -0004b1b0: 2c20 5570 3a20 546f 700a 0a67 7261 7068 , Up: Top..graph │ │ │ │ -0004b1c0: 202d 2d20 636c 6f73 7572 6520 6f66 2074 -- closure of t │ │ │ │ -0004b1d0: 6865 2067 7261 7068 206f 6620 6120 7261 he graph of a ra │ │ │ │ -0004b1e0: 7469 6f6e 616c 206d 6170 0a2a 2a2a 2a2a tional map.***** │ │ │ │ +0004b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0004b0d0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0004b0e0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0004b0f0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0004b100: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0004b110: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0004b120: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0004b130: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ +0004b140: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ +0004b150: 3a39 3935 3a30 2e0a 1f0a 4669 6c65 3a20 :995:0....File: │ │ │ │ +0004b160: 4372 656d 6f6e 612e 696e 666f 2c20 4e6f Cremona.info, No │ │ │ │ +0004b170: 6465 3a20 6772 6170 682c 204e 6578 743a de: graph, Next: │ │ │ │ +0004b180: 2067 7261 7068 5f6c 7052 696e 674d 6170 graph_lpRingMap │ │ │ │ +0004b190: 5f72 702c 2050 7265 763a 2066 6f72 6365 _rp, Prev: force │ │ │ │ +0004b1a0: 496e 7665 7273 654d 6170 2c20 5570 3a20 InverseMap, Up: │ │ │ │ +0004b1b0: 546f 700a 0a67 7261 7068 202d 2d20 636c Top..graph -- cl │ │ │ │ +0004b1c0: 6f73 7572 6520 6f66 2074 6865 2067 7261 osure of the gra │ │ │ │ +0004b1d0: 7068 206f 6620 6120 7261 7469 6f6e 616c ph of a rational │ │ │ │ +0004b1e0: 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a map.*********** │ │ │ │ 0004b1f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0004b200: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0004b210: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0004b220: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0004b230: 6772 6170 6820 7068 690a 2020 2a20 496e graph phi. * In │ │ │ │ -0004b240: 7075 7473 3a0a 2020 2020 2020 2a20 7068 puts:. * ph │ │ │ │ -0004b250: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ -0004b260: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ -0004b270: 6c4d 6170 2c0a 2020 2a20 2a6e 6f74 6520 lMap,. * *note │ │ │ │ -0004b280: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0004b290: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0004b2a0: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0004b2b0: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0004b2c0: 7574 732c 3a0a 2020 2020 2020 2a20 2a6e uts,:. * *n │ │ │ │ -0004b2d0: 6f74 6520 426c 6f77 5570 5374 7261 7465 ote BlowUpStrate │ │ │ │ -0004b2e0: 6779 3a20 426c 6f77 5570 5374 7261 7465 gy: BlowUpStrate │ │ │ │ -0004b2f0: 6779 2c20 3d3e 202e 2e2e 2c20 6465 6661 gy, => ..., defa │ │ │ │ -0004b300: 756c 7420 7661 6c75 650a 2020 2020 2020 ult value. │ │ │ │ -0004b310: 2020 2245 6c69 6d69 6e61 7465 222c 0a20 "Eliminate",. │ │ │ │ -0004b320: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -0004b330: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ -0004b340: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -0004b350: 616c 4d61 702c 2c20 7468 6520 6669 7273 alMap,, the firs │ │ │ │ -0004b360: 7420 7072 6f6a 6563 7469 6f6e 0a20 2020 t projection. │ │ │ │ -0004b370: 2020 202a 2061 202a 6e6f 7465 2072 6174 * a *note rat │ │ │ │ -0004b380: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -0004b390: 6e61 6c4d 6170 2c2c 2074 6865 2073 6563 nalMap,, the sec │ │ │ │ -0004b3a0: 6f6e 6420 7072 6f6a 6563 7469 6f6e 0a0a ond projection.. │ │ │ │ -0004b3b0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0004b3c0: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ +0004b210: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +0004b220: 200a 2020 2020 2020 2020 6772 6170 6820 . graph │ │ │ │ +0004b230: 7068 690a 2020 2a20 496e 7075 7473 3a0a phi. * Inputs:. │ │ │ │ +0004b240: 2020 2020 2020 2a20 7068 692c 2061 202a * phi, a * │ │ │ │ +0004b250: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ +0004b260: 703a 2052 6174 696f 6e61 6c4d 6170 2c0a p: RationalMap,. │ │ │ │ +0004b270: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ +0004b280: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ +0004b290: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ +0004b2a0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +0004b2b0: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ +0004b2c0: 2020 2020 2020 2a20 2a6e 6f74 6520 426c * *note Bl │ │ │ │ +0004b2d0: 6f77 5570 5374 7261 7465 6779 3a20 426c owUpStrategy: Bl │ │ │ │ +0004b2e0: 6f77 5570 5374 7261 7465 6779 2c20 3d3e owUpStrategy, => │ │ │ │ +0004b2f0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0004b300: 6c75 650a 2020 2020 2020 2020 2245 6c69 lue. "Eli │ │ │ │ +0004b310: 6d69 6e61 7465 222c 0a20 202a 204f 7574 minate",. * Out │ │ │ │ +0004b320: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ +0004b330: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +0004b340: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +0004b350: 2c20 7468 6520 6669 7273 7420 7072 6f6a , the first proj │ │ │ │ +0004b360: 6563 7469 6f6e 0a20 2020 2020 202a 2061 ection. * a │ │ │ │ +0004b370: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +0004b380: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +0004b390: 2c2c 2074 6865 2073 6563 6f6e 6420 7072 ,, the second pr │ │ │ │ +0004b3a0: 6f6a 6563 7469 6f6e 0a0a 4465 7363 7269 ojection..Descri │ │ │ │ +0004b3b0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0004b3c0: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ 0004b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004b400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004b410: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2028 -------+.|i1 : ( │ │ │ │ -0004b420: 5a5a 2f31 3930 3138 3129 5b78 5f30 2e2e ZZ/190181)[x_0.. │ │ │ │ -0004b430: 785f 345d 3b20 7068 6920 3d20 7261 7469 x_4]; phi = rati │ │ │ │ -0004b440: 6f6e 616c 4d61 7028 6d69 6e6f 7273 2832 onalMap(minors(2 │ │ │ │ -0004b450: 2c6d 6174 7269 787b 7b78 5f30 2e2e 785f ,matrix{{x_0..x_ │ │ │ │ -0004b460: 337d 2c7b 785f 207c 0a7c 2020 2020 2020 3},{x_ |.| │ │ │ │ +0004b410: 2d2b 0a7c 6931 203a 2028 5a5a 2f31 3930 -+.|i1 : (ZZ/190 │ │ │ │ +0004b420: 3138 3129 5b78 5f30 2e2e 785f 345d 3b20 181)[x_0..x_4]; │ │ │ │ +0004b430: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +0004b440: 7028 6d69 6e6f 7273 2832 2c6d 6174 7269 p(minors(2,matri │ │ │ │ +0004b450: 787b 7b78 5f30 2e2e 785f 337d 2c7b 785f x{{x_0..x_3},{x_ │ │ │ │ +0004b460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b4b0: 2020 2020 2020 207c 0a7c 6f32 203d 202d |.|o2 = - │ │ │ │ -0004b4c0: 2d20 7261 7469 6f6e 616c 206d 6170 202d - rational map - │ │ │ │ -0004b4d0: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0004b4b0: 207c 0a7c 6f32 203d 202d 2d20 7261 7469 |.|o2 = -- rati │ │ │ │ +0004b4c0: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +0004b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b500: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b510: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +0004b500: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b510: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 0004b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b550: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -0004b560: 6f75 7263 653a 2050 726f 6a28 2d2d 2d2d ource: Proj(---- │ │ │ │ -0004b570: 2d2d 5b78 202c 2078 202c 2078 202c 2078 --[x , x , x , x │ │ │ │ -0004b580: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ +0004b550: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +0004b560: 2050 726f 6a28 2d2d 2d2d 2d2d 5b78 202c Proj(------[x , │ │ │ │ +0004b570: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ +0004b580: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0004b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b5a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b5b0: 2020 2020 2020 2020 2020 2020 3139 3031 1901 │ │ │ │ -0004b5c0: 3831 2020 3020 2020 3120 2020 3220 2020 81 0 1 2 │ │ │ │ -0004b5d0: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0004b5a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b5b0: 2020 2020 2020 3139 3031 3831 2020 3020 190181 0 │ │ │ │ +0004b5c0: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +0004b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b5f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004b5f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b610: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +0004b610: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 0004b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b640: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ -0004b650: 6172 6765 743a 2073 7562 7661 7269 6574 arget: subvariet │ │ │ │ -0004b660: 7920 6f66 2050 726f 6a28 2d2d 2d2d 2d2d y of Proj(------ │ │ │ │ -0004b670: 5b79 202c 2079 202c 2079 202c 2079 202c [y , y , y , y , │ │ │ │ -0004b680: 2079 202c 2079 205d 2920 6465 6669 6e65 y , y ]) define │ │ │ │ -0004b690: 6420 6279 2020 207c 0a7c 2020 2020 2020 d by |.| │ │ │ │ +0004b640: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +0004b650: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +0004b660: 726f 6a28 2d2d 2d2d 2d2d 5b79 202c 2079 roj(------[y , y │ │ │ │ +0004b670: 202c 2079 202c 2079 202c 2079 202c 2079 , y , y , y , y │ │ │ │ +0004b680: 205d 2920 6465 6669 6e65 6420 6279 2020 ]) defined by │ │ │ │ +0004b690: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b6b0: 2020 2020 2020 2020 2020 3139 3031 3831 190181 │ │ │ │ -0004b6c0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0004b6d0: 2020 3420 2020 3520 2020 2020 2020 2020 4 5 │ │ │ │ -0004b6e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b6f0: 2020 2020 2020 207b 2020 2020 2020 2020 { │ │ │ │ +0004b6b0: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ +0004b6c0: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0004b6d0: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0004b6e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b6f0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0004b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b740: 2020 2020 2020 2020 7920 7920 202d 2079 y y - y │ │ │ │ -0004b750: 2079 2020 2b20 7920 7920 2020 2020 2020 y + y y │ │ │ │ +0004b730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b740: 2020 7920 7920 202d 2079 2079 2020 2b20 y y - y y + │ │ │ │ +0004b750: 7920 7920 2020 2020 2020 2020 2020 2020 y y │ │ │ │ 0004b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b780: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b790: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -0004b7a0: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ +0004b780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b790: 2020 2032 2033 2020 2020 3120 3420 2020 2 3 1 4 │ │ │ │ +0004b7a0: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b7d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b7e0: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0004b7d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b7e0: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0004b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b820: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -0004b830: 6566 696e 696e 6720 666f 726d 733a 207b efining forms: { │ │ │ │ +0004b820: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +0004b830: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 0004b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b870: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b890: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004b870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b880: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0004b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b8c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b8e0: 2d20 7820 202b 2078 2078 202c 2020 2020 - x + x x , │ │ │ │ +0004b8c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b8d0: 2020 2020 2020 2020 2020 2d20 7820 202b - x + │ │ │ │ +0004b8e0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 0004b8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b910: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b930: 2020 2031 2020 2020 3020 3220 2020 2020 1 0 2 │ │ │ │ +0004b910: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b920: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0004b930: 2020 3020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ 0004b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004b960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b9b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004b9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004b9d0: 2d20 7820 7820 202b 2078 2078 202c 2020 - x x + x x , │ │ │ │ +0004b9b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004b9c0: 2020 2020 2020 2020 2020 2d20 7820 7820 - x x │ │ │ │ +0004b9d0: 202b 2078 2078 202c 2020 2020 2020 2020 + x x , │ │ │ │ 0004b9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba20: 2020 2031 2032 2020 2020 3020 3320 2020 1 2 0 3 │ │ │ │ +0004ba00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ba10: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ +0004ba20: 2020 2020 3020 3320 2020 2020 2020 2020 0 3 │ │ │ │ 0004ba30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ba50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ba50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004baa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bac0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004baa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bab0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0004bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004baf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb10: 2d20 7820 202b 2078 2078 202c 2020 2020 - x + x x , │ │ │ │ +0004baf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bb00: 2020 2020 2020 2020 2020 2d20 7820 202b - x + │ │ │ │ +0004bb10: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ 0004bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb60: 2020 2032 2020 2020 3120 3320 2020 2020 2 1 3 │ │ │ │ +0004bb40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bb50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0004bb60: 2020 3120 3320 2020 2020 2020 2020 2020 1 3 │ │ │ │ 0004bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bb90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004bb90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bbe0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc00: 2d20 7820 7820 202b 2078 2078 202c 2020 - x x + x x , │ │ │ │ +0004bbe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bbf0: 2020 2020 2020 2020 2020 2d20 7820 7820 - x x │ │ │ │ +0004bc00: 202b 2078 2078 202c 2020 2020 2020 2020 + x x , │ │ │ │ 0004bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc50: 2020 2031 2033 2020 2020 3020 3420 2020 1 3 0 4 │ │ │ │ +0004bc30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bc40: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ +0004bc50: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ 0004bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bc80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004bc80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bcd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bcf0: 2d20 7820 7820 202b 2078 2078 202c 2020 - x x + x x , │ │ │ │ +0004bcd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bce0: 2020 2020 2020 2020 2020 2d20 7820 7820 - x x │ │ │ │ +0004bcf0: 202b 2078 2078 202c 2020 2020 2020 2020 + x x , │ │ │ │ 0004bd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd40: 2020 2032 2033 2020 2020 3120 3420 2020 2 3 1 4 │ │ │ │ +0004bd20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bd30: 2020 2020 2020 2020 2020 2020 2032 2033 2 3 │ │ │ │ +0004bd40: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ 0004bd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bd70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004bd70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bdc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bde0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004bdc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bdd0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0004bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be30: 2d20 7820 202b 2078 2078 2020 2020 2020 - x + x x │ │ │ │ +0004be10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004be20: 2020 2020 2020 2020 2020 2d20 7820 202b - x + │ │ │ │ +0004be30: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ 0004be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004be80: 2020 2033 2020 2020 3220 3420 2020 2020 3 2 4 │ │ │ │ +0004be60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004be70: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0004be80: 2020 3220 3420 2020 2020 2020 2020 2020 2 4 │ │ │ │ 0004be90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004beb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004bec0: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +0004beb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004bec0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 0004bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004bf00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004bf50: 2020 2020 2020 207c 0a7c 6f32 203a 2052 |.|o2 : R │ │ │ │ -0004bf60: 6174 696f 6e61 6c4d 6170 2028 7175 6164 ationalMap (quad │ │ │ │ -0004bf70: 7261 7469 6320 646f 6d69 6e61 6e74 2072 ratic dominant r │ │ │ │ -0004bf80: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -0004bf90: 2050 505e 3420 746f 2068 7970 6572 7375 PP^4 to hypersu │ │ │ │ -0004bfa0: 7266 6163 6520 207c 0a7c 2d2d 2d2d 2d2d rface |.|------ │ │ │ │ +0004bf50: 207c 0a7c 6f32 203a 2052 6174 696f 6e61 |.|o2 : Rationa │ │ │ │ +0004bf60: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ +0004bf70: 646f 6d69 6e61 6e74 2072 6174 696f 6e61 dominant rationa │ │ │ │ +0004bf80: 6c20 6d61 7020 6672 6f6d 2050 505e 3420 l map from PP^4 │ │ │ │ +0004bf90: 746f 2068 7970 6572 7375 7266 6163 6520 to hypersurface │ │ │ │ +0004bfa0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 0004bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004bfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004bfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004bfe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004bff0: 2d2d 2d2d 2d2d 2d7c 0a7c 312e 2e78 5f34 -------|.|1..x_4 │ │ │ │ -0004c000: 7d7d 292c 446f 6d69 6e61 6e74 3d3e 7472 }}),Dominant=>tr │ │ │ │ -0004c010: 7565 2920 2020 2020 2020 2020 2020 2020 ue) │ │ │ │ +0004bff0: 2d7c 0a7c 312e 2e78 5f34 7d7d 292c 446f -|.|1..x_4}}),Do │ │ │ │ +0004c000: 6d69 6e61 6e74 3d3e 7472 7565 2920 2020 minant=>true) │ │ │ │ +0004c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c040: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c040: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c090: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c090: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c0e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c0e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c130: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c180: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c1d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c1d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c220: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c2c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c2c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c360: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c3b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c3b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c400: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c400: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c4a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c4a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c4f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c4f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c540: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c590: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c590: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c5e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c5e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c630: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c630: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c680: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c6d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c6d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c720: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c7c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c7c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c810: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c810: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c860: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c8b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c8b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c900: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c9a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c9a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004c9f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004c9f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ca40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ca90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ca90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cae0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004cae0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004caf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb30: 2020 2020 2020 207c 0a7c 696e 2050 505e |.|in PP^ │ │ │ │ -0004cb40: 3529 2020 2020 2020 2020 2020 2020 2020 5) │ │ │ │ +0004cb30: 207c 0a7c 696e 2050 505e 3529 2020 2020 |.|in PP^5) │ │ │ │ +0004cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cb80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0004cb80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0004cb90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004cbd0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ -0004cbe0: 696d 6520 2870 312c 7032 2920 3d20 6772 ime (p1,p2) = gr │ │ │ │ -0004cbf0: 6170 6820 7068 693b 2020 2020 2020 2020 aph phi; │ │ │ │ +0004cbd0: 2d2b 0a7c 6933 203a 2074 696d 6520 2870 -+.|i3 : time (p │ │ │ │ +0004cbe0: 312c 7032 2920 3d20 6772 6170 6820 7068 1,p2) = graph ph │ │ │ │ +0004cbf0: 693b 2020 2020 2020 2020 2020 2020 2020 i; │ │ │ │ 0004cc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cc20: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ -0004cc30: 6564 2030 2e30 3138 3831 3738 7320 2863 ed 0.0188178s (c │ │ │ │ -0004cc40: 7075 293b 2030 2e30 3138 3433 3534 7320 pu); 0.0184354s │ │ │ │ -0004cc50: 2874 6872 6561 6429 3b20 3073 2028 6763 (thread); 0s (gc │ │ │ │ -0004cc60: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -0004cc70: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0004cc20: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ +0004cc30: 3932 3235 3338 7320 2863 7075 293b 2030 922538s (cpu); 0 │ │ │ │ +0004cc40: 2e30 3239 3538 3331 7320 2874 6872 6561 .0295831s (threa │ │ │ │ +0004cc50: 6429 3b20 3073 2028 6763 2920 2020 2020 d); 0s (gc) │ │ │ │ +0004cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004cc70: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0004cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004ccc0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2070 -------+.|i4 : p │ │ │ │ -0004ccd0: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0004ccc0: 2d2b 0a7c 6934 203a 2070 3120 2020 2020 -+.|i4 : p1 │ │ │ │ +0004ccd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ccf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004cd10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cd60: 2020 2020 2020 207c 0a7c 6f34 203d 202d |.|o4 = - │ │ │ │ -0004cd70: 2d20 7261 7469 6f6e 616c 206d 6170 202d - rational map - │ │ │ │ -0004cd80: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0004cd60: 207c 0a7c 6f34 203d 202d 2d20 7261 7469 |.|o4 = -- rati │ │ │ │ +0004cd70: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +0004cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cdb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004cdb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cdd0: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +0004cdd0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 0004cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce00: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -0004ce10: 6f75 7263 653a 2073 7562 7661 7269 6574 ource: subvariet │ │ │ │ -0004ce20: 7920 6f66 2050 726f 6a28 2d2d 2d2d 2d2d y of Proj(------ │ │ │ │ -0004ce30: 5b78 202c 2078 202c 2078 202c 2078 202c [x , x , x , x , │ │ │ │ -0004ce40: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0004ce50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ce00: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +0004ce10: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +0004ce20: 726f 6a28 2d2d 2d2d 2d2d 5b78 202c 2078 roj(------[x , x │ │ │ │ +0004ce30: 202c 2078 202c 2078 202c 2078 2020 2020 , x , x , x │ │ │ │ +0004ce40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004ce50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ce60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ce70: 2020 2020 2020 2020 2020 3139 3031 3831 190181 │ │ │ │ -0004ce80: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +0004ce70: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ +0004ce80: 3120 2020 3220 2020 3320 2020 2020 2020 1 2 3 │ │ │ │ 0004ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cea0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004ceb0: 2020 2020 2020 207b 2020 2020 2020 2020 { │ │ │ │ +0004cea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ceb0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0004cec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ced0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cef0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004cf00: 2020 2020 2020 2020 7920 7920 202d 2079 y y - y │ │ │ │ -0004cf10: 2079 2020 2b20 7920 7920 2c20 2020 2020 y + y y , │ │ │ │ +0004cef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cf00: 2020 7920 7920 202d 2079 2079 2020 2b20 y y - y y + │ │ │ │ +0004cf10: 7920 7920 2c20 2020 2020 2020 2020 2020 y y , │ │ │ │ 0004cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004cf50: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -0004cf60: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ +0004cf40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cf50: 2020 2032 2033 2020 2020 3120 3420 2020 2 3 1 4 │ │ │ │ +0004cf60: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004cf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cf80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cf90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004cf90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004cfe0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004cff0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d000: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004cfe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004cff0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d000: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d030: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d040: 2020 2020 2020 2020 2034 2032 2020 2020 4 2 │ │ │ │ -0004d050: 3320 3420 2020 2032 2035 2020 2020 2020 3 4 2 5 │ │ │ │ +0004d030: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d040: 2020 2034 2032 2020 2020 3320 3420 2020 4 2 3 4 │ │ │ │ +0004d050: 2032 2035 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ 0004d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d080: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d0d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d0e0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d0f0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004d0d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d0e0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d0f0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d120: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d130: 2020 2020 2020 2020 2033 2032 2020 2020 3 2 │ │ │ │ -0004d140: 3220 3420 2020 2031 2035 2020 2020 2020 2 4 1 5 │ │ │ │ +0004d120: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d130: 2020 2033 2032 2020 2020 3220 3420 2020 3 2 2 4 │ │ │ │ +0004d140: 2031 2035 2020 2020 2020 2020 2020 2020 1 5 │ │ │ │ 0004d150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d170: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d1c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d1d0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d1e0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004d1c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d1d0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d1e0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d210: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d220: 2020 2020 2020 2020 2034 2031 2020 2020 4 1 │ │ │ │ -0004d230: 3320 3320 2020 2031 2035 2020 2020 2020 3 3 1 5 │ │ │ │ +0004d210: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d220: 2020 2034 2031 2020 2020 3320 3320 2020 4 1 3 3 │ │ │ │ +0004d230: 2031 2035 2020 2020 2020 2020 2020 2020 1 5 │ │ │ │ 0004d240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d260: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d260: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d2b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d2c0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d2d0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004d2b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d2c0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d2d0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d300: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d310: 2020 2020 2020 2020 2033 2031 2020 2020 3 1 │ │ │ │ -0004d320: 3220 3320 2020 2030 2035 2020 2020 2020 2 3 0 5 │ │ │ │ +0004d300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d310: 2020 2033 2031 2020 2020 3220 3320 2020 3 1 2 3 │ │ │ │ +0004d320: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004d330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d350: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d3a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d3b0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d3c0: 2079 2020 2d20 7820 7920 202b 2078 2079 y - x y + x y │ │ │ │ -0004d3d0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0004d3a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d3b0: 2020 7820 7920 202d 2078 2079 2020 2d20 x y - x y - │ │ │ │ +0004d3c0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +0004d3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d3f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d400: 2020 2020 2020 2020 2032 2031 2020 2020 2 1 │ │ │ │ -0004d410: 3120 3220 2020 2031 2033 2020 2020 3020 1 2 1 3 0 │ │ │ │ -0004d420: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0004d3f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d400: 2020 2032 2031 2020 2020 3120 3220 2020 2 1 1 2 │ │ │ │ +0004d410: 2031 2033 2020 2020 3020 3420 2020 2020 1 3 0 4 │ │ │ │ +0004d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d440: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d4a0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d4b0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004d490: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d4a0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d4b0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d4e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d4f0: 2020 2020 2020 2020 2034 2030 2020 2020 4 0 │ │ │ │ -0004d500: 3220 3320 2020 2031 2034 2020 2020 2020 2 3 1 4 │ │ │ │ +0004d4e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d4f0: 2020 2034 2030 2020 2020 3220 3320 2020 4 0 2 3 │ │ │ │ +0004d500: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ 0004d510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d530: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d530: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d580: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d590: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d5a0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004d580: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d590: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d5a0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d5d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d5e0: 2020 2020 2020 2020 2033 2030 2020 2020 3 0 │ │ │ │ -0004d5f0: 3120 3320 2020 2030 2034 2020 2020 2020 1 3 0 4 │ │ │ │ +0004d5d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d5e0: 2020 2033 2030 2020 2020 3120 3320 2020 3 0 1 3 │ │ │ │ +0004d5f0: 2030 2034 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ 0004d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d620: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d620: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d670: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d680: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004d690: 2079 2020 2b20 7820 7920 2020 2020 2020 y + x y │ │ │ │ +0004d670: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d680: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004d690: 7820 7920 2020 2020 2020 2020 2020 2020 x y │ │ │ │ 0004d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d6c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d6d0: 2020 2020 2020 2020 2032 2030 2020 2020 2 0 │ │ │ │ -0004d6e0: 3120 3120 2020 2030 2032 2020 2020 2020 1 1 0 2 │ │ │ │ +0004d6c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d6d0: 2020 2032 2030 2020 2020 3120 3120 2020 2 0 1 1 │ │ │ │ +0004d6e0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ 0004d6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d710: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d720: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0004d710: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d720: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0004d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d760: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d770: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +0004d760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d770: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 0004d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d7b0: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ -0004d7c0: 6172 6765 743a 2050 726f 6a28 2d2d 2d2d arget: Proj(---- │ │ │ │ -0004d7d0: 2d2d 5b78 202c 2078 202c 2078 202c 2078 --[x , x , x , x │ │ │ │ -0004d7e0: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ +0004d7b0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +0004d7c0: 2050 726f 6a28 2d2d 2d2d 2d2d 5b78 202c Proj(------[x , │ │ │ │ +0004d7d0: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ +0004d7e0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0004d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d800: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d810: 2020 2020 2020 2020 2020 2020 3139 3031 1901 │ │ │ │ -0004d820: 3831 2020 3020 2020 3120 2020 3220 2020 81 0 1 2 │ │ │ │ -0004d830: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +0004d800: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d810: 2020 2020 2020 3139 3031 3831 2020 3020 190181 0 │ │ │ │ +0004d820: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +0004d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d850: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -0004d860: 6566 696e 696e 6720 666f 726d 733a 207b efining forms: { │ │ │ │ +0004d850: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +0004d860: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 0004d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8c0: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0004d8a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d8b0: 2020 2020 2020 2020 2020 7820 2c20 2020 x , │ │ │ │ +0004d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d8f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d910: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0004d8f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d900: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0004d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d940: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004d940: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d990: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d9b0: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0004d990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d9a0: 2020 2020 2020 2020 2020 7820 2c20 2020 x , │ │ │ │ +0004d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004d9e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004da00: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0004d9e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004d9f0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0004da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004da30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004da30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004da80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004daa0: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0004da80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004da90: 2020 2020 2020 2020 2020 7820 2c20 2020 x , │ │ │ │ +0004daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dad0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004daf0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004dad0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dae0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0004daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004db20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004db90: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0004db70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004db80: 2020 2020 2020 2020 2020 7820 2c20 2020 x , │ │ │ │ +0004db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dbc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dbe0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0004dbc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dbd0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +0004dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004dc10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dc80: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0004dc60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dc70: 2020 2020 2020 2020 2020 7820 2020 2020 x │ │ │ │ +0004dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dcb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dcd0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0004dcb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dcc0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +0004dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004dd10: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +0004dd00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004dd10: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 0004dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dd50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004dd50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dda0: 2020 2020 2020 207c 0a7c 6f34 203a 204d |.|o4 : M │ │ │ │ -0004ddb0: 756c 7469 686f 6d6f 6765 6e65 6f75 7352 ultihomogeneousR │ │ │ │ -0004ddc0: 6174 696f 6e61 6c4d 6170 2028 6269 7261 ationalMap (bira │ │ │ │ -0004ddd0: 7469 6f6e 616c 206d 6170 2066 726f 6d20 tional map from │ │ │ │ -0004dde0: 342d 2020 2020 2020 2020 2020 2020 2020 4- │ │ │ │ -0004ddf0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +0004dda0: 207c 0a7c 6f34 203a 204d 756c 7469 686f |.|o4 : Multiho │ │ │ │ +0004ddb0: 6d6f 6765 6e65 6f75 7352 6174 696f 6e61 mogeneousRationa │ │ │ │ +0004ddc0: 6c4d 6170 2028 6269 7261 7469 6f6e 616c lMap (birational │ │ │ │ +0004ddd0: 206d 6170 2066 726f 6d20 342d 2020 2020 map from 4- │ │ │ │ +0004dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0004ddf0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 0004de00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004de10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004de20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004de30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004de40: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -0004de50: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +0004de40: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +0004de50: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0004de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004de90: 2020 2020 2020 207c 0a7c 205d 2920 7820 |.| ]) x │ │ │ │ -0004dea0: 5072 6f6a 282d 2d2d 2d2d 2d5b 7920 2c20 Proj(------[y , │ │ │ │ -0004deb0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ -0004dec0: 7920 5d29 2064 6566 696e 6564 2062 7920 y ]) defined by │ │ │ │ +0004de90: 207c 0a7c 205d 2920 7820 5072 6f6a 282d |.| ]) x Proj(- │ │ │ │ +0004dea0: 2d2d 2d2d 2d5b 7920 2c20 7920 2c20 7920 -----[y , y , y │ │ │ │ +0004deb0: 2c20 7920 2c20 7920 2c20 7920 5d29 2064 , y , y , y ]) d │ │ │ │ +0004dec0: 6566 696e 6564 2062 7920 2020 2020 2020 efined by │ │ │ │ 0004ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dee0: 2020 2020 2020 207c 0a7c 3420 2020 2020 |.|4 │ │ │ │ -0004def0: 2020 2020 2031 3930 3138 3120 2030 2020 190181 0 │ │ │ │ -0004df00: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0004df10: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0004dee0: 207c 0a7c 3420 2020 2020 2020 2020 2031 |.|4 1 │ │ │ │ +0004def0: 3930 3138 3120 2030 2020 2031 2020 2032 90181 0 1 2 │ │ │ │ +0004df00: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ +0004df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004df30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004df80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004df80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004dfd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004dfd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004dff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e020: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e020: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e070: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e070: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e0c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e0c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e110: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e160: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e1b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e1b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e200: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e200: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e250: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e2a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e2a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e2f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e2f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e340: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e390: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e3e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e3e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e430: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e430: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e480: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e4d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e4d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e520: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e570: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e5c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e5c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e610: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e660: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e6b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e6b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e700: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e750: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e7a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e7a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e7f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e7f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e840: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e890: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e8e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e8e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e930: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e980: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e980: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004e9d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004e9d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ea20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ea70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ea70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eac0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004eac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004eb10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eb60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004eb60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ebb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ebb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ec00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ec50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ec50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004eca0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004eca0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ecf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ecf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ed40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ed80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ed90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ed90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ede0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ede0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ee20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee30: 2020 2020 2020 207c 0a7c 6469 6d65 6e73 |.|dimens │ │ │ │ -0004ee40: 696f 6e61 6c20 7375 6276 6172 6965 7479 ional subvariety │ │ │ │ -0004ee50: 206f 6620 5050 5e34 2078 2050 505e 3520 of PP^4 x PP^5 │ │ │ │ -0004ee60: 746f 2050 505e 3429 2020 2020 2020 2020 to PP^4) │ │ │ │ +0004ee30: 207c 0a7c 6469 6d65 6e73 696f 6e61 6c20 |.|dimensional │ │ │ │ +0004ee40: 7375 6276 6172 6965 7479 206f 6620 5050 subvariety of PP │ │ │ │ +0004ee50: 5e34 2078 2050 505e 3520 746f 2050 505e ^4 x PP^5 to PP^ │ │ │ │ +0004ee60: 3429 2020 2020 2020 2020 2020 2020 2020 4) │ │ │ │ 0004ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ee80: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0004ee80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0004ee90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004eea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004eeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0004eec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0004eed0: 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a 2070 -------+.|i5 : p │ │ │ │ -0004eee0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004eed0: 2d2b 0a7c 6935 203a 2070 3220 2020 2020 -+.|i5 : p2 │ │ │ │ +0004eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ef20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ef60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ef70: 2020 2020 2020 207c 0a7c 6f35 203d 202d |.|o5 = - │ │ │ │ -0004ef80: 2d20 7261 7469 6f6e 616c 206d 6170 202d - rational map - │ │ │ │ -0004ef90: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0004ef70: 207c 0a7c 6f35 203d 202d 2d20 7261 7469 |.|o5 = -- rati │ │ │ │ +0004ef80: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +0004ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004efc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004efc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004efe0: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +0004efe0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 0004eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f010: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -0004f020: 6f75 7263 653a 2073 7562 7661 7269 6574 ource: subvariet │ │ │ │ -0004f030: 7920 6f66 2050 726f 6a28 2d2d 2d2d 2d2d y of Proj(------ │ │ │ │ -0004f040: 5b78 202c 2020 2020 2020 2020 2020 2020 [x , │ │ │ │ +0004f010: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +0004f020: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +0004f030: 726f 6a28 2d2d 2d2d 2d2d 5b78 202c 2020 roj(------[x , │ │ │ │ +0004f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f060: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f060: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f080: 2020 2020 2020 2020 2020 3139 3031 3831 190181 │ │ │ │ -0004f090: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0004f080: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ +0004f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f0b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f0c0: 2020 2020 2020 207b 2020 2020 2020 2020 { │ │ │ │ +0004f0b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f0c0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0004f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f100: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f110: 2020 2020 2020 2020 7920 7920 202d 2079 y y - y │ │ │ │ -0004f120: 2079 2020 2b20 7920 7920 2c20 2020 2020 y + y y , │ │ │ │ +0004f100: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f110: 2020 7920 7920 202d 2079 2079 2020 2b20 y y - y y + │ │ │ │ +0004f120: 7920 7920 2c20 2020 2020 2020 2020 2020 y y , │ │ │ │ 0004f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f150: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f160: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -0004f170: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ +0004f150: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f160: 2020 2032 2033 2020 2020 3120 3420 2020 2 3 1 4 │ │ │ │ +0004f170: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f1a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f1a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f1f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f200: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f210: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f1f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f200: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f210: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f240: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f250: 2020 2020 2020 2020 2034 2032 2020 2020 4 2 │ │ │ │ -0004f260: 3320 3420 2020 2032 2035 2020 2020 2020 3 4 2 5 │ │ │ │ +0004f240: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f250: 2020 2034 2032 2020 2020 3320 3420 2020 4 2 3 4 │ │ │ │ +0004f260: 2032 2035 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ 0004f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f290: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f290: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f2e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f2f0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f300: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f2e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f2f0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f300: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f330: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f340: 2020 2020 2020 2020 2033 2032 2020 2020 3 2 │ │ │ │ -0004f350: 3220 3420 2020 2031 2035 2020 2020 2020 2 4 1 5 │ │ │ │ +0004f330: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f340: 2020 2033 2032 2020 2020 3220 3420 2020 3 2 2 4 │ │ │ │ +0004f350: 2031 2035 2020 2020 2020 2020 2020 2020 1 5 │ │ │ │ 0004f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f380: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f380: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f3d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f3e0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f3f0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f3d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f3e0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f3f0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f430: 2020 2020 2020 2020 2034 2031 2020 2020 4 1 │ │ │ │ -0004f440: 3320 3320 2020 2031 2035 2020 2020 2020 3 3 1 5 │ │ │ │ +0004f420: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f430: 2020 2034 2031 2020 2020 3320 3320 2020 4 1 3 3 │ │ │ │ +0004f440: 2031 2035 2020 2020 2020 2020 2020 2020 1 5 │ │ │ │ 0004f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f470: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f470: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f4c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f4d0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f4e0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f4c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f4d0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f4e0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f510: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f520: 2020 2020 2020 2020 2033 2031 2020 2020 3 1 │ │ │ │ -0004f530: 3220 3320 2020 2030 2035 2020 2020 2020 2 3 0 5 │ │ │ │ +0004f510: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f520: 2020 2033 2031 2020 2020 3220 3320 2020 3 1 2 3 │ │ │ │ +0004f530: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f560: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f560: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f5b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f5c0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f5d0: 2079 2020 2d20 7820 7920 202b 2078 2079 y - x y + x y │ │ │ │ -0004f5e0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0004f5b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f5c0: 2020 7820 7920 202d 2078 2079 2020 2d20 x y - x y - │ │ │ │ +0004f5d0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +0004f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f600: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f610: 2020 2020 2020 2020 2032 2031 2020 2020 2 1 │ │ │ │ -0004f620: 3120 3220 2020 2031 2033 2020 2020 3020 1 2 1 3 0 │ │ │ │ -0004f630: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0004f600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f610: 2020 2032 2031 2020 2020 3120 3220 2020 2 1 1 2 │ │ │ │ +0004f620: 2031 2033 2020 2020 3020 3420 2020 2020 1 3 0 4 │ │ │ │ +0004f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f650: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f6a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f6b0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f6c0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f6a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f6b0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f6c0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f6f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f700: 2020 2020 2020 2020 2034 2030 2020 2020 4 0 │ │ │ │ -0004f710: 3220 3320 2020 2031 2034 2020 2020 2020 2 3 1 4 │ │ │ │ +0004f6f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f700: 2020 2034 2030 2020 2020 3220 3320 2020 4 0 2 3 │ │ │ │ +0004f710: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ 0004f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f740: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f740: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f7a0: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f7b0: 2079 2020 2b20 7820 7920 2c20 2020 2020 y + x y , │ │ │ │ +0004f790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f7a0: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f7b0: 7820 7920 2c20 2020 2020 2020 2020 2020 x y , │ │ │ │ 0004f7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f7e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f7f0: 2020 2020 2020 2020 2033 2030 2020 2020 3 0 │ │ │ │ -0004f800: 3120 3320 2020 2030 2034 2020 2020 2020 1 3 0 4 │ │ │ │ +0004f7e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f7f0: 2020 2033 2030 2020 2020 3120 3320 2020 3 0 1 3 │ │ │ │ +0004f800: 2030 2034 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ 0004f810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f830: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f880: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f890: 2020 2020 2020 2020 7820 7920 202d 2078 x y - x │ │ │ │ -0004f8a0: 2079 2020 2b20 7820 7920 2020 2020 2020 y + x y │ │ │ │ +0004f880: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f890: 2020 7820 7920 202d 2078 2079 2020 2b20 x y - x y + │ │ │ │ +0004f8a0: 7820 7920 2020 2020 2020 2020 2020 2020 x y │ │ │ │ 0004f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f8d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f8e0: 2020 2020 2020 2020 2032 2030 2020 2020 2 0 │ │ │ │ -0004f8f0: 3120 3120 2020 2030 2032 2020 2020 2020 1 1 0 2 │ │ │ │ +0004f8d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f8e0: 2020 2032 2030 2020 2020 3120 3120 2020 2 0 1 1 │ │ │ │ +0004f8f0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ 0004f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004f930: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0004f920: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004f930: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0004f940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f970: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004f970: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f990: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +0004f990: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ 0004f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004f9c0: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ -0004f9d0: 6172 6765 743a 2073 7562 7661 7269 6574 arget: subvariet │ │ │ │ -0004f9e0: 7920 6f66 2050 726f 6a28 2d2d 2d2d 2d2d y of Proj(------ │ │ │ │ -0004f9f0: 5b79 202c 2020 2020 2020 2020 2020 2020 [y , │ │ │ │ +0004f9c0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +0004f9d0: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ +0004f9e0: 726f 6a28 2d2d 2d2d 2d2d 5b79 202c 2020 roj(------[y , │ │ │ │ +0004f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004fa10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa30: 2020 2020 2020 2020 2020 3139 3031 3831 190181 │ │ │ │ -0004fa40: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0004fa30: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ +0004fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fa60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fa70: 2020 2020 2020 207b 2020 2020 2020 2020 { │ │ │ │ +0004fa60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fa70: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0004fa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fab0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fac0: 2020 2020 2020 2020 7920 7920 202d 2079 y y - y │ │ │ │ -0004fad0: 2079 2020 2b20 7920 7920 2020 2020 2020 y + y y │ │ │ │ +0004fab0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fac0: 2020 7920 7920 202d 2079 2079 2020 2b20 y y - y y + │ │ │ │ +0004fad0: 7920 7920 2020 2020 2020 2020 2020 2020 y y │ │ │ │ 0004fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fb10: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -0004fb20: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ +0004fb00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fb10: 2020 2032 2033 2020 2020 3120 3420 2020 2 3 1 4 │ │ │ │ +0004fb20: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ 0004fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fb50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fb60: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ +0004fb50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fb60: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0004fb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fba0: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -0004fbb0: 6566 696e 696e 6720 666f 726d 733a 207b efining forms: { │ │ │ │ +0004fba0: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +0004fbb0: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 0004fbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fbf0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc10: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +0004fbf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fc00: 2020 2020 2020 2020 2020 7920 2c20 2020 y , │ │ │ │ +0004fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc60: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +0004fc40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fc50: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0004fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fc90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004fc90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fce0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd00: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +0004fce0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fcf0: 2020 2020 2020 2020 2020 7920 2c20 2020 y , │ │ │ │ +0004fd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd50: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0004fd30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fd40: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ +0004fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fd80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004fd80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fdd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fdf0: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +0004fdd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fde0: 2020 2020 2020 2020 2020 7920 2c20 2020 y , │ │ │ │ +0004fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0004fe20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fe30: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0004fe40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fe70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004fe70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fec0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004fed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004fee0: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +0004fec0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004fed0: 2020 2020 2020 2020 2020 7920 2c20 2020 y , │ │ │ │ +0004fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff30: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0004ff10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ff20: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +0004ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ff60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +0004ff60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0004ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ffb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0004ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0004ffd0: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +0004ffb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0004ffc0: 2020 2020 2020 2020 2020 7920 2c20 2020 y , │ │ │ │ +0004ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0004fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00050010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050020: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00050000: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050010: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +00050020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050050: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050050: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000500b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500c0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +000500a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000500b0: 2020 2020 2020 2020 2020 7920 2020 2020 y │ │ │ │ +000500c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000500e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000500f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00050100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050110: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000500f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050100: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ +00050110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050140: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -00050150: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +00050140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00050150: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 00050160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050190: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050190: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000501a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000501d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000501e0: 2020 2020 2020 207c 0a7c 6f35 203a 204d |.|o5 : M │ │ │ │ -000501f0: 756c 7469 686f 6d6f 6765 6e65 6f75 7352 ultihomogeneousR │ │ │ │ -00050200: 6174 696f 6e61 6c4d 6170 2028 646f 6d69 ationalMap (domi │ │ │ │ -00050210: 6e61 6e74 2020 2020 2020 2020 2020 2020 nant │ │ │ │ +000501e0: 207c 0a7c 6f35 203a 204d 756c 7469 686f |.|o5 : Multiho │ │ │ │ +000501f0: 6d6f 6765 6e65 6f75 7352 6174 696f 6e61 mogeneousRationa │ │ │ │ +00050200: 6c4d 6170 2028 646f 6d69 6e61 6e74 2020 lMap (dominant │ │ │ │ +00050210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050230: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +00050230: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00050240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00050270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00050280: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -00050290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000502a0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00050280: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ +00050290: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000502a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000502c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000502d0: 2020 2020 2020 207c 0a7c 7820 2c20 7820 |.|x , x │ │ │ │ -000502e0: 2c20 7820 2c20 7820 5d29 2078 2050 726f , x , x ]) x Pro │ │ │ │ -000502f0: 6a28 2d2d 2d2d 2d2d 5b79 202c 2079 202c j(------[y , y , │ │ │ │ -00050300: 2079 202c 2079 202c 2079 202c 2079 205d y , y , y , y ] │ │ │ │ -00050310: 2920 6465 6669 6e65 6420 6279 2020 2020 ) defined by │ │ │ │ -00050320: 2020 2020 2020 207c 0a7c 2031 2020 2032 |.| 1 2 │ │ │ │ -00050330: 2020 2033 2020 2034 2020 2020 2020 2020 3 4 │ │ │ │ -00050340: 2020 3139 3031 3831 2020 3020 2020 3120 190181 0 1 │ │ │ │ -00050350: 2020 3220 2020 3320 2020 3420 2020 3520 2 3 4 5 │ │ │ │ +000502d0: 207c 0a7c 7820 2c20 7820 2c20 7820 2c20 |.|x , x , x , │ │ │ │ +000502e0: 7820 5d29 2078 2050 726f 6a28 2d2d 2d2d x ]) x Proj(---- │ │ │ │ +000502f0: 2d2d 5b79 202c 2079 202c 2079 202c 2079 --[y , y , y , y │ │ │ │ +00050300: 202c 2079 202c 2079 205d 2920 6465 6669 , y , y ]) defi │ │ │ │ +00050310: 6e65 6420 6279 2020 2020 2020 2020 2020 ned by │ │ │ │ +00050320: 207c 0a7c 2031 2020 2032 2020 2033 2020 |.| 1 2 3 │ │ │ │ +00050330: 2034 2020 2020 2020 2020 2020 3139 3031 4 1901 │ │ │ │ +00050340: 3831 2020 3020 2020 3120 2020 3220 2020 81 0 1 2 │ │ │ │ +00050350: 3320 2020 3420 2020 3520 2020 2020 2020 3 4 5 │ │ │ │ 00050360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050370: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000503c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000503c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000503d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000503f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050460: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000504b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000504b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000504c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000504f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050500: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050500: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050550: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000505a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000505a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000505b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000505e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000505f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000505f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050640: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050690: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000506a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000506d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000506e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000506e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000506f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050780: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000507d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000507d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000507e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000507f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050820: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050870: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000508c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000508c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000508d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000508f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050910: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050910: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050960: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000509b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000509b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000509c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000509f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050a00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050a50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050aa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050aa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050af0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050af0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050b40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050b90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050b90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050be0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050c30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050c80: 2020 2020 2020 207c 0a7c 7920 2c20 7920 |.|y , y │ │ │ │ -00050c90: 2c20 7920 2c20 7920 2c20 7920 5d29 2064 , y , y , y ]) d │ │ │ │ -00050ca0: 6566 696e 6564 2062 7920 2020 2020 2020 efined by │ │ │ │ +00050c80: 207c 0a7c 7920 2c20 7920 2c20 7920 2c20 |.|y , y , y , │ │ │ │ +00050c90: 7920 2c20 7920 5d29 2064 6566 696e 6564 y , y ]) defined │ │ │ │ +00050ca0: 2062 7920 2020 2020 2020 2020 2020 2020 by │ │ │ │ 00050cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050cd0: 2020 2020 2020 207c 0a7c 2031 2020 2032 |.| 1 2 │ │ │ │ -00050ce0: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ +00050cd0: 207c 0a7c 2031 2020 2032 2020 2033 2020 |.| 1 2 3 │ │ │ │ +00050ce0: 2034 2020 2035 2020 2020 2020 2020 2020 4 5 │ │ │ │ 00050cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050d20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050d70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050d70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050dc0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050dc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050e10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050e10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050e60: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050e60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050eb0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050eb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050f00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050f50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050f50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050fa0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050fa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00050fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00050fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00050ff0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00050ff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051040: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051040: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051090: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051090: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000510a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000510d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000510e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000510e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000510f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051130: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051180: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000511d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000511d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000511e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000511f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051220: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051220: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051270: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000512c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000512c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000512d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000512f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051310: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051360: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000513b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000513b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000513c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000513f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051400: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051400: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051450: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000514a0: 2020 2020 2020 207c 0a7c 7261 7469 6f6e |.|ration │ │ │ │ -000514b0: 616c 206d 6170 2066 726f 6d20 342d 6469 al map from 4-di │ │ │ │ -000514c0: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ -000514d0: 6965 7479 206f 6620 5050 5e34 2078 2050 iety of PP^4 x P │ │ │ │ -000514e0: 505e 3520 746f 2068 7970 6572 7375 7266 P^5 to hypersurf │ │ │ │ -000514f0: 6163 6520 696e 207c 0a7c 2d2d 2d2d 2d2d ace in |.|------ │ │ │ │ +000514a0: 207c 0a7c 7261 7469 6f6e 616c 206d 6170 |.|rational map │ │ │ │ +000514b0: 2066 726f 6d20 342d 6469 6d65 6e73 696f from 4-dimensio │ │ │ │ +000514c0: 6e61 6c20 7375 6276 6172 6965 7479 206f nal subvariety o │ │ │ │ +000514d0: 6620 5050 5e34 2078 2050 505e 3520 746f f PP^4 x PP^5 to │ │ │ │ +000514e0: 2068 7970 6572 7375 7266 6163 6520 696e hypersurface in │ │ │ │ +000514f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00051500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051540: 2d2d 2d2d 2d2d 2d7c 0a7c 5050 5e35 2920 -------|.|PP^5) │ │ │ │ +00051540: 2d7c 0a7c 5050 5e35 2920 2020 2020 2020 -|.|PP^5) │ │ │ │ 00051550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051590: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00051590: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000515a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000515b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000515c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000515d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000515e0: 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a 2061 -------+.|i6 : a │ │ │ │ -000515f0: 7373 6572 7428 7031 202a 2070 6869 203d ssert(p1 * phi = │ │ │ │ -00051600: 3d20 7032 2061 6e64 2070 3220 2a20 7068 = p2 and p2 * ph │ │ │ │ -00051610: 695e 2d31 203d 3d20 7031 2920 2020 2020 i^-1 == p1) │ │ │ │ +000515e0: 2d2b 0a7c 6936 203a 2061 7373 6572 7428 -+.|i6 : assert( │ │ │ │ +000515f0: 7031 202a 2070 6869 203d 3d20 7032 2061 p1 * phi == p2 a │ │ │ │ +00051600: 6e64 2070 3220 2a20 7068 695e 2d31 203d nd p2 * phi^-1 = │ │ │ │ +00051610: 3d20 7031 2920 2020 2020 2020 2020 2020 = p1) │ │ │ │ 00051620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051630: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00051630: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00051640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051680: 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a 2064 -------+.|i7 : d │ │ │ │ -00051690: 6573 6372 6962 6520 7032 2020 2020 2020 escribe p2 │ │ │ │ +00051680: 2d2b 0a7c 6937 203a 2064 6573 6372 6962 -+.|i7 : describ │ │ │ │ +00051690: 6520 7032 2020 2020 2020 2020 2020 2020 e p2 │ │ │ │ 000516a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000516d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000516d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000516e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000516f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051720: 2020 2020 2020 207c 0a7c 6f37 203d 2072 |.|o7 = r │ │ │ │ -00051730: 6174 696f 6e61 6c20 6d61 7020 6465 6669 ational map defi │ │ │ │ -00051740: 6e65 6420 6279 206d 756c 7469 666f 726d ned by multiform │ │ │ │ -00051750: 7320 6f66 2064 6567 7265 6520 7b30 2c20 s of degree {0, │ │ │ │ -00051760: 317d 2020 2020 2020 2020 2020 2020 2020 1} │ │ │ │ -00051770: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -00051780: 6f75 7263 6520 7661 7269 6574 793a 2034 ource variety: 4 │ │ │ │ -00051790: 2d64 696d 656e 7369 6f6e 616c 2073 7562 -dimensional sub │ │ │ │ -000517a0: 7661 7269 6574 7920 6f66 2050 505e 3420 variety of PP^4 │ │ │ │ -000517b0: 7820 5050 5e35 2063 7574 206f 7574 2062 x PP^5 cut out b │ │ │ │ -000517c0: 7920 3920 2020 207c 0a7c 2020 2020 2074 y 9 |.| t │ │ │ │ -000517d0: 6172 6765 7420 7661 7269 6574 793a 2073 arget variety: s │ │ │ │ -000517e0: 6d6f 6f74 6820 7175 6164 7269 6320 6879 mooth quadric hy │ │ │ │ -000517f0: 7065 7273 7572 6661 6365 2069 6e20 5050 persurface in PP │ │ │ │ -00051800: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ -00051810: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -00051820: 6f6d 696e 616e 6365 3a20 7472 7565 2020 ominance: true │ │ │ │ +00051720: 207c 0a7c 6f37 203d 2072 6174 696f 6e61 |.|o7 = rationa │ │ │ │ +00051730: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ +00051740: 206d 756c 7469 666f 726d 7320 6f66 2064 multiforms of d │ │ │ │ +00051750: 6567 7265 6520 7b30 2c20 317d 2020 2020 egree {0, 1} │ │ │ │ +00051760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00051770: 207c 0a7c 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ +00051780: 7661 7269 6574 793a 2034 2d64 696d 656e variety: 4-dimen │ │ │ │ +00051790: 7369 6f6e 616c 2073 7562 7661 7269 6574 sional subvariet │ │ │ │ +000517a0: 7920 6f66 2050 505e 3420 7820 5050 5e35 y of PP^4 x PP^5 │ │ │ │ +000517b0: 2063 7574 206f 7574 2062 7920 3920 2020 cut out by 9 │ │ │ │ +000517c0: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ +000517d0: 7661 7269 6574 793a 2073 6d6f 6f74 6820 variety: smooth │ │ │ │ +000517e0: 7175 6164 7269 6320 6879 7065 7273 7572 quadric hypersur │ │ │ │ +000517f0: 6661 6365 2069 6e20 5050 5e35 2020 2020 face in PP^5 │ │ │ │ +00051800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00051810: 207c 0a7c 2020 2020 2064 6f6d 696e 616e |.| dominan │ │ │ │ +00051820: 6365 3a20 7472 7565 2020 2020 2020 2020 ce: true │ │ │ │ 00051830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051860: 2020 2020 2020 207c 0a7c 2020 2020 2063 |.| c │ │ │ │ -00051870: 6f65 6666 6963 6965 6e74 2072 696e 673a oefficient ring: │ │ │ │ -00051880: 205a 5a2f 3139 3031 3831 2020 2020 2020 ZZ/190181 │ │ │ │ +00051860: 207c 0a7c 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ +00051870: 6965 6e74 2072 696e 673a 205a 5a2f 3139 ient ring: ZZ/19 │ │ │ │ +00051880: 3031 3831 2020 2020 2020 2020 2020 2020 0181 │ │ │ │ 00051890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000518a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000518b0: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +000518b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000518c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000518d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000518e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000518f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051900: 2d2d 2d2d 2d2d 2d7c 0a7c 6879 7065 7273 -------|.|hypers │ │ │ │ -00051910: 7572 6661 6365 7320 6f66 2064 6567 7265 urfaces of degre │ │ │ │ -00051920: 6573 2028 7b30 2c20 327d 2c7b 312c 2031 es ({0, 2},{1, 1 │ │ │ │ -00051930: 7d2c 7b31 2c20 317d 2c7b 312c 2031 7d2c },{1, 1},{1, 1}, │ │ │ │ -00051940: 7b31 2c20 317d 2c7b 312c 2031 7d2c 7b31 {1, 1},{1, 1},{1 │ │ │ │ -00051950: 2c20 2020 2020 207c 0a7c 2d2d 2d2d 2d2d , |.|------ │ │ │ │ +00051900: 2d7c 0a7c 6879 7065 7273 7572 6661 6365 -|.|hypersurface │ │ │ │ +00051910: 7320 6f66 2064 6567 7265 6573 2028 7b30 s of degrees ({0 │ │ │ │ +00051920: 2c20 327d 2c7b 312c 2031 7d2c 7b31 2c20 , 2},{1, 1},{1, │ │ │ │ +00051930: 317d 2c7b 312c 2031 7d2c 7b31 2c20 317d 1},{1, 1},{1, 1} │ │ │ │ +00051940: 2c7b 312c 2031 7d2c 7b31 2c20 2020 2020 ,{1, 1},{1, │ │ │ │ +00051950: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 00051960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000519a0: 2d2d 2d2d 2d2d 2d7c 0a7c 317d 2c7b 312c -------|.|1},{1, │ │ │ │ -000519b0: 2031 7d2c 7b31 2c20 317d 2920 2020 2020 1},{1, 1}) │ │ │ │ +000519a0: 2d7c 0a7c 317d 2c7b 312c 2031 7d2c 7b31 -|.|1},{1, 1},{1 │ │ │ │ +000519b0: 2c20 317d 2920 2020 2020 2020 2020 2020 , 1}) │ │ │ │ 000519c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000519e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000519f0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000519f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00051a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051a40: 2d2d 2d2d 2d2d 2d2b 0a7c 6938 203a 2070 -------+.|i8 : p │ │ │ │ -00051a50: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -00051a60: 2070 3220 2020 2020 2020 2020 2020 2020 p2 │ │ │ │ +00051a40: 2d2b 0a7c 6938 203a 2070 726f 6a65 6374 -+.|i8 : project │ │ │ │ +00051a50: 6976 6544 6567 7265 6573 2070 3220 2020 iveDegrees p2 │ │ │ │ +00051a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051a90: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051a90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ae0: 2020 2020 2020 207c 0a7c 6f38 203d 207b |.|o8 = { │ │ │ │ -00051af0: 3531 2c20 3238 2c20 3134 2c20 362c 2032 51, 28, 14, 6, 2 │ │ │ │ -00051b00: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00051ae0: 207c 0a7c 6f38 203d 207b 3531 2c20 3238 |.|o8 = {51, 28 │ │ │ │ +00051af0: 2c20 3134 2c20 362c 2032 7d20 2020 2020 , 14, 6, 2} │ │ │ │ +00051b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00051b30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00051b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051b80: 2020 2020 2020 207c 0a7c 6f38 203a 204c |.|o8 : L │ │ │ │ -00051b90: 6973 7420 2020 2020 2020 2020 2020 2020 ist │ │ │ │ +00051b80: 207c 0a7c 6f38 203a 204c 6973 7420 2020 |.|o8 : List │ │ │ │ +00051b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051bd0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +00051bd0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 00051be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051c20: 2d2d 2d2d 2d2d 2d2b 0a0a 5768 656e 2074 -------+..When t │ │ │ │ -00051c30: 6865 2073 6f75 7263 6520 6f66 2074 6865 he source of the │ │ │ │ -00051c40: 2072 6174 696f 6e61 6c20 6d61 7020 6973 rational map is │ │ │ │ -00051c50: 2061 206d 756c 7469 2d70 726f 6a65 6374 a multi-project │ │ │ │ -00051c60: 6976 6520 7661 7269 6574 792c 2074 6865 ive variety, the │ │ │ │ -00051c70: 206d 6574 686f 640a 7265 7475 726e 7320 method.returns │ │ │ │ -00051c80: 616c 6c20 7468 6520 7072 6f6a 6563 7469 all the projecti │ │ │ │ -00051c90: 6f6e 732e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ons...+--------- │ │ │ │ +00051c20: 2d2b 0a0a 5768 656e 2074 6865 2073 6f75 -+..When the sou │ │ │ │ +00051c30: 7263 6520 6f66 2074 6865 2072 6174 696f rce of the ratio │ │ │ │ +00051c40: 6e61 6c20 6d61 7020 6973 2061 206d 756c nal map is a mul │ │ │ │ +00051c50: 7469 2d70 726f 6a65 6374 6976 6520 7661 ti-projective va │ │ │ │ +00051c60: 7269 6574 792c 2074 6865 206d 6574 686f riety, the metho │ │ │ │ +00051c70: 640a 7265 7475 726e 7320 616c 6c20 7468 d.returns all th │ │ │ │ +00051c80: 6520 7072 6f6a 6563 7469 6f6e 732e 0a0a e projections... │ │ │ │ +00051c90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00051ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051ce0: 2d2d 2d2d 2b0a 7c69 3920 3a20 7469 6d65 ----+.|i9 : time │ │ │ │ -00051cf0: 2067 203d 2067 7261 7068 2070 323b 2020 g = graph p2; │ │ │ │ +00051cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00051ce0: 7c69 3920 3a20 7469 6d65 2067 203d 2067 |i9 : time g = g │ │ │ │ +00051cf0: 7261 7068 2070 323b 2020 2020 2020 2020 raph p2; │ │ │ │ 00051d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d30: 2020 2020 7c0a 7c20 2d2d 2075 7365 6420 |.| -- used │ │ │ │ -00051d40: 302e 3033 3137 3136 3573 2028 6370 7529 0.0317165s (cpu) │ │ │ │ -00051d50: 3b20 302e 3033 3132 3632 3473 2028 7468 ; 0.0312624s (th │ │ │ │ -00051d60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ -00051d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051d80: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00051d20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00051d30: 7c20 2d2d 2075 7365 6420 302e 3039 3737 | -- used 0.0977 │ │ │ │ +00051d40: 3432 3373 2028 6370 7529 3b20 302e 3034 423s (cpu); 0.04 │ │ │ │ +00051d50: 3437 3830 3473 2028 7468 7265 6164 293b 47804s (thread); │ │ │ │ +00051d60: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ +00051d70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00051d80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00051d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051dd0: 2d2d 2d2d 2b0a 7c69 3130 203a 2067 5f30 ----+.|i10 : g_0 │ │ │ │ -00051de0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00051dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00051dd0: 7c69 3130 203a 2067 5f30 3b20 2020 2020 |i10 : g_0; │ │ │ │ +00051de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00051e10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00051e20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00051e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051e70: 2020 2020 7c0a 7c6f 3130 203a 204d 756c |.|o10 : Mul │ │ │ │ -00051e80: 7469 686f 6d6f 6765 6e65 6f75 7352 6174 tihomogeneousRat │ │ │ │ -00051e90: 696f 6e61 6c4d 6170 2028 7261 7469 6f6e ionalMap (ration │ │ │ │ -00051ea0: 616c 206d 6170 2066 726f 6d20 342d 6469 al map from 4-di │ │ │ │ -00051eb0: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ -00051ec0: 6965 7479 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d iety|.|--------- │ │ │ │ +00051e60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00051e70: 7c6f 3130 203a 204d 756c 7469 686f 6d6f |o10 : Multihomo │ │ │ │ +00051e80: 6765 6e65 6f75 7352 6174 696f 6e61 6c4d geneousRationalM │ │ │ │ +00051e90: 6170 2028 7261 7469 6f6e 616c 206d 6170 ap (rational map │ │ │ │ +00051ea0: 2066 726f 6d20 342d 6469 6d65 6e73 696f from 4-dimensio │ │ │ │ +00051eb0: 6e61 6c20 7375 6276 6172 6965 7479 7c0a nal subvariety|. │ │ │ │ +00051ec0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00051ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051f10: 2d2d 2d2d 7c0a 7c6f 6620 5050 5e34 2078 ----|.|of PP^4 x │ │ │ │ -00051f20: 2050 505e 3520 7820 5050 5e35 2074 6f20 PP^5 x PP^5 to │ │ │ │ -00051f30: 5050 5e34 2920 2020 2020 2020 2020 2020 PP^4) │ │ │ │ +00051f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00051f10: 7c6f 6620 5050 5e34 2078 2050 505e 3520 |of PP^4 x PP^5 │ │ │ │ +00051f20: 7820 5050 5e35 2074 6f20 5050 5e34 2920 x PP^5 to PP^4) │ │ │ │ +00051f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051f60: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00051f50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00051f60: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00051f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00051f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00051fb0: 2d2d 2d2d 2b0a 7c69 3131 203a 2067 5f31 ----+.|i11 : g_1 │ │ │ │ -00051fc0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00051fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00051fb0: 7c69 3131 203a 2067 5f31 3b20 2020 2020 |i11 : g_1; │ │ │ │ +00051fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00051fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00051ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052000: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00051ff0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052000: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00052010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052050: 2020 2020 7c0a 7c6f 3131 203a 204d 756c |.|o11 : Mul │ │ │ │ -00052060: 7469 686f 6d6f 6765 6e65 6f75 7352 6174 tihomogeneousRat │ │ │ │ -00052070: 696f 6e61 6c4d 6170 2028 7261 7469 6f6e ionalMap (ration │ │ │ │ -00052080: 616c 206d 6170 2066 726f 6d20 342d 6469 al map from 4-di │ │ │ │ -00052090: 6d65 6e73 696f 6e61 6c20 7375 6276 6172 mensional subvar │ │ │ │ -000520a0: 6965 7479 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d iety|.|--------- │ │ │ │ +00052040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052050: 7c6f 3131 203a 204d 756c 7469 686f 6d6f |o11 : Multihomo │ │ │ │ +00052060: 6765 6e65 6f75 7352 6174 696f 6e61 6c4d geneousRationalM │ │ │ │ +00052070: 6170 2028 7261 7469 6f6e 616c 206d 6170 ap (rational map │ │ │ │ +00052080: 2066 726f 6d20 342d 6469 6d65 6e73 696f from 4-dimensio │ │ │ │ +00052090: 6e61 6c20 7375 6276 6172 6965 7479 7c0a nal subvariety|. │ │ │ │ +000520a0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 000520b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000520c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000520d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000520e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000520f0: 2d2d 2d2d 7c0a 7c6f 6620 5050 5e34 2078 ----|.|of PP^4 x │ │ │ │ -00052100: 2050 505e 3520 7820 5050 5e35 2074 6f20 PP^5 x PP^5 to │ │ │ │ -00052110: 5050 5e35 2920 2020 2020 2020 2020 2020 PP^5) │ │ │ │ +000520e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000520f0: 7c6f 6620 5050 5e34 2078 2050 505e 3520 |of PP^4 x PP^5 │ │ │ │ +00052100: 7820 5050 5e35 2074 6f20 5050 5e35 2920 x PP^5 to PP^5) │ │ │ │ +00052110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052140: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00052130: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052140: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00052150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052190: 2d2d 2d2d 2b0a 7c69 3132 203a 2067 5f32 ----+.|i12 : g_2 │ │ │ │ -000521a0: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00052180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00052190: 7c69 3132 203a 2067 5f32 3b20 2020 2020 |i12 : g_2; │ │ │ │ +000521a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000521c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000521e0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000521d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000521e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000521f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00052210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052230: 2020 2020 7c0a 7c6f 3132 203a 204d 756c |.|o12 : Mul │ │ │ │ -00052240: 7469 686f 6d6f 6765 6e65 6f75 7352 6174 tihomogeneousRat │ │ │ │ -00052250: 696f 6e61 6c4d 6170 2028 646f 6d69 6e61 ionalMap (domina │ │ │ │ -00052260: 6e74 2072 6174 696f 6e61 6c20 6d61 7020 nt rational map │ │ │ │ -00052270: 6672 6f6d 2034 2d64 696d 656e 7369 6f6e from 4-dimension │ │ │ │ -00052280: 616c 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d al |.|--------- │ │ │ │ +00052220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052230: 7c6f 3132 203a 204d 756c 7469 686f 6d6f |o12 : Multihomo │ │ │ │ +00052240: 6765 6e65 6f75 7352 6174 696f 6e61 6c4d geneousRationalM │ │ │ │ +00052250: 6170 2028 646f 6d69 6e61 6e74 2072 6174 ap (dominant rat │ │ │ │ +00052260: 696f 6e61 6c20 6d61 7020 6672 6f6d 2034 ional map from 4 │ │ │ │ +00052270: 2d64 696d 656e 7369 6f6e 616c 2020 7c0a -dimensional |. │ │ │ │ +00052280: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00052290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000522a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000522b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000522c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000522d0: 2d2d 2d2d 7c0a 7c73 7562 7661 7269 6574 ----|.|subvariet │ │ │ │ -000522e0: 7920 6f66 2050 505e 3420 7820 5050 5e35 y of PP^4 x PP^5 │ │ │ │ -000522f0: 2078 2050 505e 3520 746f 2068 7970 6572 x PP^5 to hyper │ │ │ │ -00052300: 7375 7266 6163 6520 696e 2050 505e 3529 surface in PP^5) │ │ │ │ -00052310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052320: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000522c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000522d0: 7c73 7562 7661 7269 6574 7920 6f66 2050 |subvariety of P │ │ │ │ +000522e0: 505e 3420 7820 5050 5e35 2078 2050 505e P^4 x PP^5 x PP^ │ │ │ │ +000522f0: 3520 746f 2068 7970 6572 7375 7266 6163 5 to hypersurfac │ │ │ │ +00052300: 6520 696e 2050 505e 3529 2020 2020 2020 e in PP^5) │ │ │ │ +00052310: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052320: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00052330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052370: 2d2d 2d2d 2b0a 7c69 3133 203a 2064 6573 ----+.|i13 : des │ │ │ │ -00052380: 6372 6962 6520 675f 3020 2020 2020 2020 cribe g_0 │ │ │ │ +00052360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00052370: 7c69 3133 203a 2064 6573 6372 6962 6520 |i13 : describe │ │ │ │ +00052380: 675f 3020 2020 2020 2020 2020 2020 2020 g_0 │ │ │ │ 00052390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000523b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000523c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000523b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000523c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000523d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000523f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052410: 2020 2020 7c0a 7c6f 3133 203d 2072 6174 |.|o13 = rat │ │ │ │ -00052420: 696f 6e61 6c20 6d61 7020 6465 6669 6e65 ional map define │ │ │ │ -00052430: 6420 6279 206d 756c 7469 666f 726d 7320 d by multiforms │ │ │ │ -00052440: 6f66 2064 6567 7265 6520 7b31 2c20 302c of degree {1, 0, │ │ │ │ -00052450: 2030 7d20 2020 2020 2020 2020 2020 2020 0} │ │ │ │ -00052460: 2020 2020 7c0a 7c20 2020 2020 2073 6f75 |.| sou │ │ │ │ -00052470: 7263 6520 7661 7269 6574 793a 2034 2d64 rce variety: 4-d │ │ │ │ -00052480: 696d 656e 7369 6f6e 616c 2073 7562 7661 imensional subva │ │ │ │ -00052490: 7269 6574 7920 6f66 2050 505e 3420 7820 riety of PP^4 x │ │ │ │ -000524a0: 5050 5e35 2078 2050 505e 3520 6375 7420 PP^5 x PP^5 cut │ │ │ │ -000524b0: 6f75 7420 7c0a 7c20 2020 2020 2074 6172 out |.| tar │ │ │ │ -000524c0: 6765 7420 7661 7269 6574 793a 2050 505e get variety: PP^ │ │ │ │ -000524d0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00052400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052410: 7c6f 3133 203d 2072 6174 696f 6e61 6c20 |o13 = rational │ │ │ │ +00052420: 6d61 7020 6465 6669 6e65 6420 6279 206d map defined by m │ │ │ │ +00052430: 756c 7469 666f 726d 7320 6f66 2064 6567 ultiforms of deg │ │ │ │ +00052440: 7265 6520 7b31 2c20 302c 2030 7d20 2020 ree {1, 0, 0} │ │ │ │ +00052450: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052460: 7c20 2020 2020 2073 6f75 7263 6520 7661 | source va │ │ │ │ +00052470: 7269 6574 793a 2034 2d64 696d 656e 7369 riety: 4-dimensi │ │ │ │ +00052480: 6f6e 616c 2073 7562 7661 7269 6574 7920 onal subvariety │ │ │ │ +00052490: 6f66 2050 505e 3420 7820 5050 5e35 2078 of PP^4 x PP^5 x │ │ │ │ +000524a0: 2050 505e 3520 6375 7420 6f75 7420 7c0a PP^5 cut out |. │ │ │ │ +000524b0: 7c20 2020 2020 2074 6172 6765 7420 7661 | target va │ │ │ │ +000524c0: 7269 6574 793a 2050 505e 3420 2020 2020 riety: PP^4 │ │ │ │ +000524d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000524e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000524f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052500: 2020 2020 7c0a 7c20 2020 2020 2063 6f65 |.| coe │ │ │ │ -00052510: 6666 6963 6965 6e74 2072 696e 673a 205a fficient ring: Z │ │ │ │ -00052520: 5a2f 3139 3031 3831 2020 2020 2020 2020 Z/190181 │ │ │ │ +000524f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052500: 7c20 2020 2020 2063 6f65 6666 6963 6965 | coefficie │ │ │ │ +00052510: 6e74 2072 696e 673a 205a 5a2f 3139 3031 nt ring: ZZ/1901 │ │ │ │ +00052520: 3831 2020 2020 2020 2020 2020 2020 2020 81 │ │ │ │ 00052530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00052550: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00052540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00052550: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00052560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000525a0: 2d2d 2d2d 7c0a 7c62 7920 3334 2068 7970 ----|.|by 34 hyp │ │ │ │ -000525b0: 6572 7375 7266 6163 6573 206f 6620 6465 ersurfaces of de │ │ │ │ -000525c0: 6772 6565 7320 287b 302c 2031 2c20 317d grees ({0, 1, 1} │ │ │ │ -000525d0: 2c7b 302c 2030 2c20 327d 2c7b 302c 2031 ,{0, 0, 2},{0, 1 │ │ │ │ -000525e0: 2c20 317d 2c7b 302c 2031 2c20 317d 2c7b , 1},{0, 1, 1},{ │ │ │ │ -000525f0: 302c 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 0, |.|--------- │ │ │ │ +00052590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000525a0: 7c62 7920 3334 2068 7970 6572 7375 7266 |by 34 hypersurf │ │ │ │ +000525b0: 6163 6573 206f 6620 6465 6772 6565 7320 aces of degrees │ │ │ │ +000525c0: 287b 302c 2031 2c20 317d 2c7b 302c 2030 ({0, 1, 1},{0, 0 │ │ │ │ +000525d0: 2c20 327d 2c7b 302c 2031 2c20 317d 2c7b , 2},{0, 1, 1},{ │ │ │ │ +000525e0: 302c 2031 2c20 317d 2c7b 302c 2020 7c0a 0, 1, 1},{0, |. │ │ │ │ +000525f0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00052600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052640: 2d2d 2d2d 7c0a 7c31 2c20 317d 2c7b 302c ----|.|1, 1},{0, │ │ │ │ -00052650: 2031 2c20 317d 2c7b 302c 2031 2c20 317d 1, 1},{0, 1, 1} │ │ │ │ -00052660: 2c7b 302c 2031 2c20 317d 2c7b 312c 2030 ,{0, 1, 1},{1, 0 │ │ │ │ -00052670: 2c20 317d 2c7b 312c 2030 2c20 317d 2c7b , 1},{1, 0, 1},{ │ │ │ │ -00052680: 302c 2031 2c20 317d 2c7b 302c 2031 2c20 0, 1, 1},{0, 1, │ │ │ │ -00052690: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00052630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00052640: 7c31 2c20 317d 2c7b 302c 2031 2c20 317d |1, 1},{0, 1, 1} │ │ │ │ +00052650: 2c7b 302c 2031 2c20 317d 2c7b 302c 2031 ,{0, 1, 1},{0, 1 │ │ │ │ +00052660: 2c20 317d 2c7b 312c 2030 2c20 317d 2c7b , 1},{1, 0, 1},{ │ │ │ │ +00052670: 312c 2030 2c20 317d 2c7b 302c 2031 2c20 1, 0, 1},{0, 1, │ │ │ │ +00052680: 317d 2c7b 302c 2031 2c20 2020 2020 7c0a 1},{0, 1, |. │ │ │ │ +00052690: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 000526a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000526b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000526c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000526d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000526e0: 2d2d 2d2d 7c0a 7c31 7d2c 7b30 2c20 312c ----|.|1},{0, 1, │ │ │ │ -000526f0: 2031 7d2c 7b30 2c20 312c 2031 7d2c 7b31 1},{0, 1, 1},{1 │ │ │ │ -00052700: 2c20 302c 2031 7d2c 7b31 2c20 302c 2031 , 0, 1},{1, 0, 1 │ │ │ │ -00052710: 7d2c 7b31 2c20 302c 2031 7d2c 7b30 2c20 },{1, 0, 1},{0, │ │ │ │ -00052720: 312c 2031 7d2c 7b30 2c20 312c 2031 7d2c 1, 1},{0, 1, 1}, │ │ │ │ -00052730: 7b30 2c20 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d {0, |.|--------- │ │ │ │ +000526d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +000526e0: 7c31 7d2c 7b30 2c20 312c 2031 7d2c 7b30 |1},{0, 1, 1},{0 │ │ │ │ +000526f0: 2c20 312c 2031 7d2c 7b31 2c20 302c 2031 , 1, 1},{1, 0, 1 │ │ │ │ +00052700: 7d2c 7b31 2c20 302c 2031 7d2c 7b31 2c20 },{1, 0, 1},{1, │ │ │ │ +00052710: 302c 2031 7d2c 7b30 2c20 312c 2031 7d2c 0, 1},{0, 1, 1}, │ │ │ │ +00052720: 7b30 2c20 312c 2031 7d2c 7b30 2c20 7c0a {0, 1, 1},{0, |. │ │ │ │ +00052730: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 00052740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052780: 2d2d 2d2d 7c0a 7c31 2c20 317d 2c7b 302c ----|.|1, 1},{0, │ │ │ │ -00052790: 2031 2c20 317d 2c7b 302c 2031 2c20 317d 1, 1},{0, 1, 1} │ │ │ │ -000527a0: 2c7b 312c 2030 2c20 317d 2c7b 312c 2030 ,{1, 0, 1},{1, 0 │ │ │ │ -000527b0: 2c20 317d 2c7b 312c 2030 2c20 317d 2c7b , 1},{1, 0, 1},{ │ │ │ │ -000527c0: 302c 2032 2c20 307d 2c7b 312c 2031 2c20 0, 2, 0},{1, 1, │ │ │ │ -000527d0: 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d |.|--------- │ │ │ │ +00052770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00052780: 7c31 2c20 317d 2c7b 302c 2031 2c20 317d |1, 1},{0, 1, 1} │ │ │ │ +00052790: 2c7b 302c 2031 2c20 317d 2c7b 312c 2030 ,{0, 1, 1},{1, 0 │ │ │ │ +000527a0: 2c20 317d 2c7b 312c 2030 2c20 317d 2c7b , 1},{1, 0, 1},{ │ │ │ │ +000527b0: 312c 2030 2c20 317d 2c7b 302c 2032 2c20 1, 0, 1},{0, 2, │ │ │ │ +000527c0: 307d 2c7b 312c 2031 2c20 2020 2020 7c0a 0},{1, 1, |. │ │ │ │ +000527d0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ 000527e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000527f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052820: 2d2d 2d2d 7c0a 7c30 7d2c 7b31 2c20 312c ----|.|0},{1, 1, │ │ │ │ -00052830: 2030 7d2c 7b31 2c20 312c 2030 7d2c 7b31 0},{1, 1, 0},{1 │ │ │ │ -00052840: 2c20 312c 2030 7d2c 7b31 2c20 312c 2030 , 1, 0},{1, 1, 0 │ │ │ │ -00052850: 7d2c 7b31 2c20 312c 2030 7d2c 7b31 2c20 },{1, 1, 0},{1, │ │ │ │ -00052860: 312c 2030 7d2c 7b31 2c20 312c 2030 7d29 1, 0},{1, 1, 0}) │ │ │ │ -00052870: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +00052810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ +00052820: 7c30 7d2c 7b31 2c20 312c 2030 7d2c 7b31 |0},{1, 1, 0},{1 │ │ │ │ +00052830: 2c20 312c 2030 7d2c 7b31 2c20 312c 2030 , 1, 0},{1, 1, 0 │ │ │ │ +00052840: 7d2c 7b31 2c20 312c 2030 7d2c 7b31 2c20 },{1, 1, 0},{1, │ │ │ │ +00052850: 312c 2030 7d2c 7b31 2c20 312c 2030 7d2c 1, 0},{1, 1, 0}, │ │ │ │ +00052860: 7b31 2c20 312c 2030 7d29 2020 2020 7c0a {1, 1, 0}) |. │ │ │ │ +00052870: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00052880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000528a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000528b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000528c0: 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 6f0a ----+..See also. │ │ │ │ -000528d0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -000528e0: 6f74 6520 6772 6170 6828 5269 6e67 4d61 ote graph(RingMa │ │ │ │ -000528f0: 7029 3a20 6772 6170 685f 6c70 5269 6e67 p): graph_lpRing │ │ │ │ -00052900: 4d61 705f 7270 2c20 2d2d 2063 6c6f 7375 Map_rp, -- closu │ │ │ │ -00052910: 7265 206f 6620 7468 6520 6772 6170 6820 re of the graph │ │ │ │ -00052920: 6f66 2061 0a20 2020 2072 6174 696f 6e61 of a. rationa │ │ │ │ -00052930: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -00052940: 6772 6170 6849 6465 616c 3a20 284d 6163 graphIdeal: (Mac │ │ │ │ -00052950: 6175 6c61 7932 446f 6329 6772 6170 6849 aulay2Doc)graphI │ │ │ │ -00052960: 6465 616c 5f6c 7052 696e 674d 6170 5f72 deal_lpRingMap_r │ │ │ │ -00052970: 702c 202d 2d20 7468 6520 6964 6561 6c20 p, -- the ideal │ │ │ │ -00052980: 6f66 0a20 2020 2074 6865 2067 7261 7068 of. the graph │ │ │ │ -00052990: 206f 6620 7468 6520 7265 6775 6c61 7220 of the regular │ │ │ │ -000529a0: 6d61 7020 636f 7272 6573 706f 6e64 696e map correspondin │ │ │ │ -000529b0: 6720 746f 2061 2072 696e 6720 6d61 700a g to a ring map. │ │ │ │ -000529c0: 0a57 6179 7320 746f 2075 7365 2067 7261 .Ways to use gra │ │ │ │ -000529d0: 7068 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ph:.============ │ │ │ │ -000529e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2267 7261 ======.. * "gra │ │ │ │ -000529f0: 7068 2852 6174 696f 6e61 6c4d 6170 2922 ph(RationalMap)" │ │ │ │ -00052a00: 0a20 202a 202a 6e6f 7465 2067 7261 7068 . * *note graph │ │ │ │ -00052a10: 2852 696e 674d 6170 293a 2067 7261 7068 (RingMap): graph │ │ │ │ -00052a20: 5f6c 7052 696e 674d 6170 5f72 702c 202d _lpRingMap_rp, - │ │ │ │ -00052a30: 2d20 636c 6f73 7572 6520 6f66 2074 6865 - closure of the │ │ │ │ -00052a40: 2067 7261 7068 206f 6620 610a 2020 2020 graph of a. │ │ │ │ -00052a50: 7261 7469 6f6e 616c 206d 6170 0a0a 466f rational map..Fo │ │ │ │ -00052a60: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00052a70: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00052a80: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00052a90: 2a6e 6f74 6520 6772 6170 683a 2067 7261 *note graph: gra │ │ │ │ -00052aa0: 7068 2c20 6973 2061 202a 6e6f 7465 206d ph, is a *note m │ │ │ │ -00052ab0: 6574 686f 6420 6675 6e63 7469 6f6e 2077 ethod function w │ │ │ │ -00052ac0: 6974 6820 6f70 7469 6f6e 733a 0a28 4d61 ith options:.(Ma │ │ │ │ -00052ad0: 6361 756c 6179 3244 6f63 294d 6574 686f caulay2Doc)Metho │ │ │ │ -00052ae0: 6446 756e 6374 696f 6e57 6974 684f 7074 dFunctionWithOpt │ │ │ │ -00052af0: 696f 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d ions,...-------- │ │ │ │ +000528b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000528c0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +000528d0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6772 ==.. * *note gr │ │ │ │ +000528e0: 6170 6828 5269 6e67 4d61 7029 3a20 6772 aph(RingMap): gr │ │ │ │ +000528f0: 6170 685f 6c70 5269 6e67 4d61 705f 7270 aph_lpRingMap_rp │ │ │ │ +00052900: 2c20 2d2d 2063 6c6f 7375 7265 206f 6620 , -- closure of │ │ │ │ +00052910: 7468 6520 6772 6170 6820 6f66 2061 0a20 the graph of a. │ │ │ │ +00052920: 2020 2072 6174 696f 6e61 6c20 6d61 700a rational map. │ │ │ │ +00052930: 2020 2a20 2a6e 6f74 6520 6772 6170 6849 * *note graphI │ │ │ │ +00052940: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ +00052950: 446f 6329 6772 6170 6849 6465 616c 5f6c Doc)graphIdeal_l │ │ │ │ +00052960: 7052 696e 674d 6170 5f72 702c 202d 2d20 pRingMap_rp, -- │ │ │ │ +00052970: 7468 6520 6964 6561 6c20 6f66 0a20 2020 the ideal of. │ │ │ │ +00052980: 2074 6865 2067 7261 7068 206f 6620 7468 the graph of th │ │ │ │ +00052990: 6520 7265 6775 6c61 7220 6d61 7020 636f e regular map co │ │ │ │ +000529a0: 7272 6573 706f 6e64 696e 6720 746f 2061 rresponding to a │ │ │ │ +000529b0: 2072 696e 6720 6d61 700a 0a57 6179 7320 ring map..Ways │ │ │ │ +000529c0: 746f 2075 7365 2067 7261 7068 3a0a 3d3d to use graph:.== │ │ │ │ +000529d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000529e0: 0a0a 2020 2a20 2267 7261 7068 2852 6174 .. * "graph(Rat │ │ │ │ +000529f0: 696f 6e61 6c4d 6170 2922 0a20 202a 202a ionalMap)". * * │ │ │ │ +00052a00: 6e6f 7465 2067 7261 7068 2852 696e 674d note graph(RingM │ │ │ │ +00052a10: 6170 293a 2067 7261 7068 5f6c 7052 696e ap): graph_lpRin │ │ │ │ +00052a20: 674d 6170 5f72 702c 202d 2d20 636c 6f73 gMap_rp, -- clos │ │ │ │ +00052a30: 7572 6520 6f66 2074 6865 2067 7261 7068 ure of the graph │ │ │ │ +00052a40: 206f 6620 610a 2020 2020 7261 7469 6f6e of a. ration │ │ │ │ +00052a50: 616c 206d 6170 0a0a 466f 7220 7468 6520 al map..For the │ │ │ │ +00052a60: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00052a70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00052a80: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00052a90: 6772 6170 683a 2067 7261 7068 2c20 6973 graph: graph, is │ │ │ │ +00052aa0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ +00052ab0: 6675 6e63 7469 6f6e 2077 6974 6820 6f70 function with op │ │ │ │ +00052ac0: 7469 6f6e 733a 0a28 4d61 6361 756c 6179 tions:.(Macaulay │ │ │ │ +00052ad0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ +00052ae0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ +00052af0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ 00052b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052b40: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -00052b50: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -00052b60: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -00052b70: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -00052b80: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00052b90: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00052ba0: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ -00052bb0: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ -00052bc0: 6174 696f 6e2e 6d32 3a32 3533 3a30 2e0a ation.m2:253:0.. │ │ │ │ -00052bd0: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ -00052be0: 696e 666f 2c20 4e6f 6465 3a20 6772 6170 info, Node: grap │ │ │ │ -00052bf0: 685f 6c70 5269 6e67 4d61 705f 7270 2c20 h_lpRingMap_rp, │ │ │ │ -00052c00: 4e65 7874 3a20 6964 6561 6c5f 6c70 5261 Next: ideal_lpRa │ │ │ │ -00052c10: 7469 6f6e 616c 4d61 705f 7270 2c20 5072 tionalMap_rp, Pr │ │ │ │ -00052c20: 6576 3a20 6772 6170 682c 2055 703a 2054 ev: graph, Up: T │ │ │ │ -00052c30: 6f70 0a0a 6772 6170 6828 5269 6e67 4d61 op..graph(RingMa │ │ │ │ -00052c40: 7029 202d 2d20 636c 6f73 7572 6520 6f66 p) -- closure of │ │ │ │ -00052c50: 2074 6865 2067 7261 7068 206f 6620 6120 the graph of a │ │ │ │ -00052c60: 7261 7469 6f6e 616c 206d 6170 0a2a 2a2a rational map.*** │ │ │ │ +00052b40: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +00052b50: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +00052b60: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +00052b70: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +00052b80: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00052b90: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +00052ba0: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ +00052bb0: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ +00052bc0: 6d32 3a32 3533 3a30 2e0a 1f0a 4669 6c65 m2:253:0....File │ │ │ │ +00052bd0: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ +00052be0: 4e6f 6465 3a20 6772 6170 685f 6c70 5269 Node: graph_lpRi │ │ │ │ +00052bf0: 6e67 4d61 705f 7270 2c20 4e65 7874 3a20 ngMap_rp, Next: │ │ │ │ +00052c00: 6964 6561 6c5f 6c70 5261 7469 6f6e 616c ideal_lpRational │ │ │ │ +00052c10: 4d61 705f 7270 2c20 5072 6576 3a20 6772 Map_rp, Prev: gr │ │ │ │ +00052c20: 6170 682c 2055 703a 2054 6f70 0a0a 6772 aph, Up: Top..gr │ │ │ │ +00052c30: 6170 6828 5269 6e67 4d61 7029 202d 2d20 aph(RingMap) -- │ │ │ │ +00052c40: 636c 6f73 7572 6520 6f66 2074 6865 2067 closure of the g │ │ │ │ +00052c50: 7261 7068 206f 6620 6120 7261 7469 6f6e raph of a ration │ │ │ │ +00052c60: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ 00052c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00052c80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00052c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00052ca0: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ -00052cb0: 696f 6e3a 202a 6e6f 7465 2067 7261 7068 ion: *note graph │ │ │ │ -00052cc0: 3a20 6772 6170 682c 0a20 202a 2055 7361 : graph,. * Usa │ │ │ │ -00052cd0: 6765 3a20 0a20 2020 2020 2020 2067 7261 ge: . gra │ │ │ │ -00052ce0: 7068 2070 6869 0a20 202a 2049 6e70 7574 ph phi. * Input │ │ │ │ -00052cf0: 733a 0a20 2020 2020 202a 2070 6869 2c20 s:. * phi, │ │ │ │ -00052d00: 6120 2a6e 6f74 6520 7269 6e67 206d 6170 a *note ring map │ │ │ │ -00052d10: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00052d20: 5269 6e67 4d61 702c 2c20 7265 7072 6573 RingMap,, repres │ │ │ │ -00052d30: 656e 7469 6e67 2061 2072 6174 696f 6e61 enting a rationa │ │ │ │ -00052d40: 6c0a 2020 2020 2020 2020 6d61 7020 245c l. map $\ │ │ │ │ -00052d50: 5068 693a 5820 5c64 6173 6872 6967 6874 Phi:X \dashright │ │ │ │ -00052d60: 6172 726f 7720 5924 0a20 202a 202a 6e6f arrow Y$. * *no │ │ │ │ -00052d70: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ -00052d80: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ -00052d90: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ -00052da0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -00052db0: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ -00052dc0: 202a 6e6f 7465 2042 6c6f 7755 7053 7472 *note BlowUpStr │ │ │ │ -00052dd0: 6174 6567 793a 2042 6c6f 7755 7053 7472 ategy: BlowUpStr │ │ │ │ -00052de0: 6174 6567 792c 203d 3e20 2e2e 2e2c 2064 ategy, => ..., d │ │ │ │ -00052df0: 6566 6175 6c74 2076 616c 7565 0a20 2020 efault value. │ │ │ │ -00052e00: 2020 2020 2022 456c 696d 696e 6174 6522 "Eliminate" │ │ │ │ -00052e10: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ -00052e20: 2020 2020 202a 2061 202a 6e6f 7465 2072 * a *note r │ │ │ │ -00052e30: 696e 6720 6d61 703a 2028 4d61 6361 756c ing map: (Macaul │ │ │ │ -00052e40: 6179 3244 6f63 2952 696e 674d 6170 2c2c ay2Doc)RingMap,, │ │ │ │ -00052e50: 2072 6570 7265 7365 6e74 696e 6720 7468 representing th │ │ │ │ -00052e60: 6520 7072 6f6a 6563 7469 6f6e 0a20 2020 e projection. │ │ │ │ -00052e70: 2020 2020 206f 6e20 7468 6520 6669 7273 on the firs │ │ │ │ -00052e80: 7420 6661 6374 6f72 2024 5c6d 6174 6862 t factor $\mathb │ │ │ │ -00052e90: 667b 4772 6170 687d 285c 5068 6929 205c f{Graph}(\Phi) \ │ │ │ │ -00052ea0: 746f 2058 240a 2020 2020 2020 2a20 6120 to X$. * a │ │ │ │ -00052eb0: 2a6e 6f74 6520 7269 6e67 206d 6170 3a20 *note ring map: │ │ │ │ -00052ec0: 284d 6163 6175 6c61 7932 446f 6329 5269 (Macaulay2Doc)Ri │ │ │ │ -00052ed0: 6e67 4d61 702c 2c20 7265 7072 6573 656e ngMap,, represen │ │ │ │ -00052ee0: 7469 6e67 2074 6865 2070 726f 6a65 6374 ting the project │ │ │ │ -00052ef0: 696f 6e0a 2020 2020 2020 2020 6f6e 2074 ion. on t │ │ │ │ -00052f00: 6865 2073 6563 6f6e 6420 6661 6374 6f72 he second factor │ │ │ │ -00052f10: 2024 5c6d 6174 6862 667b 4772 6170 687d $\mathbf{Graph} │ │ │ │ -00052f20: 285c 5068 6929 205c 746f 2059 240a 0a44 (\Phi) \to Y$..D │ │ │ │ -00052f30: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -00052f40: 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d ======..+------- │ │ │ │ +00052c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00052ca0: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ +00052cb0: 6e6f 7465 2067 7261 7068 3a20 6772 6170 note graph: grap │ │ │ │ +00052cc0: 682c 0a20 202a 2055 7361 6765 3a20 0a20 h,. * Usage: . │ │ │ │ +00052cd0: 2020 2020 2020 2067 7261 7068 2070 6869 graph phi │ │ │ │ +00052ce0: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00052cf0: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ +00052d00: 6520 7269 6e67 206d 6170 3a20 284d 6163 e ring map: (Mac │ │ │ │ +00052d10: 6175 6c61 7932 446f 6329 5269 6e67 4d61 aulay2Doc)RingMa │ │ │ │ +00052d20: 702c 2c20 7265 7072 6573 656e 7469 6e67 p,, representing │ │ │ │ +00052d30: 2061 2072 6174 696f 6e61 6c0a 2020 2020 a rational. │ │ │ │ +00052d40: 2020 2020 6d61 7020 245c 5068 693a 5820 map $\Phi:X │ │ │ │ +00052d50: 5c64 6173 6872 6967 6874 6172 726f 7720 \dashrightarrow │ │ │ │ +00052d60: 5924 0a20 202a 202a 6e6f 7465 204f 7074 Y$. * *note Opt │ │ │ │ +00052d70: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +00052d80: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +00052d90: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +00052da0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +00052db0: 2c3a 0a20 2020 2020 202a 202a 6e6f 7465 ,:. * *note │ │ │ │ +00052dc0: 2042 6c6f 7755 7053 7472 6174 6567 793a BlowUpStrategy: │ │ │ │ +00052dd0: 2042 6c6f 7755 7053 7472 6174 6567 792c BlowUpStrategy, │ │ │ │ +00052de0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ +00052df0: 2076 616c 7565 0a20 2020 2020 2020 2022 value. " │ │ │ │ +00052e00: 456c 696d 696e 6174 6522 2c0a 2020 2a20 Eliminate",. * │ │ │ │ +00052e10: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +00052e20: 2061 202a 6e6f 7465 2072 696e 6720 6d61 a *note ring ma │ │ │ │ +00052e30: 703a 2028 4d61 6361 756c 6179 3244 6f63 p: (Macaulay2Doc │ │ │ │ +00052e40: 2952 696e 674d 6170 2c2c 2072 6570 7265 )RingMap,, repre │ │ │ │ +00052e50: 7365 6e74 696e 6720 7468 6520 7072 6f6a senting the proj │ │ │ │ +00052e60: 6563 7469 6f6e 0a20 2020 2020 2020 206f ection. o │ │ │ │ +00052e70: 6e20 7468 6520 6669 7273 7420 6661 6374 n the first fact │ │ │ │ +00052e80: 6f72 2024 5c6d 6174 6862 667b 4772 6170 or $\mathbf{Grap │ │ │ │ +00052e90: 687d 285c 5068 6929 205c 746f 2058 240a h}(\Phi) \to X$. │ │ │ │ +00052ea0: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ +00052eb0: 7269 6e67 206d 6170 3a20 284d 6163 6175 ring map: (Macau │ │ │ │ +00052ec0: 6c61 7932 446f 6329 5269 6e67 4d61 702c lay2Doc)RingMap, │ │ │ │ +00052ed0: 2c20 7265 7072 6573 656e 7469 6e67 2074 , representing t │ │ │ │ +00052ee0: 6865 2070 726f 6a65 6374 696f 6e0a 2020 he projection. │ │ │ │ +00052ef0: 2020 2020 2020 6f6e 2074 6865 2073 6563 on the sec │ │ │ │ +00052f00: 6f6e 6420 6661 6374 6f72 2024 5c6d 6174 ond factor $\mat │ │ │ │ +00052f10: 6862 667b 4772 6170 687d 285c 5068 6929 hbf{Graph}(\Phi) │ │ │ │ +00052f20: 205c 746f 2059 240a 0a44 6573 6372 6970 \to Y$..Descrip │ │ │ │ +00052f30: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +00052f40: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ 00052f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00052f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00052f90: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7068 ------+.|i1 : ph │ │ │ │ -00052fa0: 6920 3d20 6d61 7028 5151 5b78 5f30 2e2e i = map(QQ[x_0.. │ │ │ │ -00052fb0: 785f 335d 2c51 515b 795f 302e 2e79 5f32 x_3],QQ[y_0..y_2 │ │ │ │ -00052fc0: 5d2c 7b2d 785f 315e 322b 785f 302a 785f ],{-x_1^2+x_0*x_ │ │ │ │ -00052fd0: 322c 2d78 5f31 2a78 5f32 2b78 5f30 2a78 2,-x_1*x_2+x_0*x │ │ │ │ -00052fe0: 5f33 2c2d 785f 7c0a 7c20 2020 2020 2020 _3,-x_|.| │ │ │ │ +00052f90: 2b0a 7c69 3120 3a20 7068 6920 3d20 6d61 +.|i1 : phi = ma │ │ │ │ +00052fa0: 7028 5151 5b78 5f30 2e2e 785f 335d 2c51 p(QQ[x_0..x_3],Q │ │ │ │ +00052fb0: 515b 795f 302e 2e79 5f32 5d2c 7b2d 785f Q[y_0..y_2],{-x_ │ │ │ │ +00052fc0: 315e 322b 785f 302a 785f 322c 2d78 5f31 1^2+x_0*x_2,-x_1 │ │ │ │ +00052fd0: 2a78 5f32 2b78 5f30 2a78 5f33 2c2d 785f *x_2+x_0*x_3,-x_ │ │ │ │ +00052fe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00052ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053030: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00053030: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053050: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00053050: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00053060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053070: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00053080: 2020 2020 2020 7c0a 7c6f 3120 3d20 6d61 |.|o1 = ma │ │ │ │ -00053090: 7020 2851 515b 7820 2e2e 7820 5d2c 2051 p (QQ[x ..x ], Q │ │ │ │ -000530a0: 515b 7920 2e2e 7920 5d2c 207b 2d20 7820 Q[y ..y ], {- x │ │ │ │ -000530b0: 202b 2078 2078 202c 202d 2078 2078 2020 + x x , - x x │ │ │ │ -000530c0: 2b20 7820 7820 2c20 2d20 7820 202b 2078 + x x , - x + x │ │ │ │ -000530d0: 2078 207d 2920 7c0a 7c20 2020 2020 2020 x }) |.| │ │ │ │ -000530e0: 2020 2020 2020 2030 2020 2033 2020 2020 0 3 │ │ │ │ -000530f0: 2020 2030 2020 2032 2020 2020 2020 2031 0 2 1 │ │ │ │ -00053100: 2020 2020 3020 3220 2020 2020 3120 3220 0 2 1 2 │ │ │ │ -00053110: 2020 2030 2033 2020 2020 2032 2020 2020 0 3 2 │ │ │ │ -00053120: 3120 3320 2020 7c0a 7c20 2020 2020 2020 1 3 |.| │ │ │ │ +00053070: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00053080: 7c0a 7c6f 3120 3d20 6d61 7020 2851 515b |.|o1 = map (QQ[ │ │ │ │ +00053090: 7820 2e2e 7820 5d2c 2051 515b 7920 2e2e x ..x ], QQ[y .. │ │ │ │ +000530a0: 7920 5d2c 207b 2d20 7820 202b 2078 2078 y ], {- x + x x │ │ │ │ +000530b0: 202c 202d 2078 2078 2020 2b20 7820 7820 , - x x + x x │ │ │ │ +000530c0: 2c20 2d20 7820 202b 2078 2078 207d 2920 , - x + x x }) │ │ │ │ +000530d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000530e0: 2030 2020 2033 2020 2020 2020 2030 2020 0 3 0 │ │ │ │ +000530f0: 2032 2020 2020 2020 2031 2020 2020 3020 2 1 0 │ │ │ │ +00053100: 3220 2020 2020 3120 3220 2020 2030 2033 2 1 2 0 3 │ │ │ │ +00053110: 2020 2020 2032 2020 2020 3120 3320 2020 2 1 3 │ │ │ │ +00053120: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053170: 2020 2020 2020 7c0a 7c6f 3120 3a20 5269 |.|o1 : Ri │ │ │ │ -00053180: 6e67 4d61 7020 5151 5b78 202e 2e78 205d ngMap QQ[x ..x ] │ │ │ │ -00053190: 203c 2d2d 2051 515b 7920 2e2e 7920 5d20 <-- QQ[y ..y ] │ │ │ │ +00053170: 7c0a 7c6f 3120 3a20 5269 6e67 4d61 7020 |.|o1 : RingMap │ │ │ │ +00053180: 5151 5b78 202e 2e78 205d 203c 2d2d 2051 QQ[x ..x ] <-- Q │ │ │ │ +00053190: 515b 7920 2e2e 7920 5d20 2020 2020 2020 Q[y ..y ] │ │ │ │ 000531a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000531b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000531c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000531d0: 2020 2020 2020 2020 2020 3020 2020 3320 0 3 │ │ │ │ -000531e0: 2020 2020 2020 2020 2030 2020 2032 2020 0 2 │ │ │ │ +000531c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000531d0: 2020 2020 3020 2020 3320 2020 2020 2020 0 3 │ │ │ │ +000531e0: 2020 2030 2020 2032 2020 2020 2020 2020 0 2 │ │ │ │ 000531f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053210: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ +00053210: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ 00053220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053260: 2d2d 2d2d 2d2d 7c0a 7c32 5e32 2b78 5f31 ------|.|2^2+x_1 │ │ │ │ -00053270: 2a78 5f33 7d29 2020 2020 2020 2020 2020 *x_3}) │ │ │ │ +00053260: 7c0a 7c32 5e32 2b78 5f31 2a78 5f33 7d29 |.|2^2+x_1*x_3}) │ │ │ │ +00053270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000532a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000532b0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000532b0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000532c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000532d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000532e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000532f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053300: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 6772 ------+.|i2 : gr │ │ │ │ -00053310: 6170 6820 7068 6920 2020 2020 2020 2020 aph phi │ │ │ │ +00053300: 2b0a 7c69 3220 3a20 6772 6170 6820 7068 +.|i2 : graph ph │ │ │ │ +00053310: 6920 2020 2020 2020 2020 2020 2020 2020 i │ │ │ │ 00053320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053350: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00053350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000533a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000533b0: 2020 2020 2020 2020 2020 2020 2020 2051 Q │ │ │ │ -000533c0: 515b 7820 2e2e 7820 2c20 7920 2e2e 7920 Q[x ..x , y ..y │ │ │ │ -000533d0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +000533a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000533b0: 2020 2020 2020 2020 2051 515b 7820 2e2e QQ[x .. │ │ │ │ +000533c0: 7820 2c20 7920 2e2e 7920 5d20 2020 2020 x , y ..y ] │ │ │ │ +000533d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000533e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000533f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00053400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053410: 2020 2030 2020 2033 2020 2030 2020 2032 0 3 0 2 │ │ │ │ +000533f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053400: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +00053410: 2033 2020 2030 2020 2032 2020 2020 2020 3 0 2 │ │ │ │ 00053420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053440: 2020 2020 2020 7c0a 7c6f 3220 3d20 286d |.|o2 = (m │ │ │ │ -00053450: 6170 2028 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ap (------------ │ │ │ │ +00053440: 7c0a 7c6f 3220 3d20 286d 6170 2028 2d2d |.|o2 = (map (-- │ │ │ │ +00053450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2c20 5151 ------------, QQ │ │ │ │ -00053480: 5b78 202e 2e78 205d 2c20 7b78 202c 2078 [x ..x ], {x , x │ │ │ │ -00053490: 202c 2078 202c 7c0a 7c20 2020 2020 2020 , x ,|.| │ │ │ │ -000534a0: 2020 2020 2878 2079 2020 2d20 7820 7920 (x y - x y │ │ │ │ -000534b0: 202b 2078 2079 202c 2078 2079 2020 2d20 + x y , x y - │ │ │ │ -000534c0: 7820 7920 202b 2078 2079 2029 2020 2020 x y + x y ) │ │ │ │ -000534d0: 2020 3020 2020 3320 2020 2020 3020 2020 0 3 0 │ │ │ │ -000534e0: 3120 2020 3220 7c0a 7c20 2020 2020 2020 1 2 |.| │ │ │ │ -000534f0: 2020 2020 2020 3320 3020 2020 2032 2031 3 0 2 1 │ │ │ │ -00053500: 2020 2020 3120 3220 2020 3220 3020 2020 1 2 2 0 │ │ │ │ -00053510: 2031 2031 2020 2020 3020 3220 2020 2020 1 1 0 2 │ │ │ │ +00053470: 2d2d 2d2d 2d2d 2c20 5151 5b78 202e 2e78 ------, QQ[x ..x │ │ │ │ +00053480: 205d 2c20 7b78 202c 2078 202c 2078 202c ], {x , x , x , │ │ │ │ +00053490: 7c0a 7c20 2020 2020 2020 2020 2020 2878 |.| (x │ │ │ │ +000534a0: 2079 2020 2d20 7820 7920 202b 2078 2079 y - x y + x y │ │ │ │ +000534b0: 202c 2078 2079 2020 2d20 7820 7920 202b , x y - x y + │ │ │ │ +000534c0: 2078 2079 2029 2020 2020 2020 3020 2020 x y ) 0 │ │ │ │ +000534d0: 3320 2020 2020 3020 2020 3120 2020 3220 3 0 1 2 │ │ │ │ +000534e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000534f0: 3320 3020 2020 2032 2031 2020 2020 3120 3 0 2 1 1 │ │ │ │ +00053500: 3220 2020 3220 3020 2020 2031 2031 2020 2 2 0 1 1 │ │ │ │ +00053510: 2020 3020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ 00053520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053530: 2020 2020 2020 7c0a 7c20 2020 2020 2d2d |.| -- │ │ │ │ +00053530: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ 00053540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053580: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ -00053590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000535a0: 2020 2020 5151 5b78 202e 2e78 202c 2079 QQ[x ..x , y │ │ │ │ -000535b0: 202e 2e79 205d 2020 2020 2020 2020 2020 ..y ] │ │ │ │ +00053580: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00053590: 2020 2020 2020 2020 2020 2020 2020 5151 QQ │ │ │ │ +000535a0: 5b78 202e 2e78 202c 2079 202e 2e79 205d [x ..x , y ..y ] │ │ │ │ +000535b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000535c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000535d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000535d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000535e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000535f0: 2020 2020 2020 2020 3020 2020 3320 2020 0 3 │ │ │ │ -00053600: 3020 2020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000535f0: 2020 3020 2020 3320 2020 3020 2020 3220 0 3 0 2 │ │ │ │ +00053600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053620: 2020 2020 2020 7c0a 7c20 2020 2020 7820 |.| x │ │ │ │ -00053630: 7d29 2c20 6d61 7020 282d 2d2d 2d2d 2d2d }), map (------- │ │ │ │ +00053620: 7c0a 7c20 2020 2020 7820 7d29 2c20 6d61 |.| x }), ma │ │ │ │ +00053630: 7020 282d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d p (------------- │ │ │ │ 00053640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053660: 2d2c 2051 515b 7920 2e2e 7920 5d2c 207b -, QQ[y ..y ], { │ │ │ │ -00053670: 7920 2c20 2020 7c0a 7c20 2020 2020 2033 y , |.| 3 │ │ │ │ -00053680: 2020 2020 2020 2020 2028 7820 7920 202d (x y - │ │ │ │ -00053690: 2078 2079 2020 2b20 7820 7920 2c20 7820 x y + x y , x │ │ │ │ -000536a0: 7920 202d 2078 2079 2020 2b20 7820 7920 y - x y + x y │ │ │ │ -000536b0: 2920 2020 2020 2030 2020 2032 2020 2020 ) 0 2 │ │ │ │ -000536c0: 2030 2020 2020 7c0a 7c20 2020 2020 2020 0 |.| │ │ │ │ -000536d0: 2020 2020 2020 2020 2020 2033 2030 2020 3 0 │ │ │ │ -000536e0: 2020 3220 3120 2020 2031 2032 2020 2032 2 1 1 2 2 │ │ │ │ -000536f0: 2030 2020 2020 3120 3120 2020 2030 2032 0 1 1 0 2 │ │ │ │ +00053650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2c 2051 515b -----------, QQ[ │ │ │ │ +00053660: 7920 2e2e 7920 5d2c 207b 7920 2c20 2020 y ..y ], {y , │ │ │ │ +00053670: 7c0a 7c20 2020 2020 2033 2020 2020 2020 |.| 3 │ │ │ │ +00053680: 2020 2028 7820 7920 202d 2078 2079 2020 (x y - x y │ │ │ │ +00053690: 2b20 7820 7920 2c20 7820 7920 202d 2078 + x y , x y - x │ │ │ │ +000536a0: 2079 2020 2b20 7820 7920 2920 2020 2020 y + x y ) │ │ │ │ +000536b0: 2030 2020 2032 2020 2020 2030 2020 2020 0 2 0 │ │ │ │ +000536c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000536d0: 2020 2020 2033 2030 2020 2020 3220 3120 3 0 2 1 │ │ │ │ +000536e0: 2020 2031 2032 2020 2032 2030 2020 2020 1 2 2 0 │ │ │ │ +000536f0: 3120 3120 2020 2030 2032 2020 2020 2020 1 1 0 2 │ │ │ │ 00053700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053710: 2020 2020 2020 7c0a 7c20 2020 2020 2d2d |.| -- │ │ │ │ +00053710: 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d |.| -------- │ │ │ │ 00053720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053760: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 7920 ------|.| y │ │ │ │ -00053770: 2c20 7920 7d29 2920 2020 2020 2020 2020 , y })) │ │ │ │ +00053760: 7c0a 7c20 2020 2020 7920 2c20 7920 7d29 |.| y , y }) │ │ │ │ +00053770: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00053780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000537a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000537b0: 2020 2020 2020 7c0a 7c20 2020 2020 2031 |.| 1 │ │ │ │ -000537c0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000537b0: 7c0a 7c20 2020 2020 2031 2020 2032 2020 |.| 1 2 │ │ │ │ +000537c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000537d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000537e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000537f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00053800: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053850: 2020 2020 2020 7c0a 7c6f 3220 3a20 5365 |.|o2 : Se │ │ │ │ -00053860: 7175 656e 6365 2020 2020 2020 2020 2020 quence │ │ │ │ +00053850: 7c0a 7c6f 3220 3a20 5365 7175 656e 6365 |.|o2 : Sequence │ │ │ │ +00053860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000538a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +000538a0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000538b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000538c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000538d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000538e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000538f0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ -00053900: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ -00053910: 2a6e 6f74 6520 6772 6170 6828 5261 7469 *note graph(Rati │ │ │ │ -00053920: 6f6e 616c 4d61 7029 3a20 6772 6170 682c onalMap): graph, │ │ │ │ -00053930: 202d 2d20 636c 6f73 7572 6520 6f66 2074 -- closure of t │ │ │ │ -00053940: 6865 2067 7261 7068 206f 6620 6120 7261 he graph of a ra │ │ │ │ -00053950: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ -00053960: 6e6f 7465 2067 7261 7068 4964 6561 6c3a note graphIdeal: │ │ │ │ -00053970: 2028 4d61 6361 756c 6179 3244 6f63 2967 (Macaulay2Doc)g │ │ │ │ -00053980: 7261 7068 4964 6561 6c5f 6c70 5269 6e67 raphIdeal_lpRing │ │ │ │ -00053990: 4d61 705f 7270 2c20 2d2d 2074 6865 2069 Map_rp, -- the i │ │ │ │ -000539a0: 6465 616c 206f 660a 2020 2020 7468 6520 deal of. the │ │ │ │ -000539b0: 6772 6170 6820 6f66 2074 6865 2072 6567 graph of the reg │ │ │ │ -000539c0: 756c 6172 206d 6170 2063 6f72 7265 7370 ular map corresp │ │ │ │ -000539d0: 6f6e 6469 6e67 2074 6f20 6120 7269 6e67 onding to a ring │ │ │ │ -000539e0: 206d 6170 0a0a 5761 7973 2074 6f20 7573 map..Ways to us │ │ │ │ -000539f0: 6520 7468 6973 206d 6574 686f 643a 0a3d e this method:.= │ │ │ │ +000538f0: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ +00053900: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00053910: 6772 6170 6828 5261 7469 6f6e 616c 4d61 graph(RationalMa │ │ │ │ +00053920: 7029 3a20 6772 6170 682c 202d 2d20 636c p): graph, -- cl │ │ │ │ +00053930: 6f73 7572 6520 6f66 2074 6865 2067 7261 osure of the gra │ │ │ │ +00053940: 7068 206f 6620 6120 7261 7469 6f6e 616c ph of a rational │ │ │ │ +00053950: 206d 6170 0a20 202a 202a 6e6f 7465 2067 map. * *note g │ │ │ │ +00053960: 7261 7068 4964 6561 6c3a 2028 4d61 6361 raphIdeal: (Maca │ │ │ │ +00053970: 756c 6179 3244 6f63 2967 7261 7068 4964 ulay2Doc)graphId │ │ │ │ +00053980: 6561 6c5f 6c70 5269 6e67 4d61 705f 7270 eal_lpRingMap_rp │ │ │ │ +00053990: 2c20 2d2d 2074 6865 2069 6465 616c 206f , -- the ideal o │ │ │ │ +000539a0: 660a 2020 2020 7468 6520 6772 6170 6820 f. the graph │ │ │ │ +000539b0: 6f66 2074 6865 2072 6567 756c 6172 206d of the regular m │ │ │ │ +000539c0: 6170 2063 6f72 7265 7370 6f6e 6469 6e67 ap corresponding │ │ │ │ +000539d0: 2074 6f20 6120 7269 6e67 206d 6170 0a0a to a ring map.. │ │ │ │ +000539e0: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ +000539f0: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ 00053a00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00053a10: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00053a20: 7465 2067 7261 7068 2852 696e 674d 6170 te graph(RingMap │ │ │ │ -00053a30: 293a 2067 7261 7068 5f6c 7052 696e 674d ): graph_lpRingM │ │ │ │ -00053a40: 6170 5f72 702c 202d 2d20 636c 6f73 7572 ap_rp, -- closur │ │ │ │ -00053a50: 6520 6f66 2074 6865 2067 7261 7068 206f e of the graph o │ │ │ │ -00053a60: 6620 610a 2020 2020 7261 7469 6f6e 616c f a. rational │ │ │ │ -00053a70: 206d 6170 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d map.----------- │ │ │ │ +00053a10: 3d0a 0a20 202a 202a 6e6f 7465 2067 7261 =.. * *note gra │ │ │ │ +00053a20: 7068 2852 696e 674d 6170 293a 2067 7261 ph(RingMap): gra │ │ │ │ +00053a30: 7068 5f6c 7052 696e 674d 6170 5f72 702c ph_lpRingMap_rp, │ │ │ │ +00053a40: 202d 2d20 636c 6f73 7572 6520 6f66 2074 -- closure of t │ │ │ │ +00053a50: 6865 2067 7261 7068 206f 6620 610a 2020 he graph of a. │ │ │ │ +00053a60: 2020 7261 7469 6f6e 616c 206d 6170 0a2d rational map.- │ │ │ │ +00053a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ac0: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ -00053ad0: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ -00053ae0: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ -00053af0: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ -00053b00: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ -00053b10: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ -00053b20: 7932 2f70 6163 6b61 6765 732f 4372 656d y2/packages/Crem │ │ │ │ -00053b30: 6f6e 612f 0a64 6f63 756d 656e 7461 7469 ona/.documentati │ │ │ │ -00053b40: 6f6e 2e6d 323a 3236 373a 302e 0a1f 0a46 on.m2:267:0....F │ │ │ │ -00053b50: 696c 653a 2043 7265 6d6f 6e61 2e69 6e66 ile: Cremona.inf │ │ │ │ -00053b60: 6f2c 204e 6f64 653a 2069 6465 616c 5f6c o, Node: ideal_l │ │ │ │ -00053b70: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -00053b80: 204e 6578 743a 2069 6d61 6765 5f6c 7052 Next: image_lpR │ │ │ │ -00053b90: 6174 696f 6e61 6c4d 6170 5f63 6d53 7472 ationalMap_cmStr │ │ │ │ -00053ba0: 696e 675f 7270 2c20 5072 6576 3a20 6772 ing_rp, Prev: gr │ │ │ │ -00053bb0: 6170 685f 6c70 5269 6e67 4d61 705f 7270 aph_lpRingMap_rp │ │ │ │ -00053bc0: 2c20 5570 3a20 546f 700a 0a69 6465 616c , Up: Top..ideal │ │ │ │ -00053bd0: 2852 6174 696f 6e61 6c4d 6170 2920 2d2d (RationalMap) -- │ │ │ │ -00053be0: 2062 6173 6520 6c6f 6375 7320 6f66 2061 base locus of a │ │ │ │ -00053bf0: 2072 6174 696f 6e61 6c20 6d61 700a 2a2a rational map.** │ │ │ │ +00053ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ +00053ac0: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ +00053ad0: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ +00053ae0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ +00053af0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ +00053b00: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ +00053b10: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ +00053b20: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ +00053b30: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ +00053b40: 3236 373a 302e 0a1f 0a46 696c 653a 2043 267:0....File: C │ │ │ │ +00053b50: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ +00053b60: 653a 2069 6465 616c 5f6c 7052 6174 696f e: ideal_lpRatio │ │ │ │ +00053b70: 6e61 6c4d 6170 5f72 702c 204e 6578 743a nalMap_rp, Next: │ │ │ │ +00053b80: 2069 6d61 6765 5f6c 7052 6174 696f 6e61 image_lpRationa │ │ │ │ +00053b90: 6c4d 6170 5f63 6d53 7472 696e 675f 7270 lMap_cmString_rp │ │ │ │ +00053ba0: 2c20 5072 6576 3a20 6772 6170 685f 6c70 , Prev: graph_lp │ │ │ │ +00053bb0: 5269 6e67 4d61 705f 7270 2c20 5570 3a20 RingMap_rp, Up: │ │ │ │ +00053bc0: 546f 700a 0a69 6465 616c 2852 6174 696f Top..ideal(Ratio │ │ │ │ +00053bd0: 6e61 6c4d 6170 2920 2d2d 2062 6173 6520 nalMap) -- base │ │ │ │ +00053be0: 6c6f 6375 7320 6f66 2061 2072 6174 696f locus of a ratio │ │ │ │ +00053bf0: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ 00053c00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00053c10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00053c20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00053c30: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -00053c40: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -00053c50: 6361 756c 6179 3244 6f63 2969 6465 616c caulay2Doc)ideal │ │ │ │ -00053c60: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -00053c70: 2020 2020 2020 6964 6561 6c20 7068 690a ideal phi. │ │ │ │ -00053c80: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ -00053c90: 2020 2a20 7068 692c 2061 202a 6e6f 7465 * phi, a *note │ │ │ │ -00053ca0: 2072 6174 696f 6e61 6c20 6d61 703a 2052 rational map: R │ │ │ │ -00053cb0: 6174 696f 6e61 6c4d 6170 2c0a 2020 2a20 ationalMap,. * │ │ │ │ -00053cc0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00053cd0: 2061 6e20 2a6e 6f74 6520 6964 6561 6c3a an *note ideal: │ │ │ │ -00053ce0: 2028 4d61 6361 756c 6179 3244 6f63 2949 (Macaulay2Doc)I │ │ │ │ -00053cf0: 6465 616c 2c2c 2074 6865 2069 6465 616c deal,, the ideal │ │ │ │ -00053d00: 206f 6620 7468 6520 6261 7365 206c 6f63 of the base loc │ │ │ │ -00053d10: 7573 206f 660a 2020 2020 2020 2020 7068 us of. ph │ │ │ │ -00053d20: 690a 0a44 6573 6372 6970 7469 6f6e 0a3d i..Description.= │ │ │ │ -00053d30: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -00053d40: 2069 7320 6765 6e65 7261 6c6c 7920 6469 is generally di │ │ │ │ -00053d50: 6666 6963 756c 742c 2062 7574 2069 6e20 fficult, but in │ │ │ │ -00053d60: 736f 6d65 2063 6173 6573 2069 7420 6973 some cases it is │ │ │ │ -00053d70: 2065 7175 6976 616c 656e 7420 746f 2069 equivalent to i │ │ │ │ -00053d80: 6465 616c 206d 6174 7269 780a 7068 692c deal matrix.phi, │ │ │ │ -00053d90: 2077 6869 6368 2064 6f65 7320 6e6f 7420 which does not │ │ │ │ -00053da0: 7065 7266 6f72 6d20 616e 7920 636f 6d70 perform any comp │ │ │ │ -00053db0: 7574 6174 696f 6e2e 0a0a 2b2d 2d2d 2d2d utation...+----- │ │ │ │ +00053c20: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00053c30: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +00053c40: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ +00053c50: 3244 6f63 2969 6465 616c 2c0a 2020 2a20 2Doc)ideal,. * │ │ │ │ +00053c60: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00053c70: 6964 6561 6c20 7068 690a 2020 2a20 496e ideal phi. * In │ │ │ │ +00053c80: 7075 7473 3a0a 2020 2020 2020 2a20 7068 puts:. * ph │ │ │ │ +00053c90: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ +00053ca0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ +00053cb0: 6c4d 6170 2c0a 2020 2a20 4f75 7470 7574 lMap,. * Output │ │ │ │ +00053cc0: 733a 0a20 2020 2020 202a 2061 6e20 2a6e s:. * an *n │ │ │ │ +00053cd0: 6f74 6520 6964 6561 6c3a 2028 4d61 6361 ote ideal: (Maca │ │ │ │ +00053ce0: 756c 6179 3244 6f63 2949 6465 616c 2c2c ulay2Doc)Ideal,, │ │ │ │ +00053cf0: 2074 6865 2069 6465 616c 206f 6620 7468 the ideal of th │ │ │ │ +00053d00: 6520 6261 7365 206c 6f63 7573 206f 660a e base locus of. │ │ │ │ +00053d10: 2020 2020 2020 2020 7068 690a 0a44 6573 phi..Des │ │ │ │ +00053d20: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00053d30: 3d3d 3d3d 0a0a 5468 6973 2069 7320 6765 ====..This is ge │ │ │ │ +00053d40: 6e65 7261 6c6c 7920 6469 6666 6963 756c nerally difficul │ │ │ │ +00053d50: 742c 2062 7574 2069 6e20 736f 6d65 2063 t, but in some c │ │ │ │ +00053d60: 6173 6573 2069 7420 6973 2065 7175 6976 ases it is equiv │ │ │ │ +00053d70: 616c 656e 7420 746f 2069 6465 616c 206d alent to ideal m │ │ │ │ +00053d80: 6174 7269 780a 7068 692c 2077 6869 6368 atrix.phi, which │ │ │ │ +00053d90: 2064 6f65 7320 6e6f 7420 7065 7266 6f72 does not perfor │ │ │ │ +00053da0: 6d20 616e 7920 636f 6d70 7574 6174 696f m any computatio │ │ │ │ +00053db0: 6e2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d n...+----------- │ │ │ │ 00053dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053e00: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00053e10: 7920 3d20 6765 6e73 2851 515b 785f 302e y = gens(QQ[x_0. │ │ │ │ -00053e20: 2e78 5f35 5d2f 2878 5f32 5e32 2d78 5f32 .x_5]/(x_2^2-x_2 │ │ │ │ -00053e30: 2a78 5f33 2b78 5f31 2a78 5f34 2d78 5f30 *x_3+x_1*x_4-x_0 │ │ │ │ -00053e40: 2a78 5f35 2929 3b20 2020 2020 2020 2020 *x_5)); │ │ │ │ -00053e50: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00053e00: 2d2d 2b0a 7c69 3120 3a20 7920 3d20 6765 --+.|i1 : y = ge │ │ │ │ +00053e10: 6e73 2851 515b 785f 302e 2e78 5f35 5d2f ns(QQ[x_0..x_5]/ │ │ │ │ +00053e20: 2878 5f32 5e32 2d78 5f32 2a78 5f33 2b78 (x_2^2-x_2*x_3+x │ │ │ │ +00053e30: 5f31 2a78 5f34 2d78 5f30 2a78 5f35 2929 _1*x_4-x_0*x_5)) │ │ │ │ +00053e40: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00053e50: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00053e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00053e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00053ea0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00053eb0: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ -00053ec0: 7020 7b79 5f34 5e32 2d79 5f33 2a79 5f35 p {y_4^2-y_3*y_5 │ │ │ │ -00053ed0: 2c2d 795f 322a 795f 342b 795f 332a 795f ,-y_2*y_4+y_3*y_ │ │ │ │ -00053ee0: 342d 795f 312a 795f 352c 202d 795f 322a 4-y_1*y_5, -y_2* │ │ │ │ -00053ef0: 795f 332b 795f 335e 7c0a 7c20 2020 2020 y_3+y_3^|.| │ │ │ │ +00053ea0: 2d2d 2b0a 7c69 3220 3a20 7068 6920 3d20 --+.|i2 : phi = │ │ │ │ +00053eb0: 7261 7469 6f6e 616c 4d61 7020 7b79 5f34 rationalMap {y_4 │ │ │ │ +00053ec0: 5e32 2d79 5f33 2a79 5f35 2c2d 795f 322a ^2-y_3*y_5,-y_2* │ │ │ │ +00053ed0: 795f 342b 795f 332a 795f 342d 795f 312a y_4+y_3*y_4-y_1* │ │ │ │ +00053ee0: 795f 352c 202d 795f 322a 795f 332b 795f y_5, -y_2*y_3+y_ │ │ │ │ +00053ef0: 335e 7c0a 7c20 2020 2020 2020 2020 2020 3^|.| │ │ │ │ 00053f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f40: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00053f50: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ -00053f60: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00053f40: 2020 7c0a 7c6f 3220 3d20 2d2d 2072 6174 |.|o2 = -- rat │ │ │ │ +00053f50: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +00053f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00053f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00053f90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00053fa0: 736f 7572 6365 3a20 7375 6276 6172 6965 source: subvarie │ │ │ │ -00053fb0: 7479 206f 6620 5072 6f6a 2851 515b 7820 ty of Proj(QQ[x │ │ │ │ -00053fc0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ -00053fd0: 2c20 7820 5d29 2064 6566 696e 6564 2062 , x ]) defined b │ │ │ │ -00053fe0: 7920 2020 2020 2020 7c0a 7c20 2020 2020 y |.| │ │ │ │ +00053f90: 2020 7c0a 7c20 2020 2020 736f 7572 6365 |.| source │ │ │ │ +00053fa0: 3a20 7375 6276 6172 6965 7479 206f 6620 : subvariety of │ │ │ │ +00053fb0: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ +00053fc0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +00053fd0: 2064 6566 696e 6564 2062 7920 2020 2020 defined by │ │ │ │ +00053fe0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00053ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054000: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00054010: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ -00054020: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -00054030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054040: 2020 2020 2020 2020 7b20 2020 2020 2020 { │ │ │ │ +00054000: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00054010: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +00054020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00054030: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054040: 2020 7b20 2020 2020 2020 2020 2020 2020 { │ │ │ │ 00054050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054090: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00054080: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054090: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000540a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000540b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000540c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000540d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000540e0: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -000540f0: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ +000540d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000540e0: 2020 2078 2020 2d20 7820 7820 202b 2078 x - x x + x │ │ │ │ +000540f0: 2078 2020 2d20 7820 7820 2020 2020 2020 x - x x │ │ │ │ 00054100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054130: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ -00054140: 2033 2020 2020 3120 3420 2020 2030 2035 3 1 4 0 5 │ │ │ │ +00054120: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054130: 2020 2020 3220 2020 2032 2033 2020 2020 2 2 3 │ │ │ │ +00054140: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ 00054150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054180: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +00054170: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054180: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00054190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000541a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000541b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000541c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000541d0: 7461 7267 6574 3a20 5072 6f6a 2851 515b target: Proj(QQ[ │ │ │ │ -000541e0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ -000541f0: 7920 5d29 2020 2020 2020 2020 2020 2020 y ]) │ │ │ │ +000541c0: 2020 7c0a 7c20 2020 2020 7461 7267 6574 |.| target │ │ │ │ +000541d0: 3a20 5072 6f6a 2851 515b 7920 2c20 7920 : Proj(QQ[y , y │ │ │ │ +000541e0: 2c20 7920 2c20 7920 2c20 7920 5d29 2020 , y , y , y ]) │ │ │ │ +000541f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054230: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -00054240: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00054210: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054220: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ +00054230: 2020 2032 2020 2033 2020 2034 2020 2020 2 3 4 │ │ │ │ +00054240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054270: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ -00054280: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +00054260: 2020 7c0a 7c20 2020 2020 6465 6669 6e69 |.| defini │ │ │ │ +00054270: 6e67 2066 6f72 6d73 3a20 7b20 2020 2020 ng forms: { │ │ │ │ +00054280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000542a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000542b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000542c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000542d0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000542b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000542c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000542d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000542e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000542f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054320: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +00054300: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054310: 2020 2020 2020 2020 2020 2078 2020 2d20 x - │ │ │ │ +00054320: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ 00054330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054370: 2020 3420 2020 2033 2035 2020 2020 2020 4 3 5 │ │ │ │ +00054350: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054360: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00054370: 2033 2035 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ 00054380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000543a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000543a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000543b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000543c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000543d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000543e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000543f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054410: 202d 2078 2078 2020 2b20 7820 7820 202d - x x + x x - │ │ │ │ -00054420: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000543f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054400: 2020 2020 2020 2020 2020 202d 2078 2078 - x x │ │ │ │ +00054410: 2020 2b20 7820 7820 202d 2078 2078 202c + x x - x x , │ │ │ │ +00054420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054460: 2020 2020 3220 3420 2020 2033 2034 2020 2 4 3 4 │ │ │ │ -00054470: 2020 3120 3520 2020 2020 2020 2020 2020 1 5 │ │ │ │ +00054440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054450: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00054460: 3420 2020 2033 2034 2020 2020 3120 3520 4 3 4 1 5 │ │ │ │ +00054470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00054490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000544a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000544b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000544c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000544d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000544e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000544e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000544f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054500: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00054500: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00054510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054550: 202d 2078 2078 2020 2b20 7820 202d 2078 - x x + x - x │ │ │ │ -00054560: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +00054530: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054540: 2020 2020 2020 2020 2020 202d 2078 2078 - x x │ │ │ │ +00054550: 2020 2b20 7820 202d 2078 2078 202c 2020 + x - x x , │ │ │ │ +00054560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000545a0: 2020 2020 3220 3320 2020 2033 2020 2020 2 3 3 │ │ │ │ -000545b0: 3120 3420 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00054580: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054590: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000545a0: 3320 2020 2033 2020 2020 3120 3420 2020 3 3 1 4 │ │ │ │ +000545b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000545c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000545d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000545d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000545e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000545f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054640: 202d 2078 2078 2020 2b20 7820 7820 202d - x x + x x - │ │ │ │ -00054650: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +00054620: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054630: 2020 2020 2020 2020 2020 202d 2078 2078 - x x │ │ │ │ +00054640: 2020 2b20 7820 7820 202d 2078 2078 202c + x x - x x , │ │ │ │ +00054650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054690: 2020 2020 3120 3220 2020 2031 2033 2020 1 2 1 3 │ │ │ │ -000546a0: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00054670: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054680: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00054690: 3220 2020 2031 2033 2020 2020 3020 3420 2 1 3 0 4 │ │ │ │ +000546a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000546c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000546c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000546d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000546f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054730: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00054710: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054720: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00054730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054760: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054780: 2078 2020 2d20 7820 7820 2020 2020 2020 x - x x │ │ │ │ +00054760: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054770: 2020 2020 2020 2020 2020 2078 2020 2d20 x - │ │ │ │ +00054780: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ 00054790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000547a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000547b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000547c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000547d0: 2020 3120 2020 2030 2033 2020 2020 2020 1 0 3 │ │ │ │ +000547b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000547c0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +000547d0: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ 000547e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000547f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054820: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00054800: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054810: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +00054820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054850: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00054850: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00054860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000548a0: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -000548b0: 5261 7469 6f6e 616c 4d61 7020 2871 7561 RationalMap (qua │ │ │ │ -000548c0: 6472 6174 6963 2072 6174 696f 6e61 6c20 dratic rational │ │ │ │ -000548d0: 6d61 7020 6672 6f6d 2068 7970 6572 7375 map from hypersu │ │ │ │ -000548e0: 7266 6163 6520 696e 2050 505e 3520 746f rface in PP^5 to │ │ │ │ -000548f0: 2050 505e 3429 2020 7c0a 7c2d 2d2d 2d2d PP^4) |.|----- │ │ │ │ +000548a0: 2020 7c0a 7c6f 3220 3a20 5261 7469 6f6e |.|o2 : Ration │ │ │ │ +000548b0: 616c 4d61 7020 2871 7561 6472 6174 6963 alMap (quadratic │ │ │ │ +000548c0: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +000548d0: 6f6d 2068 7970 6572 7375 7266 6163 6520 om hypersurface │ │ │ │ +000548e0: 696e 2050 505e 3520 746f 2050 505e 3429 in PP^5 to PP^4) │ │ │ │ +000548f0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00054900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054940: 2d2d 2d2d 2d2d 2d2d 7c0a 7c32 2d79 5f31 --------|.|2-y_1 │ │ │ │ -00054950: 2a79 5f34 2c20 2d79 5f31 2a79 5f32 2b79 *y_4, -y_1*y_2+y │ │ │ │ -00054960: 5f31 2a79 5f33 2d79 5f30 2a79 5f34 2c20 _1*y_3-y_0*y_4, │ │ │ │ -00054970: 795f 315e 322d 795f 302a 795f 337d 2020 y_1^2-y_0*y_3} │ │ │ │ +00054940: 2d2d 7c0a 7c32 2d79 5f31 2a79 5f34 2c20 --|.|2-y_1*y_4, │ │ │ │ +00054950: 2d79 5f31 2a79 5f32 2b79 5f31 2a79 5f33 -y_1*y_2+y_1*y_3 │ │ │ │ +00054960: 2d79 5f30 2a79 5f34 2c20 795f 315e 322d -y_0*y_4, y_1^2- │ │ │ │ +00054970: 795f 302a 795f 337d 2020 2020 2020 2020 y_0*y_3} │ │ │ │ 00054980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054990: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00054990: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000549a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000549d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000549e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -000549f0: 7469 6d65 2069 6465 616c 2070 6869 2020 time ideal phi │ │ │ │ +000549e0: 2d2d 2b0a 7c69 3320 3a20 7469 6d65 2069 --+.|i3 : time i │ │ │ │ +000549f0: 6465 616c 2070 6869 2020 2020 2020 2020 deal phi │ │ │ │ 00054a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054a30: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00054a40: 7365 6420 302e 3030 3335 3539 3973 2028 sed 0.0035599s ( │ │ │ │ -00054a50: 6370 7529 3b20 302e 3030 3335 3535 3232 cpu); 0.00355522 │ │ │ │ -00054a60: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ -00054a70: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ -00054a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00054a30: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +00054a40: 3030 3530 3233 3232 7320 2863 7075 293b 00502322s (cpu); │ │ │ │ +00054a50: 2030 2e30 3035 3032 3132 3373 2028 7468 0.00502123s (th │ │ │ │ +00054a60: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ +00054a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00054a80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00054a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054ad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054ae0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00054ad0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054ae0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00054af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054b00: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00054b00: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00054b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054b20: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00054b30: 6964 6561 6c20 2878 2020 2d20 7820 7820 ideal (x - x x │ │ │ │ -00054b40: 2c20 7820 7820 202d 2078 2078 2020 2b20 , x x - x x + │ │ │ │ -00054b50: 7820 7820 2c20 7820 7820 202d 2078 2020 x x , x x - x │ │ │ │ -00054b60: 2b20 7820 7820 2c20 7820 7820 202d 2078 + x x , x x - x │ │ │ │ -00054b70: 2078 2020 2b20 2020 7c0a 7c20 2020 2020 x + |.| │ │ │ │ -00054b80: 2020 2020 2020 2020 3420 2020 2033 2035 4 3 5 │ │ │ │ -00054b90: 2020 2032 2034 2020 2020 3320 3420 2020 2 4 3 4 │ │ │ │ -00054ba0: 2031 2035 2020 2032 2033 2020 2020 3320 1 5 2 3 3 │ │ │ │ -00054bb0: 2020 2031 2034 2020 2031 2032 2020 2020 1 4 1 2 │ │ │ │ -00054bc0: 3120 3320 2020 2020 7c0a 7c20 2020 2020 1 3 |.| │ │ │ │ +00054b20: 2020 7c0a 7c6f 3320 3d20 6964 6561 6c20 |.|o3 = ideal │ │ │ │ +00054b30: 2878 2020 2d20 7820 7820 2c20 7820 7820 (x - x x , x x │ │ │ │ +00054b40: 202d 2078 2078 2020 2b20 7820 7820 2c20 - x x + x x , │ │ │ │ +00054b50: 7820 7820 202d 2078 2020 2b20 7820 7820 x x - x + x x │ │ │ │ +00054b60: 2c20 7820 7820 202d 2078 2078 2020 2b20 , x x - x x + │ │ │ │ +00054b70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054b80: 2020 3420 2020 2033 2035 2020 2032 2034 4 3 5 2 4 │ │ │ │ +00054b90: 2020 2020 3320 3420 2020 2031 2035 2020 3 4 1 5 │ │ │ │ +00054ba0: 2032 2033 2020 2020 3320 2020 2031 2034 2 3 3 1 4 │ │ │ │ +00054bb0: 2020 2031 2032 2020 2020 3120 3320 2020 1 2 1 3 │ │ │ │ +00054bc0: 2020 7c0a 7c20 2020 2020 2d2d 2d2d 2d2d |.| ------ │ │ │ │ 00054bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054c10: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ -00054c20: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00054c10: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ +00054c20: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00054c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054c60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054c70: 7820 7820 2c20 7820 202d 2078 2078 2029 x x , x - x x ) │ │ │ │ +00054c60: 2020 7c0a 7c20 2020 2020 7820 7820 2c20 |.| x x , │ │ │ │ +00054c70: 7820 202d 2078 2078 2029 2020 2020 2020 x - x x ) │ │ │ │ 00054c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054cc0: 2030 2034 2020 2031 2020 2020 3020 3320 0 4 1 0 3 │ │ │ │ +00054cb0: 2020 7c0a 7c20 2020 2020 2030 2034 2020 |.| 0 4 │ │ │ │ +00054cc0: 2031 2020 2020 3020 3320 2020 2020 2020 1 0 3 │ │ │ │ 00054cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00054d00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00054d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054d70: 5151 5b78 202e 2e78 205d 2020 2020 2020 QQ[x ..x ] │ │ │ │ +00054d50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054d60: 2020 2020 2020 2020 2020 5151 5b78 202e QQ[x . │ │ │ │ +00054d70: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ 00054d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054da0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054dc0: 2020 2020 3020 2020 3520 2020 2020 2020 0 5 │ │ │ │ +00054da0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054db0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00054dc0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 00054dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054df0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ -00054e00: 4964 6561 6c20 6f66 202d 2d2d 2d2d 2d2d Ideal of ------- │ │ │ │ -00054e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ +00054df0: 2020 7c0a 7c6f 3320 3a20 4964 6561 6c20 |.|o3 : Ideal │ │ │ │ +00054e00: 6f66 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d of ------------- │ │ │ │ +00054e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ 00054e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054e50: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00054e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054e50: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00054e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054ea0: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -00054eb0: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ +00054e90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054ea0: 2020 2078 2020 2d20 7820 7820 202b 2078 x - x x + x │ │ │ │ +00054eb0: 2078 2020 2d20 7820 7820 2020 2020 2020 x - x x │ │ │ │ 00054ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054ee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00054ef0: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ -00054f00: 2033 2020 2020 3120 3420 2020 2030 2035 3 1 4 0 5 │ │ │ │ +00054ee0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00054ef0: 2020 2020 3220 2020 2032 2033 2020 2020 2 2 3 │ │ │ │ +00054f00: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ 00054f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054f30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00054f30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00054f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00054f80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -00054f90: 6173 7365 7274 2869 6465 616c 2070 6869 assert(ideal phi │ │ │ │ -00054fa0: 203d 3d20 6964 6561 6c20 6d61 7472 6978 == ideal matrix │ │ │ │ -00054fb0: 2070 6869 2920 2020 2020 2020 2020 2020 phi) │ │ │ │ +00054f80: 2d2d 2b0a 7c69 3420 3a20 6173 7365 7274 --+.|i4 : assert │ │ │ │ +00054f90: 2869 6465 616c 2070 6869 203d 3d20 6964 (ideal phi == id │ │ │ │ +00054fa0: 6561 6c20 6d61 7472 6978 2070 6869 2920 eal matrix phi) │ │ │ │ +00054fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00054fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00054fd0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00054fd0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00054fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00054ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00055010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00055020: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ -00055030: 7068 6927 203d 206c 6173 7420 6772 6170 phi' = last grap │ │ │ │ -00055040: 6820 7068 6920 2020 2020 2020 2020 2020 h phi │ │ │ │ +00055020: 2d2d 2b0a 7c69 3520 3a20 7068 6927 203d --+.|i5 : phi' = │ │ │ │ +00055030: 206c 6173 7420 6772 6170 6820 7068 6920 last graph phi │ │ │ │ +00055040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055070: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000550a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000550b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000550c0: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ -000550d0: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ -000550e0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +000550c0: 2020 7c0a 7c6f 3520 3d20 2d2d 2072 6174 |.|o5 = -- rat │ │ │ │ +000550d0: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +000550e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000550f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055120: 736f 7572 6365 3a20 7375 6276 6172 6965 source: subvarie │ │ │ │ -00055130: 7479 206f 6620 5072 6f6a 2851 515b 7820 ty of Proj(QQ[x │ │ │ │ -00055140: 2c20 7820 2c20 7820 2c20 2020 2020 2020 , x , x , │ │ │ │ +00055110: 2020 7c0a 7c20 2020 2020 736f 7572 6365 |.| source │ │ │ │ +00055120: 3a20 7375 6276 6172 6965 7479 206f 6620 : subvariety of │ │ │ │ +00055130: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ +00055140: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00055150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055180: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00055190: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ +00055180: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00055190: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000551a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000551b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000551c0: 2020 2020 2020 2020 7b20 2020 2020 2020 { │ │ │ │ +000551b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000551c0: 2020 7b20 2020 2020 2020 2020 2020 2020 { │ │ │ │ 000551d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000551f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055210: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -00055220: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +00055200: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055210: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +00055220: 2078 2079 202c 2020 2020 2020 2020 2020 x y , │ │ │ │ 00055230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055260: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ -00055270: 2033 2033 2020 2020 3420 3420 2020 2020 3 3 4 4 │ │ │ │ +00055250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055260: 2020 2020 3120 3220 2020 2033 2033 2020 1 2 3 3 │ │ │ │ +00055270: 2020 3420 3420 2020 2020 2020 2020 2020 4 4 │ │ │ │ 00055280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000552a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000552a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000552b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000552c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000552d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000552e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000552f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055300: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -00055310: 7820 7920 202d 2078 2079 2020 2b20 7820 x y - x y + x │ │ │ │ -00055320: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +000552f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055300: 2020 2078 2079 2020 2d20 7820 7920 202d x y - x y - │ │ │ │ +00055310: 2078 2079 2020 2b20 7820 7920 2c20 2020 x y + x y , │ │ │ │ +00055320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055350: 2020 2020 2020 2020 2020 3020 3220 2020 0 2 │ │ │ │ -00055360: 2031 2033 2020 2020 3220 3420 2020 2033 1 3 2 4 3 │ │ │ │ -00055370: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00055340: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055350: 2020 2020 3020 3220 2020 2031 2033 2020 0 2 1 3 │ │ │ │ +00055360: 2020 3220 3420 2020 2033 2034 2020 2020 2 4 3 4 │ │ │ │ +00055370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000553a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000553b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000553c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000553d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000553e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000553f0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -00055400: 7820 7920 202b 2078 2079 2020 2d20 7820 x y + x y - x │ │ │ │ -00055410: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +000553e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000553f0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +00055400: 2078 2079 2020 2d20 7820 7920 2c20 2020 x y - x y , │ │ │ │ +00055410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055440: 2020 2020 2020 2020 2020 3220 3120 2020 2 1 │ │ │ │ -00055450: 2033 2031 2020 2020 3420 3220 2020 2035 3 1 4 2 5 │ │ │ │ -00055460: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00055430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055440: 2020 2020 3220 3120 2020 2033 2031 2020 2 1 3 1 │ │ │ │ +00055450: 2020 3420 3220 2020 2035 2033 2020 2020 4 2 5 3 │ │ │ │ +00055460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055480: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000554c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000554d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000554e0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -000554f0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +000554d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000554e0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +000554f0: 2078 2079 202c 2020 2020 2020 2020 2020 x y , │ │ │ │ 00055500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055530: 2020 2020 2020 2020 2020 3120 3120 2020 1 1 │ │ │ │ -00055540: 2032 2032 2020 2020 3520 3420 2020 2020 2 2 5 4 │ │ │ │ +00055520: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055530: 2020 2020 3120 3120 2020 2032 2032 2020 1 1 2 2 │ │ │ │ +00055540: 2020 3520 3420 2020 2020 2020 2020 2020 5 4 │ │ │ │ 00055550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000555a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000555b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000555c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000555d0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -000555e0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +000555c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000555d0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +000555e0: 2078 2079 202c 2020 2020 2020 2020 2020 x y , │ │ │ │ 000555f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055620: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -00055630: 2032 2033 2020 2020 3420 3420 2020 2020 2 3 4 4 │ │ │ │ +00055610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055620: 2020 2020 3020 3120 2020 2032 2033 2020 0 1 2 3 │ │ │ │ +00055630: 2020 3420 3420 2020 2020 2020 2020 2020 4 4 │ │ │ │ 00055640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000556a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000556b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000556c0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -000556d0: 7820 7920 202b 2078 2079 2020 2d20 7820 x y + x y - x │ │ │ │ -000556e0: 7920 2c20 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +000556b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000556c0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +000556d0: 2078 2079 2020 2d20 7820 7920 2c20 2020 x y - x y , │ │ │ │ +000556e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000556f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055710: 2020 2020 2020 2020 2020 3220 3020 2020 2 0 │ │ │ │ -00055720: 2033 2030 2020 2020 3420 3120 2020 2035 3 0 4 1 5 │ │ │ │ -00055730: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00055700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055710: 2020 2020 3220 3020 2020 2033 2030 2020 2 0 3 0 │ │ │ │ +00055720: 2020 3420 3120 2020 2035 2032 2020 2020 4 1 5 2 │ │ │ │ +00055730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055750: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000557a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000557b0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -000557c0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +000557a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000557b0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +000557c0: 2078 2079 202c 2020 2020 2020 2020 2020 x y , │ │ │ │ 000557d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000557e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000557f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055800: 2020 2020 2020 2020 2020 3120 3020 2020 1 0 │ │ │ │ -00055810: 2033 2031 2020 2020 3420 3220 2020 2020 3 1 4 2 │ │ │ │ +000557f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055800: 2020 2020 3120 3020 2020 2033 2031 2020 1 0 3 1 │ │ │ │ +00055810: 2020 3420 3220 2020 2020 2020 2020 2020 4 2 │ │ │ │ 00055820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000558a0: 2020 2020 2020 2020 2078 2079 2020 2d20 x y - │ │ │ │ -000558b0: 7820 7920 202b 2078 2079 202c 2020 2020 x y + x y , │ │ │ │ +00055890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000558a0: 2020 2078 2079 2020 2d20 7820 7920 202b x y - x y + │ │ │ │ +000558b0: 2078 2079 202c 2020 2020 2020 2020 2020 x y , │ │ │ │ 000558c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000558d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000558e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000558f0: 2020 2020 2020 2020 2020 3020 3020 2020 0 0 │ │ │ │ -00055900: 2032 2032 2020 2020 3420 3320 2020 2020 2 2 4 3 │ │ │ │ +000558e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000558f0: 2020 2020 3020 3020 2020 2032 2032 2020 0 0 2 2 │ │ │ │ +00055900: 2020 3420 3320 2020 2020 2020 2020 2020 4 3 │ │ │ │ 00055910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055990: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00055980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055990: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000559a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000559b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000559c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000559d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000559e0: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -000559f0: 7820 202b 2078 2078 2020 2d20 7820 7820 x + x x - x x │ │ │ │ +000559d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000559e0: 2020 2078 2020 2d20 7820 7820 202b 2078 x - x x + x │ │ │ │ +000559f0: 2078 2020 2d20 7820 7820 2020 2020 2020 x - x x │ │ │ │ 00055a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055a20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055a30: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ -00055a40: 2033 2020 2020 3120 3420 2020 2030 2035 3 1 4 0 5 │ │ │ │ +00055a20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055a30: 2020 2020 3220 2020 2032 2033 2020 2020 2 2 3 │ │ │ │ +00055a40: 3120 3420 2020 2030 2035 2020 2020 2020 1 4 0 5 │ │ │ │ 00055a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055a70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055a80: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +00055a70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055a80: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00055a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055ad0: 7461 7267 6574 3a20 5072 6f6a 2851 515b target: Proj(QQ[ │ │ │ │ -00055ae0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ -00055af0: 7920 5d29 2020 2020 2020 2020 2020 2020 y ]) │ │ │ │ +00055ac0: 2020 7c0a 7c20 2020 2020 7461 7267 6574 |.| target │ │ │ │ +00055ad0: 3a20 5072 6f6a 2851 515b 7920 2c20 7920 : Proj(QQ[y , y │ │ │ │ +00055ae0: 2c20 7920 2c20 7920 2c20 7920 5d29 2020 , y , y , y ]) │ │ │ │ +00055af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055b30: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -00055b40: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00055b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055b20: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ +00055b30: 2020 2032 2020 2033 2020 2034 2020 2020 2 3 4 │ │ │ │ +00055b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055b60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055b70: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ -00055b80: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +00055b60: 2020 7c0a 7c20 2020 2020 6465 6669 6e69 |.| defini │ │ │ │ +00055b70: 6e67 2066 6f72 6d73 3a20 7b20 2020 2020 ng forms: { │ │ │ │ +00055b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055bb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055bd0: 2079 202c 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +00055bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055bc0: 2020 2020 2020 2020 2020 2079 202c 2020 y , │ │ │ │ +00055bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055c20: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ +00055c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055c10: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00055c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055c50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055c50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055cc0: 2079 202c 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +00055ca0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055cb0: 2020 2020 2020 2020 2020 2079 202c 2020 y , │ │ │ │ +00055cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055cf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055d10: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00055cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055d00: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ +00055d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055d40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055d40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055db0: 2079 202c 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +00055d90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055da0: 2020 2020 2020 2020 2020 2079 202c 2020 y , │ │ │ │ +00055db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055e00: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00055de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055df0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00055e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055e30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ea0: 2079 202c 2020 2020 2020 2020 2020 2020 y , │ │ │ │ +00055e80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055e90: 2020 2020 2020 2020 2020 2079 202c 2020 y , │ │ │ │ +00055ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055ef0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00055ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055ee0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +00055ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00055f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00055f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055f90: 2079 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +00055f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055f80: 2020 2020 2020 2020 2020 2079 2020 2020 y │ │ │ │ +00055f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00055fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00055fe0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00055fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00055fd0: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00055fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00055ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00056020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056030: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00056010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00056020: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +00056030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000560a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000560b0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ -000560c0: 4d75 6c74 6968 6f6d 6f67 656e 656f 7573 Multihomogeneous │ │ │ │ -000560d0: 5261 7469 6f6e 616c 4d61 7020 2872 6174 RationalMap (rat │ │ │ │ -000560e0: 696f 6e61 6c20 6d61 7020 2020 2020 2020 ional map │ │ │ │ +000560b0: 2020 7c0a 7c6f 3520 3a20 4d75 6c74 6968 |.|o5 : Multih │ │ │ │ +000560c0: 6f6d 6f67 656e 656f 7573 5261 7469 6f6e omogeneousRation │ │ │ │ +000560d0: 616c 4d61 7020 2872 6174 696f 6e61 6c20 alMap (rational │ │ │ │ +000560e0: 6d61 7020 2020 2020 2020 2020 2020 2020 map │ │ │ │ 000560f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056100: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00056100: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00056110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00056140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00056150: 2d2d 2d2d 2d2d 2d2d 7c0a 7c78 202c 2078 --------|.|x , x │ │ │ │ -00056160: 202c 2078 205d 2920 7820 5072 6f6a 2851 , x ]) x Proj(Q │ │ │ │ -00056170: 515b 7920 2c20 7920 2c20 7920 2c20 7920 Q[y , y , y , y │ │ │ │ -00056180: 2c20 7920 5d29 2064 6566 696e 6564 2062 , y ]) defined b │ │ │ │ -00056190: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ -000561a0: 2020 2020 2020 2020 7c0a 7c20 3320 2020 |.| 3 │ │ │ │ -000561b0: 3420 2020 3520 2020 2020 2020 2020 2020 4 5 │ │ │ │ -000561c0: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ -000561d0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00056150: 2d2d 7c0a 7c78 202c 2078 202c 2078 205d --|.|x , x , x ] │ │ │ │ +00056160: 2920 7820 5072 6f6a 2851 515b 7920 2c20 ) x Proj(QQ[y , │ │ │ │ +00056170: 7920 2c20 7920 2c20 7920 2c20 7920 5d29 y , y , y , y ]) │ │ │ │ +00056180: 2064 6566 696e 6564 2062 7920 2020 2020 defined by │ │ │ │ +00056190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000561a0: 2020 7c0a 7c20 3320 2020 3420 2020 3520 |.| 3 4 5 │ │ │ │ +000561b0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000561c0: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +000561d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000561e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000561f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000561f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000562a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000562d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000562e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000562e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000562f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000563a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000563b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000563c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000563d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000563d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000563e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000563f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056470: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000564c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000564c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000564d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000564f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056560: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000565b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000565b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000565c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000565f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056600: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056650: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056650: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000566a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000566b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000566c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000566d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000566e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000566f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000566f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056740: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056740: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056790: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056790: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000567a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000567d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000567e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000567e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000567f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056830: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000568d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000568d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000568e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000568f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056920: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056970: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056970: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000569c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000569c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000569d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000569f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056a10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056a60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056a60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056ab0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056b50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056b50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056ba0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056bf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056bf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056c40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056c90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056c90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056ce0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056d30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056d80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056d80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056dd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056dd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056e20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056e70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056e70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056ec0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056ec0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056f10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056f60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00056fb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00056fb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00056fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00056ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057000: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00057000: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00057050: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000570a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000570a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000570b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000570c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000570d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000570e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000570f0: 2020 2020 2020 2020 7c0a 7c66 726f 6d20 |.|from │ │ │ │ -00057100: 342d 6469 6d65 6e73 696f 6e61 6c20 7375 4-dimensional su │ │ │ │ -00057110: 6276 6172 6965 7479 206f 6620 5050 5e35 bvariety of PP^5 │ │ │ │ -00057120: 2078 2050 505e 3420 746f 2050 505e 3429 x PP^4 to PP^4) │ │ │ │ +000570f0: 2020 7c0a 7c66 726f 6d20 342d 6469 6d65 |.|from 4-dime │ │ │ │ +00057100: 6e73 696f 6e61 6c20 7375 6276 6172 6965 nsional subvarie │ │ │ │ +00057110: 7479 206f 6620 5050 5e35 2078 2050 505e ty of PP^5 x PP^ │ │ │ │ +00057120: 3420 746f 2050 505e 3429 2020 2020 2020 4 to PP^4) │ │ │ │ 00057130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057140: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00057140: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00057150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057190: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ -000571a0: 7469 6d65 2069 6465 616c 2070 6869 2720 time ideal phi' │ │ │ │ +00057190: 2d2d 2b0a 7c69 3620 3a20 7469 6d65 2069 --+.|i6 : time i │ │ │ │ +000571a0: 6465 616c 2070 6869 2720 2020 2020 2020 deal phi' │ │ │ │ 000571b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000571d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000571e0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -000571f0: 7365 6420 302e 3039 3330 3639 3173 2028 sed 0.0930691s ( │ │ │ │ -00057200: 6370 7529 3b20 302e 3039 3330 3438 3873 cpu); 0.0930488s │ │ │ │ -00057210: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00057220: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ -00057230: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000571e0: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +000571f0: 3131 3432 3639 7320 2863 7075 293b 2030 114269s (cpu); 0 │ │ │ │ +00057200: 2e31 3134 3236 3873 2028 7468 7265 6164 .114268s (thread │ │ │ │ +00057210: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ +00057220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00057230: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057280: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00057290: 6964 6561 6c20 3120 2020 2020 2020 2020 ideal 1 │ │ │ │ +00057280: 2020 7c0a 7c6f 3620 3d20 6964 6561 6c20 |.|o6 = ideal │ │ │ │ +00057290: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 000572a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000572b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000572c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000572d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000572d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000572e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000572f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00057320: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057370: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00057370: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00057380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000573a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000573b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000573c0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ -000573d0: 4964 6561 6c20 6f66 202d 2d2d 2d2d 2d2d Ideal of ------- │ │ │ │ +000573c0: 2020 7c0a 7c6f 3620 3a20 4964 6561 6c20 |.|o6 : Ideal │ │ │ │ +000573d0: 6f66 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d of ------------- │ │ │ │ 000573e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000573f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057410: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00057410: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00057420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00057470: 2020 2020 2020 2020 2028 7820 7920 202d (x y - │ │ │ │ -00057480: 2078 2079 2020 2b20 7820 7920 2c20 7820 x y + x y , x │ │ │ │ -00057490: 7920 202d 2078 2079 2020 2d20 7820 7920 y - x y - x y │ │ │ │ -000574a0: 202b 2078 2079 202c 2078 2079 2020 2d20 + x y , x y - │ │ │ │ -000574b0: 7820 7920 202b 2078 7c0a 7c20 2020 2020 x y + x|.| │ │ │ │ -000574c0: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ -000574d0: 2020 3320 3320 2020 2034 2034 2020 2030 3 3 4 4 0 │ │ │ │ -000574e0: 2032 2020 2020 3120 3320 2020 2032 2034 2 1 3 2 4 │ │ │ │ -000574f0: 2020 2020 3320 3420 2020 3220 3120 2020 3 4 2 1 │ │ │ │ -00057500: 2033 2031 2020 2020 7c0a 7c2d 2d2d 2d2d 3 1 |.|----- │ │ │ │ +00057460: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00057470: 2020 2028 7820 7920 202d 2078 2079 2020 (x y - x y │ │ │ │ +00057480: 2b20 7820 7920 2c20 7820 7920 202d 2078 + x y , x y - x │ │ │ │ +00057490: 2079 2020 2d20 7820 7920 202b 2078 2079 y - x y + x y │ │ │ │ +000574a0: 202c 2078 2079 2020 2d20 7820 7920 202b , x y - x y + │ │ │ │ +000574b0: 2078 7c0a 7c20 2020 2020 2020 2020 2020 x|.| │ │ │ │ +000574c0: 2020 2020 2031 2032 2020 2020 3320 3320 1 2 3 3 │ │ │ │ +000574d0: 2020 2034 2034 2020 2030 2032 2020 2020 4 4 0 2 │ │ │ │ +000574e0: 3120 3320 2020 2032 2034 2020 2020 3320 1 3 2 4 3 │ │ │ │ +000574f0: 3420 2020 3220 3120 2020 2033 2031 2020 4 2 1 3 1 │ │ │ │ +00057500: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00057510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057550: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00057550: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00057560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057570: 2020 2020 2020 2020 2020 5151 5b78 202e QQ[x . │ │ │ │ -00057580: 2e78 202c 2079 202e 2e79 205d 2020 2020 .x , y ..y ] │ │ │ │ +00057570: 2020 2020 5151 5b78 202e 2e78 202c 2079 QQ[x ..x , y │ │ │ │ +00057580: 202e 2e79 205d 2020 2020 2020 2020 2020 ..y ] │ │ │ │ 00057590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000575a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000575a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000575b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000575c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000575d0: 2020 3520 2020 3020 2020 3420 2020 2020 5 0 4 │ │ │ │ +000575c0: 2020 2020 2020 2020 3020 2020 3520 2020 0 5 │ │ │ │ +000575d0: 3020 2020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ 000575e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000575f0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +000575f0: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00057600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057640: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00057640: 2d2d 7c0a 7c20 2020 2020 2020 2020 2020 --|.| │ │ │ │ 00057650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00057680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057690: 2020 2020 2020 2020 7c0a 7c20 7920 202d |.| y - │ │ │ │ -000576a0: 2078 2079 202c 2078 2079 2020 2d20 7820 x y , x y - x │ │ │ │ -000576b0: 7920 202b 2078 2079 202c 2078 2079 2020 y + x y , x y │ │ │ │ -000576c0: 2d20 7820 7920 202b 2078 2079 202c 2078 - x y + x y , x │ │ │ │ -000576d0: 2079 2020 2d20 7820 7920 202b 2078 2079 y - x y + x y │ │ │ │ -000576e0: 2020 2d20 7820 7920 7c0a 7c34 2032 2020 - x y |.|4 2 │ │ │ │ -000576f0: 2020 3520 3320 2020 3120 3120 2020 2032 5 3 1 1 2 │ │ │ │ -00057700: 2032 2020 2020 3520 3420 2020 3020 3120 2 5 4 0 1 │ │ │ │ -00057710: 2020 2032 2033 2020 2020 3420 3420 2020 2 3 4 4 │ │ │ │ -00057720: 3220 3020 2020 2033 2030 2020 2020 3420 2 0 3 0 4 │ │ │ │ -00057730: 3120 2020 2035 2032 7c0a 7c2d 2d2d 2d2d 1 5 2|.|----- │ │ │ │ +00057690: 2020 7c0a 7c20 7920 202d 2078 2079 202c |.| y - x y , │ │ │ │ +000576a0: 2078 2079 2020 2d20 7820 7920 202b 2078 x y - x y + x │ │ │ │ +000576b0: 2079 202c 2078 2079 2020 2d20 7820 7920 y , x y - x y │ │ │ │ +000576c0: 202b 2078 2079 202c 2078 2079 2020 2d20 + x y , x y - │ │ │ │ +000576d0: 7820 7920 202b 2078 2079 2020 2d20 7820 x y + x y - x │ │ │ │ +000576e0: 7920 7c0a 7c34 2032 2020 2020 3520 3320 y |.|4 2 5 3 │ │ │ │ +000576f0: 2020 3120 3120 2020 2032 2032 2020 2020 1 1 2 2 │ │ │ │ +00057700: 3520 3420 2020 3020 3120 2020 2032 2033 5 4 0 1 2 3 │ │ │ │ +00057710: 2020 2020 3420 3420 2020 3220 3020 2020 4 4 2 0 │ │ │ │ +00057720: 2033 2030 2020 2020 3420 3120 2020 2035 3 0 4 1 5 │ │ │ │ +00057730: 2032 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2|.|----------- │ │ │ │ 00057740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057780: 2d2d 2d2d 2d2d 2d2d 7c0a 7c2d 2d2d 2d2d --------|.|----- │ │ │ │ +00057780: 2d2d 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d --|.|----------- │ │ │ │ 00057790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000577a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000577b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000577c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 2020 ------------- │ │ │ │ -000577d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000577c0: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ +000577d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000577e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000577f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057800: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00057800: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00057810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057820: 2020 2020 2020 2020 7c0a 7c2c 2078 2079 |.|, x y │ │ │ │ -00057830: 2020 2d20 7820 7920 202b 2078 2079 202c - x y + x y , │ │ │ │ -00057840: 2078 2079 2020 2d20 7820 7920 202b 2078 x y - x y + x │ │ │ │ -00057850: 2079 202c 2078 2020 2d20 7820 7820 202b y , x - x x + │ │ │ │ -00057860: 2078 2078 2020 2d20 7820 7820 2920 2020 x x - x x ) │ │ │ │ -00057870: 2020 2020 2020 2020 7c0a 7c20 2020 3120 |.| 1 │ │ │ │ -00057880: 3020 2020 2033 2031 2020 2020 3420 3220 0 3 1 4 2 │ │ │ │ -00057890: 2020 3020 3020 2020 2032 2032 2020 2020 0 0 2 2 │ │ │ │ -000578a0: 3420 3320 2020 3220 2020 2032 2033 2020 4 3 2 2 3 │ │ │ │ -000578b0: 2020 3120 3420 2020 2030 2035 2020 2020 1 4 0 5 │ │ │ │ -000578c0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00057820: 2020 7c0a 7c2c 2078 2079 2020 2d20 7820 |.|, x y - x │ │ │ │ +00057830: 7920 202b 2078 2079 202c 2078 2079 2020 y + x y , x y │ │ │ │ +00057840: 2d20 7820 7920 202b 2078 2079 202c 2078 - x y + x y , x │ │ │ │ +00057850: 2020 2d20 7820 7820 202b 2078 2078 2020 - x x + x x │ │ │ │ +00057860: 2d20 7820 7820 2920 2020 2020 2020 2020 - x x ) │ │ │ │ +00057870: 2020 7c0a 7c20 2020 3120 3020 2020 2033 |.| 1 0 3 │ │ │ │ +00057880: 2031 2020 2020 3420 3220 2020 3020 3020 1 4 2 0 0 │ │ │ │ +00057890: 2020 2032 2032 2020 2020 3420 3320 2020 2 2 4 3 │ │ │ │ +000578a0: 3220 2020 2032 2033 2020 2020 3120 3420 2 2 3 1 4 │ │ │ │ +000578b0: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000578c0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000578d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000578e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000578f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057910: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ -00057920: 6173 7365 7274 2869 6465 616c 2070 6869 assert(ideal phi │ │ │ │ -00057930: 2720 213d 2069 6465 616c 206d 6174 7269 ' != ideal matri │ │ │ │ -00057940: 7820 7068 6927 2920 2020 2020 2020 2020 x phi') │ │ │ │ +00057910: 2d2d 2b0a 7c69 3720 3a20 6173 7365 7274 --+.|i7 : assert │ │ │ │ +00057920: 2869 6465 616c 2070 6869 2720 213d 2069 (ideal phi' != i │ │ │ │ +00057930: 6465 616c 206d 6174 7269 7820 7068 6927 deal matrix phi' │ │ │ │ +00057940: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00057950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00057960: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00057960: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00057970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000579a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000579b0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -000579c0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -000579d0: 2a20 2a6e 6f74 6520 6973 4d6f 7270 6869 * *note isMorphi │ │ │ │ -000579e0: 736d 3a20 6973 4d6f 7270 6869 736d 2c20 sm: isMorphism, │ │ │ │ -000579f0: 2d2d 2077 6865 7468 6572 2061 2072 6174 -- whether a rat │ │ │ │ -00057a00: 696f 6e61 6c20 6d61 7020 6973 2061 206d ional map is a m │ │ │ │ -00057a10: 6f72 7068 6973 6d0a 2020 2a20 2a6e 6f74 orphism. * *not │ │ │ │ -00057a20: 6520 6d61 7472 6978 2852 6174 696f 6e61 e matrix(Rationa │ │ │ │ -00057a30: 6c4d 6170 293a 206d 6174 7269 785f 6c70 lMap): matrix_lp │ │ │ │ -00057a40: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -00057a50: 2d2d 2074 6865 206d 6174 7269 780a 2020 -- the matrix. │ │ │ │ -00057a60: 2020 6173 736f 6369 6174 6564 2074 6f20 associated to │ │ │ │ -00057a70: 6120 7261 7469 6f6e 616c 206d 6170 0a0a a rational map.. │ │ │ │ -00057a80: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ -00057a90: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ -00057aa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00057ab0: 3d0a 0a20 202a 202a 6e6f 7465 2069 6465 =.. * *note ide │ │ │ │ -00057ac0: 616c 2852 6174 696f 6e61 6c4d 6170 293a al(RationalMap): │ │ │ │ -00057ad0: 2069 6465 616c 5f6c 7052 6174 696f 6e61 ideal_lpRationa │ │ │ │ -00057ae0: 6c4d 6170 5f72 702c 202d 2d20 6261 7365 lMap_rp, -- base │ │ │ │ -00057af0: 206c 6f63 7573 206f 6620 610a 2020 2020 locus of a. │ │ │ │ -00057b00: 7261 7469 6f6e 616c 206d 6170 0a2d 2d2d rational map.--- │ │ │ │ +000579b0: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +000579c0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +000579d0: 6520 6973 4d6f 7270 6869 736d 3a20 6973 e isMorphism: is │ │ │ │ +000579e0: 4d6f 7270 6869 736d 2c20 2d2d 2077 6865 Morphism, -- whe │ │ │ │ +000579f0: 7468 6572 2061 2072 6174 696f 6e61 6c20 ther a rational │ │ │ │ +00057a00: 6d61 7020 6973 2061 206d 6f72 7068 6973 map is a morphis │ │ │ │ +00057a10: 6d0a 2020 2a20 2a6e 6f74 6520 6d61 7472 m. * *note matr │ │ │ │ +00057a20: 6978 2852 6174 696f 6e61 6c4d 6170 293a ix(RationalMap): │ │ │ │ +00057a30: 206d 6174 7269 785f 6c70 5261 7469 6f6e matrix_lpRation │ │ │ │ +00057a40: 616c 4d61 705f 7270 2c20 2d2d 2074 6865 alMap_rp, -- the │ │ │ │ +00057a50: 206d 6174 7269 780a 2020 2020 6173 736f matrix. asso │ │ │ │ +00057a60: 6369 6174 6564 2074 6f20 6120 7261 7469 ciated to a rati │ │ │ │ +00057a70: 6f6e 616c 206d 6170 0a0a 5761 7973 2074 onal map..Ways t │ │ │ │ +00057a80: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ +00057a90: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ +00057aa0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +00057ab0: 202a 6e6f 7465 2069 6465 616c 2852 6174 *note ideal(Rat │ │ │ │ +00057ac0: 696f 6e61 6c4d 6170 293a 2069 6465 616c ionalMap): ideal │ │ │ │ +00057ad0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +00057ae0: 702c 202d 2d20 6261 7365 206c 6f63 7573 p, -- base locus │ │ │ │ +00057af0: 206f 6620 610a 2020 2020 7261 7469 6f6e of a. ration │ │ │ │ +00057b00: 616c 206d 6170 0a2d 2d2d 2d2d 2d2d 2d2d al map.--------- │ │ │ │ 00057b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00057b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00057b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -00057b60: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -00057b70: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00057b80: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00057b90: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00057ba0: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00057bb0: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00057bc0: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ -00057bd0: 756d 656e 7461 7469 6f6e 2e6d 323a 3433 umentation.m2:43 │ │ │ │ -00057be0: 313a 302e 0a1f 0a46 696c 653a 2043 7265 1:0....File: Cre │ │ │ │ -00057bf0: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ -00057c00: 2069 6d61 6765 5f6c 7052 6174 696f 6e61 image_lpRationa │ │ │ │ -00057c10: 6c4d 6170 5f63 6d53 7472 696e 675f 7270 lMap_cmString_rp │ │ │ │ -00057c20: 2c20 4e65 7874 3a20 696d 6167 655f 6c70 , Next: image_lp │ │ │ │ -00057c30: 5261 7469 6f6e 616c 4d61 705f 636d 5a5a RationalMap_cmZZ │ │ │ │ -00057c40: 5f72 702c 2050 7265 763a 2069 6465 616c _rp, Prev: ideal │ │ │ │ -00057c50: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -00057c60: 702c 2055 703a 2054 6f70 0a0a 696d 6167 p, Up: Top..imag │ │ │ │ -00057c70: 6528 5261 7469 6f6e 616c 4d61 702c 5374 e(RationalMap,St │ │ │ │ -00057c80: 7269 6e67 2920 2d2d 2063 6c6f 7375 7265 ring) -- closure │ │ │ │ -00057c90: 206f 6620 7468 6520 696d 6167 6520 6f66 of the image of │ │ │ │ -00057ca0: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -00057cb0: 7573 696e 6720 7468 6520 4634 2061 6c67 using the F4 alg │ │ │ │ -00057cc0: 6f72 6974 686d 2028 6578 7065 7269 6d65 orithm (experime │ │ │ │ -00057cd0: 6e74 616c 290a 2a2a 2a2a 2a2a 2a2a 2a2a ntal).********** │ │ │ │ +00057b50: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +00057b60: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00057b70: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00057b80: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00057b90: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00057ba0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00057bb0: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ +00057bc0: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ +00057bd0: 7469 6f6e 2e6d 323a 3433 313a 302e 0a1f tion.m2:431:0... │ │ │ │ +00057be0: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ +00057bf0: 6e66 6f2c 204e 6f64 653a 2069 6d61 6765 nfo, Node: image │ │ │ │ +00057c00: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f63 _lpRationalMap_c │ │ │ │ +00057c10: 6d53 7472 696e 675f 7270 2c20 4e65 7874 mString_rp, Next │ │ │ │ +00057c20: 3a20 696d 6167 655f 6c70 5261 7469 6f6e : image_lpRation │ │ │ │ +00057c30: 616c 4d61 705f 636d 5a5a 5f72 702c 2050 alMap_cmZZ_rp, P │ │ │ │ +00057c40: 7265 763a 2069 6465 616c 5f6c 7052 6174 rev: ideal_lpRat │ │ │ │ +00057c50: 696f 6e61 6c4d 6170 5f72 702c 2055 703a ionalMap_rp, Up: │ │ │ │ +00057c60: 2054 6f70 0a0a 696d 6167 6528 5261 7469 Top..image(Rati │ │ │ │ +00057c70: 6f6e 616c 4d61 702c 5374 7269 6e67 2920 onalMap,String) │ │ │ │ +00057c80: 2d2d 2063 6c6f 7375 7265 206f 6620 7468 -- closure of th │ │ │ │ +00057c90: 6520 696d 6167 6520 6f66 2061 2072 6174 e image of a rat │ │ │ │ +00057ca0: 696f 6e61 6c20 6d61 7020 7573 696e 6720 ional map using │ │ │ │ +00057cb0: 7468 6520 4634 2061 6c67 6f72 6974 686d the F4 algorithm │ │ │ │ +00057cc0: 2028 6578 7065 7269 6d65 6e74 616c 290a (experimental). │ │ │ │ +00057cd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057ce0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057cf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057d00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057d10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00057d20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00057d30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00057d40: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -00057d50: 6e6f 7465 2069 6d61 6765 3a20 284d 6163 note image: (Mac │ │ │ │ -00057d60: 6175 6c61 7932 446f 6329 696d 6167 652c aulay2Doc)image, │ │ │ │ -00057d70: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -00057d80: 2020 2020 2069 6d61 6765 2850 6869 2c22 image(Phi," │ │ │ │ -00057d90: 4634 2229 0a20 2020 2020 2020 2069 6d61 F4"). ima │ │ │ │ -00057da0: 6765 2850 6869 2c22 4d47 4222 290a 2020 ge(Phi,"MGB"). │ │ │ │ -00057db0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -00057dc0: 2a20 5068 692c 2061 202a 6e6f 7465 2072 * Phi, a *note r │ │ │ │ -00057dd0: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -00057de0: 696f 6e61 6c4d 6170 2c0a 2020 2020 2020 ionalMap,. │ │ │ │ -00057df0: 2a20 6120 2a6e 6f74 6520 7374 7269 6e67 * a *note string │ │ │ │ -00057e00: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00057e10: 5374 7269 6e67 2c2c 2022 4634 2220 6f72 String,, "F4" or │ │ │ │ -00057e20: 2022 4d47 4222 0a20 202a 204f 7574 7075 "MGB". * Outpu │ │ │ │ -00057e30: 7473 3a0a 2020 2020 2020 2a20 7468 6520 ts:. * the │ │ │ │ -00057e40: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -00057e50: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -00057e60: 2c20 6465 6669 6e69 6e67 2074 6865 2063 , defining the c │ │ │ │ -00057e70: 6c6f 7375 7265 206f 6620 7468 6520 696d losure of the im │ │ │ │ -00057e80: 6167 650a 2020 2020 2020 2020 6f66 2050 age. of P │ │ │ │ -00057e90: 6869 3b20 7468 6520 6361 6c63 756c 6174 hi; the calculat │ │ │ │ -00057ea0: 696f 6e20 7061 7373 6573 2074 6872 6f75 ion passes throu │ │ │ │ -00057eb0: 6768 202a 6e6f 7465 2067 726f 6562 6e65 gh *note groebne │ │ │ │ -00057ec0: 7242 6173 6973 3a0a 2020 2020 2020 2020 rBasis:. │ │ │ │ -00057ed0: 284d 6163 6175 6c61 7932 446f 6329 6772 (Macaulay2Doc)gr │ │ │ │ -00057ee0: 6f65 626e 6572 4261 7369 732c 282e 2e2e oebnerBasis,(... │ │ │ │ -00057ef0: 2c53 7472 6174 6567 793d 3e22 4634 2229 ,Strategy=>"F4") │ │ │ │ -00057f00: 206f 7220 2a6e 6f74 650a 2020 2020 2020 or *note. │ │ │ │ -00057f10: 2020 6772 6f65 626e 6572 4261 7369 733a groebnerBasis: │ │ │ │ -00057f20: 2028 4d61 6361 756c 6179 3244 6f63 2967 (Macaulay2Doc)g │ │ │ │ -00057f30: 726f 6562 6e65 7242 6173 6973 2c28 2e2e roebnerBasis,(.. │ │ │ │ -00057f40: 2e2c 5374 7261 7465 6779 3d3e 224d 4742 .,Strategy=>"MGB │ │ │ │ -00057f50: 2229 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ")...See also.== │ │ │ │ -00057f60: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -00057f70: 6520 696d 6167 6528 5261 7469 6f6e 616c e image(Rational │ │ │ │ -00057f80: 4d61 7029 3a20 696d 6167 655f 6c70 5261 Map): image_lpRa │ │ │ │ -00057f90: 7469 6f6e 616c 4d61 705f 636d 5a5a 5f72 tionalMap_cmZZ_r │ │ │ │ -00057fa0: 702c 202d 2d20 636c 6f73 7572 6520 6f66 p, -- closure of │ │ │ │ -00057fb0: 2074 6865 0a20 2020 2069 6d61 6765 206f the. image o │ │ │ │ -00057fc0: 6620 6120 7261 7469 6f6e 616c 206d 6170 f a rational map │ │ │ │ -00057fd0: 0a20 202a 202a 6e6f 7465 2069 6d61 6765 . * *note image │ │ │ │ -00057fe0: 2852 6174 696f 6e61 6c4d 6170 2c5a 5a29 (RationalMap,ZZ) │ │ │ │ -00057ff0: 3a20 696d 6167 655f 6c70 5261 7469 6f6e : image_lpRation │ │ │ │ -00058000: 616c 4d61 705f 636d 5a5a 5f72 702c 202d alMap_cmZZ_rp, - │ │ │ │ -00058010: 2d20 636c 6f73 7572 6520 6f66 2074 6865 - closure of the │ │ │ │ -00058020: 0a20 2020 2069 6d61 6765 206f 6620 6120 . image of a │ │ │ │ -00058030: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -00058040: 202a 6e6f 7465 2067 726f 6562 6e65 7242 *note groebnerB │ │ │ │ -00058050: 6173 6973 3a20 284d 6163 6175 6c61 7932 asis: (Macaulay2 │ │ │ │ -00058060: 446f 6329 6772 6f65 626e 6572 4261 7369 Doc)groebnerBasi │ │ │ │ -00058070: 732c 202d 2d20 4772 c3b6 626e 6572 2062 s, -- Gr..bner b │ │ │ │ -00058080: 6173 6973 2c20 6173 2061 0a20 2020 206d asis, as a. m │ │ │ │ -00058090: 6174 7269 780a 0a57 6179 7320 746f 2075 atrix..Ways to u │ │ │ │ -000580a0: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +00057d30: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ +00057d40: 756e 6374 696f 6e3a 202a 6e6f 7465 2069 unction: *note i │ │ │ │ +00057d50: 6d61 6765 3a20 284d 6163 6175 6c61 7932 mage: (Macaulay2 │ │ │ │ +00057d60: 446f 6329 696d 6167 652c 0a20 202a 2055 Doc)image,. * U │ │ │ │ +00057d70: 7361 6765 3a20 0a20 2020 2020 2020 2069 sage: . i │ │ │ │ +00057d80: 6d61 6765 2850 6869 2c22 4634 2229 0a20 mage(Phi,"F4"). │ │ │ │ +00057d90: 2020 2020 2020 2069 6d61 6765 2850 6869 image(Phi │ │ │ │ +00057da0: 2c22 4d47 4222 290a 2020 2a20 496e 7075 ,"MGB"). * Inpu │ │ │ │ +00057db0: 7473 3a0a 2020 2020 2020 2a20 5068 692c ts:. * Phi, │ │ │ │ +00057dc0: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +00057dd0: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +00057de0: 6170 2c0a 2020 2020 2020 2a20 6120 2a6e ap,. * a *n │ │ │ │ +00057df0: 6f74 6520 7374 7269 6e67 3a20 284d 6163 ote string: (Mac │ │ │ │ +00057e00: 6175 6c61 7932 446f 6329 5374 7269 6e67 aulay2Doc)String │ │ │ │ +00057e10: 2c2c 2022 4634 2220 6f72 2022 4d47 4222 ,, "F4" or "MGB" │ │ │ │ +00057e20: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +00057e30: 2020 2020 2a20 7468 6520 2a6e 6f74 6520 * the *note │ │ │ │ +00057e40: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ +00057e50: 3244 6f63 2949 6465 616c 2c20 6465 6669 2Doc)Ideal, defi │ │ │ │ +00057e60: 6e69 6e67 2074 6865 2063 6c6f 7375 7265 ning the closure │ │ │ │ +00057e70: 206f 6620 7468 6520 696d 6167 650a 2020 of the image. │ │ │ │ +00057e80: 2020 2020 2020 6f66 2050 6869 3b20 7468 of Phi; th │ │ │ │ +00057e90: 6520 6361 6c63 756c 6174 696f 6e20 7061 e calculation pa │ │ │ │ +00057ea0: 7373 6573 2074 6872 6f75 6768 202a 6e6f sses through *no │ │ │ │ +00057eb0: 7465 2067 726f 6562 6e65 7242 6173 6973 te groebnerBasis │ │ │ │ +00057ec0: 3a0a 2020 2020 2020 2020 284d 6163 6175 :. (Macau │ │ │ │ +00057ed0: 6c61 7932 446f 6329 6772 6f65 626e 6572 lay2Doc)groebner │ │ │ │ +00057ee0: 4261 7369 732c 282e 2e2e 2c53 7472 6174 Basis,(...,Strat │ │ │ │ +00057ef0: 6567 793d 3e22 4634 2229 206f 7220 2a6e egy=>"F4") or *n │ │ │ │ +00057f00: 6f74 650a 2020 2020 2020 2020 6772 6f65 ote. groe │ │ │ │ +00057f10: 626e 6572 4261 7369 733a 2028 4d61 6361 bnerBasis: (Maca │ │ │ │ +00057f20: 756c 6179 3244 6f63 2967 726f 6562 6e65 ulay2Doc)groebne │ │ │ │ +00057f30: 7242 6173 6973 2c28 2e2e 2e2c 5374 7261 rBasis,(...,Stra │ │ │ │ +00057f40: 7465 6779 3d3e 224d 4742 2229 2e0a 0a53 tegy=>"MGB")...S │ │ │ │ +00057f50: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +00057f60: 0a0a 2020 2a20 2a6e 6f74 6520 696d 6167 .. * *note imag │ │ │ │ +00057f70: 6528 5261 7469 6f6e 616c 4d61 7029 3a20 e(RationalMap): │ │ │ │ +00057f80: 696d 6167 655f 6c70 5261 7469 6f6e 616c image_lpRational │ │ │ │ +00057f90: 4d61 705f 636d 5a5a 5f72 702c 202d 2d20 Map_cmZZ_rp, -- │ │ │ │ +00057fa0: 636c 6f73 7572 6520 6f66 2074 6865 0a20 closure of the. │ │ │ │ +00057fb0: 2020 2069 6d61 6765 206f 6620 6120 7261 image of a ra │ │ │ │ +00057fc0: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ +00057fd0: 6e6f 7465 2069 6d61 6765 2852 6174 696f note image(Ratio │ │ │ │ +00057fe0: 6e61 6c4d 6170 2c5a 5a29 3a20 696d 6167 nalMap,ZZ): imag │ │ │ │ +00057ff0: 655f 6c70 5261 7469 6f6e 616c 4d61 705f e_lpRationalMap_ │ │ │ │ +00058000: 636d 5a5a 5f72 702c 202d 2d20 636c 6f73 cmZZ_rp, -- clos │ │ │ │ +00058010: 7572 6520 6f66 2074 6865 0a20 2020 2069 ure of the. i │ │ │ │ +00058020: 6d61 6765 206f 6620 6120 7261 7469 6f6e mage of a ration │ │ │ │ +00058030: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +00058040: 2067 726f 6562 6e65 7242 6173 6973 3a20 groebnerBasis: │ │ │ │ +00058050: 284d 6163 6175 6c61 7932 446f 6329 6772 (Macaulay2Doc)gr │ │ │ │ +00058060: 6f65 626e 6572 4261 7369 732c 202d 2d20 oebnerBasis, -- │ │ │ │ +00058070: 4772 c3b6 626e 6572 2062 6173 6973 2c20 Gr..bner basis, │ │ │ │ +00058080: 6173 2061 0a20 2020 206d 6174 7269 780a as a. matrix. │ │ │ │ +00058090: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +000580a0: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ 000580b0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000580c0: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -000580d0: 6f74 6520 696d 6167 6528 5261 7469 6f6e ote image(Ration │ │ │ │ -000580e0: 616c 4d61 702c 5374 7269 6e67 293a 2069 alMap,String): i │ │ │ │ -000580f0: 6d61 6765 5f6c 7052 6174 696f 6e61 6c4d mage_lpRationalM │ │ │ │ -00058100: 6170 5f63 6d53 7472 696e 675f 7270 2c20 ap_cmString_rp, │ │ │ │ -00058110: 2d2d 0a20 2020 2063 6c6f 7375 7265 206f --. closure o │ │ │ │ -00058120: 6620 7468 6520 696d 6167 6520 6f66 2061 f the image of a │ │ │ │ -00058130: 2072 6174 696f 6e61 6c20 6d61 7020 7573 rational map us │ │ │ │ -00058140: 696e 6720 7468 6520 4634 2061 6c67 6f72 ing the F4 algor │ │ │ │ -00058150: 6974 686d 0a20 2020 2028 6578 7065 7269 ithm. (experi │ │ │ │ -00058160: 6d65 6e74 616c 290a 2d2d 2d2d 2d2d 2d2d mental).-------- │ │ │ │ +000580c0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 696d ==.. * *note im │ │ │ │ +000580d0: 6167 6528 5261 7469 6f6e 616c 4d61 702c age(RationalMap, │ │ │ │ +000580e0: 5374 7269 6e67 293a 2069 6d61 6765 5f6c String): image_l │ │ │ │ +000580f0: 7052 6174 696f 6e61 6c4d 6170 5f63 6d53 pRationalMap_cmS │ │ │ │ +00058100: 7472 696e 675f 7270 2c20 2d2d 0a20 2020 tring_rp, --. │ │ │ │ +00058110: 2063 6c6f 7375 7265 206f 6620 7468 6520 closure of the │ │ │ │ +00058120: 696d 6167 6520 6f66 2061 2072 6174 696f image of a ratio │ │ │ │ +00058130: 6e61 6c20 6d61 7020 7573 696e 6720 7468 nal map using th │ │ │ │ +00058140: 6520 4634 2061 6c67 6f72 6974 686d 0a20 e F4 algorithm. │ │ │ │ +00058150: 2020 2028 6578 7065 7269 6d65 6e74 616c (experimental │ │ │ │ +00058160: 290a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ).-------------- │ │ │ │ 00058170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000581a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000581b0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ -000581c0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ -000581d0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ -000581e0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ -000581f0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ -00058200: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ -00058210: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ -00058220: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ -00058230: 6174 696f 6e2e 6d32 3a36 3831 3a30 2e0a ation.m2:681:0.. │ │ │ │ -00058240: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ -00058250: 696e 666f 2c20 4e6f 6465 3a20 696d 6167 info, Node: imag │ │ │ │ -00058260: 655f 6c70 5261 7469 6f6e 616c 4d61 705f e_lpRationalMap_ │ │ │ │ -00058270: 636d 5a5a 5f72 702c 204e 6578 743a 2069 cmZZ_rp, Next: i │ │ │ │ -00058280: 6e76 6572 7365 5f6c 7052 6174 696f 6e61 nverse_lpRationa │ │ │ │ -00058290: 6c4d 6170 5f72 702c 2050 7265 763a 2069 lMap_rp, Prev: i │ │ │ │ -000582a0: 6d61 6765 5f6c 7052 6174 696f 6e61 6c4d mage_lpRationalM │ │ │ │ -000582b0: 6170 5f63 6d53 7472 696e 675f 7270 2c20 ap_cmString_rp, │ │ │ │ -000582c0: 5570 3a20 546f 700a 0a69 6d61 6765 2852 Up: Top..image(R │ │ │ │ -000582d0: 6174 696f 6e61 6c4d 6170 2c5a 5a29 202d ationalMap,ZZ) - │ │ │ │ -000582e0: 2d20 636c 6f73 7572 6520 6f66 2074 6865 - closure of the │ │ │ │ -000582f0: 2069 6d61 6765 206f 6620 6120 7261 7469 image of a rati │ │ │ │ -00058300: 6f6e 616c 206d 6170 0a2a 2a2a 2a2a 2a2a onal map.******* │ │ │ │ +000581b0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ +000581c0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ +000581d0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ +000581e0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ +000581f0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ +00058200: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ +00058210: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ +00058220: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ +00058230: 6d32 3a36 3831 3a30 2e0a 1f0a 4669 6c65 m2:681:0....File │ │ │ │ +00058240: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ +00058250: 4e6f 6465 3a20 696d 6167 655f 6c70 5261 Node: image_lpRa │ │ │ │ +00058260: 7469 6f6e 616c 4d61 705f 636d 5a5a 5f72 tionalMap_cmZZ_r │ │ │ │ +00058270: 702c 204e 6578 743a 2069 6e76 6572 7365 p, Next: inverse │ │ │ │ +00058280: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +00058290: 702c 2050 7265 763a 2069 6d61 6765 5f6c p, Prev: image_l │ │ │ │ +000582a0: 7052 6174 696f 6e61 6c4d 6170 5f63 6d53 pRationalMap_cmS │ │ │ │ +000582b0: 7472 696e 675f 7270 2c20 5570 3a20 546f tring_rp, Up: To │ │ │ │ +000582c0: 700a 0a69 6d61 6765 2852 6174 696f 6e61 p..image(Rationa │ │ │ │ +000582d0: 6c4d 6170 2c5a 5a29 202d 2d20 636c 6f73 lMap,ZZ) -- clos │ │ │ │ +000582e0: 7572 6520 6f66 2074 6865 2069 6d61 6765 ure of the image │ │ │ │ +000582f0: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ +00058300: 6170 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ap.************* │ │ │ │ 00058310: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00058320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00058330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00058340: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 ********.. * Fu │ │ │ │ -00058350: 6e63 7469 6f6e 3a20 2a6e 6f74 6520 696d nction: *note im │ │ │ │ -00058360: 6167 653a 2028 4d61 6361 756c 6179 3244 age: (Macaulay2D │ │ │ │ -00058370: 6f63 2969 6d61 6765 2c0a 2020 2a20 5573 oc)image,. * Us │ │ │ │ -00058380: 6167 653a 200a 2020 2020 2020 2020 696d age: . im │ │ │ │ -00058390: 6167 6520 5068 6920 0a20 2020 2020 2020 age Phi . │ │ │ │ -000583a0: 2069 6d61 6765 2850 6869 2c64 290a 2020 image(Phi,d). │ │ │ │ -000583b0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -000583c0: 2a20 5068 692c 2061 202a 6e6f 7465 2072 * Phi, a *note r │ │ │ │ -000583d0: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -000583e0: 696f 6e61 6c4d 6170 2c0a 2020 2020 2020 ionalMap,. │ │ │ │ -000583f0: 2a20 642c 2061 6e20 2a6e 6f74 6520 696e * d, an *note in │ │ │ │ -00058400: 7465 6765 723a 2028 4d61 6361 756c 6179 teger: (Macaulay │ │ │ │ -00058410: 3244 6f63 295a 5a2c 0a20 202a 204f 7574 2Doc)ZZ,. * Out │ │ │ │ -00058420: 7075 7473 3a0a 2020 2020 2020 2a20 616e puts:. * an │ │ │ │ -00058430: 202a 6e6f 7465 2069 6465 616c 3a20 284d *note ideal: (M │ │ │ │ -00058440: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ -00058450: 6c2c 2c20 7468 6520 6964 6561 6c20 6465 l,, the ideal de │ │ │ │ -00058460: 6669 6e69 6e67 2074 6865 2063 6c6f 7375 fining the closu │ │ │ │ -00058470: 7265 206f 660a 2020 2020 2020 2020 7468 re of. th │ │ │ │ -00058480: 6520 696d 6167 6520 6f66 2050 6869 2c20 e image of Phi, │ │ │ │ -00058490: 6f72 2069 7473 2064 6567 7265 6520 6420 or its degree d │ │ │ │ -000584a0: 686f 6d6f 6765 6e65 6f75 7320 636f 6d70 homogeneous comp │ │ │ │ -000584b0: 6f6e 656e 7420 6966 2064 2069 7320 7061 onent if d is pa │ │ │ │ -000584c0: 7373 6564 0a0a 4465 7363 7269 7074 696f ssed..Descriptio │ │ │ │ -000584d0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ -000584e0: 6869 7320 636f 6d70 7574 6174 696f 6e20 his computation │ │ │ │ -000584f0: 6973 2064 6f6e 6520 7468 726f 7567 6820 is done through │ │ │ │ -00058500: 7468 6520 6b65 726e 656c 206f 6620 6120 the kernel of a │ │ │ │ -00058510: 7269 6e67 206d 6170 2072 6570 7265 7365 ring map represe │ │ │ │ -00058520: 6e74 696e 6720 7468 650a 7261 7469 6f6e nting the.ration │ │ │ │ -00058530: 616c 206d 6170 2e20 5365 6520 2a6e 6f74 al map. See *not │ │ │ │ -00058540: 6520 6b65 726e 656c 2852 696e 674d 6170 e kernel(RingMap │ │ │ │ -00058550: 293a 2028 4d61 6361 756c 6179 3244 6f63 ): (Macaulay2Doc │ │ │ │ -00058560: 296b 6572 6e65 6c5f 6c70 5269 6e67 4d61 )kernel_lpRingMa │ │ │ │ -00058570: 705f 7270 2c20 616e 640a 2a6e 6f74 6520 p_rp, and.*note │ │ │ │ -00058580: 6b65 726e 656c 2852 696e 674d 6170 2c5a kernel(RingMap,Z │ │ │ │ -00058590: 5a29 3a20 6b65 726e 656c 5f6c 7052 696e Z): kernel_lpRin │ │ │ │ -000585a0: 674d 6170 5f63 6d5a 5a5f 7270 2c20 666f gMap_cmZZ_rp, fo │ │ │ │ -000585b0: 7220 6d6f 7265 2064 6574 6169 6c73 2e0a r more details.. │ │ │ │ -000585c0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -000585d0: 3d3d 0a0a 2020 2a20 6b65 726e 656c 2852 ==.. * kernel(R │ │ │ │ -000585e0: 696e 674d 6170 2c5a 5a29 2028 6d69 7373 ingMap,ZZ) (miss │ │ │ │ -000585f0: 696e 6720 646f 6375 6d65 6e74 6174 696f ing documentatio │ │ │ │ -00058600: 6e29 0a20 202a 202a 6e6f 7465 206b 6572 n). * *note ker │ │ │ │ -00058610: 6e65 6c28 5269 6e67 4d61 7029 3a20 284d nel(RingMap): (M │ │ │ │ -00058620: 6163 6175 6c61 7932 446f 6329 6b65 726e acaulay2Doc)kern │ │ │ │ -00058630: 656c 5f6c 7052 696e 674d 6170 5f72 702c el_lpRingMap_rp, │ │ │ │ -00058640: 202d 2d20 6b65 726e 656c 206f 6620 610a -- kernel of a. │ │ │ │ -00058650: 2020 2020 7269 6e67 6d61 700a 2020 2a20 ringmap. * │ │ │ │ -00058660: 2a6e 6f74 6520 696d 6167 6528 5261 7469 *note image(Rati │ │ │ │ -00058670: 6f6e 616c 4d61 702c 5374 7269 6e67 293a onalMap,String): │ │ │ │ -00058680: 2069 6d61 6765 5f6c 7052 6174 696f 6e61 image_lpRationa │ │ │ │ -00058690: 6c4d 6170 5f63 6d53 7472 696e 675f 7270 lMap_cmString_rp │ │ │ │ -000586a0: 2c20 2d2d 0a20 2020 2063 6c6f 7375 7265 , --. closure │ │ │ │ -000586b0: 206f 6620 7468 6520 696d 6167 6520 6f66 of the image of │ │ │ │ -000586c0: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -000586d0: 7573 696e 6720 7468 6520 4634 2061 6c67 using the F4 alg │ │ │ │ -000586e0: 6f72 6974 686d 0a20 2020 2028 6578 7065 orithm. (expe │ │ │ │ -000586f0: 7269 6d65 6e74 616c 290a 0a57 6179 7320 rimental)..Ways │ │ │ │ -00058700: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ -00058710: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ -00058720: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00058730: 2a20 2269 6d61 6765 2852 6174 696f 6e61 * "image(Rationa │ │ │ │ -00058740: 6c4d 6170 2922 0a20 202a 202a 6e6f 7465 lMap)". * *note │ │ │ │ -00058750: 2069 6d61 6765 2852 6174 696f 6e61 6c4d image(RationalM │ │ │ │ -00058760: 6170 2c5a 5a29 3a20 696d 6167 655f 6c70 ap,ZZ): image_lp │ │ │ │ -00058770: 5261 7469 6f6e 616c 4d61 705f 636d 5a5a RationalMap_cmZZ │ │ │ │ -00058780: 5f72 702c 202d 2d20 636c 6f73 7572 6520 _rp, -- closure │ │ │ │ -00058790: 6f66 2074 6865 0a20 2020 2069 6d61 6765 of the. image │ │ │ │ -000587a0: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ -000587b0: 6170 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ap.------------- │ │ │ │ +00058340: 2a2a 0a0a 2020 2a20 4675 6e63 7469 6f6e **.. * Function │ │ │ │ +00058350: 3a20 2a6e 6f74 6520 696d 6167 653a 2028 : *note image: ( │ │ │ │ +00058360: 4d61 6361 756c 6179 3244 6f63 2969 6d61 Macaulay2Doc)ima │ │ │ │ +00058370: 6765 2c0a 2020 2a20 5573 6167 653a 200a ge,. * Usage: . │ │ │ │ +00058380: 2020 2020 2020 2020 696d 6167 6520 5068 image Ph │ │ │ │ +00058390: 6920 0a20 2020 2020 2020 2069 6d61 6765 i . image │ │ │ │ +000583a0: 2850 6869 2c64 290a 2020 2a20 496e 7075 (Phi,d). * Inpu │ │ │ │ +000583b0: 7473 3a0a 2020 2020 2020 2a20 5068 692c ts:. * Phi, │ │ │ │ +000583c0: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +000583d0: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +000583e0: 6170 2c0a 2020 2020 2020 2a20 642c 2061 ap,. * d, a │ │ │ │ +000583f0: 6e20 2a6e 6f74 6520 696e 7465 6765 723a n *note integer: │ │ │ │ +00058400: 2028 4d61 6361 756c 6179 3244 6f63 295a (Macaulay2Doc)Z │ │ │ │ +00058410: 5a2c 0a20 202a 204f 7574 7075 7473 3a0a Z,. * Outputs:. │ │ │ │ +00058420: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ +00058430: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ +00058440: 7932 446f 6329 4964 6561 6c2c 2c20 7468 y2Doc)Ideal,, th │ │ │ │ +00058450: 6520 6964 6561 6c20 6465 6669 6e69 6e67 e ideal defining │ │ │ │ +00058460: 2074 6865 2063 6c6f 7375 7265 206f 660a the closure of. │ │ │ │ +00058470: 2020 2020 2020 2020 7468 6520 696d 6167 the imag │ │ │ │ +00058480: 6520 6f66 2050 6869 2c20 6f72 2069 7473 e of Phi, or its │ │ │ │ +00058490: 2064 6567 7265 6520 6420 686f 6d6f 6765 degree d homoge │ │ │ │ +000584a0: 6e65 6f75 7320 636f 6d70 6f6e 656e 7420 neous component │ │ │ │ +000584b0: 6966 2064 2069 7320 7061 7373 6564 0a0a if d is passed.. │ │ │ │ +000584c0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +000584d0: 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 636f =======..This co │ │ │ │ +000584e0: 6d70 7574 6174 696f 6e20 6973 2064 6f6e mputation is don │ │ │ │ +000584f0: 6520 7468 726f 7567 6820 7468 6520 6b65 e through the ke │ │ │ │ +00058500: 726e 656c 206f 6620 6120 7269 6e67 206d rnel of a ring m │ │ │ │ +00058510: 6170 2072 6570 7265 7365 6e74 696e 6720 ap representing │ │ │ │ +00058520: 7468 650a 7261 7469 6f6e 616c 206d 6170 the.rational map │ │ │ │ +00058530: 2e20 5365 6520 2a6e 6f74 6520 6b65 726e . See *note kern │ │ │ │ +00058540: 656c 2852 696e 674d 6170 293a 2028 4d61 el(RingMap): (Ma │ │ │ │ +00058550: 6361 756c 6179 3244 6f63 296b 6572 6e65 caulay2Doc)kerne │ │ │ │ +00058560: 6c5f 6c70 5269 6e67 4d61 705f 7270 2c20 l_lpRingMap_rp, │ │ │ │ +00058570: 616e 640a 2a6e 6f74 6520 6b65 726e 656c and.*note kernel │ │ │ │ +00058580: 2852 696e 674d 6170 2c5a 5a29 3a20 6b65 (RingMap,ZZ): ke │ │ │ │ +00058590: 726e 656c 5f6c 7052 696e 674d 6170 5f63 rnel_lpRingMap_c │ │ │ │ +000585a0: 6d5a 5a5f 7270 2c20 666f 7220 6d6f 7265 mZZ_rp, for more │ │ │ │ +000585b0: 2064 6574 6169 6c73 2e0a 0a53 6565 2061 details...See a │ │ │ │ +000585c0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +000585d0: 2a20 6b65 726e 656c 2852 696e 674d 6170 * kernel(RingMap │ │ │ │ +000585e0: 2c5a 5a29 2028 6d69 7373 696e 6720 646f ,ZZ) (missing do │ │ │ │ +000585f0: 6375 6d65 6e74 6174 696f 6e29 0a20 202a cumentation). * │ │ │ │ +00058600: 202a 6e6f 7465 206b 6572 6e65 6c28 5269 *note kernel(Ri │ │ │ │ +00058610: 6e67 4d61 7029 3a20 284d 6163 6175 6c61 ngMap): (Macaula │ │ │ │ +00058620: 7932 446f 6329 6b65 726e 656c 5f6c 7052 y2Doc)kernel_lpR │ │ │ │ +00058630: 696e 674d 6170 5f72 702c 202d 2d20 6b65 ingMap_rp, -- ke │ │ │ │ +00058640: 726e 656c 206f 6620 610a 2020 2020 7269 rnel of a. ri │ │ │ │ +00058650: 6e67 6d61 700a 2020 2a20 2a6e 6f74 6520 ngmap. * *note │ │ │ │ +00058660: 696d 6167 6528 5261 7469 6f6e 616c 4d61 image(RationalMa │ │ │ │ +00058670: 702c 5374 7269 6e67 293a 2069 6d61 6765 p,String): image │ │ │ │ +00058680: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f63 _lpRationalMap_c │ │ │ │ +00058690: 6d53 7472 696e 675f 7270 2c20 2d2d 0a20 mString_rp, --. │ │ │ │ +000586a0: 2020 2063 6c6f 7375 7265 206f 6620 7468 closure of th │ │ │ │ +000586b0: 6520 696d 6167 6520 6f66 2061 2072 6174 e image of a rat │ │ │ │ +000586c0: 696f 6e61 6c20 6d61 7020 7573 696e 6720 ional map using │ │ │ │ +000586d0: 7468 6520 4634 2061 6c67 6f72 6974 686d the F4 algorithm │ │ │ │ +000586e0: 0a20 2020 2028 6578 7065 7269 6d65 6e74 . (experiment │ │ │ │ +000586f0: 616c 290a 0a57 6179 7320 746f 2075 7365 al)..Ways to use │ │ │ │ +00058700: 2074 6869 7320 6d65 7468 6f64 3a0a 3d3d this method:.== │ │ │ │ +00058710: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00058720: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2269 6d61 ======.. * "ima │ │ │ │ +00058730: 6765 2852 6174 696f 6e61 6c4d 6170 2922 ge(RationalMap)" │ │ │ │ +00058740: 0a20 202a 202a 6e6f 7465 2069 6d61 6765 . * *note image │ │ │ │ +00058750: 2852 6174 696f 6e61 6c4d 6170 2c5a 5a29 (RationalMap,ZZ) │ │ │ │ +00058760: 3a20 696d 6167 655f 6c70 5261 7469 6f6e : image_lpRation │ │ │ │ +00058770: 616c 4d61 705f 636d 5a5a 5f72 702c 202d alMap_cmZZ_rp, - │ │ │ │ +00058780: 2d20 636c 6f73 7572 6520 6f66 2074 6865 - closure of the │ │ │ │ +00058790: 0a20 2020 2069 6d61 6765 206f 6620 6120 . image of a │ │ │ │ +000587a0: 7261 7469 6f6e 616c 206d 6170 0a2d 2d2d rational map.--- │ │ │ │ +000587b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000587c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000587d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000587e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000587f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058800: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -00058810: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -00058820: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -00058830: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -00058840: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -00058850: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -00058860: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ -00058870: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ -00058880: 2e6d 323a 3637 323a 302e 0a1f 0a46 696c .m2:672:0....Fil │ │ │ │ -00058890: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ -000588a0: 204e 6f64 653a 2069 6e76 6572 7365 5f6c Node: inverse_l │ │ │ │ -000588b0: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -000588c0: 204e 6578 743a 2069 6e76 6572 7365 4d61 Next: inverseMa │ │ │ │ -000588d0: 702c 2050 7265 763a 2069 6d61 6765 5f6c p, Prev: image_l │ │ │ │ -000588e0: 7052 6174 696f 6e61 6c4d 6170 5f63 6d5a pRationalMap_cmZ │ │ │ │ -000588f0: 5a5f 7270 2c20 5570 3a20 546f 700a 0a69 Z_rp, Up: Top..i │ │ │ │ -00058900: 6e76 6572 7365 2852 6174 696f 6e61 6c4d nverse(RationalM │ │ │ │ -00058910: 6170 2920 2d2d 2069 6e76 6572 7365 206f ap) -- inverse o │ │ │ │ -00058920: 6620 6120 6269 7261 7469 6f6e 616c 206d f a birational m │ │ │ │ -00058930: 6170 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ap.************* │ │ │ │ +000587f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +00058800: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +00058810: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +00058820: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +00058830: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +00058840: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +00058850: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +00058860: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ +00058870: 756d 656e 7461 7469 6f6e 2e6d 323a 3637 umentation.m2:67 │ │ │ │ +00058880: 323a 302e 0a1f 0a46 696c 653a 2043 7265 2:0....File: Cre │ │ │ │ +00058890: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ +000588a0: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ +000588b0: 6e61 6c4d 6170 5f72 702c 204e 6578 743a nalMap_rp, Next: │ │ │ │ +000588c0: 2069 6e76 6572 7365 4d61 702c 2050 7265 inverseMap, Pre │ │ │ │ +000588d0: 763a 2069 6d61 6765 5f6c 7052 6174 696f v: image_lpRatio │ │ │ │ +000588e0: 6e61 6c4d 6170 5f63 6d5a 5a5f 7270 2c20 nalMap_cmZZ_rp, │ │ │ │ +000588f0: 5570 3a20 546f 700a 0a69 6e76 6572 7365 Up: Top..inverse │ │ │ │ +00058900: 2852 6174 696f 6e61 6c4d 6170 2920 2d2d (RationalMap) -- │ │ │ │ +00058910: 2069 6e76 6572 7365 206f 6620 6120 6269 inverse of a bi │ │ │ │ +00058920: 7261 7469 6f6e 616c 206d 6170 0a2a 2a2a rational map.*** │ │ │ │ +00058930: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00058940: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00058950: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00058960: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ -00058970: 7469 6f6e 3a20 2a6e 6f74 6520 696e 7665 tion: *note inve │ │ │ │ -00058980: 7273 653a 2028 4d61 6361 756c 6179 3244 rse: (Macaulay2D │ │ │ │ -00058990: 6f63 2969 6e76 6572 7365 2c0a 2020 2a20 oc)inverse,. * │ │ │ │ -000589a0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -000589b0: 696e 7665 7273 6520 7068 690a 2020 2020 inverse phi. │ │ │ │ -000589c0: 2020 2020 696e 7665 7273 6528 7068 692c inverse(phi, │ │ │ │ -000589d0: 4365 7274 6966 793d 3e62 290a 2020 2a20 Certify=>b). * │ │ │ │ -000589e0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -000589f0: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ -00058a00: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00058a10: 6e61 6c4d 6170 2c2c 2077 6869 6368 2068 nalMap,, which h │ │ │ │ -00058a20: 6173 2074 6f20 6265 2062 6972 6174 696f as to be biratio │ │ │ │ -00058a30: 6e61 6c2c 0a20 2020 2020 2020 2061 6e64 nal,. and │ │ │ │ -00058a40: 2062 2069 7320 6120 2a6e 6f74 6520 626f b is a *note bo │ │ │ │ -00058a50: 6f6c 6561 6e20 7661 6c75 653a 2028 4d61 olean value: (Ma │ │ │ │ -00058a60: 6361 756c 6179 3244 6f63 2942 6f6f 6c65 caulay2Doc)Boole │ │ │ │ -00058a70: 616e 2c2c 2074 6861 7420 6973 2c20 7472 an,, that is, tr │ │ │ │ -00058a80: 7565 0a20 2020 2020 2020 206f 7220 6661 ue. or fa │ │ │ │ -00058a90: 6c73 6520 2874 6865 2064 6566 6175 6c74 lse (the default │ │ │ │ -00058aa0: 2076 616c 7565 2069 7320 6661 6c73 6529 value is false) │ │ │ │ -00058ab0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00058ac0: 2020 2020 2a20 6120 2a6e 6f74 6520 7261 * a *note ra │ │ │ │ -00058ad0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ -00058ae0: 6f6e 616c 4d61 702c 2c20 7468 6520 696e onalMap,, the in │ │ │ │ -00058af0: 7665 7273 6520 6d61 7020 6f66 2070 6869 verse map of phi │ │ │ │ -00058b00: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -00058b10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a69 6e76 6572 =========..inver │ │ │ │ -00058b20: 7365 2870 6869 2c43 6572 7469 6679 3d3e se(phi,Certify=> │ │ │ │ -00058b30: 7472 7565 2920 6973 2074 6865 2073 616d true) is the sam │ │ │ │ -00058b40: 6520 6173 202a 6e6f 7465 2069 6e76 6572 e as *note inver │ │ │ │ -00058b50: 7365 4d61 703a 0a69 6e76 6572 7365 4d61 seMap:.inverseMa │ │ │ │ -00058b60: 702c 2870 6869 2c43 6572 7469 6679 3d3e p,(phi,Certify=> │ │ │ │ -00058b70: 7472 7565 2c56 6572 626f 7365 3d3e 6661 true,Verbose=>fa │ │ │ │ -00058b80: 6c73 6529 2c20 7768 696c 650a 696e 7665 lse), while.inve │ │ │ │ -00058b90: 7273 6528 7068 692c 4365 7274 6966 793d rse(phi,Certify= │ │ │ │ -00058ba0: 3e66 616c 7365 2920 6170 706c 6965 7320 >false) applies │ │ │ │ -00058bb0: 6120 6d69 6464 6c65 2067 726f 756e 6420 a middle ground │ │ │ │ -00058bc0: 6170 7072 6f61 6368 2062 6574 7765 656e approach between │ │ │ │ -00058bd0: 202a 6e6f 7465 0a69 6e76 6572 7365 4d61 *note.inverseMa │ │ │ │ -00058be0: 703a 2069 6e76 6572 7365 4d61 702c 2870 p: inverseMap,(p │ │ │ │ -00058bf0: 6869 2c43 6572 7469 6679 3d3e 7472 7565 hi,Certify=>true │ │ │ │ -00058c00: 2920 616e 6420 2a6e 6f74 6520 696e 7665 ) and *note inve │ │ │ │ -00058c10: 7273 654d 6170 3a0a 696e 7665 7273 654d rseMap:.inverseM │ │ │ │ -00058c20: 6170 2c28 7068 692c 4365 7274 6966 793d ap,(phi,Certify= │ │ │ │ -00058c30: 3e66 616c 7365 292e 2054 6865 2070 726f >false). The pro │ │ │ │ -00058c40: 6365 6475 7265 2066 6f72 2074 6865 206c cedure for the l │ │ │ │ -00058c50: 6174 7465 7220 6973 2061 7320 666f 6c6c atter is as foll │ │ │ │ -00058c60: 6f77 733a 2049 740a 6669 7273 7420 636f ows: It.first co │ │ │ │ -00058c70: 6d70 7574 6573 2074 6865 2069 6e76 6572 mputes the inver │ │ │ │ -00058c80: 7365 206d 6170 206f 6620 7068 6920 7573 se map of phi us │ │ │ │ -00058c90: 696e 6720 7073 6920 3d20 2a6e 6f74 6520 ing psi = *note │ │ │ │ -00058ca0: 696e 7665 7273 654d 6170 3a20 696e 7665 inverseMap: inve │ │ │ │ -00058cb0: 7273 654d 6170 2c0a 7068 692e 2054 6865 rseMap,.phi. The │ │ │ │ -00058cc0: 6e20 6974 2069 7320 6368 6563 6b65 6420 n it is checked │ │ │ │ -00058cd0: 7468 6174 202a 6e6f 7465 2070 7369 2070 that *note psi p │ │ │ │ -00058ce0: 6869 2070 3a20 5261 7469 6f6e 616c 4d61 hi p: RationalMa │ │ │ │ -00058cf0: 7020 5f75 735f 7374 2c20 3d3d 2070 2061 p _us_st, == p a │ │ │ │ -00058d00: 6e64 0a2a 6e6f 7465 2070 6869 2070 7369 nd.*note phi psi │ │ │ │ -00058d10: 2071 3a20 5261 7469 6f6e 616c 4d61 7020 q: RationalMap │ │ │ │ -00058d20: 5f75 735f 7374 2c20 3d3d 2071 2c20 7768 _us_st, == q, wh │ │ │ │ -00058d30: 6572 6520 702c 7120 6172 652c 2072 6573 ere p,q are, res │ │ │ │ -00058d40: 7065 6374 6976 656c 792c 2061 202a 6e6f pectively, a *no │ │ │ │ -00058d50: 7465 0a72 616e 646f 6d20 706f 696e 743a te.random point: │ │ │ │ -00058d60: 2070 6f69 6e74 2c20 6f6e 2074 6865 202a point, on the * │ │ │ │ -00058d70: 6e6f 7465 2073 6f75 7263 653a 2073 6f75 note source: sou │ │ │ │ -00058d80: 7263 655f 6c70 5261 7469 6f6e 616c 4d61 rce_lpRationalMa │ │ │ │ -00058d90: 705f 7270 2c20 616e 6420 7468 650a 2a6e p_rp, and the.*n │ │ │ │ -00058da0: 6f74 6520 7461 7267 6574 3a20 7461 7267 ote target: targ │ │ │ │ -00058db0: 6574 5f6c 7052 6174 696f 6e61 6c4d 6170 et_lpRationalMap │ │ │ │ -00058dc0: 5f72 702c 206f 6620 7068 692e 2046 696e _rp, of phi. Fin │ │ │ │ -00058dd0: 616c 6c79 2c20 6966 2074 6865 2074 6573 ally, if the tes │ │ │ │ -00058de0: 7473 2070 6173 732c 2074 6865 0a63 6f6d ts pass, the.com │ │ │ │ -00058df0: 6d61 6e64 202a 6e6f 7465 2066 6f72 6365 mand *note force │ │ │ │ -00058e00: 496e 7665 7273 654d 6170 3a20 666f 7263 InverseMap: forc │ │ │ │ -00058e10: 6549 6e76 6572 7365 4d61 702c 2870 6869 eInverseMap,(phi │ │ │ │ -00058e20: 2c70 7369 2920 6973 2069 6e76 6f6b 6564 ,psi) is invoked │ │ │ │ -00058e30: 2061 6e64 2070 7369 2069 730a 7265 7475 and psi is.retu │ │ │ │ -00058e40: 726e 6564 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d rned...+-------- │ │ │ │ +00058960: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ +00058970: 2a6e 6f74 6520 696e 7665 7273 653a 2028 *note inverse: ( │ │ │ │ +00058980: 4d61 6361 756c 6179 3244 6f63 2969 6e76 Macaulay2Doc)inv │ │ │ │ +00058990: 6572 7365 2c0a 2020 2a20 5573 6167 653a erse,. * Usage: │ │ │ │ +000589a0: 200a 2020 2020 2020 2020 696e 7665 7273 . invers │ │ │ │ +000589b0: 6520 7068 690a 2020 2020 2020 2020 696e e phi. in │ │ │ │ +000589c0: 7665 7273 6528 7068 692c 4365 7274 6966 verse(phi,Certif │ │ │ │ +000589d0: 793d 3e62 290a 2020 2a20 496e 7075 7473 y=>b). * Inputs │ │ │ │ +000589e0: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ +000589f0: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00058a00: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00058a10: 2c2c 2077 6869 6368 2068 6173 2074 6f20 ,, which has to │ │ │ │ +00058a20: 6265 2062 6972 6174 696f 6e61 6c2c 0a20 be birational,. │ │ │ │ +00058a30: 2020 2020 2020 2061 6e64 2062 2069 7320 and b is │ │ │ │ +00058a40: 6120 2a6e 6f74 6520 626f 6f6c 6561 6e20 a *note boolean │ │ │ │ +00058a50: 7661 6c75 653a 2028 4d61 6361 756c 6179 value: (Macaulay │ │ │ │ +00058a60: 3244 6f63 2942 6f6f 6c65 616e 2c2c 2074 2Doc)Boolean,, t │ │ │ │ +00058a70: 6861 7420 6973 2c20 7472 7565 0a20 2020 hat is, true. │ │ │ │ +00058a80: 2020 2020 206f 7220 6661 6c73 6520 2874 or false (t │ │ │ │ +00058a90: 6865 2064 6566 6175 6c74 2076 616c 7565 he default value │ │ │ │ +00058aa0: 2069 7320 6661 6c73 6529 0a20 202a 204f is false). * O │ │ │ │ +00058ab0: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00058ac0: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ +00058ad0: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ +00058ae0: 702c 2c20 7468 6520 696e 7665 7273 6520 p,, the inverse │ │ │ │ +00058af0: 6d61 7020 6f66 2070 6869 0a0a 4465 7363 map of phi..Desc │ │ │ │ +00058b00: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +00058b10: 3d3d 3d0a 0a69 6e76 6572 7365 2870 6869 ===..inverse(phi │ │ │ │ +00058b20: 2c43 6572 7469 6679 3d3e 7472 7565 2920 ,Certify=>true) │ │ │ │ +00058b30: 6973 2074 6865 2073 616d 6520 6173 202a is the same as * │ │ │ │ +00058b40: 6e6f 7465 2069 6e76 6572 7365 4d61 703a note inverseMap: │ │ │ │ +00058b50: 0a69 6e76 6572 7365 4d61 702c 2870 6869 .inverseMap,(phi │ │ │ │ +00058b60: 2c43 6572 7469 6679 3d3e 7472 7565 2c56 ,Certify=>true,V │ │ │ │ +00058b70: 6572 626f 7365 3d3e 6661 6c73 6529 2c20 erbose=>false), │ │ │ │ +00058b80: 7768 696c 650a 696e 7665 7273 6528 7068 while.inverse(ph │ │ │ │ +00058b90: 692c 4365 7274 6966 793d 3e66 616c 7365 i,Certify=>false │ │ │ │ +00058ba0: 2920 6170 706c 6965 7320 6120 6d69 6464 ) applies a midd │ │ │ │ +00058bb0: 6c65 2067 726f 756e 6420 6170 7072 6f61 le ground approa │ │ │ │ +00058bc0: 6368 2062 6574 7765 656e 202a 6e6f 7465 ch between *note │ │ │ │ +00058bd0: 0a69 6e76 6572 7365 4d61 703a 2069 6e76 .inverseMap: inv │ │ │ │ +00058be0: 6572 7365 4d61 702c 2870 6869 2c43 6572 erseMap,(phi,Cer │ │ │ │ +00058bf0: 7469 6679 3d3e 7472 7565 2920 616e 6420 tify=>true) and │ │ │ │ +00058c00: 2a6e 6f74 6520 696e 7665 7273 654d 6170 *note inverseMap │ │ │ │ +00058c10: 3a0a 696e 7665 7273 654d 6170 2c28 7068 :.inverseMap,(ph │ │ │ │ +00058c20: 692c 4365 7274 6966 793d 3e66 616c 7365 i,Certify=>false │ │ │ │ +00058c30: 292e 2054 6865 2070 726f 6365 6475 7265 ). The procedure │ │ │ │ +00058c40: 2066 6f72 2074 6865 206c 6174 7465 7220 for the latter │ │ │ │ +00058c50: 6973 2061 7320 666f 6c6c 6f77 733a 2049 is as follows: I │ │ │ │ +00058c60: 740a 6669 7273 7420 636f 6d70 7574 6573 t.first computes │ │ │ │ +00058c70: 2074 6865 2069 6e76 6572 7365 206d 6170 the inverse map │ │ │ │ +00058c80: 206f 6620 7068 6920 7573 696e 6720 7073 of phi using ps │ │ │ │ +00058c90: 6920 3d20 2a6e 6f74 6520 696e 7665 7273 i = *note invers │ │ │ │ +00058ca0: 654d 6170 3a20 696e 7665 7273 654d 6170 eMap: inverseMap │ │ │ │ +00058cb0: 2c0a 7068 692e 2054 6865 6e20 6974 2069 ,.phi. Then it i │ │ │ │ +00058cc0: 7320 6368 6563 6b65 6420 7468 6174 202a s checked that * │ │ │ │ +00058cd0: 6e6f 7465 2070 7369 2070 6869 2070 3a20 note psi phi p: │ │ │ │ +00058ce0: 5261 7469 6f6e 616c 4d61 7020 5f75 735f RationalMap _us_ │ │ │ │ +00058cf0: 7374 2c20 3d3d 2070 2061 6e64 0a2a 6e6f st, == p and.*no │ │ │ │ +00058d00: 7465 2070 6869 2070 7369 2071 3a20 5261 te phi psi q: Ra │ │ │ │ +00058d10: 7469 6f6e 616c 4d61 7020 5f75 735f 7374 tionalMap _us_st │ │ │ │ +00058d20: 2c20 3d3d 2071 2c20 7768 6572 6520 702c , == q, where p, │ │ │ │ +00058d30: 7120 6172 652c 2072 6573 7065 6374 6976 q are, respectiv │ │ │ │ +00058d40: 656c 792c 2061 202a 6e6f 7465 0a72 616e ely, a *note.ran │ │ │ │ +00058d50: 646f 6d20 706f 696e 743a 2070 6f69 6e74 dom point: point │ │ │ │ +00058d60: 2c20 6f6e 2074 6865 202a 6e6f 7465 2073 , on the *note s │ │ │ │ +00058d70: 6f75 7263 653a 2073 6f75 7263 655f 6c70 ource: source_lp │ │ │ │ +00058d80: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +00058d90: 616e 6420 7468 650a 2a6e 6f74 6520 7461 and the.*note ta │ │ │ │ +00058da0: 7267 6574 3a20 7461 7267 6574 5f6c 7052 rget: target_lpR │ │ │ │ +00058db0: 6174 696f 6e61 6c4d 6170 5f72 702c 206f ationalMap_rp, o │ │ │ │ +00058dc0: 6620 7068 692e 2046 696e 616c 6c79 2c20 f phi. Finally, │ │ │ │ +00058dd0: 6966 2074 6865 2074 6573 7473 2070 6173 if the tests pas │ │ │ │ +00058de0: 732c 2074 6865 0a63 6f6d 6d61 6e64 202a s, the.command * │ │ │ │ +00058df0: 6e6f 7465 2066 6f72 6365 496e 7665 7273 note forceInvers │ │ │ │ +00058e00: 654d 6170 3a20 666f 7263 6549 6e76 6572 eMap: forceInver │ │ │ │ +00058e10: 7365 4d61 702c 2870 6869 2c70 7369 2920 seMap,(phi,psi) │ │ │ │ +00058e20: 6973 2069 6e76 6f6b 6564 2061 6e64 2070 is invoked and p │ │ │ │ +00058e30: 7369 2069 730a 7265 7475 726e 6564 2e0a si is.returned.. │ │ │ │ +00058e40: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00058e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00058e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00058e90: 2d2d 2d2d 2d2b 0a7c 6931 203a 2052 203d -----+.|i1 : R = │ │ │ │ -00058ea0: 2051 515b 785f 302e 2e78 5f34 5d3b 2070 QQ[x_0..x_4]; p │ │ │ │ -00058eb0: 6869 203d 2072 6174 696f 6e61 6c4d 6170 hi = rationalMap │ │ │ │ -00058ec0: 206d 696e 6f72 7328 342c 7261 6e64 6f6d minors(4,random │ │ │ │ -00058ed0: 2852 5e7b 343a 317d 2c52 5e20 2020 2020 (R^{4:1},R^ │ │ │ │ -00058ee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00058e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00058e90: 0a7c 6931 203a 2052 203d 2051 515b 785f .|i1 : R = QQ[x_ │ │ │ │ +00058ea0: 302e 2e78 5f34 5d3b 2070 6869 203d 2072 0..x_4]; phi = r │ │ │ │ +00058eb0: 6174 696f 6e61 6c4d 6170 206d 696e 6f72 ationalMap minor │ │ │ │ +00058ec0: 7328 342c 7261 6e64 6f6d 2852 5e7b 343a s(4,random(R^{4: │ │ │ │ +00058ed0: 317d 2c52 5e20 2020 2020 2020 2020 207c 1},R^ | │ │ │ │ +00058ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00058ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f30: 2020 2020 207c 0a7c 6f32 203d 202d 2d20 |.|o2 = -- │ │ │ │ -00058f40: 7261 7469 6f6e 616c 206d 6170 202d 2d20 rational map -- │ │ │ │ +00058f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00058f30: 0a7c 6f32 203d 202d 2d20 7261 7469 6f6e .|o2 = -- ration │ │ │ │ +00058f40: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 00058f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00058f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058f80: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ -00058f90: 7263 653a 2050 726f 6a28 5151 5b78 202c rce: Proj(QQ[x , │ │ │ │ -00058fa0: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ -00058fb0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00058fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00058fd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00058fe0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00058ff0: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +00058f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00058f80: 0a7c 2020 2020 2073 6f75 7263 653a 2050 .| source: P │ │ │ │ +00058f90: 726f 6a28 5151 5b78 202c 2078 202c 2078 roj(QQ[x , x , x │ │ │ │ +00058fa0: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ +00058fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00058fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00058fd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00058fe0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00058ff0: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ 00059000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059020: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ -00059030: 6765 743a 2050 726f 6a28 5151 5b78 202c get: Proj(QQ[x , │ │ │ │ -00059040: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ -00059050: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00059060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059080: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00059090: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +00059010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059020: 0a7c 2020 2020 2074 6172 6765 743a 2050 .| target: P │ │ │ │ +00059030: 726f 6a28 5151 5b78 202c 2078 202c 2078 roj(QQ[x , x , x │ │ │ │ +00059040: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ +00059050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00059060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059080: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00059090: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ 000590a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000590b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000590c0: 2020 2020 207c 0a7c 2020 2020 2064 6566 |.| def │ │ │ │ -000590d0: 696e 696e 6720 666f 726d 733a 207b 2020 ining forms: { │ │ │ │ +000590b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000590c0: 0a7c 2020 2020 2064 6566 696e 696e 6720 .| defining │ │ │ │ +000590d0: 666f 726d 733a 207b 2020 2020 2020 2020 forms: { │ │ │ │ 000590e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000590f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059110: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059120: 2020 2020 2020 2020 2020 2020 2020 3134 14 │ │ │ │ -00059130: 3938 3639 2034 2020 2037 3832 3439 3036 9869 4 7824906 │ │ │ │ -00059140: 3133 2033 2020 2020 2031 3834 3832 3337 13 3 1848237 │ │ │ │ -00059150: 3136 3031 2032 2032 2020 2020 2020 2020 1601 2 2 │ │ │ │ -00059160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059170: 2020 2020 2020 2020 2020 2020 2020 2d2d -- │ │ │ │ -00059180: 2d2d 2d2d 7820 202b 202d 2d2d 2d2d 2d2d ----x + ------- │ │ │ │ -00059190: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -000591a0: 2d2d 2d2d 7820 7820 202d 2020 2020 2020 ----x x - │ │ │ │ -000591b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000591c0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000591d0: 3031 3630 2030 2020 2020 3136 3933 3434 0160 0 169344 │ │ │ │ -000591e0: 3030 2030 2031 2020 2020 3131 3433 3037 00 0 1 114307 │ │ │ │ -000591f0: 3230 3020 2030 2031 2020 2020 2020 2020 200 0 1 │ │ │ │ -00059200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059110: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059120: 2020 2020 2020 2020 3134 3938 3639 2034 149869 4 │ │ │ │ +00059130: 2020 2037 3832 3439 3036 3133 2033 2020 782490613 3 │ │ │ │ +00059140: 2020 2031 3834 3832 3337 3136 3031 2032 18482371601 2 │ │ │ │ +00059150: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00059160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059170: 2020 2020 2020 2020 2d2d 2d2d 2d2d 7820 ------x │ │ │ │ +00059180: 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ---------x x │ │ │ │ +00059190: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - -----------x │ │ │ │ +000591a0: 7820 202d 2020 2020 2020 2020 2020 207c x - | │ │ │ │ +000591b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000591c0: 2020 2020 2020 2020 2032 3031 3630 2030 20160 0 │ │ │ │ +000591d0: 2020 2020 3136 3933 3434 3030 2030 2031 16934400 0 1 │ │ │ │ +000591e0: 2020 2020 3131 3433 3037 3230 3020 2030 114307200 0 │ │ │ │ +000591f0: 2031 2020 2020 2020 2020 2020 2020 207c 1 | │ │ │ │ +00059200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059250: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059270: 3432 3036 3431 2034 2020 2032 3738 3638 420641 4 27868 │ │ │ │ -00059280: 3630 3733 3320 3320 2020 2020 3131 3935 60733 3 1195 │ │ │ │ -00059290: 3037 3834 3537 2032 2032 2020 2020 2020 078457 2 2 │ │ │ │ -000592a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000592b0: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -000592c0: 2d2d 2d2d 2d2d 7820 202b 202d 2d2d 2d2d ------x + ----- │ │ │ │ -000592d0: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -000592e0: 2d2d 2d2d 2d2d 7820 7820 2020 2020 2020 ------x x │ │ │ │ -000592f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059310: 2032 3832 3234 2030 2020 2020 3633 3530 28224 0 6350 │ │ │ │ -00059320: 3430 3030 2020 3020 3120 2020 2033 3137 4000 0 1 317 │ │ │ │ -00059330: 3532 3030 3020 2030 2031 2020 2020 2020 52000 0 1 │ │ │ │ -00059340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059250: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059260: 2020 2020 2020 2020 2020 3432 3036 3431 420641 │ │ │ │ +00059270: 2034 2020 2032 3738 3638 3630 3733 3320 4 2786860733 │ │ │ │ +00059280: 3320 2020 2020 3131 3935 3037 3834 3537 3 1195078457 │ │ │ │ +00059290: 2032 2032 2020 2020 2020 2020 2020 207c 2 2 | │ │ │ │ +000592a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000592b0: 2020 2020 2020 2020 2d20 2d2d 2d2d 2d2d - ------ │ │ │ │ +000592c0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ +000592d0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +000592e0: 7820 7820 2020 2020 2020 2020 2020 207c x x | │ │ │ │ +000592f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059300: 2020 2020 2020 2020 2020 2032 3832 3234 28224 │ │ │ │ +00059310: 2030 2020 2020 3633 3530 3430 3030 2020 0 63504000 │ │ │ │ +00059320: 3020 3120 2020 2033 3137 3532 3030 3020 0 1 31752000 │ │ │ │ +00059330: 2030 2031 2020 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +00059340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059390: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000593a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000593b0: 3536 3130 3739 2034 2020 2035 3030 3333 561079 4 50033 │ │ │ │ -000593c0: 3233 3330 3720 3320 2020 2020 3937 3432 23307 3 9742 │ │ │ │ -000593d0: 3733 3435 3332 3720 3220 3220 2020 2020 7345327 2 2 │ │ │ │ -000593e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000593f0: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -00059400: 2d2d 2d2d 2d2d 7820 202b 202d 2d2d 2d2d ------x + ----- │ │ │ │ -00059410: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -00059420: 2d2d 2d2d 2d2d 2d78 2078 2020 2020 2020 -------x x │ │ │ │ -00059430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059450: 2035 3634 3438 2030 2020 2020 3139 3035 56448 0 1905 │ │ │ │ -00059460: 3132 3030 2020 3020 3120 2020 2031 3930 1200 0 1 190 │ │ │ │ -00059470: 3531 3230 3030 2020 3020 3120 2020 2020 512000 0 1 │ │ │ │ -00059480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059390: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000593a0: 2020 2020 2020 2020 2020 3536 3130 3739 561079 │ │ │ │ +000593b0: 2034 2020 2035 3030 3333 3233 3330 3720 4 5003323307 │ │ │ │ +000593c0: 3320 2020 2020 3937 3432 3733 3435 3332 3 9742734532 │ │ │ │ +000593d0: 3720 3220 3220 2020 2020 2020 2020 207c 7 2 2 | │ │ │ │ +000593e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000593f0: 2020 2020 2020 2020 2d20 2d2d 2d2d 2d2d - ------ │ │ │ │ +00059400: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ +00059410: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +00059420: 2d78 2078 2020 2020 2020 2020 2020 207c -x x | │ │ │ │ +00059430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059440: 2020 2020 2020 2020 2020 2035 3634 3438 56448 │ │ │ │ +00059450: 2030 2020 2020 3139 3035 3132 3030 2020 0 19051200 │ │ │ │ +00059460: 3020 3120 2020 2031 3930 3531 3230 3030 0 1 190512000 │ │ │ │ +00059470: 2020 3020 3120 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +00059480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000594a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000594b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000594c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000594d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000594e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000594f0: 3831 3532 3537 2034 2020 2037 3036 3035 815257 4 70605 │ │ │ │ -00059500: 3639 3432 3120 3320 2020 2020 3139 3833 69421 3 1983 │ │ │ │ -00059510: 3130 3033 3039 3120 3220 3220 2020 2020 1003091 2 2 │ │ │ │ -00059520: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059530: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -00059540: 2d2d 2d2d 2d2d 7820 202b 202d 2d2d 2d2d ------x + ----- │ │ │ │ -00059550: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -00059560: 2d2d 2d2d 2d2d 2d78 2078 2020 2020 2020 -------x x │ │ │ │ -00059570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059590: 3136 3933 3434 2030 2020 2020 3534 3433 169344 0 5443 │ │ │ │ -000595a0: 3230 3030 2020 3020 3120 2020 2031 3432 2000 0 1 142 │ │ │ │ -000595b0: 3838 3430 3030 2020 3020 3120 2020 2020 884000 0 1 │ │ │ │ -000595c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000594c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000594d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000594e0: 2020 2020 2020 2020 2020 3831 3532 3537 815257 │ │ │ │ +000594f0: 2034 2020 2037 3036 3035 3639 3432 3120 4 7060569421 │ │ │ │ +00059500: 3320 2020 2020 3139 3833 3130 3033 3039 3 1983100309 │ │ │ │ +00059510: 3120 3220 3220 2020 2020 2020 2020 207c 1 2 2 | │ │ │ │ +00059520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059530: 2020 2020 2020 2020 2d20 2d2d 2d2d 2d2d - ------ │ │ │ │ +00059540: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ +00059550: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +00059560: 2d78 2078 2020 2020 2020 2020 2020 207c -x x | │ │ │ │ +00059570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059580: 2020 2020 2020 2020 2020 3136 3933 3434 169344 │ │ │ │ +00059590: 2030 2020 2020 3534 3433 3230 3030 2020 0 54432000 │ │ │ │ +000595a0: 3020 3120 2020 2031 3432 3838 3430 3030 0 1 142884000 │ │ │ │ +000595b0: 2020 3020 3120 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +000595c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000595d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000595e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000595f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059610: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059630: 3934 3834 3531 3320 3420 2020 3230 3334 9484513 4 2034 │ │ │ │ -00059640: 3734 3930 3320 3320 2020 2020 3134 3636 74903 3 1466 │ │ │ │ -00059650: 3832 3534 3832 3531 2032 2020 2020 2020 82548251 2 │ │ │ │ -00059660: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059670: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -00059680: 2d2d 2d2d 2d2d 2d78 2020 2b20 2d2d 2d2d -------x + ---- │ │ │ │ -00059690: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -000596a0: 2d2d 2d2d 2d2d 2d2d 7820 7820 2020 2020 --------x x │ │ │ │ -000596b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000596c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000596d0: 2032 3930 3330 3420 3020 2020 2033 3838 290304 0 388 │ │ │ │ -000596e0: 3830 3030 2020 3020 3120 2020 2032 3933 8000 0 1 293 │ │ │ │ -000596f0: 3933 3238 3030 3020 2030 2020 2020 2020 9328000 0 │ │ │ │ -00059700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00059710: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +00059600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059610: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059620: 2020 2020 2020 2020 2020 3934 3834 3531 948451 │ │ │ │ +00059630: 3320 3420 2020 3230 3334 3734 3930 3320 3 4 203474903 │ │ │ │ +00059640: 3320 2020 2020 3134 3636 3832 3534 3832 3 1466825482 │ │ │ │ +00059650: 3531 2032 2020 2020 2020 2020 2020 207c 51 2 | │ │ │ │ +00059660: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059670: 2020 2020 2020 2020 2d20 2d2d 2d2d 2d2d - ------ │ │ │ │ +00059680: 2d78 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 -x + ---------x │ │ │ │ +00059690: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ +000596a0: 2d2d 7820 7820 2020 2020 2020 2020 207c --x x | │ │ │ │ +000596b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000596c0: 2020 2020 2020 2020 2020 2032 3930 3330 29030 │ │ │ │ +000596d0: 3420 3020 2020 2033 3838 3830 3030 2020 4 0 3888000 │ │ │ │ +000596e0: 3020 3120 2020 2032 3933 3933 3238 3030 0 1 293932800 │ │ │ │ +000596f0: 3020 2030 2020 2020 2020 2020 2020 207c 0 0 | │ │ │ │ +00059700: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00059710: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 00059720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059750: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059750: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000597a0: 2020 2020 207c 0a7c 6f32 203a 2052 6174 |.|o2 : Rat │ │ │ │ -000597b0: 696f 6e61 6c4d 6170 2028 7261 7469 6f6e ionalMap (ration │ │ │ │ -000597c0: 616c 206d 6170 2066 726f 6d20 5050 5e34 al map from PP^4 │ │ │ │ -000597d0: 2074 6f20 5050 5e34 2920 2020 2020 2020 to PP^4) │ │ │ │ -000597e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000597f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00059790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000597a0: 0a7c 6f32 203a 2052 6174 696f 6e61 6c4d .|o2 : RationalM │ │ │ │ +000597b0: 6170 2028 7261 7469 6f6e 616c 206d 6170 ap (rational map │ │ │ │ +000597c0: 2066 726f 6d20 5050 5e34 2074 6f20 5050 from PP^4 to PP │ │ │ │ +000597d0: 5e34 2920 2020 2020 2020 2020 2020 2020 ^4) │ │ │ │ +000597e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000597f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00059800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00059820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00059840: 2d2d 2d2d 2d7c 0a7c 3529 2920 2d2d 2073 -----|.|5)) -- s │ │ │ │ -00059850: 7065 6369 616c 2043 7265 6d6f 6e61 2074 pecial Cremona t │ │ │ │ -00059860: 7261 6e73 666f 726d 6174 696f 6e20 6f66 ransformation of │ │ │ │ -00059870: 2050 5e34 206f 6620 7479 7065 2028 342c P^4 of type (4, │ │ │ │ -00059880: 3429 2020 2020 2020 2020 2020 2020 2020 4) │ │ │ │ -00059890: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00059840: 0a7c 3529 2920 2d2d 2073 7065 6369 616c .|5)) -- special │ │ │ │ +00059850: 2043 7265 6d6f 6e61 2074 7261 6e73 666f Cremona transfo │ │ │ │ +00059860: 726d 6174 696f 6e20 6f66 2050 5e34 206f rmation of P^4 o │ │ │ │ +00059870: 6620 7479 7065 2028 342c 3429 2020 2020 f type (4,4) │ │ │ │ +00059880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059890: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000598a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000598b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000598c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000598d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000598e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000598d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000598e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000598f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000599a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000599b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000599c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000599d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000599c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000599d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000599e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000599f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059a20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059a10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059a70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059a60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059ac0: 2020 2020 207c 0a7c 3831 3930 3733 3037 |.|81907307 │ │ │ │ -00059ad0: 3920 2020 3320 2020 3138 3737 3839 2034 9 3 187789 4 │ │ │ │ -00059ae0: 2020 2031 3336 3437 3438 3936 3720 3320 1364748967 3 │ │ │ │ -00059af0: 2020 2020 3636 3131 3432 3935 3839 3337 661142958937 │ │ │ │ -00059b00: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00059b10: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -00059b20: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 7820 -x x + ------x │ │ │ │ -00059b30: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + ----------x x │ │ │ │ -00059b40: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ -00059b50: 7820 7820 7820 202d 2020 2020 2020 2020 x x x - │ │ │ │ -00059b60: 2020 2020 207c 0a7c 2036 3533 3138 3430 |.| 6531840 │ │ │ │ -00059b70: 3020 3020 3120 2020 2032 3136 3030 2031 0 0 1 21600 1 │ │ │ │ -00059b80: 2020 2020 3637 3733 3736 3030 2020 3020 67737600 0 │ │ │ │ -00059b90: 3220 2020 2031 3031 3630 3634 3030 3020 2 1016064000 │ │ │ │ -00059ba0: 2030 2031 2032 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ -00059bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059ac0: 0a7c 3831 3930 3733 3037 3920 2020 3320 .|819073079 3 │ │ │ │ +00059ad0: 2020 3138 3737 3839 2034 2020 2031 3336 187789 4 136 │ │ │ │ +00059ae0: 3437 3438 3936 3720 3320 2020 2020 3636 4748967 3 66 │ │ │ │ +00059af0: 3131 3432 3935 3839 3337 2032 2020 2020 1142958937 2 │ │ │ │ +00059b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059b10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 .|---------x x │ │ │ │ +00059b20: 2b20 2d2d 2d2d 2d2d 7820 202b 202d 2d2d + ------x + --- │ │ │ │ +00059b30: 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 2d2d -------x x + -- │ │ │ │ +00059b40: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +00059b50: 202d 2020 2020 2020 2020 2020 2020 207c - | │ │ │ │ +00059b60: 0a7c 2036 3533 3138 3430 3020 3020 3120 .| 65318400 0 1 │ │ │ │ +00059b70: 2020 2032 3136 3030 2031 2020 2020 3637 21600 1 67 │ │ │ │ +00059b80: 3733 3736 3030 2020 3020 3220 2020 2031 737600 0 2 1 │ │ │ │ +00059b90: 3031 3630 3634 3030 3020 2030 2031 2032 016064000 0 1 2 │ │ │ │ +00059ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059bb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059c00: 2020 2020 207c 0a7c 2020 3737 3130 3930 |.| 771090 │ │ │ │ -00059c10: 3835 3120 2020 3320 2020 3634 3033 3939 851 3 640399 │ │ │ │ -00059c20: 3920 3420 2020 3633 3439 3833 3339 3937 9 4 6349833997 │ │ │ │ -00059c30: 2033 2020 2020 2031 3437 3730 3736 3134 3 147707614 │ │ │ │ -00059c40: 3531 2032 2020 2020 2020 2020 2020 2020 51 2 │ │ │ │ -00059c50: 2020 2020 207c 0a7c 2b20 2d2d 2d2d 2d2d |.|+ ------ │ │ │ │ -00059c60: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -00059c70: 2d78 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d -x - ---------- │ │ │ │ -00059c80: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -00059c90: 2d2d 7820 7820 7820 2020 2020 2020 2020 --x x x │ │ │ │ -00059ca0: 2020 2020 207c 0a7c 2020 2032 3732 3136 |.| 27216 │ │ │ │ -00059cb0: 3030 3020 3020 3120 2020 2033 3234 3030 000 0 1 32400 │ │ │ │ -00059cc0: 3020 3120 2020 2037 3632 3034 3830 3020 0 1 76204800 │ │ │ │ -00059cd0: 2030 2032 2020 2020 3334 3239 3231 3630 0 2 34292160 │ │ │ │ -00059ce0: 3020 2030 2031 2032 2020 2020 2020 2020 0 0 1 2 │ │ │ │ -00059cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059bf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059c00: 0a7c 2020 3737 3130 3930 3835 3120 2020 .| 771090851 │ │ │ │ +00059c10: 3320 2020 3634 3033 3939 3920 3420 2020 3 6403999 4 │ │ │ │ +00059c20: 3633 3439 3833 3339 3937 2033 2020 2020 6349833997 3 │ │ │ │ +00059c30: 2031 3437 3730 3736 3134 3531 2032 2020 14770761451 2 │ │ │ │ +00059c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059c50: 0a7c 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 .|+ ---------x x │ │ │ │ +00059c60: 2020 2b20 2d2d 2d2d 2d2d 2d78 2020 2d20 + -------x - │ │ │ │ +00059c70: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ +00059c80: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ +00059c90: 7820 2020 2020 2020 2020 2020 2020 207c x | │ │ │ │ +00059ca0: 0a7c 2020 2032 3732 3136 3030 3020 3020 .| 27216000 0 │ │ │ │ +00059cb0: 3120 2020 2033 3234 3030 3020 3120 2020 1 324000 1 │ │ │ │ +00059cc0: 2037 3632 3034 3830 3020 2030 2032 2020 76204800 0 2 │ │ │ │ +00059cd0: 2020 3334 3239 3231 3630 3020 2030 2031 342921600 0 1 │ │ │ │ +00059ce0: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00059cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059d40: 2020 2020 207c 0a7c 2020 2031 3436 3739 |.| 14679 │ │ │ │ -00059d50: 3439 3934 3920 2020 3320 2020 3836 3937 49949 3 8697 │ │ │ │ -00059d60: 3720 3420 2020 3130 3530 3833 3533 2033 7 4 10508353 3 │ │ │ │ -00059d70: 2020 2020 2033 3631 3432 3136 3735 3239 36142167529 │ │ │ │ -00059d80: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00059d90: 2020 2020 207c 0a7c 202b 202d 2d2d 2d2d |.| + ----- │ │ │ │ -00059da0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -00059db0: 2d78 2020 2b20 2d2d 2d2d 2d2d 2d2d 7820 -x + --------x │ │ │ │ -00059dc0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ -00059dd0: 7820 7820 7820 202d 2020 2020 2020 2020 x x x - │ │ │ │ -00059de0: 2020 2020 207c 0a7c 2020 2020 3133 3630 |.| 1360 │ │ │ │ -00059df0: 3830 3030 2020 3020 3120 2020 2034 3035 8000 0 1 405 │ │ │ │ -00059e00: 3020 3120 2020 2037 3134 3432 3020 2030 0 1 714420 0 │ │ │ │ -00059e10: 2032 2020 2020 3638 3538 3433 3230 3020 2 685843200 │ │ │ │ -00059e20: 2030 2031 2032 2020 2020 2020 2020 2020 0 1 2 │ │ │ │ -00059e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059d40: 0a7c 2020 2031 3436 3739 3439 3934 3920 .| 1467949949 │ │ │ │ +00059d50: 2020 3320 2020 3836 3937 3720 3420 2020 3 86977 4 │ │ │ │ +00059d60: 3130 3530 3833 3533 2033 2020 2020 2033 10508353 3 3 │ │ │ │ +00059d70: 3631 3432 3136 3735 3239 2032 2020 2020 6142167529 2 │ │ │ │ +00059d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059d90: 0a7c 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 .| + ----------x │ │ │ │ +00059da0: 2078 2020 2b20 2d2d 2d2d 2d78 2020 2b20 x + -----x + │ │ │ │ +00059db0: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 202d --------x x - - │ │ │ │ +00059dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +00059dd0: 202d 2020 2020 2020 2020 2020 2020 207c - | │ │ │ │ +00059de0: 0a7c 2020 2020 3133 3630 3830 3030 2020 .| 13608000 │ │ │ │ +00059df0: 3020 3120 2020 2034 3035 3020 3120 2020 0 1 4050 1 │ │ │ │ +00059e00: 2037 3134 3432 3020 2030 2032 2020 2020 714420 0 2 │ │ │ │ +00059e10: 3638 3538 3433 3230 3020 2030 2031 2032 685843200 0 1 2 │ │ │ │ +00059e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059e80: 2020 2020 207c 0a7c 2020 2035 3433 3637 |.| 54367 │ │ │ │ -00059e90: 3835 3938 3120 2020 3320 2020 3737 3631 85981 3 7761 │ │ │ │ -00059ea0: 3232 3120 3420 2020 3136 3930 3939 3837 221 4 16909987 │ │ │ │ -00059eb0: 3433 3320 3320 2020 2020 3234 3034 3832 433 3 240482 │ │ │ │ -00059ec0: 3139 3535 3439 2032 2020 2020 2020 2020 195549 2 │ │ │ │ -00059ed0: 2020 2020 207c 0a7c 202d 202d 2d2d 2d2d |.| - ----- │ │ │ │ -00059ee0: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -00059ef0: 2d2d 2d78 2020 2d20 2d2d 2d2d 2d2d 2d2d ---x - -------- │ │ │ │ -00059f00: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -00059f10: 2d2d 2d2d 2d2d 7820 7820 2020 2020 2020 ------x x │ │ │ │ -00059f20: 2020 2020 207c 0a7c 2020 2020 3138 3134 |.| 1814 │ │ │ │ -00059f30: 3430 3030 2020 3020 3120 2020 2033 3234 4000 0 1 324 │ │ │ │ -00059f40: 3030 3020 3120 2020 2034 3537 3232 3838 000 1 4572288 │ │ │ │ -00059f50: 3030 2020 3020 3220 2020 2020 3431 3939 00 0 2 4199 │ │ │ │ -00059f60: 3034 3030 3020 2030 2020 2020 2020 2020 04000 0 │ │ │ │ -00059f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00059e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059e80: 0a7c 2020 2035 3433 3637 3835 3938 3120 .| 5436785981 │ │ │ │ +00059e90: 2020 3320 2020 3737 3631 3232 3120 3420 3 7761221 4 │ │ │ │ +00059ea0: 2020 3136 3930 3939 3837 3433 3320 3320 16909987433 3 │ │ │ │ +00059eb0: 2020 2020 3234 3034 3832 3139 3535 3439 240482195549 │ │ │ │ +00059ec0: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00059ed0: 0a7c 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 .| - ----------x │ │ │ │ +00059ee0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d78 2020 x - -------x │ │ │ │ +00059ef0: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - -----------x x │ │ │ │ +00059f00: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ +00059f10: 7820 7820 2020 2020 2020 2020 2020 207c x x | │ │ │ │ +00059f20: 0a7c 2020 2020 3138 3134 3430 3030 2020 .| 18144000 │ │ │ │ +00059f30: 3020 3120 2020 2033 3234 3030 3020 3120 0 1 324000 1 │ │ │ │ +00059f40: 2020 2034 3537 3232 3838 3030 2020 3020 457228800 0 │ │ │ │ +00059f50: 3220 2020 2020 3431 3939 3034 3030 3020 2 419904000 │ │ │ │ +00059f60: 2030 2020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +00059f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00059f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00059fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00059fc0: 2020 2020 207c 0a7c 3220 2020 3533 3035 |.|2 5305 │ │ │ │ -00059fd0: 3134 3034 3937 2020 2033 2020 2037 3937 140497 3 797 │ │ │ │ -00059fe0: 3237 2034 2020 2034 3639 3939 3637 3230 27 4 469996720 │ │ │ │ -00059ff0: 3733 2033 2020 2020 2039 3835 3435 3535 73 3 9854555 │ │ │ │ -0005a000: 3134 3035 3839 2032 2020 2020 2020 2020 140589 2 │ │ │ │ -0005a010: 2020 2020 207c 0a7c 2020 2d20 2d2d 2d2d |.| - ---- │ │ │ │ -0005a020: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ -0005a030: 2d2d 7820 202d 202d 2d2d 2d2d 2d2d 2d2d --x - --------- │ │ │ │ -0005a040: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ -0005a050: 2d2d 2d2d 2d2d 7820 7820 2020 2020 2020 ------x x │ │ │ │ -0005a060: 2020 2020 207c 0a7c 3120 2020 2031 3633 |.|1 163 │ │ │ │ -0005a070: 3239 3630 3030 2030 2031 2020 2032 3032 296000 0 1 202 │ │ │ │ -0005a080: 3530 2031 2020 2020 3232 3836 3134 3430 50 1 22861440 │ │ │ │ -0005a090: 3020 2030 2032 2020 2020 3431 3135 3035 0 0 2 411505 │ │ │ │ -0005a0a0: 3932 3030 3020 2030 2020 2020 2020 2020 92000 0 │ │ │ │ -0005a0b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00059fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00059fc0: 0a7c 3220 2020 3533 3035 3134 3034 3937 .|2 5305140497 │ │ │ │ +00059fd0: 2020 2033 2020 2037 3937 3237 2034 2020 3 79727 4 │ │ │ │ +00059fe0: 2034 3639 3939 3637 3230 3733 2033 2020 46999672073 3 │ │ │ │ +00059ff0: 2020 2039 3835 3435 3535 3134 3035 3839 9854555140589 │ │ │ │ +0005a000: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +0005a010: 0a7c 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d .| - ---------- │ │ │ │ +0005a020: 7820 7820 202d 202d 2d2d 2d2d 7820 202d x x - -----x - │ │ │ │ +0005a030: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ +0005a040: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------- │ │ │ │ +0005a050: 7820 7820 2020 2020 2020 2020 2020 207c x x | │ │ │ │ +0005a060: 0a7c 3120 2020 2031 3633 3239 3630 3030 .|1 163296000 │ │ │ │ +0005a070: 2030 2031 2020 2032 3032 3530 2031 2020 0 1 20250 1 │ │ │ │ +0005a080: 2020 3232 3836 3134 3430 3020 2030 2032 228614400 0 2 │ │ │ │ +0005a090: 2020 2020 3431 3135 3035 3932 3030 3020 41150592000 │ │ │ │ +0005a0a0: 2030 2020 2020 2020 2020 2020 2020 207c 0 | │ │ │ │ +0005a0b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005a0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a100: 2d2d 2d2d 2d7c 0a7c 3239 3533 3039 3034 -----|.|29530904 │ │ │ │ -0005a110: 3733 3239 2020 2032 2020 2020 2032 3436 7329 2 246 │ │ │ │ -0005a120: 3333 3831 3120 3320 2020 2020 2020 2020 33811 3 │ │ │ │ +0005a0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005a100: 0a7c 3239 3533 3039 3034 3733 3239 2020 .|295309047329 │ │ │ │ +0005a110: 2032 2020 2020 2032 3436 3333 3831 3120 2 24633811 │ │ │ │ +0005a120: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0005a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a150: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005a160: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ -0005a170: 2d2d 2d2d 2d78 2078 2020 2b20 2020 2020 -----x x + │ │ │ │ +0005a140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a150: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 .|------------x │ │ │ │ +0005a160: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d78 x x + --------x │ │ │ │ +0005a170: 2078 2020 2b20 2020 2020 2020 2020 2020 x + │ │ │ │ 0005a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a1a0: 2020 2020 207c 0a7c 2033 3432 3932 3136 |.| 3429216 │ │ │ │ -0005a1b0: 3030 3020 2030 2031 2032 2020 2020 3534 000 0 1 2 54 │ │ │ │ -0005a1c0: 3433 3230 2020 3120 3220 2020 2020 2020 4320 1 2 │ │ │ │ +0005a190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a1a0: 0a7c 2033 3432 3932 3136 3030 3020 2030 .| 3429216000 0 │ │ │ │ +0005a1b0: 2031 2032 2020 2020 3534 3433 3230 2020 1 2 544320 │ │ │ │ +0005a1c0: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ 0005a1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a1f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005a1e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a1f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a240: 2020 2020 207c 0a7c 2020 3830 3939 3539 |.| 809959 │ │ │ │ -0005a250: 3438 3120 2020 3220 2020 2020 3835 3430 481 2 8540 │ │ │ │ -0005a260: 3032 3132 3320 3320 2020 2020 2020 2020 02123 3 │ │ │ │ +0005a230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a240: 0a7c 2020 3830 3939 3539 3438 3120 2020 .| 809959481 │ │ │ │ +0005a250: 3220 2020 2020 3835 3430 3032 3132 3320 2 854002123 │ │ │ │ +0005a260: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0005a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a290: 2020 2020 207c 0a7c 2d20 2d2d 2d2d 2d2d |.|- ------ │ │ │ │ -0005a2a0: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d2d ---x x x + ---- │ │ │ │ -0005a2b0: 2d2d 2d2d 2d78 2078 2020 2d20 2020 2020 -----x x - │ │ │ │ +0005a280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a290: 0a7c 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2078 .|- ---------x x │ │ │ │ +0005a2a0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 x + ---------x │ │ │ │ +0005a2b0: 2078 2020 2d20 2020 2020 2020 2020 2020 x - │ │ │ │ 0005a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a2e0: 2020 2020 207c 0a7c 2020 2031 3035 3834 |.| 10584 │ │ │ │ -0005a2f0: 3030 3020 3020 3120 3220 2020 2037 3737 000 0 1 2 777 │ │ │ │ -0005a300: 3630 3030 2020 3120 3220 2020 2020 2020 6000 1 2 │ │ │ │ +0005a2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a2e0: 0a7c 2020 2031 3035 3834 3030 3020 3020 .| 10584000 0 │ │ │ │ +0005a2f0: 3120 3220 2020 2037 3737 3630 3030 2020 1 2 7776000 │ │ │ │ +0005a300: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ 0005a310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005a320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a380: 2020 2020 207c 0a7c 3237 3033 3837 3737 |.|27038777 │ │ │ │ -0005a390: 3734 3331 2020 2032 2020 2020 2036 3536 7431 2 656 │ │ │ │ -0005a3a0: 3232 3430 3537 2033 2020 2020 2020 2020 224057 3 │ │ │ │ +0005a370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a380: 0a7c 3237 3033 3837 3737 3734 3331 2020 .|270387777431 │ │ │ │ +0005a390: 2032 2020 2020 2036 3536 3232 3430 3537 2 656224057 │ │ │ │ +0005a3a0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0005a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a3d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005a3e0: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ -0005a3f0: 2d2d 2d2d 2d2d 7820 7820 202b 2020 2020 ------x x + │ │ │ │ +0005a3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a3d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 .|------------x │ │ │ │ +0005a3e0: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ +0005a3f0: 7820 7820 202b 2020 2020 2020 2020 2020 x x + │ │ │ │ 0005a400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a420: 2020 2020 207c 0a7c 2020 3338 3130 3234 |.| 381024 │ │ │ │ -0005a430: 3030 3020 2030 2031 2032 2020 2020 3638 000 0 1 2 68 │ │ │ │ -0005a440: 3034 3030 3020 2031 2032 2020 2020 2020 04000 1 2 │ │ │ │ +0005a410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a420: 0a7c 2020 3338 3130 3234 3030 3020 2030 .| 381024000 0 │ │ │ │ +0005a430: 2031 2032 2020 2020 3638 3034 3030 3020 1 2 6804000 │ │ │ │ +0005a440: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ 0005a450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005a460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a4c0: 2020 2020 207c 0a7c 2020 2020 2020 3335 |.| 35 │ │ │ │ -0005a4d0: 3739 3931 3838 3635 3120 2020 3220 2020 799188651 2 │ │ │ │ -0005a4e0: 2020 3631 3736 3934 3830 3920 2020 2020 617694809 │ │ │ │ +0005a4b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a4c0: 0a7c 2020 2020 2020 3335 3739 3931 3838 .| 35799188 │ │ │ │ +0005a4d0: 3635 3120 2020 3220 2020 2020 3631 3736 651 2 6176 │ │ │ │ +0005a4e0: 3934 3830 3920 2020 2020 2020 2020 2020 94809 │ │ │ │ 0005a4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a510: 2020 2020 207c 0a7c 2078 2020 2b20 2d2d |.| x + -- │ │ │ │ -0005a520: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005a530: 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2020 2020 - ---------x │ │ │ │ +0005a500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a510: 0a7c 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d .| x + -------- │ │ │ │ +0005a520: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d2d ---x x x - ---- │ │ │ │ +0005a530: 2d2d 2d2d 2d78 2020 2020 2020 2020 2020 -----x │ │ │ │ 0005a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a560: 2020 2020 207c 0a7c 3120 3220 2020 2020 |.|1 2 │ │ │ │ -0005a570: 3437 3632 3830 3030 2020 3020 3120 3220 47628000 0 1 2 │ │ │ │ -0005a580: 2020 2035 3434 3332 3030 3020 2020 2020 54432000 │ │ │ │ +0005a550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a560: 0a7c 3120 3220 2020 2020 3437 3632 3830 .|1 2 476280 │ │ │ │ +0005a570: 3030 2020 3020 3120 3220 2020 2035 3434 00 0 1 2 544 │ │ │ │ +0005a580: 3332 3030 3020 2020 2020 2020 2020 2020 32000 │ │ │ │ 0005a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a5b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005a5a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a5b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a600: 2020 2020 207c 0a7c 2020 2020 2020 3336 |.| 36 │ │ │ │ -0005a610: 3631 3930 3131 3336 3737 3920 2020 3220 61901136779 2 │ │ │ │ -0005a620: 2020 2020 3639 3239 3232 3433 2020 2020 69292243 │ │ │ │ +0005a5f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a600: 0a7c 2020 2020 2020 3336 3631 3930 3131 .| 36619011 │ │ │ │ +0005a610: 3336 3737 3920 2020 3220 2020 2020 3639 36779 2 69 │ │ │ │ +0005a620: 3239 3232 3433 2020 2020 2020 2020 2020 292243 │ │ │ │ 0005a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a650: 2020 2020 207c 0a7c 2078 2020 2b20 2d2d |.| x + -- │ │ │ │ -0005a660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005a670: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2020 2020 - -------- │ │ │ │ +0005a640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a650: 0a7c 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d .| x + -------- │ │ │ │ +0005a660: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d2d -----x x x - -- │ │ │ │ +0005a670: 2d2d 2d2d 2d2d 2020 2020 2020 2020 2020 ------ │ │ │ │ 0005a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a6a0: 2020 2020 207c 0a7c 3120 3220 2020 2034 |.|1 2 4 │ │ │ │ -0005a6b0: 3131 3530 3539 3230 3030 2020 3020 3120 1150592000 0 1 │ │ │ │ -0005a6c0: 3220 2020 2033 3838 3830 3030 2020 2020 2 3888000 │ │ │ │ +0005a690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a6a0: 0a7c 3120 3220 2020 2034 3131 3530 3539 .|1 2 4115059 │ │ │ │ +0005a6b0: 3230 3030 2020 3020 3120 3220 2020 2033 2000 0 1 2 3 │ │ │ │ +0005a6c0: 3838 3830 3030 2020 2020 2020 2020 2020 888000 │ │ │ │ 0005a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a6f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005a6e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a6f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005a700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005a720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005a740: 2d2d 2d2d 2d7c 0a7c 3830 3630 3933 3837 -----|.|80609387 │ │ │ │ -0005a750: 2032 2032 2020 2036 3237 3333 3530 3933 2 2 627335093 │ │ │ │ -0005a760: 3137 3120 2020 2020 3220 2020 3634 3131 171 2 6411 │ │ │ │ -0005a770: 3139 3038 3334 3720 3220 3220 2020 3130 1908347 2 2 10 │ │ │ │ -0005a780: 3734 3234 3937 2020 2033 2020 2031 3033 742497 3 103 │ │ │ │ -0005a790: 3830 3633 377c 0a7c 2d2d 2d2d 2d2d 2d2d 80637|.|-------- │ │ │ │ -0005a7a0: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -0005a7b0: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d2d ---x x x - ---- │ │ │ │ -0005a7c0: 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 2d2d -------x x + -- │ │ │ │ -0005a7d0: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ -0005a7e0: 2d2d 2d2d 2d7c 0a7c 2035 3038 3033 3230 -----|.| 5080320 │ │ │ │ -0005a7f0: 2030 2032 2020 2020 3137 3134 3630 3830 0 2 17146080 │ │ │ │ -0005a800: 3030 2020 3020 3120 3220 2020 2032 3835 00 0 1 2 285 │ │ │ │ -0005a810: 3736 3830 3030 2020 3120 3220 2020 2031 768000 1 2 1 │ │ │ │ -0005a820: 3538 3736 3030 2030 2032 2020 2020 3131 587600 0 2 11 │ │ │ │ -0005a830: 3433 3037 327c 0a7c 2020 2020 2020 2020 43072|.| │ │ │ │ +0005a730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005a740: 0a7c 3830 3630 3933 3837 2032 2032 2020 .|80609387 2 2 │ │ │ │ +0005a750: 2036 3237 3333 3530 3933 3137 3120 2020 627335093171 │ │ │ │ +0005a760: 2020 3220 2020 3634 3131 3139 3038 3334 2 6411190834 │ │ │ │ +0005a770: 3720 3220 3220 2020 3130 3734 3234 3937 7 2 2 10742497 │ │ │ │ +0005a780: 2020 2033 2020 2031 3033 3830 3633 377c 3 10380637| │ │ │ │ +0005a790: 0a7c 2d2d 2d2d 2d2d 2d2d 7820 7820 202b .|--------x x + │ │ │ │ +0005a7a0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 ------------x x │ │ │ │ +0005a7b0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +0005a7c0: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ +0005a7d0: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d7c x x - --------| │ │ │ │ +0005a7e0: 0a7c 2035 3038 3033 3230 2030 2032 2020 .| 5080320 0 2 │ │ │ │ +0005a7f0: 2020 3137 3134 3630 3830 3030 2020 3020 1714608000 0 │ │ │ │ +0005a800: 3120 3220 2020 2032 3835 3736 3830 3030 1 2 285768000 │ │ │ │ +0005a810: 2020 3120 3220 2020 2031 3538 3736 3030 1 2 1587600 │ │ │ │ +0005a820: 2030 2032 2020 2020 3131 3433 3037 327c 0 2 1143072| │ │ │ │ +0005a830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a880: 2020 2020 207c 0a7c 3131 3934 3231 3234 |.|11942124 │ │ │ │ -0005a890: 3037 2032 2032 2020 2035 3438 3833 3331 07 2 2 5488331 │ │ │ │ -0005a8a0: 3935 3236 3120 2020 2020 3220 2020 3939 95261 2 99 │ │ │ │ -0005a8b0: 3639 3239 3832 3533 2032 2032 2020 2031 69298253 2 2 1 │ │ │ │ -0005a8c0: 3234 3531 3236 3431 2020 2033 2020 2031 24512641 3 1 │ │ │ │ -0005a8d0: 3330 3135 357c 0a7c 2d2d 2d2d 2d2d 2d2d 30155|.|-------- │ │ │ │ -0005a8e0: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -0005a8f0: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d2d -----x x x - -- │ │ │ │ -0005a900: 2d2d 2d2d 2d2d 2d2d 7820 7820 202b 202d --------x x + - │ │ │ │ -0005a910: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 202d --------x x - - │ │ │ │ -0005a920: 2d2d 2d2d 2d7c 0a7c 2031 3237 3030 3830 -----|.| 1270080 │ │ │ │ -0005a930: 3020 2030 2032 2020 2020 3232 3836 3134 0 0 2 228614 │ │ │ │ -0005a940: 3430 3030 2020 3020 3120 3220 2020 2032 4000 0 1 2 2 │ │ │ │ -0005a950: 3333 3238 3030 3020 2031 2032 2020 2020 3328000 1 2 │ │ │ │ -0005a960: 3130 3838 3634 3030 2030 2032 2020 2020 10886400 0 2 │ │ │ │ -0005a970: 2039 3739 377c 0a7c 2020 2020 2020 2020 9797|.| │ │ │ │ +0005a870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a880: 0a7c 3131 3934 3231 3234 3037 2032 2032 .|1194212407 2 2 │ │ │ │ +0005a890: 2020 2035 3438 3833 3331 3935 3236 3120 548833195261 │ │ │ │ +0005a8a0: 2020 2020 3220 2020 3939 3639 3239 3832 2 99692982 │ │ │ │ +0005a8b0: 3533 2032 2032 2020 2031 3234 3531 3236 53 2 2 1245126 │ │ │ │ +0005a8c0: 3431 2020 2033 2020 2031 3330 3135 357c 41 3 130155| │ │ │ │ +0005a8d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005a8e0: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - ------------x │ │ │ │ +0005a8f0: 2078 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d x x - -------- │ │ │ │ +0005a900: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ +0005a910: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d7c --x x - ------| │ │ │ │ +0005a920: 0a7c 2031 3237 3030 3830 3020 2030 2032 .| 12700800 0 2 │ │ │ │ +0005a930: 2020 2020 3232 3836 3134 3430 3030 2020 2286144000 │ │ │ │ +0005a940: 3020 3120 3220 2020 2032 3333 3238 3030 0 1 2 2332800 │ │ │ │ +0005a950: 3020 2031 2032 2020 2020 3130 3838 3634 0 1 2 108864 │ │ │ │ +0005a960: 3030 2030 2032 2020 2020 2039 3739 377c 00 0 2 9797| │ │ │ │ +0005a970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005a9c0: 2020 2020 207c 0a7c 2036 3030 3335 3934 |.| 6003594 │ │ │ │ -0005a9d0: 3533 3320 3220 3220 2020 3737 3035 3438 533 2 2 770548 │ │ │ │ -0005a9e0: 3237 3439 2020 2020 2032 2020 2031 3133 2749 2 113 │ │ │ │ -0005a9f0: 3334 3134 3737 2032 2032 2020 2032 3938 341477 2 2 298 │ │ │ │ -0005aa00: 3737 3339 3120 2020 3320 2020 3135 3535 77391 3 1555 │ │ │ │ -0005aa10: 3331 3633 207c 0a7c 202d 2d2d 2d2d 2d2d 3163 |.| ------- │ │ │ │ -0005aa20: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -0005aa30: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ -0005aa40: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ -0005aa50: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005aa60: 2d2d 2d2d 787c 0a7c 2020 3931 3434 3537 ----x|.| 914457 │ │ │ │ -0005aa70: 3630 2020 3020 3220 2020 2034 3238 3635 60 0 2 42865 │ │ │ │ -0005aa80: 3230 3020 2030 2031 2032 2020 2020 3230 200 0 1 2 20 │ │ │ │ -0005aa90: 3431 3230 3020 2031 2032 2020 2020 3635 41200 1 2 65 │ │ │ │ -0005aaa0: 3331 3834 2020 3020 3220 2020 2036 3132 3184 0 2 612 │ │ │ │ -0005aab0: 3336 3030 207c 0a7c 2020 2020 2020 2020 3600 |.| │ │ │ │ +0005a9b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005a9c0: 0a7c 2036 3030 3335 3934 3533 3320 3220 .| 6003594533 2 │ │ │ │ +0005a9d0: 3220 2020 3737 3035 3438 3237 3439 2020 2 7705482749 │ │ │ │ +0005a9e0: 2020 2032 2020 2031 3133 3334 3134 3737 2 113341477 │ │ │ │ +0005a9f0: 2032 2032 2020 2032 3938 3737 3339 3120 2 2 29877391 │ │ │ │ +0005aa00: 2020 3320 2020 3135 3535 3331 3633 207c 3 15553163 | │ │ │ │ +0005aa10: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .| ----------x x │ │ │ │ +0005aa20: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ +0005aa30: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ +0005aa40: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d78 x x + --------x │ │ │ │ +0005aa50: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 787c x + --------x| │ │ │ │ +0005aa60: 0a7c 2020 3931 3434 3537 3630 2020 3020 .| 91445760 0 │ │ │ │ +0005aa70: 3220 2020 2034 3238 3635 3230 3020 2030 2 42865200 0 │ │ │ │ +0005aa80: 2031 2032 2020 2020 3230 3431 3230 3020 1 2 2041200 │ │ │ │ +0005aa90: 2031 2032 2020 2020 3635 3331 3834 2020 1 2 653184 │ │ │ │ +0005aaa0: 3020 3220 2020 2036 3132 3336 3030 207c 0 2 6123600 | │ │ │ │ +0005aab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ab00: 2020 2020 207c 0a7c 3320 2020 2020 3136 |.|3 16 │ │ │ │ -0005ab10: 3531 3836 3731 3136 3737 2032 2032 2020 5186711677 2 2 │ │ │ │ -0005ab20: 2032 3834 3734 3635 3432 3231 3931 3120 28474654221911 │ │ │ │ -0005ab30: 2020 2020 3220 2020 3239 3835 3031 3737 2 29850177 │ │ │ │ -0005ab40: 3339 3031 2032 2032 2020 2034 3638 3438 3901 2 2 46848 │ │ │ │ -0005ab50: 3438 3637 317c 0a7c 2078 2020 2d20 2d2d 48671|.| x - -- │ │ │ │ -0005ab60: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ -0005ab70: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 --------------x │ │ │ │ -0005ab80: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005ab90: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -0005aba0: 2d2d 2d2d 2d7c 0a7c 3120 3220 2020 2031 -----|.|1 2 1 │ │ │ │ -0005abb0: 3832 3839 3135 3230 3020 2030 2032 2020 828915200 0 2 │ │ │ │ -0005abc0: 2020 2038 3233 3031 3138 3430 3030 2020 82301184000 │ │ │ │ -0005abd0: 3020 3120 3220 2020 2031 3134 3330 3732 0 1 2 1143072 │ │ │ │ -0005abe0: 3030 3020 2031 2032 2020 2020 3537 3135 000 1 2 5715 │ │ │ │ -0005abf0: 3336 3030 207c 0a7c 2020 2020 2020 2020 3600 |.| │ │ │ │ +0005aaf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ab00: 0a7c 3320 2020 2020 3136 3531 3836 3731 .|3 16518671 │ │ │ │ +0005ab10: 3136 3737 2032 2032 2020 2032 3834 3734 1677 2 2 28474 │ │ │ │ +0005ab20: 3635 3432 3231 3931 3120 2020 2020 3220 654221911 2 │ │ │ │ +0005ab30: 2020 3239 3835 3031 3737 3339 3031 2032 298501773901 2 │ │ │ │ +0005ab40: 2032 2020 2034 3638 3438 3438 3637 317c 2 4684848671| │ │ │ │ +0005ab50: 0a7c 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d .| x - -------- │ │ │ │ +0005ab60: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ +0005ab70: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005ab80: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + ------------x │ │ │ │ +0005ab90: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d7c x - ----------| │ │ │ │ +0005aba0: 0a7c 3120 3220 2020 2031 3832 3839 3135 .|1 2 1828915 │ │ │ │ +0005abb0: 3230 3020 2030 2032 2020 2020 2038 3233 200 0 2 823 │ │ │ │ +0005abc0: 3031 3138 3430 3030 2020 3020 3120 3220 01184000 0 1 2 │ │ │ │ +0005abd0: 2020 2031 3134 3330 3732 3030 3020 2031 1143072000 1 │ │ │ │ +0005abe0: 2032 2020 2020 3537 3135 3336 3030 207c 2 57153600 | │ │ │ │ +0005abf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ac00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ac10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ac20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ac30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ac40: 2020 2020 207c 0a7c 2033 2020 2020 2031 |.| 3 1 │ │ │ │ -0005ac50: 3130 3632 3133 3635 3120 3220 3220 2020 106213651 2 2 │ │ │ │ -0005ac60: 3235 3438 3936 3730 3037 3730 3720 2020 2548967007707 │ │ │ │ -0005ac70: 2020 3220 2020 3335 3034 3331 3830 3631 2 3504318061 │ │ │ │ -0005ac80: 2032 2032 2020 2031 3531 3731 3436 3833 2 2 151714683 │ │ │ │ -0005ac90: 3239 2020 207c 0a7c 7820 7820 202d 202d 29 |.|x x - - │ │ │ │ -0005aca0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 ---------x x + │ │ │ │ -0005acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 -------------x x │ │ │ │ -0005acc0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ -0005acd0: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ -0005ace0: 2d2d 7820 787c 0a7c 2031 2032 2020 2020 --x x|.| 1 2 │ │ │ │ -0005acf0: 2033 3537 3231 3030 2020 3020 3220 2020 3572100 0 2 │ │ │ │ -0005ad00: 2031 3032 3837 3634 3830 3030 2020 3020 10287648000 0 │ │ │ │ -0005ad10: 3120 3220 2020 2033 3432 3932 3136 3030 1 2 342921600 │ │ │ │ -0005ad20: 2031 2032 2020 2020 3131 3433 3037 3230 1 2 11430720 │ │ │ │ -0005ad30: 3020 2030 207c 0a7c 2d2d 2d2d 2d2d 2d2d 0 0 |.|-------- │ │ │ │ +0005ac30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ac40: 0a7c 2033 2020 2020 2031 3130 3632 3133 .| 3 1106213 │ │ │ │ +0005ac50: 3635 3120 3220 3220 2020 3235 3438 3936 651 2 2 254896 │ │ │ │ +0005ac60: 3730 3037 3730 3720 2020 2020 3220 2020 7007707 2 │ │ │ │ +0005ac70: 3335 3034 3331 3830 3631 2032 2032 2020 3504318061 2 2 │ │ │ │ +0005ac80: 2031 3531 3731 3436 3833 3239 2020 207c 15171468329 | │ │ │ │ +0005ac90: 0a7c 7820 7820 202d 202d 2d2d 2d2d 2d2d .|x x - ------- │ │ │ │ +0005aca0: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ +0005acb0: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ +0005acc0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202d ----------x x - │ │ │ │ +0005acd0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 787c -----------x x| │ │ │ │ +0005ace0: 0a7c 2031 2032 2020 2020 2033 3537 3231 .| 1 2 35721 │ │ │ │ +0005acf0: 3030 2020 3020 3220 2020 2031 3032 3837 00 0 2 10287 │ │ │ │ +0005ad00: 3634 3830 3030 2020 3020 3120 3220 2020 648000 0 1 2 │ │ │ │ +0005ad10: 2033 3432 3932 3136 3030 2031 2032 2020 342921600 1 2 │ │ │ │ +0005ad20: 2020 3131 3433 3037 3230 3020 2030 207c 114307200 0 | │ │ │ │ +0005ad30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ad80: 2d2d 2d2d 2d7c 0a7c 3237 2020 2033 2020 -----|.|27 3 │ │ │ │ -0005ad90: 2034 3633 3836 3420 3420 2020 3233 3334 463864 4 2334 │ │ │ │ -0005ada0: 3831 3634 3631 3920 3320 2020 2020 3330 8164619 3 30 │ │ │ │ -0005adb0: 3832 3330 3635 3135 3637 2032 2020 2020 8230651567 2 │ │ │ │ -0005adc0: 2020 2031 3332 3439 3632 3233 3434 3920 132496223449 │ │ │ │ -0005add0: 2020 3220 207c 0a7c 2d2d 7820 7820 202b 2 |.|--x x + │ │ │ │ -0005ade0: 202d 2d2d 2d2d 2d78 2020 2d20 2d2d 2d2d ------x - ---- │ │ │ │ -0005adf0: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d2d -------x x - -- │ │ │ │ -0005ae00: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005ae10: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - ------------x │ │ │ │ -0005ae20: 2078 2078 207c 0a7c 3020 2031 2032 2020 x x |.|0 1 2 │ │ │ │ -0005ae30: 2020 3539 3533 3520 3220 2020 2031 3438 59535 2 148 │ │ │ │ -0005ae40: 3137 3630 3030 2020 3020 3320 2020 2020 176000 0 3 │ │ │ │ -0005ae50: 3539 3237 3034 3030 3020 2030 2031 2033 592704000 0 1 3 │ │ │ │ -0005ae60: 2020 2020 2037 3632 3034 3830 3030 2020 762048000 │ │ │ │ -0005ae70: 3020 3120 337c 0a7c 2020 2020 2020 2020 0 1 3|.| │ │ │ │ +0005ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005ad80: 0a7c 3237 2020 2033 2020 2034 3633 3836 .|27 3 46386 │ │ │ │ +0005ad90: 3420 3420 2020 3233 3334 3831 3634 3631 4 4 2334816461 │ │ │ │ +0005ada0: 3920 3320 2020 2020 3330 3832 3330 3635 9 3 30823065 │ │ │ │ +0005adb0: 3135 3637 2032 2020 2020 2020 2031 3332 1567 2 132 │ │ │ │ +0005adc0: 3439 3632 3233 3434 3920 2020 3220 207c 496223449 2 | │ │ │ │ +0005add0: 0a7c 2d2d 7820 7820 202b 202d 2d2d 2d2d .|--x x + ----- │ │ │ │ +0005ade0: 2d78 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d -x - ---------- │ │ │ │ +0005adf0: 2d78 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d -x x - -------- │ │ │ │ +0005ae00: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ +0005ae10: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 207c ---------x x x | │ │ │ │ +0005ae20: 0a7c 3020 2031 2032 2020 2020 3539 3533 .|0 1 2 5953 │ │ │ │ +0005ae30: 3520 3220 2020 2031 3438 3137 3630 3030 5 2 148176000 │ │ │ │ +0005ae40: 2020 3020 3320 2020 2020 3539 3237 3034 0 3 592704 │ │ │ │ +0005ae50: 3030 3020 2030 2031 2033 2020 2020 2037 000 0 1 3 7 │ │ │ │ +0005ae60: 3632 3034 3830 3030 2020 3020 3120 337c 62048000 0 1 3| │ │ │ │ +0005ae70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ae80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ae90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005aea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aec0: 2020 2020 207c 0a7c 3032 3734 3720 2020 |.|02747 │ │ │ │ -0005aed0: 3320 2020 3132 3136 3835 3537 2034 2020 3 12168557 4 │ │ │ │ -0005aee0: 2032 3736 3033 3332 3739 3720 3320 2020 2760332797 3 │ │ │ │ -0005aef0: 2020 3139 3831 3839 3132 3635 3320 3220 19818912653 2 │ │ │ │ -0005af00: 2020 2020 2020 3236 3036 3333 3439 3120 260633491 │ │ │ │ -0005af10: 2020 3220 207c 0a7c 2d2d 2d2d 2d78 2078 2 |.|-----x x │ │ │ │ -0005af20: 2020 2b20 2d2d 2d2d 2d2d 2d2d 7820 202b + --------x + │ │ │ │ -0005af30: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 ----------x x │ │ │ │ -0005af40: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - -----------x x │ │ │ │ -0005af50: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 x + ---------x │ │ │ │ -0005af60: 2078 2078 207c 0a7c 3736 3030 2020 3120 x x |.|7600 1 │ │ │ │ -0005af70: 3220 2020 2032 3732 3136 3020 2032 2020 2 272160 2 │ │ │ │ -0005af80: 2020 3232 3232 3634 3030 2020 3020 3320 22226400 0 3 │ │ │ │ -0005af90: 2020 2033 3333 3339 3630 3030 2020 3020 333396000 0 │ │ │ │ -0005afa0: 3120 3320 2020 2035 3234 3838 3030 3020 1 3 52488000 │ │ │ │ -0005afb0: 3020 3120 337c 0a7c 2020 2020 2020 2020 0 1 3|.| │ │ │ │ +0005aeb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005aec0: 0a7c 3032 3734 3720 2020 3320 2020 3132 .|02747 3 12 │ │ │ │ +0005aed0: 3136 3835 3537 2034 2020 2032 3736 3033 168557 4 27603 │ │ │ │ +0005aee0: 3332 3739 3720 3320 2020 2020 3139 3831 32797 3 1981 │ │ │ │ +0005aef0: 3839 3132 3635 3320 3220 2020 2020 2020 8912653 2 │ │ │ │ +0005af00: 3236 3036 3333 3439 3120 2020 3220 207c 260633491 2 | │ │ │ │ +0005af10: 0a7c 2d2d 2d2d 2d78 2078 2020 2b20 2d2d .|-----x x + -- │ │ │ │ +0005af20: 2d2d 2d2d 2d2d 7820 202b 202d 2d2d 2d2d ------x + ----- │ │ │ │ +0005af30: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ +0005af40: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b20 -------x x x + │ │ │ │ +0005af50: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 207c ---------x x x | │ │ │ │ +0005af60: 0a7c 3736 3030 2020 3120 3220 2020 2032 .|7600 1 2 2 │ │ │ │ +0005af70: 3732 3136 3020 2032 2020 2020 3232 3232 72160 2 2222 │ │ │ │ +0005af80: 3634 3030 2020 3020 3320 2020 2033 3333 6400 0 3 333 │ │ │ │ +0005af90: 3339 3630 3030 2020 3020 3120 3320 2020 396000 0 1 3 │ │ │ │ +0005afa0: 2035 3234 3838 3030 3020 3020 3120 337c 52488000 0 1 3| │ │ │ │ +0005afb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005afc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005afd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b000: 2020 2020 207c 0a7c 2020 3320 2020 3233 |.| 3 23 │ │ │ │ -0005b010: 3138 3530 3720 3420 2020 3332 3735 3438 18507 4 327548 │ │ │ │ -0005b020: 3635 3933 3920 3320 2020 2020 3130 3234 65939 3 1024 │ │ │ │ -0005b030: 3232 3438 3238 3636 3720 3220 2020 2020 224828667 2 │ │ │ │ -0005b040: 2020 3932 3232 3339 3736 3639 2020 2032 9222397669 2 │ │ │ │ -0005b050: 2020 2020 207c 0a7c 2078 2020 2d20 2d2d |.| x - -- │ │ │ │ -0005b060: 2d2d 2d2d 2d78 2020 2b20 2d2d 2d2d 2d2d -----x + ------ │ │ │ │ -0005b070: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -0005b080: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005b090: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ----------x x │ │ │ │ -0005b0a0: 7820 202b 207c 0a7c 3120 3220 2020 2038 x + |.|1 2 8 │ │ │ │ -0005b0b0: 3136 3438 3020 3220 2020 2020 3434 3435 16480 2 4445 │ │ │ │ -0005b0c0: 3238 3030 2020 3020 3320 2020 2020 3636 2800 0 3 66 │ │ │ │ -0005b0d0: 3637 3932 3030 3020 2020 3020 3120 3320 6792000 0 1 3 │ │ │ │ -0005b0e0: 2020 2031 3238 3539 3536 3030 2030 2031 128595600 0 1 │ │ │ │ -0005b0f0: 2033 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0005aff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b000: 0a7c 2020 3320 2020 3233 3138 3530 3720 .| 3 2318507 │ │ │ │ +0005b010: 3420 2020 3332 3735 3438 3635 3933 3920 4 32754865939 │ │ │ │ +0005b020: 3320 2020 2020 3130 3234 3232 3438 3238 3 1024224828 │ │ │ │ +0005b030: 3636 3720 3220 2020 2020 2020 3932 3232 667 2 9222 │ │ │ │ +0005b040: 3339 3736 3639 2020 2032 2020 2020 207c 397669 2 | │ │ │ │ +0005b050: 0a7c 2078 2020 2d20 2d2d 2d2d 2d2d 2d78 .| x - -------x │ │ │ │ +0005b060: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + -----------x │ │ │ │ +0005b070: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +0005b080: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d2d ---x x x + ---- │ │ │ │ +0005b090: 2d2d 2d2d 2d2d 7820 7820 7820 202b 207c ------x x x + | │ │ │ │ +0005b0a0: 0a7c 3120 3220 2020 2038 3136 3438 3020 .|1 2 816480 │ │ │ │ +0005b0b0: 3220 2020 2020 3434 3435 3238 3030 2020 2 44452800 │ │ │ │ +0005b0c0: 3020 3320 2020 2020 3636 3637 3932 3030 0 3 66679200 │ │ │ │ +0005b0d0: 3020 2020 3020 3120 3320 2020 2031 3238 0 0 1 3 128 │ │ │ │ +0005b0e0: 3539 3536 3030 2030 2031 2033 2020 207c 595600 0 1 3 | │ │ │ │ +0005b0f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b140: 2020 2020 207c 0a7c 2020 2033 2020 2036 |.| 3 6 │ │ │ │ -0005b150: 3535 3337 3131 3831 2020 2033 2020 2035 55371181 3 5 │ │ │ │ -0005b160: 3633 3831 3635 2034 2020 2032 3738 3932 638165 4 27892 │ │ │ │ -0005b170: 3631 3831 3833 2033 2020 2020 2032 3234 618183 3 224 │ │ │ │ -0005b180: 3733 3232 3533 3433 3920 3220 2020 2020 732253439 2 │ │ │ │ -0005b190: 2020 3339 327c 0a7c 7820 7820 202b 202d 392|.|x x + - │ │ │ │ -0005b1a0: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 202d --------x x - - │ │ │ │ -0005b1b0: 2d2d 2d2d 2d2d 7820 202b 202d 2d2d 2d2d ------x + ----- │ │ │ │ -0005b1c0: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ -0005b1d0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005b1e0: 2d20 2d2d 2d7c 0a7c 2030 2032 2020 2020 - ---|.| 0 2 │ │ │ │ -0005b1f0: 3834 3637 3230 3020 2031 2032 2020 2020 8467200 1 2 │ │ │ │ -0005b200: 3235 3430 3136 2032 2020 2020 3137 3738 254016 2 1778 │ │ │ │ -0005b210: 3131 3230 3020 2030 2033 2020 2020 2033 11200 0 3 3 │ │ │ │ -0005b220: 3333 3339 3630 3030 2020 3020 3120 3320 33396000 0 1 3 │ │ │ │ -0005b230: 2020 2020 327c 0a7c 2020 2020 2020 2020 2|.| │ │ │ │ +0005b130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b140: 0a7c 2020 2033 2020 2036 3535 3337 3131 .| 3 6553711 │ │ │ │ +0005b150: 3831 2020 2033 2020 2035 3633 3831 3635 81 3 5638165 │ │ │ │ +0005b160: 2034 2020 2032 3738 3932 3631 3831 3833 4 27892618183 │ │ │ │ +0005b170: 2033 2020 2020 2032 3234 3733 3232 3533 3 224732253 │ │ │ │ +0005b180: 3433 3920 3220 2020 2020 2020 3339 327c 439 2 392| │ │ │ │ +0005b190: 0a7c 7820 7820 202b 202d 2d2d 2d2d 2d2d .|x x + ------- │ │ │ │ +0005b1a0: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ +0005b1b0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d x + ----------- │ │ │ │ +0005b1c0: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ +0005b1d0: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d7c ---x x x - ---| │ │ │ │ +0005b1e0: 0a7c 2030 2032 2020 2020 3834 3637 3230 .| 0 2 846720 │ │ │ │ +0005b1f0: 3020 2031 2032 2020 2020 3235 3430 3136 0 1 2 254016 │ │ │ │ +0005b200: 2032 2020 2020 3137 3738 3131 3230 3020 2 177811200 │ │ │ │ +0005b210: 2030 2033 2020 2020 2033 3333 3339 3630 0 3 3333960 │ │ │ │ +0005b220: 3030 2020 3020 3120 3320 2020 2020 327c 00 0 1 3 2| │ │ │ │ +0005b230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b280: 2020 2020 207c 0a7c 3320 2020 3236 3230 |.|3 2620 │ │ │ │ -0005b290: 3838 3238 3139 2020 2033 2020 2033 3937 882819 3 397 │ │ │ │ -0005b2a0: 3039 3920 3420 2020 3130 3936 3237 3337 099 4 10962737 │ │ │ │ -0005b2b0: 3434 3720 3320 2020 2020 3338 3539 3630 447 3 385960 │ │ │ │ -0005b2c0: 3732 3531 2032 2020 2020 2020 2035 3033 7251 2 503 │ │ │ │ -0005b2d0: 3531 3237 367c 0a7c 2020 2b20 2d2d 2d2d 51276|.| + ---- │ │ │ │ -0005b2e0: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ -0005b2f0: 2d2d 2d78 2020 2b20 2d2d 2d2d 2d2d 2d2d ---x + -------- │ │ │ │ -0005b300: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -0005b310: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ -0005b320: 2d2d 2d2d 2d7c 0a7c 3220 2020 2036 3335 -----|.|2 635 │ │ │ │ -0005b330: 3034 3030 3020 2031 2032 2020 2020 3235 04000 1 2 25 │ │ │ │ -0005b340: 3230 3020 3220 2020 2020 3736 3230 3438 200 2 762048 │ │ │ │ -0005b350: 3030 2020 3020 3320 2020 2034 3233 3336 00 0 3 42336 │ │ │ │ -0005b360: 3030 3020 2030 2031 2033 2020 2020 3432 000 0 1 3 42 │ │ │ │ -0005b370: 3836 3532 307c 0a7c 2d2d 2d2d 2d2d 2d2d 86520|.|-------- │ │ │ │ +0005b270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b280: 0a7c 3320 2020 3236 3230 3838 3238 3139 .|3 2620882819 │ │ │ │ +0005b290: 2020 2033 2020 2033 3937 3039 3920 3420 3 397099 4 │ │ │ │ +0005b2a0: 2020 3130 3936 3237 3337 3434 3720 3320 10962737447 3 │ │ │ │ +0005b2b0: 2020 2020 3338 3539 3630 3732 3531 2032 3859607251 2 │ │ │ │ +0005b2c0: 2020 2020 2020 2035 3033 3531 3237 367c 50351276| │ │ │ │ +0005b2d0: 0a7c 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d .| + ---------- │ │ │ │ +0005b2e0: 7820 7820 202b 202d 2d2d 2d2d 2d78 2020 x x + ------x │ │ │ │ +0005b2f0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + -----------x x │ │ │ │ +0005b300: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + ----------x │ │ │ │ +0005b310: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d7c x x - --------| │ │ │ │ +0005b320: 0a7c 3220 2020 2036 3335 3034 3030 3020 .|2 63504000 │ │ │ │ +0005b330: 2031 2032 2020 2020 3235 3230 3020 3220 1 2 25200 2 │ │ │ │ +0005b340: 2020 2020 3736 3230 3438 3030 2020 3020 76204800 0 │ │ │ │ +0005b350: 3320 2020 2034 3233 3336 3030 3020 2030 3 42336000 0 │ │ │ │ +0005b360: 2031 2033 2020 2020 3432 3836 3532 307c 1 3 4286520| │ │ │ │ +0005b370: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005b380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b3c0: 2d2d 2d2d 2d7c 0a7c 2020 2037 3436 3431 -----|.| 74641 │ │ │ │ -0005b3d0: 3935 3337 2033 2020 2020 2031 3833 3033 9537 3 18303 │ │ │ │ -0005b3e0: 3132 3138 3839 2032 2020 2020 2020 2032 121889 2 2 │ │ │ │ -0005b3f0: 3532 3630 3735 3135 3639 3120 2020 2020 52607515691 │ │ │ │ -0005b400: 2020 2020 2020 3233 3532 3433 3232 3738 2352432278 │ │ │ │ -0005b410: 3920 3220 207c 0a7c 202b 202d 2d2d 2d2d 9 2 |.| + ----- │ │ │ │ -0005b420: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ -0005b430: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ -0005b440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005b450: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ -0005b460: 2d78 2078 207c 0a7c 2020 2020 3130 3230 -x x |.| 1020 │ │ │ │ -0005b470: 3630 3030 2031 2033 2020 2020 2037 3131 6000 1 3 711 │ │ │ │ -0005b480: 3234 3438 3020 2030 2032 2033 2020 2020 24480 0 2 3 │ │ │ │ -0005b490: 3533 3334 3333 3630 3030 2020 3020 3120 5334336000 0 1 │ │ │ │ -0005b4a0: 3220 3320 2020 2020 3638 3538 3433 3230 2 3 68584320 │ │ │ │ -0005b4b0: 2020 3120 327c 0a7c 2020 2020 2020 2020 1 2|.| │ │ │ │ +0005b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005b3c0: 0a7c 2020 2037 3436 3431 3935 3337 2033 .| 746419537 3 │ │ │ │ +0005b3d0: 2020 2020 2031 3833 3033 3132 3138 3839 18303121889 │ │ │ │ +0005b3e0: 2032 2020 2020 2020 2032 3532 3630 3735 2 2526075 │ │ │ │ +0005b3f0: 3135 3639 3120 2020 2020 2020 2020 2020 15691 │ │ │ │ +0005b400: 3233 3532 3433 3232 3738 3920 3220 207c 23524322789 2 | │ │ │ │ +0005b410: 0a7c 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 .| + ---------x │ │ │ │ +0005b420: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d x + ----------- │ │ │ │ +0005b430: 7820 7820 7820 202d 202d 2d2d 2d2d 2d2d x x x - ------- │ │ │ │ +0005b440: 2d2d 2d2d 2d78 2078 2078 2078 2020 2b20 -----x x x x + │ │ │ │ +0005b450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 207c -----------x x | │ │ │ │ +0005b460: 0a7c 2020 2020 3130 3230 3630 3030 2031 .| 10206000 1 │ │ │ │ +0005b470: 2033 2020 2020 2037 3131 3234 3438 3020 3 71124480 │ │ │ │ +0005b480: 2030 2032 2033 2020 2020 3533 3334 3333 0 2 3 533433 │ │ │ │ +0005b490: 3630 3030 2020 3020 3120 3220 3320 2020 6000 0 1 2 3 │ │ │ │ +0005b4a0: 2020 3638 3538 3433 3230 2020 3120 327c 68584320 1 2| │ │ │ │ +0005b4b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b500: 2020 2020 207c 0a7c 2020 2036 3938 3539 |.| 69859 │ │ │ │ -0005b510: 3435 3435 3720 3320 2020 2020 3339 3737 45457 3 3977 │ │ │ │ -0005b520: 3839 3736 3533 3720 3220 2020 2020 2020 8976537 2 │ │ │ │ -0005b530: 3233 3933 3234 3932 3231 3332 3720 2020 2393249221327 │ │ │ │ -0005b540: 2020 2020 2020 2020 3230 3834 3639 3935 20846995 │ │ │ │ -0005b550: 3430 3134 337c 0a7c 202b 202d 2d2d 2d2d 40143|.| + ----- │ │ │ │ -0005b560: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005b570: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ -0005b580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 -------------x x │ │ │ │ -0005b590: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005b5a0: 2d2d 2d2d 2d7c 0a7c 2020 2020 3430 3832 -----|.| 4082 │ │ │ │ -0005b5b0: 3430 3030 2020 3120 3320 2020 2032 3530 4000 1 3 250 │ │ │ │ -0005b5c0: 3034 3730 3030 2020 3020 3220 3320 2020 047000 0 2 3 │ │ │ │ -0005b5d0: 2033 3630 3036 3736 3830 3030 2020 3020 36006768000 0 │ │ │ │ -0005b5e0: 3120 3220 3320 2020 2020 3235 3731 3931 1 2 3 257191 │ │ │ │ -0005b5f0: 3230 3030 207c 0a7c 2020 2020 2020 2020 2000 |.| │ │ │ │ +0005b4f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b500: 0a7c 2020 2036 3938 3539 3435 3435 3720 .| 6985945457 │ │ │ │ +0005b510: 3320 2020 2020 3339 3737 3839 3736 3533 3 3977897653 │ │ │ │ +0005b520: 3720 3220 2020 2020 2020 3233 3933 3234 7 2 239324 │ │ │ │ +0005b530: 3932 3231 3332 3720 2020 2020 2020 2020 9221327 │ │ │ │ +0005b540: 2020 3230 3834 3639 3935 3430 3134 337c 2084699540143| │ │ │ │ +0005b550: 0a7c 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 .| + ----------x │ │ │ │ +0005b560: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ +0005b570: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ +0005b580: 2d2d 2d2d 2d2d 2d78 2078 2078 2078 2020 -------x x x x │ │ │ │ +0005b590: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c + -------------| │ │ │ │ +0005b5a0: 0a7c 2020 2020 3430 3832 3430 3030 2020 .| 40824000 │ │ │ │ +0005b5b0: 3120 3320 2020 2032 3530 3034 3730 3030 1 3 250047000 │ │ │ │ +0005b5c0: 2020 3020 3220 3320 2020 2033 3630 3036 0 2 3 36006 │ │ │ │ +0005b5d0: 3736 3830 3030 2020 3020 3120 3220 3320 768000 0 1 2 3 │ │ │ │ +0005b5e0: 2020 2020 3235 3731 3931 3230 3030 207c 2571912000 | │ │ │ │ +0005b5f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b640: 2020 2020 207c 0a7c 3236 3530 3332 3937 |.|26503297 │ │ │ │ -0005b650: 3320 3320 2020 2020 3935 3034 3432 3331 3 3 95044231 │ │ │ │ -0005b660: 3633 2032 2020 2020 2020 2033 3636 3336 63 2 36636 │ │ │ │ -0005b670: 3537 3737 3734 3731 3120 2020 2020 2020 577774711 │ │ │ │ -0005b680: 2020 2020 3230 3736 3830 3432 3732 3837 207680427287 │ │ │ │ -0005b690: 2032 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2 |.|-------- │ │ │ │ -0005b6a0: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ -0005b6b0: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ -0005b6c0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ -0005b6d0: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ -0005b6e0: 7820 7820 787c 0a7c 2032 3535 3135 3030 x x x|.| 2551500 │ │ │ │ -0005b6f0: 2020 3120 3320 2020 2020 3938 3738 3430 1 3 987840 │ │ │ │ -0005b700: 3020 2030 2032 2033 2020 2020 2031 3830 0 0 2 3 180 │ │ │ │ -0005b710: 3033 3338 3430 3030 2020 3020 3120 3220 03384000 0 1 2 │ │ │ │ -0005b720: 3320 2020 2020 3336 3734 3136 3030 3020 3 367416000 │ │ │ │ -0005b730: 2031 2032 207c 0a7c 2020 2020 2020 2020 1 2 |.| │ │ │ │ +0005b630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b640: 0a7c 3236 3530 3332 3937 3320 3320 2020 .|265032973 3 │ │ │ │ +0005b650: 2020 3935 3034 3432 3331 3633 2032 2020 9504423163 2 │ │ │ │ +0005b660: 2020 2020 2033 3636 3336 3537 3737 3734 36636577774 │ │ │ │ +0005b670: 3731 3120 2020 2020 2020 2020 2020 3230 711 20 │ │ │ │ +0005b680: 3736 3830 3432 3732 3837 2032 2020 207c 7680427287 2 | │ │ │ │ +0005b690: 0a7c 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 .|---------x x │ │ │ │ +0005b6a0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ----------x x │ │ │ │ +0005b6b0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +0005b6c0: 2d2d 2d78 2078 2078 2078 2020 2b20 2d2d ---x x x x + -- │ │ │ │ +0005b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 787c ----------x x x| │ │ │ │ +0005b6e0: 0a7c 2032 3535 3135 3030 2020 3120 3320 .| 2551500 1 3 │ │ │ │ +0005b6f0: 2020 2020 3938 3738 3430 3020 2030 2032 9878400 0 2 │ │ │ │ +0005b700: 2033 2020 2020 2031 3830 3033 3338 3430 3 180033840 │ │ │ │ +0005b710: 3030 2020 3020 3120 3220 3320 2020 2020 00 0 1 2 3 │ │ │ │ +0005b720: 3336 3734 3136 3030 3020 2031 2032 207c 367416000 1 2 | │ │ │ │ +0005b730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b780: 2020 2020 207c 0a7c 3736 3937 3432 3532 |.|76974252 │ │ │ │ -0005b790: 3431 2020 2032 2020 2020 2035 3338 3137 41 2 53817 │ │ │ │ -0005b7a0: 3437 3436 3120 3320 2020 2020 3237 3635 47461 3 2765 │ │ │ │ -0005b7b0: 3332 3131 3520 3220 2020 2020 2020 3337 32115 2 37 │ │ │ │ -0005b7c0: 3139 3635 3533 3837 3532 3320 2020 2020 19655387523 │ │ │ │ -0005b7d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005b7e0: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ -0005b7f0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005b800: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ -0005b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005b820: 2078 2020 2d7c 0a7c 3035 3735 3239 3630 x -|.|05752960 │ │ │ │ -0005b830: 3020 2030 2031 2033 2020 2020 3430 3832 0 0 1 3 4082 │ │ │ │ -0005b840: 3430 3030 2020 3120 3320 2020 2020 3333 4000 1 3 33 │ │ │ │ -0005b850: 3333 3936 2020 3020 3220 3320 2020 2032 3396 0 2 3 2 │ │ │ │ -0005b860: 3430 3034 3531 3230 3030 2020 3020 3120 4004512000 0 1 │ │ │ │ -0005b870: 3220 3320 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +0005b770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b780: 0a7c 3736 3937 3432 3532 3431 2020 2032 .|7697425241 2 │ │ │ │ +0005b790: 2020 2020 2035 3338 3137 3437 3436 3120 5381747461 │ │ │ │ +0005b7a0: 3320 2020 2020 3237 3635 3332 3131 3520 3 276532115 │ │ │ │ +0005b7b0: 3220 2020 2020 2020 3337 3139 3635 3533 2 37196553 │ │ │ │ +0005b7c0: 3837 3532 3320 2020 2020 2020 2020 207c 87523 | │ │ │ │ +0005b7d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005b7e0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 x - ----------x │ │ │ │ +0005b7f0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 x + ---------x │ │ │ │ +0005b800: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ +0005b810: 2d2d 2d2d 2d78 2078 2078 2078 2020 2d7c -----x x x x -| │ │ │ │ +0005b820: 0a7c 3035 3735 3239 3630 3020 2030 2031 .|057529600 0 1 │ │ │ │ +0005b830: 2033 2020 2020 3430 3832 3430 3030 2020 3 40824000 │ │ │ │ +0005b840: 3120 3320 2020 2020 3333 3333 3936 2020 1 3 333396 │ │ │ │ +0005b850: 3020 3220 3320 2020 2032 3430 3034 3531 0 2 3 2400451 │ │ │ │ +0005b860: 3230 3030 2020 3020 3120 3220 3320 207c 2000 0 1 2 3 | │ │ │ │ +0005b870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005b8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005b8c0: 2020 2020 207c 0a7c 3230 3120 2020 3220 |.|201 2 │ │ │ │ -0005b8d0: 2020 2020 3337 3931 3437 3120 3320 2020 3791471 3 │ │ │ │ -0005b8e0: 2020 3131 3534 3834 3436 3632 3132 3320 1154844662123 │ │ │ │ -0005b8f0: 3220 2020 2020 2020 3339 3139 3333 3739 2 39193379 │ │ │ │ -0005b900: 3834 3939 2020 2020 2020 2020 2020 2034 8499 4 │ │ │ │ -0005b910: 3634 3431 377c 0a7c 2d2d 2d78 2078 2078 64417|.|---x x x │ │ │ │ -0005b920: 2020 2d20 2d2d 2d2d 2d2d 2d78 2078 2020 - -------x x │ │ │ │ -0005b930: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + -------------x │ │ │ │ -0005b940: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005b950: 2d2d 2d2d 7820 7820 7820 7820 202d 202d ----x x x x - - │ │ │ │ -0005b960: 2d2d 2d2d 2d7c 0a7c 3030 2020 3020 3120 -----|.|00 0 1 │ │ │ │ -0005b970: 3320 2020 2032 3132 3632 3520 3120 3320 3 212625 1 3 │ │ │ │ -0005b980: 2020 2020 3533 3334 3333 3630 3030 2020 5334336000 │ │ │ │ -0005b990: 3020 3220 3320 2020 2039 3630 3138 3034 0 2 3 9601804 │ │ │ │ -0005b9a0: 3830 3020 2030 2031 2032 2033 2020 2020 800 0 1 2 3 │ │ │ │ -0005b9b0: 3438 3938 387c 0a7c 2d2d 2d2d 2d2d 2d2d 48988|.|-------- │ │ │ │ +0005b8b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005b8c0: 0a7c 3230 3120 2020 3220 2020 2020 3337 .|201 2 37 │ │ │ │ +0005b8d0: 3931 3437 3120 3320 2020 2020 3131 3534 91471 3 1154 │ │ │ │ +0005b8e0: 3834 3436 3632 3132 3320 3220 2020 2020 844662123 2 │ │ │ │ +0005b8f0: 2020 3339 3139 3333 3739 3834 3939 2020 391933798499 │ │ │ │ +0005b900: 2020 2020 2020 2020 2034 3634 3431 377c 464417| │ │ │ │ +0005b910: 0a7c 2d2d 2d78 2078 2078 2020 2d20 2d2d .|---x x x - -- │ │ │ │ +0005b920: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ +0005b930: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005b940: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + ------------x │ │ │ │ +0005b950: 7820 7820 7820 202d 202d 2d2d 2d2d 2d7c x x x - ------| │ │ │ │ +0005b960: 0a7c 3030 2020 3020 3120 3320 2020 2032 .|00 0 1 3 2 │ │ │ │ +0005b970: 3132 3632 3520 3120 3320 2020 2020 3533 12625 1 3 53 │ │ │ │ +0005b980: 3334 3333 3630 3030 2020 3020 3220 3320 34336000 0 2 3 │ │ │ │ +0005b990: 2020 2039 3630 3138 3034 3830 3020 2030 9601804800 0 │ │ │ │ +0005b9a0: 2031 2032 2033 2020 2020 3438 3938 387c 1 2 3 48988| │ │ │ │ +0005b9b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005b9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005b9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005b9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ba00: 2d2d 2d2d 2d7c 0a7c 2020 2020 2032 3338 -----|.| 238 │ │ │ │ -0005ba10: 3938 3135 3237 3539 2020 2032 2020 2020 98152759 2 │ │ │ │ -0005ba20: 2038 3639 3338 3436 3538 3136 3720 2020 869384658167 │ │ │ │ -0005ba30: 3220 2020 2020 3230 3833 3439 3031 3931 2 2083490191 │ │ │ │ -0005ba40: 2033 2020 2020 2031 3833 3332 3033 3939 3 183320399 │ │ │ │ -0005ba50: 3533 2032 207c 0a7c 7820 202b 202d 2d2d 53 2 |.|x + --- │ │ │ │ -0005ba60: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202d --------x x x - │ │ │ │ -0005ba70: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 ------------x x │ │ │ │ -0005ba80: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ -0005ba90: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -0005baa0: 2d2d 7820 787c 0a7c 2033 2020 2020 2038 --x x|.| 3 8 │ │ │ │ -0005bab0: 3839 3035 3630 3020 2030 2032 2033 2020 8905600 0 2 3 │ │ │ │ -0005bac0: 2020 3234 3030 3435 3132 3030 2020 3120 2400451200 1 │ │ │ │ -0005bad0: 3220 3320 2020 2032 3030 3033 3736 3020 2 3 20003760 │ │ │ │ -0005bae0: 2032 2033 2020 2020 2039 3837 3834 3030 2 3 9878400 │ │ │ │ -0005baf0: 3020 2030 207c 0a7c 2020 2020 2020 2020 0 0 |.| │ │ │ │ +0005b9f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005ba00: 0a7c 2020 2020 2032 3338 3938 3135 3237 .| 238981527 │ │ │ │ +0005ba10: 3539 2020 2032 2020 2020 2038 3639 3338 59 2 86938 │ │ │ │ +0005ba20: 3436 3538 3136 3720 2020 3220 2020 2020 4658167 2 │ │ │ │ +0005ba30: 3230 3833 3439 3031 3931 2033 2020 2020 2083490191 3 │ │ │ │ +0005ba40: 2031 3833 3332 3033 3939 3533 2032 207c 18332039953 2 | │ │ │ │ +0005ba50: 0a7c 7820 202b 202d 2d2d 2d2d 2d2d 2d2d .|x + --------- │ │ │ │ +0005ba60: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ +0005ba70: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ +0005ba80: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ +0005ba90: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 787c -----------x x| │ │ │ │ +0005baa0: 0a7c 2033 2020 2020 2038 3839 3035 3630 .| 3 8890560 │ │ │ │ +0005bab0: 3020 2030 2032 2033 2020 2020 3234 3030 0 0 2 3 2400 │ │ │ │ +0005bac0: 3435 3132 3030 2020 3120 3220 3320 2020 451200 1 2 3 │ │ │ │ +0005bad0: 2032 3030 3033 3736 3020 2032 2033 2020 20003760 2 3 │ │ │ │ +0005bae0: 2020 2039 3837 3834 3030 3020 2030 207c 98784000 0 | │ │ │ │ +0005baf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bb40: 2020 2020 207c 0a7c 2032 2020 2020 2020 |.| 2 │ │ │ │ -0005bb50: 2033 3131 3930 3338 3936 3120 2020 3220 3119038961 2 │ │ │ │ -0005bb60: 2020 2020 3736 3235 3533 3236 3130 3039 762553261009 │ │ │ │ -0005bb70: 2020 2032 2020 2020 2032 3339 3235 3230 2 2392520 │ │ │ │ -0005bb80: 3733 3120 3320 2020 2020 3339 3231 3936 731 3 392196 │ │ │ │ -0005bb90: 3633 3139 397c 0a7c 7820 7820 7820 202d 63199|.|x x x - │ │ │ │ -0005bba0: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 ----------x x x │ │ │ │ -0005bbb0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d - ------------ │ │ │ │ -0005bbc0: 7820 7820 7820 202d 202d 2d2d 2d2d 2d2d x x x - ------- │ │ │ │ -0005bbd0: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -0005bbe0: 2d2d 2d2d 2d7c 0a7c 2031 2032 2033 2020 -----|.| 1 2 3 │ │ │ │ -0005bbf0: 2020 3132 3530 3233 3530 2020 3020 3220 12502350 0 2 │ │ │ │ -0005bc00: 3320 2020 2032 3035 3735 3239 3630 3020 3 2057529600 │ │ │ │ -0005bc10: 2031 2032 2033 2020 2020 3131 3433 3037 1 2 3 114307 │ │ │ │ -0005bc20: 3230 2020 3220 3320 2020 2032 3333 3337 20 2 3 23337 │ │ │ │ -0005bc30: 3732 3030 307c 0a7c 2020 2020 2020 2020 72000|.| │ │ │ │ +0005bb30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005bb40: 0a7c 2032 2020 2020 2020 2033 3131 3930 .| 2 31190 │ │ │ │ +0005bb50: 3338 3936 3120 2020 3220 2020 2020 3736 38961 2 76 │ │ │ │ +0005bb60: 3235 3533 3236 3130 3039 2020 2032 2020 2553261009 2 │ │ │ │ +0005bb70: 2020 2032 3339 3235 3230 3733 3120 3320 2392520731 3 │ │ │ │ +0005bb80: 2020 2020 3339 3231 3936 3633 3139 397c 39219663199| │ │ │ │ +0005bb90: 0a7c 7820 7820 7820 202d 202d 2d2d 2d2d .|x x x - ----- │ │ │ │ +0005bba0: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d2d -----x x x - -- │ │ │ │ +0005bbb0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +0005bbc0: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ----------x x │ │ │ │ +0005bbd0: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c + -----------| │ │ │ │ +0005bbe0: 0a7c 2031 2032 2033 2020 2020 3132 3530 .| 1 2 3 1250 │ │ │ │ +0005bbf0: 3233 3530 2020 3020 3220 3320 2020 2032 2350 0 2 3 2 │ │ │ │ +0005bc00: 3035 3735 3239 3630 3020 2031 2032 2033 057529600 1 2 3 │ │ │ │ +0005bc10: 2020 2020 3131 3433 3037 3230 2020 3220 11430720 2 │ │ │ │ +0005bc20: 3320 2020 2032 3333 3337 3732 3030 307c 3 2333772000| │ │ │ │ +0005bc30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bc80: 2020 2020 207c 0a7c 2020 2020 3132 3636 |.| 1266 │ │ │ │ -0005bc90: 3235 3639 3239 3338 3320 2020 3220 2020 256929383 2 │ │ │ │ -0005bca0: 2020 3436 3835 3237 3037 3737 2020 2032 4685270777 2 │ │ │ │ -0005bcb0: 2020 2020 2037 3639 3335 3031 2033 2020 7693501 3 │ │ │ │ -0005bcc0: 2020 2039 3934 3639 3931 3539 3120 3220 9946991591 2 │ │ │ │ -0005bcd0: 3220 2020 317c 0a7c 2020 2b20 2d2d 2d2d 2 1|.| + ---- │ │ │ │ -0005bce0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005bcf0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ----------x x │ │ │ │ -0005bd00: 7820 202d 202d 2d2d 2d2d 2d2d 7820 7820 x - -------x x │ │ │ │ -0005bd10: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ----------x x │ │ │ │ -0005bd20: 2020 2d20 2d7c 0a7c 3320 2020 2020 3438 - -|.|3 48 │ │ │ │ -0005bd30: 3030 3930 3234 3030 2020 3020 3220 3320 00902400 0 2 3 │ │ │ │ -0005bd40: 2020 2032 3537 3139 3132 3030 2031 2032 257191200 1 2 │ │ │ │ -0005bd50: 2033 2020 2020 3130 3731 3633 2032 2033 3 107163 2 3 │ │ │ │ -0005bd60: 2020 2020 3133 3333 3538 3430 2020 3020 13335840 0 │ │ │ │ -0005bd70: 3320 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0005bc70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005bc80: 0a7c 2020 2020 3132 3636 3235 3639 3239 .| 1266256929 │ │ │ │ +0005bc90: 3338 3320 2020 3220 2020 2020 3436 3835 383 2 4685 │ │ │ │ +0005bca0: 3237 3037 3737 2020 2032 2020 2020 2037 270777 2 7 │ │ │ │ +0005bcb0: 3639 3335 3031 2033 2020 2020 2039 3934 693501 3 994 │ │ │ │ +0005bcc0: 3639 3931 3539 3120 3220 3220 2020 317c 6991591 2 2 1| │ │ │ │ +0005bcd0: 0a7c 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d .| + ---------- │ │ │ │ +0005bce0: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d2d ---x x x + ---- │ │ │ │ +0005bcf0: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ +0005bd00: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ +0005bd10: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d7c -------x x - -| │ │ │ │ +0005bd20: 0a7c 3320 2020 2020 3438 3030 3930 3234 .|3 48009024 │ │ │ │ +0005bd30: 3030 2020 3020 3220 3320 2020 2032 3537 00 0 2 3 257 │ │ │ │ +0005bd40: 3139 3132 3030 2031 2032 2033 2020 2020 191200 1 2 3 │ │ │ │ +0005bd50: 3130 3731 3633 2032 2033 2020 2020 3133 107163 2 3 13 │ │ │ │ +0005bd60: 3333 3538 3430 2020 3020 3320 2020 207c 335840 0 3 | │ │ │ │ +0005bd70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bdc0: 2020 2020 207c 0a7c 2036 3930 3531 3138 |.| 6905118 │ │ │ │ -0005bdd0: 3731 3531 3320 3220 2020 2020 2020 3732 71513 2 72 │ │ │ │ -0005bde0: 3635 3232 3738 3635 3431 2020 2032 2020 6522786541 2 │ │ │ │ -0005bdf0: 2020 2033 3438 3833 3632 3938 3930 3120 348836298901 │ │ │ │ -0005be00: 2020 3220 2020 2020 3234 3238 3438 3433 2 24284843 │ │ │ │ -0005be10: 2033 2020 207c 0a7c 202d 2d2d 2d2d 2d2d 3 |.| ------- │ │ │ │ -0005be20: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ -0005be30: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005be40: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + ------------x │ │ │ │ -0005be50: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005be60: 7820 7820 207c 0a7c 2020 3235 3731 3931 x x |.| 257191 │ │ │ │ -0005be70: 3230 3030 2020 3120 3220 3320 2020 2031 2000 1 2 3 1 │ │ │ │ -0005be80: 3036 3638 3637 3230 3020 2030 2032 2033 066867200 0 2 3 │ │ │ │ -0005be90: 2020 2020 3133 3731 3638 3634 3030 2020 1371686400 │ │ │ │ -0005bea0: 3120 3220 3320 2020 2032 3338 3134 3020 1 2 3 238140 │ │ │ │ -0005beb0: 2032 2033 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +0005bdb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005bdc0: 0a7c 2036 3930 3531 3138 3731 3531 3320 .| 690511871513 │ │ │ │ +0005bdd0: 3220 2020 2020 2020 3732 3635 3232 3738 2 72652278 │ │ │ │ +0005bde0: 3635 3431 2020 2032 2020 2020 2033 3438 6541 2 348 │ │ │ │ +0005bdf0: 3833 3632 3938 3930 3120 2020 3220 2020 836298901 2 │ │ │ │ +0005be00: 2020 3234 3238 3438 3433 2033 2020 207c 24284843 3 | │ │ │ │ +0005be10: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 .| ------------x │ │ │ │ +0005be20: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ +0005be30: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ +0005be40: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005be50: 2b20 2d2d 2d2d 2d2d 2d2d 7820 7820 207c + --------x x | │ │ │ │ +0005be60: 0a7c 2020 3235 3731 3931 3230 3030 2020 .| 2571912000 │ │ │ │ +0005be70: 3120 3220 3320 2020 2031 3036 3638 3637 1 2 3 1066867 │ │ │ │ +0005be80: 3230 3020 2030 2032 2033 2020 2020 3133 200 0 2 3 13 │ │ │ │ +0005be90: 3731 3638 3634 3030 2020 3120 3220 3320 71686400 1 2 3 │ │ │ │ +0005bea0: 2020 2032 3338 3134 3020 2032 2033 207c 238140 2 3 | │ │ │ │ +0005beb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005bee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005bf00: 2020 2020 207c 0a7c 3932 3432 3320 3220 |.|92423 2 │ │ │ │ -0005bf10: 2020 2020 2020 3332 3331 3830 3636 3030 3231806600 │ │ │ │ -0005bf20: 3320 2020 3220 2020 2020 3339 3536 3936 3 2 395696 │ │ │ │ -0005bf30: 3436 3133 3031 2020 2032 2020 2020 2036 461301 2 6 │ │ │ │ -0005bf40: 3539 3535 3936 3632 3920 3320 2020 2020 595596629 3 │ │ │ │ -0005bf50: 3436 3031 357c 0a7c 2d2d 2d2d 2d78 2078 46015|.|-----x x │ │ │ │ -0005bf60: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ -0005bf70: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -0005bf80: 2d2d 2d2d 2d2d 7820 7820 7820 202b 202d ------x x x + - │ │ │ │ -0005bf90: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 ---------x x - │ │ │ │ -0005bfa0: 2d2d 2d2d 2d7c 0a7c 3830 3030 2020 3120 -----|.|8000 1 │ │ │ │ -0005bfb0: 3220 3320 2020 2032 3232 3236 3430 3030 2 3 222264000 │ │ │ │ -0005bfc0: 2020 3020 3220 3320 2020 2031 3230 3032 0 2 3 12002 │ │ │ │ -0005bfd0: 3235 3630 3030 2031 2032 2033 2020 2020 256000 1 2 3 │ │ │ │ -0005bfe0: 3636 3637 3932 3030 2020 3220 3320 2020 66679200 2 3 │ │ │ │ -0005bff0: 2036 3636 377c 0a7c 2d2d 2d2d 2d2d 2d2d 6667|.|-------- │ │ │ │ +0005bef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005bf00: 0a7c 3932 3432 3320 3220 2020 2020 2020 .|92423 2 │ │ │ │ +0005bf10: 3332 3331 3830 3636 3030 3320 2020 3220 32318066003 2 │ │ │ │ +0005bf20: 2020 2020 3339 3536 3936 3436 3133 3031 395696461301 │ │ │ │ +0005bf30: 2020 2032 2020 2020 2036 3539 3535 3936 2 6595596 │ │ │ │ +0005bf40: 3632 3920 3320 2020 2020 3436 3031 357c 629 3 46015| │ │ │ │ +0005bf50: 0a7c 2d2d 2d2d 2d78 2078 2078 2020 2b20 .|-----x x x + │ │ │ │ +0005bf60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ +0005bf70: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d - ------------ │ │ │ │ +0005bf80: 7820 7820 7820 202b 202d 2d2d 2d2d 2d2d x x x + ------- │ │ │ │ +0005bf90: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d7c ---x x - -----| │ │ │ │ +0005bfa0: 0a7c 3830 3030 2020 3120 3220 3320 2020 .|8000 1 2 3 │ │ │ │ +0005bfb0: 2032 3232 3236 3430 3030 2020 3020 3220 222264000 0 2 │ │ │ │ +0005bfc0: 3320 2020 2031 3230 3032 3235 3630 3030 3 12002256000 │ │ │ │ +0005bfd0: 2031 2032 2033 2020 2020 3636 3637 3932 1 2 3 666792 │ │ │ │ +0005bfe0: 3030 2020 3220 3320 2020 2036 3636 377c 00 2 3 6667| │ │ │ │ +0005bff0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005c000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c040: 2d2d 2d2d 2d7c 0a7c 3220 2020 3135 3132 -----|.|2 1512 │ │ │ │ -0005c050: 3530 3430 3430 3720 2020 2020 3220 2020 5040407 2 │ │ │ │ -0005c060: 3838 3538 3132 3638 3831 2032 2032 2020 8858126881 2 2 │ │ │ │ -0005c070: 2031 3631 3038 3137 3339 3839 2020 2020 16108173989 │ │ │ │ -0005c080: 2032 2020 2036 3431 3932 3436 3536 3720 2 6419246567 │ │ │ │ -0005c090: 2020 2020 327c 0a7c 2020 2d20 2d2d 2d2d 2|.| - ---- │ │ │ │ -0005c0a0: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b20 -------x x x + │ │ │ │ -0005c0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ -0005c0c0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ -0005c0d0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ -0005c0e0: 2078 2078 207c 0a7c 3320 2020 2020 3736 x x |.|3 76 │ │ │ │ -0005c0f0: 3230 3438 3030 2020 3020 3120 3320 2020 204800 0 1 3 │ │ │ │ -0005c100: 2038 3136 3438 3030 3020 2031 2033 2020 81648000 1 3 │ │ │ │ -0005c110: 2020 2032 3936 3335 3230 3020 2030 2032 29635200 0 2 │ │ │ │ -0005c120: 2033 2020 2020 3231 3136 3830 3030 2020 3 21168000 │ │ │ │ -0005c130: 3120 3220 337c 0a7c 2020 2020 2020 2020 1 2 3|.| │ │ │ │ +0005c030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005c040: 0a7c 3220 2020 3135 3132 3530 3430 3430 .|2 1512504040 │ │ │ │ +0005c050: 3720 2020 2020 3220 2020 3838 3538 3132 7 2 885812 │ │ │ │ +0005c060: 3638 3831 2032 2032 2020 2031 3631 3038 6881 2 2 16108 │ │ │ │ +0005c070: 3137 3339 3839 2020 2020 2032 2020 2036 173989 2 6 │ │ │ │ +0005c080: 3431 3932 3436 3536 3720 2020 2020 327c 419246567 2| │ │ │ │ +0005c090: 0a7c 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d .| - ---------- │ │ │ │ +0005c0a0: 2d78 2078 2078 2020 2b20 2d2d 2d2d 2d2d -x x x + ------ │ │ │ │ +0005c0b0: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ +0005c0c0: 2d2d 2d2d 2d2d 7820 7820 7820 202b 202d ------x x x + - │ │ │ │ +0005c0d0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 207c ---------x x x | │ │ │ │ +0005c0e0: 0a7c 3320 2020 2020 3736 3230 3438 3030 .|3 76204800 │ │ │ │ +0005c0f0: 2020 3020 3120 3320 2020 2038 3136 3438 0 1 3 81648 │ │ │ │ +0005c100: 3030 3020 2031 2033 2020 2020 2032 3936 000 1 3 296 │ │ │ │ +0005c110: 3335 3230 3020 2030 2032 2033 2020 2020 35200 0 2 3 │ │ │ │ +0005c120: 3231 3136 3830 3030 2020 3120 3220 337c 21168000 1 2 3| │ │ │ │ +0005c130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c180: 2020 2020 207c 0a7c 2032 2032 2020 2033 |.| 2 2 3 │ │ │ │ -0005c190: 3333 3332 3831 3035 3735 3320 2020 2020 33328105753 │ │ │ │ -0005c1a0: 3220 2020 3331 3334 3930 3239 3920 3220 2 313490299 2 │ │ │ │ -0005c1b0: 3220 2020 3436 3137 3435 3534 3536 3320 2 46174554563 │ │ │ │ -0005c1c0: 2020 2020 3220 2020 3137 3639 3537 3631 2 17695761 │ │ │ │ -0005c1d0: 3534 3539 207c 0a7c 7820 7820 202d 202d 5459 |.|x x - - │ │ │ │ -0005c1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005c1f0: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 + ---------x x │ │ │ │ -0005c200: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -----------x │ │ │ │ -0005c210: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005c220: 2d2d 2d2d 787c 0a7c 2030 2033 2020 2020 ----x|.| 0 3 │ │ │ │ -0005c230: 3130 3030 3138 3830 3030 2020 3020 3120 1000188000 0 1 │ │ │ │ -0005c240: 3320 2020 2031 3237 3537 3530 2020 3120 3 1275750 1 │ │ │ │ -0005c250: 3320 2020 2031 3435 3836 3037 3530 2020 3 145860750 │ │ │ │ -0005c260: 3020 3220 3320 2020 2020 3232 3232 3634 0 2 3 222264 │ │ │ │ -0005c270: 3030 3020 207c 0a7c 2020 2020 2020 2020 000 |.| │ │ │ │ +0005c170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c180: 0a7c 2032 2032 2020 2033 3333 3332 3831 .| 2 2 3333281 │ │ │ │ +0005c190: 3035 3735 3320 2020 2020 3220 2020 3331 05753 2 31 │ │ │ │ +0005c1a0: 3334 3930 3239 3920 3220 3220 2020 3436 3490299 2 2 46 │ │ │ │ +0005c1b0: 3137 3435 3534 3536 3320 2020 2020 3220 174554563 2 │ │ │ │ +0005c1c0: 2020 3137 3639 3537 3631 3534 3539 207c 176957615459 | │ │ │ │ +0005c1d0: 0a7c 7820 7820 202d 202d 2d2d 2d2d 2d2d .|x x - ------- │ │ │ │ +0005c1e0: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ +0005c1f0: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d2d -------x x - -- │ │ │ │ +0005c200: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005c210: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 787c + ------------x| │ │ │ │ +0005c220: 0a7c 2030 2033 2020 2020 3130 3030 3138 .| 0 3 100018 │ │ │ │ +0005c230: 3830 3030 2020 3020 3120 3320 2020 2031 8000 0 1 3 1 │ │ │ │ +0005c240: 3237 3537 3530 2020 3120 3320 2020 2031 275750 1 3 1 │ │ │ │ +0005c250: 3435 3836 3037 3530 2020 3020 3220 3320 45860750 0 2 3 │ │ │ │ +0005c260: 2020 2020 3232 3232 3634 3030 3020 207c 222264000 | │ │ │ │ +0005c270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c2c0: 2020 2020 207c 0a7c 3631 3432 3832 3730 |.|61428270 │ │ │ │ -0005c2d0: 3337 2020 2020 2032 2020 2034 3436 3534 37 2 44654 │ │ │ │ -0005c2e0: 3730 3538 3120 3220 3220 2020 3431 3636 70581 2 2 4166 │ │ │ │ -0005c2f0: 3331 3139 3735 3920 2020 2020 3220 2020 3119759 2 │ │ │ │ -0005c300: 3639 3433 3331 3732 3938 3720 2020 2020 69433172987 │ │ │ │ -0005c310: 3220 2020 327c 0a7c 2d2d 2d2d 2d2d 2d2d 2 2|.|-------- │ │ │ │ -0005c320: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ -0005c330: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -0005c340: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b20 -------x x x + │ │ │ │ -0005c350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005c360: 2020 2d20 2d7c 0a7c 2034 3736 3238 3030 - -|.| 4762800 │ │ │ │ -0005c370: 3020 2030 2031 2033 2020 2020 3335 3732 0 0 1 3 3572 │ │ │ │ -0005c380: 3130 3030 2020 3120 3320 2020 2020 3334 1000 1 3 34 │ │ │ │ -0005c390: 3537 3434 3030 2020 3020 3220 3320 2020 574400 0 2 3 │ │ │ │ -0005c3a0: 2031 3030 3031 3838 3030 2020 3120 3220 100018800 1 2 │ │ │ │ -0005c3b0: 3320 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +0005c2b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c2c0: 0a7c 3631 3432 3832 3730 3337 2020 2020 .|6142827037 │ │ │ │ +0005c2d0: 2032 2020 2034 3436 3534 3730 3538 3120 2 4465470581 │ │ │ │ +0005c2e0: 3220 3220 2020 3431 3636 3331 3139 3735 2 2 4166311975 │ │ │ │ +0005c2f0: 3920 2020 2020 3220 2020 3639 3433 3331 9 2 694331 │ │ │ │ +0005c300: 3732 3938 3720 2020 2020 3220 2020 327c 72987 2 2| │ │ │ │ +0005c310: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005c320: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ +0005c330: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +0005c340: 2d78 2078 2078 2020 2b20 2d2d 2d2d 2d2d -x x x + ------ │ │ │ │ +0005c350: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d7c -----x x x - -| │ │ │ │ +0005c360: 0a7c 2034 3736 3238 3030 3020 2030 2031 .| 47628000 0 1 │ │ │ │ +0005c370: 2033 2020 2020 3335 3732 3130 3030 2020 3 35721000 │ │ │ │ +0005c380: 3120 3320 2020 2020 3334 3537 3434 3030 1 3 34574400 │ │ │ │ +0005c390: 2020 3020 3220 3320 2020 2031 3030 3031 0 2 3 10001 │ │ │ │ +0005c3a0: 3838 3030 2020 3120 3220 3320 2020 207c 8800 1 2 3 | │ │ │ │ +0005c3b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c400: 2020 2020 207c 0a7c 2020 3332 3234 3736 |.| 322476 │ │ │ │ -0005c410: 3632 3238 3120 3220 3220 2020 3537 3838 62281 2 2 5788 │ │ │ │ -0005c420: 3439 3939 3736 3433 2020 2020 2032 2020 49997643 2 │ │ │ │ -0005c430: 2036 3137 3637 3739 3937 2032 2032 2020 617677997 2 2 │ │ │ │ -0005c440: 2032 3739 3738 3736 3336 3633 3120 2020 279787636631 │ │ │ │ -0005c450: 2020 3220 207c 0a7c 2b20 2d2d 2d2d 2d2d 2 |.|+ ------ │ │ │ │ -0005c460: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ -0005c470: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ -0005c480: 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ---------x x + │ │ │ │ -0005c490: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 ------------x x │ │ │ │ -0005c4a0: 2078 2020 2d7c 0a7c 2020 2020 3838 3930 x -|.| 8890 │ │ │ │ -0005c4b0: 3536 3030 2020 3020 3320 2020 2020 3234 5600 0 3 24 │ │ │ │ -0005c4c0: 3439 3434 3030 3020 2030 2031 2033 2020 4944000 0 1 3 │ │ │ │ -0005c4d0: 2020 3430 3832 3430 3030 2031 2033 2020 40824000 1 3 │ │ │ │ -0005c4e0: 2020 2034 3030 3037 3532 3030 2020 3020 400075200 0 │ │ │ │ -0005c4f0: 3220 3320 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +0005c3f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c400: 0a7c 2020 3332 3234 3736 3632 3238 3120 .| 32247662281 │ │ │ │ +0005c410: 3220 3220 2020 3537 3838 3439 3939 3736 2 2 5788499976 │ │ │ │ +0005c420: 3433 2020 2020 2032 2020 2036 3137 3637 43 2 61767 │ │ │ │ +0005c430: 3739 3937 2032 2032 2020 2032 3739 3738 7997 2 2 27978 │ │ │ │ +0005c440: 3736 3336 3633 3120 2020 2020 3220 207c 7636631 2 | │ │ │ │ +0005c450: 0a7c 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 .|+ -----------x │ │ │ │ +0005c460: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +0005c470: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ +0005c480: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ +0005c490: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d7c -------x x x -| │ │ │ │ +0005c4a0: 0a7c 2020 2020 3838 3930 3536 3030 2020 .| 88905600 │ │ │ │ +0005c4b0: 3020 3320 2020 2020 3234 3439 3434 3030 0 3 24494400 │ │ │ │ +0005c4c0: 3020 2030 2031 2033 2020 2020 3430 3832 0 0 1 3 4082 │ │ │ │ +0005c4d0: 3430 3030 2031 2033 2020 2020 2034 3030 4000 1 3 400 │ │ │ │ +0005c4e0: 3037 3532 3030 2020 3020 3220 3320 207c 075200 0 2 3 | │ │ │ │ +0005c4f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c540: 2020 2020 207c 0a7c 3630 3834 3933 2032 |.|608493 2 │ │ │ │ -0005c550: 2032 2020 2031 3037 3037 3636 3530 3335 2 10707665035 │ │ │ │ -0005c560: 3320 2020 2020 3220 2020 3630 3436 3331 3 2 604631 │ │ │ │ -0005c570: 3439 3720 3220 3220 2020 3233 3930 3734 497 2 2 239074 │ │ │ │ -0005c580: 3638 3331 3337 2020 2020 2032 2020 2032 683137 2 2 │ │ │ │ -0005c590: 3731 3835 387c 0a7c 2d2d 2d2d 2d2d 7820 71858|.|------x │ │ │ │ -0005c5a0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ -0005c5b0: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -0005c5c0: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -0005c5d0: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ -0005c5e0: 2d2d 2d2d 2d7c 0a7c 3932 3030 3020 2030 -----|.|92000 0 │ │ │ │ -0005c5f0: 2033 2020 2020 2036 3636 3739 3230 3030 3 666792000 │ │ │ │ -0005c600: 2020 3020 3120 3320 2020 2034 3736 3238 0 1 3 47628 │ │ │ │ -0005c610: 3030 3020 3120 3320 2020 2031 3333 3335 000 1 3 13335 │ │ │ │ -0005c620: 3834 3030 3020 2030 2032 2033 2020 2020 84000 0 2 3 │ │ │ │ -0005c630: 3434 3435 327c 0a7c 2d2d 2d2d 2d2d 2d2d 44452|.|-------- │ │ │ │ +0005c530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c540: 0a7c 3630 3834 3933 2032 2032 2020 2031 .|608493 2 2 1 │ │ │ │ +0005c550: 3037 3037 3636 3530 3335 3320 2020 2020 07076650353 │ │ │ │ +0005c560: 3220 2020 3630 3436 3331 3439 3720 3220 2 604631497 2 │ │ │ │ +0005c570: 3220 2020 3233 3930 3734 3638 3331 3337 2 239074683137 │ │ │ │ +0005c580: 2020 2020 2032 2020 2032 3731 3835 387c 2 271858| │ │ │ │ +0005c590: 0a7c 2d2d 2d2d 2d2d 7820 7820 202d 202d .|------x x - - │ │ │ │ +0005c5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ +0005c5b0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ---------x x │ │ │ │ +0005c5c0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d - ------------ │ │ │ │ +0005c5d0: 7820 7820 7820 202d 202d 2d2d 2d2d 2d7c x x x - ------| │ │ │ │ +0005c5e0: 0a7c 3932 3030 3020 2030 2033 2020 2020 .|92000 0 3 │ │ │ │ +0005c5f0: 2036 3636 3739 3230 3030 2020 3020 3120 666792000 0 1 │ │ │ │ +0005c600: 3320 2020 2034 3736 3238 3030 3020 3120 3 47628000 1 │ │ │ │ +0005c610: 3320 2020 2031 3333 3335 3834 3030 3020 3 1333584000 │ │ │ │ +0005c620: 2030 2032 2033 2020 2020 3434 3435 327c 0 2 3 44452| │ │ │ │ +0005c630: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005c640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005c660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005c680: 2d2d 2d2d 2d7c 0a7c 2020 2032 3138 3931 -----|.| 21891 │ │ │ │ -0005c690: 3036 3931 3920 3220 3220 2020 3237 3232 06919 2 2 2722 │ │ │ │ -0005c6a0: 3735 3639 3320 2020 3320 2020 3531 3230 75693 3 5120 │ │ │ │ -0005c6b0: 3039 3639 2020 2033 2020 2038 3031 3234 0969 3 80124 │ │ │ │ -0005c6c0: 3037 2020 2033 2020 2032 3336 3333 3320 07 3 236333 │ │ │ │ -0005c6d0: 2020 2020 207c 0a7c 202d 202d 2d2d 2d2d |.| - ----- │ │ │ │ -0005c6e0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005c6f0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005c700: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -0005c710: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d20 --x x - ------ │ │ │ │ -0005c720: 2020 2020 207c 0a7c 2020 2020 2039 3532 |.| 952 │ │ │ │ -0005c730: 3536 3030 2020 3220 3320 2020 2033 3532 5600 2 3 352 │ │ │ │ -0005c740: 3830 3030 2020 3020 3320 2020 2031 3934 8000 0 3 194 │ │ │ │ -0005c750: 3430 3030 2031 2033 2020 2020 3232 3638 4000 1 3 2268 │ │ │ │ -0005c760: 3030 2032 2033 2020 2020 3934 3530 2020 00 2 3 9450 │ │ │ │ -0005c770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005c670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005c680: 0a7c 2020 2032 3138 3931 3036 3931 3920 .| 2189106919 │ │ │ │ +0005c690: 3220 3220 2020 3237 3232 3735 3639 3320 2 2 272275693 │ │ │ │ +0005c6a0: 2020 3320 2020 3531 3230 3039 3639 2020 3 51200969 │ │ │ │ +0005c6b0: 2033 2020 2038 3031 3234 3037 2020 2033 3 8012407 3 │ │ │ │ +0005c6c0: 2020 2032 3336 3333 3320 2020 2020 207c 236333 | │ │ │ │ +0005c6d0: 0a7c 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 .| - ----------x │ │ │ │ +0005c6e0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 x + ---------x │ │ │ │ +0005c6f0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 7820 x + --------x │ │ │ │ +0005c700: 7820 202d 202d 2d2d 2d2d 2d2d 7820 7820 x - -------x x │ │ │ │ +0005c710: 202d 202d 2d2d 2d2d 2d20 2020 2020 207c - ------ | │ │ │ │ +0005c720: 0a7c 2020 2020 2039 3532 3536 3030 2020 .| 9525600 │ │ │ │ +0005c730: 3220 3320 2020 2033 3532 3830 3030 2020 2 3 3528000 │ │ │ │ +0005c740: 3020 3320 2020 2031 3934 3430 3030 2031 0 3 1944000 1 │ │ │ │ +0005c750: 2033 2020 2020 3232 3638 3030 2032 2033 3 226800 2 3 │ │ │ │ +0005c760: 2020 2020 3934 3530 2020 2020 2020 207c 9450 | │ │ │ │ +0005c770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c7c0: 2020 2020 207c 0a7c 2020 2020 3220 2020 |.| 2 │ │ │ │ -0005c7d0: 3130 3930 3434 3233 3938 3720 3220 3220 10904423987 2 2 │ │ │ │ -0005c7e0: 2020 3231 3834 3339 3530 3431 2020 2033 2184395041 3 │ │ │ │ -0005c7f0: 2020 2031 3039 3835 3639 3237 2020 2033 109856927 3 │ │ │ │ -0005c800: 2020 2035 3231 3337 3930 3331 3120 2020 5213790311 │ │ │ │ -0005c810: 2020 2020 207c 0a7c 2078 2078 2020 2d20 |.| x x - │ │ │ │ -0005c820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 -----------x x │ │ │ │ -0005c830: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ----------x x │ │ │ │ -0005c840: 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ---------x x │ │ │ │ -0005c850: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 2020 + ----------x │ │ │ │ -0005c860: 2020 2020 207c 0a7c 3120 3220 3320 2020 |.|1 2 3 │ │ │ │ -0005c870: 2020 3236 3637 3136 3830 2020 3220 3320 26671680 2 3 │ │ │ │ -0005c880: 2020 2031 3139 3037 3030 3020 2030 2033 11907000 0 3 │ │ │ │ -0005c890: 2020 2020 3236 3436 3030 3020 2031 2033 2646000 1 3 │ │ │ │ -0005c8a0: 2020 2020 3333 3333 3936 3030 2020 3220 33339600 2 │ │ │ │ -0005c8b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005c7b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c7c0: 0a7c 2020 2020 3220 2020 3130 3930 3434 .| 2 109044 │ │ │ │ +0005c7d0: 3233 3938 3720 3220 3220 2020 3231 3834 23987 2 2 2184 │ │ │ │ +0005c7e0: 3339 3530 3431 2020 2033 2020 2031 3039 395041 3 109 │ │ │ │ +0005c7f0: 3835 3639 3237 2020 2033 2020 2035 3231 856927 3 521 │ │ │ │ +0005c800: 3337 3930 3331 3120 2020 2020 2020 207c 3790311 | │ │ │ │ +0005c810: 0a7c 2078 2078 2020 2d20 2d2d 2d2d 2d2d .| x x - ------ │ │ │ │ +0005c820: 2d2d 2d2d 2d78 2078 2020 2d20 2d2d 2d2d -----x x - ---- │ │ │ │ +0005c830: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ +0005c840: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ +0005c850: 2d2d 2d2d 2d2d 2d78 2020 2020 2020 207c -------x | │ │ │ │ +0005c860: 0a7c 3120 3220 3320 2020 2020 3236 3637 .|1 2 3 2667 │ │ │ │ +0005c870: 3136 3830 2020 3220 3320 2020 2031 3139 1680 2 3 119 │ │ │ │ +0005c880: 3037 3030 3020 2030 2033 2020 2020 3236 07000 0 3 26 │ │ │ │ +0005c890: 3436 3030 3020 2031 2033 2020 2020 3333 46000 1 3 33 │ │ │ │ +0005c8a0: 3333 3936 3030 2020 3220 2020 2020 207c 339600 2 | │ │ │ │ +0005c8b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005c900: 2020 2020 207c 0a7c 3931 3734 3735 3038 |.|91747508 │ │ │ │ -0005c910: 3831 2032 2032 2020 2038 3032 3530 3739 81 2 2 8025079 │ │ │ │ -0005c920: 3134 3720 2020 3320 2020 3138 3830 3935 147 3 188095 │ │ │ │ -0005c930: 3320 2020 3320 2020 3732 3132 3030 3930 3 3 72120090 │ │ │ │ -0005c940: 3137 2020 2033 2020 2033 3931 3639 2020 17 3 39169 │ │ │ │ -0005c950: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005c960: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -0005c970: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -0005c980: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ -0005c990: 2d2d 7820 7820 202b 202d 2d2d 2d2d 7820 --x x + -----x │ │ │ │ -0005c9a0: 2020 2020 207c 0a7c 3133 3333 3538 3430 |.|13335840 │ │ │ │ -0005c9b0: 3020 2032 2033 2020 2020 3333 3333 3936 0 2 3 333396 │ │ │ │ -0005c9c0: 3030 2020 3020 3320 2020 2033 3738 3030 00 0 3 37800 │ │ │ │ -0005c9d0: 2020 3120 3320 2020 2033 3333 3339 3630 1 3 3333960 │ │ │ │ -0005c9e0: 3020 2032 2033 2020 2020 3337 3830 2020 0 2 3 3780 │ │ │ │ -0005c9f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005c8f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005c900: 0a7c 3931 3734 3735 3038 3831 2032 2032 .|9174750881 2 2 │ │ │ │ +0005c910: 2020 2038 3032 3530 3739 3134 3720 2020 8025079147 │ │ │ │ +0005c920: 3320 2020 3138 3830 3935 3320 2020 3320 3 1880953 3 │ │ │ │ +0005c930: 2020 3732 3132 3030 3930 3137 2020 2033 7212009017 3 │ │ │ │ +0005c940: 2020 2033 3931 3639 2020 2020 2020 207c 39169 | │ │ │ │ +0005c950: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005c960: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ----------x x │ │ │ │ +0005c970: 2020 2b20 2d2d 2d2d 2d2d 2d78 2078 2020 + -------x x │ │ │ │ +0005c980: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ----------x x │ │ │ │ +0005c990: 202b 202d 2d2d 2d2d 7820 2020 2020 207c + -----x | │ │ │ │ +0005c9a0: 0a7c 3133 3333 3538 3430 3020 2032 2033 .|133358400 2 3 │ │ │ │ +0005c9b0: 2020 2020 3333 3333 3936 3030 2020 3020 33339600 0 │ │ │ │ +0005c9c0: 3320 2020 2033 3738 3030 2020 3120 3320 3 37800 1 3 │ │ │ │ +0005c9d0: 2020 2033 3333 3339 3630 3020 2032 2033 33339600 2 3 │ │ │ │ +0005c9e0: 2020 2020 3337 3830 2020 2020 2020 207c 3780 | │ │ │ │ +0005c9f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ca40: 2020 2020 207c 0a7c 2033 3831 3032 3733 |.| 3810273 │ │ │ │ -0005ca50: 3736 3231 2020 2020 2032 2020 2038 3338 7621 2 838 │ │ │ │ -0005ca60: 3931 3632 3331 3920 3220 3220 2020 3232 9162319 2 2 22 │ │ │ │ -0005ca70: 3433 3931 3935 3131 2020 2033 2020 2033 43919511 3 3 │ │ │ │ -0005ca80: 3435 3433 3438 3139 2020 2033 2020 2020 45434819 3 │ │ │ │ -0005ca90: 2020 2020 207c 0a7c 202d 2d2d 2d2d 2d2d |.| ------- │ │ │ │ -0005caa0: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ -0005cab0: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d2d -------x x - -- │ │ │ │ -0005cac0: 2d2d 2d2d 2d2d 2d2d 7820 7820 202b 202d --------x x + - │ │ │ │ -0005cad0: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 2020 --------x x - │ │ │ │ -0005cae0: 2020 2020 207c 0a7c 2020 3137 3134 3630 |.| 171460 │ │ │ │ -0005caf0: 3830 3020 2031 2032 2033 2020 2020 3537 800 1 2 3 57 │ │ │ │ -0005cb00: 3135 3336 3030 2020 3220 3320 2020 2020 153600 2 3 │ │ │ │ -0005cb10: 3331 3735 3230 3020 2030 2033 2020 2020 3175200 0 3 │ │ │ │ -0005cb20: 3133 3630 3830 3020 2031 2033 2020 2020 1360800 1 3 │ │ │ │ -0005cb30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005ca30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ca40: 0a7c 2033 3831 3032 3733 3736 3231 2020 .| 38102737621 │ │ │ │ +0005ca50: 2020 2032 2020 2038 3338 3931 3632 3331 2 838916231 │ │ │ │ +0005ca60: 3920 3220 3220 2020 3232 3433 3931 3935 9 2 2 22439195 │ │ │ │ +0005ca70: 3131 2020 2033 2020 2033 3435 3433 3438 11 3 3454348 │ │ │ │ +0005ca80: 3139 2020 2033 2020 2020 2020 2020 207c 19 3 | │ │ │ │ +0005ca90: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 .| -----------x │ │ │ │ +0005caa0: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ +0005cab0: 2d78 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d -x x - -------- │ │ │ │ +0005cac0: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ +0005cad0: 2d2d 7820 7820 202d 2020 2020 2020 207c --x x - | │ │ │ │ +0005cae0: 0a7c 2020 3137 3134 3630 3830 3020 2031 .| 171460800 1 │ │ │ │ +0005caf0: 2032 2033 2020 2020 3537 3135 3336 3030 2 3 57153600 │ │ │ │ +0005cb00: 2020 3220 3320 2020 2020 3331 3735 3230 2 3 317520 │ │ │ │ +0005cb10: 3020 2030 2033 2020 2020 3133 3630 3830 0 0 3 136080 │ │ │ │ +0005cb20: 3020 2031 2033 2020 2020 2020 2020 207c 0 1 3 | │ │ │ │ +0005cb30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cb80: 2020 2020 207c 0a7c 3837 3432 3920 2020 |.|87429 │ │ │ │ -0005cb90: 2020 3220 2020 3134 3232 3133 3031 3833 2 1422130183 │ │ │ │ -0005cba0: 3320 3220 3220 2020 3538 3234 3931 3438 3 2 2 58249148 │ │ │ │ -0005cbb0: 3239 2020 2033 2020 2031 3636 3839 3439 29 3 1668949 │ │ │ │ -0005cbc0: 2020 2033 2020 2038 3237 3637 3035 3920 3 82767059 │ │ │ │ -0005cbd0: 2020 2020 207c 0a7c 2d2d 2d2d 2d78 2078 |.|-----x x │ │ │ │ -0005cbe0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ -0005cbf0: 2d78 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d -x x - -------- │ │ │ │ -0005cc00: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ -0005cc10: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d20 x x + -------- │ │ │ │ -0005cc20: 2020 2020 207c 0a7c 3830 3030 2020 3120 |.|8000 1 │ │ │ │ -0005cc30: 3220 3320 2020 2037 3737 3932 3430 3030 2 3 777924000 │ │ │ │ -0005cc40: 2020 3220 3320 2020 2035 3535 3636 3030 2 3 5556600 │ │ │ │ -0005cc50: 3020 2030 2033 2020 2020 3130 3538 3430 0 0 3 105840 │ │ │ │ -0005cc60: 2031 2033 2020 2020 3334 3732 3837 3520 1 3 3472875 │ │ │ │ -0005cc70: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005cb70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005cb80: 0a7c 3837 3432 3920 2020 2020 3220 2020 .|87429 2 │ │ │ │ +0005cb90: 3134 3232 3133 3031 3833 3320 3220 3220 14221301833 2 2 │ │ │ │ +0005cba0: 2020 3538 3234 3931 3438 3239 2020 2033 5824914829 3 │ │ │ │ +0005cbb0: 2020 2031 3636 3839 3439 2020 2033 2020 1668949 3 │ │ │ │ +0005cbc0: 2038 3237 3637 3035 3920 2020 2020 207c 82767059 | │ │ │ │ +0005cbd0: 0a7c 2d2d 2d2d 2d78 2078 2078 2020 2b20 .|-----x x x + │ │ │ │ +0005cbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 -----------x x │ │ │ │ +0005cbf0: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ----------x x │ │ │ │ +0005cc00: 202b 202d 2d2d 2d2d 2d2d 7820 7820 202b + -------x x + │ │ │ │ +0005cc10: 202d 2d2d 2d2d 2d2d 2d20 2020 2020 207c -------- | │ │ │ │ +0005cc20: 0a7c 3830 3030 2020 3120 3220 3320 2020 .|8000 1 2 3 │ │ │ │ +0005cc30: 2037 3737 3932 3430 3030 2020 3220 3320 777924000 2 3 │ │ │ │ +0005cc40: 2020 2035 3535 3636 3030 3020 2030 2033 55566000 0 3 │ │ │ │ +0005cc50: 2020 2020 3130 3538 3430 2031 2033 2020 105840 1 3 │ │ │ │ +0005cc60: 2020 3334 3732 3837 3520 2020 2020 207c 3472875 | │ │ │ │ +0005cc70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005cc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cc90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005cca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ccc0: 2d2d 2d2d 2d7c 0a7c 2034 2020 2039 3133 -----|.| 4 913 │ │ │ │ -0005ccd0: 3837 3731 3733 2033 2020 2020 2033 3230 877173 3 320 │ │ │ │ -0005cce0: 3533 3139 3134 3320 3220 2020 2020 2020 5319143 2 │ │ │ │ -0005ccf0: 3237 3131 3535 3634 3531 3920 2020 3220 27115564519 2 │ │ │ │ -0005cd00: 2020 2020 3431 3132 3739 3135 3120 3320 411279151 3 │ │ │ │ -0005cd10: 2020 2020 387c 0a7c 7820 202d 202d 2d2d 8|.|x - --- │ │ │ │ -0005cd20: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ -0005cd30: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ -0005cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005cd50: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ---------x x │ │ │ │ -0005cd60: 2020 2d20 2d7c 0a7c 2033 2020 2031 3639 - -|.| 3 169 │ │ │ │ -0005cd70: 3334 3430 3030 2030 2034 2020 2020 3537 344000 0 4 57 │ │ │ │ -0005cd80: 3135 3336 3030 2020 3020 3120 3420 2020 153600 0 1 4 │ │ │ │ -0005cd90: 2039 3134 3435 3736 3030 2020 3020 3120 914457600 0 1 │ │ │ │ -0005cda0: 3420 2020 2031 3336 3038 3030 3020 3120 4 13608000 1 │ │ │ │ -0005cdb0: 3420 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +0005ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005ccc0: 0a7c 2034 2020 2039 3133 3837 3731 3733 .| 4 913877173 │ │ │ │ +0005ccd0: 2033 2020 2020 2033 3230 3533 3139 3134 3 320531914 │ │ │ │ +0005cce0: 3320 3220 2020 2020 2020 3237 3131 3535 3 2 271155 │ │ │ │ +0005ccf0: 3634 3531 3920 2020 3220 2020 2020 3431 64519 2 41 │ │ │ │ +0005cd00: 3132 3739 3135 3120 3320 2020 2020 387c 1279151 3 8| │ │ │ │ +0005cd10: 0a7c 7820 202d 202d 2d2d 2d2d 2d2d 2d2d .|x - --------- │ │ │ │ +0005cd20: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ +0005cd30: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ +0005cd40: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d2d -----x x x - -- │ │ │ │ +0005cd50: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d7c -------x x - -| │ │ │ │ +0005cd60: 0a7c 2033 2020 2031 3639 3334 3430 3030 .| 3 169344000 │ │ │ │ +0005cd70: 2030 2034 2020 2020 3537 3135 3336 3030 0 4 57153600 │ │ │ │ +0005cd80: 2020 3020 3120 3420 2020 2039 3134 3435 0 1 4 91445 │ │ │ │ +0005cd90: 3736 3030 2020 3020 3120 3420 2020 2031 7600 0 1 4 1 │ │ │ │ +0005cda0: 3336 3038 3030 3020 3120 3420 2020 207c 3608000 1 4 | │ │ │ │ +0005cdb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ce00: 2020 2020 207c 0a7c 2033 2020 2033 3230 |.| 3 320 │ │ │ │ -0005ce10: 3338 3339 2034 2020 2033 3439 3238 3631 3839 4 3492861 │ │ │ │ -0005ce20: 3037 2033 2020 2020 2035 3831 3935 3732 07 3 5819572 │ │ │ │ -0005ce30: 3337 2032 2020 2020 2020 2031 3133 3933 37 2 11393 │ │ │ │ -0005ce40: 3930 3931 3334 3720 2020 3220 2020 2020 9091347 2 │ │ │ │ -0005ce50: 3138 3630 377c 0a7c 7820 202d 202d 2d2d 18607|.|x - --- │ │ │ │ -0005ce60: 2d2d 2d2d 7820 202b 202d 2d2d 2d2d 2d2d ----x + ------- │ │ │ │ -0005ce70: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -0005ce80: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ -0005ce90: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ -0005cea0: 2d2d 2d2d 2d7c 0a7c 2033 2020 2020 3133 -----|.| 3 13 │ │ │ │ -0005ceb0: 3233 3030 2033 2020 2020 3139 3035 3132 2300 3 190512 │ │ │ │ -0005cec0: 3030 2030 2034 2020 2020 3930 3732 3030 00 0 4 907200 │ │ │ │ -0005ced0: 3020 2030 2031 2034 2020 2020 3238 3537 0 0 1 4 2857 │ │ │ │ -0005cee0: 3638 3030 3030 2020 3020 3120 3420 2020 680000 0 1 4 │ │ │ │ -0005cef0: 2033 3234 307c 0a7c 2020 2020 2020 2020 3240|.| │ │ │ │ +0005cdf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ce00: 0a7c 2033 2020 2033 3230 3338 3339 2034 .| 3 3203839 4 │ │ │ │ +0005ce10: 2020 2033 3439 3238 3631 3037 2033 2020 349286107 3 │ │ │ │ +0005ce20: 2020 2035 3831 3935 3732 3337 2032 2020 581957237 2 │ │ │ │ +0005ce30: 2020 2020 2031 3133 3933 3930 3931 3334 11393909134 │ │ │ │ +0005ce40: 3720 2020 3220 2020 2020 3138 3630 377c 7 2 18607| │ │ │ │ +0005ce50: 0a7c 7820 202d 202d 2d2d 2d2d 2d2d 7820 .|x - -------x │ │ │ │ +0005ce60: 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ---------x x │ │ │ │ +0005ce70: 202d 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ---------x x │ │ │ │ +0005ce80: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +0005ce90: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d7c -x x x - -----| │ │ │ │ +0005cea0: 0a7c 2033 2020 2020 3133 3233 3030 2033 .| 3 132300 3 │ │ │ │ +0005ceb0: 2020 2020 3139 3035 3132 3030 2030 2034 19051200 0 4 │ │ │ │ +0005cec0: 2020 2020 3930 3732 3030 3020 2030 2031 9072000 0 1 │ │ │ │ +0005ced0: 2034 2020 2020 3238 3537 3638 3030 3030 4 2857680000 │ │ │ │ +0005cee0: 2020 3020 3120 3420 2020 2033 3234 307c 0 1 4 3240| │ │ │ │ +0005cef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005cf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005cf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005cf40: 2020 2020 207c 0a7c 3420 2020 3136 3931 |.|4 1691 │ │ │ │ -0005cf50: 3239 3138 3320 3320 2020 2020 3934 3236 29183 3 9426 │ │ │ │ -0005cf60: 3538 3237 3539 3037 2032 2020 2020 2020 58275907 2 │ │ │ │ -0005cf70: 2031 3732 3132 3639 3133 3839 2020 2032 17212691389 2 │ │ │ │ -0005cf80: 2020 2020 2033 3435 3232 3235 3920 3320 34522259 3 │ │ │ │ -0005cf90: 2020 2020 317c 0a7c 2020 2b20 2d2d 2d2d 1|.| + ---- │ │ │ │ -0005cfa0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -0005cfb0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ -0005cfc0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ -0005cfd0: 7820 202b 202d 2d2d 2d2d 2d2d 2d78 2078 x + --------x x │ │ │ │ -0005cfe0: 2020 2d20 2d7c 0a7c 3320 2020 2037 3134 - -|.|3 714 │ │ │ │ -0005cff0: 3432 3030 2020 3020 3420 2020 2035 3134 4200 0 4 514 │ │ │ │ -0005d000: 3338 3234 3030 3020 2030 2031 2034 2020 3824000 0 1 4 │ │ │ │ -0005d010: 2020 2037 3632 3034 3830 2020 2030 2031 7620480 0 1 │ │ │ │ -0005d020: 2034 2020 2020 3136 3230 3030 2020 3120 4 162000 1 │ │ │ │ -0005d030: 3420 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +0005cf30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005cf40: 0a7c 3420 2020 3136 3931 3239 3138 3320 .|4 169129183 │ │ │ │ +0005cf50: 3320 2020 2020 3934 3236 3538 3237 3539 3 9426582759 │ │ │ │ +0005cf60: 3037 2032 2020 2020 2020 2031 3732 3132 07 2 17212 │ │ │ │ +0005cf70: 3639 3133 3839 2020 2032 2020 2020 2033 691389 2 3 │ │ │ │ +0005cf80: 3435 3232 3235 3920 3320 2020 2020 317c 4522259 3 1| │ │ │ │ +0005cf90: 0a7c 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 .| + ---------x │ │ │ │ +0005cfa0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ +0005cfb0: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ +0005cfc0: 2d2d 2d2d 2d2d 7820 7820 7820 202b 202d ------x x x + - │ │ │ │ +0005cfd0: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d7c -------x x - -| │ │ │ │ +0005cfe0: 0a7c 3320 2020 2037 3134 3432 3030 2020 .|3 7144200 │ │ │ │ +0005cff0: 3020 3420 2020 2035 3134 3338 3234 3030 0 4 514382400 │ │ │ │ +0005d000: 3020 2030 2031 2034 2020 2020 2037 3632 0 0 1 4 762 │ │ │ │ +0005d010: 3034 3830 2020 2030 2031 2034 2020 2020 0480 0 1 4 │ │ │ │ +0005d020: 3136 3230 3030 2020 3120 3420 2020 207c 162000 1 4 | │ │ │ │ +0005d030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d080: 2020 2020 207c 0a7c 3136 3930 3534 3539 |.|16905459 │ │ │ │ -0005d090: 3720 2020 3320 2020 3338 3033 3531 2034 7 3 380351 4 │ │ │ │ -0005d0a0: 2020 2035 3538 3439 3531 3133 2033 2020 558495113 3 │ │ │ │ -0005d0b0: 2020 2032 3230 3334 3338 3131 3839 2032 22034381189 2 │ │ │ │ -0005d0c0: 2020 2020 2020 2036 3133 3538 3336 3336 613583636 │ │ │ │ -0005d0d0: 3837 3920 207c 0a7c 2d2d 2d2d 2d2d 2d2d 879 |.|-------- │ │ │ │ -0005d0e0: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 7820 -x x + ------x │ │ │ │ -0005d0f0: 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ---------x x │ │ │ │ -0005d100: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + -----------x │ │ │ │ -0005d110: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -0005d120: 2d2d 2d78 207c 0a7c 2031 3538 3736 3030 ---x |.| 1587600 │ │ │ │ -0005d130: 2020 3220 3320 2020 2033 3738 3020 2033 2 3 3780 3 │ │ │ │ -0005d140: 2020 2020 3435 3732 3238 3830 2030 2034 45722880 0 4 │ │ │ │ -0005d150: 2020 2020 3131 3433 3037 3230 3030 2030 1143072000 0 │ │ │ │ -0005d160: 2031 2034 2020 2020 3134 3238 3834 3030 1 4 14288400 │ │ │ │ -0005d170: 3030 2020 307c 0a7c 2020 2020 2020 2020 00 0|.| │ │ │ │ +0005d070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d080: 0a7c 3136 3930 3534 3539 3720 2020 3320 .|169054597 3 │ │ │ │ +0005d090: 2020 3338 3033 3531 2034 2020 2035 3538 380351 4 558 │ │ │ │ +0005d0a0: 3439 3531 3133 2033 2020 2020 2032 3230 495113 3 220 │ │ │ │ +0005d0b0: 3334 3338 3131 3839 2032 2020 2020 2020 34381189 2 │ │ │ │ +0005d0c0: 2036 3133 3538 3336 3336 3837 3920 207c 613583636879 | │ │ │ │ +0005d0d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 .|---------x x │ │ │ │ +0005d0e0: 2b20 2d2d 2d2d 2d2d 7820 202b 202d 2d2d + ------x + --- │ │ │ │ +0005d0f0: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ +0005d100: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ +0005d110: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 207c ------------x | │ │ │ │ +0005d120: 0a7c 2031 3538 3736 3030 2020 3220 3320 .| 1587600 2 3 │ │ │ │ +0005d130: 2020 2033 3738 3020 2033 2020 2020 3435 3780 3 45 │ │ │ │ +0005d140: 3732 3238 3830 2030 2034 2020 2020 3131 722880 0 4 11 │ │ │ │ +0005d150: 3433 3037 3230 3030 2030 2031 2034 2020 43072000 0 1 4 │ │ │ │ +0005d160: 2020 3134 3238 3834 3030 3030 2020 307c 1428840000 0| │ │ │ │ +0005d170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d1c0: 2020 2020 207c 0a7c 2020 2033 2020 2031 |.| 3 1 │ │ │ │ -0005d1d0: 3732 3332 3420 3420 2020 3134 3936 3639 72324 4 149669 │ │ │ │ -0005d1e0: 3438 3320 3320 2020 2020 3439 3735 3737 483 3 497577 │ │ │ │ -0005d1f0: 3235 3130 3633 2032 2020 2020 2020 2032 251063 2 2 │ │ │ │ -0005d200: 3535 3232 3431 3433 3334 3831 2020 2032 552241433481 2 │ │ │ │ -0005d210: 2020 2020 207c 0a7c 7820 7820 202b 202d |.|x x + - │ │ │ │ -0005d220: 2d2d 2d2d 2d78 2020 2b20 2d2d 2d2d 2d2d -----x + ------ │ │ │ │ -0005d230: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -0005d240: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ -0005d250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 ------------x x │ │ │ │ -0005d260: 7820 202d 207c 0a7c 2032 2033 2020 2020 x - |.| 2 3 │ │ │ │ -0005d270: 3131 3032 3520 3320 2020 2034 3636 3536 11025 3 46656 │ │ │ │ -0005d280: 3030 2020 3020 3420 2020 2032 3933 3933 00 0 4 29393 │ │ │ │ -0005d290: 3238 3030 3020 2030 2031 2034 2020 2020 28000 0 1 4 │ │ │ │ -0005d2a0: 2034 3839 3838 3830 3030 3020 2030 2031 4898880000 0 1 │ │ │ │ -0005d2b0: 2034 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 4 |.|-------- │ │ │ │ +0005d1b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d1c0: 0a7c 2020 2033 2020 2031 3732 3332 3420 .| 3 172324 │ │ │ │ +0005d1d0: 3420 2020 3134 3936 3639 3438 3320 3320 4 149669483 3 │ │ │ │ +0005d1e0: 2020 2020 3439 3735 3737 3235 3130 3633 497577251063 │ │ │ │ +0005d1f0: 2032 2020 2020 2020 2032 3535 3232 3431 2 2552241 │ │ │ │ +0005d200: 3433 3334 3831 2020 2032 2020 2020 207c 433481 2 | │ │ │ │ +0005d210: 0a7c 7820 7820 202b 202d 2d2d 2d2d 2d78 .|x x + ------x │ │ │ │ +0005d220: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 + ---------x x │ │ │ │ +0005d230: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d - ------------ │ │ │ │ +0005d240: 7820 7820 7820 202d 202d 2d2d 2d2d 2d2d x x x - ------- │ │ │ │ +0005d250: 2d2d 2d2d 2d2d 7820 7820 7820 202d 207c ------x x x - | │ │ │ │ +0005d260: 0a7c 2032 2033 2020 2020 3131 3032 3520 .| 2 3 11025 │ │ │ │ +0005d270: 3320 2020 2034 3636 3536 3030 2020 3020 3 4665600 0 │ │ │ │ +0005d280: 3420 2020 2032 3933 3933 3238 3030 3020 4 2939328000 │ │ │ │ +0005d290: 2030 2031 2034 2020 2020 2034 3839 3838 0 1 4 48988 │ │ │ │ +0005d2a0: 3830 3030 3020 2030 2031 2034 2020 207c 80000 0 1 4 | │ │ │ │ +0005d2b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005d2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d300: 2d2d 2d2d 2d7c 0a7c 3332 3331 3831 3436 -----|.|32318146 │ │ │ │ -0005d310: 3931 2032 2020 2020 2020 2037 3339 3633 91 2 73963 │ │ │ │ -0005d320: 3630 3634 3638 3430 3320 2020 2020 2020 606468403 │ │ │ │ -0005d330: 2020 2020 3234 3635 3036 3036 3920 3220 246506069 2 │ │ │ │ -0005d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d350: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005d360: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ -0005d370: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ -0005d380: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ---------x x │ │ │ │ -0005d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d3a0: 2020 2020 207c 0a7c 3830 3031 3530 3430 |.|80015040 │ │ │ │ -0005d3b0: 3030 2030 2032 2034 2020 2020 3134 3430 00 0 2 4 1440 │ │ │ │ -0005d3c0: 3237 3037 3230 3030 2020 3020 3120 3220 27072000 0 1 2 │ │ │ │ -0005d3d0: 3420 2020 2033 3430 3230 3030 2020 3120 4 3402000 1 │ │ │ │ -0005d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d3f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005d2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005d300: 0a7c 3332 3331 3831 3436 3931 2032 2020 .|3231814691 2 │ │ │ │ +0005d310: 2020 2020 2037 3339 3633 3630 3634 3638 73963606468 │ │ │ │ +0005d320: 3430 3320 2020 2020 2020 2020 2020 3234 403 24 │ │ │ │ +0005d330: 3635 3036 3036 3920 3220 2020 2020 2020 6506069 2 │ │ │ │ +0005d340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d350: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005d360: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +0005d370: 2d2d 2d78 2078 2078 2078 2020 2d20 2d2d ---x x x x - -- │ │ │ │ +0005d380: 2d2d 2d2d 2d2d 2d78 2078 2020 2020 2020 -------x x │ │ │ │ +0005d390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d3a0: 0a7c 3830 3031 3530 3430 3030 2030 2032 .|8001504000 0 2 │ │ │ │ +0005d3b0: 2034 2020 2020 3134 3430 3237 3037 3230 4 1440270720 │ │ │ │ +0005d3c0: 3030 2020 3020 3120 3220 3420 2020 2033 00 0 1 2 4 3 │ │ │ │ +0005d3d0: 3430 3230 3030 2020 3120 2020 2020 2020 402000 1 │ │ │ │ +0005d3e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d3f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d440: 2020 2020 207c 0a7c 3135 3931 2033 2020 |.|1591 3 │ │ │ │ -0005d450: 2020 2031 3839 3638 3937 3838 3238 3237 1896897882827 │ │ │ │ -0005d460: 2032 2020 2020 2020 2038 3134 3933 3432 2 8149342 │ │ │ │ -0005d470: 3831 3630 3720 2020 2020 2020 2020 2020 81607 │ │ │ │ -0005d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d490: 2020 2020 207c 0a7c 2d2d 2d2d 7820 7820 |.|----x x │ │ │ │ -0005d4a0: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------- │ │ │ │ -0005d4b0: 7820 7820 7820 202b 202d 2d2d 2d2d 2d2d x x x + ------- │ │ │ │ -0005d4c0: 2d2d 2d2d 2d78 2078 2078 2078 2020 2b20 -----x x x x + │ │ │ │ -0005d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d4e0: 2020 2020 207c 0a7c 3030 3020 2031 2034 |.|000 1 4 │ │ │ │ -0005d4f0: 2020 2020 3132 3030 3232 3536 3030 3020 12002256000 │ │ │ │ -0005d500: 2030 2032 2034 2020 2020 3236 3637 3136 0 2 4 266716 │ │ │ │ -0005d510: 3830 3030 2020 3020 3120 3220 3420 2020 8000 0 1 2 4 │ │ │ │ -0005d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d530: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005d430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d440: 0a7c 3135 3931 2033 2020 2020 2031 3839 .|1591 3 189 │ │ │ │ +0005d450: 3638 3937 3838 3238 3237 2032 2020 2020 6897882827 2 │ │ │ │ +0005d460: 2020 2038 3134 3933 3432 3831 3630 3720 814934281607 │ │ │ │ +0005d470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d490: 0a7c 2d2d 2d2d 7820 7820 202b 202d 2d2d .|----x x + --- │ │ │ │ +0005d4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +0005d4b0: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + ------------x │ │ │ │ +0005d4c0: 2078 2078 2078 2020 2b20 2020 2020 2020 x x x + │ │ │ │ +0005d4d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d4e0: 0a7c 3030 3020 2031 2034 2020 2020 3132 .|000 1 4 12 │ │ │ │ +0005d4f0: 3030 3232 3536 3030 3020 2030 2032 2034 002256000 0 2 4 │ │ │ │ +0005d500: 2020 2020 3236 3637 3136 3830 3030 2020 2667168000 │ │ │ │ +0005d510: 3020 3120 3220 3420 2020 2020 2020 2020 0 1 2 4 │ │ │ │ +0005d520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d580: 2020 2020 207c 0a7c 3833 3930 3534 3239 |.|83905429 │ │ │ │ -0005d590: 3331 3120 3220 2020 2020 2020 3137 3837 311 2 1787 │ │ │ │ -0005d5a0: 3137 3735 3935 3437 2020 2020 2020 2020 17759547 │ │ │ │ -0005d5b0: 2020 2036 3235 3536 3532 3533 3437 2032 62556525347 2 │ │ │ │ -0005d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d5d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005d5e0: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d2d ---x x x + ---- │ │ │ │ -0005d5f0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 7820 --------x x x x │ │ │ │ -0005d600: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + -----------x │ │ │ │ -0005d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d620: 2020 2020 207c 0a7c 3130 3238 3736 3438 |.|10287648 │ │ │ │ -0005d630: 3030 2020 3020 3220 3420 2020 2031 3436 00 0 2 4 146 │ │ │ │ -0005d640: 3936 3634 3030 3020 2030 2031 2032 2034 9664000 0 1 2 4 │ │ │ │ -0005d650: 2020 2020 2038 3136 3438 3030 3020 2031 81648000 1 │ │ │ │ -0005d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005d570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d580: 0a7c 3833 3930 3534 3239 3331 3120 3220 .|83905429311 2 │ │ │ │ +0005d590: 2020 2020 2020 3137 3837 3137 3735 3935 1787177595 │ │ │ │ +0005d5a0: 3437 2020 2020 2020 2020 2020 2036 3235 47 625 │ │ │ │ +0005d5b0: 3536 3532 3533 3437 2032 2020 2020 2020 56525347 2 │ │ │ │ +0005d5c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d5d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .|-----------x x │ │ │ │ +0005d5e0: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ +0005d5f0: 2d2d 7820 7820 7820 7820 202b 202d 2d2d --x x x x + --- │ │ │ │ +0005d600: 2d2d 2d2d 2d2d 2d2d 7820 2020 2020 2020 --------x │ │ │ │ +0005d610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d620: 0a7c 3130 3238 3736 3438 3030 2020 3020 .|1028764800 0 │ │ │ │ +0005d630: 3220 3420 2020 2031 3436 3936 3634 3030 2 4 146966400 │ │ │ │ +0005d640: 3020 2030 2031 2032 2034 2020 2020 2038 0 0 1 2 4 8 │ │ │ │ +0005d650: 3136 3438 3030 3020 2031 2020 2020 2020 1648000 1 │ │ │ │ +0005d660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d6c0: 2020 2020 207c 0a7c 2032 2020 2020 2033 |.| 2 3 │ │ │ │ -0005d6d0: 3233 3130 3634 3320 3320 2020 2020 3933 2310643 3 93 │ │ │ │ -0005d6e0: 3833 3238 3430 3132 3438 3920 3220 2020 83284012489 2 │ │ │ │ -0005d6f0: 2020 2020 3730 3934 3832 3238 3931 3833 709482289183 │ │ │ │ -0005d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d710: 2020 2020 207c 0a7c 7820 7820 202b 202d |.|x x + - │ │ │ │ -0005d720: 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 2d2d -------x x + -- │ │ │ │ -0005d730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005d740: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ -0005d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d760: 2020 2020 207c 0a7c 2031 2034 2020 2020 |.| 1 4 │ │ │ │ -0005d770: 3634 3830 3030 3020 3120 3420 2020 2032 6480000 1 4 2 │ │ │ │ -0005d780: 3838 3035 3431 3434 3030 3020 3020 3220 88054144000 0 2 │ │ │ │ -0005d790: 3420 2020 2035 3333 3433 3336 3030 3020 4 5334336000 │ │ │ │ -0005d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d7b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005d6b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d6c0: 0a7c 2032 2020 2020 2033 3233 3130 3634 .| 2 3231064 │ │ │ │ +0005d6d0: 3320 3320 2020 2020 3933 3833 3238 3430 3 3 93832840 │ │ │ │ +0005d6e0: 3132 3438 3920 3220 2020 2020 2020 3730 12489 2 70 │ │ │ │ +0005d6f0: 3934 3832 3238 3931 3833 2020 2020 2020 9482289183 │ │ │ │ +0005d700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d710: 0a7c 7820 7820 202b 202d 2d2d 2d2d 2d2d .|x x + ------- │ │ │ │ +0005d720: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ +0005d730: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ +0005d740: 2d2d 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 ---------- │ │ │ │ +0005d750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d760: 0a7c 2031 2034 2020 2020 3634 3830 3030 .| 1 4 648000 │ │ │ │ +0005d770: 3020 3120 3420 2020 2032 3838 3035 3431 0 1 4 2880541 │ │ │ │ +0005d780: 3434 3030 3020 3020 3220 3420 2020 2035 44000 0 2 4 5 │ │ │ │ +0005d790: 3333 3433 3336 3030 3020 2020 2020 2020 334336000 │ │ │ │ +0005d7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d7b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005d7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d800: 2020 2020 207c 0a7c 3134 3534 3037 3231 |.|14540721 │ │ │ │ -0005d810: 3133 2033 2020 2020 2031 3633 3438 3431 13 3 1634841 │ │ │ │ -0005d820: 3837 3031 3930 3720 3220 2020 2020 2020 8701907 2 │ │ │ │ -0005d830: 3837 3238 3131 3636 3139 3534 3320 2020 8728116619543 │ │ │ │ -0005d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d850: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005d860: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ -0005d870: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b20 -------x x x + │ │ │ │ -0005d880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 -------------x x │ │ │ │ -0005d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d8a0: 2020 2020 207c 0a7c 2032 3931 3630 3030 |.| 2916000 │ │ │ │ -0005d8b0: 3020 2031 2034 2020 2020 2034 3131 3530 0 1 4 41150 │ │ │ │ -0005d8c0: 3539 3230 3030 2020 3020 3220 3420 2020 592000 0 2 4 │ │ │ │ -0005d8d0: 2032 3035 3735 3239 3630 3030 2020 3020 20575296000 0 │ │ │ │ -0005d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d8f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005d7f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d800: 0a7c 3134 3534 3037 3231 3133 2033 2020 .|1454072113 3 │ │ │ │ +0005d810: 2020 2031 3633 3438 3431 3837 3031 3930 1634841870190 │ │ │ │ +0005d820: 3720 3220 2020 2020 2020 3837 3238 3131 7 2 872811 │ │ │ │ +0005d830: 3636 3139 3534 3320 2020 2020 2020 2020 6619543 │ │ │ │ +0005d840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d850: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005d860: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------- │ │ │ │ +0005d870: 2d78 2078 2078 2020 2b20 2d2d 2d2d 2d2d -x x x + ------ │ │ │ │ +0005d880: 2d2d 2d2d 2d2d 2d78 2078 2020 2020 2020 -------x x │ │ │ │ +0005d890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d8a0: 0a7c 2032 3931 3630 3030 3020 2031 2034 .| 29160000 1 4 │ │ │ │ +0005d8b0: 2020 2020 2034 3131 3530 3539 3230 3030 41150592000 │ │ │ │ +0005d8c0: 2020 3020 3220 3420 2020 2032 3035 3735 0 2 4 20575 │ │ │ │ +0005d8d0: 3239 3630 3030 2020 3020 2020 2020 2020 296000 0 │ │ │ │ +0005d8e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d8f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005d900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005d920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005d940: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3438 -----|.| 48 │ │ │ │ -0005d950: 3037 3233 3939 3539 3033 2020 2032 2020 0723995903 2 │ │ │ │ -0005d960: 2020 2031 3431 3630 3734 3637 3230 3920 141607467209 │ │ │ │ -0005d970: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d990: 2020 2020 207c 0a7c 2078 2020 2d20 2d2d |.| x - -- │ │ │ │ -0005d9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005d9b0: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - ------------x │ │ │ │ -0005d9c0: 2078 2078 2020 2d20 2020 2020 2020 2020 x x - │ │ │ │ -0005d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005d9e0: 2020 2020 207c 0a7c 3220 3420 2020 2034 |.|2 4 4 │ │ │ │ -0005d9f0: 3830 3039 3032 3430 3020 2030 2032 2034 800902400 0 2 4 │ │ │ │ -0005da00: 2020 2020 2038 3839 3035 3630 3030 2020 889056000 │ │ │ │ -0005da10: 3120 3220 3420 2020 2020 2020 2020 2020 1 2 4 │ │ │ │ -0005da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005da30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005d930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005d940: 0a7c 2020 2020 2020 3438 3037 3233 3939 .| 48072399 │ │ │ │ +0005d950: 3539 3033 2020 2032 2020 2020 2031 3431 5903 2 141 │ │ │ │ +0005d960: 3630 3734 3637 3230 3920 2020 3220 2020 607467209 2 │ │ │ │ +0005d970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005d980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d990: 0a7c 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d .| x - -------- │ │ │ │ +0005d9a0: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ +0005d9b0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005d9c0: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0005d9d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005d9e0: 0a7c 3220 3420 2020 2034 3830 3039 3032 .|2 4 4800902 │ │ │ │ +0005d9f0: 3430 3020 2030 2032 2034 2020 2020 2038 400 0 2 4 8 │ │ │ │ +0005da00: 3839 3035 3630 3030 2020 3120 3220 3420 89056000 1 2 4 │ │ │ │ +0005da10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005da20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005da30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005da80: 2020 2020 207c 0a7c 3237 3739 3035 3833 |.|27790583 │ │ │ │ -0005da90: 2032 2020 2020 2020 2033 3037 3936 3431 2 3079641 │ │ │ │ -0005daa0: 3839 2020 2032 2020 2020 2033 3930 3230 89 2 39020 │ │ │ │ -0005dab0: 3333 3039 3435 3920 2020 2020 2020 2020 3309459 │ │ │ │ -0005dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dad0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005dae0: 7820 7820 7820 202b 202d 2d2d 2d2d 2d2d x x x + ------- │ │ │ │ -0005daf0: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ -0005db00: 2d2d 2d2d 2d2d 2d20 2020 2020 2020 2020 ------- │ │ │ │ -0005db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db20: 2020 2020 207c 0a7c 2035 3833 3230 3030 |.| 5832000 │ │ │ │ -0005db30: 2031 2032 2034 2020 2020 3334 3032 3030 1 2 4 340200 │ │ │ │ -0005db40: 3020 2030 2032 2034 2020 2020 3334 3239 0 0 2 4 3429 │ │ │ │ -0005db50: 3231 3630 3030 2020 2020 2020 2020 2020 216000 │ │ │ │ -0005db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005db70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005da70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005da80: 0a7c 3237 3739 3035 3833 2032 2020 2020 .|27790583 2 │ │ │ │ +0005da90: 2020 2033 3037 3936 3431 3839 2020 2032 307964189 2 │ │ │ │ +0005daa0: 2020 2020 2033 3930 3230 3333 3039 3435 39020330945 │ │ │ │ +0005dab0: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +0005dac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dad0: 0a7c 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 .|--------x x x │ │ │ │ +0005dae0: 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ---------x x │ │ │ │ +0005daf0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d x + ----------- │ │ │ │ +0005db00: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +0005db10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005db20: 0a7c 2035 3833 3230 3030 2031 2032 2034 .| 5832000 1 2 4 │ │ │ │ +0005db30: 2020 2020 3334 3032 3030 3020 2030 2032 3402000 0 2 │ │ │ │ +0005db40: 2034 2020 2020 3334 3239 3231 3630 3030 4 3429216000 │ │ │ │ +0005db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005db60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005db70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005db90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dbc0: 2020 2020 207c 0a7c 2020 2020 2020 2031 |.| 1 │ │ │ │ -0005dbd0: 3534 3935 3932 3032 3931 2020 2032 2020 5495920291 2 │ │ │ │ -0005dbe0: 2020 2033 3538 3737 3639 3538 3337 2020 35877695837 │ │ │ │ -0005dbf0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc10: 2020 2020 207c 0a7c 7820 7820 202d 202d |.|x x - - │ │ │ │ -0005dc20: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005dc30: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + -----------x │ │ │ │ -0005dc40: 7820 7820 202d 2020 2020 2020 2020 2020 x x - │ │ │ │ -0005dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dc60: 2020 2020 207c 0a7c 2032 2034 2020 2020 |.| 2 4 │ │ │ │ -0005dc70: 2038 3233 3031 3138 3420 2030 2032 2034 82301184 0 2 4 │ │ │ │ -0005dc80: 2020 2020 3139 3035 3132 3030 3020 2031 190512000 1 │ │ │ │ -0005dc90: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -0005dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dcb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005dbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dbc0: 0a7c 2020 2020 2020 2031 3534 3935 3932 .| 1549592 │ │ │ │ +0005dbd0: 3032 3931 2020 2032 2020 2020 2033 3538 0291 2 358 │ │ │ │ +0005dbe0: 3737 3639 3538 3337 2020 2032 2020 2020 77695837 2 │ │ │ │ +0005dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005dc00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dc10: 0a7c 7820 7820 202d 202d 2d2d 2d2d 2d2d .|x x - ------- │ │ │ │ +0005dc20: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ +0005dc30: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202d --------x x x - │ │ │ │ +0005dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005dc50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dc60: 0a7c 2032 2034 2020 2020 2038 3233 3031 .| 2 4 82301 │ │ │ │ +0005dc70: 3138 3420 2030 2032 2034 2020 2020 3139 184 0 2 4 19 │ │ │ │ +0005dc80: 3035 3132 3030 3020 2031 2032 2034 2020 0512000 1 2 4 │ │ │ │ +0005dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005dca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dcb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dd00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0005dd10: 2020 2031 3330 3033 3432 3831 3131 3720 130034281117 │ │ │ │ -0005dd20: 3220 2020 2020 2020 3933 3938 3339 3739 2 93983979 │ │ │ │ -0005dd30: 3331 3033 2020 2020 2020 2020 2020 2020 3103 │ │ │ │ -0005dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dd50: 2020 2020 207c 0a7c 7820 7820 7820 7820 |.|x x x x │ │ │ │ -0005dd60: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + ------------x │ │ │ │ -0005dd70: 2078 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d x x - -------- │ │ │ │ -0005dd80: 2d2d 2d2d 7820 7820 2020 2020 2020 2020 ----x x │ │ │ │ -0005dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dda0: 2020 2020 207c 0a7c 2030 2031 2032 2034 |.| 0 1 2 4 │ │ │ │ -0005ddb0: 2020 2020 2036 3533 3138 3430 3030 2020 653184000 │ │ │ │ -0005ddc0: 3120 3220 3420 2020 3134 3430 3237 3037 1 2 4 14402707 │ │ │ │ -0005ddd0: 3230 3030 2030 2020 2020 2020 2020 2020 2000 0 │ │ │ │ -0005dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ddf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005dcf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dd00: 0a7c 2020 2020 2020 2020 2020 2031 3330 .| 130 │ │ │ │ +0005dd10: 3033 3432 3831 3131 3720 3220 2020 2020 034281117 2 │ │ │ │ +0005dd20: 2020 3933 3938 3339 3739 3331 3033 2020 939839793103 │ │ │ │ +0005dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005dd40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dd50: 0a7c 7820 7820 7820 7820 202b 202d 2d2d .|x x x x + --- │ │ │ │ +0005dd60: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005dd70: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ------------x │ │ │ │ +0005dd80: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0005dd90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dda0: 0a7c 2030 2031 2032 2034 2020 2020 2036 .| 0 1 2 4 6 │ │ │ │ +0005ddb0: 3533 3138 3430 3030 2020 3120 3220 3420 53184000 1 2 4 │ │ │ │ +0005ddc0: 2020 3134 3430 3237 3037 3230 3030 2030 144027072000 0 │ │ │ │ +0005ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005dde0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ddf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0005de50: 3637 3635 3730 3133 3532 3331 2032 2020 676570135231 2 │ │ │ │ -0005de60: 2020 2020 2037 3539 3638 3039 3131 3737 75968091177 │ │ │ │ -0005de70: 3031 2020 2032 2020 2020 2020 2020 2020 01 2 │ │ │ │ -0005de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005de90: 2020 2020 207c 0a7c 2078 2078 2020 2d20 |.| x x - │ │ │ │ -0005dea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 ------------x x │ │ │ │ -0005deb0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d x + ----------- │ │ │ │ -0005dec0: 2d2d 7820 7820 7820 2020 2020 2020 2020 --x x x │ │ │ │ -0005ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dee0: 2020 2020 207c 0a7c 3120 3220 3420 2020 |.|1 2 4 │ │ │ │ -0005def0: 2034 3839 3838 3830 3030 3020 2031 2032 4898880000 1 2 │ │ │ │ -0005df00: 2034 2020 2020 3230 3537 3532 3936 3030 4 2057529600 │ │ │ │ -0005df10: 3020 2030 2032 2020 2020 2020 2020 2020 0 0 2 │ │ │ │ -0005df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005df30: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005de30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005de40: 0a7c 2020 2020 2020 2020 3637 3635 3730 .| 676570 │ │ │ │ +0005de50: 3133 3532 3331 2032 2020 2020 2020 2037 135231 2 7 │ │ │ │ +0005de60: 3539 3638 3039 3131 3737 3031 2020 2032 596809117701 2 │ │ │ │ +0005de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005de80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005de90: 0a7c 2078 2078 2020 2d20 2d2d 2d2d 2d2d .| x x - ------ │ │ │ │ +0005dea0: 2d2d 2d2d 2d2d 7820 7820 7820 202b 202d ------x x x + - │ │ │ │ +0005deb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 ------------x x │ │ │ │ +0005dec0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0005ded0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dee0: 0a7c 3120 3220 3420 2020 2034 3839 3838 .|1 2 4 48988 │ │ │ │ +0005def0: 3830 3030 3020 2031 2032 2034 2020 2020 80000 1 2 4 │ │ │ │ +0005df00: 3230 3537 3532 3936 3030 3020 2030 2032 20575296000 0 2 │ │ │ │ +0005df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005df20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005df30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005df40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005df50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005df60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005df80: 2d2d 2d2d 2d7c 0a7c 2037 3133 3935 3835 -----|.| 7139585 │ │ │ │ -0005df90: 3839 2033 2020 2020 2036 3138 3638 3233 89 3 6186823 │ │ │ │ -0005dfa0: 3231 3031 2032 2020 2020 2020 2037 3131 2101 2 711 │ │ │ │ -0005dfb0: 3731 3331 3337 3735 3438 3720 2020 2020 71313775487 │ │ │ │ -0005dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005dfd0: 2020 2020 207c 0a7c 202d 2d2d 2d2d 2d2d |.| ------- │ │ │ │ -0005dfe0: 2d2d 7820 7820 202b 202d 2d2d 2d2d 2d2d --x x + ------- │ │ │ │ -0005dff0: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ -0005e000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ -0005e010: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0005e020: 2020 2020 207c 0a7c 2020 3132 3334 3830 |.| 123480 │ │ │ │ -0005e030: 3030 2032 2034 2020 2020 3533 3334 3333 00 2 4 533433 │ │ │ │ -0005e040: 3630 3030 2030 2033 2034 2020 2020 2038 6000 0 3 4 8 │ │ │ │ -0005e050: 3030 3135 3034 3030 3030 2020 3020 3120 0015040000 0 1 │ │ │ │ -0005e060: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0005e070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005df70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005df80: 0a7c 2037 3133 3935 3835 3839 2033 2020 .| 713958589 3 │ │ │ │ +0005df90: 2020 2036 3138 3638 3233 3231 3031 2032 61868232101 2 │ │ │ │ +0005dfa0: 2020 2020 2020 2037 3131 3731 3331 3337 711713137 │ │ │ │ +0005dfb0: 3735 3438 3720 2020 2020 2020 2020 2020 75487 │ │ │ │ +0005dfc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005dfd0: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 .| ---------x x │ │ │ │ +0005dfe0: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + -----------x │ │ │ │ +0005dff0: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ +0005e000: 2d2d 2d2d 2d78 2078 2078 2078 2020 2020 -----x x x x │ │ │ │ +0005e010: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e020: 0a7c 2020 3132 3334 3830 3030 2032 2034 .| 12348000 2 4 │ │ │ │ +0005e030: 2020 2020 3533 3334 3333 3630 3030 2030 5334336000 0 │ │ │ │ +0005e040: 2033 2034 2020 2020 2038 3030 3135 3034 3 4 8001504 │ │ │ │ +0005e050: 3030 3030 2020 3020 3120 3320 3420 2020 0000 0 1 3 4 │ │ │ │ +0005e060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e0c0: 2020 2020 207c 0a7c 2020 2032 2020 2020 |.| 2 │ │ │ │ -0005e0d0: 2031 3238 3133 3835 3531 3637 2033 2020 12813855167 3 │ │ │ │ -0005e0e0: 2020 2031 3730 3034 3532 3330 3120 3220 1700452301 2 │ │ │ │ -0005e0f0: 2020 2020 2020 3731 3832 3039 3337 3239 7182093729 │ │ │ │ -0005e100: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ -0005e110: 2020 2020 207c 0a7c 7820 7820 7820 202b |.|x x x + │ │ │ │ -0005e120: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ -0005e130: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + ----------x x │ │ │ │ -0005e140: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ -0005e150: 2d78 2078 2020 2020 2020 2020 2020 2020 -x x │ │ │ │ -0005e160: 2020 2020 207c 0a7c 2031 2032 2034 2020 |.| 1 2 4 │ │ │ │ -0005e170: 2020 3835 3733 3034 3030 3020 2032 2034 857304000 2 4 │ │ │ │ -0005e180: 2020 2020 3632 3531 3137 3530 2020 3020 62511750 0 │ │ │ │ -0005e190: 3320 3420 2020 2032 3632 3434 3030 3030 3 4 262440000 │ │ │ │ -0005e1a0: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -0005e1b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e0b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e0c0: 0a7c 2020 2032 2020 2020 2031 3238 3133 .| 2 12813 │ │ │ │ +0005e0d0: 3835 3531 3637 2033 2020 2020 2031 3730 855167 3 170 │ │ │ │ +0005e0e0: 3034 3532 3330 3120 3220 2020 2020 2020 0452301 2 │ │ │ │ +0005e0f0: 3731 3832 3039 3337 3239 3720 2020 2020 71820937297 │ │ │ │ +0005e100: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e110: 0a7c 7820 7820 7820 202b 202d 2d2d 2d2d .|x x x + ----- │ │ │ │ +0005e120: 2d2d 2d2d 2d2d 7820 7820 202b 202d 2d2d ------x x + --- │ │ │ │ +0005e130: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ +0005e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 -----------x x │ │ │ │ +0005e150: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e160: 0a7c 2031 2032 2034 2020 2020 3835 3733 .| 1 2 4 8573 │ │ │ │ +0005e170: 3034 3030 3020 2032 2034 2020 2020 3632 04000 2 4 62 │ │ │ │ +0005e180: 3531 3137 3530 2020 3020 3320 3420 2020 511750 0 3 4 │ │ │ │ +0005e190: 2032 3632 3434 3030 3030 2020 3020 2020 262440000 0 │ │ │ │ +0005e1a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e1b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e200: 2020 2020 207c 0a7c 3732 3834 3330 3034 |.|72843004 │ │ │ │ -0005e210: 3120 3320 2020 2020 3532 3537 3037 3835 1 3 52570785 │ │ │ │ -0005e220: 3836 3039 2032 2020 2020 2020 2032 3330 8609 2 230 │ │ │ │ -0005e230: 3831 3737 3437 3735 3120 2020 2020 2020 817747751 │ │ │ │ -0005e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e250: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005e260: 2d78 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d -x x - -------- │ │ │ │ -0005e270: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ -0005e280: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ -0005e290: 2020 2b20 2020 2020 2020 2020 2020 2020 + │ │ │ │ -0005e2a0: 2020 2020 207c 0a7c 2031 3432 3838 3430 |.| 1428840 │ │ │ │ -0005e2b0: 3020 3220 3420 2020 2031 3030 3031 3838 0 2 4 1000188 │ │ │ │ -0005e2c0: 3030 3020 2030 2033 2034 2020 2020 2033 000 0 3 4 3 │ │ │ │ -0005e2d0: 3030 3035 3634 3030 2020 3020 3120 3320 00056400 0 1 3 │ │ │ │ -0005e2e0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0005e2f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e1f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e200: 0a7c 3732 3834 3330 3034 3120 3320 2020 .|728430041 3 │ │ │ │ +0005e210: 2020 3532 3537 3037 3835 3836 3039 2032 525707858609 2 │ │ │ │ +0005e220: 2020 2020 2020 2032 3330 3831 3737 3437 230817747 │ │ │ │ +0005e230: 3735 3120 2020 2020 2020 2020 2020 2020 751 │ │ │ │ +0005e240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e250: 0a7c 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 .|---------x x │ │ │ │ +0005e260: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ------------x │ │ │ │ +0005e270: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ +0005e280: 2d2d 2d78 2078 2078 2078 2020 2b20 2020 ---x x x x + │ │ │ │ +0005e290: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e2a0: 0a7c 2031 3432 3838 3430 3020 3220 3420 .| 14288400 2 4 │ │ │ │ +0005e2b0: 2020 2031 3030 3031 3838 3030 3020 2030 1000188000 0 │ │ │ │ +0005e2c0: 2033 2034 2020 2020 2033 3030 3035 3634 3 4 3000564 │ │ │ │ +0005e2d0: 3030 2020 3020 3120 3320 3420 2020 2020 00 0 1 3 4 │ │ │ │ +0005e2e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e2f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e340: 2020 2020 207c 0a7c 3220 2020 2020 3833 |.|2 83 │ │ │ │ -0005e350: 3138 3030 3633 3436 3720 2020 3220 2020 180063467 2 │ │ │ │ -0005e360: 2020 3838 3331 3637 3338 3137 2033 2020 8831673817 3 │ │ │ │ -0005e370: 2020 2033 3430 3231 3035 3638 3533 3120 340210568531 │ │ │ │ -0005e380: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0005e390: 2020 2020 207c 0a7c 2078 2020 2b20 2d2d |.| x + -- │ │ │ │ -0005e3a0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005e3b0: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ----------x x │ │ │ │ -0005e3c0: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - ------------x │ │ │ │ -0005e3d0: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -0005e3e0: 2020 2020 207c 0a7c 3220 3420 2020 2032 |.|2 4 2 │ │ │ │ -0005e3f0: 3238 3631 3434 3030 3020 3120 3220 3420 286144000 1 2 4 │ │ │ │ -0005e400: 2020 2036 3636 3739 3230 3030 2032 2034 666792000 2 4 │ │ │ │ -0005e410: 2020 2020 3330 3030 3536 3430 3030 2020 3000564000 │ │ │ │ -0005e420: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -0005e430: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e340: 0a7c 3220 2020 2020 3833 3138 3030 3633 .|2 83180063 │ │ │ │ +0005e350: 3436 3720 2020 3220 2020 2020 3838 3331 467 2 8831 │ │ │ │ +0005e360: 3637 3338 3137 2033 2020 2020 2033 3430 673817 3 340 │ │ │ │ +0005e370: 3231 3035 3638 3533 3120 3220 2020 2020 210568531 2 │ │ │ │ +0005e380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e390: 0a7c 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d .| x + -------- │ │ │ │ +0005e3a0: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d2d ---x x x - ---- │ │ │ │ +0005e3b0: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ +0005e3c0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005e3d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e3e0: 0a7c 3220 3420 2020 2032 3238 3631 3434 .|2 4 2286144 │ │ │ │ +0005e3f0: 3030 3020 3120 3220 3420 2020 2036 3636 000 1 2 4 666 │ │ │ │ +0005e400: 3739 3230 3030 2032 2034 2020 2020 3330 792000 2 4 30 │ │ │ │ +0005e410: 3030 3536 3430 3030 2020 3020 3320 2020 00564000 0 3 │ │ │ │ +0005e420: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e480: 2020 2020 207c 0a7c 2020 2020 3138 3637 |.| 1867 │ │ │ │ -0005e490: 3536 3837 3539 3531 2020 2032 2020 2020 56875951 2 │ │ │ │ -0005e4a0: 2039 3636 3636 3039 3439 3920 3320 2020 9666609499 3 │ │ │ │ -0005e4b0: 2020 3131 3930 3737 3030 3136 3920 3220 11907700169 2 │ │ │ │ -0005e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e4d0: 2020 2020 207c 0a7c 2020 2b20 2d2d 2d2d |.| + ---- │ │ │ │ -0005e4e0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ -0005e4f0: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 ----------x x │ │ │ │ -0005e500: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + -----------x x │ │ │ │ -0005e510: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0005e520: 2020 2020 207c 0a7c 3420 2020 2031 3337 |.|4 137 │ │ │ │ -0005e530: 3136 3836 3430 3020 2031 2032 2034 2020 1686400 1 2 4 │ │ │ │ -0005e540: 2020 3935 3235 3630 3030 2020 3220 3420 95256000 2 4 │ │ │ │ -0005e550: 2020 2020 3430 3832 3430 3030 2020 3020 40824000 0 │ │ │ │ -0005e560: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0005e570: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005e470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e480: 0a7c 2020 2020 3138 3637 3536 3837 3539 .| 1867568759 │ │ │ │ +0005e490: 3531 2020 2032 2020 2020 2039 3636 3636 51 2 96666 │ │ │ │ +0005e4a0: 3039 3439 3920 3320 2020 2020 3131 3930 09499 3 1190 │ │ │ │ +0005e4b0: 3737 3030 3136 3920 3220 2020 2020 2020 7700169 2 │ │ │ │ +0005e4c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e4d0: 0a7c 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d .| + ---------- │ │ │ │ +0005e4e0: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ +0005e4f0: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ +0005e500: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2020 -------x x x │ │ │ │ +0005e510: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e520: 0a7c 3420 2020 2031 3337 3136 3836 3430 .|4 137168640 │ │ │ │ +0005e530: 3020 2031 2032 2034 2020 2020 3935 3235 0 1 2 4 9525 │ │ │ │ +0005e540: 3630 3030 2020 3220 3420 2020 2020 3430 6000 2 4 40 │ │ │ │ +0005e550: 3832 3430 3030 2020 3020 3320 3420 2020 824000 0 3 4 │ │ │ │ +0005e560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e570: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005e5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005e5c0: 2d2d 2d2d 2d7c 0a7c 2020 3633 3831 3836 -----|.| 638186 │ │ │ │ -0005e5d0: 3036 3330 3537 2032 2020 2020 2020 2032 063057 2 2 │ │ │ │ -0005e5e0: 3137 3633 3335 3537 3133 3231 2020 2020 176335571321 │ │ │ │ +0005e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005e5c0: 0a7c 2020 3633 3831 3836 3036 3330 3537 .| 638186063057 │ │ │ │ +0005e5d0: 2032 2020 2020 2020 2032 3137 3633 3335 2 2176335 │ │ │ │ +0005e5e0: 3537 3133 3231 2020 2020 2020 2020 2020 571321 │ │ │ │ 0005e5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e610: 2020 2020 207c 0a7c 2b20 2d2d 2d2d 2d2d |.|+ ------ │ │ │ │ -0005e620: 2d2d 2d2d 2d2d 7820 7820 7820 202b 202d ------x x x + - │ │ │ │ -0005e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 ------------x x │ │ │ │ -0005e640: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -0005e650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e660: 2020 2020 207c 0a7c 2020 2033 3637 3431 |.| 36741 │ │ │ │ -0005e670: 3630 3030 3020 2031 2033 2034 2020 2020 60000 1 3 4 │ │ │ │ -0005e680: 2038 3030 3135 3034 3030 3020 2030 2032 8001504000 0 2 │ │ │ │ -0005e690: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0005e6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e6b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e610: 0a7c 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|+ ------------ │ │ │ │ +0005e620: 7820 7820 7820 202b 202d 2d2d 2d2d 2d2d x x x + ------- │ │ │ │ +0005e630: 2d2d 2d2d 2d2d 7820 7820 7820 7820 2020 ------x x x x │ │ │ │ +0005e640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e650: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e660: 0a7c 2020 2033 3637 3431 3630 3030 3020 .| 3674160000 │ │ │ │ +0005e670: 2031 2033 2034 2020 2020 2038 3030 3135 1 3 4 80015 │ │ │ │ +0005e680: 3034 3030 3020 2030 2032 2033 2034 2020 04000 0 2 3 4 │ │ │ │ +0005e690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e6a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e6b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0005e710: 3232 3332 3938 3533 3235 3536 3920 3220 2232985325569 2 │ │ │ │ -0005e720: 2020 2020 2020 3437 3631 3836 3637 3031 4761866701 │ │ │ │ -0005e730: 3938 3720 2020 2020 2020 2020 2020 2020 987 │ │ │ │ -0005e740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e750: 2020 2020 207c 0a7c 2078 2078 2020 2b20 |.| x x + │ │ │ │ -0005e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 -------------x x │ │ │ │ -0005e770: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ -0005e780: 2d2d 2d78 2020 2020 2020 2020 2020 2020 ---x │ │ │ │ -0005e790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7a0: 2020 2020 207c 0a7c 3120 3320 3420 2020 |.|1 3 4 │ │ │ │ -0005e7b0: 2020 3432 3836 3532 3030 3030 2020 3120 4286520000 1 │ │ │ │ -0005e7c0: 3320 3420 2020 2035 3034 3039 3437 3532 3 4 504094752 │ │ │ │ -0005e7d0: 3030 2020 2020 2020 2020 2020 2020 2020 00 │ │ │ │ -0005e7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e7f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e6f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e700: 0a7c 2020 2020 2020 2020 3232 3332 3938 .| 223298 │ │ │ │ +0005e710: 3533 3235 3536 3920 3220 2020 2020 2020 5325569 2 │ │ │ │ +0005e720: 3437 3631 3836 3637 3031 3938 3720 2020 4761866701987 │ │ │ │ +0005e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e750: 0a7c 2078 2078 2020 2b20 2d2d 2d2d 2d2d .| x x + ------ │ │ │ │ +0005e760: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b20 -------x x x + │ │ │ │ +0005e770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2020 -------------x │ │ │ │ +0005e780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e7a0: 0a7c 3120 3320 3420 2020 2020 3432 3836 .|1 3 4 4286 │ │ │ │ +0005e7b0: 3532 3030 3030 2020 3120 3320 3420 2020 520000 1 3 4 │ │ │ │ +0005e7c0: 2035 3034 3039 3437 3532 3030 2020 2020 50409475200 │ │ │ │ +0005e7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e7e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e7f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e840: 2020 2020 207c 0a7c 3932 3932 3639 3632 |.|92926962 │ │ │ │ -0005e850: 3037 3720 3220 2020 2020 2020 3338 3831 077 2 3881 │ │ │ │ -0005e860: 3433 3536 3738 3233 3320 2020 2020 2020 435678233 │ │ │ │ +0005e830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e840: 0a7c 3932 3932 3639 3632 3037 3720 3220 .|92926962077 2 │ │ │ │ +0005e850: 2020 2020 2020 3338 3831 3433 3536 3738 3881435678 │ │ │ │ +0005e860: 3233 3320 2020 2020 2020 2020 2020 2020 233 │ │ │ │ 0005e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e890: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005e8a0: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d2d ---x x x - ---- │ │ │ │ -0005e8b0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ -0005e8c0: 2020 2b20 2020 2020 2020 2020 2020 2020 + │ │ │ │ -0005e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e8e0: 2020 2020 207c 0a7c 2034 3238 3635 3230 |.| 4286520 │ │ │ │ -0005e8f0: 3030 2020 3120 3320 3420 2020 2020 3630 00 1 3 4 60 │ │ │ │ -0005e900: 3031 3132 3830 3030 2020 3020 3220 3320 01128000 0 2 3 │ │ │ │ -0005e910: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0005e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e880: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e890: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .|-----------x x │ │ │ │ +0005e8a0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ +0005e8b0: 2d2d 2d78 2078 2078 2078 2020 2b20 2020 ---x x x x + │ │ │ │ +0005e8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e8d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e8e0: 0a7c 2034 3238 3635 3230 3030 2020 3120 .| 428652000 1 │ │ │ │ +0005e8f0: 3320 3420 2020 2020 3630 3031 3132 3830 3 4 60011280 │ │ │ │ +0005e900: 3030 2020 3020 3220 3320 3420 2020 2020 00 0 2 3 4 │ │ │ │ +0005e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005e920: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e980: 2020 2020 207c 0a7c 2020 2020 3631 3531 |.| 6151 │ │ │ │ -0005e990: 3837 3036 3637 3539 3720 2020 2020 2020 870667597 │ │ │ │ -0005e9a0: 2020 2020 3234 3635 3832 3538 3920 3220 246582589 2 │ │ │ │ +0005e970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e980: 0a7c 2020 2020 3631 3531 3837 3036 3637 .| 6151870667 │ │ │ │ +0005e990: 3539 3720 2020 2020 2020 2020 2020 3234 597 24 │ │ │ │ +0005e9a0: 3635 3832 3538 3920 3220 2020 2020 2020 6582589 2 │ │ │ │ 0005e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005e9d0: 2020 2020 207c 0a7c 2020 2d20 2d2d 2d2d |.| - ---- │ │ │ │ -0005e9e0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ -0005e9f0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d78 2078 - ---------x x │ │ │ │ -0005ea00: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -0005ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea20: 2020 2020 207c 0a7c 3420 2020 2031 3032 |.|4 102 │ │ │ │ -0005ea30: 3837 3634 3830 3030 2020 3020 3120 3320 87648000 0 1 3 │ │ │ │ -0005ea40: 3420 2020 2031 3639 3334 3430 2020 3120 4 1693440 1 │ │ │ │ -0005ea50: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0005ea60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ea70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005e9c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005e9d0: 0a7c 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d .| - ---------- │ │ │ │ +0005e9e0: 2d2d 2d78 2078 2078 2078 2020 2d20 2d2d ---x x x x - -- │ │ │ │ +0005e9f0: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2020 -------x x x │ │ │ │ +0005ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ea10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ea20: 0a7c 3420 2020 2031 3032 3837 3634 3830 .|4 102876480 │ │ │ │ +0005ea30: 3030 2020 3020 3120 3320 3420 2020 2031 00 0 1 3 4 1 │ │ │ │ +0005ea40: 3639 3334 3430 2020 3120 3320 3420 2020 693440 1 3 4 │ │ │ │ +0005ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005ea60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ea70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ea90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eac0: 2020 2020 207c 0a7c 2020 3734 3839 3137 |.| 748917 │ │ │ │ -0005ead0: 3634 3238 3037 3120 2020 2020 2020 2020 6428071 │ │ │ │ -0005eae0: 2020 3130 3530 3234 3434 3837 2032 2020 1050244487 2 │ │ │ │ +0005eab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005eac0: 0a7c 2020 3734 3839 3137 3634 3238 3037 .| 748917642807 │ │ │ │ +0005ead0: 3120 2020 2020 2020 2020 2020 3130 3530 1 1050 │ │ │ │ +0005eae0: 3234 3434 3837 2032 2020 2020 2020 2020 244487 2 │ │ │ │ 0005eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb10: 2020 2020 207c 0a7c 2d20 2d2d 2d2d 2d2d |.|- ------ │ │ │ │ -0005eb20: 2d2d 2d2d 2d2d 2d78 2078 2078 2078 2020 -------x x x x │ │ │ │ -0005eb30: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ----------x x │ │ │ │ -0005eb40: 7820 202b 2020 2020 2020 2020 2020 2020 x + │ │ │ │ -0005eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005eb60: 2020 2020 207c 0a7c 2020 2020 3835 3733 |.| 8573 │ │ │ │ -0005eb70: 3034 3030 3030 2020 3020 3120 3320 3420 040000 0 1 3 4 │ │ │ │ -0005eb80: 2020 2031 3136 3634 3030 3020 2031 2033 11664000 1 3 │ │ │ │ -0005eb90: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0005eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ebb0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005eb00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005eb10: 0a7c 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|- ------------ │ │ │ │ +0005eb20: 2d78 2078 2078 2078 2020 2d20 2d2d 2d2d -x x x x - ---- │ │ │ │ +0005eb30: 2d2d 2d2d 2d2d 7820 7820 7820 202b 2020 ------x x x + │ │ │ │ +0005eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005eb50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005eb60: 0a7c 2020 2020 3835 3733 3034 3030 3030 .| 8573040000 │ │ │ │ +0005eb70: 2020 3020 3120 3320 3420 2020 2031 3136 0 1 3 4 116 │ │ │ │ +0005eb80: 3634 3030 3020 2031 2033 2034 2020 2020 64000 1 3 4 │ │ │ │ +0005eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0005eba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ebb0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005ebc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ebd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005ebe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005ec00: 2d2d 2d2d 2d7c 0a7c 2020 2032 3134 3137 -----|.| 21417 │ │ │ │ -0005ec10: 3734 3632 3931 2020 2020 2020 2020 2020 746291 │ │ │ │ -0005ec20: 2033 3834 3330 3237 3032 3320 3220 2020 3843027023 2 │ │ │ │ -0005ec30: 2020 2020 3536 3834 3033 3231 3338 3320 56840321383 │ │ │ │ -0005ec40: 2020 3220 2020 2020 3137 3838 3837 3533 2 17888753 │ │ │ │ -0005ec50: 3831 3920 207c 0a7c 202d 202d 2d2d 2d2d 819 |.| - ----- │ │ │ │ -0005ec60: 2d2d 2d2d 2d2d 7820 7820 7820 7820 202d ------x x x x - │ │ │ │ -0005ec70: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 ----------x x x │ │ │ │ -0005ec80: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + -----------x │ │ │ │ -0005ec90: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005eca0: 2d2d 2d78 207c 0a7c 2020 2020 3230 3030 ---x |.| 2000 │ │ │ │ -0005ecb0: 3337 3630 3030 2031 2032 2033 2034 2020 376000 1 2 3 4 │ │ │ │ -0005ecc0: 2020 3734 3038 3830 3030 2020 3220 3320 74088000 2 3 │ │ │ │ -0005ecd0: 3420 2020 2020 3833 3334 3930 3030 2020 4 83349000 │ │ │ │ -0005ece0: 3020 3320 3420 2020 2020 3639 3938 3430 0 3 4 699840 │ │ │ │ -0005ecf0: 3030 2020 317c 0a7c 2020 2020 2020 2020 00 1|.| │ │ │ │ +0005ebf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005ec00: 0a7c 2020 2032 3134 3137 3734 3632 3931 .| 21417746291 │ │ │ │ +0005ec10: 2020 2020 2020 2020 2020 2033 3834 3330 38430 │ │ │ │ +0005ec20: 3237 3032 3320 3220 2020 2020 2020 3536 27023 2 56 │ │ │ │ +0005ec30: 3834 3033 3231 3338 3320 2020 3220 2020 840321383 2 │ │ │ │ +0005ec40: 2020 3137 3838 3837 3533 3831 3920 207c 17888753819 | │ │ │ │ +0005ec50: 0a7c 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d .| - ----------- │ │ │ │ +0005ec60: 7820 7820 7820 7820 202d 202d 2d2d 2d2d x x x x - ----- │ │ │ │ +0005ec70: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ +0005ec80: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005ec90: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 207c + -----------x | │ │ │ │ +0005eca0: 0a7c 2020 2020 3230 3030 3337 3630 3030 .| 2000376000 │ │ │ │ +0005ecb0: 2031 2032 2033 2034 2020 2020 3734 3038 1 2 3 4 7408 │ │ │ │ +0005ecc0: 3830 3030 2020 3220 3320 3420 2020 2020 8000 2 3 4 │ │ │ │ +0005ecd0: 3833 3334 3930 3030 2020 3020 3320 3420 83349000 0 3 4 │ │ │ │ +0005ece0: 2020 2020 3639 3938 3430 3030 2020 317c 69984000 1| │ │ │ │ +0005ecf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ed40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0005ed50: 2020 3136 3033 3032 3032 3037 3239 3831 16030202072981 │ │ │ │ -0005ed60: 2020 2020 2020 2020 2020 2031 3237 3235 12725 │ │ │ │ -0005ed70: 3432 3835 3733 3031 2032 2020 2020 2020 42857301 2 │ │ │ │ -0005ed80: 2031 3135 3938 3031 3035 3934 2020 2032 11598010594 2 │ │ │ │ -0005ed90: 2020 2020 207c 0a7c 2078 2078 2078 2020 |.| x x x │ │ │ │ -0005eda0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + -------------- │ │ │ │ -0005edb0: 7820 7820 7820 7820 202d 202d 2d2d 2d2d x x x x - ----- │ │ │ │ -0005edc0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202d --------x x x - │ │ │ │ -0005edd0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 -----------x x │ │ │ │ -0005ede0: 7820 202b 207c 0a7c 3020 3220 3320 3420 x + |.|0 2 3 4 │ │ │ │ -0005edf0: 2020 2020 3336 3030 3637 3638 3030 3020 36006768000 │ │ │ │ -0005ee00: 2031 2032 2033 2034 2020 2020 3138 3030 1 2 3 4 1800 │ │ │ │ -0005ee10: 3333 3834 3030 3020 2032 2033 2034 2020 3384000 2 3 4 │ │ │ │ -0005ee20: 2020 2032 3433 3130 3132 3520 2030 2033 24310125 0 3 │ │ │ │ -0005ee30: 2034 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +0005ed30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ed40: 0a7c 2020 2020 2020 2020 2020 3136 3033 .| 1603 │ │ │ │ +0005ed50: 3032 3032 3037 3239 3831 2020 2020 2020 0202072981 │ │ │ │ +0005ed60: 2020 2020 2031 3237 3235 3432 3835 3733 12725428573 │ │ │ │ +0005ed70: 3031 2032 2020 2020 2020 2031 3135 3938 01 2 11598 │ │ │ │ +0005ed80: 3031 3035 3934 2020 2032 2020 2020 207c 010594 2 | │ │ │ │ +0005ed90: 0a7c 2078 2078 2078 2020 2b20 2d2d 2d2d .| x x x + ---- │ │ │ │ +0005eda0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +0005edb0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +0005edc0: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ +0005edd0: 2d2d 2d2d 2d2d 7820 7820 7820 202b 207c ------x x x + | │ │ │ │ +0005ede0: 0a7c 3020 3220 3320 3420 2020 2020 3336 .|0 2 3 4 36 │ │ │ │ +0005edf0: 3030 3637 3638 3030 3020 2031 2032 2033 006768000 1 2 3 │ │ │ │ +0005ee00: 2034 2020 2020 3138 3030 3333 3834 3030 4 1800338400 │ │ │ │ +0005ee10: 3020 2032 2033 2034 2020 2020 2032 3433 0 2 3 4 243 │ │ │ │ +0005ee20: 3130 3132 3520 2030 2033 2034 2020 207c 10125 0 3 4 | │ │ │ │ +0005ee30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005ee80: 2020 2020 207c 0a7c 3330 3935 3235 3434 |.|30952544 │ │ │ │ -0005ee90: 3932 3120 2020 2020 2020 2020 2020 3534 921 54 │ │ │ │ -0005eea0: 3436 3132 3537 3032 3937 2032 2020 2020 4612570297 2 │ │ │ │ -0005eeb0: 2020 2031 3438 3936 3632 3733 3133 2020 14896627313 │ │ │ │ -0005eec0: 2032 2020 2020 2031 3931 3739 3834 3530 2 191798450 │ │ │ │ -0005eed0: 3131 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 11 |.|-------- │ │ │ │ -0005eee0: 2d2d 2d78 2078 2078 2078 2020 2d20 2d2d ---x x x x - -- │ │ │ │ -0005eef0: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005ef00: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - -----------x │ │ │ │ -0005ef10: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -0005ef20: 2d2d 7820 787c 0a7c 2020 3535 3536 3630 --x x|.| 555660 │ │ │ │ -0005ef30: 3030 2020 3120 3220 3320 3420 2020 2036 00 1 2 3 4 6 │ │ │ │ -0005ef40: 3030 3131 3238 3030 3020 2032 2033 2034 001128000 2 3 4 │ │ │ │ -0005ef50: 2020 2020 2031 3636 3639 3830 3020 2030 16669800 0 │ │ │ │ -0005ef60: 2033 2034 2020 2020 3130 3030 3138 3830 3 4 10001880 │ │ │ │ -0005ef70: 3030 2031 207c 0a7c 2020 2020 2020 2020 00 1 |.| │ │ │ │ +0005ee70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005ee80: 0a7c 3330 3935 3235 3434 3932 3120 2020 .|30952544921 │ │ │ │ +0005ee90: 2020 2020 2020 2020 3534 3436 3132 3537 54461257 │ │ │ │ +0005eea0: 3032 3937 2032 2020 2020 2020 2031 3438 0297 2 148 │ │ │ │ +0005eeb0: 3936 3632 3733 3133 2020 2032 2020 2020 96627313 2 │ │ │ │ +0005eec0: 2031 3931 3739 3834 3530 3131 2020 207c 19179845011 | │ │ │ │ +0005eed0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .|-----------x x │ │ │ │ +0005eee0: 2078 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d x x - -------- │ │ │ │ +0005eef0: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ +0005ef00: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ +0005ef10: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 787c -----------x x| │ │ │ │ +0005ef20: 0a7c 2020 3535 3536 3630 3030 2020 3120 .| 55566000 1 │ │ │ │ +0005ef30: 3220 3320 3420 2020 2036 3030 3131 3238 2 3 4 6001128 │ │ │ │ +0005ef40: 3030 3020 2032 2033 2034 2020 2020 2031 000 2 3 4 1 │ │ │ │ +0005ef50: 3636 3639 3830 3020 2030 2033 2034 2020 6669800 0 3 4 │ │ │ │ +0005ef60: 2020 3130 3030 3138 3830 3030 2031 207c 1000188000 1 | │ │ │ │ +0005ef70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005efc0: 2020 2020 207c 0a7c 2020 3130 3036 3437 |.| 100647 │ │ │ │ -0005efd0: 3639 3933 3234 3720 2020 2020 2020 2020 6993247 │ │ │ │ -0005efe0: 2020 3834 3433 3138 3932 3536 3934 3720 8443189256947 │ │ │ │ -0005eff0: 2020 2020 2020 2020 2020 3331 3933 3639 319369 │ │ │ │ -0005f000: 3835 3436 3034 3120 3220 2020 2020 2020 8546041 2 │ │ │ │ -0005f010: 3136 3634 367c 0a7c 2b20 2d2d 2d2d 2d2d 16646|.|+ ------ │ │ │ │ -0005f020: 2d2d 2d2d 2d2d 2d78 2078 2078 2078 2020 -------x x x x │ │ │ │ -0005f030: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -------------x │ │ │ │ -0005f040: 2078 2078 2078 2020 2b20 2d2d 2d2d 2d2d x x x + ------ │ │ │ │ -0005f050: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ -0005f060: 2d2d 2d2d 2d7c 0a7c 2020 2020 3830 3031 -----|.| 8001 │ │ │ │ -0005f070: 3530 3430 3030 2020 3020 3220 3320 3420 504000 0 2 3 4 │ │ │ │ -0005f080: 2020 2031 3434 3032 3730 3732 3030 3020 144027072000 │ │ │ │ -0005f090: 3120 3220 3320 3420 2020 2038 3430 3135 1 2 3 4 84015 │ │ │ │ -0005f0a0: 3739 3230 3030 2020 3220 3320 3420 2020 792000 2 3 4 │ │ │ │ -0005f0b0: 2020 3933 377c 0a7c 2020 2020 2020 2020 937|.| │ │ │ │ +0005efb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005efc0: 0a7c 2020 3130 3036 3437 3639 3933 3234 .| 100647699324 │ │ │ │ +0005efd0: 3720 2020 2020 2020 2020 2020 3834 3433 7 8443 │ │ │ │ +0005efe0: 3138 3932 3536 3934 3720 2020 2020 2020 189256947 │ │ │ │ +0005eff0: 2020 2020 3331 3933 3639 3835 3436 3034 319369854604 │ │ │ │ +0005f000: 3120 3220 2020 2020 2020 3136 3634 367c 1 2 16646| │ │ │ │ +0005f010: 0a7c 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|+ ------------ │ │ │ │ +0005f020: 2d78 2078 2078 2078 2020 2d20 2d2d 2d2d -x x x x - ---- │ │ │ │ +0005f030: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ +0005f040: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ +0005f050: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d7c -x x x - -----| │ │ │ │ +0005f060: 0a7c 2020 2020 3830 3031 3530 3430 3030 .| 8001504000 │ │ │ │ +0005f070: 2020 3020 3220 3320 3420 2020 2031 3434 0 2 3 4 144 │ │ │ │ +0005f080: 3032 3730 3732 3030 3020 3120 3220 3320 027072000 1 2 3 │ │ │ │ +0005f090: 3420 2020 2038 3430 3135 3739 3230 3030 4 84015792000 │ │ │ │ +0005f0a0: 2020 3220 3320 3420 2020 2020 3933 377c 2 3 4 937| │ │ │ │ +0005f0b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f100: 2020 2020 207c 0a7c 2031 3232 3635 3938 |.| 1226598 │ │ │ │ -0005f110: 3735 3337 3138 3720 2020 2020 2020 2020 7537187 │ │ │ │ -0005f120: 2020 3731 3231 3632 3739 3238 3438 3120 7121627928481 │ │ │ │ -0005f130: 2020 2020 2020 2020 2020 3232 3032 3437 220247 │ │ │ │ -0005f140: 3039 3638 3932 3120 3220 2020 2020 2020 0968921 2 │ │ │ │ -0005f150: 3234 3631 347c 0a7c 202d 2d2d 2d2d 2d2d 24614|.| ------- │ │ │ │ -0005f160: 2d2d 2d2d 2d2d 2d78 2078 2078 2078 2020 -------x x x x │ │ │ │ -0005f170: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -------------x │ │ │ │ -0005f180: 2078 2078 2078 2020 2b20 2d2d 2d2d 2d2d x x x + ------ │ │ │ │ -0005f190: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ -0005f1a0: 2d2d 2d2d 2d7c 0a7c 2020 2032 3430 3034 -----|.| 24004 │ │ │ │ -0005f1b0: 3531 3230 3030 2020 3020 3220 3320 3420 512000 0 2 3 4 │ │ │ │ -0005f1c0: 2020 2033 3432 3932 3136 3030 3030 2020 34292160000 │ │ │ │ -0005f1d0: 3120 3220 3320 3420 2020 2031 3230 3032 1 2 3 4 12002 │ │ │ │ -0005f1e0: 3235 3630 3030 2020 3220 3320 3420 2020 256000 2 3 4 │ │ │ │ -0005f1f0: 2020 3333 337c 0a7c 2d2d 2d2d 2d2d 2d2d 333|.|-------- │ │ │ │ +0005f0f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f100: 0a7c 2031 3232 3635 3938 3735 3337 3138 .| 1226598753718 │ │ │ │ +0005f110: 3720 2020 2020 2020 2020 2020 3731 3231 7 7121 │ │ │ │ +0005f120: 3632 3739 3238 3438 3120 2020 2020 2020 627928481 │ │ │ │ +0005f130: 2020 2020 3232 3032 3437 3039 3638 3932 220247096892 │ │ │ │ +0005f140: 3120 3220 2020 2020 2020 3234 3631 347c 1 2 24614| │ │ │ │ +0005f150: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .| ------------- │ │ │ │ +0005f160: 2d78 2078 2078 2078 2020 2d20 2d2d 2d2d -x x x x - ---- │ │ │ │ +0005f170: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2078 ---------x x x x │ │ │ │ +0005f180: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d + ------------ │ │ │ │ +0005f190: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d7c -x x x - -----| │ │ │ │ +0005f1a0: 0a7c 2020 2032 3430 3034 3531 3230 3030 .| 24004512000 │ │ │ │ +0005f1b0: 2020 3020 3220 3320 3420 2020 2033 3432 0 2 3 4 342 │ │ │ │ +0005f1c0: 3932 3136 3030 3030 2020 3120 3220 3320 92160000 1 2 3 │ │ │ │ +0005f1d0: 3420 2020 2031 3230 3032 3235 3630 3030 4 12002256000 │ │ │ │ +0005f1e0: 2020 3220 3320 3420 2020 2020 3333 337c 2 3 4 333| │ │ │ │ +0005f1f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f240: 2d2d 2d2d 2d7c 0a7c 2032 2020 2020 2039 -----|.| 2 9 │ │ │ │ -0005f250: 3030 3130 3938 3535 2020 2032 2020 2020 00109855 2 │ │ │ │ -0005f260: 2034 3038 3232 3338 3120 3320 2020 2020 40822381 3 │ │ │ │ -0005f270: 3136 3634 3335 3035 3137 3320 3220 2020 16643505173 2 │ │ │ │ -0005f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f290: 2020 2020 207c 0a7c 7820 7820 202b 202d |.|x x + - │ │ │ │ -0005f2a0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202d --------x x x - │ │ │ │ -0005f2b0: 202d 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 --------x x - │ │ │ │ -0005f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 -----------x x │ │ │ │ -0005f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f2e0: 2020 2020 207c 0a7c 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -0005f2f0: 3830 3031 3530 3420 2032 2033 2034 2020 8001504 2 3 4 │ │ │ │ -0005f300: 2020 3338 3838 3030 2020 3320 3420 2020 388800 3 4 │ │ │ │ -0005f310: 2034 3537 3232 3838 3030 3020 3020 2020 4572288000 0 │ │ │ │ -0005f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005f230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005f240: 0a7c 2032 2020 2020 2039 3030 3130 3938 .| 2 9001098 │ │ │ │ +0005f250: 3535 2020 2032 2020 2020 2034 3038 3232 55 2 40822 │ │ │ │ +0005f260: 3338 3120 3320 2020 2020 3136 3634 3335 381 3 166435 │ │ │ │ +0005f270: 3035 3137 3320 3220 2020 2020 2020 2020 05173 2 │ │ │ │ +0005f280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f290: 0a7c 7820 7820 202b 202d 2d2d 2d2d 2d2d .|x x + ------- │ │ │ │ +0005f2a0: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ +0005f2b0: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ +0005f2c0: 2d2d 2d2d 2d78 2078 2020 2020 2020 2020 -----x x │ │ │ │ +0005f2d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f2e0: 0a7c 2033 2034 2020 2020 3830 3031 3530 .| 3 4 800150 │ │ │ │ +0005f2f0: 3420 2032 2033 2034 2020 2020 3338 3838 4 2 3 4 3888 │ │ │ │ +0005f300: 3030 2020 3320 3420 2020 2034 3537 3232 00 3 4 45722 │ │ │ │ +0005f310: 3838 3030 3020 3020 2020 2020 2020 2020 88000 0 │ │ │ │ +0005f320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f380: 2020 2020 207c 0a7c 3236 3433 3233 3039 |.|26432309 │ │ │ │ -0005f390: 3935 2020 2032 2020 2020 2033 3433 3530 95 2 34350 │ │ │ │ -0005f3a0: 3637 3336 3333 2020 2032 2020 2020 2031 673633 2 1 │ │ │ │ -0005f3b0: 3534 3930 3432 3933 2033 2020 2020 2020 54904293 3 │ │ │ │ -0005f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f3d0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ -0005f3e0: 2d2d 7820 7820 7820 202d 202d 2d2d 2d2d --x x x - ----- │ │ │ │ -0005f3f0: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ -0005f400: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 2020 --------x x - │ │ │ │ -0005f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f420: 2020 2020 207c 0a7c 2020 3830 3031 3530 |.| 800150 │ │ │ │ -0005f430: 3420 2031 2033 2034 2020 2020 3730 3031 4 1 3 4 7001 │ │ │ │ -0005f440: 3331 3630 3020 2032 2033 2034 2020 2020 31600 2 3 4 │ │ │ │ -0005f450: 3136 3636 3938 3030 2033 2034 2020 2020 16669800 3 4 │ │ │ │ -0005f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005f370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f380: 0a7c 3236 3433 3233 3039 3935 2020 2032 .|2643230995 2 │ │ │ │ +0005f390: 2020 2020 2033 3433 3530 3637 3336 3333 34350673633 │ │ │ │ +0005f3a0: 2020 2032 2020 2020 2031 3534 3930 3432 2 1549042 │ │ │ │ +0005f3b0: 3933 2033 2020 2020 2020 2020 2020 2020 93 3 │ │ │ │ +0005f3c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f3d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 .|----------x x │ │ │ │ +0005f3e0: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +0005f3f0: 7820 7820 7820 202d 202d 2d2d 2d2d 2d2d x x x - ------- │ │ │ │ +0005f400: 2d2d 7820 7820 202d 2020 2020 2020 2020 --x x - │ │ │ │ +0005f410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f420: 0a7c 2020 3830 3031 3530 3420 2031 2033 .| 8001504 1 3 │ │ │ │ +0005f430: 2034 2020 2020 3730 3031 3331 3630 3020 4 700131600 │ │ │ │ +0005f440: 2032 2033 2034 2020 2020 3136 3636 3938 2 3 4 166698 │ │ │ │ +0005f450: 3030 2033 2034 2020 2020 2020 2020 2020 00 3 4 │ │ │ │ +0005f460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f4c0: 2020 2020 207c 0a7c 3220 2020 2020 3434 |.|2 44 │ │ │ │ -0005f4d0: 3839 3838 3834 3939 3239 2020 2032 2020 8988849929 2 │ │ │ │ -0005f4e0: 2020 2038 3132 3536 3438 3620 3320 2020 81256486 3 │ │ │ │ -0005f4f0: 2020 3939 3732 3833 3436 3720 3220 2020 997283467 2 │ │ │ │ -0005f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f510: 2020 2020 207c 0a7c 2078 2020 2d20 2d2d |.| x - -- │ │ │ │ -0005f520: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ -0005f530: 202b 202d 2d2d 2d2d 2d2d 2d78 2078 2020 + --------x x │ │ │ │ -0005f540: 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 + ---------x x │ │ │ │ -0005f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f560: 2020 2020 207c 0a7c 3320 3420 2020 2033 |.|3 4 3 │ │ │ │ -0005f570: 3530 3036 3538 3030 3020 2032 2033 2034 500658000 2 3 4 │ │ │ │ -0005f580: 2020 2020 3230 3833 3732 3520 3320 3420 2083725 3 4 │ │ │ │ -0005f590: 2020 2033 3137 3532 3030 3020 3020 2020 31752000 0 │ │ │ │ -0005f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f5b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005f4b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f4c0: 0a7c 3220 2020 2020 3434 3839 3838 3834 .|2 44898884 │ │ │ │ +0005f4d0: 3939 3239 2020 2032 2020 2020 2038 3132 9929 2 812 │ │ │ │ +0005f4e0: 3536 3438 3620 3320 2020 2020 3939 3732 56486 3 9972 │ │ │ │ +0005f4f0: 3833 3436 3720 3220 2020 2020 2020 2020 83467 2 │ │ │ │ +0005f500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f510: 0a7c 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d .| x - -------- │ │ │ │ +0005f520: 2d2d 2d2d 7820 7820 7820 202b 202d 2d2d ----x x x + --- │ │ │ │ +0005f530: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ +0005f540: 2d2d 2d2d 2d78 2078 2020 2020 2020 2020 -----x x │ │ │ │ +0005f550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f560: 0a7c 3320 3420 2020 2033 3530 3036 3538 .|3 4 3500658 │ │ │ │ +0005f570: 3030 3020 2032 2033 2034 2020 2020 3230 000 2 3 4 20 │ │ │ │ +0005f580: 3833 3732 3520 3320 3420 2020 2033 3137 83725 3 4 317 │ │ │ │ +0005f590: 3532 3030 3020 3020 2020 2020 2020 2020 52000 0 │ │ │ │ +0005f5a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f5b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f600: 2020 2020 207c 0a7c 3837 3736 3238 2020 |.|877628 │ │ │ │ -0005f610: 2032 2020 2020 2039 3235 3432 3830 3031 2 925428001 │ │ │ │ -0005f620: 3320 2020 3220 2020 2020 3133 3932 3633 3 2 139263 │ │ │ │ -0005f630: 3933 3031 3120 2020 3220 2020 2020 2020 93011 2 │ │ │ │ -0005f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f650: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 7820 |.|------x │ │ │ │ -0005f660: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ -0005f670: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -0005f680: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2020 -----x x x - │ │ │ │ -0005f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f6a0: 2020 2020 207c 0a7c 3637 3632 3520 2030 |.|67625 0 │ │ │ │ -0005f6b0: 2033 2034 2020 2020 3731 3434 3230 3030 3 4 71442000 │ │ │ │ -0005f6c0: 2020 3120 3320 3420 2020 2034 3830 3039 1 3 4 48009 │ │ │ │ -0005f6d0: 3032 3430 2020 3220 3320 3420 2020 2020 0240 2 3 4 │ │ │ │ -0005f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f6f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0005f5f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f600: 0a7c 3837 3736 3238 2020 2032 2020 2020 .|877628 2 │ │ │ │ +0005f610: 2039 3235 3432 3830 3031 3320 2020 3220 9254280013 2 │ │ │ │ +0005f620: 2020 2020 3133 3932 3633 3933 3031 3120 13926393011 │ │ │ │ +0005f630: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0005f640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f650: 0a7c 2d2d 2d2d 2d2d 7820 7820 7820 202d .|------x x x - │ │ │ │ +0005f660: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 ----------x x x │ │ │ │ +0005f670: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -----------x │ │ │ │ +0005f680: 2078 2078 2020 2d20 2020 2020 2020 2020 x x - │ │ │ │ +0005f690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f6a0: 0a7c 3637 3632 3520 2030 2033 2034 2020 .|67625 0 3 4 │ │ │ │ +0005f6b0: 2020 3731 3434 3230 3030 2020 3120 3320 71442000 1 3 │ │ │ │ +0005f6c0: 3420 2020 2034 3830 3039 3032 3430 2020 4 480090240 │ │ │ │ +0005f6d0: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +0005f6e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f6f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f740: 2020 2020 207c 0a7c 3232 3839 3839 3920 |.|2289899 │ │ │ │ -0005f750: 2020 3220 2020 2020 3137 3930 3631 3439 2 17906149 │ │ │ │ -0005f760: 3720 2020 3220 2020 2020 3137 3932 3937 7 2 179297 │ │ │ │ -0005f770: 3431 3633 3433 2020 2032 2020 2020 2020 416343 2 │ │ │ │ -0005f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f790: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d78 |.|-------x │ │ │ │ -0005f7a0: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -0005f7b0: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -0005f7c0: 2d2d 2d2d 2d2d 7820 7820 7820 202b 2020 ------x x x + │ │ │ │ -0005f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f7e0: 2020 2020 207c 0a7c 3339 3630 3030 2020 |.|396000 │ │ │ │ -0005f7f0: 3020 3320 3420 2020 2035 3239 3230 3030 0 3 4 5292000 │ │ │ │ -0005f800: 2020 3120 3320 3420 2020 2031 3333 3335 1 3 4 13335 │ │ │ │ -0005f810: 3834 3030 3020 2032 2033 2034 2020 2020 84000 2 3 4 │ │ │ │ -0005f820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f830: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0005f730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f740: 0a7c 3232 3839 3839 3920 2020 3220 2020 .|2289899 2 │ │ │ │ +0005f750: 2020 3137 3930 3631 3439 3720 2020 3220 179061497 2 │ │ │ │ +0005f760: 2020 2020 3137 3932 3937 3431 3633 3433 179297416343 │ │ │ │ +0005f770: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0005f780: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f790: 0a7c 2d2d 2d2d 2d2d 2d78 2078 2078 2020 .|-------x x x │ │ │ │ +0005f7a0: 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 + ---------x x x │ │ │ │ +0005f7b0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d - ------------ │ │ │ │ +0005f7c0: 7820 7820 7820 202b 2020 2020 2020 2020 x x x + │ │ │ │ +0005f7d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f7e0: 0a7c 3339 3630 3030 2020 3020 3320 3420 .|396000 0 3 4 │ │ │ │ +0005f7f0: 2020 2035 3239 3230 3030 2020 3120 3320 5292000 1 3 │ │ │ │ +0005f800: 3420 2020 2031 3333 3335 3834 3030 3020 4 1333584000 │ │ │ │ +0005f810: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +0005f820: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f830: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005f880: 2d2d 2d2d 2d7c 0a7c 3220 2020 3239 3334 -----|.|2 2934 │ │ │ │ -0005f890: 3931 3734 3731 3037 3720 2020 2020 3220 917471077 2 │ │ │ │ -0005f8a0: 2020 3137 3032 3030 3633 3933 3920 3220 17020063939 2 │ │ │ │ -0005f8b0: 3220 2020 3233 3733 3636 3837 3930 3720 2 23736687907 │ │ │ │ -0005f8c0: 2020 2020 3220 2020 3530 3436 3736 3032 2 50467602 │ │ │ │ -0005f8d0: 3838 3320 207c 0a7c 2020 2d20 2d2d 2d2d 883 |.| - ---- │ │ │ │ -0005f8e0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005f8f0: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 - -----------x x │ │ │ │ -0005f900: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -----------x │ │ │ │ -0005f910: 2078 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d x x - -------- │ │ │ │ -0005f920: 2d2d 2d78 207c 0a7c 3420 2020 2036 3835 ---x |.|4 685 │ │ │ │ -0005f930: 3834 3332 3030 3030 2020 3020 3120 3420 84320000 0 1 4 │ │ │ │ -0005f940: 2020 2034 3038 3234 3030 3030 2020 3120 408240000 1 │ │ │ │ -0005f950: 3420 2020 2031 3132 3532 3131 3530 3020 4 1125211500 │ │ │ │ -0005f960: 3020 3220 3420 2020 2033 3831 3032 3430 0 2 4 3810240 │ │ │ │ -0005f970: 3030 2020 317c 0a7c 2020 2020 2020 2020 00 1|.| │ │ │ │ +0005f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005f880: 0a7c 3220 2020 3239 3334 3931 3734 3731 .|2 2934917471 │ │ │ │ +0005f890: 3037 3720 2020 2020 3220 2020 3137 3032 077 2 1702 │ │ │ │ +0005f8a0: 3030 3633 3933 3920 3220 3220 2020 3233 0063939 2 2 23 │ │ │ │ +0005f8b0: 3733 3636 3837 3930 3720 2020 2020 3220 736687907 2 │ │ │ │ +0005f8c0: 2020 3530 3436 3736 3032 3838 3320 207c 50467602883 | │ │ │ │ +0005f8d0: 0a7c 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d .| - ---------- │ │ │ │ +0005f8e0: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d2d ---x x x - ---- │ │ │ │ +0005f8f0: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d2d -------x x - -- │ │ │ │ +0005f900: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +0005f910: 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 207c - -----------x | │ │ │ │ +0005f920: 0a7c 3420 2020 2036 3835 3834 3332 3030 .|4 685843200 │ │ │ │ +0005f930: 3030 2020 3020 3120 3420 2020 2034 3038 00 0 1 4 408 │ │ │ │ +0005f940: 3234 3030 3030 2020 3120 3420 2020 2031 240000 1 4 1 │ │ │ │ +0005f950: 3132 3532 3131 3530 3020 3020 3220 3420 125211500 0 2 4 │ │ │ │ +0005f960: 2020 2033 3831 3032 3430 3030 2020 317c 381024000 1| │ │ │ │ +0005f970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005f9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005f9c0: 2020 2020 207c 0a7c 2031 3333 3430 3537 |.| 1334057 │ │ │ │ -0005f9d0: 3335 3320 3220 3220 2020 3639 3739 3932 353 2 2 697992 │ │ │ │ -0005f9e0: 3930 3533 2020 2020 2032 2020 2035 3538 9053 2 558 │ │ │ │ -0005f9f0: 3535 3935 3139 3320 3220 3220 2020 3637 5595193 2 2 67 │ │ │ │ -0005fa00: 3237 3230 3035 3432 3920 2020 2020 3220 272005429 2 │ │ │ │ -0005fa10: 2020 3634 327c 0a7c 202d 2d2d 2d2d 2d2d 642|.| ------- │ │ │ │ -0005fa20: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -0005fa30: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ -0005fa40: 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 2d2d -------x x + -- │ │ │ │ -0005fa50: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -0005fa60: 2d20 2d2d 2d7c 0a7c 2020 3139 3035 3132 - ---|.| 190512 │ │ │ │ -0005fa70: 3030 3020 3020 3420 2020 3238 3537 3638 000 0 4 285768 │ │ │ │ -0005fa80: 3030 3030 2030 2031 2034 2020 2020 3638 0000 0 1 4 68 │ │ │ │ -0005fa90: 3034 3030 3030 2020 3120 3420 2020 2031 040000 1 4 1 │ │ │ │ -0005faa0: 3630 3033 3030 3830 3020 3020 3220 3420 600300800 0 2 4 │ │ │ │ -0005fab0: 2020 2035 377c 0a7c 2020 2020 2020 2020 57|.| │ │ │ │ +0005f9b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005f9c0: 0a7c 2031 3333 3430 3537 3335 3320 3220 .| 1334057353 2 │ │ │ │ +0005f9d0: 3220 2020 3639 3739 3932 3930 3533 2020 2 6979929053 │ │ │ │ +0005f9e0: 2020 2032 2020 2035 3538 3535 3935 3139 2 558559519 │ │ │ │ +0005f9f0: 3320 3220 3220 2020 3637 3237 3230 3035 3 2 2 67272005 │ │ │ │ +0005fa00: 3432 3920 2020 2020 3220 2020 3634 327c 429 2 642| │ │ │ │ +0005fa10: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .| ----------x x │ │ │ │ +0005fa20: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ +0005fa30: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ +0005fa40: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ +0005fa50: 2d2d 2d78 2078 2078 2020 2d20 2d2d 2d7c ---x x x - ---| │ │ │ │ +0005fa60: 0a7c 2020 3139 3035 3132 3030 3020 3020 .| 190512000 0 │ │ │ │ +0005fa70: 3420 2020 3238 3537 3638 3030 3030 2030 4 2857680000 0 │ │ │ │ +0005fa80: 2031 2034 2020 2020 3638 3034 3030 3030 1 4 68040000 │ │ │ │ +0005fa90: 2020 3120 3420 2020 2031 3630 3033 3030 1 4 1600300 │ │ │ │ +0005faa0: 3830 3020 3020 3220 3420 2020 2035 377c 800 0 2 4 57| │ │ │ │ +0005fab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005fac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fb00: 2020 2020 207c 0a7c 3220 2020 3231 3635 |.|2 2165 │ │ │ │ -0005fb10: 3633 3435 3932 3937 2020 2020 2032 2020 63459297 2 │ │ │ │ -0005fb20: 2036 3533 3732 3434 3037 2032 2032 2020 653724407 2 2 │ │ │ │ -0005fb30: 2020 3836 3338 3035 3120 2020 2020 3220 8638051 2 │ │ │ │ -0005fb40: 2020 3238 3535 3233 3430 3732 3920 2020 28552340729 │ │ │ │ -0005fb50: 2020 3220 207c 0a7c 2020 2b20 2d2d 2d2d 2 |.| + ---- │ │ │ │ -0005fb60: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ -0005fb70: 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 202d ---------x x - │ │ │ │ -0005fb80: 202d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 --------x x x │ │ │ │ -0005fb90: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + -----------x x │ │ │ │ -0005fba0: 2078 2020 2b7c 0a7c 3420 2020 2020 3432 x +|.|4 42 │ │ │ │ -0005fbb0: 3836 3532 3030 3020 2030 2031 2034 2020 8652000 0 1 4 │ │ │ │ -0005fbc0: 2020 3239 3136 3030 3020 2031 2034 2020 2916000 1 4 │ │ │ │ -0005fbd0: 2036 3939 3834 3030 3020 3020 3220 3420 69984000 0 2 4 │ │ │ │ -0005fbe0: 2020 2032 3134 3332 3630 3030 2020 3120 214326000 1 │ │ │ │ -0005fbf0: 3220 3420 207c 0a7c 2020 2020 2020 2020 2 4 |.| │ │ │ │ +0005faf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005fb00: 0a7c 3220 2020 3231 3635 3633 3435 3932 .|2 2165634592 │ │ │ │ +0005fb10: 3937 2020 2020 2032 2020 2036 3533 3732 97 2 65372 │ │ │ │ +0005fb20: 3434 3037 2032 2032 2020 2020 3836 3338 4407 2 2 8638 │ │ │ │ +0005fb30: 3035 3120 2020 2020 3220 2020 3238 3535 051 2 2855 │ │ │ │ +0005fb40: 3233 3430 3732 3920 2020 2020 3220 207c 2340729 2 | │ │ │ │ +0005fb50: 0a7c 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d .| + ---------- │ │ │ │ +0005fb60: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ +0005fb70: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ +0005fb80: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d2d ---x x x + ---- │ │ │ │ +0005fb90: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b7c -------x x x +| │ │ │ │ +0005fba0: 0a7c 3420 2020 2020 3432 3836 3532 3030 .|4 42865200 │ │ │ │ +0005fbb0: 3020 2030 2031 2034 2020 2020 3239 3136 0 0 1 4 2916 │ │ │ │ +0005fbc0: 3030 3020 2031 2034 2020 2036 3939 3834 000 1 4 69984 │ │ │ │ +0005fbd0: 3030 3020 3020 3220 3420 2020 2032 3134 000 0 2 4 214 │ │ │ │ +0005fbe0: 3332 3630 3030 2020 3120 3220 3420 207c 326000 1 2 4 | │ │ │ │ +0005fbf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005fc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fc40: 2020 2020 207c 0a7c 3135 3238 3137 3431 |.|15281741 │ │ │ │ -0005fc50: 2033 2020 2020 2031 3037 3033 3537 3138 3 107035718 │ │ │ │ -0005fc60: 3920 3220 3220 2020 3335 3633 3832 3232 9 2 2 35638222 │ │ │ │ -0005fc70: 3120 2020 2020 3220 2020 3835 3239 3732 1 2 852972 │ │ │ │ -0005fc80: 3330 3031 2032 2032 2020 2035 3732 3638 3001 2 2 57268 │ │ │ │ -0005fc90: 3031 3133 357c 0a7c 2d2d 2d2d 2d2d 2d2d 01135|.|-------- │ │ │ │ -0005fca0: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -0005fcb0: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ -0005fcc0: 2d78 2078 2078 2020 2b20 2d2d 2d2d 2d2d -x x x + ------ │ │ │ │ -0005fcd0: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ -0005fce0: 2d2d 2d2d 2d7c 0a7c 2032 3338 3134 3020 -----|.| 238140 │ │ │ │ -0005fcf0: 2033 2034 2020 2020 3232 3836 3134 3430 3 4 22861440 │ │ │ │ -0005fd00: 3020 3020 3420 2020 2033 3430 3230 3030 0 0 4 3402000 │ │ │ │ -0005fd10: 2020 3020 3120 3420 2020 2032 3732 3136 0 1 4 27216 │ │ │ │ -0005fd20: 3030 3030 2031 2034 2020 2020 3332 3030 0000 1 4 3200 │ │ │ │ -0005fd30: 3630 3136 307c 0a7c 2020 2020 2020 2020 60160|.| │ │ │ │ +0005fc30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005fc40: 0a7c 3135 3238 3137 3431 2033 2020 2020 .|15281741 3 │ │ │ │ +0005fc50: 2031 3037 3033 3537 3138 3920 3220 3220 1070357189 2 2 │ │ │ │ +0005fc60: 2020 3335 3633 3832 3232 3120 2020 2020 356382221 │ │ │ │ +0005fc70: 3220 2020 3835 3239 3732 3330 3031 2032 2 8529723001 2 │ │ │ │ +0005fc80: 2032 2020 2035 3732 3638 3031 3133 357c 2 5726801135| │ │ │ │ +0005fc90: 0a7c 2d2d 2d2d 2d2d 2d2d 7820 7820 202b .|--------x x + │ │ │ │ +0005fca0: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 ----------x x │ │ │ │ +0005fcb0: 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 + ---------x x x │ │ │ │ +0005fcc0: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + ----------x │ │ │ │ +0005fcd0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d7c x + ----------| │ │ │ │ +0005fce0: 0a7c 2032 3338 3134 3020 2033 2034 2020 .| 238140 3 4 │ │ │ │ +0005fcf0: 2020 3232 3836 3134 3430 3020 3020 3420 228614400 0 4 │ │ │ │ +0005fd00: 2020 2033 3430 3230 3030 2020 3020 3120 3402000 0 1 │ │ │ │ +0005fd10: 3420 2020 2032 3732 3136 3030 3030 2031 4 272160000 1 │ │ │ │ +0005fd20: 2034 2020 2020 3332 3030 3630 3136 307c 4 320060160| │ │ │ │ +0005fd30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005fd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005fd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fd80: 2020 2020 207c 0a7c 2033 3830 3137 3238 |.| 3801728 │ │ │ │ -0005fd90: 3033 2033 2020 2020 2031 3030 3432 3032 03 3 1004202 │ │ │ │ -0005fda0: 3733 2032 2032 2020 2032 3230 3931 3539 73 2 2 2209159 │ │ │ │ -0005fdb0: 3337 3033 2020 2020 2032 2020 2033 3038 3703 2 308 │ │ │ │ -0005fdc0: 3034 3634 3039 3920 3220 3220 2020 3231 0464099 2 2 21 │ │ │ │ -0005fdd0: 3734 3131 397c 0a7c 202d 2d2d 2d2d 2d2d 74119|.| ------- │ │ │ │ -0005fde0: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -0005fdf0: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -0005fe00: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ -0005fe10: 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 2d2d -------x x + -- │ │ │ │ -0005fe20: 2d2d 2d2d 2d7c 0a7c 2020 3339 3639 3030 -----|.| 396900 │ │ │ │ -0005fe30: 3020 2033 2034 2020 2020 3638 3034 3030 0 3 4 680400 │ │ │ │ -0005fe40: 3020 2030 2034 2020 2020 3237 3231 3630 0 0 4 272160 │ │ │ │ -0005fe50: 3030 3020 2030 2031 2034 2020 2020 3538 000 0 1 4 58 │ │ │ │ -0005fe60: 3332 3030 3030 2020 3120 3420 2020 2031 320000 1 4 1 │ │ │ │ -0005fe70: 3930 3531 327c 0a7c 2d2d 2d2d 2d2d 2d2d 90512|.|-------- │ │ │ │ +0005fd70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0005fd80: 0a7c 2033 3830 3137 3238 3033 2033 2020 .| 380172803 3 │ │ │ │ +0005fd90: 2020 2031 3030 3432 3032 3733 2032 2032 100420273 2 2 │ │ │ │ +0005fda0: 2020 2032 3230 3931 3539 3337 3033 2020 22091593703 │ │ │ │ +0005fdb0: 2020 2032 2020 2033 3038 3034 3634 3039 2 308046409 │ │ │ │ +0005fdc0: 3920 3220 3220 2020 3231 3734 3131 397c 9 2 2 2174119| │ │ │ │ +0005fdd0: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 .| ---------x x │ │ │ │ +0005fde0: 202d 202d 2d2d 2d2d 2d2d 2d2d 7820 7820 - ---------x x │ │ │ │ +0005fdf0: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - -----------x │ │ │ │ +0005fe00: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d2d x x - --------- │ │ │ │ +0005fe10: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d7c -x x + -------| │ │ │ │ +0005fe20: 0a7c 2020 3339 3639 3030 3020 2033 2034 .| 3969000 3 4 │ │ │ │ +0005fe30: 2020 2020 3638 3034 3030 3020 2030 2034 6804000 0 4 │ │ │ │ +0005fe40: 2020 2020 3237 3231 3630 3030 3020 2030 272160000 0 │ │ │ │ +0005fe50: 2031 2034 2020 2020 3538 3332 3030 3030 1 4 58320000 │ │ │ │ +0005fe60: 2020 3120 3420 2020 2031 3930 3531 327c 1 4 190512| │ │ │ │ +0005fe70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0005fe80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fe90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0005fea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005feb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0005fec0: 2d2d 2d2d 2d7c 0a7c 2020 2032 2020 2032 -----|.| 2 2 │ │ │ │ -0005fed0: 3033 3839 3535 3232 3433 2032 2032 2020 0389552243 2 2 │ │ │ │ -0005fee0: 2033 3034 3338 3733 3738 3633 3920 2020 304387378639 │ │ │ │ -0005fef0: 2020 3220 2020 3233 3635 3933 3438 3732 2 2365934872 │ │ │ │ -0005ff00: 3733 2020 2020 2032 2020 2033 3332 3739 73 2 33279 │ │ │ │ -0005ff10: 3539 3533 317c 0a7c 7820 7820 202d 202d 59531|.|x x - - │ │ │ │ -0005ff20: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ -0005ff30: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 ------------x x │ │ │ │ -0005ff40: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ -0005ff50: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ -0005ff60: 2d2d 2d2d 2d7c 0a7c 2032 2034 2020 2020 -----|.| 2 4 │ │ │ │ -0005ff70: 3636 3637 3932 3030 3020 2032 2034 2020 666792000 2 4 │ │ │ │ -0005ff80: 2020 3630 3031 3132 3830 3030 3020 3020 60011280000 0 │ │ │ │ -0005ff90: 3320 3420 2020 2032 3035 3735 3239 3630 3 4 205752960 │ │ │ │ -0005ffa0: 3020 2031 2033 2034 2020 2020 3933 3736 0 1 3 4 9376 │ │ │ │ -0005ffb0: 3736 3235 307c 0a7c 2020 2020 2020 2020 76250|.| │ │ │ │ +0005feb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0005fec0: 0a7c 2020 2032 2020 2032 3033 3839 3535 .| 2 2038955 │ │ │ │ +0005fed0: 3232 3433 2032 2032 2020 2033 3034 3338 2243 2 2 30438 │ │ │ │ +0005fee0: 3733 3738 3633 3920 2020 2020 3220 2020 7378639 2 │ │ │ │ +0005fef0: 3233 3635 3933 3438 3732 3733 2020 2020 236593487273 │ │ │ │ +0005ff00: 2032 2020 2033 3332 3739 3539 3533 317c 2 3327959531| │ │ │ │ +0005ff10: 0a7c 7820 7820 202d 202d 2d2d 2d2d 2d2d .|x x - ------- │ │ │ │ +0005ff20: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ +0005ff30: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2d20 -------x x x - │ │ │ │ +0005ff40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 ------------x x │ │ │ │ +0005ff50: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d7c x + ----------| │ │ │ │ +0005ff60: 0a7c 2032 2034 2020 2020 3636 3637 3932 .| 2 4 666792 │ │ │ │ +0005ff70: 3030 3020 2032 2034 2020 2020 3630 3031 000 2 4 6001 │ │ │ │ +0005ff80: 3132 3830 3030 3020 3020 3320 3420 2020 1280000 0 3 4 │ │ │ │ +0005ff90: 2032 3035 3735 3239 3630 3020 2031 2033 2057529600 1 3 │ │ │ │ +0005ffa0: 2034 2020 2020 3933 3736 3736 3235 307c 4 937676250| │ │ │ │ +0005ffb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0005ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0005ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0005fff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060000: 2020 2020 207c 0a7c 3437 3333 3631 3133 |.|47336113 │ │ │ │ -00060010: 3320 2020 2020 3220 2020 3335 3234 3631 3 2 352461 │ │ │ │ -00060020: 3533 3731 2032 2032 2020 2036 3635 3336 5371 2 2 66536 │ │ │ │ -00060030: 3138 3937 3733 2020 2020 2032 2020 2031 189773 2 1 │ │ │ │ -00060040: 3631 3832 3838 3936 3120 2020 2020 3220 618288961 2 │ │ │ │ -00060050: 2020 3135 307c 0a7c 2d2d 2d2d 2d2d 2d2d 150|.|-------- │ │ │ │ -00060060: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -00060070: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -00060080: 2d2d 2d2d 2d2d 7820 7820 7820 202d 202d ------x x x - - │ │ │ │ -00060090: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ -000600a0: 2b20 2d2d 2d7c 0a7c 3135 3336 3030 3030 + ---|.|15360000 │ │ │ │ -000600b0: 2020 3120 3220 3420 2020 2032 3134 3332 1 2 4 21432 │ │ │ │ -000600c0: 3630 3030 2032 2034 2020 2020 3235 3030 6000 2 4 2500 │ │ │ │ -000600d0: 3437 3030 3030 2030 2033 2034 2020 2020 470000 0 3 4 │ │ │ │ -000600e0: 3235 3531 3530 3030 2020 3120 3320 3420 25515000 1 3 4 │ │ │ │ -000600f0: 2020 2032 377c 0a7c 2020 2020 2020 2020 27|.| │ │ │ │ +0005fff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060000: 0a7c 3437 3333 3631 3133 3320 2020 2020 .|473361133 │ │ │ │ +00060010: 3220 2020 3335 3234 3631 3533 3731 2032 2 3524615371 2 │ │ │ │ +00060020: 2032 2020 2036 3635 3336 3138 3937 3733 2 66536189773 │ │ │ │ +00060030: 2020 2020 2032 2020 2031 3631 3832 3838 2 1618288 │ │ │ │ +00060040: 3936 3120 2020 2020 3220 2020 3135 307c 961 2 150| │ │ │ │ +00060050: 0a7c 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 .|---------x x x │ │ │ │ +00060060: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ +00060070: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ +00060080: 7820 7820 7820 202d 202d 2d2d 2d2d 2d2d x x x - ------- │ │ │ │ +00060090: 2d2d 2d78 2078 2078 2020 2b20 2d2d 2d7c ---x x x + ---| │ │ │ │ +000600a0: 0a7c 3135 3336 3030 3030 2020 3120 3220 .|15360000 1 2 │ │ │ │ +000600b0: 3420 2020 2032 3134 3332 3630 3030 2032 4 214326000 2 │ │ │ │ +000600c0: 2034 2020 2020 3235 3030 3437 3030 3030 4 2500470000 │ │ │ │ +000600d0: 2030 2033 2034 2020 2020 3235 3531 3530 0 3 4 255150 │ │ │ │ +000600e0: 3030 2020 3120 3320 3420 2020 2032 377c 00 1 3 4 27| │ │ │ │ +000600f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060140: 2020 2020 207c 0a7c 2031 3530 3335 3734 |.| 1503574 │ │ │ │ -00060150: 3235 3920 3220 3220 2020 3134 3534 3238 259 2 2 145428 │ │ │ │ -00060160: 3935 3538 3720 2020 2020 3220 2020 3135 95587 2 15 │ │ │ │ -00060170: 3234 3934 3734 3131 2020 2020 2032 2020 24947411 2 │ │ │ │ -00060180: 2031 3131 3638 3535 3233 3439 3720 2020 111685523497 │ │ │ │ -00060190: 2020 3220 207c 0a7c 202d 2d2d 2d2d 2d2d 2 |.| ------- │ │ │ │ -000601a0: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -000601b0: 2d2d 2d2d 2d78 2078 2078 2020 2b20 2d2d -----x x x + -- │ │ │ │ -000601c0: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202b --------x x x + │ │ │ │ -000601d0: 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 ------------x x │ │ │ │ -000601e0: 2078 2020 2b7c 0a7c 2020 3935 3235 3630 x +|.| 952560 │ │ │ │ -000601f0: 3030 2020 3220 3420 2020 2020 3632 3531 00 2 4 6251 │ │ │ │ -00060200: 3137 3530 2020 3020 3320 3420 2020 2032 1750 0 3 4 2 │ │ │ │ -00060210: 3637 3930 3735 3020 2031 2033 2034 2020 6790750 1 3 4 │ │ │ │ -00060220: 2020 3430 3030 3735 3230 3030 2020 3220 4000752000 2 │ │ │ │ -00060230: 3320 3420 207c 0a7c 2020 2020 2020 2020 3 4 |.| │ │ │ │ +00060130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060140: 0a7c 2031 3530 3335 3734 3235 3920 3220 .| 1503574259 2 │ │ │ │ +00060150: 3220 2020 3134 3534 3238 3935 3538 3720 2 14542895587 │ │ │ │ +00060160: 2020 2020 3220 2020 3135 3234 3934 3734 2 15249474 │ │ │ │ +00060170: 3131 2020 2020 2032 2020 2031 3131 3638 11 2 11168 │ │ │ │ +00060180: 3535 3233 3439 3720 2020 2020 3220 207c 5523497 2 | │ │ │ │ +00060190: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .| ----------x x │ │ │ │ +000601a0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -----------x │ │ │ │ +000601b0: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ +000601c0: 2d2d 7820 7820 7820 202b 202d 2d2d 2d2d --x x x + ----- │ │ │ │ +000601d0: 2d2d 2d2d 2d2d 2d78 2078 2078 2020 2b7c -------x x x +| │ │ │ │ +000601e0: 0a7c 2020 3935 3235 3630 3030 2020 3220 .| 95256000 2 │ │ │ │ +000601f0: 3420 2020 2020 3632 3531 3137 3530 2020 4 62511750 │ │ │ │ +00060200: 3020 3320 3420 2020 2032 3637 3930 3735 0 3 4 2679075 │ │ │ │ +00060210: 3020 2031 2033 2034 2020 2020 3430 3030 0 1 3 4 4000 │ │ │ │ +00060220: 3735 3230 3030 2020 3220 3320 3420 207c 752000 2 3 4 | │ │ │ │ +00060230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060280: 2020 2020 207c 0a7c 3339 2020 2020 2032 |.|39 2 │ │ │ │ -00060290: 2020 2032 3839 3130 3633 3338 3933 3920 289106338939 │ │ │ │ -000602a0: 2020 2020 3220 2020 3131 3634 3739 3730 2 11647970 │ │ │ │ -000602b0: 3539 2032 2032 2020 2034 3337 3232 3036 59 2 2 4372206 │ │ │ │ -000602c0: 3133 3739 2020 2020 2032 2020 2035 3137 1379 2 517 │ │ │ │ -000602d0: 3038 3533 337c 0a7c 2d2d 7820 7820 7820 08533|.|--x x x │ │ │ │ -000602e0: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 + ------------x │ │ │ │ -000602f0: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -00060300: 2d2d 7820 7820 202d 202d 2d2d 2d2d 2d2d --x x - ------- │ │ │ │ -00060310: 2d2d 2d2d 7820 7820 7820 202d 202d 2d2d ----x x x - --- │ │ │ │ -00060320: 2d2d 2d2d 2d7c 0a7c 3030 2030 2032 2034 -----|.|00 0 2 4 │ │ │ │ -00060330: 2020 2020 3232 3836 3134 3430 3030 3020 22861440000 │ │ │ │ -00060340: 3120 3220 3420 2020 2035 3731 3533 3630 1 2 4 5715360 │ │ │ │ -00060350: 3030 2032 2034 2020 2020 3630 3031 3132 00 2 4 600112 │ │ │ │ -00060360: 3830 3020 2030 2033 2034 2020 2020 3537 800 0 3 4 57 │ │ │ │ -00060370: 3135 3336 307c 0a7c 2020 2020 2020 2020 15360|.| │ │ │ │ +00060270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060280: 0a7c 3339 2020 2020 2032 2020 2032 3839 .|39 2 289 │ │ │ │ +00060290: 3130 3633 3338 3933 3920 2020 2020 3220 106338939 2 │ │ │ │ +000602a0: 2020 3131 3634 3739 3730 3539 2032 2032 1164797059 2 2 │ │ │ │ +000602b0: 2020 2034 3337 3232 3036 3133 3739 2020 43722061379 │ │ │ │ +000602c0: 2020 2032 2020 2035 3137 3038 3533 337c 2 51708533| │ │ │ │ +000602d0: 0a7c 2d2d 7820 7820 7820 202b 202d 2d2d .|--x x x + --- │ │ │ │ +000602e0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 2020 ---------x x x │ │ │ │ +000602f0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 + ----------x x │ │ │ │ +00060300: 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - -----------x │ │ │ │ +00060310: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d7c x x - --------| │ │ │ │ +00060320: 0a7c 3030 2030 2032 2034 2020 2020 3232 .|00 0 2 4 22 │ │ │ │ +00060330: 3836 3134 3430 3030 3020 3120 3220 3420 861440000 1 2 4 │ │ │ │ +00060340: 2020 2035 3731 3533 3630 3030 2032 2034 571536000 2 4 │ │ │ │ +00060350: 2020 2020 3630 3031 3132 3830 3020 2030 600112800 0 │ │ │ │ +00060360: 2033 2034 2020 2020 3537 3135 3336 307c 3 4 5715360| │ │ │ │ +00060370: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000603a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000603b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000603c0: 2020 2020 207c 0a7c 3939 3033 2020 2020 |.|9903 │ │ │ │ -000603d0: 2032 2020 2034 3139 3535 3032 3430 3137 2 41955024017 │ │ │ │ -000603e0: 2020 2020 2032 2020 2034 3332 3937 3334 2 4329734 │ │ │ │ -000603f0: 3235 3120 3220 3220 2020 3338 3537 3433 251 2 2 385743 │ │ │ │ -00060400: 3937 3833 3120 2020 2020 3220 2020 3136 97831 2 16 │ │ │ │ -00060410: 3331 3432 337c 0a7c 2d2d 2d2d 7820 7820 31423|.|----x x │ │ │ │ -00060420: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2d x + ----------- │ │ │ │ -00060430: 7820 7820 7820 202b 202d 2d2d 2d2d 2d2d x x x + ------- │ │ │ │ -00060440: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -00060450: 2d2d 2d2d 2d78 2078 2078 2020 2d20 2d2d -----x x x - -- │ │ │ │ -00060460: 2d2d 2d2d 2d7c 0a7c 3030 3020 2030 2032 -----|.|000 0 2 │ │ │ │ -00060470: 2034 2020 2020 3438 3938 3838 3030 3030 4 4898880000 │ │ │ │ -00060480: 2031 2032 2034 2020 2020 3139 3035 3132 1 2 4 190512 │ │ │ │ -00060490: 3030 3020 3220 3420 2020 2034 3736 3238 000 2 4 47628 │ │ │ │ -000604a0: 3030 3030 2020 3020 3320 3420 2020 2032 0000 0 3 4 2 │ │ │ │ -000604b0: 3034 3132 307c 0a7c 2d2d 2d2d 2d2d 2d2d 04120|.|-------- │ │ │ │ +000603b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000603c0: 0a7c 3939 3033 2020 2020 2032 2020 2034 .|9903 2 4 │ │ │ │ +000603d0: 3139 3535 3032 3430 3137 2020 2020 2032 1955024017 2 │ │ │ │ +000603e0: 2020 2034 3332 3937 3334 3235 3120 3220 4329734251 2 │ │ │ │ +000603f0: 3220 2020 3338 3537 3433 3937 3833 3120 2 38574397831 │ │ │ │ +00060400: 2020 2020 3220 2020 3136 3331 3432 337c 2 1631423| │ │ │ │ +00060410: 0a7c 2d2d 2d2d 7820 7820 7820 202b 202d .|----x x x + - │ │ │ │ +00060420: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 ----------x x x │ │ │ │ +00060430: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + ----------x x │ │ │ │ +00060440: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 - -----------x │ │ │ │ +00060450: 2078 2078 2020 2d20 2d2d 2d2d 2d2d 2d7c x x - -------| │ │ │ │ +00060460: 0a7c 3030 3020 2030 2032 2034 2020 2020 .|000 0 2 4 │ │ │ │ +00060470: 3438 3938 3838 3030 3030 2031 2032 2034 4898880000 1 2 4 │ │ │ │ +00060480: 2020 2020 3139 3035 3132 3030 3020 3220 190512000 2 │ │ │ │ +00060490: 3420 2020 2034 3736 3238 3030 3030 2020 4 476280000 │ │ │ │ +000604a0: 3020 3320 3420 2020 2032 3034 3132 307c 0 3 4 204120| │ │ │ │ +000604b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000604c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000604d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000604e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000604f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060500: 2d2d 2d2d 2d7c 0a7c 3920 2020 2020 3220 -----|.|9 2 │ │ │ │ -00060510: 2020 3130 3938 3231 3032 3836 3320 3220 10982102863 2 │ │ │ │ -00060520: 3220 2020 3135 3630 3433 3433 3231 2020 2 1560434321 │ │ │ │ -00060530: 2033 2020 2034 3636 3931 3232 3936 3720 3 4669122967 │ │ │ │ -00060540: 2020 3320 2020 3138 3035 3238 3230 3737 3 1805282077 │ │ │ │ -00060550: 2020 2033 207c 0a7c 2d78 2078 2078 2020 3 |.|-x x x │ │ │ │ -00060560: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 + -----------x x │ │ │ │ -00060570: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ -00060580: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d78 x - ----------x │ │ │ │ -00060590: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d x - ---------- │ │ │ │ -000605a0: 7820 7820 207c 0a7c 2020 3220 3320 3420 x x |.| 2 3 4 │ │ │ │ -000605b0: 2020 2020 3835 3733 3034 3030 2020 3320 85730400 3 │ │ │ │ -000605c0: 3420 2020 3134 3238 3834 3030 3030 2030 4 1428840000 0 │ │ │ │ -000605d0: 2034 2020 2020 3430 3832 3430 3030 3020 4 408240000 │ │ │ │ -000605e0: 3120 3420 2020 2033 3537 3231 3030 3030 1 4 357210000 │ │ │ │ -000605f0: 2032 2034 207c 0a7c 2020 2020 2020 2020 2 4 |.| │ │ │ │ +000604f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00060500: 0a7c 3920 2020 2020 3220 2020 3130 3938 .|9 2 1098 │ │ │ │ +00060510: 3231 3032 3836 3320 3220 3220 2020 3135 2102863 2 2 15 │ │ │ │ +00060520: 3630 3433 3433 3231 2020 2033 2020 2034 60434321 3 4 │ │ │ │ +00060530: 3636 3931 3232 3936 3720 2020 3320 2020 669122967 3 │ │ │ │ +00060540: 3138 3035 3238 3230 3737 2020 2033 207c 1805282077 3 | │ │ │ │ +00060550: 0a7c 2d78 2078 2078 2020 2b20 2d2d 2d2d .|-x x x + ---- │ │ │ │ +00060560: 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 2d2d -------x x - -- │ │ │ │ +00060570: 2d2d 2d2d 2d2d 2d2d 7820 7820 202d 202d --------x x - - │ │ │ │ +00060580: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 ---------x x - │ │ │ │ +00060590: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 207c ----------x x | │ │ │ │ +000605a0: 0a7c 2020 3220 3320 3420 2020 2020 3835 .| 2 3 4 85 │ │ │ │ +000605b0: 3733 3034 3030 2020 3320 3420 2020 3134 730400 3 4 14 │ │ │ │ +000605c0: 3238 3834 3030 3030 2030 2034 2020 2020 28840000 0 4 │ │ │ │ +000605d0: 3430 3832 3430 3030 3020 3120 3420 2020 408240000 1 4 │ │ │ │ +000605e0: 2033 3537 3231 3030 3030 2032 2034 207c 357210000 2 4 | │ │ │ │ +000605f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060640: 2020 2020 207c 0a7c 3232 3931 3935 3720 |.|2291957 │ │ │ │ -00060650: 2020 2020 3220 2020 3637 3536 3231 3034 2 67562104 │ │ │ │ -00060660: 3720 3220 3220 2020 3637 3131 3939 3239 7 2 2 67119929 │ │ │ │ -00060670: 2020 2033 2020 2033 3030 3436 3834 3320 3 30046843 │ │ │ │ -00060680: 2020 3320 2020 3837 3639 3438 3231 3720 3 876948217 │ │ │ │ -00060690: 2020 3320 207c 0a7c 2d2d 2d2d 2d2d 2d78 3 |.|-------x │ │ │ │ -000606a0: 2078 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d x x + -------- │ │ │ │ -000606b0: 2d78 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d -x x + -------- │ │ │ │ -000606c0: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d78 x x - --------x │ │ │ │ -000606d0: 2078 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d78 x - ---------x │ │ │ │ -000606e0: 2078 2020 2d7c 0a7c 3738 3330 3030 2020 x -|.|783000 │ │ │ │ -000606f0: 3220 3320 3420 2020 2035 3535 3636 3030 2 3 4 5556600 │ │ │ │ -00060700: 2020 3320 3420 2020 3437 3632 3830 3030 3 4 47628000 │ │ │ │ -00060710: 2030 2034 2020 2020 3133 3630 3830 3020 0 4 1360800 │ │ │ │ -00060720: 3120 3420 2020 3134 3238 3834 3030 3020 1 4 142884000 │ │ │ │ -00060730: 3220 3420 207c 0a7c 2020 2020 2020 2020 2 4 |.| │ │ │ │ +00060630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060640: 0a7c 3232 3931 3935 3720 2020 2020 3220 .|2291957 2 │ │ │ │ +00060650: 2020 3637 3536 3231 3034 3720 3220 3220 675621047 2 2 │ │ │ │ +00060660: 2020 3637 3131 3939 3239 2020 2033 2020 67119929 3 │ │ │ │ +00060670: 2033 3030 3436 3834 3320 2020 3320 2020 30046843 3 │ │ │ │ +00060680: 3837 3639 3438 3231 3720 2020 3320 207c 876948217 3 | │ │ │ │ +00060690: 0a7c 2d2d 2d2d 2d2d 2d78 2078 2078 2020 .|-------x x x │ │ │ │ +000606a0: 2b20 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 + ---------x x │ │ │ │ +000606b0: 2b20 2d2d 2d2d 2d2d 2d2d 7820 7820 202d + --------x x - │ │ │ │ +000606c0: 202d 2d2d 2d2d 2d2d 2d78 2078 2020 2d20 --------x x - │ │ │ │ +000606d0: 2d2d 2d2d 2d2d 2d2d 2d78 2078 2020 2d7c ---------x x -| │ │ │ │ +000606e0: 0a7c 3738 3330 3030 2020 3220 3320 3420 .|783000 2 3 4 │ │ │ │ +000606f0: 2020 2035 3535 3636 3030 2020 3320 3420 5556600 3 4 │ │ │ │ +00060700: 2020 3437 3632 3830 3030 2030 2034 2020 47628000 0 4 │ │ │ │ +00060710: 2020 3133 3630 3830 3020 3120 3420 2020 1360800 1 4 │ │ │ │ +00060720: 3134 3238 3834 3030 3020 3220 3420 207c 142884000 2 4 | │ │ │ │ +00060730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060780: 2020 2020 207c 0a7c 2035 3736 3038 3734 |.| 5760874 │ │ │ │ -00060790: 3338 3120 3220 3220 2020 3639 3936 3230 381 2 2 699620 │ │ │ │ -000607a0: 3030 3333 2020 2033 2020 2031 3131 3933 0033 3 11193 │ │ │ │ -000607b0: 3235 3835 3320 2020 3320 2020 3132 3432 25853 3 1242 │ │ │ │ -000607c0: 3631 3033 3139 2020 2033 2020 2033 3639 610319 3 369 │ │ │ │ -000607d0: 3434 3134 337c 0a7c 202d 2d2d 2d2d 2d2d 44143|.| ------- │ │ │ │ -000607e0: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -000607f0: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ -00060800: 2d2d 2d2d 2d78 2078 2020 2b20 2d2d 2d2d -----x x + ---- │ │ │ │ -00060810: 2d2d 2d2d 2d2d 7820 7820 202d 202d 2d2d ------x x - --- │ │ │ │ -00060820: 2d2d 2d2d 2d7c 0a7c 2020 3132 3530 3233 -----|.| 125023 │ │ │ │ -00060830: 3530 3020 3320 3420 2020 2038 3537 3330 500 3 4 85730 │ │ │ │ -00060840: 3430 3030 2030 2034 2020 2020 3230 3431 4000 0 4 2041 │ │ │ │ -00060850: 3230 3030 2020 3120 3420 2020 2031 3134 2000 1 4 114 │ │ │ │ -00060860: 3330 3732 3030 2032 2034 2020 2031 3432 307200 2 4 142 │ │ │ │ -00060870: 3838 3430 307c 0a7c 2020 2020 2020 2020 88400|.| │ │ │ │ +00060770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060780: 0a7c 2035 3736 3038 3734 3338 3120 3220 .| 5760874381 2 │ │ │ │ +00060790: 3220 2020 3639 3936 3230 3030 3333 2020 2 6996200033 │ │ │ │ +000607a0: 2033 2020 2031 3131 3933 3235 3835 3320 3 1119325853 │ │ │ │ +000607b0: 2020 3320 2020 3132 3432 3631 3033 3139 3 1242610319 │ │ │ │ +000607c0: 2020 2033 2020 2033 3639 3434 3134 337c 3 36944143| │ │ │ │ +000607d0: 0a7c 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 .| ----------x x │ │ │ │ +000607e0: 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 + ----------x │ │ │ │ +000607f0: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 2d78 x + ----------x │ │ │ │ +00060800: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ +00060810: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d7c x x - --------| │ │ │ │ +00060820: 0a7c 2020 3132 3530 3233 3530 3020 3320 .| 125023500 3 │ │ │ │ +00060830: 3420 2020 2038 3537 3330 3430 3030 2030 4 857304000 0 │ │ │ │ +00060840: 2034 2020 2020 3230 3431 3230 3030 2020 4 20412000 │ │ │ │ +00060850: 3120 3420 2020 2031 3134 3330 3732 3030 1 4 114307200 │ │ │ │ +00060860: 2032 2034 2020 2031 3432 3838 3430 307c 2 4 14288400| │ │ │ │ +00060870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000608a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000608b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000608c0: 2020 2020 207c 0a7c 3332 3920 2020 2020 |.|329 │ │ │ │ -000608d0: 3220 2020 3332 3039 3538 3439 3139 2020 2 3209584919 │ │ │ │ -000608e0: 2020 2032 2020 2034 3736 3430 3233 3920 2 47640239 │ │ │ │ -000608f0: 3220 3220 2020 3730 3537 3535 3938 3639 2 2 7057559869 │ │ │ │ -00060900: 2020 2033 2020 2031 3238 3834 3532 3038 3 128845208 │ │ │ │ -00060910: 3320 2020 337c 0a7c 2d2d 2d78 2078 2078 3 3|.|---x x x │ │ │ │ -00060920: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ -00060930: 7820 7820 202d 202d 2d2d 2d2d 2d2d 2d78 x x - --------x │ │ │ │ -00060940: 2078 2020 2b20 2d2d 2d2d 2d2d 2d2d 2d2d x + ---------- │ │ │ │ -00060950: 7820 7820 202b 202d 2d2d 2d2d 2d2d 2d2d x x + --------- │ │ │ │ -00060960: 2d78 2078 207c 0a7c 3030 2020 3120 3320 -x x |.|00 1 3 │ │ │ │ -00060970: 3420 2020 3234 3030 3435 3132 3030 2032 4 2400451200 2 │ │ │ │ -00060980: 2033 2034 2020 2020 3935 3235 3630 3020 3 4 9525600 │ │ │ │ -00060990: 3320 3420 2020 3238 3537 3638 3030 3030 3 4 2857680000 │ │ │ │ -000609a0: 2030 2034 2020 2020 3133 3630 3830 3030 0 4 13608000 │ │ │ │ -000609b0: 3020 3120 347c 0a7c 2020 2020 2020 2020 0 1 4|.| │ │ │ │ +000608b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000608c0: 0a7c 3332 3920 2020 2020 3220 2020 3332 .|329 2 32 │ │ │ │ +000608d0: 3039 3538 3439 3139 2020 2020 2032 2020 09584919 2 │ │ │ │ +000608e0: 2034 3736 3430 3233 3920 3220 3220 2020 47640239 2 2 │ │ │ │ +000608f0: 3730 3537 3535 3938 3639 2020 2033 2020 7057559869 3 │ │ │ │ +00060900: 2031 3238 3834 3532 3038 3320 2020 337c 1288452083 3| │ │ │ │ +00060910: 0a7c 2d2d 2d78 2078 2078 2020 2d20 2d2d .|---x x x - -- │ │ │ │ +00060920: 2d2d 2d2d 2d2d 2d2d 7820 7820 7820 202d --------x x x - │ │ │ │ +00060930: 202d 2d2d 2d2d 2d2d 2d78 2078 2020 2b20 --------x x + │ │ │ │ +00060940: 2d2d 2d2d 2d2d 2d2d 2d2d 7820 7820 202b ----------x x + │ │ │ │ +00060950: 202d 2d2d 2d2d 2d2d 2d2d 2d78 2078 207c ----------x x | │ │ │ │ +00060960: 0a7c 3030 2020 3120 3320 3420 2020 3234 .|00 1 3 4 24 │ │ │ │ +00060970: 3030 3435 3132 3030 2032 2033 2034 2020 00451200 2 3 4 │ │ │ │ +00060980: 2020 3935 3235 3630 3020 3320 3420 2020 9525600 3 4 │ │ │ │ +00060990: 3238 3537 3638 3030 3030 2030 2034 2020 2857680000 0 4 │ │ │ │ +000609a0: 2020 3133 3630 3830 3030 3020 3120 347c 136080000 1 4| │ │ │ │ +000609b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000609c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000609d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000609e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000609f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060a00: 2020 2020 207c 0a7c 3736 3031 2020 2020 |.|7601 │ │ │ │ -00060a10: 2032 2020 2031 3039 3934 3439 3934 3631 2 10994499461 │ │ │ │ -00060a20: 3920 2020 2020 3220 2020 3136 3730 3233 9 2 167023 │ │ │ │ -00060a30: 3839 3433 2032 2032 2020 2031 3033 3131 8943 2 2 10311 │ │ │ │ -00060a40: 3135 3137 2020 2033 2020 2035 3736 3732 1517 3 57672 │ │ │ │ -00060a50: 3120 2020 337c 0a7c 2d2d 2d2d 7820 7820 1 3|.|----x x │ │ │ │ -00060a60: 7820 202d 202d 2d2d 2d2d 2d2d 2d2d 2d2d x - ----------- │ │ │ │ -00060a70: 2d78 2078 2078 2020 2d20 2d2d 2d2d 2d2d -x x x - ------ │ │ │ │ -00060a80: 2d2d 2d2d 7820 7820 202b 202d 2d2d 2d2d ----x x + ----- │ │ │ │ -00060a90: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -00060aa0: 2d78 2078 207c 0a7c 3030 3020 2031 2033 -x x |.|000 1 3 │ │ │ │ -00060ab0: 2034 2020 2020 3238 3537 3638 3030 3030 4 2857680000 │ │ │ │ -00060ac0: 2020 3220 3320 3420 2020 2032 3338 3134 2 3 4 23814 │ │ │ │ -00060ad0: 3030 3020 2033 2034 2020 2020 3330 3631 000 3 4 3061 │ │ │ │ -00060ae0: 3830 3030 2030 2034 2020 2020 3436 3635 8000 0 4 4665 │ │ │ │ -00060af0: 3620 3120 347c 0a7c 2d2d 2d2d 2d2d 2d2d 6 1 4|.|-------- │ │ │ │ +000609f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060a00: 0a7c 3736 3031 2020 2020 2032 2020 2031 .|7601 2 1 │ │ │ │ +00060a10: 3039 3934 3439 3934 3631 3920 2020 2020 09944994619 │ │ │ │ +00060a20: 3220 2020 3136 3730 3233 3839 3433 2032 2 1670238943 2 │ │ │ │ +00060a30: 2032 2020 2031 3033 3131 3135 3137 2020 2 103111517 │ │ │ │ +00060a40: 2033 2020 2035 3736 3732 3120 2020 337c 3 576721 3| │ │ │ │ +00060a50: 0a7c 2d2d 2d2d 7820 7820 7820 202d 202d .|----x x x - - │ │ │ │ +00060a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d78 2078 2078 -----------x x x │ │ │ │ +00060a70: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ +00060a80: 7820 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 x + ---------x │ │ │ │ +00060a90: 7820 202d 202d 2d2d 2d2d 2d78 2078 207c x - ------x x | │ │ │ │ +00060aa0: 0a7c 3030 3020 2031 2033 2034 2020 2020 .|000 1 3 4 │ │ │ │ +00060ab0: 3238 3537 3638 3030 3030 2020 3220 3320 2857680000 2 3 │ │ │ │ +00060ac0: 3420 2020 2032 3338 3134 3030 3020 2033 4 23814000 3 │ │ │ │ +00060ad0: 2034 2020 2020 3330 3631 3830 3030 2030 4 30618000 0 │ │ │ │ +00060ae0: 2034 2020 2020 3436 3635 3620 3120 347c 4 46656 1 4| │ │ │ │ +00060af0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00060b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00060b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00060b40: 2d2d 2d2d 2d7c 0a7c 2020 3634 3635 3134 -----|.| 646514 │ │ │ │ -00060b50: 3937 3637 2020 2033 2020 2031 3230 3535 9767 3 12055 │ │ │ │ -00060b60: 3920 3420 2020 2020 2020 2020 2020 2020 9 4 │ │ │ │ +00060b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00060b40: 0a7c 2020 3634 3635 3134 3937 3637 2020 .| 6465149767 │ │ │ │ +00060b50: 2033 2020 2031 3230 3535 3920 3420 2020 3 120559 4 │ │ │ │ +00060b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060b90: 2020 2020 207c 0a7c 2b20 2d2d 2d2d 2d2d |.|+ ------ │ │ │ │ -00060ba0: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -00060bb0: 2d78 202c 2020 2020 2020 2020 2020 2020 -x , │ │ │ │ +00060b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060b90: 0a7c 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 .|+ ----------x │ │ │ │ +00060ba0: 7820 202d 202d 2d2d 2d2d 2d78 202c 2020 x - ------x , │ │ │ │ +00060bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060be0: 2020 2020 207c 0a7c 2020 3432 3836 3532 |.| 428652 │ │ │ │ -00060bf0: 3030 3030 2033 2034 2020 2034 3836 3030 0000 3 4 48600 │ │ │ │ -00060c00: 3020 3420 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00060bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060be0: 0a7c 2020 3432 3836 3532 3030 3030 2033 .| 4286520000 3 │ │ │ │ +00060bf0: 2034 2020 2034 3836 3030 3020 3420 2020 4 486000 4 │ │ │ │ +00060c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00060c20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060c80: 2020 2020 207c 0a7c 2033 3033 3531 3730 |.| 3035170 │ │ │ │ -00060c90: 3720 2020 3320 2020 3238 3837 2034 2020 7 3 2887 4 │ │ │ │ +00060c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060c80: 0a7c 2033 3033 3531 3730 3720 2020 3320 .| 30351707 3 │ │ │ │ +00060c90: 2020 3238 3837 2034 2020 2020 2020 2020 2887 4 │ │ │ │ 00060ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060cd0: 2020 2020 207c 0a7c 202d 2d2d 2d2d 2d2d |.| ------- │ │ │ │ -00060ce0: 2d78 2078 2020 2d20 2d2d 2d2d 7820 2c20 -x x - ----x , │ │ │ │ +00060cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060cd0: 0a7c 202d 2d2d 2d2d 2d2d 2d78 2078 2020 .| --------x x │ │ │ │ +00060ce0: 2d20 2d2d 2d2d 7820 2c20 2020 2020 2020 - ----x , │ │ │ │ 00060cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d20: 2020 2020 207c 0a7c 2031 3333 3935 3337 |.| 1339537 │ │ │ │ -00060d30: 3520 3320 3420 2020 3638 3034 2034 2020 5 3 4 6804 4 │ │ │ │ +00060d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060d20: 0a7c 2031 3333 3935 3337 3520 3320 3420 .| 13395375 3 4 │ │ │ │ +00060d30: 2020 3638 3034 2034 2020 2020 2020 2020 6804 4 │ │ │ │ 00060d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00060d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060dc0: 2020 2020 207c 0a7c 2020 2033 2020 2031 |.| 3 1 │ │ │ │ -00060dd0: 3033 3635 3120 3420 2020 2020 2020 2020 03651 4 │ │ │ │ +00060db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060dc0: 0a7c 2020 2033 2020 2031 3033 3635 3120 .| 3 103651 │ │ │ │ +00060dd0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00060de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e10: 2020 2020 207c 0a7c 7820 7820 202b 202d |.|x x + - │ │ │ │ -00060e20: 2d2d 2d2d 2d78 202c 2020 2020 2020 2020 -----x , │ │ │ │ +00060e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060e10: 0a7c 7820 7820 202b 202d 2d2d 2d2d 2d78 .|x x + ------x │ │ │ │ +00060e20: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 00060e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060e60: 2020 2020 207c 0a7c 2033 2034 2020 2020 |.| 3 4 │ │ │ │ -00060e70: 3937 3230 3020 3420 2020 2020 2020 2020 97200 4 │ │ │ │ +00060e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060e60: 0a7c 2033 2034 2020 2020 3937 3230 3020 .| 3 4 97200 │ │ │ │ +00060e70: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00060e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060eb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00060ea0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060eb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00060ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00060ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060f00: 2020 2020 207c 0a7c 2020 2033 3332 3836 |.| 33286 │ │ │ │ -00060f10: 3138 3831 2020 2033 2020 2034 3235 3432 1881 3 42542 │ │ │ │ -00060f20: 3339 3320 2020 3320 2020 2032 3337 3937 393 3 23797 │ │ │ │ -00060f30: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00060f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060f50: 2020 2020 207c 0a7c 202b 202d 2d2d 2d2d |.| + ----- │ │ │ │ -00060f60: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -00060f70: 2d2d 2d78 2078 2020 2b20 2d2d 2d2d 2d2d ---x x + ------ │ │ │ │ -00060f80: 2d78 202c 2020 2020 2020 2020 2020 2020 -x , │ │ │ │ -00060f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060fa0: 2020 2020 207c 0a7c 2020 2031 3930 3531 |.| 19051 │ │ │ │ -00060fb0: 3230 3030 2032 2034 2020 2020 3638 3034 2000 2 4 6804 │ │ │ │ -00060fc0: 3030 3020 3320 3420 2020 3131 3334 3030 000 3 4 113400 │ │ │ │ -00060fd0: 3020 3420 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ -00060fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00060ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00060ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060f00: 0a7c 2020 2033 3332 3836 3138 3831 2020 .| 332861881 │ │ │ │ +00060f10: 2033 2020 2034 3235 3432 3339 3320 2020 3 42542393 │ │ │ │ +00060f20: 3320 2020 2032 3337 3937 3320 3420 2020 3 237973 4 │ │ │ │ +00060f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060f50: 0a7c 202b 202d 2d2d 2d2d 2d2d 2d2d 7820 .| + ---------x │ │ │ │ +00060f60: 7820 202d 202d 2d2d 2d2d 2d2d 2d78 2078 x - --------x x │ │ │ │ +00060f70: 2020 2b20 2d2d 2d2d 2d2d 2d78 202c 2020 + -------x , │ │ │ │ +00060f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060fa0: 0a7c 2020 2031 3930 3531 3230 3030 2032 .| 190512000 2 │ │ │ │ +00060fb0: 2034 2020 2020 3638 3034 3030 3020 3320 4 6804000 3 │ │ │ │ +00060fc0: 3420 2020 3131 3334 3030 3020 3420 2020 4 1134000 4 │ │ │ │ +00060fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00060fe0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00060ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061040: 2020 2020 207c 0a7c 2020 2020 3733 3237 |.| 7327 │ │ │ │ -00061050: 3733 3920 2020 3320 2020 3132 3838 3034 739 3 128804 │ │ │ │ -00061060: 3638 3937 2020 2033 2020 2020 3238 3138 6897 3 2818 │ │ │ │ -00061070: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00061080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061090: 2020 2020 207c 0a7c 202d 202d 2d2d 2d2d |.| - ----- │ │ │ │ -000610a0: 2d2d 2d78 2078 2020 2d20 2d2d 2d2d 2d2d ---x x - ------ │ │ │ │ -000610b0: 2d2d 2d2d 7820 7820 202d 202d 2d2d 2d2d ----x x - ----- │ │ │ │ -000610c0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -000610d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000610e0: 2020 2020 207c 0a7c 2020 2031 3237 3537 |.| 12757 │ │ │ │ -000610f0: 3530 3020 3220 3420 2020 2035 3130 3330 500 2 4 51030 │ │ │ │ -00061100: 3030 3020 2033 2034 2020 2033 3033 3735 000 3 4 30375 │ │ │ │ -00061110: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00061120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061130: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00061030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061040: 0a7c 2020 2020 3733 3237 3733 3920 2020 .| 7327739 │ │ │ │ +00061050: 3320 2020 3132 3838 3034 3638 3937 2020 3 1288046897 │ │ │ │ +00061060: 2033 2020 2020 3238 3138 2034 2020 2020 3 2818 4 │ │ │ │ +00061070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061090: 0a7c 202d 202d 2d2d 2d2d 2d2d 2d78 2078 .| - --------x x │ │ │ │ +000610a0: 2020 2d20 2d2d 2d2d 2d2d 2d2d 2d2d 7820 - ----------x │ │ │ │ +000610b0: 7820 202d 202d 2d2d 2d2d 7820 2020 2020 x - -----x │ │ │ │ +000610c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000610d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000610e0: 0a7c 2020 2031 3237 3537 3530 3020 3220 .| 12757500 2 │ │ │ │ +000610f0: 3420 2020 2035 3130 3330 3030 3020 2033 4 51030000 3 │ │ │ │ +00061100: 2034 2020 2033 3033 3735 2034 2020 2020 4 30375 4 │ │ │ │ +00061110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061120: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061130: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00061140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061180: 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 696d -----+.|i3 : tim │ │ │ │ -00061190: 6520 696e 7665 7273 6520 7068 6920 2020 e inverse phi │ │ │ │ +00061170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00061180: 0a7c 6933 203a 2074 696d 6520 696e 7665 .|i3 : time inve │ │ │ │ +00061190: 7273 6520 7068 6920 2020 2020 2020 2020 rse phi │ │ │ │ 000611a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000611b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000611c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000611d0: 2020 2020 207c 0a7c 202d 2d20 7573 6564 |.| -- used │ │ │ │ -000611e0: 2030 2e30 3536 3936 3973 2028 6370 7529 0.056969s (cpu) │ │ │ │ -000611f0: 3b20 302e 3035 3639 3638 3773 2028 7468 ; 0.0569687s (th │ │ │ │ -00061200: 7265 6164 293b 2030 7320 2867 6329 2020 read); 0s (gc) │ │ │ │ -00061210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061220: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000611c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000611d0: 0a7c 202d 2d20 7573 6564 2030 2e30 3634 .| -- used 0.064 │ │ │ │ +000611e0: 3536 3235 7320 2863 7075 293b 2030 2e30 5625s (cpu); 0.0 │ │ │ │ +000611f0: 3634 3536 3231 7320 2874 6872 6561 6429 645621s (thread) │ │ │ │ +00061200: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00061210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061220: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061270: 2020 2020 207c 0a7c 6f33 203d 202d 2d20 |.|o3 = -- │ │ │ │ -00061280: 7261 7469 6f6e 616c 206d 6170 202d 2d20 rational map -- │ │ │ │ +00061260: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061270: 0a7c 6f33 203d 202d 2d20 7261 7469 6f6e .|o3 = -- ration │ │ │ │ +00061280: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 00061290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000612a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000612b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000612c0: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ -000612d0: 7263 653a 2050 726f 6a28 5151 5b78 202c rce: Proj(QQ[x , │ │ │ │ -000612e0: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ -000612f0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -00061300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061320: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00061330: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +000612b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000612c0: 0a7c 2020 2020 2073 6f75 7263 653a 2050 .| source: P │ │ │ │ +000612d0: 726f 6a28 5151 5b78 202c 2078 202c 2078 roj(QQ[x , x , x │ │ │ │ +000612e0: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ +000612f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061320: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00061330: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ 00061340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061360: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ -00061370: 6765 743a 2050 726f 6a28 5151 5b78 202c get: Proj(QQ[x , │ │ │ │ -00061380: 2078 202c 2078 202c 2078 202c 2078 205d x , x , x , x ] │ │ │ │ -00061390: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000613a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000613b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000613c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000613d0: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ +00061350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061360: 0a7c 2020 2020 2074 6172 6765 743a 2050 .| target: P │ │ │ │ +00061370: 726f 6a28 5151 5b78 202c 2078 202c 2078 roj(QQ[x , x , x │ │ │ │ +00061380: 202c 2078 202c 2078 205d 2920 2020 2020 , x , x ]) │ │ │ │ +00061390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000613a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000613b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000613c0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +000613d0: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ 000613e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000613f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061400: 2020 2020 207c 0a7c 2020 2020 2064 6566 |.| def │ │ │ │ -00061410: 696e 696e 6720 666f 726d 733a 207b 2020 ining forms: { │ │ │ │ +000613f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061400: 0a7c 2020 2020 2064 6566 696e 696e 6720 .| defining │ │ │ │ +00061410: 666f 726d 733a 207b 2020 2020 2020 2020 forms: { │ │ │ │ 00061420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061480: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00061490: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -000614a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000614b0: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -000614c0: 3330 3931 3438 3338 3435 3237 3336 3030 3091483845273600 │ │ │ │ -000614d0: 7820 202b 2033 3835 3234 3236 3930 3237 x + 38524269027 │ │ │ │ -000614e0: 3638 3634 3078 2078 2020 2020 2020 2020 68640x x │ │ │ │ -000614f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061470: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +00061480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061490: 3320 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +000614a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000614b0: 2020 2020 2020 2020 2d20 3330 3931 3438 - 309148 │ │ │ │ +000614c0: 3338 3435 3237 3336 3030 7820 202b 2033 3845273600x + 3 │ │ │ │ +000614d0: 3835 3234 3236 3930 3237 3638 3634 3078 852426902768640x │ │ │ │ +000614e0: 2078 2020 2020 2020 2020 2020 2020 207c x | │ │ │ │ +000614f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061520: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -00061530: 2020 2020 2020 3020 3120 2020 2020 2020 0 1 │ │ │ │ -00061540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061510: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00061520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061530: 3020 3120 2020 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +00061540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000615a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000615b0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -000615c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000615d0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -000615e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000615f0: 2020 2020 2020 2020 2020 2020 2020 3334 34 │ │ │ │ -00061600: 3239 3238 3230 3434 3136 3030 3030 7820 29282044160000x │ │ │ │ -00061610: 202d 2031 3235 3931 3238 3336 3638 3736 - 1259128366876 │ │ │ │ -00061620: 3830 3030 7820 7820 202b 2020 2020 2020 8000x x + │ │ │ │ -00061630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000615b0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +000615c0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +000615d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000615e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000615f0: 2020 2020 2020 2020 3334 3239 3238 3230 34292820 │ │ │ │ +00061600: 3434 3136 3030 3030 7820 202d 2031 3235 44160000x - 125 │ │ │ │ +00061610: 3931 3238 3336 3638 3736 3830 3030 7820 91283668768000x │ │ │ │ +00061620: 7820 202b 2020 2020 2020 2020 2020 207c x + | │ │ │ │ +00061630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061650: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00061660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061670: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ -00061680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061650: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00061660: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00061670: 2031 2020 2020 2020 2020 2020 2020 207c 1 | │ │ │ │ +00061680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000616a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000616b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000616c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000616d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000616c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000616d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000616e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000616f0: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -00061700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061710: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00061720: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061730: 2020 2020 2020 2020 2020 2020 2020 3232 22 │ │ │ │ -00061740: 3233 3333 3439 3837 3737 3630 3030 7820 23334987776000x │ │ │ │ -00061750: 202b 2032 3037 3838 3331 3537 3831 3939 + 2078831578199 │ │ │ │ -00061760: 3034 3078 2078 2020 2d20 2020 2020 2020 040x x - │ │ │ │ -00061770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000616f0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +00061700: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00061710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061730: 2020 2020 2020 2020 3232 3233 3333 3439 22233349 │ │ │ │ +00061740: 3837 3737 3630 3030 7820 202b 2032 3037 87776000x + 207 │ │ │ │ +00061750: 3838 3331 3537 3831 3939 3034 3078 2078 8831578199040x x │ │ │ │ +00061760: 2020 2d20 2020 2020 2020 2020 2020 207c - | │ │ │ │ +00061770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061790: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -000617a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000617b0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ -000617c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061790: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +000617a0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000617b0: 3120 2020 2020 2020 2020 2020 2020 207c 1 | │ │ │ │ +000617c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000617d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000617e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000617f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061810: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061800: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061810: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061840: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00061850: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00061860: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061870: 2020 2020 2020 2020 2020 2020 2020 2d20 - │ │ │ │ -00061880: 3337 3537 3931 3035 3032 3532 3830 3030 3757910502528000 │ │ │ │ -00061890: 7820 202b 2031 3439 3237 3436 3730 3233 x + 14927467023 │ │ │ │ -000618a0: 3436 3336 3830 7820 7820 2020 2020 2020 463680x x │ │ │ │ -000618b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061830: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +00061840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061850: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00061860: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061870: 2020 2020 2020 2020 2d20 3337 3537 3931 - 375791 │ │ │ │ +00061880: 3035 3032 3532 3830 3030 7820 202b 2031 0502528000x + 1 │ │ │ │ +00061890: 3439 3237 3436 3730 3233 3436 3336 3830 4927467023463680 │ │ │ │ +000618a0: 7820 7820 2020 2020 2020 2020 2020 207c x x | │ │ │ │ +000618b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000618c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000618e0: 2030 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ -000618f0: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ -00061900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000618d0: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +000618e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000618f0: 2030 2031 2020 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +00061900: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061970: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -00061980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061990: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -000619a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000619b0: 2020 2020 2020 2020 2020 2020 2020 3137 17 │ │ │ │ -000619c0: 3936 3831 3837 3534 3330 3430 3030 7820 96818754304000x │ │ │ │ -000619d0: 202d 2031 3339 3138 3331 3332 3835 3435 - 1391831328545 │ │ │ │ -000619e0: 3238 3030 7820 7820 202b 2020 2020 2020 2800x x + │ │ │ │ -000619f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061970: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +00061980: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00061990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000619a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000619b0: 2020 2020 2020 2020 3137 3936 3831 3837 17968187 │ │ │ │ +000619c0: 3534 3330 3430 3030 7820 202d 2031 3339 54304000x - 139 │ │ │ │ +000619d0: 3138 3331 3332 3835 3435 3238 3030 7820 18313285452800x │ │ │ │ +000619e0: 7820 202b 2020 2020 2020 2020 2020 207c x + | │ │ │ │ +000619f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a10: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00061a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a30: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ -00061a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061a50: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +00061a10: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00061a20: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00061a30: 2031 2020 2020 2020 2020 2020 2020 207c 1 | │ │ │ │ +00061a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061a50: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 00061a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ae0: 2020 2020 207c 0a7c 6f33 203a 2052 6174 |.|o3 : Rat │ │ │ │ -00061af0: 696f 6e61 6c4d 6170 2028 4372 656d 6f6e ionalMap (Cremon │ │ │ │ -00061b00: 6120 7472 616e 7366 6f72 6d61 7469 6f6e a transformation │ │ │ │ -00061b10: 206f 6620 5050 5e34 2920 2020 2020 2020 of PP^4) │ │ │ │ -00061b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061b30: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00061ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061ae0: 0a7c 6f33 203a 2052 6174 696f 6e61 6c4d .|o3 : RationalM │ │ │ │ +00061af0: 6170 2028 4372 656d 6f6e 6120 7472 616e ap (Cremona tran │ │ │ │ +00061b00: 7366 6f72 6d61 7469 6f6e 206f 6620 5050 sformation of PP │ │ │ │ +00061b10: 5e34 2920 2020 2020 2020 2020 2020 2020 ^4) │ │ │ │ +00061b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061b30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00061b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00061b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00061b80: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00061b90: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -00061ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061bb0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00061bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061bd0: 2020 2020 207c 0a7c 2d20 3233 3232 3830 |.|- 232280 │ │ │ │ -00061be0: 3033 3230 3037 3532 3030 7820 7820 202b 0320075200x x + │ │ │ │ -00061bf0: 2036 3032 3037 3732 3037 3437 3535 3230 602077207475520 │ │ │ │ -00061c00: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00061c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061c30: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ -00061c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c50: 2030 2031 2020 2020 2020 2020 2020 2020 0 1 │ │ │ │ -00061c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00061b80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061b90: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ +00061ba0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00061bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061bd0: 0a7c 2d20 3233 3232 3830 3033 3230 3037 .|- 232280032007 │ │ │ │ +00061be0: 3532 3030 7820 7820 202b 2036 3032 3037 5200x x + 60207 │ │ │ │ +00061bf0: 3732 3037 3437 3535 3230 7820 7820 2020 7207475520x x │ │ │ │ +00061c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061c30: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00061c40: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ +00061c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061c70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061cc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061cd0: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -00061ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061cf0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00061d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d10: 2020 2020 207c 0a7c 2031 3734 3334 3731 |.| 1743471 │ │ │ │ -00061d20: 3233 3930 3936 3136 3030 7820 7820 202d 2390961600x x - │ │ │ │ -00061d30: 2038 3336 3137 3433 3531 3537 3338 3230 836174351573820 │ │ │ │ -00061d40: 3078 2078 2020 2020 2020 2020 2020 2020 0x x │ │ │ │ -00061d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061d70: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ -00061d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061d90: 2020 3020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ -00061da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061cd0: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ +00061ce0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00061cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061d10: 0a7c 2031 3734 3334 3731 3233 3930 3936 .| 1743471239096 │ │ │ │ +00061d20: 3136 3030 7820 7820 202d 2038 3336 3137 1600x x - 83617 │ │ │ │ +00061d30: 3433 3531 3537 3338 3230 3078 2078 2020 43515738200x x │ │ │ │ +00061d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061d70: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00061d80: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +00061d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061e10: 2020 2020 2020 2020 2032 2032 2020 2020 2 2 │ │ │ │ -00061e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e30: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00061e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061e50: 2020 2020 207c 0a7c 3133 3135 3039 3332 |.|13150932 │ │ │ │ -00061e60: 3034 3435 3434 3030 7820 7820 202d 2033 04454400x x - 3 │ │ │ │ -00061e70: 3332 3635 3631 3237 3130 3238 3830 7820 32656127102880x │ │ │ │ -00061e80: 7820 202b 2020 2020 2020 2020 2020 2020 x + │ │ │ │ -00061e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ea0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061eb0: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ -00061ec0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00061ed0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00061ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061ef0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061e10: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00061e20: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00061e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061e50: 0a7c 3133 3135 3039 3332 3034 3435 3434 .|13150932044544 │ │ │ │ +00061e60: 3030 7820 7820 202d 2033 3332 3635 3631 00x x - 3326561 │ │ │ │ +00061e70: 3237 3130 3238 3830 7820 7820 202b 2020 27102880x x + │ │ │ │ +00061e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061e90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061ea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061eb0: 2020 2030 2031 2020 2020 2020 2020 2020 0 1 │ │ │ │ +00061ec0: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ +00061ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061ef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00061f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061f50: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ +00061f30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061f50: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ 00061f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00061f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061f90: 2020 2020 207c 0a7c 202d 2031 3732 3235 |.| - 17225 │ │ │ │ -00061fa0: 3030 3834 3938 3031 3432 3430 7820 7820 008498014240x x │ │ │ │ -00061fb0: 202b 2037 3138 3132 3238 3335 3633 3432 + 7181228356342 │ │ │ │ -00061fc0: 3332 3078 2020 2020 2020 2020 2020 2020 320x │ │ │ │ -00061fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00061fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00061ff0: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -00062000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062010: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ -00062020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00061f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061f90: 0a7c 202d 2031 3732 3235 3030 3834 3938 .| - 17225008498 │ │ │ │ +00061fa0: 3031 3432 3430 7820 7820 202b 2037 3138 014240x x + 718 │ │ │ │ +00061fb0: 3132 3238 3335 3633 3432 3332 3078 2020 1228356342320x │ │ │ │ +00061fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00061fd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00061fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00061ff0: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +00062000: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00062010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062020: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062090: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -000620a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000620b0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -000620c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000620d0: 2020 2020 207c 0a7c 2031 3130 3537 3833 |.| 1105783 │ │ │ │ -000620e0: 3731 3333 3036 3732 3030 7820 7820 202d 7133067200x x - │ │ │ │ -000620f0: 2031 3336 3738 3736 3534 3630 3830 3830 136787654608080 │ │ │ │ -00062100: 3078 2078 2020 2020 2020 2020 2020 2020 0x x │ │ │ │ -00062110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062130: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ -00062140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062150: 2020 3020 3120 2020 2020 2020 2020 2020 0 1 │ │ │ │ -00062160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062170: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00062070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062090: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ +000620a0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +000620b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000620c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000620d0: 0a7c 2031 3130 3537 3833 3731 3333 3036 .| 1105783713306 │ │ │ │ +000620e0: 3732 3030 7820 7820 202d 2031 3336 3738 7200x x - 13678 │ │ │ │ +000620f0: 3736 3534 3630 3830 3830 3078 2078 2020 76546080800x x │ │ │ │ +00062100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062130: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00062140: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +00062150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062170: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00062180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000621a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000621b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000621c0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -000621d0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ -000621e0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ -000621f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062200: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00062210: 2020 2020 207c 0a7c 2d20 3332 3337 3738 |.|- 323778 │ │ │ │ -00062220: 3534 3738 3134 3430 7820 202b 2034 3430 54781440x + 440 │ │ │ │ -00062230: 3839 3637 3037 3439 3832 3430 3078 2078 8967074982400x x │ │ │ │ -00062240: 2020 2d20 3732 3834 3438 3133 3037 3034 - 728448130704 │ │ │ │ -00062250: 3637 3230 7820 7820 7820 202b 2020 2020 6720x x x + │ │ │ │ -00062260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062270: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00062280: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00062290: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000622a0: 2020 2020 2030 2031 2032 2020 2020 2020 0 1 2 │ │ │ │ -000622b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000621b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000621c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000621d0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000621e0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +000621f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00062200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062210: 0a7c 2d20 3332 3337 3738 3534 3738 3134 .|- 323778547814 │ │ │ │ +00062220: 3430 7820 202b 2034 3430 3839 3637 3037 40x + 440896707 │ │ │ │ +00062230: 3439 3832 3430 3078 2078 2020 2d20 3732 4982400x x - 72 │ │ │ │ +00062240: 3834 3438 3133 3037 3034 3637 3230 7820 84481307046720x │ │ │ │ +00062250: 7820 7820 202b 2020 2020 2020 2020 207c x x + | │ │ │ │ +00062260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062270: 2020 2031 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00062280: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ +00062290: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000622a0: 2031 2032 2020 2020 2020 2020 2020 207c 1 2 | │ │ │ │ +000622b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000622c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000622d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000622e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000622f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062310: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ -00062320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062330: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00062340: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00062350: 2020 2020 207c 0a7c 202b 2031 3232 3534 |.| + 12254 │ │ │ │ -00062360: 3535 3930 3930 3733 3230 3078 2020 2b20 55909073200x + │ │ │ │ -00062370: 3431 3531 3431 3533 3432 3831 3630 3030 4151415342816000 │ │ │ │ -00062380: 7820 7820 202d 2031 3836 3230 3435 3533 x x - 186204553 │ │ │ │ -00062390: 3937 3938 3735 3230 7820 7820 7820 2020 97987520x x x │ │ │ │ -000623a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000623b0: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -000623c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000623d0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ -000623e0: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ -000623f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000622f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062310: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +00062320: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00062330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062340: 2020 2032 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00062350: 0a7c 202b 2031 3232 3534 3535 3930 3930 .| + 12254559090 │ │ │ │ +00062360: 3733 3230 3078 2020 2b20 3431 3531 3431 73200x + 415141 │ │ │ │ +00062370: 3533 3432 3831 3630 3030 7820 7820 202d 5342816000x x - │ │ │ │ +00062380: 2031 3836 3230 3435 3533 3937 3938 3735 186204553979875 │ │ │ │ +00062390: 3230 7820 7820 7820 2020 2020 2020 207c 20x x x | │ │ │ │ +000623a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000623b0: 2020 2020 2020 3120 2020 2020 2020 2020 1 │ │ │ │ +000623c0: 2020 2020 2020 2020 2020 2030 2032 2020 0 2 │ │ │ │ +000623d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000623e0: 2020 2030 2031 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +000623f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062450: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -00062460: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00062470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062480: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00062490: 2020 2020 207c 0a7c 3136 3633 3930 3831 |.|16639081 │ │ │ │ -000624a0: 3738 3136 3136 3078 2020 2d20 3636 3532 7816160x - 6652 │ │ │ │ -000624b0: 3739 3032 3331 3237 3034 3030 7820 7820 790231270400x x │ │ │ │ -000624c0: 202b 2031 3331 3536 3837 3733 3831 3331 + 1315687738131 │ │ │ │ -000624d0: 3634 3830 7820 7820 7820 202d 2020 2020 6480x x x - │ │ │ │ -000624e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000624f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00062500: 2020 2020 2020 2020 2020 2020 2030 2032 0 2 │ │ │ │ -00062510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062520: 2020 2020 2030 2031 2032 2020 2020 2020 0 1 2 │ │ │ │ -00062530: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062450: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00062460: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00062470: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00062480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062490: 0a7c 3136 3633 3930 3831 3738 3136 3136 .|16639081781616 │ │ │ │ +000624a0: 3078 2020 2d20 3636 3532 3739 3032 3331 0x - 6652790231 │ │ │ │ +000624b0: 3237 3034 3030 7820 7820 202b 2031 3331 270400x x + 131 │ │ │ │ +000624c0: 3536 3837 3733 3831 3331 3634 3830 7820 56877381316480x │ │ │ │ +000624d0: 7820 7820 202d 2020 2020 2020 2020 207c x x - | │ │ │ │ +000624e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000624f0: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +00062500: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +00062510: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00062520: 2031 2032 2020 2020 2020 2020 2020 207c 1 2 | │ │ │ │ +00062530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062580: 2020 2020 207c 0a7c 2033 2020 2020 2020 |.| 3 │ │ │ │ -00062590: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -000625a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000625b0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000625c0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000625d0: 2020 2020 207c 0a7c 7820 202d 2039 3634 |.|x - 964 │ │ │ │ -000625e0: 3037 3530 3133 3531 3631 3630 7820 202d 075013516160x - │ │ │ │ -000625f0: 2033 3136 3732 3134 3531 3435 3331 3230 316721451453120 │ │ │ │ -00062600: 3078 2078 2020 2b20 3836 3936 3437 3334 0x x + 86964734 │ │ │ │ -00062610: 3733 3039 3436 3830 7820 7820 7820 2020 73094680x x x │ │ │ │ -00062620: 2020 2020 207c 0a7c 2031 2020 2020 2020 |.| 1 │ │ │ │ -00062630: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ -00062640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062650: 2020 3020 3220 2020 2020 2020 2020 2020 0 2 │ │ │ │ -00062660: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ -00062670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062580: 0a7c 2033 2020 2020 2020 2020 2020 2020 .| 3 │ │ │ │ +00062590: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +000625a0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +000625b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000625c0: 2020 2032 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +000625d0: 0a7c 7820 202d 2039 3634 3037 3530 3133 .|x - 964075013 │ │ │ │ +000625e0: 3531 3631 3630 7820 202d 2033 3136 3732 516160x - 31672 │ │ │ │ +000625f0: 3134 3531 3435 3331 3230 3078 2078 2020 14514531200x x │ │ │ │ +00062600: 2b20 3836 3936 3437 3334 3733 3039 3436 + 86964734730946 │ │ │ │ +00062610: 3830 7820 7820 7820 2020 2020 2020 207c 80x x x | │ │ │ │ +00062620: 0a7c 2031 2020 2020 2020 2020 2020 2020 .| 1 │ │ │ │ +00062630: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +00062640: 2020 2020 2020 2020 2020 2020 3020 3220 0 2 │ │ │ │ +00062650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062660: 2020 2030 2031 2020 2020 2020 2020 207c 0 1 | │ │ │ │ +00062670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000626a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000626b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000626c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000626d0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -000626e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000626f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00062700: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00062710: 2020 2020 207c 0a7c 202d 2034 3231 3338 |.| - 42138 │ │ │ │ -00062720: 3432 3836 3833 3638 3030 7820 202b 2032 4286836800x + 2 │ │ │ │ -00062730: 3334 3531 3837 3534 3139 3339 3230 3078 345187541939200x │ │ │ │ -00062740: 2078 2020 2b20 3139 3234 3836 3330 3639 x + 1924863069 │ │ │ │ -00062750: 3135 3030 3030 7820 7820 7820 2020 2020 150000x x x │ │ │ │ -00062760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062770: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00062780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062790: 3020 3220 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ -000627a0: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ -000627b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000626b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000626c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000626d0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ +000626e0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +000626f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062700: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00062710: 0a7c 202d 2034 3231 3338 3432 3836 3833 .| - 42138428683 │ │ │ │ +00062720: 3638 3030 7820 202b 2032 3334 3531 3837 6800x + 2345187 │ │ │ │ +00062730: 3534 3139 3339 3230 3078 2078 2020 2b20 541939200x x + │ │ │ │ +00062740: 3139 3234 3836 3330 3639 3135 3030 3030 1924863069150000 │ │ │ │ +00062750: 7820 7820 7820 2020 2020 2020 2020 207c x x x | │ │ │ │ +00062760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062770: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00062780: 2020 2020 2020 2020 2020 3020 3220 2020 0 2 │ │ │ │ +00062790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000627a0: 2030 2031 2032 2020 2020 2020 2020 207c 0 1 2 | │ │ │ │ +000627b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000627c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000627d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000627e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000627f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062800: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00062810: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00062820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062830: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00062840: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ -00062850: 2020 2020 207c 0a7c 3337 3330 3131 3035 |.|37301105 │ │ │ │ -00062860: 3534 3938 3332 3630 7820 7820 7820 202d 54983260x x x - │ │ │ │ -00062870: 2034 3535 3830 3939 3631 3335 3038 3030 455809961350800 │ │ │ │ -00062880: 7820 7820 202b 2031 3135 3533 3931 3639 x x + 115539169 │ │ │ │ -00062890: 3734 3636 3732 3078 2078 2020 2d20 2020 7466720x x - │ │ │ │ -000628a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000628b0: 2020 2020 2020 2020 2030 2031 2032 2020 0 1 2 │ │ │ │ -000628c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000628d0: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ -000628e0: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ -000628f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000627f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00062800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062810: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00062820: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00062830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062840: 2020 3220 3220 2020 2020 2020 2020 207c 2 2 | │ │ │ │ +00062850: 0a7c 3337 3330 3131 3035 3534 3938 3332 .|37301105549832 │ │ │ │ +00062860: 3630 7820 7820 7820 202d 2034 3535 3830 60x x x - 45580 │ │ │ │ +00062870: 3939 3631 3335 3038 3030 7820 7820 202b 9961350800x x + │ │ │ │ +00062880: 2031 3135 3533 3931 3639 3734 3636 3732 115539169746672 │ │ │ │ +00062890: 3078 2078 2020 2d20 2020 2020 2020 207c 0x x - | │ │ │ │ +000628a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000628b0: 2020 2030 2031 2032 2020 2020 2020 2020 0 1 2 │ │ │ │ +000628c0: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +000628d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000628e0: 2020 3020 3220 2020 2020 2020 2020 207c 0 2 | │ │ │ │ +000628f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062960: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062970: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00062980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062990: 2020 2020 207c 0a7c 2020 2b20 3135 3838 |.| + 1588 │ │ │ │ -000629a0: 3733 3638 3336 3734 3336 3330 3078 2078 7368367436300x x │ │ │ │ -000629b0: 2078 2020 2d20 3336 3936 3237 3233 3634 x - 3696272364 │ │ │ │ -000629c0: 3838 3434 3030 7820 7820 202b 2032 3336 884400x x + 236 │ │ │ │ -000629d0: 3039 3539 3231 3939 3336 3830 3078 2020 0959219936800x │ │ │ │ -000629e0: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ -000629f0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00062a00: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00062a10: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00062a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062950: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00062960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062970: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00062980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062990: 0a7c 2020 2b20 3135 3838 3733 3638 3336 .| + 1588736836 │ │ │ │ +000629a0: 3734 3336 3330 3078 2078 2078 2020 2d20 7436300x x x - │ │ │ │ +000629b0: 3336 3936 3237 3233 3634 3838 3434 3030 3696272364884400 │ │ │ │ +000629c0: 7820 7820 202b 2032 3336 3039 3539 3231 x x + 236095921 │ │ │ │ +000629d0: 3939 3336 3830 3078 2020 2020 2020 207c 9936800x | │ │ │ │ +000629e0: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +000629f0: 2020 2020 2020 2020 3020 3120 3220 2020 0 1 2 │ │ │ │ +00062a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062a10: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00062a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062a90: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00062aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062ab0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00062ac0: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ -00062ad0: 2020 2020 207c 0a7c 3638 3934 3635 3036 |.|68946506 │ │ │ │ -00062ae0: 3734 3632 3639 3630 7820 7820 7820 202b 74626960x x x + │ │ │ │ -00062af0: 2035 3539 3037 3033 3530 3139 3139 3930 559070350191990 │ │ │ │ -00062b00: 7820 7820 202d 2035 3131 3935 3433 3531 x x - 511954351 │ │ │ │ -00062b10: 3036 3233 3336 3078 2078 2020 2b20 2020 0623360x x + │ │ │ │ -00062b20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062b30: 2020 2020 2020 2020 2030 2031 2032 2020 0 1 2 │ │ │ │ -00062b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062b50: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00062b60: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ -00062b70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062a90: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00062aa0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00062ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062ac0: 2020 3220 3220 2020 2020 2020 2020 207c 2 2 | │ │ │ │ +00062ad0: 0a7c 3638 3934 3635 3036 3734 3632 3639 .|68946506746269 │ │ │ │ +00062ae0: 3630 7820 7820 7820 202b 2035 3539 3037 60x x x + 55907 │ │ │ │ +00062af0: 3033 3530 3139 3139 3930 7820 7820 202d 0350191990x x - │ │ │ │ +00062b00: 2035 3131 3935 3433 3531 3036 3233 3336 511954351062336 │ │ │ │ +00062b10: 3078 2078 2020 2b20 2020 2020 2020 207c 0x x + | │ │ │ │ +00062b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062b30: 2020 2030 2031 2032 2020 2020 2020 2020 0 1 2 │ │ │ │ +00062b40: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +00062b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062b60: 2020 3020 3220 2020 2020 2020 2020 207c 0 2 | │ │ │ │ +00062b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062bc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062bd0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00062bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062bd0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00062be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062bf0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -00062c00: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00062c10: 2020 2020 207c 0a7c 2020 2d20 3638 3731 |.| - 6871 │ │ │ │ -00062c20: 3639 3832 3036 3333 3738 3935 7820 7820 698206337895x x │ │ │ │ -00062c30: 7820 202b 2031 3837 3839 3730 3837 3434 x + 18789708744 │ │ │ │ -00062c40: 3437 3532 3078 2078 2020 2b20 3932 3932 47520x x + 9292 │ │ │ │ -00062c50: 3433 3535 3531 3633 3030 3078 2078 2020 43555163000x x │ │ │ │ -00062c60: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ -00062c70: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -00062c80: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062c90: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ -00062ca0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00062cb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062bf0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00062c00: 2020 2020 2020 3220 2020 2020 2020 207c 2 | │ │ │ │ +00062c10: 0a7c 2020 2d20 3638 3731 3639 3832 3036 .| - 6871698206 │ │ │ │ +00062c20: 3333 3738 3935 7820 7820 7820 202b 2031 337895x x x + 1 │ │ │ │ +00062c30: 3837 3839 3730 3837 3434 3437 3532 3078 878970874447520x │ │ │ │ +00062c40: 2078 2020 2b20 3932 3932 3433 3535 3531 x + 9292435551 │ │ │ │ +00062c50: 3633 3030 3078 2078 2020 2020 2020 207c 63000x x | │ │ │ │ +00062c60: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +00062c70: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ +00062c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062c90: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00062ca0: 2020 2020 2020 3020 2020 2020 2020 207c 0 | │ │ │ │ +00062cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062d10: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00062d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062d30: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00062d40: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -00062d50: 2020 2020 207c 0a7c 2d20 3730 3930 3338 |.|- 709038 │ │ │ │ -00062d60: 3632 3630 3832 3639 3630 7820 7820 7820 6260826960x x x │ │ │ │ -00062d70: 202b 2032 3232 3233 3632 3933 3137 3438 + 2222362931748 │ │ │ │ -00062d80: 3132 3078 2078 2020 2b20 3333 3333 3533 120x x + 333353 │ │ │ │ -00062d90: 3631 3831 3338 3532 3030 7820 7820 2020 6181385200x x │ │ │ │ -00062da0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062db0: 2020 2020 2020 2020 2020 2030 2031 2032 0 1 2 │ │ │ │ -00062dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062dd0: 2020 2020 3120 3220 2020 2020 2020 2020 1 2 │ │ │ │ -00062de0: 2020 2020 2020 2020 2020 2030 2032 2020 0 2 │ │ │ │ -00062df0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00062cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062d00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062d10: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00062d20: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00062d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062d40: 2020 2020 2032 2032 2020 2020 2020 207c 2 2 | │ │ │ │ +00062d50: 0a7c 2d20 3730 3930 3338 3632 3630 3832 .|- 709038626082 │ │ │ │ +00062d60: 3639 3630 7820 7820 7820 202b 2032 3232 6960x x x + 222 │ │ │ │ +00062d70: 3233 3632 3933 3137 3438 3132 3078 2078 2362931748120x x │ │ │ │ +00062d80: 2020 2b20 3333 3333 3533 3631 3831 3338 + 333353618138 │ │ │ │ +00062d90: 3532 3030 7820 7820 2020 2020 2020 207c 5200x x | │ │ │ │ +00062da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062db0: 2020 2020 2030 2031 2032 2020 2020 2020 0 1 2 │ │ │ │ +00062dc0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00062dd0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00062de0: 2020 2020 2030 2032 2020 2020 2020 207c 0 2 | │ │ │ │ +00062df0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00062e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00062e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00062e40: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00062e50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00062e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062e70: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00062e80: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -00062e90: 2020 2020 207c 0a7c 3134 3637 3033 3230 |.|14670320 │ │ │ │ -00062ea0: 3735 3632 3635 3732 7820 7820 7820 202b 75626572x x x + │ │ │ │ -00062eb0: 2034 3339 3233 3739 3533 3932 3938 3830 439237953929880 │ │ │ │ -00062ec0: 7820 7820 202d 2031 3339 3931 3433 3135 x x - 139914315 │ │ │ │ -00062ed0: 3831 3438 3936 3078 2078 2020 2b20 2020 8148960x x + │ │ │ │ -00062ee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00062ef0: 2020 2020 2020 2020 2030 2031 2032 2020 0 1 2 │ │ │ │ -00062f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062f10: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00062f20: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ -00062f30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00062e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062e50: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00062e60: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ +00062e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062e80: 2020 2020 3320 2020 2020 2020 2020 207c 3 | │ │ │ │ +00062e90: 0a7c 3134 3637 3033 3230 3735 3632 3635 .|14670320756265 │ │ │ │ +00062ea0: 3732 7820 7820 7820 202b 2034 3339 3233 72x x x + 43923 │ │ │ │ +00062eb0: 3739 3533 3932 3938 3830 7820 7820 202d 7953929880x x - │ │ │ │ +00062ec0: 2031 3339 3931 3433 3135 3831 3438 3936 139914315814896 │ │ │ │ +00062ed0: 3078 2078 2020 2b20 2020 2020 2020 207c 0x x + | │ │ │ │ +00062ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00062ef0: 2020 2030 2031 2032 2020 2020 2020 2020 0 1 2 │ │ │ │ +00062f00: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +00062f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062f20: 2020 3020 3220 2020 2020 2020 2020 207c 0 2 | │ │ │ │ +00062f30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00062f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00062f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062f80: 2020 2020 207c 0a7c 3220 3220 2020 2020 |.|2 2 │ │ │ │ -00062f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fa0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00062fb0: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -00062fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00062fd0: 2020 2020 207c 0a7c 2078 2020 2d20 3231 |.| x - 21 │ │ │ │ -00062fe0: 3238 3537 3239 3834 3935 3339 3430 7820 28572984953940x │ │ │ │ -00062ff0: 7820 7820 202d 2038 3035 3438 3236 3832 x x - 805482682 │ │ │ │ -00063000: 3732 3136 3430 7820 7820 202b 2033 3631 721640x x + 361 │ │ │ │ -00063010: 3631 3437 3937 3331 3838 3830 7820 2020 614797318880x │ │ │ │ -00063020: 2020 2020 207c 0a7c 3020 3220 2020 2020 |.|0 2 │ │ │ │ -00063030: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00063040: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ -00063050: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ -00063060: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -00063070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00062f70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062f80: 0a7c 3220 3220 2020 2020 2020 2020 2020 .|2 2 │ │ │ │ +00062f90: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00062fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00062fb0: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00062fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00062fd0: 0a7c 2078 2020 2d20 3231 3238 3537 3239 .| x - 21285729 │ │ │ │ +00062fe0: 3834 3935 3339 3430 7820 7820 7820 202d 84953940x x x - │ │ │ │ +00062ff0: 2038 3035 3438 3236 3832 3732 3136 3430 805482682721640 │ │ │ │ +00063000: 7820 7820 202b 2033 3631 3631 3437 3937 x x + 361614797 │ │ │ │ +00063010: 3331 3838 3830 7820 2020 2020 2020 207c 318880x | │ │ │ │ +00063020: 0a7c 3020 3220 2020 2020 2020 2020 2020 .|0 2 │ │ │ │ +00063030: 2020 2020 2020 2020 2030 2031 2032 2020 0 1 2 │ │ │ │ +00063040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063050: 2031 2032 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00063060: 2020 2020 2020 2030 2020 2020 2020 207c 0 | │ │ │ │ +00063070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000630a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000630b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000630c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000630d0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000630e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000630f0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00063100: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -00063110: 2020 2020 207c 0a7c 3934 3031 3437 3839 |.|94014789 │ │ │ │ -00063120: 3836 3531 3734 3038 7820 7820 7820 202d 86517408x x x - │ │ │ │ -00063130: 2033 3739 3336 3239 3638 3332 3030 3134 379362968320014 │ │ │ │ -00063140: 3078 2078 2020 2d20 3839 3532 3138 3831 0x x - 89521881 │ │ │ │ -00063150: 3930 3237 3132 3078 2078 2020 2b20 2020 9027120x x + │ │ │ │ -00063160: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063170: 2020 2020 2020 2020 2030 2031 2032 2020 0 1 2 │ │ │ │ -00063180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063190: 2020 3120 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ -000631a0: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ -000631b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000630b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000630c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000630d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000630e0: 2020 2020 2020 2020 2020 2020 3220 3220 2 2 │ │ │ │ +000630f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063100: 2020 2020 3320 2020 2020 2020 2020 207c 3 | │ │ │ │ +00063110: 0a7c 3934 3031 3437 3839 3836 3531 3734 .|94014789865174 │ │ │ │ +00063120: 3038 7820 7820 7820 202d 2033 3739 3336 08x x x - 37936 │ │ │ │ +00063130: 3239 3638 3332 3030 3134 3078 2078 2020 29683200140x x │ │ │ │ +00063140: 2d20 3839 3532 3138 3831 3930 3237 3132 - 89521881902712 │ │ │ │ +00063150: 3078 2078 2020 2b20 2020 2020 2020 207c 0x x + | │ │ │ │ +00063160: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063170: 2020 2030 2031 2032 2020 2020 2020 2020 0 1 2 │ │ │ │ +00063180: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ +00063190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000631a0: 2020 3020 3220 2020 2020 2020 2020 207c 0 2 | │ │ │ │ +000631b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000631c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000631d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000631e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000631f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063200: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ -00063210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063220: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063230: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ -00063240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063250: 2020 2020 207c 0a7c 2020 2d20 3438 3832 |.| - 4882 │ │ │ │ -00063260: 3438 3033 3330 3337 3236 3539 7820 7820 480330372659x x │ │ │ │ -00063270: 7820 202b 2032 3830 3330 3830 3431 3237 x + 28030804127 │ │ │ │ -00063280: 3436 3039 3678 2078 2020 2b20 3932 3738 46096x x + 9278 │ │ │ │ -00063290: 3234 3036 3430 3130 3230 3078 2078 2020 24064010200x x │ │ │ │ -000632a0: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ -000632b0: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -000632c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000632d0: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ -000632e0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -000632f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000631f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063200: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +00063210: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00063220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063230: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00063240: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063250: 0a7c 2020 2d20 3438 3832 3438 3033 3330 .| - 4882480330 │ │ │ │ +00063260: 3337 3236 3539 7820 7820 7820 202b 2032 372659x x x + 2 │ │ │ │ +00063270: 3830 3330 3830 3431 3237 3436 3039 3678 803080412746096x │ │ │ │ +00063280: 2078 2020 2b20 3932 3738 3234 3036 3430 x + 9278240640 │ │ │ │ +00063290: 3130 3230 3078 2078 2020 2020 2020 207c 10200x x | │ │ │ │ +000632a0: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +000632b0: 2020 2020 2020 2030 2031 2032 2020 2020 0 1 2 │ │ │ │ +000632c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000632d0: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +000632e0: 2020 2020 2020 3020 2020 2020 2020 207c 0 | │ │ │ │ +000632f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063360: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063370: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ -00063380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063390: 2020 2020 207c 0a7c 202d 2035 3736 3936 |.| - 57696 │ │ │ │ -000633a0: 3937 3938 3632 3137 3230 3078 2078 2078 97986217200x x x │ │ │ │ -000633b0: 2020 2b20 3438 3536 3430 3838 3231 3138 + 485640882118 │ │ │ │ -000633c0: 3232 3430 7820 7820 202b 2031 3433 3739 2240x x + 14379 │ │ │ │ -000633d0: 3138 3336 3033 3033 3630 3078 2078 2020 18360303600x x │ │ │ │ -000633e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000633f0: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -00063400: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063410: 2020 2020 2031 2032 2020 2020 2020 2020 1 2 │ │ │ │ -00063420: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -00063430: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00063330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063350: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00063360: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00063370: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063380: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063390: 0a7c 202d 2035 3736 3936 3937 3938 3632 .| - 57696979862 │ │ │ │ +000633a0: 3137 3230 3078 2078 2078 2020 2b20 3438 17200x x x + 48 │ │ │ │ +000633b0: 3536 3430 3838 3231 3138 3232 3430 7820 56408821182240x │ │ │ │ +000633c0: 7820 202b 2031 3433 3739 3138 3336 3033 x + 14379183603 │ │ │ │ +000633d0: 3033 3630 3078 2078 2020 2020 2020 207c 03600x x | │ │ │ │ +000633e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000633f0: 2020 2020 2020 3020 3120 3220 2020 2020 0 1 2 │ │ │ │ +00063400: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00063410: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063420: 2020 2020 2020 3020 2020 2020 2020 207c 0 | │ │ │ │ +00063430: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00063440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063480: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00063490: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -000634a0: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ -000634b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000634c0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000634d0: 2020 2020 207c 0a7c 3135 3336 3535 3930 |.|15365590 │ │ │ │ -000634e0: 3434 3732 3834 3078 2078 2020 2d20 3536 4472840x x - 56 │ │ │ │ -000634f0: 3936 3431 3536 3133 3732 3830 7820 202d 964156137280x - │ │ │ │ -00063500: 2034 3132 3332 3833 3539 3435 3732 3830 412328359457280 │ │ │ │ -00063510: 7820 7820 202b 2032 3637 3639 3530 3635 x x + 267695065 │ │ │ │ -00063520: 3330 3433 357c 0a7c 2020 2020 2020 2020 30435|.| │ │ │ │ -00063530: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00063540: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00063550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063560: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00063570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00063480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063490: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +000634a0: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +000634b0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +000634c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000634d0: 0a7c 3135 3336 3535 3930 3434 3732 3834 .|15365590447284 │ │ │ │ +000634e0: 3078 2078 2020 2d20 3536 3936 3431 3536 0x x - 56964156 │ │ │ │ +000634f0: 3133 3732 3830 7820 202d 2034 3132 3332 137280x - 41232 │ │ │ │ +00063500: 3833 3539 3435 3732 3830 7820 7820 202b 8359457280x x + │ │ │ │ +00063510: 2032 3637 3639 3530 3635 3330 3433 357c 26769506530435| │ │ │ │ +00063520: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063530: 2020 3120 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00063540: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00063550: 2020 2020 2020 2020 2020 2030 2033 2020 0 3 │ │ │ │ +00063560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000635a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000635b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000635c0: 2020 2020 207c 0a7c 2033 2020 2020 2020 |.| 3 │ │ │ │ -000635d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000635e0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000635f0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ -00063600: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -00063610: 2020 2020 207c 0a7c 7820 202b 2032 3933 |.|x + 293 │ │ │ │ -00063620: 3037 3830 3230 3238 3534 3631 3678 2078 0780202854616x x │ │ │ │ -00063630: 2020 2d20 3133 3735 3835 3130 3330 3432 - 137585103042 │ │ │ │ -00063640: 3234 3078 2020 2d20 3131 3832 3534 3234 240x - 11825424 │ │ │ │ -00063650: 3435 3530 3430 3030 7820 7820 202b 2033 45504000x x + 3 │ │ │ │ -00063660: 3032 3230 357c 0a7c 2032 2020 2020 2020 02205|.| 2 │ │ │ │ -00063670: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00063680: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063690: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000636a0: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ -000636b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000635b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000635c0: 0a7c 2033 2020 2020 2020 2020 2020 2020 .| 3 │ │ │ │ +000635d0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +000635e0: 2020 2020 2020 2020 2020 2020 2020 3420 4 │ │ │ │ +000635f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063600: 2020 2033 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00063610: 0a7c 7820 202b 2032 3933 3037 3830 3230 .|x + 293078020 │ │ │ │ +00063620: 3238 3534 3631 3678 2078 2020 2d20 3133 2854616x x - 13 │ │ │ │ +00063630: 3735 3835 3130 3330 3432 3234 3078 2020 7585103042240x │ │ │ │ +00063640: 2d20 3131 3832 3534 3234 3435 3530 3430 - 11825424455040 │ │ │ │ +00063650: 3030 7820 7820 202b 2033 3032 3230 357c 00x x + 302205| │ │ │ │ +00063660: 0a7c 2032 2020 2020 2020 2020 2020 2020 .| 2 │ │ │ │ +00063670: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ +00063680: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00063690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000636a0: 2020 2030 2033 2020 2020 2020 2020 207c 0 3 | │ │ │ │ +000636b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000636c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000636d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000636e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000636f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063710: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00063720: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ -00063730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063740: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00063750: 2020 2020 207c 0a7c 3332 3733 3530 3033 |.|32735003 │ │ │ │ -00063760: 3933 3136 3836 3730 7820 7820 202d 2031 93168670x x - 1 │ │ │ │ -00063770: 3635 3633 3831 3637 3435 3536 3030 7820 65638167455600x │ │ │ │ -00063780: 202b 2036 3131 3535 3734 3036 3230 3830 + 6115574062080 │ │ │ │ -00063790: 3078 2078 2020 2d20 3138 3530 3639 3136 0x x - 18506916 │ │ │ │ -000637a0: 3731 3536 337c 0a7c 2020 2020 2020 2020 71563|.| │ │ │ │ -000637b0: 2020 2020 2020 2020 2031 2032 2020 2020 1 2 │ │ │ │ -000637c0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000637d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000637e0: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ -000637f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000636f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063700: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00063710: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00063720: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +00063730: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +00063740: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063750: 0a7c 3332 3733 3530 3033 3933 3136 3836 .|32735003931686 │ │ │ │ +00063760: 3730 7820 7820 202d 2031 3635 3633 3831 70x x - 1656381 │ │ │ │ +00063770: 3637 3435 3536 3030 7820 202b 2036 3131 67455600x + 611 │ │ │ │ +00063780: 3535 3734 3036 3230 3830 3078 2078 2020 55740620800x x │ │ │ │ +00063790: 2d20 3138 3530 3639 3136 3731 3536 337c - 1850691671563| │ │ │ │ +000637a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000637b0: 2020 2031 2032 2020 2020 2020 2020 2020 1 2 │ │ │ │ +000637c0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000637d0: 2020 2020 2020 2020 2020 2020 3020 3320 0 3 │ │ │ │ +000637e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000637f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063840: 2020 2020 207c 0a7c 3320 2020 2020 2020 |.|3 │ │ │ │ -00063850: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00063860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063870: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00063880: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00063890: 2020 2020 207c 0a7c 2020 2d20 3233 3832 |.| - 2382 │ │ │ │ -000638a0: 3230 3137 3637 3337 3036 3030 7820 7820 201767370600x x │ │ │ │ -000638b0: 202b 2031 3333 3133 3433 3038 3335 3438 + 1331343083548 │ │ │ │ -000638c0: 3830 7820 202d 2031 3530 3239 3532 3530 80x - 150295250 │ │ │ │ -000638d0: 3638 3939 3230 3078 2078 2020 2d20 3237 6899200x x - 27 │ │ │ │ -000638e0: 3437 3032 337c 0a7c 3220 2020 2020 2020 47023|.|2 │ │ │ │ -000638f0: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00063900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063910: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063920: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ -00063930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063840: 0a7c 3320 2020 2020 2020 2020 2020 2020 .|3 │ │ │ │ +00063850: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +00063860: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ +00063870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063880: 2020 3320 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00063890: 0a7c 2020 2d20 3233 3832 3230 3137 3637 .| - 2382201767 │ │ │ │ +000638a0: 3337 3036 3030 7820 7820 202b 2031 3333 370600x x + 133 │ │ │ │ +000638b0: 3133 3433 3038 3335 3438 3830 7820 202d 134308354880x - │ │ │ │ +000638c0: 2031 3530 3239 3532 3530 3638 3939 3230 150295250689920 │ │ │ │ +000638d0: 3078 2078 2020 2d20 3237 3437 3032 337c 0x x - 2747023| │ │ │ │ +000638e0: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +000638f0: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ +00063900: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00063910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063920: 2020 3020 3320 2020 2020 2020 2020 207c 0 3 | │ │ │ │ +00063930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063980: 2020 2020 207c 0a7c 3320 2020 2020 2020 |.|3 │ │ │ │ -00063990: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -000639a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000639b0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000639c0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -000639d0: 2020 2020 207c 0a7c 2020 2d20 3535 3832 |.| - 5582 │ │ │ │ -000639e0: 3933 3737 3031 3135 3637 3630 7820 7820 937701156760x x │ │ │ │ -000639f0: 202b 2033 3032 3631 3834 3134 3930 3136 + 3026184149016 │ │ │ │ -00063a00: 3030 7820 202b 2036 3730 3338 3431 3830 00x + 670384180 │ │ │ │ -00063a10: 3831 3135 3230 3078 2078 2020 2b20 3837 8115200x x + 87 │ │ │ │ -00063a20: 3138 3737 357c 0a7c 3220 2020 2020 2020 18775|.|2 │ │ │ │ -00063a30: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00063a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063a50: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063a60: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ -00063a70: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00063970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063980: 0a7c 3320 2020 2020 2020 2020 2020 2020 .|3 │ │ │ │ +00063990: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +000639a0: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ +000639b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000639c0: 2020 3320 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +000639d0: 0a7c 2020 2d20 3535 3832 3933 3737 3031 .| - 5582937701 │ │ │ │ +000639e0: 3135 3637 3630 7820 7820 202b 2033 3032 156760x x + 302 │ │ │ │ +000639f0: 3631 3834 3134 3930 3136 3030 7820 202b 618414901600x + │ │ │ │ +00063a00: 2036 3730 3338 3431 3830 3831 3135 3230 670384180811520 │ │ │ │ +00063a10: 3078 2078 2020 2b20 3837 3138 3737 357c 0x x + 8718775| │ │ │ │ +00063a20: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +00063a30: 2020 2020 2020 2031 2032 2020 2020 2020 1 2 │ │ │ │ +00063a40: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00063a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063a60: 2020 3020 3320 2020 2020 2020 2020 207c 0 3 | │ │ │ │ +00063a70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00063a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00063aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00063ac0: 2d2d 2d2d 2d7c 0a7c 2020 2032 2020 2020 -----|.| 2 │ │ │ │ +00063ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00063ac0: 0a7c 2020 2032 2020 2020 2020 2020 2020 .| 2 │ │ │ │ 00063ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063ae0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00063af0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00063b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b10: 2020 2020 207c 0a7c 3230 7820 7820 7820 |.|20x x x │ │ │ │ -00063b20: 202b 2031 3837 3739 3837 3332 3438 3438 + 1877987324848 │ │ │ │ -00063b30: 3332 3078 2078 2078 2020 2d20 3133 3338 320x x x - 1338 │ │ │ │ -00063b40: 3536 3836 3332 3733 3732 3830 7820 7820 568632737280x x │ │ │ │ -00063b50: 202d 2031 3533 3831 3031 3139 3239 3735 - 1538101192975 │ │ │ │ -00063b60: 3230 3030 787c 0a7c 2020 2030 2031 2033 2000x|.| 0 1 3 │ │ │ │ -00063b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063b80: 2020 2020 3020 3120 3320 2020 2020 2020 0 1 3 │ │ │ │ -00063b90: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ -00063ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063bb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063ae0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063af0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00063b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063b10: 0a7c 3230 7820 7820 7820 202b 2031 3837 .|20x x x + 187 │ │ │ │ +00063b20: 3739 3837 3332 3438 3438 3332 3078 2078 7987324848320x x │ │ │ │ +00063b30: 2078 2020 2d20 3133 3338 3536 3836 3332 x - 1338568632 │ │ │ │ +00063b40: 3733 3732 3830 7820 7820 202d 2031 3533 737280x x - 153 │ │ │ │ +00063b50: 3831 3031 3139 3239 3735 3230 3030 787c 81011929752000x| │ │ │ │ +00063b60: 0a7c 2020 2030 2031 2033 2020 2020 2020 .| 0 1 3 │ │ │ │ +00063b70: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00063b80: 3120 3320 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ +00063b90: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ +00063ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063bb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063c10: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00063c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063c30: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063c40: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00063c50: 2020 2020 207c 0a7c 3830 3133 3133 3738 |.|80131378 │ │ │ │ -00063c60: 3536 3078 2078 2078 2020 2d20 3432 3535 560x x x - 4255 │ │ │ │ -00063c70: 3031 3734 3431 3237 3539 3136 3078 2078 0174412759160x x │ │ │ │ -00063c80: 2078 2020 2b20 3132 3535 3230 3635 3731 x + 1255206571 │ │ │ │ -00063c90: 3434 3632 3430 3078 2078 2020 2b20 3130 4462400x x + 10 │ │ │ │ -00063ca0: 3834 3530 347c 0a7c 2020 2020 2020 2020 84504|.| │ │ │ │ -00063cb0: 2020 2020 3020 3120 3320 2020 2020 2020 0 1 3 │ │ │ │ -00063cc0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00063cd0: 3120 3320 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ -00063ce0: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ -00063cf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063bf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063c00: 0a7c 2020 2020 2020 2020 2020 2020 3220 .| 2 │ │ │ │ +00063c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063c20: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00063c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063c40: 2020 3320 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00063c50: 0a7c 3830 3133 3133 3738 3536 3078 2078 .|80131378560x x │ │ │ │ +00063c60: 2078 2020 2d20 3432 3535 3031 3734 3431 x - 4255017441 │ │ │ │ +00063c70: 3237 3539 3136 3078 2078 2078 2020 2b20 2759160x x x + │ │ │ │ +00063c80: 3132 3535 3230 3635 3731 3434 3632 3430 1255206571446240 │ │ │ │ +00063c90: 3078 2078 2020 2b20 3130 3834 3530 347c 0x x + 1084504| │ │ │ │ +00063ca0: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ +00063cb0: 3120 3320 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ +00063cc0: 2020 2020 2020 2020 3020 3120 3320 2020 0 1 3 │ │ │ │ +00063cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063ce0: 2020 3120 3320 2020 2020 2020 2020 207c 1 3 | │ │ │ │ +00063cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d40: 2020 2020 207c 0a7c 2020 2020 2032 2020 |.| 2 │ │ │ │ +00063d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063d40: 0a7c 2020 2020 2032 2020 2020 2020 2020 .| 2 │ │ │ │ 00063d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00063d70: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00063d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063d90: 2020 2020 207c 0a7c 3339 3230 7820 7820 |.|3920x x │ │ │ │ -00063da0: 7820 202b 2032 3839 3031 3530 3939 3537 x + 28901509957 │ │ │ │ -00063db0: 3435 3434 3078 2078 2078 2020 2b20 3235 45440x x x + 25 │ │ │ │ -00063dc0: 3531 3635 3737 3435 3736 3732 3030 7820 51657745767200x │ │ │ │ -00063dd0: 7820 202b 2031 3535 3537 3837 3134 3635 x + 15557871465 │ │ │ │ -00063de0: 3135 3834 307c 0a7c 2020 2020 2030 2031 15840|.| 0 1 │ │ │ │ -00063df0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00063e00: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ -00063e10: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00063e20: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00063e30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063d60: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00063d70: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +00063d80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063d90: 0a7c 3339 3230 7820 7820 7820 202b 2032 .|3920x x x + 2 │ │ │ │ +00063da0: 3839 3031 3530 3939 3537 3435 3434 3078 890150995745440x │ │ │ │ +00063db0: 2078 2078 2020 2b20 3235 3531 3635 3737 x x + 25516577 │ │ │ │ +00063dc0: 3435 3736 3732 3030 7820 7820 202b 2031 45767200x x + 1 │ │ │ │ +00063dd0: 3535 3537 3837 3134 3635 3135 3834 307c 555787146515840| │ │ │ │ +00063de0: 0a7c 2020 2020 2030 2031 2033 2020 2020 .| 0 1 3 │ │ │ │ +00063df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063e00: 3020 3120 3320 2020 2020 2020 2020 2020 0 1 3 │ │ │ │ +00063e10: 2020 2020 2020 2020 2031 2033 2020 2020 1 3 │ │ │ │ +00063e20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063e80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063e90: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063ea0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00063e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063e80: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ +00063e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063ea0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00063eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063ec0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00063ed0: 2020 2020 207c 0a7c 3835 3137 3733 3731 |.|85177371 │ │ │ │ -00063ee0: 3230 7820 7820 7820 202b 2033 3631 3933 20x x x + 36193 │ │ │ │ -00063ef0: 3134 3339 3939 3637 3339 3230 7820 7820 143999673920x x │ │ │ │ -00063f00: 7820 202d 2031 3035 3039 3039 3437 3039 x - 10509094709 │ │ │ │ -00063f10: 3437 3035 3630 7820 7820 202d 2038 3439 470560x x - 849 │ │ │ │ -00063f20: 3837 3035 327c 0a7c 2020 2020 2020 2020 87052|.| │ │ │ │ -00063f30: 2020 2030 2031 2033 2020 2020 2020 2020 0 1 3 │ │ │ │ -00063f40: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ -00063f50: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00063f60: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -00063f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00063ec0: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00063ed0: 0a7c 3835 3137 3733 3731 3230 7820 7820 .|8517737120x x │ │ │ │ +00063ee0: 7820 202b 2033 3631 3933 3134 3339 3939 x + 36193143999 │ │ │ │ +00063ef0: 3637 3339 3230 7820 7820 7820 202d 2031 673920x x x - 1 │ │ │ │ +00063f00: 3035 3039 3039 3437 3039 3437 3035 3630 0509094709470560 │ │ │ │ +00063f10: 7820 7820 202d 2038 3439 3837 3035 327c x x - 84987052| │ │ │ │ +00063f20: 0a7c 2020 2020 2020 2020 2020 2030 2031 .| 0 1 │ │ │ │ +00063f30: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00063f40: 2020 2020 2020 2030 2031 2033 2020 2020 0 1 3 │ │ │ │ +00063f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063f60: 2031 2033 2020 2020 2020 2020 2020 207c 1 3 | │ │ │ │ +00063f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00063f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00063fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00063fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00063fd0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00063fe0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00063ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064000: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00064010: 2020 2020 207c 0a7c 3031 3737 3234 3830 |.|01772480 │ │ │ │ -00064020: 7820 7820 7820 202d 2031 3734 3930 3630 x x x - 1749060 │ │ │ │ -00064030: 3832 3033 3638 3936 3078 2078 2078 2020 820368960x x x │ │ │ │ -00064040: 2d20 3132 3235 3239 3139 3536 3733 3932 - 12252919567392 │ │ │ │ -00064050: 3078 2078 2020 2d20 3333 3136 3531 3437 0x x - 33165147 │ │ │ │ -00064060: 3237 3933 397c 0a7c 2020 2020 2020 2020 27939|.| │ │ │ │ -00064070: 2030 2031 2033 2020 2020 2020 2020 2020 0 1 3 │ │ │ │ -00064080: 2020 2020 2020 2020 2020 3020 3120 3320 0 1 3 │ │ │ │ -00064090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000640a0: 2020 3120 3320 2020 2020 2020 2020 2020 1 3 │ │ │ │ -000640b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00063fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00063fc0: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +00063fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00063fe0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00063ff0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +00064000: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064010: 0a7c 3031 3737 3234 3830 7820 7820 7820 .|01772480x x x │ │ │ │ +00064020: 202d 2031 3734 3930 3630 3832 3033 3638 - 1749060820368 │ │ │ │ +00064030: 3936 3078 2078 2078 2020 2d20 3132 3235 960x x x - 1225 │ │ │ │ +00064040: 3239 3139 3536 3733 3932 3078 2078 2020 29195673920x x │ │ │ │ +00064050: 2d20 3333 3136 3531 3437 3237 3933 397c - 3316514727939| │ │ │ │ +00064060: 0a7c 2020 2020 2020 2020 2030 2031 2033 .| 0 1 3 │ │ │ │ +00064070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064080: 2020 2020 3020 3120 3320 2020 2020 2020 0 1 3 │ │ │ │ +00064090: 2020 2020 2020 2020 2020 2020 3120 3320 1 3 │ │ │ │ +000640a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000640b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000640c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000640d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000640e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000640f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064100: 2d2d 2d2d 2d7c 0a7c 3220 2020 2020 2020 -----|.|2 │ │ │ │ +000640f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00064100: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ 00064110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064150: 2020 2020 207c 0a7c 2078 2078 2020 2b20 |.| x x + │ │ │ │ -00064160: 3132 3734 3138 3730 3836 3834 3434 3533 1274187086844453 │ │ │ │ -00064170: 3678 2078 2078 2078 2020 2d20 2020 2020 6x x x x - │ │ │ │ +00064140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064150: 0a7c 2078 2078 2020 2b20 3132 3734 3138 .| x x + 127418 │ │ │ │ +00064160: 3730 3836 3834 3434 3533 3678 2078 2078 70868444536x x x │ │ │ │ +00064170: 2078 2020 2d20 2020 2020 2020 2020 2020 x - │ │ │ │ 00064180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641a0: 2020 2020 207c 0a7c 3020 3220 3320 2020 |.|0 2 3 │ │ │ │ -000641b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641c0: 2020 3020 3120 3220 3320 2020 2020 2020 0 1 2 3 │ │ │ │ +00064190: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000641a0: 0a7c 3020 3220 3320 2020 2020 2020 2020 .|0 2 3 │ │ │ │ +000641b0: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +000641c0: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ 000641d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000641f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000641e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000641f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064240: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00064250: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00064230: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064240: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ +00064250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064290: 2020 2020 207c 0a7c 3734 3933 3330 3234 |.|74933024 │ │ │ │ -000642a0: 3030 7820 7820 7820 202b 2037 3337 3531 00x x x + 73751 │ │ │ │ -000642b0: 3632 3638 3935 3130 3030 3078 2020 2020 62689510000x │ │ │ │ +00064280: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064290: 0a7c 3734 3933 3330 3234 3030 7820 7820 .|7493302400x x │ │ │ │ +000642a0: 7820 202b 2037 3337 3531 3632 3638 3935 x + 73751626895 │ │ │ │ +000642b0: 3130 3030 3078 2020 2020 2020 2020 2020 10000x │ │ │ │ 000642c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000642d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000642e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000642f0: 2020 2030 2032 2033 2020 2020 2020 2020 0 2 3 │ │ │ │ +000642d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000642e0: 0a7c 2020 2020 2020 2020 2020 2030 2032 .| 0 2 │ │ │ │ +000642f0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00064300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064330: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064320: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064380: 2020 2020 207c 0a7c 2020 3220 2020 2020 |.| 2 │ │ │ │ +00064370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064380: 0a7c 2020 3220 2020 2020 2020 2020 2020 .| 2 │ │ │ │ 00064390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000643a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000643b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000643c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000643d0: 2020 2020 207c 0a7c 3078 2078 2078 2020 |.|0x x x │ │ │ │ -000643e0: 2d20 3131 3735 3139 3337 3134 3035 3039 - 11751937140509 │ │ │ │ -000643f0: 3636 3478 2078 2078 2078 2020 2020 2020 664x x x x │ │ │ │ +000643c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000643d0: 0a7c 3078 2078 2078 2020 2d20 3131 3735 .|0x x x - 1175 │ │ │ │ +000643e0: 3139 3337 3134 3035 3039 3636 3478 2078 1937140509664x x │ │ │ │ +000643f0: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ 00064400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064420: 2020 2020 207c 0a7c 2020 3020 3220 3320 |.| 0 2 3 │ │ │ │ -00064430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064440: 2020 2020 3020 3120 3220 3320 2020 2020 0 1 2 3 │ │ │ │ +00064410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064420: 0a7c 2020 3020 3220 3320 2020 2020 2020 .| 0 2 3 │ │ │ │ +00064430: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00064440: 3120 3220 3320 2020 2020 2020 2020 2020 1 2 3 │ │ │ │ 00064450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064460: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000644a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000644b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000644c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000644d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000644b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000644c0: 0a7c 2020 2020 2020 2020 2032 2020 2020 .| 2 │ │ │ │ +000644d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000644e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000644f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064510: 2020 2020 207c 0a7c 3138 3036 3939 3230 |.|18069920 │ │ │ │ -00064520: 7820 7820 7820 202b 2031 3434 3538 3537 x x x + 1445857 │ │ │ │ -00064530: 3139 3830 3634 3737 3630 7820 2020 2020 1980647760x │ │ │ │ +00064500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064510: 0a7c 3138 3036 3939 3230 7820 7820 7820 .|18069920x x x │ │ │ │ +00064520: 202b 2031 3434 3538 3537 3139 3830 3634 + 1445857198064 │ │ │ │ +00064530: 3737 3630 7820 2020 2020 2020 2020 2020 7760x │ │ │ │ 00064540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064560: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00064570: 2030 2032 2033 2020 2020 2020 2020 2020 0 2 3 │ │ │ │ -00064580: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00064550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064560: 0a7c 2020 2020 2020 2020 2030 2032 2033 .| 0 2 3 │ │ │ │ +00064570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064580: 2020 2020 2030 2020 2020 2020 2020 2020 0 │ │ │ │ 00064590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000645a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000645b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000645a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000645b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000645c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000645d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000645e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000645f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064600: 2020 2020 207c 0a7c 2020 2020 3220 2020 |.| 2 │ │ │ │ +000645f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064600: 0a7c 2020 2020 3220 2020 2020 2020 2020 .| 2 │ │ │ │ 00064610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064650: 2020 2020 207c 0a7c 3834 3078 2078 2078 |.|840x x x │ │ │ │ -00064660: 2020 2d20 3530 3137 3932 3836 3837 3830 - 501792868780 │ │ │ │ -00064670: 3938 3030 7820 7820 7820 7820 2020 2020 9800x x x x │ │ │ │ +00064640: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064650: 0a7c 3834 3078 2078 2078 2020 2d20 3530 .|840x x x - 50 │ │ │ │ +00064660: 3137 3932 3836 3837 3830 3938 3030 7820 17928687809800x │ │ │ │ +00064670: 7820 7820 7820 2020 2020 2020 2020 2020 x x x │ │ │ │ 00064680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000646a0: 2020 2020 207c 0a7c 2020 2020 3020 3220 |.| 0 2 │ │ │ │ -000646b0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000646c0: 2020 2020 2030 2031 2032 2033 2020 2020 0 1 2 3 │ │ │ │ +00064690: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000646a0: 0a7c 2020 2020 3020 3220 3320 2020 2020 .| 0 2 3 │ │ │ │ +000646b0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000646c0: 2031 2032 2033 2020 2020 2020 2020 2020 1 2 3 │ │ │ │ 000646d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000646e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000646f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000646e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000646f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00064700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064740: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00064750: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00064760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064770: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00064780: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00064790: 2020 2020 207c 0a7c 3431 3135 3231 3435 |.|41152145 │ │ │ │ -000647a0: 3238 3637 3432 3536 7820 7820 7820 202d 28674256x x x - │ │ │ │ -000647b0: 2033 3935 3537 3436 3237 3432 3730 3536 395574627427056 │ │ │ │ -000647c0: 7820 7820 7820 202b 2033 3633 3933 3636 x x x + 3639366 │ │ │ │ -000647d0: 3630 3435 3535 3932 3078 2078 2078 2020 604555920x x x │ │ │ │ -000647e0: 2d20 3633 367c 0a7c 2020 2020 2020 2020 - 636|.| │ │ │ │ -000647f0: 2020 2020 2020 2020 2031 2032 2033 2020 1 2 3 │ │ │ │ -00064800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064810: 2030 2032 2033 2020 2020 2020 2020 2020 0 2 3 │ │ │ │ -00064820: 2020 2020 2020 2020 2020 3120 3220 3320 1 2 3 │ │ │ │ -00064830: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00064740: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064750: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00064760: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00064770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064780: 2020 2020 2020 3220 2020 2020 2020 207c 2 | │ │ │ │ +00064790: 0a7c 3431 3135 3231 3435 3238 3637 3432 .|41152145286742 │ │ │ │ +000647a0: 3536 7820 7820 7820 202d 2033 3935 3537 56x x x - 39557 │ │ │ │ +000647b0: 3436 3237 3432 3730 3536 7820 7820 7820 4627427056x x x │ │ │ │ +000647c0: 202b 2033 3633 3933 3636 3630 3435 3535 + 3639366604555 │ │ │ │ +000647d0: 3932 3078 2078 2078 2020 2d20 3633 367c 920x x x - 636| │ │ │ │ +000647e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000647f0: 2020 2031 2032 2033 2020 2020 2020 2020 1 2 3 │ │ │ │ +00064800: 2020 2020 2020 2020 2020 2030 2032 2033 0 2 3 │ │ │ │ +00064810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064820: 2020 2020 3120 3220 3320 2020 2020 207c 1 2 3 | │ │ │ │ +00064830: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064880: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00064890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000648a0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000648b0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000648c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000648d0: 2020 2020 207c 0a7c 2078 2078 2078 2020 |.| x x x │ │ │ │ -000648e0: 2b20 3539 3236 3839 3733 3338 3631 3638 + 59268973386168 │ │ │ │ -000648f0: 3078 2078 2078 2020 2b20 3432 3331 3430 0x x x + 423140 │ │ │ │ -00064900: 3838 3035 3935 3630 3830 7820 7820 7820 8805956080x x x │ │ │ │ -00064910: 202d 2031 3334 3837 3838 3338 3937 3230 - 1348788389720 │ │ │ │ -00064920: 3338 3536 787c 0a7c 3020 3120 3220 3320 3856x|.|0 1 2 3 │ │ │ │ -00064930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064940: 2020 3120 3220 3320 2020 2020 2020 2020 1 2 3 │ │ │ │ -00064950: 2020 2020 2020 2020 2020 2030 2032 2033 0 2 3 │ │ │ │ -00064960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064970: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064870: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064890: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000648a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000648b0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000648c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000648d0: 0a7c 2078 2078 2078 2020 2b20 3539 3236 .| x x x + 5926 │ │ │ │ +000648e0: 3839 3733 3338 3631 3638 3078 2078 2078 89733861680x x x │ │ │ │ +000648f0: 2020 2b20 3432 3331 3430 3838 3035 3935 + 423140880595 │ │ │ │ +00064900: 3630 3830 7820 7820 7820 202d 2031 3334 6080x x x - 134 │ │ │ │ +00064910: 3837 3838 3338 3937 3230 3338 3536 787c 87883897203856x| │ │ │ │ +00064920: 0a7c 3020 3120 3220 3320 2020 2020 2020 .|0 1 2 3 │ │ │ │ +00064930: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ +00064940: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00064950: 2020 2020 2030 2032 2033 2020 2020 2020 0 2 3 │ │ │ │ +00064960: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000649a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000649d0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000649b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000649c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000649d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000649e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000649f0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00064a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064a10: 3220 2020 207c 0a7c 2b20 3732 3238 3032 2 |.|+ 722802 │ │ │ │ -00064a20: 3836 3938 3730 3433 3234 7820 7820 7820 8698704324x x x │ │ │ │ -00064a30: 202b 2032 3630 3235 3332 3634 3439 3831 + 2602532644981 │ │ │ │ -00064a40: 3932 3078 2078 2078 2020 2d20 3132 3334 920x x x - 1234 │ │ │ │ -00064a50: 3933 3832 3635 3733 3138 3730 3078 2078 9382657318700x x │ │ │ │ -00064a60: 2078 2020 2b7c 0a7c 2020 2020 2020 2020 x +|.| │ │ │ │ -00064a70: 2020 2020 2020 2020 2020 2031 2032 2033 1 2 3 │ │ │ │ -00064a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064a90: 2020 2020 3020 3220 3320 2020 2020 2020 0 2 3 │ │ │ │ -00064aa0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00064ab0: 3220 3320 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +000649f0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00064a00: 2020 2020 2020 2020 2020 3220 2020 207c 2 | │ │ │ │ +00064a10: 0a7c 2b20 3732 3238 3032 3836 3938 3730 .|+ 722802869870 │ │ │ │ +00064a20: 3433 3234 7820 7820 7820 202b 2032 3630 4324x x x + 260 │ │ │ │ +00064a30: 3235 3332 3634 3439 3831 3932 3078 2078 2532644981920x x │ │ │ │ +00064a40: 2078 2020 2d20 3132 3334 3933 3832 3635 x - 1234938265 │ │ │ │ +00064a50: 3733 3138 3730 3078 2078 2078 2020 2b7c 7318700x x x +| │ │ │ │ +00064a60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064a70: 2020 2020 2031 2032 2033 2020 2020 2020 1 2 3 │ │ │ │ +00064a80: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00064a90: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00064aa0: 2020 2020 2020 2020 3120 3220 3320 207c 1 2 3 | │ │ │ │ +00064ab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064b00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00064b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064b20: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00064b30: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00064b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064b50: 2020 2020 207c 0a7c 7820 7820 7820 202d |.|x x x - │ │ │ │ -00064b60: 2039 3139 3732 3933 3036 3334 3839 3434 919729306348944 │ │ │ │ -00064b70: 3078 2078 2078 2020 2d20 3431 3332 3433 0x x x - 413243 │ │ │ │ -00064b80: 3338 3032 3635 3631 3234 7820 7820 7820 3802656124x x x │ │ │ │ -00064b90: 202b 2031 3032 3731 3435 3532 3130 3039 + 1027145521009 │ │ │ │ -00064ba0: 3738 3434 787c 0a7c 2031 2032 2033 2020 7844x|.| 1 2 3 │ │ │ │ -00064bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064bc0: 2020 3120 3220 3320 2020 2020 2020 2020 1 2 3 │ │ │ │ -00064bd0: 2020 2020 2020 2020 2020 2030 2032 2033 0 2 3 │ │ │ │ -00064be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064bf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064b00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064b10: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00064b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064b30: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00064b40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064b50: 0a7c 7820 7820 7820 202d 2039 3139 3732 .|x x x - 91972 │ │ │ │ +00064b60: 3933 3036 3334 3839 3434 3078 2078 2078 93063489440x x x │ │ │ │ +00064b70: 2020 2d20 3431 3332 3433 3338 3032 3635 - 413243380265 │ │ │ │ +00064b80: 3631 3234 7820 7820 7820 202b 2031 3032 6124x x x + 102 │ │ │ │ +00064b90: 3731 3435 3532 3130 3039 3738 3434 787c 71455210097844x| │ │ │ │ +00064ba0: 0a7c 2031 2032 2033 2020 2020 2020 2020 .| 1 2 3 │ │ │ │ +00064bb0: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ +00064bc0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00064bd0: 2020 2020 2030 2032 2033 2020 2020 2020 0 2 3 │ │ │ │ +00064be0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00064c50: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00064c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064c40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064c50: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00064c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064c70: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00064c80: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00064c90: 2020 2020 207c 0a7c 202b 2033 3236 3137 |.| + 32617 │ │ │ │ -00064ca0: 3236 3537 3637 3037 3736 3078 2078 2078 26576707760x x x │ │ │ │ -00064cb0: 2020 2d20 3133 3437 3335 3037 3633 3938 - 134735076398 │ │ │ │ -00064cc0: 3431 3230 7820 7820 7820 202b 2032 3436 4120x x x + 246 │ │ │ │ -00064cd0: 3739 3235 3134 3935 3836 3430 7820 7820 792514958640x x │ │ │ │ -00064ce0: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -00064cf0: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ -00064d00: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00064d10: 2020 2020 2030 2032 2033 2020 2020 2020 0 2 3 │ │ │ │ -00064d20: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00064d30: 2033 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 3 |.|-------- │ │ │ │ +00064c70: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00064c80: 2020 2020 2020 2020 2032 2020 2020 207c 2 | │ │ │ │ +00064c90: 0a7c 202b 2033 3236 3137 3236 3537 3637 .| + 32617265767 │ │ │ │ +00064ca0: 3037 3736 3078 2078 2078 2020 2d20 3133 07760x x x - 13 │ │ │ │ +00064cb0: 3437 3335 3037 3633 3938 3431 3230 7820 47350763984120x │ │ │ │ +00064cc0: 7820 7820 202b 2032 3436 3739 3235 3134 x x + 246792514 │ │ │ │ +00064cd0: 3935 3836 3430 7820 7820 7820 202b 207c 958640x x x + | │ │ │ │ +00064ce0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00064cf0: 2020 2020 2020 3120 3220 3320 2020 2020 1 2 3 │ │ │ │ +00064d00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00064d10: 2032 2033 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00064d20: 2020 2020 2020 2031 2032 2033 2020 207c 1 2 3 | │ │ │ │ +00064d30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00064d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00064d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00064d80: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00064d90: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -00064da0: 2020 2020 2020 2020 2020 2020 3220 3220 2 2 │ │ │ │ +00064d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00064d80: 0a7c 2020 2020 2020 2020 2020 2020 2033 .| 3 │ │ │ │ +00064d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064da0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ 00064db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064dc0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00064dd0: 2020 2020 207c 0a7c 3232 3635 3739 3339 |.|22657939 │ │ │ │ -00064de0: 3437 3834 7820 7820 202b 2038 3837 3538 4784x x + 88758 │ │ │ │ -00064df0: 3633 3133 3338 3034 3830 3078 2078 2020 63133804800x x │ │ │ │ -00064e00: 2b20 3232 3531 3535 3639 3037 3532 3630 + 22515569075260 │ │ │ │ -00064e10: 3830 7820 7820 7820 202d 2033 3133 3738 80x x x - 31378 │ │ │ │ -00064e20: 3533 3938 317c 0a7c 2020 2020 2020 2020 53981|.| │ │ │ │ -00064e30: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ -00064e40: 2020 2020 2020 2020 2020 2020 3020 3320 0 3 │ │ │ │ -00064e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064e60: 2020 2030 2031 2033 2020 2020 2020 2020 0 1 3 │ │ │ │ -00064e70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064dc0: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00064dd0: 0a7c 3232 3635 3739 3339 3437 3834 7820 .|226579394784x │ │ │ │ +00064de0: 7820 202b 2038 3837 3538 3633 3133 3338 x + 88758631338 │ │ │ │ +00064df0: 3034 3830 3078 2078 2020 2b20 3232 3531 04800x x + 2251 │ │ │ │ +00064e00: 3535 3639 3037 3532 3630 3830 7820 7820 556907526080x x │ │ │ │ +00064e10: 7820 202d 2033 3133 3738 3533 3938 317c x - 3137853981| │ │ │ │ +00064e20: 0a7c 2020 2020 2020 2020 2020 2020 2032 .| 2 │ │ │ │ +00064e30: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00064e40: 2020 2020 2020 3020 3320 2020 2020 2020 0 3 │ │ │ │ +00064e50: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ +00064e60: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00064e70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ec0: 2020 2020 207c 0a7c 2020 3220 2020 2020 |.| 2 │ │ │ │ -00064ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ee0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00064ef0: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ -00064f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064f10: 2020 2032 207c 0a7c 2078 2078 2020 2b20 2 |.| x x + │ │ │ │ -00064f20: 3331 3439 3937 3034 3031 3138 3838 3078 314997040118880x │ │ │ │ -00064f30: 2078 2020 2d20 3233 3239 3434 3334 3037 x - 2329443407 │ │ │ │ -00064f40: 3332 3939 3230 3078 2078 2020 2d20 3139 3299200x x - 19 │ │ │ │ -00064f50: 3232 3539 3636 3430 3832 3836 3430 7820 22596640828640x │ │ │ │ -00064f60: 7820 7820 207c 0a7c 3120 3220 3320 2020 x x |.|1 2 3 │ │ │ │ -00064f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064f80: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ -00064f90: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ -00064fa0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00064fb0: 2031 2033 207c 0a7c 2020 2020 2020 2020 1 3 |.| │ │ │ │ +00064eb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00064ec0: 0a7c 2020 3220 2020 2020 2020 2020 2020 .| 2 │ │ │ │ +00064ed0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +00064ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064ef0: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00064f00: 2020 2020 2020 2020 2020 2020 2032 207c 2 | │ │ │ │ +00064f10: 0a7c 2078 2078 2020 2b20 3331 3439 3937 .| x x + 314997 │ │ │ │ +00064f20: 3034 3031 3138 3838 3078 2078 2020 2d20 040118880x x - │ │ │ │ +00064f30: 3233 3239 3434 3334 3037 3332 3939 3230 2329443407329920 │ │ │ │ +00064f40: 3078 2078 2020 2d20 3139 3232 3539 3636 0x x - 19225966 │ │ │ │ +00064f50: 3430 3832 3836 3430 7820 7820 7820 207c 40828640x x x | │ │ │ │ +00064f60: 0a7c 3120 3220 3320 2020 2020 2020 2020 .|1 2 3 │ │ │ │ +00064f70: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ +00064f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00064f90: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ +00064fa0: 2020 2020 2020 2020 2030 2031 2033 207c 0 1 3 | │ │ │ │ +00064fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00064fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00064fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00064ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065010: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00065020: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00065030: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00065040: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00065050: 2020 2020 207c 0a7c 2038 3632 3134 3636 |.| 8621466 │ │ │ │ -00065060: 3038 3132 3238 3078 2078 2020 2b20 3230 0812280x x + 20 │ │ │ │ -00065070: 3639 3136 3337 3836 3831 3630 3030 7820 69163786816000x │ │ │ │ -00065080: 7820 202d 2037 3434 3330 3139 3934 3432 x - 74430199442 │ │ │ │ -00065090: 3339 3034 3078 2078 2078 2020 2b20 3331 39040x x x + 31 │ │ │ │ -000650a0: 3539 3636 307c 0a7c 2020 2020 2020 2020 59660|.| │ │ │ │ -000650b0: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ -000650c0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -000650d0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000650e0: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ -000650f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00064ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065000: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065010: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00065020: 2020 2020 2020 2020 2032 2032 2020 2020 2 2 │ │ │ │ +00065030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065040: 2020 2020 3220 2020 2020 2020 2020 207c 2 | │ │ │ │ +00065050: 0a7c 2038 3632 3134 3636 3038 3132 3238 .| 8621466081228 │ │ │ │ +00065060: 3078 2078 2020 2b20 3230 3639 3136 3337 0x x + 20691637 │ │ │ │ +00065070: 3836 3831 3630 3030 7820 7820 202d 2037 86816000x x - 7 │ │ │ │ +00065080: 3434 3330 3139 3934 3432 3339 3034 3078 443019944239040x │ │ │ │ +00065090: 2078 2078 2020 2b20 3331 3539 3636 307c x x + 3159660| │ │ │ │ +000650a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000650b0: 2020 3220 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ +000650c0: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +000650d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000650e0: 3020 3120 3320 2020 2020 2020 2020 207c 0 1 3 | │ │ │ │ +000650f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065140: 2020 2020 207c 0a7c 2020 3220 2020 2020 |.| 2 │ │ │ │ -00065150: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00065130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065140: 0a7c 2020 3220 2020 2020 2020 2020 2020 .| 2 │ │ │ │ +00065150: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ 00065160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065170: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -00065180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065190: 2020 3220 207c 0a7c 2078 2078 2020 2d20 2 |.| x x - │ │ │ │ -000651a0: 3436 3938 3131 3430 3838 3935 3336 7820 46981140889536x │ │ │ │ -000651b0: 7820 202b 2032 3237 3037 3732 3732 3436 x + 22707727246 │ │ │ │ -000651c0: 3833 3435 3630 7820 7820 202b 2033 3237 834560x x + 327 │ │ │ │ -000651d0: 3335 3134 3938 3734 3434 3830 3078 2078 3514987444800x x │ │ │ │ -000651e0: 2078 2020 2d7c 0a7c 3120 3220 3320 2020 x -|.|1 2 3 │ │ │ │ -000651f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00065200: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065210: 2020 2020 2020 2030 2033 2020 2020 2020 0 3 │ │ │ │ -00065220: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00065230: 3120 3320 207c 0a7c 2020 2020 2020 2020 1 3 |.| │ │ │ │ +00065170: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00065180: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ +00065190: 0a7c 2078 2078 2020 2d20 3436 3938 3131 .| x x - 469811 │ │ │ │ +000651a0: 3430 3838 3935 3336 7820 7820 202b 2032 40889536x x + 2 │ │ │ │ +000651b0: 3237 3037 3732 3732 3436 3833 3435 3630 2707727246834560 │ │ │ │ +000651c0: 7820 7820 202b 2033 3237 3335 3134 3938 x x + 327351498 │ │ │ │ +000651d0: 3734 3434 3830 3078 2078 2078 2020 2d7c 7444800x x x -| │ │ │ │ +000651e0: 0a7c 3120 3220 3320 2020 2020 2020 2020 .|1 2 3 │ │ │ │ +000651f0: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ +00065200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065210: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ +00065220: 2020 2020 2020 2020 3020 3120 3320 207c 0 1 3 | │ │ │ │ +00065230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065290: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -000652a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000652b0: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000652c0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000652d0: 2020 2020 207c 0a7c 3131 3630 3839 3635 |.|11608965 │ │ │ │ -000652e0: 3630 3438 3537 3630 7820 7820 202d 2033 60485760x x - 3 │ │ │ │ -000652f0: 3332 3937 3233 3335 3138 3038 3030 3078 329723351808000x │ │ │ │ -00065300: 2078 2020 2b20 3636 3237 3131 3439 3733 x + 6627114973 │ │ │ │ -00065310: 3438 3332 3078 2078 2078 2020 2b20 3132 48320x x x + 12 │ │ │ │ -00065320: 3036 3035 377c 0a7c 2020 2020 2020 2020 06057|.| │ │ │ │ -00065330: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -00065340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065350: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00065360: 2020 2020 2020 3020 3120 3320 2020 2020 0 1 3 │ │ │ │ -00065370: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00065270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065280: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065290: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000652a0: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ +000652b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000652c0: 2020 2020 3220 2020 2020 2020 2020 207c 2 | │ │ │ │ +000652d0: 0a7c 3131 3630 3839 3635 3630 3438 3537 .|11608965604857 │ │ │ │ +000652e0: 3630 7820 7820 202d 2033 3332 3937 3233 60x x - 3329723 │ │ │ │ +000652f0: 3335 3138 3038 3030 3078 2078 2020 2b20 351808000x x + │ │ │ │ +00065300: 3636 3237 3131 3439 3733 3438 3332 3078 662711497348320x │ │ │ │ +00065310: 2078 2078 2020 2b20 3132 3036 3035 377c x x + 1206057| │ │ │ │ +00065320: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065330: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00065340: 2020 2020 2020 2020 2020 3020 3320 2020 0 3 │ │ │ │ +00065350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065360: 3020 3120 3320 2020 2020 2020 2020 207c 0 1 3 | │ │ │ │ +00065370: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00065380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00065390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000653a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000653b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000653c0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2032 -----|.| 2 │ │ │ │ -000653d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000653e0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000653f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065400: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00065410: 2020 2020 207c 0a7c 3536 3136 3030 7820 |.|561600x │ │ │ │ -00065420: 7820 202b 2035 3333 3230 3430 3433 3035 x + 53320404305 │ │ │ │ -00065430: 3831 3038 3878 2078 2078 2020 2d20 3530 81088x x x - 50 │ │ │ │ -00065440: 3736 3432 3438 3835 3130 3730 3732 7820 76424885107072x │ │ │ │ -00065450: 7820 7820 202b 2035 3430 3330 3437 3839 x x + 540304789 │ │ │ │ -00065460: 3137 3734 347c 0a7c 2020 2020 2020 2031 17744|.| 1 │ │ │ │ -00065470: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065480: 2020 2020 2020 3020 3220 3320 2020 2020 0 2 3 │ │ │ │ -00065490: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000654a0: 2032 2033 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ -000654b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000653b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000653c0: 0a7c 2020 2020 2020 2032 2032 2020 2020 .| 2 2 │ │ │ │ +000653d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000653e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000653f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00065400: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065410: 0a7c 3536 3136 3030 7820 7820 202b 2035 .|561600x x + 5 │ │ │ │ +00065420: 3333 3230 3430 3433 3035 3831 3038 3878 332040430581088x │ │ │ │ +00065430: 2078 2078 2020 2d20 3530 3736 3432 3438 x x - 50764248 │ │ │ │ +00065440: 3835 3130 3730 3732 7820 7820 7820 202b 85107072x x x + │ │ │ │ +00065450: 2035 3430 3330 3437 3839 3137 3734 347c 54030478917744| │ │ │ │ +00065460: 0a7c 2020 2020 2020 2031 2033 2020 2020 .| 1 3 │ │ │ │ +00065470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065480: 3020 3220 3320 2020 2020 2020 2020 2020 0 2 3 │ │ │ │ +00065490: 2020 2020 2020 2020 2031 2032 2033 2020 1 2 3 │ │ │ │ +000654a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000654b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000654c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000654d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000654e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000654f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065500: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065510: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ +000654f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065510: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ 00065520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065530: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00065540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065550: 3220 2020 207c 0a7c 2b20 3935 3135 3937 2 |.|+ 951597 │ │ │ │ -00065560: 3134 3536 3632 3931 3230 7820 7820 202d 1456629120x x - │ │ │ │ -00065570: 2032 3531 3434 3830 3839 3338 3538 3330 251448089385830 │ │ │ │ -00065580: 3430 7820 7820 7820 202b 2031 3431 3039 40x x x + 14109 │ │ │ │ -00065590: 3639 3336 3739 3136 3634 3078 2078 2078 69367916640x x x │ │ │ │ -000655a0: 2020 2d20 347c 0a7c 2020 2020 2020 2020 - 4|.| │ │ │ │ -000655b0: 2020 2020 2020 2020 2020 2031 2033 2020 1 3 │ │ │ │ -000655c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000655d0: 2020 2030 2032 2033 2020 2020 2020 2020 0 2 3 │ │ │ │ -000655e0: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ -000655f0: 3320 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +00065530: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00065540: 2020 2020 2020 2020 2020 3220 2020 207c 2 | │ │ │ │ +00065550: 0a7c 2b20 3935 3135 3937 3134 3536 3632 .|+ 951597145662 │ │ │ │ +00065560: 3931 3230 7820 7820 202d 2032 3531 3434 9120x x - 25144 │ │ │ │ +00065570: 3830 3839 3338 3538 3330 3430 7820 7820 808938583040x x │ │ │ │ +00065580: 7820 202b 2031 3431 3039 3639 3336 3739 x + 14109693679 │ │ │ │ +00065590: 3136 3634 3078 2078 2078 2020 2d20 347c 16640x x x - 4| │ │ │ │ +000655a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000655b0: 2020 2020 2031 2033 2020 2020 2020 2020 1 3 │ │ │ │ +000655c0: 2020 2020 2020 2020 2020 2020 2030 2032 0 2 │ │ │ │ +000655d0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000655e0: 2020 2020 2020 3120 3220 3320 2020 207c 1 2 3 | │ │ │ │ +000655f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065640: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065650: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00065660: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00065630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065640: 0a7c 2020 2020 2020 2020 2020 3220 3220 .| 2 2 │ │ │ │ +00065650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065660: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00065670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065680: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00065690: 2020 2020 207c 0a7c 3831 3936 3431 3736 |.|81964176 │ │ │ │ -000656a0: 3078 2078 2020 2d20 3137 3639 3131 3937 0x x - 17691197 │ │ │ │ -000656b0: 3037 3031 3533 3630 7820 7820 7820 202b 07015360x x x + │ │ │ │ -000656c0: 2031 3736 3734 3336 3238 3730 3839 3235 176743628708925 │ │ │ │ -000656d0: 3678 2078 2078 2020 2b20 3135 3632 3832 6x x x + 156282 │ │ │ │ -000656e0: 3031 3933 337c 0a7c 2020 2020 2020 2020 01933|.| │ │ │ │ -000656f0: 2020 3120 3320 2020 2020 2020 2020 2020 1 3 │ │ │ │ -00065700: 2020 2020 2020 2020 2030 2032 2033 2020 0 2 3 │ │ │ │ -00065710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065720: 2020 3120 3220 3320 2020 2020 2020 2020 1 2 3 │ │ │ │ -00065730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00065680: 3220 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00065690: 0a7c 3831 3936 3431 3736 3078 2078 2020 .|819641760x x │ │ │ │ +000656a0: 2d20 3137 3639 3131 3937 3037 3031 3533 - 17691197070153 │ │ │ │ +000656b0: 3630 7820 7820 7820 202b 2031 3736 3734 60x x x + 17674 │ │ │ │ +000656c0: 3336 3238 3730 3839 3235 3678 2078 2078 36287089256x x x │ │ │ │ +000656d0: 2020 2b20 3135 3632 3832 3031 3933 337c + 15628201933| │ │ │ │ +000656e0: 0a7c 2020 2020 2020 2020 2020 3120 3320 .| 1 3 │ │ │ │ +000656f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065700: 2020 2030 2032 2033 2020 2020 2020 2020 0 2 3 │ │ │ │ +00065710: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ +00065720: 3320 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00065730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065780: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065790: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ -000657a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000657b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000657c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000657d0: 2020 2020 207c 0a7c 2037 3330 3234 3735 |.| 7302475 │ │ │ │ -000657e0: 3939 3032 3631 3736 3078 2078 2020 2b20 990261760x x + │ │ │ │ -000657f0: 3535 3734 3438 3837 3932 3932 3533 3630 5574488792925360 │ │ │ │ -00065800: 7820 7820 7820 202d 2033 3036 3938 3237 x x x - 3069827 │ │ │ │ -00065810: 3639 3838 3738 3932 3078 2078 2078 2020 698878920x x x │ │ │ │ -00065820: 2d20 3331 337c 0a7c 2020 2020 2020 2020 - 313|.| │ │ │ │ -00065830: 2020 2020 2020 2020 2020 3120 3320 2020 1 3 │ │ │ │ -00065840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065850: 2030 2032 2033 2020 2020 2020 2020 2020 0 2 3 │ │ │ │ -00065860: 2020 2020 2020 2020 2020 3120 3220 3320 1 2 3 │ │ │ │ -00065870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00065770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065780: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065790: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +000657a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000657b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000657c0: 2020 2020 2020 2020 3220 2020 2020 207c 2 | │ │ │ │ +000657d0: 0a7c 2037 3330 3234 3735 3939 3032 3631 .| 7302475990261 │ │ │ │ +000657e0: 3736 3078 2078 2020 2b20 3535 3734 3438 760x x + 557448 │ │ │ │ +000657f0: 3837 3932 3932 3533 3630 7820 7820 7820 8792925360x x x │ │ │ │ +00065800: 202d 2033 3036 3938 3237 3639 3838 3738 - 3069827698878 │ │ │ │ +00065810: 3932 3078 2078 2078 2020 2d20 3331 337c 920x x x - 313| │ │ │ │ +00065820: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065830: 2020 2020 3120 3320 2020 2020 2020 2020 1 3 │ │ │ │ +00065840: 2020 2020 2020 2020 2020 2030 2032 2033 0 2 3 │ │ │ │ +00065850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065860: 2020 2020 3120 3220 3320 2020 2020 207c 1 2 3 | │ │ │ │ +00065870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000658a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000658b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000658c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000658d0: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -000658e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000658f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065900: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00065910: 2020 2020 207c 0a7c 3039 3332 3932 3830 |.|09329280 │ │ │ │ -00065920: 7820 7820 202b 2035 3038 3634 3537 3933 x x + 508645793 │ │ │ │ -00065930: 3034 3033 3336 3078 2078 2078 2020 2d20 0403360x x x - │ │ │ │ -00065940: 3634 3438 3833 3138 3235 3436 3430 3078 644883182546400x │ │ │ │ -00065950: 2078 2078 2020 2d20 3138 3438 3535 3534 x x - 18485554 │ │ │ │ -00065960: 3836 3338 387c 0a7c 2020 2020 2020 2020 86388|.| │ │ │ │ -00065970: 2031 2033 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ -00065980: 2020 2020 2020 2020 3020 3220 3320 2020 0 2 3 │ │ │ │ -00065990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000659a0: 3120 3220 3320 2020 2020 2020 2020 2020 1 2 3 │ │ │ │ -000659b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000658b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000658c0: 0a7c 2020 2020 2020 2020 2032 2032 2020 .| 2 2 │ │ │ │ +000658d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000658e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000658f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00065900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065910: 0a7c 3039 3332 3932 3830 7820 7820 202b .|09329280x x + │ │ │ │ +00065920: 2035 3038 3634 3537 3933 3034 3033 3336 508645793040336 │ │ │ │ +00065930: 3078 2078 2078 2020 2d20 3634 3438 3833 0x x x - 644883 │ │ │ │ +00065940: 3138 3235 3436 3430 3078 2078 2078 2020 182546400x x x │ │ │ │ +00065950: 2d20 3138 3438 3535 3534 3836 3338 387c - 1848555486388| │ │ │ │ +00065960: 0a7c 2020 2020 2020 2020 2031 2033 2020 .| 1 3 │ │ │ │ +00065970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065980: 2020 3020 3220 3320 2020 2020 2020 2020 0 2 3 │ │ │ │ +00065990: 2020 2020 2020 2020 2020 3120 3220 3320 1 2 3 │ │ │ │ +000659a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000659b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000659c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000659d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000659e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000659f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00065a00: 2d2d 2d2d 2d7c 0a7c 2020 2032 2032 2020 -----|.| 2 2 │ │ │ │ -00065a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065a20: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00065a30: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00065a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065a50: 3320 2020 207c 0a7c 3030 7820 7820 202b 3 |.|00x x + │ │ │ │ -00065a60: 2033 3038 3833 3133 3132 3738 3039 3238 308831312780928 │ │ │ │ -00065a70: 3078 2078 2020 2d20 3139 3836 3131 3537 0x x - 19861157 │ │ │ │ -00065a80: 3130 3533 3935 3230 7820 7820 202d 2039 10539520x x - 9 │ │ │ │ -00065a90: 3133 3633 3833 3434 3230 3939 3278 2078 1363834420992x x │ │ │ │ -00065aa0: 2020 2d20 317c 0a7c 2020 2032 2033 2020 - 1|.| 2 3 │ │ │ │ -00065ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065ac0: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00065ad0: 2020 2020 2020 2020 2031 2033 2020 2020 1 3 │ │ │ │ -00065ae0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00065af0: 3320 2020 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +000659f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00065a00: 0a7c 2020 2032 2032 2020 2020 2020 2020 .| 2 2 │ │ │ │ +00065a10: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00065a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065a30: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00065a40: 2020 2020 2020 2020 2020 3320 2020 207c 3 | │ │ │ │ +00065a50: 0a7c 3030 7820 7820 202b 2033 3038 3833 .|00x x + 30883 │ │ │ │ +00065a60: 3133 3132 3738 3039 3238 3078 2078 2020 13127809280x x │ │ │ │ +00065a70: 2d20 3139 3836 3131 3537 3130 3533 3935 - 19861157105395 │ │ │ │ +00065a80: 3230 7820 7820 202d 2039 3133 3633 3833 20x x - 9136383 │ │ │ │ +00065a90: 3434 3230 3939 3278 2078 2020 2d20 317c 4420992x x - 1| │ │ │ │ +00065aa0: 0a7c 2020 2032 2033 2020 2020 2020 2020 .| 2 3 │ │ │ │ +00065ab0: 2020 2020 2020 2020 2020 2020 3020 3320 0 3 │ │ │ │ +00065ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065ad0: 2020 2031 2033 2020 2020 2020 2020 2020 1 3 │ │ │ │ +00065ae0: 2020 2020 2020 2020 3220 3320 2020 207c 2 3 | │ │ │ │ +00065af0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065b40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065b50: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -00065b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065b70: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065b80: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00065b90: 2020 2020 207c 0a7c 3334 3432 3732 3530 |.|34427250 │ │ │ │ -00065ba0: 3233 3533 3238 7820 7820 202b 2031 3438 235328x x + 148 │ │ │ │ -00065bb0: 3138 3837 3430 3437 3732 3939 3230 7820 18874047729920x │ │ │ │ -00065bc0: 7820 202d 2032 3537 3139 3538 3237 3232 x - 25719582722 │ │ │ │ -00065bd0: 3630 3136 3078 2078 2020 2b20 3236 3030 60160x x + 2600 │ │ │ │ -00065be0: 3431 3838 347c 0a7c 2020 2020 2020 2020 41884|.| │ │ │ │ -00065bf0: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ -00065c00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00065c10: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065c20: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ -00065c30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00065b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065b40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065b50: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00065b60: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00065b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065b80: 2020 3320 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00065b90: 0a7c 3334 3432 3732 3530 3233 3533 3238 .|34427250235328 │ │ │ │ +00065ba0: 7820 7820 202b 2031 3438 3138 3837 3430 x x + 148188740 │ │ │ │ +00065bb0: 3437 3732 3939 3230 7820 7820 202d 2032 47729920x x - 2 │ │ │ │ +00065bc0: 3537 3139 3538 3237 3232 3630 3136 3078 571958272260160x │ │ │ │ +00065bd0: 2078 2020 2b20 3236 3030 3431 3838 347c x + 260041884| │ │ │ │ +00065be0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065bf0: 2032 2033 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00065c00: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +00065c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065c20: 3120 3320 2020 2020 2020 2020 2020 207c 1 3 | │ │ │ │ +00065c30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065c80: 2020 2020 207c 0a7c 2020 2020 2020 3220 |.| 2 │ │ │ │ -00065c90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00065ca0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00065cb0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00065cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065cd0: 2020 2033 207c 0a7c 3534 3839 3678 2078 3 |.|54896x x │ │ │ │ -00065ce0: 2020 2d20 3232 3433 3730 3338 3338 3139 - 224370383819 │ │ │ │ -00065cf0: 3930 3430 7820 7820 202b 2038 3232 3238 9040x x + 82228 │ │ │ │ -00065d00: 3737 3331 3638 3836 3430 7820 7820 202d 7731688640x x - │ │ │ │ -00065d10: 2031 3233 3135 3632 3232 3636 3836 3430 123156222668640 │ │ │ │ -00065d20: 7820 7820 207c 0a7c 2020 2020 2020 3220 x x |.| 2 │ │ │ │ -00065d30: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065d40: 2020 2020 2030 2033 2020 2020 2020 2020 0 3 │ │ │ │ -00065d50: 2020 2020 2020 2020 2020 2031 2033 2020 1 3 │ │ │ │ -00065d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065d70: 2032 2033 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +00065c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065c80: 0a7c 2020 2020 2020 3220 3220 2020 2020 .| 2 2 │ │ │ │ +00065c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065ca0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00065cb0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00065cc0: 2020 2020 2020 2020 2020 2020 2033 207c 3 | │ │ │ │ +00065cd0: 0a7c 3534 3839 3678 2078 2020 2d20 3232 .|54896x x - 22 │ │ │ │ +00065ce0: 3433 3730 3338 3338 3139 3930 3430 7820 43703838199040x │ │ │ │ +00065cf0: 7820 202b 2038 3232 3238 3737 3331 3638 x + 82228773168 │ │ │ │ +00065d00: 3836 3430 7820 7820 202d 2031 3233 3135 8640x x - 12315 │ │ │ │ +00065d10: 3632 3232 3636 3836 3430 7820 7820 207c 6222668640x x | │ │ │ │ +00065d20: 0a7c 2020 2020 2020 3220 3320 2020 2020 .| 2 3 │ │ │ │ +00065d30: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00065d40: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00065d50: 2020 2020 2031 2033 2020 2020 2020 2020 1 3 │ │ │ │ +00065d60: 2020 2020 2020 2020 2020 2032 2033 207c 2 3 | │ │ │ │ +00065d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065dc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00065dd0: 2020 2020 2020 3220 3220 2020 2020 2020 2 2 │ │ │ │ -00065de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065df0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065e00: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00065e10: 2020 2020 207c 0a7c 3934 3634 3931 3038 |.|94649108 │ │ │ │ -00065e20: 3236 3136 3078 2078 2020 2d20 3130 3234 26160x x - 1024 │ │ │ │ -00065e30: 3831 3933 3038 3133 3635 3132 3078 2078 8193081365120x x │ │ │ │ -00065e40: 2020 2b20 3338 3139 3130 3732 3431 3839 + 381910724189 │ │ │ │ -00065e50: 3536 3830 7820 7820 202b 2034 3639 3033 5680x x + 46903 │ │ │ │ -00065e60: 3736 3637 317c 0a7c 2020 2020 2020 2020 76671|.| │ │ │ │ -00065e70: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ -00065e80: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00065e90: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065ea0: 2020 2020 2031 2033 2020 2020 2020 2020 1 3 │ │ │ │ -00065eb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00065db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065dc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065dd0: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00065de0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +00065df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065e00: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00065e10: 0a7c 3934 3634 3931 3038 3236 3136 3078 .|9464910826160x │ │ │ │ +00065e20: 2078 2020 2d20 3130 3234 3831 3933 3038 x - 1024819308 │ │ │ │ +00065e30: 3133 3635 3132 3078 2078 2020 2b20 3338 1365120x x + 38 │ │ │ │ +00065e40: 3139 3130 3732 3431 3839 3536 3830 7820 19107241895680x │ │ │ │ +00065e50: 7820 202b 2034 3639 3033 3736 3637 317c x + 4690376671| │ │ │ │ +00065e60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00065e70: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00065e80: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ +00065e90: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +00065ea0: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00065eb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00065ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00065ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065f00: 2020 2020 207c 0a7c 2020 2032 2032 2020 |.| 2 2 │ │ │ │ -00065f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065f20: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00065f30: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -00065f40: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ -00065f50: 2020 2020 207c 0a7c 3830 7820 7820 202b |.|80x x + │ │ │ │ -00065f60: 2035 3438 3430 3031 3237 3838 3733 3630 548400127887360 │ │ │ │ -00065f70: 7820 7820 202d 2033 3333 3832 3537 3734 x x - 333825774 │ │ │ │ -00065f80: 3735 3037 3230 7820 7820 202d 2039 3138 750720x x - 918 │ │ │ │ -00065f90: 3433 3634 3838 3137 3736 3030 7820 7820 436488177600x x │ │ │ │ -00065fa0: 202d 2031 317c 0a7c 2020 2032 2033 2020 - 11|.| 2 3 │ │ │ │ -00065fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00065fc0: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00065fd0: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ -00065fe0: 2020 2020 2020 2020 2020 2020 2032 2033 2 3 │ │ │ │ -00065ff0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00065ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00065f00: 0a7c 2020 2032 2032 2020 2020 2020 2020 .| 2 2 │ │ │ │ +00065f10: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00065f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065f30: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00065f40: 2020 2020 2020 2020 2033 2020 2020 207c 3 | │ │ │ │ +00065f50: 0a7c 3830 7820 7820 202b 2035 3438 3430 .|80x x + 54840 │ │ │ │ +00065f60: 3031 3237 3838 3733 3630 7820 7820 202d 0127887360x x - │ │ │ │ +00065f70: 2033 3333 3832 3537 3734 3735 3037 3230 333825774750720 │ │ │ │ +00065f80: 7820 7820 202d 2039 3138 3433 3634 3838 x x - 918436488 │ │ │ │ +00065f90: 3137 3736 3030 7820 7820 202d 2031 317c 177600x x - 11| │ │ │ │ +00065fa0: 0a7c 2020 2032 2033 2020 2020 2020 2020 .| 2 3 │ │ │ │ +00065fb0: 2020 2020 2020 2020 2020 2030 2033 2020 0 3 │ │ │ │ +00065fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00065fd0: 2031 2033 2020 2020 2020 2020 2020 2020 1 3 │ │ │ │ +00065fe0: 2020 2020 2020 2032 2033 2020 2020 207c 2 3 | │ │ │ │ +00065ff0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00066000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066040: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00066050: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -00066060: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00066070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066080: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00066090: 2020 2020 207c 0a7c 3637 3636 3136 3839 |.|67661689 │ │ │ │ -000660a0: 3238 3736 3830 7820 202d 2031 3431 3638 287680x - 14168 │ │ │ │ -000660b0: 3134 3031 3236 3936 3332 3030 7820 7820 140126963200x x │ │ │ │ -000660c0: 202b 2031 3433 3138 3639 3838 3132 3531 + 1431869881251 │ │ │ │ -000660d0: 3933 3630 7820 7820 7820 202d 2032 3433 9360x x x - 243 │ │ │ │ -000660e0: 3235 3737 367c 0a7c 2020 2020 2020 2020 25776|.| │ │ │ │ -000660f0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00066100: 2020 2020 2020 2020 2020 2020 2030 2034 0 4 │ │ │ │ -00066110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066120: 2020 2020 2030 2031 2034 2020 2020 2020 0 1 4 │ │ │ │ -00066130: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00066040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066050: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00066060: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00066070: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00066080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066090: 0a7c 3637 3636 3136 3839 3238 3736 3830 .|67661689287680 │ │ │ │ +000660a0: 7820 202d 2031 3431 3638 3134 3031 3236 x - 14168140126 │ │ │ │ +000660b0: 3936 3332 3030 7820 7820 202b 2031 3433 963200x x + 143 │ │ │ │ +000660c0: 3138 3639 3838 3132 3531 3933 3630 7820 18698812519360x │ │ │ │ +000660d0: 7820 7820 202d 2032 3433 3235 3737 367c x x - 24325776| │ │ │ │ +000660e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000660f0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066100: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ +00066110: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00066120: 2031 2034 2020 2020 2020 2020 2020 207c 1 4 | │ │ │ │ +00066130: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066190: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000661a0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -000661b0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -000661c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000661d0: 2020 3220 207c 0a7c 3039 3639 3630 3078 2 |.|0969600x │ │ │ │ -000661e0: 2078 2020 2b20 3135 3734 3830 3735 3834 x + 1574807584 │ │ │ │ -000661f0: 3839 3630 7820 202b 2038 3435 3835 3439 8960x + 8458549 │ │ │ │ -00066200: 3738 3334 3838 3030 3078 2078 2020 2d20 783488000x x - │ │ │ │ -00066210: 3230 3237 3332 3030 3731 3339 3634 3830 2027320071396480 │ │ │ │ -00066220: 3078 2078 207c 0a7c 2020 2020 2020 2020 0x x |.| │ │ │ │ -00066230: 3220 3320 2020 2020 2020 2020 2020 2020 2 3 │ │ │ │ -00066240: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -00066250: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -00066260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066270: 2020 3020 317c 0a7c 2020 2020 2020 2020 0 1|.| │ │ │ │ +00066170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066180: 0a7c 2020 2020 2020 2020 2020 3320 2020 .| 3 │ │ │ │ +00066190: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +000661a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000661b0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +000661c0: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ +000661d0: 0a7c 3039 3639 3630 3078 2078 2020 2b20 .|0969600x x + │ │ │ │ +000661e0: 3135 3734 3830 3735 3834 3839 3630 7820 15748075848960x │ │ │ │ +000661f0: 202b 2038 3435 3835 3439 3738 3334 3838 + 8458549783488 │ │ │ │ +00066200: 3030 3078 2078 2020 2d20 3230 3237 3332 000x x - 202732 │ │ │ │ +00066210: 3030 3731 3339 3634 3830 3078 2078 207c 00713964800x x | │ │ │ │ +00066220: 0a7c 2020 2020 2020 2020 3220 3320 2020 .| 2 3 │ │ │ │ +00066230: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00066240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066250: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +00066260: 2020 2020 2020 2020 2020 2020 3020 317c 0 1| │ │ │ │ +00066270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000662a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000662b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000662c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000662d0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -000662e0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -000662f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066300: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -00066310: 2020 2020 207c 0a7c 2d20 3830 3334 3236 |.|- 803426 │ │ │ │ -00066320: 3032 3039 3932 3078 2020 2b20 3434 3130 0209920x + 4410 │ │ │ │ -00066330: 3339 3830 3834 3834 3335 3230 7820 7820 398084843520x x │ │ │ │ -00066340: 202b 2032 3636 3938 3038 3534 3134 3937 + 2669808541497 │ │ │ │ -00066350: 3231 3630 7820 7820 7820 202d 2033 3238 2160x x x - 328 │ │ │ │ -00066360: 3935 3138 337c 0a7c 2020 2020 2020 2020 95183|.| │ │ │ │ -00066370: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00066380: 2020 2020 2020 2020 2020 2020 2030 2034 0 4 │ │ │ │ -00066390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000663a0: 2020 2020 2030 2031 2034 2020 2020 2020 0 1 4 │ │ │ │ -000663b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000662b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000662c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000662d0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000662e0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +000662f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00066300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066310: 0a7c 2d20 3830 3334 3236 3032 3039 3932 .|- 803426020992 │ │ │ │ +00066320: 3078 2020 2b20 3434 3130 3339 3830 3834 0x + 4410398084 │ │ │ │ +00066330: 3834 3335 3230 7820 7820 202b 2032 3636 843520x x + 266 │ │ │ │ +00066340: 3938 3038 3534 3134 3937 3231 3630 7820 98085414972160x │ │ │ │ +00066350: 7820 7820 202d 2033 3238 3935 3138 337c x x - 32895183| │ │ │ │ +00066360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066370: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066380: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ +00066390: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000663a0: 2031 2034 2020 2020 2020 2020 2020 207c 1 4 | │ │ │ │ +000663b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000663c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000663e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000663f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066410: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00066420: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ -00066430: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ -00066440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066450: 2020 3220 207c 0a7c 3637 3636 3430 7820 2 |.|676640x │ │ │ │ -00066460: 7820 202b 2039 3136 3135 3136 3830 3638 x + 91615168068 │ │ │ │ -00066470: 3438 3030 7820 202d 2037 3036 3632 3834 4800x - 7066284 │ │ │ │ -00066480: 3532 3139 3039 3736 3078 2078 2020 2b20 521909760x x + │ │ │ │ -00066490: 3137 3233 3136 3030 3337 3837 3935 3034 1723160037879504 │ │ │ │ -000664a0: 3078 2078 207c 0a7c 2020 2020 2020 2032 0x x |.| 2 │ │ │ │ -000664b0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000664c0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -000664d0: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -000664e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000664f0: 2020 3020 317c 0a7c 2020 2020 2020 2020 0 1|.| │ │ │ │ +000663f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066400: 0a7c 2020 2020 2020 2020 2033 2020 2020 .| 3 │ │ │ │ +00066410: 2020 2020 2020 2020 2020 2020 2020 2034 4 │ │ │ │ +00066420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066430: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +00066440: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ +00066450: 0a7c 3637 3636 3430 7820 7820 202b 2039 .|676640x x + 9 │ │ │ │ +00066460: 3136 3135 3136 3830 3638 3438 3030 7820 16151680684800x │ │ │ │ +00066470: 202d 2037 3036 3632 3834 3532 3139 3039 - 7066284521909 │ │ │ │ +00066480: 3736 3078 2078 2020 2b20 3137 3233 3136 760x x + 172316 │ │ │ │ +00066490: 3030 3337 3837 3935 3034 3078 2078 207c 00378795040x x | │ │ │ │ +000664a0: 0a7c 2020 2020 2020 2032 2033 2020 2020 .| 2 3 │ │ │ │ +000664b0: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +000664c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000664d0: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +000664e0: 2020 2020 2020 2020 2020 2020 3020 317c 0 1| │ │ │ │ +000664f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066550: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ -00066560: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00066570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066580: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066590: 2020 2020 207c 0a7c 3536 3235 3237 3337 |.|56252737 │ │ │ │ -000665a0: 3833 3034 3078 2020 2b20 3939 3037 3434 83040x + 990744 │ │ │ │ -000665b0: 3037 3334 3832 3234 3030 7820 7820 202d 0734822400x x - │ │ │ │ -000665c0: 2035 3736 3935 3231 3433 3835 3133 3238 576952143851328 │ │ │ │ -000665d0: 3030 7820 7820 7820 202b 2034 3134 3130 00x x x + 41410 │ │ │ │ -000665e0: 3433 3730 377c 0a7c 2020 2020 2020 2020 43707|.| │ │ │ │ -000665f0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -00066600: 2020 2020 2020 2020 2020 2030 2034 2020 0 4 │ │ │ │ -00066610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066620: 2020 2030 2031 2034 2020 2020 2020 2020 0 1 4 │ │ │ │ -00066630: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00066530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066550: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00066560: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00066570: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00066580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066590: 0a7c 3536 3235 3237 3337 3833 3034 3078 .|5625273783040x │ │ │ │ +000665a0: 2020 2b20 3939 3037 3434 3037 3334 3832 + 990744073482 │ │ │ │ +000665b0: 3234 3030 7820 7820 202d 2035 3736 3935 2400x x - 57695 │ │ │ │ +000665c0: 3231 3433 3835 3133 3238 3030 7820 7820 214385132800x x │ │ │ │ +000665d0: 7820 202b 2034 3134 3130 3433 3730 377c x + 4141043707| │ │ │ │ +000665e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000665f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066600: 2020 2020 2030 2034 2020 2020 2020 2020 0 4 │ │ │ │ +00066610: 2020 2020 2020 2020 2020 2020 2030 2031 0 1 │ │ │ │ +00066620: 2034 2020 2020 2020 2020 2020 2020 207c 4 | │ │ │ │ +00066630: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00066640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066680: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00066690: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000666a0: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -000666b0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000666c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000666d0: 2020 2020 207c 0a7c 3638 3037 3034 3830 |.|68070480 │ │ │ │ -000666e0: 7820 7820 7820 202b 2031 3231 3732 3036 x x x + 1217206 │ │ │ │ -000666f0: 3838 3731 3230 3030 7820 7820 202b 2039 88712000x x + 9 │ │ │ │ -00066700: 3734 3635 3339 3038 3733 3533 3630 7820 74653908735360x │ │ │ │ -00066710: 7820 7820 202d 2031 3132 3633 3434 3238 x x - 112634428 │ │ │ │ -00066720: 3432 3334 307c 0a7c 2020 2020 2020 2020 42340|.| │ │ │ │ -00066730: 2030 2031 2034 2020 2020 2020 2020 2020 0 1 4 │ │ │ │ -00066740: 2020 2020 2020 2020 2031 2034 2020 2020 1 4 │ │ │ │ -00066750: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00066760: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00066770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00066680: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ +00066690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000666a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000666b0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000666c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000666d0: 0a7c 3638 3037 3034 3830 7820 7820 7820 .|68070480x x x │ │ │ │ +000666e0: 202b 2031 3231 3732 3036 3838 3731 3230 + 1217206887120 │ │ │ │ +000666f0: 3030 7820 7820 202b 2039 3734 3635 3339 00x x + 9746539 │ │ │ │ +00066700: 3038 3733 3533 3630 7820 7820 7820 202d 08735360x x x - │ │ │ │ +00066710: 2031 3132 3633 3434 3238 3432 3334 307c 11263442842340| │ │ │ │ +00066720: 0a7c 2020 2020 2020 2020 2030 2031 2034 .| 0 1 4 │ │ │ │ +00066730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066740: 2020 2031 2034 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00066750: 2020 2020 2020 2020 2030 2032 2034 2020 0 2 4 │ │ │ │ +00066760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000667a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000667b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000667c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000667d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000667e0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000667f0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ -00066800: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00066810: 2020 2020 207c 0a7c 7820 202b 2031 3438 |.|x + 148 │ │ │ │ -00066820: 3436 3930 3237 3537 3136 3036 3030 7820 46902757160600x │ │ │ │ -00066830: 7820 7820 202d 2033 3436 3830 3436 3032 x x - 346804602 │ │ │ │ -00066840: 3938 3930 3430 3078 2078 2020 2b20 3931 9890400x x + 91 │ │ │ │ -00066850: 3537 3937 3638 3237 3230 3836 3430 7820 57976827208640x │ │ │ │ -00066860: 7820 7820 207c 0a7c 2034 2020 2020 2020 x x |.| 4 │ │ │ │ -00066870: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00066880: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ -00066890: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ -000668a0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -000668b0: 2032 2034 207c 0a7c 2020 2020 2020 2020 2 4 |.| │ │ │ │ +000667b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000667c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000667d0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000667e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000667f0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066800: 2020 2020 2020 2020 2032 2020 2020 207c 2 | │ │ │ │ +00066810: 0a7c 7820 202b 2031 3438 3436 3930 3237 .|x + 148469027 │ │ │ │ +00066820: 3537 3136 3036 3030 7820 7820 7820 202d 57160600x x x - │ │ │ │ +00066830: 2033 3436 3830 3436 3032 3938 3930 3430 346804602989040 │ │ │ │ +00066840: 3078 2078 2020 2b20 3931 3537 3937 3638 0x x + 91579768 │ │ │ │ +00066850: 3237 3230 3836 3430 7820 7820 7820 207c 27208640x x x | │ │ │ │ +00066860: 0a7c 2034 2020 2020 2020 2020 2020 2020 .| 4 │ │ │ │ +00066870: 2020 2020 2020 2020 2030 2031 2034 2020 0 1 4 │ │ │ │ +00066880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066890: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ +000668a0: 2020 2020 2020 2020 2030 2032 2034 207c 0 2 4 | │ │ │ │ +000668b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000668c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000668d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000668e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000668f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066910: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00066920: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00066930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066940: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066950: 2020 2020 207c 0a7c 3232 3933 3936 3332 |.|22939632 │ │ │ │ -00066960: 3078 2078 2078 2020 2b20 3637 3236 3037 0x x x + 672607 │ │ │ │ -00066970: 3339 3238 3533 3738 3830 7820 7820 202d 3928537880x x - │ │ │ │ -00066980: 2031 3132 3532 3931 3337 3732 3135 3438 112529137721548 │ │ │ │ -00066990: 3830 7820 7820 7820 202b 2036 3631 3530 80x x x + 66150 │ │ │ │ -000669a0: 3032 3634 337c 0a7c 2020 2020 2020 2020 02643|.| │ │ │ │ -000669b0: 2020 3020 3120 3420 2020 2020 2020 2020 0 1 4 │ │ │ │ -000669c0: 2020 2020 2020 2020 2020 2031 2034 2020 1 4 │ │ │ │ -000669d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000669e0: 2020 2030 2032 2034 2020 2020 2020 2020 0 2 4 │ │ │ │ -000669f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000668f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066900: 0a7c 2020 2020 2020 2020 2020 2020 3220 .| 2 │ │ │ │ +00066910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066920: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +00066930: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00066940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066950: 0a7c 3232 3933 3936 3332 3078 2078 2078 .|229396320x x x │ │ │ │ +00066960: 2020 2b20 3637 3236 3037 3339 3238 3533 + 672607392853 │ │ │ │ +00066970: 3738 3830 7820 7820 202d 2031 3132 3532 7880x x - 11252 │ │ │ │ +00066980: 3931 3337 3732 3135 3438 3830 7820 7820 913772154880x x │ │ │ │ +00066990: 7820 202b 2036 3631 3530 3032 3634 337c x + 6615002643| │ │ │ │ +000669a0: 0a7c 2020 2020 2020 2020 2020 3020 3120 .| 0 1 │ │ │ │ +000669b0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000669c0: 2020 2020 2031 2034 2020 2020 2020 2020 1 4 │ │ │ │ +000669d0: 2020 2020 2020 2020 2020 2020 2030 2032 0 2 │ │ │ │ +000669e0: 2034 2020 2020 2020 2020 2020 2020 207c 4 | │ │ │ │ +000669f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066a60: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066a70: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -00066a80: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00066a90: 2020 2020 207c 0a7c 7820 202d 2035 3432 |.|x - 542 │ │ │ │ -00066aa0: 3132 3137 3733 3935 3836 3734 3078 2078 1217739586740x x │ │ │ │ -00066ab0: 2078 2020 2b20 3932 3331 3139 3933 3230 x + 9231199320 │ │ │ │ -00066ac0: 3932 3430 3078 2078 2020 2d20 3338 3931 92400x x - 3891 │ │ │ │ -00066ad0: 3131 3538 3831 3137 3238 3078 2078 2078 11588117280x x x │ │ │ │ -00066ae0: 2020 2d20 317c 0a7c 2034 2020 2020 2020 - 1|.| 4 │ │ │ │ -00066af0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00066b00: 3120 3420 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ -00066b10: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ -00066b20: 2020 2020 2020 2020 2020 2020 3020 3220 0 2 │ │ │ │ -00066b30: 3420 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +00066a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066a50: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00066a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066a70: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066a80: 2020 2020 2020 3220 2020 2020 2020 207c 2 | │ │ │ │ +00066a90: 0a7c 7820 202d 2035 3432 3132 3137 3733 .|x - 542121773 │ │ │ │ +00066aa0: 3935 3836 3734 3078 2078 2078 2020 2b20 9586740x x x + │ │ │ │ +00066ab0: 3932 3331 3139 3933 3230 3932 3430 3078 923119932092400x │ │ │ │ +00066ac0: 2078 2020 2d20 3338 3931 3131 3538 3831 x - 3891115881 │ │ │ │ +00066ad0: 3137 3238 3078 2078 2078 2020 2d20 317c 17280x x x - 1| │ │ │ │ +00066ae0: 0a7c 2034 2020 2020 2020 2020 2020 2020 .| 4 │ │ │ │ +00066af0: 2020 2020 2020 2020 3020 3120 3420 2020 0 1 4 │ │ │ │ +00066b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066b10: 3120 3420 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00066b20: 2020 2020 2020 3020 3220 3420 2020 207c 0 2 4 | │ │ │ │ +00066b30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066b80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00066b90: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066ba0: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -00066bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066bc0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066bd0: 2020 2020 207c 0a7c 3530 3530 3430 3078 |.|5050400x │ │ │ │ -00066be0: 2078 2078 2020 2d20 3834 3833 3831 3431 x x - 84838141 │ │ │ │ -00066bf0: 3932 3732 3234 3030 7820 7820 202d 2031 92722400x x - 1 │ │ │ │ -00066c00: 3434 3535 3636 3331 3130 3230 3136 3078 445566311020160x │ │ │ │ -00066c10: 2078 2078 2020 2d20 3832 3230 3333 3838 x x - 82203388 │ │ │ │ -00066c20: 3630 3836 317c 0a7c 2020 2020 2020 2020 60861|.| │ │ │ │ -00066c30: 3020 3120 3420 2020 2020 2020 2020 2020 0 1 4 │ │ │ │ -00066c40: 2020 2020 2020 2020 2031 2034 2020 2020 1 4 │ │ │ │ -00066c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066c60: 3020 3220 3420 2020 2020 2020 2020 2020 0 2 4 │ │ │ │ -00066c70: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00066b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066b80: 0a7c 2020 2020 2020 2020 2020 3220 2020 .| 2 │ │ │ │ +00066b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066ba0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00066bb0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00066bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066bd0: 0a7c 3530 3530 3430 3078 2078 2078 2020 .|5050400x x x │ │ │ │ +00066be0: 2d20 3834 3833 3831 3431 3932 3732 3234 - 84838141927224 │ │ │ │ +00066bf0: 3030 7820 7820 202d 2031 3434 3535 3636 00x x - 1445566 │ │ │ │ +00066c00: 3331 3130 3230 3136 3078 2078 2078 2020 311020160x x x │ │ │ │ +00066c10: 2d20 3832 3230 3333 3838 3630 3836 317c - 8220338860861| │ │ │ │ +00066c20: 0a7c 2020 2020 2020 2020 3020 3120 3420 .| 0 1 4 │ │ │ │ +00066c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066c40: 2020 2031 2034 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00066c50: 2020 2020 2020 2020 2020 3020 3220 3420 0 2 4 │ │ │ │ +00066c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066c70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00066c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00066ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00066cc0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +00066cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00066cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066ce0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00066cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066d00: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00066d10: 2020 2020 207c 0a7c 3336 3078 2078 2078 |.|360x x x │ │ │ │ -00066d20: 2078 2020 2b20 3436 3433 3530 3030 3630 x + 4643500060 │ │ │ │ -00066d30: 3835 3336 3430 7820 7820 7820 202d 2031 853640x x x - 1 │ │ │ │ -00066d40: 3631 3034 3436 3734 3531 3639 3336 3078 610446745169360x │ │ │ │ -00066d50: 2078 2078 2020 2d20 3235 3137 3438 3436 x x - 25174846 │ │ │ │ -00066d60: 3938 3331 347c 0a7c 2020 2020 3020 3120 98314|.| 0 1 │ │ │ │ -00066d70: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00066d80: 2020 2020 2020 2031 2032 2034 2020 2020 1 2 4 │ │ │ │ -00066d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066da0: 3020 3220 3420 2020 2020 2020 2020 2020 0 2 4 │ │ │ │ -00066db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066ce0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00066cf0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00066d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066d10: 0a7c 3336 3078 2078 2078 2078 2020 2b20 .|360x x x x + │ │ │ │ +00066d20: 3436 3433 3530 3030 3630 3835 3336 3430 4643500060853640 │ │ │ │ +00066d30: 7820 7820 7820 202d 2031 3631 3034 3436 x x x - 1610446 │ │ │ │ +00066d40: 3734 3531 3639 3336 3078 2078 2078 2020 745169360x x x │ │ │ │ +00066d50: 2d20 3235 3137 3438 3436 3938 3331 347c - 2517484698314| │ │ │ │ +00066d60: 0a7c 2020 2020 3020 3120 3220 3420 2020 .| 0 1 2 4 │ │ │ │ +00066d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066d80: 2031 2032 2034 2020 2020 2020 2020 2020 1 2 4 │ │ │ │ +00066d90: 2020 2020 2020 2020 2020 3020 3220 3420 0 2 4 │ │ │ │ +00066da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066e00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066e00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066e30: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00066e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066e50: 2020 3220 207c 0a7c 2d20 3231 3239 3838 2 |.|- 212988 │ │ │ │ -00066e60: 3138 3435 3536 3933 3532 3078 2078 2078 18455693520x x x │ │ │ │ -00066e70: 2078 2020 2b20 3834 3737 3739 3431 3732 x + 8477794172 │ │ │ │ -00066e80: 3832 3932 3430 7820 7820 7820 202b 2031 829240x x x + 1 │ │ │ │ -00066e90: 3736 3535 3239 3635 3930 3032 3936 3078 765529659002960x │ │ │ │ -00066ea0: 2078 2078 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -00066eb0: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ -00066ec0: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00066ed0: 2020 2020 2020 2031 2032 2034 2020 2020 1 2 4 │ │ │ │ -00066ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066ef0: 3020 3220 347c 0a7c 2020 2020 2020 2020 0 2 4|.| │ │ │ │ +00066e30: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00066e40: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ +00066e50: 0a7c 2d20 3231 3239 3838 3138 3435 3536 .|- 212988184556 │ │ │ │ +00066e60: 3933 3532 3078 2078 2078 2078 2020 2b20 93520x x x x + │ │ │ │ +00066e70: 3834 3737 3739 3431 3732 3832 3932 3430 8477794172829240 │ │ │ │ +00066e80: 7820 7820 7820 202b 2031 3736 3535 3239 x x x + 1765529 │ │ │ │ +00066e90: 3635 3930 3032 3936 3078 2078 2078 207c 659002960x x x | │ │ │ │ +00066ea0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00066eb0: 2020 2020 2020 3020 3120 3220 3420 2020 0 1 2 4 │ │ │ │ +00066ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00066ed0: 2031 2032 2034 2020 2020 2020 2020 2020 1 2 4 │ │ │ │ +00066ee0: 2020 2020 2020 2020 2020 3020 3220 347c 0 2 4| │ │ │ │ +00066ef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00066f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066f30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00066f40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00066f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f60: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00066f60: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00066f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00066f80: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00066f90: 2020 2020 207c 0a7c 3732 3336 3536 3078 |.|7236560x │ │ │ │ -00066fa0: 2078 2078 2078 2020 2d20 3239 3332 3038 x x x - 293208 │ │ │ │ -00066fb0: 3533 3032 3036 3631 3739 3078 2078 2078 53020661790x x x │ │ │ │ -00066fc0: 2020 2d20 3830 3637 3138 3834 3031 3530 - 806718840150 │ │ │ │ -00066fd0: 3038 3136 7820 7820 7820 202b 2032 3433 0816x x x + 243 │ │ │ │ -00066fe0: 3535 3939 347c 0a7c 2020 2020 2020 2020 55994|.| │ │ │ │ -00066ff0: 3020 3120 3220 3420 2020 2020 2020 2020 0 1 2 4 │ │ │ │ -00067000: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ -00067010: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00067020: 2020 2020 2030 2032 2034 2020 2020 2020 0 2 4 │ │ │ │ -00067030: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00066f80: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00066f90: 0a7c 3732 3336 3536 3078 2078 2078 2078 .|7236560x x x x │ │ │ │ +00066fa0: 2020 2d20 3239 3332 3038 3533 3032 3036 - 293208530206 │ │ │ │ +00066fb0: 3631 3739 3078 2078 2078 2020 2d20 3830 61790x x x - 80 │ │ │ │ +00066fc0: 3637 3138 3834 3031 3530 3038 3136 7820 67188401500816x │ │ │ │ +00066fd0: 7820 7820 202b 2032 3433 3535 3939 347c x x + 24355994| │ │ │ │ +00066fe0: 0a7c 2020 2020 2020 2020 3020 3120 3220 .| 0 1 2 │ │ │ │ +00066ff0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067000: 2020 2020 2020 3120 3220 3420 2020 2020 1 2 4 │ │ │ │ +00067010: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00067020: 2032 2034 2020 2020 2020 2020 2020 207c 2 4 | │ │ │ │ +00067030: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000670a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000670b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000670c0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000670d0: 2020 2020 207c 0a7c 3032 3732 3139 3336 |.|02721936 │ │ │ │ -000670e0: 3837 3832 3838 3030 7820 7820 7820 7820 87828800x x x x │ │ │ │ -000670f0: 202b 2036 3137 3133 3238 3138 3837 3437 + 6171328188747 │ │ │ │ -00067100: 3735 3078 2078 2078 2020 2b20 3433 3031 750x x x + 4301 │ │ │ │ -00067110: 3138 3933 3236 3933 3438 3932 7820 7820 189326934892x x │ │ │ │ -00067120: 7820 202d 207c 0a7c 2020 2020 2020 2020 x - |.| │ │ │ │ -00067130: 2020 2020 2020 2020 2030 2031 2032 2034 0 1 2 4 │ │ │ │ -00067140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067150: 2020 2020 3120 3220 3420 2020 2020 2020 1 2 4 │ │ │ │ -00067160: 2020 2020 2020 2020 2020 2020 2030 2032 0 2 │ │ │ │ -00067170: 2034 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +000670a0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000670b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000670c0: 2020 2020 2020 2020 2032 2020 2020 207c 2 | │ │ │ │ +000670d0: 0a7c 3032 3732 3139 3336 3837 3832 3838 .|02721936878288 │ │ │ │ +000670e0: 3030 7820 7820 7820 7820 202b 2036 3137 00x x x x + 617 │ │ │ │ +000670f0: 3133 3238 3138 3837 3437 3735 3078 2078 1328188747750x x │ │ │ │ +00067100: 2078 2020 2b20 3433 3031 3138 3933 3236 x + 4301189326 │ │ │ │ +00067110: 3933 3438 3932 7820 7820 7820 202d 207c 934892x x x - | │ │ │ │ +00067120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067130: 2020 2030 2031 2032 2034 2020 2020 2020 0 1 2 4 │ │ │ │ +00067140: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00067150: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ +00067160: 2020 2020 2020 2030 2032 2034 2020 207c 0 2 4 | │ │ │ │ +00067170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000671a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000671b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000671c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000671b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000671c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000671d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000671e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000671f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067200: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00067210: 2020 2020 207c 0a7c 3638 3078 2078 2078 |.|680x x x │ │ │ │ -00067220: 2078 2020 2b20 3132 3833 3832 3435 3537 x + 1283824557 │ │ │ │ -00067230: 3731 3737 3836 3078 2078 2078 2020 2b20 7177860x x x + │ │ │ │ -00067240: 3533 3833 3735 3134 3934 3236 3234 3078 538375149426240x │ │ │ │ -00067250: 2078 2078 2020 2d20 3236 3538 3531 3735 x x - 26585175 │ │ │ │ -00067260: 3339 3139 377c 0a7c 2020 2020 3020 3120 39197|.| 0 1 │ │ │ │ -00067270: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00067280: 2020 2020 2020 2020 3120 3220 3420 2020 1 2 4 │ │ │ │ -00067290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000672a0: 3020 3220 3420 2020 2020 2020 2020 2020 0 2 4 │ │ │ │ -000672b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000671e0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000671f0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00067200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067210: 0a7c 3638 3078 2078 2078 2078 2020 2b20 .|680x x x x + │ │ │ │ +00067220: 3132 3833 3832 3435 3537 3731 3737 3836 1283824557717786 │ │ │ │ +00067230: 3078 2078 2078 2020 2b20 3533 3833 3735 0x x x + 538375 │ │ │ │ +00067240: 3134 3934 3236 3234 3078 2078 2078 2020 149426240x x x │ │ │ │ +00067250: 2d20 3236 3538 3531 3735 3339 3139 377c - 2658517539197| │ │ │ │ +00067260: 0a7c 2020 2020 3020 3120 3220 3420 2020 .| 0 1 2 4 │ │ │ │ +00067270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067280: 2020 3120 3220 3420 2020 2020 2020 2020 1 2 4 │ │ │ │ +00067290: 2020 2020 2020 2020 2020 3020 3220 3420 0 2 4 │ │ │ │ +000672a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000672b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 000672c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000672d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000672e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000672f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067300: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 3220 -----|.| 2 │ │ │ │ -00067310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067320: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00067330: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00067340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067350: 2020 2020 207c 0a7c 3838 3078 2078 2078 |.|880x x x │ │ │ │ -00067360: 2020 2d20 3637 3432 3230 3037 3839 3637 - 674220078967 │ │ │ │ -00067370: 3638 7820 7820 202d 2033 3035 3432 3138 68x x - 3054218 │ │ │ │ -00067380: 3238 3539 3332 3830 3078 2078 2078 2020 285932800x x x │ │ │ │ -00067390: 2b20 3332 3737 3233 3039 3132 3439 3037 + 32772309124907 │ │ │ │ -000673a0: 3532 3078 207c 0a7c 2020 2020 3120 3220 520x |.| 1 2 │ │ │ │ -000673b0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000673c0: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ -000673d0: 2020 2020 2020 2020 2020 3020 3320 3420 0 3 4 │ │ │ │ -000673e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000673f0: 2020 2020 307c 0a7c 2020 2020 2020 2020 0|.| │ │ │ │ +000672f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00067300: 0a7c 2020 2020 2020 3220 2020 2020 2020 .| 2 │ │ │ │ +00067310: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +00067320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067330: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00067340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067350: 0a7c 3838 3078 2078 2078 2020 2d20 3637 .|880x x x - 67 │ │ │ │ +00067360: 3432 3230 3037 3839 3637 3638 7820 7820 422007896768x x │ │ │ │ +00067370: 202d 2033 3035 3432 3138 3238 3539 3332 - 3054218285932 │ │ │ │ +00067380: 3830 3078 2078 2078 2020 2b20 3332 3737 800x x x + 3277 │ │ │ │ +00067390: 3233 3039 3132 3439 3037 3532 3078 207c 2309124907520x | │ │ │ │ +000673a0: 0a7c 2020 2020 3120 3220 3420 2020 2020 .| 1 2 4 │ │ │ │ +000673b0: 2020 2020 2020 2020 2020 2020 2032 2034 2 4 │ │ │ │ +000673c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000673d0: 2020 2020 3020 3320 3420 2020 2020 2020 0 3 4 │ │ │ │ +000673e0: 2020 2020 2020 2020 2020 2020 2020 307c 0| │ │ │ │ +000673f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00067450: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00067460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067470: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -00067480: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -00067490: 2020 2020 207c 0a7c 202b 2032 3239 3830 |.| + 22980 │ │ │ │ -000674a0: 3430 3136 3439 3237 3336 3078 2078 2078 40164927360x x x │ │ │ │ -000674b0: 2020 2d20 3132 3133 3335 3038 3739 3539 - 121335087959 │ │ │ │ -000674c0: 3937 3132 7820 7820 202d 2032 3238 3734 9712x x - 22874 │ │ │ │ -000674d0: 3731 3335 3631 3032 3931 3230 7820 7820 713561029120x x │ │ │ │ -000674e0: 7820 202b 207c 0a7c 2020 2020 2020 2020 x + |.| │ │ │ │ -000674f0: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ -00067500: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00067510: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ -00067520: 2020 2020 2020 2020 2020 2020 2030 2033 0 3 │ │ │ │ -00067530: 2034 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +00067430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067450: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00067460: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00067470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067480: 2020 2020 2020 2032 2020 2020 2020 207c 2 | │ │ │ │ +00067490: 0a7c 202b 2032 3239 3830 3430 3136 3439 .| + 22980401649 │ │ │ │ +000674a0: 3237 3336 3078 2078 2078 2020 2d20 3132 27360x x x - 12 │ │ │ │ +000674b0: 3133 3335 3038 3739 3539 3937 3132 7820 13350879599712x │ │ │ │ +000674c0: 7820 202d 2032 3238 3734 3731 3335 3631 x - 22874713561 │ │ │ │ +000674d0: 3032 3931 3230 7820 7820 7820 202b 207c 029120x x x + | │ │ │ │ +000674e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000674f0: 2020 2020 2020 3120 3220 3420 2020 2020 1 2 4 │ │ │ │ +00067500: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00067510: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067520: 2020 2020 2020 2030 2033 2034 2020 207c 0 3 4 | │ │ │ │ +00067530: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067580: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00067590: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000675a0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -000675b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000675c0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000675d0: 2020 2020 207c 0a7c 3637 3030 3634 3839 |.|67006489 │ │ │ │ -000675e0: 3078 2078 2078 2020 2d20 3233 3233 3432 0x x x - 232342 │ │ │ │ -000675f0: 3637 3638 3231 3333 3230 7820 7820 202b 6768213320x x + │ │ │ │ -00067600: 2031 3234 3339 3433 3732 3835 3438 3836 124394372854886 │ │ │ │ -00067610: 3430 7820 7820 7820 202d 2031 3333 3932 40x x x - 13392 │ │ │ │ -00067620: 3934 3533 347c 0a7c 2020 2020 2020 2020 94534|.| │ │ │ │ -00067630: 2020 3120 3220 3420 2020 2020 2020 2020 1 2 4 │ │ │ │ -00067640: 2020 2020 2020 2020 2020 2032 2034 2020 2 4 │ │ │ │ -00067650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067660: 2020 2030 2033 2034 2020 2020 2020 2020 0 3 4 │ │ │ │ -00067670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067570: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067580: 0a7c 2020 2020 2020 2020 2020 2020 3220 .| 2 │ │ │ │ +00067590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000675a0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +000675b0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000675c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000675d0: 0a7c 3637 3030 3634 3839 3078 2078 2078 .|670064890x x x │ │ │ │ +000675e0: 2020 2d20 3233 3233 3432 3637 3638 3231 - 232342676821 │ │ │ │ +000675f0: 3333 3230 7820 7820 202b 2031 3234 3339 3320x x + 12439 │ │ │ │ +00067600: 3433 3732 3835 3438 3836 3430 7820 7820 437285488640x x │ │ │ │ +00067610: 7820 202d 2031 3333 3932 3934 3533 347c x - 1339294534| │ │ │ │ +00067620: 0a7c 2020 2020 2020 2020 2020 3120 3220 .| 1 2 │ │ │ │ +00067630: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067640: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ +00067650: 2020 2020 2020 2020 2020 2020 2030 2033 0 3 │ │ │ │ +00067660: 2034 2020 2020 2020 2020 2020 2020 207c 4 | │ │ │ │ +00067670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000676a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000676b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000676c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000676d0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000676e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000676f0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00067700: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00067710: 2020 2020 207c 0a7c 3134 3631 3237 3033 |.|14612703 │ │ │ │ -00067720: 3930 3032 3733 3430 3278 2078 2078 2020 900273402x x x │ │ │ │ -00067730: 2b20 3135 3839 3638 3832 3334 3935 3432 + 15896882349542 │ │ │ │ -00067740: 3838 7820 7820 202b 2031 3430 3330 3032 88x x + 1403002 │ │ │ │ -00067750: 3132 3036 3532 3136 3030 7820 7820 7820 1206521600x x x │ │ │ │ -00067760: 202d 2032 307c 0a7c 2020 2020 2020 2020 - 20|.| │ │ │ │ -00067770: 2020 2020 2020 2020 2020 3120 3220 3420 1 2 4 │ │ │ │ -00067780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067790: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ -000677a0: 2020 2020 2020 2020 2020 2030 2033 2034 0 3 4 │ │ │ │ -000677b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000676b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000676c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000676d0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000676e0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +000676f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067700: 2020 2020 2032 2020 2020 2020 2020 207c 2 | │ │ │ │ +00067710: 0a7c 3134 3631 3237 3033 3930 3032 3733 .|14612703900273 │ │ │ │ +00067720: 3430 3278 2078 2078 2020 2b20 3135 3839 402x x x + 1589 │ │ │ │ +00067730: 3638 3832 3334 3935 3432 3838 7820 7820 688234954288x x │ │ │ │ +00067740: 202b 2031 3430 3330 3032 3132 3036 3532 + 1403002120652 │ │ │ │ +00067750: 3136 3030 7820 7820 7820 202d 2032 307c 1600x x x - 20| │ │ │ │ +00067760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067770: 2020 2020 3120 3220 3420 2020 2020 2020 1 2 4 │ │ │ │ +00067780: 2020 2020 2020 2020 2020 2020 2032 2034 2 4 │ │ │ │ +00067790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000677a0: 2020 2020 2030 2033 2034 2020 2020 207c 0 3 4 | │ │ │ │ +000677b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000677c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000677d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000677e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000677f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067800: 2020 2020 207c 0a7c 2020 2020 2020 2032 |.| 2 │ │ │ │ +000677f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067800: 0a7c 2020 2020 2020 2032 2020 2020 2020 .| 2 │ │ │ │ 00067810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067820: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -00067830: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00067840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067850: 2020 2020 207c 0a7c 3138 3430 7820 7820 |.|1840x x │ │ │ │ -00067860: 7820 202b 2033 3232 3336 3834 3034 3130 x + 32236840410 │ │ │ │ -00067870: 3337 3734 3078 2078 2020 2b20 3134 3234 37740x x + 1424 │ │ │ │ -00067880: 3735 3038 3933 3638 3939 3834 3078 2078 7508936899840x x │ │ │ │ -00067890: 2078 2020 2d20 3239 3431 3034 3838 3435 x - 2941048845 │ │ │ │ -000678a0: 3139 3034 307c 0a7c 2020 2020 2031 2032 19040|.| 1 2 │ │ │ │ -000678b0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000678c0: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -000678d0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000678e0: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -000678f0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00067820: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00067830: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00067840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067850: 0a7c 3138 3430 7820 7820 7820 202b 2033 .|1840x x x + 3 │ │ │ │ +00067860: 3232 3336 3834 3034 3130 3337 3734 3078 223684041037740x │ │ │ │ +00067870: 2078 2020 2b20 3134 3234 3735 3038 3933 x + 1424750893 │ │ │ │ +00067880: 3638 3939 3834 3078 2078 2078 2020 2d20 6899840x x x - │ │ │ │ +00067890: 3239 3431 3034 3838 3435 3139 3034 307c 294104884519040| │ │ │ │ +000678a0: 0a7c 2020 2020 2031 2032 2034 2020 2020 .| 1 2 4 │ │ │ │ +000678b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000678c0: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ +000678d0: 2020 2020 2020 2020 3020 3320 3420 2020 0 3 4 │ │ │ │ +000678e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000678f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00067900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067940: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00067950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067960: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00067930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00067940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067950: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00067960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067990: 2020 2020 207c 0a7c 7820 7820 7820 202d |.|x x x - │ │ │ │ -000679a0: 2031 3830 3633 3032 3335 3536 3539 3432 180630235565942 │ │ │ │ -000679b0: 3430 7820 7820 7820 202d 2033 3739 3830 40x x x - 37980 │ │ │ │ -000679c0: 3234 3135 3434 3930 3630 3830 7820 7820 241544906080x x │ │ │ │ -000679d0: 7820 7820 202b 2033 3539 3030 3139 3237 x x + 359001927 │ │ │ │ -000679e0: 3639 3033 367c 0a7c 2031 2033 2034 2020 69036|.| 1 3 4 │ │ │ │ -000679f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067a00: 2020 2031 2033 2034 2020 2020 2020 2020 1 3 4 │ │ │ │ -00067a10: 2020 2020 2020 2020 2020 2020 2030 2032 0 2 │ │ │ │ -00067a20: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00067a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067990: 0a7c 7820 7820 7820 202d 2031 3830 3633 .|x x x - 18063 │ │ │ │ +000679a0: 3032 3335 3536 3539 3432 3430 7820 7820 023556594240x x │ │ │ │ +000679b0: 7820 202d 2033 3739 3830 3234 3135 3434 x - 37980241544 │ │ │ │ +000679c0: 3930 3630 3830 7820 7820 7820 7820 202b 906080x x x x + │ │ │ │ +000679d0: 2033 3539 3030 3139 3237 3639 3033 367c 35900192769036| │ │ │ │ +000679e0: 0a7c 2031 2033 2034 2020 2020 2020 2020 .| 1 3 4 │ │ │ │ +000679f0: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ +00067a00: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067a10: 2020 2020 2020 2030 2032 2033 2034 2020 0 2 3 4 │ │ │ │ +00067a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ab0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00067ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067ad0: 2020 2020 207c 0a7c 3638 3230 3439 3733 |.|68204973 │ │ │ │ -00067ae0: 3139 3939 3233 3834 3078 2078 2078 2078 199923840x x x x │ │ │ │ -00067af0: 2020 2d20 3336 3231 3331 3339 3336 3530 - 362131393650 │ │ │ │ -00067b00: 3331 3434 3078 2078 2078 2020 2b20 3232 31440x x x + 22 │ │ │ │ -00067b10: 3935 3430 3936 3334 3638 3330 3430 7820 95409634683040x │ │ │ │ -00067b20: 7820 7820 787c 0a7c 2020 2020 2020 2020 x x x|.| │ │ │ │ -00067b30: 2020 2020 2020 2020 2020 3020 3120 3320 0 1 3 │ │ │ │ -00067b40: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00067b50: 2020 2020 2020 3120 3320 3420 2020 2020 1 3 4 │ │ │ │ -00067b60: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00067b70: 2032 2033 207c 0a7c 2020 2020 2020 2020 2 3 |.| │ │ │ │ +00067ab0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00067ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067ad0: 0a7c 3638 3230 3439 3733 3139 3939 3233 .|68204973199923 │ │ │ │ +00067ae0: 3834 3078 2078 2078 2078 2020 2d20 3336 840x x x x - 36 │ │ │ │ +00067af0: 3231 3331 3339 3336 3530 3331 3434 3078 213139365031440x │ │ │ │ +00067b00: 2078 2078 2020 2b20 3232 3935 3430 3936 x x + 22954096 │ │ │ │ +00067b10: 3334 3638 3330 3430 7820 7820 7820 787c 34683040x x x x| │ │ │ │ +00067b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067b30: 2020 2020 3020 3120 3320 3420 2020 2020 0 1 3 4 │ │ │ │ +00067b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067b50: 3120 3320 3420 2020 2020 2020 2020 2020 1 3 4 │ │ │ │ +00067b60: 2020 2020 2020 2020 2030 2032 2033 207c 0 2 3 | │ │ │ │ +00067b70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067bc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067bc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067be0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00067be0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00067bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067c10: 2020 2020 207c 0a7c 3033 3434 3139 3230 |.|03441920 │ │ │ │ -00067c20: 7820 7820 7820 7820 202b 2037 3932 3535 x x x x + 79255 │ │ │ │ -00067c30: 3936 3333 3438 3439 3038 3830 7820 7820 963348490880x x │ │ │ │ -00067c40: 7820 202b 2031 3634 3535 3133 3734 3732 x + 16455137472 │ │ │ │ -00067c50: 3935 3038 3438 7820 7820 7820 7820 202d 950848x x x x - │ │ │ │ -00067c60: 2037 3838 317c 0a7c 2020 2020 2020 2020 7881|.| │ │ │ │ -00067c70: 2030 2031 2033 2034 2020 2020 2020 2020 0 1 3 4 │ │ │ │ -00067c80: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ -00067c90: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00067ca0: 2020 2020 2020 2030 2032 2033 2034 2020 0 2 3 4 │ │ │ │ -00067cb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067c00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067c10: 0a7c 3033 3434 3139 3230 7820 7820 7820 .|03441920x x x │ │ │ │ +00067c20: 7820 202b 2037 3932 3535 3936 3333 3438 x + 79255963348 │ │ │ │ +00067c30: 3439 3038 3830 7820 7820 7820 202b 2031 490880x x x + 1 │ │ │ │ +00067c40: 3634 3535 3133 3734 3732 3935 3038 3438 6455137472950848 │ │ │ │ +00067c50: 7820 7820 7820 7820 202d 2037 3838 317c x x x x - 7881| │ │ │ │ +00067c60: 0a7c 2020 2020 2020 2020 2030 2031 2033 .| 0 1 3 │ │ │ │ +00067c70: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067c80: 2020 2020 2020 2031 2033 2034 2020 2020 1 3 4 │ │ │ │ +00067c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067ca0: 2030 2032 2033 2034 2020 2020 2020 207c 0 2 3 4 | │ │ │ │ +00067cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067d00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067d00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067d30: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00067d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067d50: 2020 2020 207c 0a7c 3235 3934 3730 3035 |.|25947005 │ │ │ │ -00067d60: 3738 3636 3438 3078 2078 2078 2078 2020 7866480x x x x │ │ │ │ -00067d70: 2d20 3336 3934 3136 3031 3237 3230 3338 - 36941601272038 │ │ │ │ -00067d80: 3430 7820 7820 7820 202d 2037 3836 3434 40x x x - 78644 │ │ │ │ -00067d90: 3835 3134 3630 3433 3132 3078 2078 2078 85146043120x x x │ │ │ │ -00067da0: 2078 2020 2b7c 0a7c 2020 2020 2020 2020 x +|.| │ │ │ │ -00067db0: 2020 2020 2020 2020 3020 3120 3320 3420 0 1 3 4 │ │ │ │ -00067dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067dd0: 2020 2031 2033 2034 2020 2020 2020 2020 1 3 4 │ │ │ │ -00067de0: 2020 2020 2020 2020 2020 2020 3020 3220 0 2 │ │ │ │ -00067df0: 3320 3420 207c 0a7c 2020 2020 2020 2020 3 4 |.| │ │ │ │ +00067d20: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00067d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00067d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067d50: 0a7c 3235 3934 3730 3035 3738 3636 3438 .|25947005786648 │ │ │ │ +00067d60: 3078 2078 2078 2078 2020 2d20 3336 3934 0x x x x - 3694 │ │ │ │ +00067d70: 3136 3031 3237 3230 3338 3430 7820 7820 160127203840x x │ │ │ │ +00067d80: 7820 202d 2037 3836 3434 3835 3134 3630 x - 78644851460 │ │ │ │ +00067d90: 3433 3132 3078 2078 2078 2078 2020 2b7c 43120x x x x +| │ │ │ │ +00067da0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067db0: 2020 3020 3120 3320 3420 2020 2020 2020 0 1 3 4 │ │ │ │ +00067dc0: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ +00067dd0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067de0: 2020 2020 2020 3020 3220 3320 3420 207c 0 2 3 4 | │ │ │ │ +00067df0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00067e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00067e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067e40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00067e50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00067e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00067e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067e90: 2020 2020 207c 0a7c 7820 7820 7820 7820 |.|x x x x │ │ │ │ -00067ea0: 202b 2034 3736 3735 3732 3937 3637 3638 + 4767572976768 │ │ │ │ -00067eb0: 3030 7820 7820 7820 202d 2033 3634 3637 00x x x - 36467 │ │ │ │ -00067ec0: 3937 3831 3034 3130 3732 3078 2078 2078 97810410720x x x │ │ │ │ -00067ed0: 2078 2020 2d20 3130 3734 3339 3236 3331 x - 1074392631 │ │ │ │ -00067ee0: 3535 3034 377c 0a7c 2030 2031 2033 2034 55047|.| 0 1 3 4 │ │ │ │ -00067ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067f00: 2020 2031 2033 2034 2020 2020 2020 2020 1 3 4 │ │ │ │ -00067f10: 2020 2020 2020 2020 2020 2020 3020 3220 0 2 │ │ │ │ -00067f20: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00067f30: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00067e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067e90: 0a7c 7820 7820 7820 7820 202b 2034 3736 .|x x x x + 476 │ │ │ │ +00067ea0: 3735 3732 3937 3637 3638 3030 7820 7820 757297676800x x │ │ │ │ +00067eb0: 7820 202d 2033 3634 3637 3937 3831 3034 x - 36467978104 │ │ │ │ +00067ec0: 3130 3732 3078 2078 2078 2078 2020 2d20 10720x x x x - │ │ │ │ +00067ed0: 3130 3734 3339 3236 3331 3535 3034 377c 107439263155047| │ │ │ │ +00067ee0: 0a7c 2030 2031 2033 2034 2020 2020 2020 .| 0 1 3 4 │ │ │ │ +00067ef0: 2020 2020 2020 2020 2020 2020 2031 2033 1 3 │ │ │ │ +00067f00: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00067f10: 2020 2020 2020 3020 3220 3320 3420 2020 0 2 3 4 │ │ │ │ +00067f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067f30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00067f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00067f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00067f80: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ +00067f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00067f80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00067f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067fa0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00067fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00067fc0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00067fd0: 2020 2020 207c 0a7c 3936 3078 2078 2078 |.|960x x x │ │ │ │ -00067fe0: 2078 2020 2d20 3731 3438 3539 3532 3133 x - 7148595213 │ │ │ │ -00067ff0: 3230 3131 3230 7820 7820 7820 202b 2035 201120x x x + 5 │ │ │ │ -00068000: 3736 3132 3139 3937 3939 3532 3139 3230 7612199799521920 │ │ │ │ -00068010: 7820 7820 7820 202d 2033 3632 3437 3437 x x x - 3624747 │ │ │ │ -00068020: 3236 3834 347c 0a7c 2020 2020 3120 3220 26844|.| 1 2 │ │ │ │ -00068030: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00068040: 2020 2020 2020 2032 2033 2034 2020 2020 2 3 4 │ │ │ │ -00068050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068060: 2030 2033 2034 2020 2020 2020 2020 2020 0 3 4 │ │ │ │ -00068070: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00067fa0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00067fb0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00067fc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00067fd0: 0a7c 3936 3078 2078 2078 2078 2020 2d20 .|960x x x x - │ │ │ │ +00067fe0: 3731 3438 3539 3532 3133 3230 3131 3230 7148595213201120 │ │ │ │ +00067ff0: 7820 7820 7820 202b 2035 3736 3132 3139 x x x + 5761219 │ │ │ │ +00068000: 3937 3939 3532 3139 3230 7820 7820 7820 9799521920x x x │ │ │ │ +00068010: 202d 2033 3632 3437 3437 3236 3834 347c - 362474726844| │ │ │ │ +00068020: 0a7c 2020 2020 3120 3220 3320 3420 2020 .| 1 2 3 4 │ │ │ │ +00068030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068040: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00068050: 2020 2020 2020 2020 2020 2030 2033 2034 0 3 4 │ │ │ │ +00068060: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068070: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000680a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000680b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000680c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000680b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000680c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000680d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000680e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000680f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00068100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068110: 2020 2020 327c 0a7c 2020 2b20 3634 3833 2|.| + 6483 │ │ │ │ -00068120: 3533 3938 3930 3638 3430 3830 7820 7820 539890684080x x │ │ │ │ -00068130: 7820 7820 202b 2037 3230 3330 3636 3035 x x + 720306605 │ │ │ │ -00068140: 3437 3330 3536 3078 2078 2078 2020 2d20 4730560x x x - │ │ │ │ -00068150: 3133 3433 3239 3730 3133 3735 3037 3230 1343297013750720 │ │ │ │ -00068160: 3078 2078 207c 0a7c 3420 2020 2020 2020 0x x |.|4 │ │ │ │ -00068170: 2020 2020 2020 2020 2020 2020 2031 2032 1 2 │ │ │ │ -00068180: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00068190: 2020 2020 2020 2020 3220 3320 3420 2020 2 3 4 │ │ │ │ -000681a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000681b0: 2020 3020 337c 0a7c 2020 2020 2020 2020 0 3|.| │ │ │ │ +000680f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068100: 2020 2020 2020 2020 2020 2020 2020 327c 2| │ │ │ │ +00068110: 0a7c 2020 2b20 3634 3833 3533 3938 3930 .| + 6483539890 │ │ │ │ +00068120: 3638 3430 3830 7820 7820 7820 7820 202b 684080x x x x + │ │ │ │ +00068130: 2037 3230 3330 3636 3035 3437 3330 3536 720306605473056 │ │ │ │ +00068140: 3078 2078 2078 2020 2d20 3133 3433 3239 0x x x - 134329 │ │ │ │ +00068150: 3730 3133 3735 3037 3230 3078 2078 207c 70137507200x x | │ │ │ │ +00068160: 0a7c 3420 2020 2020 2020 2020 2020 2020 .|4 │ │ │ │ +00068170: 2020 2020 2020 2031 2032 2033 2034 2020 1 2 3 4 │ │ │ │ +00068180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068190: 2020 3220 3320 3420 2020 2020 2020 2020 2 3 4 │ │ │ │ +000681a0: 2020 2020 2020 2020 2020 2020 3020 337c 0 3| │ │ │ │ +000681b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000681c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000681d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000681e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000681f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068200: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000681f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068200: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068230: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00068240: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00068250: 2020 2020 207c 0a7c 3736 3137 3233 3438 |.|76172348 │ │ │ │ -00068260: 3939 3932 3878 2078 2078 2078 2020 2b20 99928x x x x + │ │ │ │ -00068270: 3633 3637 3330 3538 3632 3639 3939 3932 6367305862699992 │ │ │ │ -00068280: 7820 7820 7820 202b 2037 3738 3433 3739 x x x + 7784379 │ │ │ │ -00068290: 3131 3436 3234 3030 7820 7820 7820 202b 11462400x x x + │ │ │ │ -000682a0: 2037 3431 377c 0a7c 2020 2020 2020 2020 7417|.| │ │ │ │ -000682b0: 2020 2020 2020 3120 3220 3320 3420 2020 1 2 3 4 │ │ │ │ -000682c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000682d0: 2032 2033 2034 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ -000682e0: 2020 2020 2020 2020 2030 2033 2034 2020 0 3 4 │ │ │ │ -000682f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068220: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00068230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068240: 2020 2020 2032 2020 2020 2020 2020 207c 2 | │ │ │ │ +00068250: 0a7c 3736 3137 3233 3438 3939 3932 3878 .|7617234899928x │ │ │ │ +00068260: 2078 2078 2078 2020 2b20 3633 3637 3330 x x x + 636730 │ │ │ │ +00068270: 3538 3632 3639 3939 3932 7820 7820 7820 5862699992x x x │ │ │ │ +00068280: 202b 2037 3738 3433 3739 3131 3436 3234 + 7784379114624 │ │ │ │ +00068290: 3030 7820 7820 7820 202b 2037 3431 377c 00x x x + 7417| │ │ │ │ +000682a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000682b0: 3120 3220 3320 3420 2020 2020 2020 2020 1 2 3 4 │ │ │ │ +000682c0: 2020 2020 2020 2020 2020 2032 2033 2034 2 3 4 │ │ │ │ +000682d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000682e0: 2020 2030 2033 2034 2020 2020 2020 207c 0 3 4 | │ │ │ │ +000682f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068340: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068370: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00068380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068390: 2020 3220 207c 0a7c 2035 3031 3036 3031 2 |.| 5010601 │ │ │ │ -000683a0: 3732 3635 3834 3037 3630 7820 7820 7820 7265840760x x x │ │ │ │ -000683b0: 7820 202d 2033 3836 3733 3639 3831 3438 x - 38673698148 │ │ │ │ -000683c0: 3237 3238 3878 2078 2078 2020 2d20 3134 27288x x x - 14 │ │ │ │ -000683d0: 3336 3339 3532 3332 3134 3732 3332 3078 363952321472320x │ │ │ │ -000683e0: 2078 2078 207c 0a7c 2020 2020 2020 2020 x x |.| │ │ │ │ -000683f0: 2020 2020 2020 2020 2020 2031 2032 2033 1 2 3 │ │ │ │ -00068400: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00068410: 2020 2020 2020 3220 3320 3420 2020 2020 2 3 4 │ │ │ │ -00068420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068430: 3020 3320 347c 0a7c 2020 2020 2020 2020 0 3 4|.| │ │ │ │ +00068370: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068380: 2020 2020 2020 2020 2020 2020 3220 207c 2 | │ │ │ │ +00068390: 0a7c 2035 3031 3036 3031 3732 3635 3834 .| 5010601726584 │ │ │ │ +000683a0: 3037 3630 7820 7820 7820 7820 202d 2033 0760x x x x - 3 │ │ │ │ +000683b0: 3836 3733 3639 3831 3438 3237 3238 3878 867369814827288x │ │ │ │ +000683c0: 2078 2078 2020 2d20 3134 3336 3339 3532 x x - 14363952 │ │ │ │ +000683d0: 3332 3134 3732 3332 3078 2078 2078 207c 321472320x x x | │ │ │ │ +000683e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000683f0: 2020 2020 2031 2032 2033 2034 2020 2020 1 2 3 4 │ │ │ │ +00068400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068410: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00068420: 2020 2020 2020 2020 2020 3020 3320 347c 0 3 4| │ │ │ │ +00068430: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068480: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068470: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068480: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000684a0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -000684b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000684c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000684d0: 2020 2020 207c 0a7c 3630 7820 7820 7820 |.|60x x x │ │ │ │ -000684e0: 7820 202b 2031 3937 3638 3333 3331 3836 x + 19768333186 │ │ │ │ -000684f0: 3234 3932 3078 2078 2078 2020 2b20 3931 24920x x x + 91 │ │ │ │ -00068500: 3239 3538 3937 3436 3435 3331 3230 7820 29589746453120x │ │ │ │ -00068510: 7820 7820 202b 2032 3534 3736 3334 3933 x x + 254763493 │ │ │ │ -00068520: 3337 3130 377c 0a7c 2020 2031 2032 2033 37107|.| 1 2 3 │ │ │ │ -00068530: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00068540: 2020 2020 2020 3220 3320 3420 2020 2020 2 3 4 │ │ │ │ -00068550: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00068560: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00068570: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000684a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000684b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000684c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000684d0: 0a7c 3630 7820 7820 7820 7820 202b 2031 .|60x x x x + 1 │ │ │ │ +000684e0: 3937 3638 3333 3331 3836 3234 3932 3078 976833318624920x │ │ │ │ +000684f0: 2078 2078 2020 2b20 3931 3239 3538 3937 x x + 91295897 │ │ │ │ +00068500: 3436 3435 3331 3230 7820 7820 7820 202b 46453120x x x + │ │ │ │ +00068510: 2032 3534 3736 3334 3933 3337 3130 377c 25476349337107| │ │ │ │ +00068520: 0a7c 2020 2031 2032 2033 2034 2020 2020 .| 1 2 3 4 │ │ │ │ +00068530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068540: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00068550: 2020 2020 2020 2020 2030 2033 2034 2020 0 3 4 │ │ │ │ +00068560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068570: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00068580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000685a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000685b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000685c0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -000685d0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000685e0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000685f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068600: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00068610: 2020 2020 207c 0a7c 3432 3838 3078 2078 |.|42880x x │ │ │ │ -00068620: 2078 2020 2b20 3239 3631 3733 3938 3339 x + 2961739839 │ │ │ │ -00068630: 3233 3832 3038 3078 2078 2078 2020 2d20 2382080x x x - │ │ │ │ -00068640: 3235 3235 3630 3833 3637 3534 3638 3830 2525608367546880 │ │ │ │ -00068650: 7820 7820 202d 2031 3430 3833 3732 3939 x x - 140837299 │ │ │ │ -00068660: 3239 3032 347c 0a7c 2020 2020 2020 3120 29024|.| 1 │ │ │ │ -00068670: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00068680: 2020 2020 2020 2020 3220 3320 3420 2020 2 3 4 │ │ │ │ -00068690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000686a0: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -000686b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000685b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000685c0: 0a7c 2020 2020 2020 2020 3220 2020 2020 .| 2 │ │ │ │ +000685d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000685e0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000685f0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00068600: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068610: 0a7c 3432 3838 3078 2078 2078 2020 2b20 .|42880x x x + │ │ │ │ +00068620: 3239 3631 3733 3938 3339 3233 3832 3038 2961739839238208 │ │ │ │ +00068630: 3078 2078 2078 2020 2d20 3235 3235 3630 0x x x - 252560 │ │ │ │ +00068640: 3833 3637 3534 3638 3830 7820 7820 202d 8367546880x x - │ │ │ │ +00068650: 2031 3430 3833 3732 3939 3239 3032 347c 14083729929024| │ │ │ │ +00068660: 0a7c 2020 2020 2020 3120 3320 3420 2020 .| 1 3 4 │ │ │ │ +00068670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068680: 2020 3220 3320 3420 2020 2020 2020 2020 2 3 4 │ │ │ │ +00068690: 2020 2020 2020 2020 2020 2033 2034 2020 3 4 │ │ │ │ +000686a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000686b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000686c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000686d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000686e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000686f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068700: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068720: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00068730: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00068740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068750: 2020 2033 207c 0a7c 7820 202d 2031 3533 3 |.|x - 153 │ │ │ │ -00068760: 3139 3630 3534 3930 3431 3838 3830 7820 19605490418880x │ │ │ │ -00068770: 7820 7820 202d 2031 3239 3836 3238 3931 x x - 129862891 │ │ │ │ -00068780: 3930 3232 3430 3030 7820 7820 7820 202b 90224000x x x + │ │ │ │ -00068790: 2031 3430 3539 3336 3233 3637 3333 3035 140593623673305 │ │ │ │ -000687a0: 3630 7820 787c 0a7c 2034 2020 2020 2020 60x x|.| 4 │ │ │ │ -000687b0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000687c0: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -000687d0: 2020 2020 2020 2020 2032 2033 2034 2020 2 3 4 │ │ │ │ -000687e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000687f0: 2020 2033 207c 0a7c 2020 2020 2020 2020 3 |.| │ │ │ │ +000686f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068700: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068710: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00068720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068730: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00068740: 2020 2020 2020 2020 2020 2020 2033 207c 3 | │ │ │ │ +00068750: 0a7c 7820 202d 2031 3533 3139 3630 3534 .|x - 153196054 │ │ │ │ +00068760: 3930 3431 3838 3830 7820 7820 7820 202d 90418880x x x - │ │ │ │ +00068770: 2031 3239 3836 3238 3931 3930 3232 3430 129862891902240 │ │ │ │ +00068780: 3030 7820 7820 7820 202b 2031 3430 3539 00x x x + 14059 │ │ │ │ +00068790: 3336 3233 3637 3333 3035 3630 7820 787c 362367330560x x| │ │ │ │ +000687a0: 0a7c 2034 2020 2020 2020 2020 2020 2020 .| 4 │ │ │ │ +000687b0: 2020 2020 2020 2020 2031 2033 2034 2020 1 3 4 │ │ │ │ +000687c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000687d0: 2020 2032 2033 2034 2020 2020 2020 2020 2 3 4 │ │ │ │ +000687e0: 2020 2020 2020 2020 2020 2020 2033 207c 3 | │ │ │ │ +000687f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068840: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068850: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00068860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068870: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00068880: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -00068890: 2020 2020 207c 0a7c 3935 3537 3736 3233 |.|95577623 │ │ │ │ -000688a0: 3037 3230 7820 7820 7820 202b 2035 3332 0720x x x + 532 │ │ │ │ -000688b0: 3938 3336 3239 3637 3035 3038 3878 2078 9836296705088x x │ │ │ │ -000688c0: 2078 2020 2d20 3235 3930 3537 3132 3531 x - 2590571251 │ │ │ │ -000688d0: 3537 3832 3430 7820 7820 202d 2032 3230 578240x x - 220 │ │ │ │ -000688e0: 3036 3435 367c 0a7c 2020 2020 2020 2020 06456|.| │ │ │ │ -000688f0: 2020 2020 2031 2033 2034 2020 2020 2020 1 3 4 │ │ │ │ -00068900: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00068910: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00068920: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ -00068930: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068830: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068840: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068850: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068860: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00068870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068880: 2033 2020 2020 2020 2020 2020 2020 207c 3 | │ │ │ │ +00068890: 0a7c 3935 3537 3736 3233 3037 3230 7820 .|955776230720x │ │ │ │ +000688a0: 7820 7820 202b 2035 3332 3938 3336 3239 x x + 532983629 │ │ │ │ +000688b0: 3637 3035 3038 3878 2078 2078 2020 2d20 6705088x x x - │ │ │ │ +000688c0: 3235 3930 3537 3132 3531 3537 3832 3430 2590571251578240 │ │ │ │ +000688d0: 7820 7820 202d 2032 3230 3036 3435 367c x x - 22006456| │ │ │ │ +000688e0: 0a7c 2020 2020 2020 2020 2020 2020 2031 .| 1 │ │ │ │ +000688f0: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00068900: 2020 2020 2020 2020 3220 3320 3420 2020 2 3 4 │ │ │ │ +00068910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068920: 2033 2034 2020 2020 2020 2020 2020 207c 3 4 | │ │ │ │ +00068930: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068980: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068990: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00068970: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068980: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068990: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000689a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000689b0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000689c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000689d0: 3320 2020 207c 0a7c 202b 2033 3332 3035 3 |.| + 33205 │ │ │ │ -000689e0: 3031 3234 3434 3039 3434 3078 2078 2078 01244409440x x x │ │ │ │ -000689f0: 2020 2d20 3133 3432 3434 3736 3330 3633 - 134244763063 │ │ │ │ -00068a00: 3437 3132 3078 2078 2078 2020 2b20 3139 47120x x x + 19 │ │ │ │ -00068a10: 3139 3439 3635 3338 3138 3934 3430 3078 194965381894400x │ │ │ │ -00068a20: 2078 2020 2d7c 0a7c 2020 2020 2020 2020 x -|.| │ │ │ │ -00068a30: 2020 2020 2020 2020 2020 2020 3120 3320 1 3 │ │ │ │ -00068a40: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00068a50: 2020 2020 2020 3220 3320 3420 2020 2020 2 3 4 │ │ │ │ -00068a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068a70: 3320 3420 207c 0a7c 2020 2020 2020 2020 3 4 |.| │ │ │ │ +000689b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000689c0: 2020 2020 2020 2020 2020 3320 2020 207c 3 | │ │ │ │ +000689d0: 0a7c 202b 2033 3332 3035 3031 3234 3434 .| + 33205012444 │ │ │ │ +000689e0: 3039 3434 3078 2078 2078 2020 2d20 3133 09440x x x - 13 │ │ │ │ +000689f0: 3432 3434 3736 3330 3633 3437 3132 3078 424476306347120x │ │ │ │ +00068a00: 2078 2078 2020 2b20 3139 3139 3439 3635 x x + 19194965 │ │ │ │ +00068a10: 3338 3138 3934 3430 3078 2078 2020 2d7c 381894400x x -| │ │ │ │ +00068a20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068a30: 2020 2020 2020 3120 3320 3420 2020 2020 1 3 4 │ │ │ │ +00068a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068a50: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00068a60: 2020 2020 2020 2020 2020 3320 3420 207c 3 4 | │ │ │ │ +00068a70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ac0: 2020 2020 207c 0a7c 2020 2020 2032 2020 |.| 2 │ │ │ │ +00068ab0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068ac0: 0a7c 2020 2020 2032 2020 2020 2020 2020 .| 2 │ │ │ │ 00068ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ae0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00068af0: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ -00068b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b10: 2020 2020 207c 0a7c 3230 7820 7820 7820 |.|20x x x │ │ │ │ -00068b20: 202b 2039 3031 3233 3133 3232 3631 3930 + 9012313226190 │ │ │ │ -00068b30: 3936 3078 2078 2078 2020 2d20 3230 3635 960x x x - 2065 │ │ │ │ -00068b40: 3835 3539 3939 3737 3739 3230 7820 7820 855999777920x x │ │ │ │ -00068b50: 202b 2032 3038 3638 3733 3939 3936 3630 + 2086873999660 │ │ │ │ -00068b60: 3830 3030 787c 0a7c 2020 2031 2033 2034 8000x|.| 1 3 4 │ │ │ │ -00068b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068b80: 2020 2020 3220 3320 3420 2020 2020 2020 2 3 4 │ │ │ │ -00068b90: 2020 2020 2020 2020 2020 2020 2033 2034 3 4 │ │ │ │ -00068ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068bb0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00068ae0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068af0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00068b00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068b10: 0a7c 3230 7820 7820 7820 202b 2039 3031 .|20x x x + 901 │ │ │ │ +00068b20: 3233 3133 3232 3631 3930 3936 3078 2078 2313226190960x x │ │ │ │ +00068b30: 2078 2020 2d20 3230 3635 3835 3539 3939 x - 2065855999 │ │ │ │ +00068b40: 3737 3739 3230 7820 7820 202b 2032 3038 777920x x + 208 │ │ │ │ +00068b50: 3638 3733 3939 3936 3630 3830 3030 787c 68739996608000x| │ │ │ │ +00068b60: 0a7c 2020 2031 2033 2034 2020 2020 2020 .| 1 3 4 │ │ │ │ +00068b70: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00068b80: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00068b90: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ +00068ba0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068bb0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00068bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00068be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00068c00: 2d2d 2d2d 2d7c 0a7c 2020 2032 2032 2020 -----|.| 2 2 │ │ │ │ +00068bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00068c00: 0a7c 2020 2032 2032 2020 2020 2020 2020 .| 2 2 │ │ │ │ 00068c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c20: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00068c30: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -00068c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068c50: 2020 2020 207c 0a7c 3030 7820 7820 202d |.|00x x - │ │ │ │ -00068c60: 2038 3939 3734 3437 3132 3635 3339 3230 899744712653920 │ │ │ │ -00068c70: 3078 2078 2078 2020 2b20 3637 3035 3431 0x x x + 670541 │ │ │ │ -00068c80: 3734 3930 3137 3834 3030 7820 7820 202b 7490178400x x + │ │ │ │ -00068c90: 2036 3438 3239 3737 3834 3939 3838 3634 648297784998864 │ │ │ │ -00068ca0: 3078 2078 207c 0a7c 2020 2030 2034 2020 0x x |.| 0 4 │ │ │ │ -00068cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068cc0: 2020 3020 3120 3420 2020 2020 2020 2020 0 1 4 │ │ │ │ -00068cd0: 2020 2020 2020 2020 2020 2031 2034 2020 1 4 │ │ │ │ -00068ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068cf0: 2020 3020 327c 0a7c 2020 2020 2020 2020 0 2|.| │ │ │ │ +00068c20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068c30: 2020 2020 2032 2032 2020 2020 2020 2020 2 2 │ │ │ │ +00068c40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068c50: 0a7c 3030 7820 7820 202d 2038 3939 3734 .|00x x - 89974 │ │ │ │ +00068c60: 3437 3132 3635 3339 3230 3078 2078 2078 47126539200x x x │ │ │ │ +00068c70: 2020 2b20 3637 3035 3431 3734 3930 3137 + 670541749017 │ │ │ │ +00068c80: 3834 3030 7820 7820 202b 2036 3438 3239 8400x x + 64829 │ │ │ │ +00068c90: 3737 3834 3939 3838 3634 3078 2078 207c 77849988640x x | │ │ │ │ +00068ca0: 0a7c 2020 2030 2034 2020 2020 2020 2020 .| 0 4 │ │ │ │ +00068cb0: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +00068cc0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00068cd0: 2020 2020 2031 2034 2020 2020 2020 2020 1 4 │ │ │ │ +00068ce0: 2020 2020 2020 2020 2020 2020 3020 327c 0 2| │ │ │ │ +00068cf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068d50: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ +00068d30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068d40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068d50: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ 00068d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068d70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00068d80: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00068d90: 3220 2020 207c 0a7c 2020 2b20 3435 3331 2 |.| + 4531 │ │ │ │ -00068da0: 3133 3430 3637 3231 3932 3030 7820 7820 134067219200x x │ │ │ │ -00068db0: 202d 2031 3133 3736 3135 3934 3035 3535 - 1137615940555 │ │ │ │ -00068dc0: 3434 3030 7820 7820 7820 202b 2036 3435 4400x x x + 645 │ │ │ │ -00068dd0: 3532 3935 3937 3335 3031 3230 3078 2078 5295973501200x x │ │ │ │ -00068de0: 2020 2b20 377c 0a7c 3420 2020 2020 2020 + 7|.|4 │ │ │ │ -00068df0: 2020 2020 2020 2020 2020 2020 2030 2034 0 4 │ │ │ │ -00068e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e10: 2020 2020 2030 2031 2034 2020 2020 2020 0 1 4 │ │ │ │ -00068e20: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00068e30: 3420 2020 207c 0a7c 2020 2020 2020 2020 4 |.| │ │ │ │ +00068d70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00068d80: 2020 2020 2020 2020 3220 3220 2020 207c 2 2 | │ │ │ │ +00068d90: 0a7c 2020 2b20 3435 3331 3133 3430 3637 .| + 4531134067 │ │ │ │ +00068da0: 3231 3932 3030 7820 7820 202d 2031 3133 219200x x - 113 │ │ │ │ +00068db0: 3736 3135 3934 3035 3535 3434 3030 7820 76159405554400x │ │ │ │ +00068dc0: 7820 7820 202b 2036 3435 3532 3935 3937 x x + 645529597 │ │ │ │ +00068dd0: 3335 3031 3230 3078 2078 2020 2b20 377c 3501200x x + 7| │ │ │ │ +00068de0: 0a7c 3420 2020 2020 2020 2020 2020 2020 .|4 │ │ │ │ +00068df0: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ +00068e00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00068e10: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00068e20: 2020 2020 2020 2020 3120 3420 2020 207c 1 4 | │ │ │ │ +00068e30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068e80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068e90: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00068ea0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00068eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ec0: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ -00068ed0: 2020 2020 207c 0a7c 3632 3230 3038 3332 |.|62200832 │ │ │ │ -00068ee0: 3078 2078 2020 2b20 3436 3737 3735 3737 0x x + 46777577 │ │ │ │ -00068ef0: 3530 3036 3135 3336 3078 2078 2078 2020 500615360x x x │ │ │ │ -00068f00: 2d20 3138 3634 3139 3734 3538 3437 3536 - 18641974584756 │ │ │ │ -00068f10: 3630 3078 2078 2020 2d20 3332 3733 3933 600x x - 327393 │ │ │ │ -00068f20: 3438 3534 357c 0a7c 2020 2020 2020 2020 48545|.| │ │ │ │ -00068f30: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ -00068f40: 2020 2020 2020 2020 2020 3020 3120 3420 0 1 4 │ │ │ │ -00068f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068f60: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ -00068f70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068e70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068e80: 0a7c 2020 2020 2020 2020 2020 3220 3220 .| 2 2 │ │ │ │ +00068e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068ea0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00068eb0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00068ec0: 3220 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00068ed0: 0a7c 3632 3230 3038 3332 3078 2078 2020 .|622008320x x │ │ │ │ +00068ee0: 2b20 3436 3737 3735 3737 3530 3036 3135 + 46777577500615 │ │ │ │ +00068ef0: 3336 3078 2078 2078 2020 2d20 3138 3634 360x x x - 1864 │ │ │ │ +00068f00: 3139 3734 3538 3437 3536 3630 3078 2078 1974584756600x x │ │ │ │ +00068f10: 2020 2d20 3332 3733 3933 3438 3534 357c - 32739348545| │ │ │ │ +00068f20: 0a7c 2020 2020 2020 2020 2020 3020 3420 .| 0 4 │ │ │ │ +00068f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00068f40: 2020 2020 3020 3120 3420 2020 2020 2020 0 1 4 │ │ │ │ +00068f50: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00068f60: 3420 2020 2020 2020 2020 2020 2020 207c 4 | │ │ │ │ +00068f70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00068f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00068fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068fc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00068fd0: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ +00068fb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00068fc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00068fd0: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ 00068fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00068ff0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00069000: 2020 2020 2020 2020 2020 2032 2032 2020 2 2 │ │ │ │ -00069010: 2020 2020 207c 0a7c 2031 3633 3037 3933 |.| 1630793 │ │ │ │ -00069020: 3134 3736 3339 3034 3078 2078 2020 2d20 147639040x x - │ │ │ │ -00069030: 3130 3335 3835 3038 3533 3037 3339 3630 1035850853073960 │ │ │ │ -00069040: 3078 2078 2078 2020 2b20 3532 3539 3432 0x x x + 525942 │ │ │ │ -00069050: 3739 3435 3730 3334 3030 7820 7820 202b 7945703400x x + │ │ │ │ -00069060: 2038 3134 387c 0a7c 2020 2020 2020 2020 8148|.| │ │ │ │ -00069070: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -00069080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069090: 2020 3020 3120 3420 2020 2020 2020 2020 0 1 4 │ │ │ │ -000690a0: 2020 2020 2020 2020 2020 2031 2034 2020 1 4 │ │ │ │ -000690b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00068ff0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00069000: 2020 2020 2032 2032 2020 2020 2020 207c 2 2 | │ │ │ │ +00069010: 0a7c 2031 3633 3037 3933 3134 3736 3339 .| 1630793147639 │ │ │ │ +00069020: 3034 3078 2078 2020 2d20 3130 3335 3835 040x x - 103585 │ │ │ │ +00069030: 3038 3533 3037 3339 3630 3078 2078 2078 08530739600x x x │ │ │ │ +00069040: 2020 2b20 3532 3539 3432 3739 3435 3730 + 525942794570 │ │ │ │ +00069050: 3334 3030 7820 7820 202b 2038 3134 387c 3400x x + 8148| │ │ │ │ +00069060: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069070: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +00069080: 2020 2020 2020 2020 2020 2020 3020 3120 0 1 │ │ │ │ +00069090: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000690a0: 2020 2020 2031 2034 2020 2020 2020 207c 1 4 | │ │ │ │ +000690b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000690c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000690d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000690e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000690f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069100: 2020 2020 207c 0a7c 3220 3220 2020 2020 |.|2 2 │ │ │ │ -00069110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069120: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00069130: 2020 2020 2020 2020 2020 3220 3220 2020 2 2 │ │ │ │ -00069140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069150: 2020 2020 207c 0a7c 2078 2020 2d20 3134 |.| x - 14 │ │ │ │ -00069160: 3539 3930 3038 3539 3532 3336 3830 3078 599008595236800x │ │ │ │ -00069170: 2078 2078 2020 2d20 3139 3830 3733 3531 x x - 19807351 │ │ │ │ -00069180: 3131 3530 3530 3830 3078 2078 2020 2b20 115050800x x + │ │ │ │ -00069190: 3230 3130 3237 3633 3235 3432 3234 3030 2010276325422400 │ │ │ │ -000691a0: 7820 7820 787c 0a7c 3020 3420 2020 2020 x x x|.|0 4 │ │ │ │ -000691b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691c0: 3020 3120 3420 2020 2020 2020 2020 2020 0 1 4 │ │ │ │ -000691d0: 2020 2020 2020 2020 2020 3120 3420 2020 1 4 │ │ │ │ -000691e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000691f0: 2030 2032 207c 0a7c 2d2d 2d2d 2d2d 2d2d 0 2 |.|-------- │ │ │ │ +000690f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069100: 0a7c 3220 3220 2020 2020 2020 2020 2020 .|2 2 │ │ │ │ +00069110: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00069120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069130: 2020 2020 3220 3220 2020 2020 2020 2020 2 2 │ │ │ │ +00069140: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069150: 0a7c 2078 2020 2d20 3134 3539 3930 3038 .| x - 14599008 │ │ │ │ +00069160: 3539 3532 3336 3830 3078 2078 2078 2020 595236800x x x │ │ │ │ +00069170: 2d20 3139 3830 3733 3531 3131 3530 3530 - 19807351115050 │ │ │ │ +00069180: 3830 3078 2078 2020 2b20 3230 3130 3237 800x x + 201027 │ │ │ │ +00069190: 3633 3235 3432 3234 3030 7820 7820 787c 6325422400x x x| │ │ │ │ +000691a0: 0a7c 3020 3420 2020 2020 2020 2020 2020 .|0 4 │ │ │ │ +000691b0: 2020 2020 2020 2020 2020 3020 3120 3420 0 1 4 │ │ │ │ +000691c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000691d0: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ +000691e0: 2020 2020 2020 2020 2020 2030 2032 207c 0 2 | │ │ │ │ +000691f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00069200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069240: 2d2d 2d2d 2d7c 0a7c 2032 2020 2020 2020 -----|.| 2 │ │ │ │ -00069250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069260: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069270: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -00069280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069290: 2020 2032 207c 0a7c 7820 202d 2031 3333 2 |.|x - 133 │ │ │ │ -000692a0: 3530 3535 3939 3831 3835 3131 3230 7820 50559981851120x │ │ │ │ -000692b0: 7820 7820 202d 2032 3931 3038 3438 3933 x x - 291084893 │ │ │ │ -000692c0: 3833 3834 3830 7820 7820 202d 2031 3435 838480x x - 145 │ │ │ │ -000692d0: 3434 3937 3732 3831 3032 3237 3230 7820 44977281022720x │ │ │ │ -000692e0: 7820 7820 207c 0a7c 2034 2020 2020 2020 x x |.| 4 │ │ │ │ -000692f0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00069300: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00069310: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ -00069320: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00069330: 2033 2034 207c 0a7c 2020 2020 2020 2020 3 4 |.| │ │ │ │ +00069230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00069240: 0a7c 2032 2020 2020 2020 2020 2020 2020 .| 2 │ │ │ │ +00069250: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00069260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069270: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00069280: 2020 2020 2020 2020 2020 2020 2032 207c 2 | │ │ │ │ +00069290: 0a7c 7820 202d 2031 3333 3530 3535 3939 .|x - 133505599 │ │ │ │ +000692a0: 3831 3835 3131 3230 7820 7820 7820 202d 81851120x x x - │ │ │ │ +000692b0: 2032 3931 3038 3438 3933 3833 3834 3830 291084893838480 │ │ │ │ +000692c0: 7820 7820 202d 2031 3435 3434 3937 3732 x x - 145449772 │ │ │ │ +000692d0: 3831 3032 3237 3230 7820 7820 7820 207c 81022720x x x | │ │ │ │ +000692e0: 0a7c 2034 2020 2020 2020 2020 2020 2020 .| 4 │ │ │ │ +000692f0: 2020 2020 2020 2020 2031 2032 2034 2020 1 2 4 │ │ │ │ +00069300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069310: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ +00069320: 2020 2020 2020 2020 2030 2033 2034 207c 0 3 4 | │ │ │ │ +00069330: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00069390: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000693a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000693b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -000693c0: 2020 2020 2020 2020 2032 2032 2020 2020 2 2 │ │ │ │ -000693d0: 2020 2020 207c 0a7c 3035 3138 3030 3435 |.|05180045 │ │ │ │ -000693e0: 3630 3038 3936 3078 2078 2078 2020 2d20 6008960x x x - │ │ │ │ -000693f0: 3833 3838 3731 3630 3034 3235 3438 3830 8388716004254880 │ │ │ │ -00069400: 7820 7820 7820 202d 2031 3633 3637 3232 x x x - 1636722 │ │ │ │ -00069410: 3138 3132 3331 3230 7820 7820 202d 2032 18123120x x - 2 │ │ │ │ -00069420: 3137 3735 367c 0a7c 2020 2020 2020 2020 17756|.| │ │ │ │ -00069430: 2020 2020 2020 2020 3020 3220 3420 2020 0 2 4 │ │ │ │ -00069440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069450: 2031 2032 2034 2020 2020 2020 2020 2020 1 2 4 │ │ │ │ -00069460: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -00069470: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069370: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069380: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069390: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000693a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000693b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000693c0: 2020 2032 2032 2020 2020 2020 2020 207c 2 2 | │ │ │ │ +000693d0: 0a7c 3035 3138 3030 3435 3630 3038 3936 .|05180045600896 │ │ │ │ +000693e0: 3078 2078 2078 2020 2d20 3833 3838 3731 0x x x - 838871 │ │ │ │ +000693f0: 3630 3034 3235 3438 3830 7820 7820 7820 6004254880x x x │ │ │ │ +00069400: 202d 2031 3633 3637 3232 3138 3132 3331 - 1636722181231 │ │ │ │ +00069410: 3230 7820 7820 202d 2032 3137 3735 367c 20x x - 217756| │ │ │ │ +00069420: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069430: 2020 3020 3220 3420 2020 2020 2020 2020 0 2 4 │ │ │ │ +00069440: 2020 2020 2020 2020 2020 2031 2032 2034 1 2 4 │ │ │ │ +00069450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069460: 2020 2032 2034 2020 2020 2020 2020 207c 2 4 | │ │ │ │ +00069470: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000694a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000694c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000694d0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000694e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000694f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069500: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ -00069510: 2020 2020 207c 0a7c 3436 3732 3030 7820 |.|467200x │ │ │ │ -00069520: 7820 7820 202b 2034 3934 3639 3538 3939 x x + 494695899 │ │ │ │ -00069530: 3635 3631 3739 3230 7820 7820 7820 202d 65617920x x x - │ │ │ │ -00069540: 2031 3034 3839 3133 3332 3831 3739 3535 104891332817955 │ │ │ │ -00069550: 3630 7820 7820 202b 2037 3735 3338 3037 60x x + 7753807 │ │ │ │ -00069560: 3338 3738 387c 0a7c 2020 2020 2020 2030 38788|.| 0 │ │ │ │ -00069570: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00069580: 2020 2020 2020 2020 2031 2032 2034 2020 1 2 4 │ │ │ │ -00069590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695a0: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ -000695b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000694b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000694c0: 0a7c 2020 2020 2020 2020 2020 2032 2020 .| 2 │ │ │ │ +000694d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000694e0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000694f0: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ +00069500: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069510: 0a7c 3436 3732 3030 7820 7820 7820 202b .|467200x x x + │ │ │ │ +00069520: 2034 3934 3639 3538 3939 3635 3631 3739 494695899656179 │ │ │ │ +00069530: 3230 7820 7820 7820 202d 2031 3034 3839 20x x x - 10489 │ │ │ │ +00069540: 3133 3332 3831 3739 3535 3630 7820 7820 133281795560x x │ │ │ │ +00069550: 202b 2037 3735 3338 3037 3338 3738 387c + 775380738788| │ │ │ │ +00069560: 0a7c 2020 2020 2020 2030 2032 2034 2020 .| 0 2 4 │ │ │ │ +00069570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069580: 2020 2031 2032 2034 2020 2020 2020 2020 1 2 4 │ │ │ │ +00069590: 2020 2020 2020 2020 2020 2020 2032 2034 2 4 │ │ │ │ +000695a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000695b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000695c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000695e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000695f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069600: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00069610: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00069620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069630: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069640: 2020 2020 2020 2020 3220 3220 2020 2020 2 2 │ │ │ │ -00069650: 2020 2020 207c 0a7c 3233 3331 3136 3337 |.|23311637 │ │ │ │ -00069660: 3136 3030 7820 7820 7820 202d 2031 3935 1600x x x - 195 │ │ │ │ -00069670: 3339 3939 3639 3633 3839 3332 3830 7820 39996963893280x │ │ │ │ -00069680: 7820 7820 202b 2036 3538 3532 3834 3430 x x + 658528440 │ │ │ │ -00069690: 3532 3734 3132 3078 2078 2020 2b20 3433 5274120x x + 43 │ │ │ │ -000696a0: 3136 3337 317c 0a7c 2020 2020 2020 2020 16371|.| │ │ │ │ -000696b0: 2020 2020 2030 2032 2034 2020 2020 2020 0 2 4 │ │ │ │ -000696c0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -000696d0: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -000696e0: 2020 2020 2020 2020 3220 3420 2020 2020 2 4 │ │ │ │ -000696f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000695f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069600: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069610: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00069620: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00069630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069640: 2020 3220 3220 2020 2020 2020 2020 207c 2 2 | │ │ │ │ +00069650: 0a7c 3233 3331 3136 3337 3136 3030 7820 .|233116371600x │ │ │ │ +00069660: 7820 7820 202d 2031 3935 3339 3939 3639 x x - 195399969 │ │ │ │ +00069670: 3633 3839 3332 3830 7820 7820 7820 202b 63893280x x x + │ │ │ │ +00069680: 2036 3538 3532 3834 3430 3532 3734 3132 658528440527412 │ │ │ │ +00069690: 3078 2078 2020 2b20 3433 3136 3337 317c 0x x + 4316371| │ │ │ │ +000696a0: 0a7c 2020 2020 2020 2020 2020 2020 2030 .| 0 │ │ │ │ +000696b0: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ +000696c0: 2020 2020 2020 2020 2031 2032 2034 2020 1 2 4 │ │ │ │ +000696d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000696e0: 2020 3220 3420 2020 2020 2020 2020 207c 2 4 | │ │ │ │ +000696f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069740: 2020 2020 207c 0a7c 3220 2020 2020 2020 |.|2 │ │ │ │ -00069750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069760: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069770: 2020 2020 2020 2032 2032 2020 2020 2020 2 2 │ │ │ │ -00069780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069790: 2020 2032 207c 0a7c 2020 2b20 3238 3734 2 |.| + 2874 │ │ │ │ -000697a0: 3934 3233 3536 3131 3036 3530 3078 2078 9423561106500x x │ │ │ │ -000697b0: 2078 2020 2b20 3833 3337 3132 3934 3336 x + 8337129436 │ │ │ │ -000697c0: 3137 3136 3230 7820 7820 202d 2031 3532 171620x x - 152 │ │ │ │ -000697d0: 3039 3535 3430 3339 3431 3132 3030 7820 09554039411200x │ │ │ │ -000697e0: 7820 7820 207c 0a7c 3420 2020 2020 2020 x x |.|4 │ │ │ │ -000697f0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00069800: 3220 3420 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00069810: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ -00069820: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00069830: 2033 2034 207c 0a7c 2d2d 2d2d 2d2d 2d2d 3 4 |.|-------- │ │ │ │ +00069730: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069740: 0a7c 3220 2020 2020 2020 2020 2020 2020 .|2 │ │ │ │ +00069750: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00069760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069770: 2032 2032 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00069780: 2020 2020 2020 2020 2020 2020 2032 207c 2 | │ │ │ │ +00069790: 0a7c 2020 2b20 3238 3734 3934 3233 3536 .| + 2874942356 │ │ │ │ +000697a0: 3131 3036 3530 3078 2078 2078 2020 2b20 1106500x x x + │ │ │ │ +000697b0: 3833 3337 3132 3934 3336 3137 3136 3230 8337129436171620 │ │ │ │ +000697c0: 7820 7820 202d 2031 3532 3039 3535 3430 x x - 152095540 │ │ │ │ +000697d0: 3339 3431 3132 3030 7820 7820 7820 207c 39411200x x x | │ │ │ │ +000697e0: 0a7c 3420 2020 2020 2020 2020 2020 2020 .|4 │ │ │ │ +000697f0: 2020 2020 2020 2020 3120 3220 3420 2020 1 2 4 │ │ │ │ +00069800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069810: 2032 2034 2020 2020 2020 2020 2020 2020 2 4 │ │ │ │ +00069820: 2020 2020 2020 2020 2030 2033 2034 207c 0 3 4 | │ │ │ │ +00069830: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00069840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069880: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00069890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000698a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000698b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000698c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000698d0: 3220 3220 207c 0a7c 2b20 3330 3732 3930 2 2 |.|+ 307290 │ │ │ │ -000698e0: 3335 3231 3137 3231 3238 3078 2078 2078 35211721280x x x │ │ │ │ -000698f0: 2020 2d20 3231 3333 3736 3930 3435 3631 - 213376904561 │ │ │ │ -00069900: 3036 3038 3078 2078 2078 2020 2b20 3336 06080x x x + 36 │ │ │ │ -00069910: 3136 3439 3039 3131 3732 3939 3230 3078 164909117299200x │ │ │ │ -00069920: 2078 2020 2b7c 0a7c 2020 2020 2020 2020 x +|.| │ │ │ │ -00069930: 2020 2020 2020 2020 2020 2020 3120 3320 1 3 │ │ │ │ -00069940: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00069950: 2020 2020 2020 3220 3320 3420 2020 2020 2 3 4 │ │ │ │ -00069960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069970: 3320 3420 207c 0a7c 2020 2020 2020 2020 3 4 |.| │ │ │ │ +00069870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00069880: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069890: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000698a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000698b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000698c0: 2020 2020 2020 2020 2020 3220 3220 207c 2 2 | │ │ │ │ +000698d0: 0a7c 2b20 3330 3732 3930 3335 3231 3137 .|+ 307290352117 │ │ │ │ +000698e0: 3231 3238 3078 2078 2078 2020 2d20 3231 21280x x x - 21 │ │ │ │ +000698f0: 3333 3736 3930 3435 3631 3036 3038 3078 337690456106080x │ │ │ │ +00069900: 2078 2078 2020 2b20 3336 3136 3439 3039 x x + 36164909 │ │ │ │ +00069910: 3131 3732 3939 3230 3078 2078 2020 2b7c 117299200x x +| │ │ │ │ +00069920: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069930: 2020 2020 2020 3120 3320 3420 2020 2020 1 3 4 │ │ │ │ +00069940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069950: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00069960: 2020 2020 2020 2020 2020 3320 3420 207c 3 4 | │ │ │ │ +00069970: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000699a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000699b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000699c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000699d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000699e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000699f0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069a00: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00069a10: 2020 2020 207c 0a7c 3935 3438 3331 3430 |.|95483140 │ │ │ │ -00069a20: 3438 3078 2078 2078 2020 2b20 3335 3535 480x x x + 3555 │ │ │ │ -00069a30: 3232 3136 3635 3234 3732 3830 3078 2078 2216652472800x x │ │ │ │ -00069a40: 2078 2020 2d20 3235 3036 3838 3332 3639 x - 2506883269 │ │ │ │ -00069a50: 3930 3735 3230 7820 7820 7820 202b 2034 907520x x x + 4 │ │ │ │ -00069a60: 3134 3437 387c 0a7c 2020 2020 2020 2020 14478|.| │ │ │ │ -00069a70: 2020 2020 3020 3320 3420 2020 2020 2020 0 3 4 │ │ │ │ -00069a80: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -00069a90: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00069aa0: 2020 2020 2020 2032 2033 2034 2020 2020 2 3 4 │ │ │ │ -00069ab0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000699b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000699c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000699d0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000699e0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000699f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069a00: 2020 2020 2032 2020 2020 2020 2020 207c 2 | │ │ │ │ +00069a10: 0a7c 3935 3438 3331 3430 3438 3078 2078 .|95483140480x x │ │ │ │ +00069a20: 2078 2020 2b20 3335 3535 3232 3136 3635 x + 3555221665 │ │ │ │ +00069a30: 3234 3732 3830 3078 2078 2078 2020 2d20 2472800x x x - │ │ │ │ +00069a40: 3235 3036 3838 3332 3639 3930 3735 3230 2506883269907520 │ │ │ │ +00069a50: 7820 7820 7820 202b 2034 3134 3437 387c x x x + 414478| │ │ │ │ +00069a60: 0a7c 2020 2020 2020 2020 2020 2020 3020 .| 0 │ │ │ │ +00069a70: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00069a80: 2020 2020 2020 2020 3120 3320 3420 2020 1 3 4 │ │ │ │ +00069a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069aa0: 2032 2033 2034 2020 2020 2020 2020 207c 2 3 4 | │ │ │ │ +00069ab0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069b00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00069b10: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069b20: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00069af0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069b00: 0a7c 2020 2020 2020 2020 2020 3220 2020 .| 2 │ │ │ │ +00069b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069b20: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00069b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069b40: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00069b50: 2020 2020 207c 0a7c 3336 3438 3078 2078 |.|36480x x │ │ │ │ -00069b60: 2078 2020 2d20 3132 3637 3736 3835 3632 x - 1267768562 │ │ │ │ -00069b70: 3436 3633 3639 3630 7820 7820 7820 202b 46636960x x x + │ │ │ │ -00069b80: 2033 3534 3830 3335 3632 3531 3233 3830 354803562512380 │ │ │ │ -00069b90: 3830 7820 7820 7820 202d 2039 3534 3636 80x x x - 95466 │ │ │ │ -00069ba0: 3630 3534 307c 0a7c 2020 2020 2020 3020 60540|.| 0 │ │ │ │ -00069bb0: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00069bc0: 2020 2020 2020 2020 2031 2033 2034 2020 1 3 4 │ │ │ │ -00069bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069be0: 2020 2032 2033 2034 2020 2020 2020 2020 2 3 4 │ │ │ │ -00069bf0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069b40: 2032 2020 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00069b50: 0a7c 3336 3438 3078 2078 2078 2020 2d20 .|36480x x x - │ │ │ │ +00069b60: 3132 3637 3736 3835 3632 3436 3633 3639 1267768562466369 │ │ │ │ +00069b70: 3630 7820 7820 7820 202b 2033 3534 3830 60x x x + 35480 │ │ │ │ +00069b80: 3335 3632 3531 3233 3830 3830 7820 7820 356251238080x x │ │ │ │ +00069b90: 7820 202d 2039 3534 3636 3630 3534 307c x - 9546660540| │ │ │ │ +00069ba0: 0a7c 2020 2020 2020 3020 3320 3420 2020 .| 0 3 4 │ │ │ │ +00069bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069bc0: 2020 2031 2033 2034 2020 2020 2020 2020 1 3 4 │ │ │ │ +00069bd0: 2020 2020 2020 2020 2020 2020 2032 2033 2 3 │ │ │ │ +00069be0: 2034 2020 2020 2020 2020 2020 2020 207c 4 | │ │ │ │ +00069bf0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00069c50: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00069c60: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00069c30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069c40: 0a7c 2020 2020 2020 2020 2020 2020 3220 .| 2 │ │ │ │ +00069c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069c60: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00069c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069c80: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00069c90: 2020 2020 207c 0a7c 3430 3939 3532 3078 |.|4099520x │ │ │ │ -00069ca0: 2078 2078 2020 2b20 3330 3532 3833 3830 x x + 30528380 │ │ │ │ -00069cb0: 3336 3731 3839 3630 3078 2078 2078 2020 367189600x x x │ │ │ │ -00069cc0: 2d20 3230 3439 3734 3333 3033 3534 3231 - 20497433035421 │ │ │ │ -00069cd0: 3136 3078 2078 2078 2020 2d20 3330 3932 160x x x - 3092 │ │ │ │ -00069ce0: 3232 3432 377c 0a7c 2020 2020 2020 2020 22427|.| │ │ │ │ -00069cf0: 3020 3320 3420 2020 2020 2020 2020 2020 0 3 4 │ │ │ │ -00069d00: 2020 2020 2020 2020 2020 3120 3320 3420 1 3 4 │ │ │ │ -00069d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d20: 2020 2020 3220 3320 3420 2020 2020 2020 2 3 4 │ │ │ │ -00069d30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069c80: 2020 3220 2020 2020 2020 2020 2020 207c 2 | │ │ │ │ +00069c90: 0a7c 3430 3939 3532 3078 2078 2078 2020 .|4099520x x x │ │ │ │ +00069ca0: 2b20 3330 3532 3833 3830 3336 3731 3839 + 30528380367189 │ │ │ │ +00069cb0: 3630 3078 2078 2078 2020 2d20 3230 3439 600x x x - 2049 │ │ │ │ +00069cc0: 3734 3333 3033 3534 3231 3136 3078 2078 7433035421160x x │ │ │ │ +00069cd0: 2078 2020 2d20 3330 3932 3232 3432 377c x - 309222427| │ │ │ │ +00069ce0: 0a7c 2020 2020 2020 2020 3020 3320 3420 .| 0 3 4 │ │ │ │ +00069cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069d00: 2020 2020 3120 3320 3420 2020 2020 2020 1 3 4 │ │ │ │ +00069d10: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00069d20: 3320 3420 2020 2020 2020 2020 2020 207c 3 4 | │ │ │ │ +00069d30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069d80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00069d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069da0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00069db0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00069dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069dd0: 3220 3220 207c 0a7c 2d20 3135 3634 3439 2 2 |.|- 156449 │ │ │ │ -00069de0: 3732 3038 3238 3031 3630 3078 2078 2078 72082801600x x x │ │ │ │ -00069df0: 2020 2d20 3134 3839 3931 3234 3531 3337 - 148991245137 │ │ │ │ -00069e00: 3030 3030 3078 2078 2078 2020 2b20 3430 00000x x x + 40 │ │ │ │ -00069e10: 3337 3431 3835 3933 3138 3738 3430 3078 374185931878400x │ │ │ │ -00069e20: 2078 2020 2d7c 0a7c 2020 2020 2020 2020 x -|.| │ │ │ │ -00069e30: 2020 2020 2020 2020 2020 2020 3120 3320 1 3 │ │ │ │ -00069e40: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00069e50: 2020 2020 2020 3220 3320 3420 2020 2020 2 3 4 │ │ │ │ -00069e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069e70: 3320 3420 207c 0a7c 2d2d 2d2d 2d2d 2d2d 3 4 |.|-------- │ │ │ │ +00069d70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00069d80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069d90: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00069da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069db0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00069dc0: 2020 2020 2020 2020 2020 3220 3220 207c 2 2 | │ │ │ │ +00069dd0: 0a7c 2d20 3135 3634 3439 3732 3038 3238 .|- 156449720828 │ │ │ │ +00069de0: 3031 3630 3078 2078 2078 2020 2d20 3134 01600x x x - 14 │ │ │ │ +00069df0: 3839 3931 3234 3531 3337 3030 3030 3078 899124513700000x │ │ │ │ +00069e00: 2078 2078 2020 2b20 3430 3337 3431 3835 x x + 40374185 │ │ │ │ +00069e10: 3933 3138 3738 3430 3078 2078 2020 2d7c 931878400x x -| │ │ │ │ +00069e20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069e30: 2020 2020 2020 3120 3320 3420 2020 2020 1 3 4 │ │ │ │ +00069e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069e50: 3220 3320 3420 2020 2020 2020 2020 2020 2 3 4 │ │ │ │ +00069e60: 2020 2020 2020 2020 2020 3320 3420 207c 3 4 | │ │ │ │ +00069e70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00069e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00069ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00069ec0: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -00069ed0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ -00069ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069ef0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -00069f00: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -00069f10: 2020 2020 207c 0a7c 2039 3533 3030 3631 |.| 9530061 │ │ │ │ -00069f20: 3032 3333 3437 3230 3078 2078 2020 2d20 023347200x x - │ │ │ │ -00069f30: 3131 3838 3838 3435 3238 3132 3634 3030 1188884528126400 │ │ │ │ -00069f40: 3078 2078 2020 2b20 3234 3039 3639 3531 0x x + 24096951 │ │ │ │ -00069f50: 3738 3633 3438 3030 7820 7820 202d 2031 78634800x x - 1 │ │ │ │ -00069f60: 3130 3130 367c 0a7c 2020 2020 2020 2020 10106|.| │ │ │ │ -00069f70: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -00069f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069f90: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ -00069fa0: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -00069fb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00069ec0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069ed0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +00069ee0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00069ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069f00: 2020 2020 2033 2020 2020 2020 2020 207c 3 | │ │ │ │ +00069f10: 0a7c 2039 3533 3030 3631 3032 3333 3437 .| 9530061023347 │ │ │ │ +00069f20: 3230 3078 2078 2020 2d20 3131 3838 3838 200x x - 118888 │ │ │ │ +00069f30: 3435 3238 3132 3634 3030 3078 2078 2020 45281264000x x │ │ │ │ +00069f40: 2b20 3234 3039 3639 3531 3738 3633 3438 + 24096951786348 │ │ │ │ +00069f50: 3030 7820 7820 202d 2031 3130 3130 367c 00x x - 110106| │ │ │ │ +00069f60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00069f70: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +00069f80: 2020 2020 2020 2020 2020 2020 3120 3420 1 4 │ │ │ │ +00069f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00069fa0: 2020 2032 2034 2020 2020 2020 2020 207c 2 4 | │ │ │ │ +00069fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00069fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00069fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00069ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a000: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006a010: 2020 3220 3220 2020 2020 2020 2020 2020 2 2 │ │ │ │ -0006a020: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ -0006a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a040: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a050: 2020 2020 207c 0a7c 3537 3134 3531 3834 |.|57145184 │ │ │ │ -0006a060: 3078 2078 2020 2b20 3332 3431 3639 3336 0x x + 32416936 │ │ │ │ -0006a070: 3436 3036 3038 3030 7820 7820 202d 2035 46060800x x - 5 │ │ │ │ -0006a080: 3937 3933 3136 3339 3239 3537 3630 3078 979316392957600x │ │ │ │ -0006a090: 2078 2020 2b20 3330 3030 3333 3036 3534 x + 3000330654 │ │ │ │ -0006a0a0: 3337 3536 307c 0a7c 2020 2020 2020 2020 37560|.| │ │ │ │ -0006a0b0: 2020 3320 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0006a0c0: 2020 2020 2020 2020 2030 2034 2020 2020 0 4 │ │ │ │ -0006a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a0e0: 3120 3420 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ -0006a0f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00069ff0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a000: 0a7c 2020 2020 2020 2020 2020 3220 3220 .| 2 2 │ │ │ │ +0006a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a020: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ +0006a030: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +0006a040: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a050: 0a7c 3537 3134 3531 3834 3078 2078 2020 .|571451840x x │ │ │ │ +0006a060: 2b20 3332 3431 3639 3336 3436 3036 3038 + 32416936460608 │ │ │ │ +0006a070: 3030 7820 7820 202d 2035 3937 3933 3136 00x x - 5979316 │ │ │ │ +0006a080: 3339 3239 3537 3630 3078 2078 2020 2b20 392957600x x + │ │ │ │ +0006a090: 3330 3030 3333 3036 3534 3337 3536 307c 300033065437560| │ │ │ │ +0006a0a0: 0a7c 2020 2020 2020 2020 2020 3320 3420 .| 3 4 │ │ │ │ +0006a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a0c0: 2020 2030 2034 2020 2020 2020 2020 2020 0 4 │ │ │ │ +0006a0d0: 2020 2020 2020 2020 2020 3120 3420 2020 1 4 │ │ │ │ +0006a0e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a0f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a140: 2020 2020 207c 0a7c 2020 2020 2020 2032 |.| 2 │ │ │ │ -0006a150: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0006a160: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -0006a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a180: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a190: 2020 2020 207c 0a7c 3134 3430 3030 7820 |.|144000x │ │ │ │ -0006a1a0: 7820 202d 2031 3632 3130 3437 3731 3732 x - 16210477172 │ │ │ │ -0006a1b0: 3733 3630 3030 7820 7820 202b 2032 3131 736000x x + 211 │ │ │ │ -0006a1c0: 3333 3634 3438 3538 3439 3638 3030 7820 33644858496800x │ │ │ │ -0006a1d0: 7820 202d 2031 3534 3938 3133 3132 3536 x - 15498131256 │ │ │ │ -0006a1e0: 3536 3838 307c 0a7c 2020 2020 2020 2033 56880|.| 3 │ │ │ │ -0006a1f0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0006a200: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ -0006a210: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -0006a220: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0006a230: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a130: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a140: 0a7c 2020 2020 2020 2032 2032 2020 2020 .| 2 2 │ │ │ │ +0006a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a160: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0006a170: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +0006a180: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a190: 0a7c 3134 3430 3030 7820 7820 202d 2031 .|144000x x - 1 │ │ │ │ +0006a1a0: 3632 3130 3437 3731 3732 3733 3630 3030 6210477172736000 │ │ │ │ +0006a1b0: 7820 7820 202b 2032 3131 3333 3634 3438 x x + 211336448 │ │ │ │ +0006a1c0: 3538 3439 3638 3030 7820 7820 202d 2031 58496800x x - 1 │ │ │ │ +0006a1d0: 3534 3938 3133 3132 3536 3536 3838 307c 549813125656880| │ │ │ │ +0006a1e0: 0a7c 2020 2020 2020 2033 2034 2020 2020 .| 3 4 │ │ │ │ +0006a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a200: 2030 2034 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ +0006a210: 2020 2020 2020 2020 2031 2034 2020 2020 1 4 │ │ │ │ +0006a220: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a230: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a280: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006a290: 3220 3220 2020 2020 2020 2020 2020 2020 2 2 │ │ │ │ -0006a2a0: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ -0006a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a2c0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a2d0: 2020 2020 207c 0a7c 3336 3839 3630 3078 |.|3689600x │ │ │ │ -0006a2e0: 2078 2020 2b20 3538 3036 3535 3534 3434 x + 5806555444 │ │ │ │ -0006a2f0: 3136 3634 3030 7820 7820 202d 2038 3639 166400x x - 869 │ │ │ │ -0006a300: 3331 3734 3637 3833 3238 3030 3078 2078 3174678328000x x │ │ │ │ -0006a310: 2020 2b20 3735 3435 3135 3436 3038 3838 + 754515460888 │ │ │ │ -0006a320: 3035 3630 787c 0a7c 2020 2020 2020 2020 0560x|.| │ │ │ │ -0006a330: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0006a340: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ -0006a350: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -0006a360: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0006a370: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a270: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a280: 0a7c 2020 2020 2020 2020 3220 3220 2020 .| 2 2 │ │ │ │ +0006a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a2a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0006a2b0: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +0006a2c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a2d0: 0a7c 3336 3839 3630 3078 2078 2020 2b20 .|3689600x x + │ │ │ │ +0006a2e0: 3538 3036 3535 3534 3434 3136 3634 3030 5806555444166400 │ │ │ │ +0006a2f0: 7820 7820 202d 2038 3639 3331 3734 3637 x x - 869317467 │ │ │ │ +0006a300: 3833 3238 3030 3078 2078 2020 2b20 3735 8328000x x + 75 │ │ │ │ +0006a310: 3435 3135 3436 3038 3838 3035 3630 787c 45154608880560x| │ │ │ │ +0006a320: 0a7c 2020 2020 2020 2020 3320 3420 2020 .| 3 4 │ │ │ │ +0006a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a340: 2030 2034 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ +0006a350: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ +0006a360: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a370: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a3c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006a3d0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ -0006a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a3f0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a400: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ -0006a410: 2020 2020 207c 0a7c 2036 3636 3435 3137 |.| 6664517 │ │ │ │ -0006a420: 3837 3930 3430 3030 3078 2078 2020 2b20 879040000x x + │ │ │ │ -0006a430: 3535 3637 3239 3034 3136 3231 3036 3030 5567290416210600 │ │ │ │ -0006a440: 3078 2078 2020 2d20 3139 3434 3936 3033 0x x - 19449603 │ │ │ │ -0006a450: 3938 3531 3635 3230 3078 2078 2020 2b20 985165200x x + │ │ │ │ -0006a460: 3632 3035 327c 0a7c 2020 2020 2020 2020 62052|.| │ │ │ │ -0006a470: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -0006a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a490: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ -0006a4a0: 2020 2020 2020 2020 2020 3220 3420 2020 2 4 │ │ │ │ -0006a4b0: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +0006a3b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a3c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a3d0: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ +0006a3e0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +0006a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a400: 2020 2020 2020 3320 2020 2020 2020 207c 3 | │ │ │ │ +0006a410: 0a7c 2036 3636 3435 3137 3837 3930 3430 .| 6664517879040 │ │ │ │ +0006a420: 3030 3078 2078 2020 2b20 3535 3637 3239 000x x + 556729 │ │ │ │ +0006a430: 3034 3136 3231 3036 3030 3078 2078 2020 04162106000x x │ │ │ │ +0006a440: 2d20 3139 3434 3936 3033 3938 3531 3635 - 19449603985165 │ │ │ │ +0006a450: 3230 3078 2078 2020 2b20 3632 3035 327c 200x x + 62052| │ │ │ │ +0006a460: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a470: 2020 2020 3020 3420 2020 2020 2020 2020 0 4 │ │ │ │ +0006a480: 2020 2020 2020 2020 2020 2020 3120 3420 1 4 │ │ │ │ +0006a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a4a0: 2020 2020 3220 3420 2020 2020 2020 207c 2 4 | │ │ │ │ +0006a4b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 0006a4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006a4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006a500: 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 2020 -----|.| │ │ │ │ -0006a510: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -0006a520: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +0006a4f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +0006a500: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006a510: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0006a520: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ 0006a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a550: 2020 2020 207c 0a7c 3831 3339 3739 3638 |.|81397968 │ │ │ │ -0006a560: 3030 3078 2078 2020 2b20 3236 3136 3833 000x x + 261683 │ │ │ │ -0006a570: 3537 3439 3139 3230 3030 7820 2c20 2020 5749192000x , │ │ │ │ +0006a540: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a550: 0a7c 3831 3339 3739 3638 3030 3078 2078 .|81397968000x x │ │ │ │ +0006a560: 2020 2b20 3236 3136 3833 3537 3439 3139 + 261683574919 │ │ │ │ +0006a570: 3230 3030 7820 2c20 2020 2020 2020 2020 2000x , │ │ │ │ 0006a580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a5a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006a5b0: 2020 2020 3320 3420 2020 2020 2020 2020 3 4 │ │ │ │ -0006a5c0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +0006a590: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a5a0: 0a7c 2020 2020 2020 2020 2020 2020 3320 .| 3 │ │ │ │ +0006a5b0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a5c0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ 0006a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a5f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a5e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a5f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a640: 2020 2020 207c 0a7c 2020 2020 3320 2020 |.| 3 │ │ │ │ -0006a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a660: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a670: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -0006a680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a690: 2020 2020 207c 0a7c 3078 2078 2020 2d20 |.|0x x - │ │ │ │ -0006a6a0: 3938 3838 3331 3337 3531 3736 3936 3030 9888313751769600 │ │ │ │ -0006a6b0: 7820 7820 202b 2031 3738 3439 3736 3234 x x + 178497624 │ │ │ │ -0006a6c0: 3936 3732 3030 3078 202c 2020 2020 2020 9672000x , │ │ │ │ -0006a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a6e0: 2020 2020 207c 0a7c 2020 3220 3420 2020 |.| 2 4 │ │ │ │ -0006a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a700: 2033 2034 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0006a710: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -0006a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a730: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a630: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a640: 0a7c 2020 2020 3320 2020 2020 2020 2020 .| 3 │ │ │ │ +0006a650: 2020 2020 2020 2020 2020 2020 2033 2020 3 │ │ │ │ +0006a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a670: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a680: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a690: 0a7c 3078 2078 2020 2d20 3938 3838 3331 .|0x x - 988831 │ │ │ │ +0006a6a0: 3337 3531 3736 3936 3030 7820 7820 202b 3751769600x x + │ │ │ │ +0006a6b0: 2031 3738 3439 3736 3234 3936 3732 3030 178497624967200 │ │ │ │ +0006a6c0: 3078 202c 2020 2020 2020 2020 2020 2020 0x , │ │ │ │ +0006a6d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a6e0: 0a7c 2020 3220 3420 2020 2020 2020 2020 .| 2 4 │ │ │ │ +0006a6f0: 2020 2020 2020 2020 2020 2033 2034 2020 3 4 │ │ │ │ +0006a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a710: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a720: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a730: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a780: 2020 2020 207c 0a7c 2020 2020 3320 2020 |.| 3 │ │ │ │ -0006a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a7a0: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a7b0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ -0006a7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a7d0: 2020 2020 207c 0a7c 3078 2078 2020 2b20 |.|0x x + │ │ │ │ -0006a7e0: 3338 3938 3738 3535 3136 3930 3536 3634 3898785516905664 │ │ │ │ -0006a7f0: 3078 2078 2020 2d20 3538 3239 3431 3531 0x x - 58294151 │ │ │ │ -0006a800: 3635 3332 3438 3030 7820 2c20 2020 2020 65324800x , │ │ │ │ -0006a810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a820: 2020 2020 207c 0a7c 2020 3220 3420 2020 |.| 2 4 │ │ │ │ -0006a830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a840: 2020 3320 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0006a850: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ -0006a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a870: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a770: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a780: 0a7c 2020 2020 3320 2020 2020 2020 2020 .| 3 │ │ │ │ +0006a790: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +0006a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a7b0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a7c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a7d0: 0a7c 3078 2078 2020 2b20 3338 3938 3738 .|0x x + 389878 │ │ │ │ +0006a7e0: 3535 3136 3930 3536 3634 3078 2078 2020 55169056640x x │ │ │ │ +0006a7f0: 2d20 3538 3239 3431 3531 3635 3332 3438 - 58294151653248 │ │ │ │ +0006a800: 3030 7820 2c20 2020 2020 2020 2020 2020 00x , │ │ │ │ +0006a810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a820: 0a7c 2020 3220 3420 2020 2020 2020 2020 .| 2 4 │ │ │ │ +0006a830: 2020 2020 2020 2020 2020 2020 3320 3420 3 4 │ │ │ │ +0006a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a850: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a860: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a870: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a8c0: 2020 2020 207c 0a7c 2020 3320 2020 2020 |.| 3 │ │ │ │ -0006a8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a8e0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0006a8f0: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -0006a900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a910: 2020 2020 207c 0a7c 2078 2020 2d20 3132 |.| x - 12 │ │ │ │ -0006a920: 3235 3333 3539 3734 3939 3534 3430 3078 253359749954400x │ │ │ │ -0006a930: 2078 2020 2b20 3237 3835 3633 3438 3538 x + 2785634858 │ │ │ │ -0006a940: 3035 3932 3030 7820 2c20 2020 2020 2020 059200x , │ │ │ │ -0006a950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a960: 2020 2020 207c 0a7c 3220 3420 2020 2020 |.|2 4 │ │ │ │ -0006a970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a980: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -0006a990: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ -0006a9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a9b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0006a8b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a8c0: 0a7c 2020 3320 2020 2020 2020 2020 2020 .| 3 │ │ │ │ +0006a8d0: 2020 2020 2020 2020 2020 2020 3320 2020 3 │ │ │ │ +0006a8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a8f0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a900: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a910: 0a7c 2078 2020 2d20 3132 3235 3333 3539 .| x - 12253359 │ │ │ │ +0006a920: 3734 3939 3534 3430 3078 2078 2020 2b20 749954400x x + │ │ │ │ +0006a930: 3237 3835 3633 3438 3538 3035 3932 3030 2785634858059200 │ │ │ │ +0006a940: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0006a950: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a960: 0a7c 3220 3420 2020 2020 2020 2020 2020 .|2 4 │ │ │ │ +0006a970: 2020 2020 2020 2020 2020 3320 3420 2020 3 4 │ │ │ │ +0006a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006a990: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006a9a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006a9b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 0006a9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006a9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006a9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006aa10: 2020 2020 2020 3320 2020 2020 2020 2020 3 │ │ │ │ -0006aa20: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +0006a9f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006aa00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0006aa10: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0006aa20: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ 0006aa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa50: 2020 2020 207c 0a7c 3630 3136 3835 3736 |.|60168576 │ │ │ │ -0006aa60: 3030 3078 2078 2020 2d20 3230 3935 3034 000x x - 209504 │ │ │ │ -0006aa70: 3031 3933 3532 3332 3030 3078 2020 2020 01935232000x │ │ │ │ +0006aa40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006aa50: 0a7c 3630 3136 3835 3736 3030 3078 2078 .|60168576000x x │ │ │ │ +0006aa60: 2020 2d20 3230 3935 3034 3031 3933 3532 - 209504019352 │ │ │ │ +0006aa70: 3332 3030 3078 2020 2020 2020 2020 2020 32000x │ │ │ │ 0006aa80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aa90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aaa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0006aab0: 2020 2020 3320 3420 2020 2020 2020 2020 3 4 │ │ │ │ -0006aac0: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +0006aa90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006aaa0: 0a7c 2020 2020 2020 2020 2020 2020 3320 .| 3 │ │ │ │ +0006aab0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0006aac0: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ 0006aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006aaf0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +0006aae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0006aaf0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 0006ab00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ab10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ab20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ab40: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ -0006ab50: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -0006ab60: 6e6f 7465 2069 6e76 6572 7365 4d61 703a note inverseMap: │ │ │ │ -0006ab70: 2069 6e76 6572 7365 4d61 702c 202d 2d20 inverseMap, -- │ │ │ │ -0006ab80: 696e 7665 7273 6520 6f66 2061 2062 6972 inverse of a bir │ │ │ │ -0006ab90: 6174 696f 6e61 6c20 6d61 700a 2020 2a20 ational map. * │ │ │ │ -0006aba0: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ -0006abb0: 7020 5e20 5a5a 3a20 5261 7469 6f6e 616c p ^ ZZ: Rational │ │ │ │ -0006abc0: 4d61 7020 5e20 5a5a 2c20 2d2d 2070 6f77 Map ^ ZZ, -- pow │ │ │ │ -0006abd0: 6572 0a20 202a 202a 6e6f 7465 2069 7349 er. * *note isI │ │ │ │ -0006abe0: 6e76 6572 7365 4d61 7028 5261 7469 6f6e nverseMap(Ration │ │ │ │ -0006abf0: 616c 4d61 702c 5261 7469 6f6e 616c 4d61 alMap,RationalMa │ │ │ │ -0006ac00: 7029 3a0a 2020 2020 6973 496e 7665 7273 p):. isInvers │ │ │ │ -0006ac10: 654d 6170 5f6c 7052 6174 696f 6e61 6c4d eMap_lpRationalM │ │ │ │ -0006ac20: 6170 5f63 6d52 6174 696f 6e61 6c4d 6170 ap_cmRationalMap │ │ │ │ -0006ac30: 5f72 702c 202d 2d20 6368 6563 6b73 2077 _rp, -- checks w │ │ │ │ -0006ac40: 6865 7468 6572 2074 776f 2072 6174 696f hether two ratio │ │ │ │ -0006ac50: 6e61 6c0a 2020 2020 6d61 7073 2061 7265 nal. maps are │ │ │ │ -0006ac60: 206f 6e65 2074 6865 2069 6e76 6572 7365 one the inverse │ │ │ │ -0006ac70: 206f 6620 7468 6520 6f74 6865 720a 0a57 of the other..W │ │ │ │ -0006ac80: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -0006ac90: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -0006aca0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0006acb0: 0a0a 2020 2a20 2a6e 6f74 6520 696e 7665 .. * *note inve │ │ │ │ -0006acc0: 7273 6528 5261 7469 6f6e 616c 4d61 7029 rse(RationalMap) │ │ │ │ -0006acd0: 3a20 696e 7665 7273 655f 6c70 5261 7469 : inverse_lpRati │ │ │ │ -0006ace0: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2069 onalMap_rp, -- i │ │ │ │ -0006acf0: 6e76 6572 7365 206f 6620 610a 2020 2020 nverse of a. │ │ │ │ -0006ad00: 6269 7261 7469 6f6e 616c 206d 6170 0a20 birational map. │ │ │ │ -0006ad10: 202a 2022 696e 7665 7273 6528 5261 7469 * "inverse(Rati │ │ │ │ -0006ad20: 6f6e 616c 4d61 702c 4f70 7469 6f6e 2922 onalMap,Option)" │ │ │ │ -0006ad30: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +0006ab30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0006ab40: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +0006ab50: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2069 ===.. * *note i │ │ │ │ +0006ab60: 6e76 6572 7365 4d61 703a 2069 6e76 6572 nverseMap: inver │ │ │ │ +0006ab70: 7365 4d61 702c 202d 2d20 696e 7665 7273 seMap, -- invers │ │ │ │ +0006ab80: 6520 6f66 2061 2062 6972 6174 696f 6e61 e of a birationa │ │ │ │ +0006ab90: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ +0006aba0: 5261 7469 6f6e 616c 4d61 7020 5e20 5a5a RationalMap ^ ZZ │ │ │ │ +0006abb0: 3a20 5261 7469 6f6e 616c 4d61 7020 5e20 : RationalMap ^ │ │ │ │ +0006abc0: 5a5a 2c20 2d2d 2070 6f77 6572 0a20 202a ZZ, -- power. * │ │ │ │ +0006abd0: 202a 6e6f 7465 2069 7349 6e76 6572 7365 *note isInverse │ │ │ │ +0006abe0: 4d61 7028 5261 7469 6f6e 616c 4d61 702c Map(RationalMap, │ │ │ │ +0006abf0: 5261 7469 6f6e 616c 4d61 7029 3a0a 2020 RationalMap):. │ │ │ │ +0006ac00: 2020 6973 496e 7665 7273 654d 6170 5f6c isInverseMap_l │ │ │ │ +0006ac10: 7052 6174 696f 6e61 6c4d 6170 5f63 6d52 pRationalMap_cmR │ │ │ │ +0006ac20: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0006ac30: 2d20 6368 6563 6b73 2077 6865 7468 6572 - checks whether │ │ │ │ +0006ac40: 2074 776f 2072 6174 696f 6e61 6c0a 2020 two rational. │ │ │ │ +0006ac50: 2020 6d61 7073 2061 7265 206f 6e65 2074 maps are one t │ │ │ │ +0006ac60: 6865 2069 6e76 6572 7365 206f 6620 7468 he inverse of th │ │ │ │ +0006ac70: 6520 6f74 6865 720a 0a57 6179 7320 746f e other..Ways to │ │ │ │ +0006ac80: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ +0006ac90: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0006aca0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0006acb0: 2a6e 6f74 6520 696e 7665 7273 6528 5261 *note inverse(Ra │ │ │ │ +0006acc0: 7469 6f6e 616c 4d61 7029 3a20 696e 7665 tionalMap): inve │ │ │ │ +0006acd0: 7273 655f 6c70 5261 7469 6f6e 616c 4d61 rse_lpRationalMa │ │ │ │ +0006ace0: 705f 7270 2c20 2d2d 2069 6e76 6572 7365 p_rp, -- inverse │ │ │ │ +0006acf0: 206f 6620 610a 2020 2020 6269 7261 7469 of a. birati │ │ │ │ +0006ad00: 6f6e 616c 206d 6170 0a20 202a 2022 696e onal map. * "in │ │ │ │ +0006ad10: 7665 7273 6528 5261 7469 6f6e 616c 4d61 verse(RationalMa │ │ │ │ +0006ad20: 702c 4f70 7469 6f6e 2922 0a2d 2d2d 2d2d p,Option)".----- │ │ │ │ +0006ad30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ad40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ad50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ad60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ad80: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -0006ad90: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -0006ada0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -0006adb0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -0006adc0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -0006add0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -0006ade0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ -0006adf0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ -0006ae00: 323a 3431 323a 302e 0a1f 0a46 696c 653a 2:412:0....File: │ │ │ │ -0006ae10: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ -0006ae20: 6f64 653a 2069 6e76 6572 7365 4d61 702c ode: inverseMap, │ │ │ │ -0006ae30: 204e 6578 743a 2069 6e76 6572 7365 4d61 Next: inverseMa │ │ │ │ -0006ae40: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ -0006ae50: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ -0006ae60: 7064 5f72 702c 2050 7265 763a 2069 6e76 pd_rp, Prev: inv │ │ │ │ -0006ae70: 6572 7365 5f6c 7052 6174 696f 6e61 6c4d erse_lpRationalM │ │ │ │ -0006ae80: 6170 5f72 702c 2055 703a 2054 6f70 0a0a ap_rp, Up: Top.. │ │ │ │ -0006ae90: 696e 7665 7273 654d 6170 202d 2d20 696e inverseMap -- in │ │ │ │ -0006aea0: 7665 7273 6520 6f66 2061 2062 6972 6174 verse of a birat │ │ │ │ -0006aeb0: 696f 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a ional map.****** │ │ │ │ +0006ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +0006ad80: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +0006ad90: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +0006ada0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +0006adb0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +0006adc0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +0006add0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +0006ade0: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +0006adf0: 656e 7461 7469 6f6e 2e6d 323a 3431 323a entation.m2:412: │ │ │ │ +0006ae00: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +0006ae10: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2069 na.info, Node: i │ │ │ │ +0006ae20: 6e76 6572 7365 4d61 702c 204e 6578 743a nverseMap, Next: │ │ │ │ +0006ae30: 2069 6e76 6572 7365 4d61 705f 6c70 5f70 inverseMap_lp_p │ │ │ │ +0006ae40: 645f 7064 5f70 645f 636d 5665 7262 6f73 d_pd_pd_cmVerbos │ │ │ │ +0006ae50: 653d 3e5f 7064 5f70 645f 7064 5f72 702c e=>_pd_pd_pd_rp, │ │ │ │ +0006ae60: 2050 7265 763a 2069 6e76 6572 7365 5f6c Prev: inverse_l │ │ │ │ +0006ae70: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +0006ae80: 2055 703a 2054 6f70 0a0a 696e 7665 7273 Up: Top..invers │ │ │ │ +0006ae90: 654d 6170 202d 2d20 696e 7665 7273 6520 eMap -- inverse │ │ │ │ +0006aea0: 6f66 2061 2062 6972 6174 696f 6e61 6c20 of a birational │ │ │ │ +0006aeb0: 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a map.************ │ │ │ │ 0006aec0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006aed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0006aee0: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -0006aef0: 0a20 2020 2020 2020 2069 6e76 6572 7365 . inverse │ │ │ │ -0006af00: 4d61 7020 7068 690a 2020 2a20 496e 7075 Map phi. * Inpu │ │ │ │ -0006af10: 7473 3a0a 2020 2020 2020 2a20 7068 692c ts:. * phi, │ │ │ │ -0006af20: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ -0006af30: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ -0006af40: 6170 2c2c 2061 2062 6972 6174 696f 6e61 ap,, a birationa │ │ │ │ -0006af50: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -0006af60: 4f70 7469 6f6e 616c 2069 6e70 7574 733a Optional inputs: │ │ │ │ -0006af70: 2028 4d61 6361 756c 6179 3244 6f63 2975 (Macaulay2Doc)u │ │ │ │ -0006af80: 7369 6e67 2066 756e 6374 696f 6e73 2077 sing functions w │ │ │ │ -0006af90: 6974 6820 6f70 7469 6f6e 616c 2069 6e70 ith optional inp │ │ │ │ -0006afa0: 7574 732c 3a0a 2020 2020 2020 2a20 2a6e uts,:. * *n │ │ │ │ -0006afb0: 6f74 6520 426c 6f77 5570 5374 7261 7465 ote BlowUpStrate │ │ │ │ -0006afc0: 6779 3a20 426c 6f77 5570 5374 7261 7465 gy: BlowUpStrate │ │ │ │ -0006afd0: 6779 2c20 3d3e 202e 2e2e 2c20 6465 6661 gy, => ..., defa │ │ │ │ -0006afe0: 756c 7420 7661 6c75 650a 2020 2020 2020 ult value. │ │ │ │ -0006aff0: 2020 2245 6c69 6d69 6e61 7465 222c 0a20 "Eliminate",. │ │ │ │ -0006b000: 2020 2020 202a 202a 6e6f 7465 2043 6572 * *note Cer │ │ │ │ -0006b010: 7469 6679 3a20 4365 7274 6966 792c 203d tify: Certify, = │ │ │ │ -0006b020: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0006b030: 616c 7565 2066 616c 7365 2c20 7768 6574 alue false, whet │ │ │ │ -0006b040: 6865 7220 746f 2065 6e73 7572 650a 2020 her to ensure. │ │ │ │ -0006b050: 2020 2020 2020 636f 7272 6563 746e 6573 correctnes │ │ │ │ -0006b060: 7320 6f66 206f 7574 7075 740a 2020 2020 s of output. │ │ │ │ -0006b070: 2020 2a20 2a6e 6f74 6520 5665 7262 6f73 * *note Verbos │ │ │ │ -0006b080: 653a 2069 6e76 6572 7365 4d61 705f 6c70 e: inverseMap_lp │ │ │ │ -0006b090: 5f70 645f 7064 5f70 645f 636d 5665 7262 _pd_pd_pd_cmVerb │ │ │ │ -0006b0a0: 6f73 653d 3e5f 7064 5f70 645f 7064 5f72 ose=>_pd_pd_pd_r │ │ │ │ -0006b0b0: 702c 203d 3e20 2e2e 2e2c 0a20 2020 2020 p, => ...,. │ │ │ │ -0006b0c0: 2020 2064 6566 6175 6c74 2076 616c 7565 default value │ │ │ │ -0006b0d0: 2074 7275 652c 0a20 202a 204f 7574 7075 true,. * Outpu │ │ │ │ -0006b0e0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -0006b0f0: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ -0006b100: 3a20 5261 7469 6f6e 616c 4d61 702c 2c20 : RationalMap,, │ │ │ │ -0006b110: 7468 6520 696e 7665 7273 6520 6d61 7020 the inverse map │ │ │ │ -0006b120: 6f66 2070 6869 0a0a 4465 7363 7269 7074 of phi..Descript │ │ │ │ -0006b130: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0006b140: 0a49 6620 7468 6520 736f 7572 6365 2076 .If the source v │ │ │ │ -0006b150: 6172 6965 7479 2069 7320 6120 7072 6f6a ariety is a proj │ │ │ │ -0006b160: 6563 7469 7665 2073 7061 6365 2061 6e64 ective space and │ │ │ │ -0006b170: 2069 6620 6120 6675 7274 6865 7220 7465 if a further te │ │ │ │ -0006b180: 6368 6e69 6361 6c0a 636f 6e64 6974 696f chnical.conditio │ │ │ │ -0006b190: 6e20 6973 2073 6174 6973 6669 6564 2c20 n is satisfied, │ │ │ │ -0006b1a0: 7468 656e 2074 6865 2061 6c67 6f72 6974 then the algorit │ │ │ │ -0006b1b0: 686d 2075 7365 6420 6973 2074 6861 7420 hm used is that │ │ │ │ -0006b1c0: 6465 7363 7269 6265 6420 696e 2074 6865 described in the │ │ │ │ -0006b1d0: 2070 6170 6572 0a62 7920 5275 7373 6f20 paper.by Russo │ │ │ │ -0006b1e0: 616e 6420 5369 6d69 7320 2d20 4f6e 2062 and Simis - On b │ │ │ │ -0006b1f0: 6972 6174 696f 6e61 6c20 6d61 7073 2061 irational maps a │ │ │ │ -0006b200: 6e64 204a 6163 6f62 6961 6e20 6d61 7472 nd Jacobian matr │ │ │ │ -0006b210: 6963 6573 202d 2043 6f6d 706f 732e 204d ices - Compos. M │ │ │ │ -0006b220: 6174 682e 0a31 3236 2028 3329 2c20 3333 ath..126 (3), 33 │ │ │ │ -0006b230: 352d 3335 382c 2032 3030 312e 2046 6f72 5-358, 2001. For │ │ │ │ -0006b240: 2074 6865 2067 656e 6572 616c 2063 6173 the general cas │ │ │ │ -0006b250: 652c 2074 6865 2061 6c67 6f72 6974 686d e, the algorithm │ │ │ │ -0006b260: 2075 7365 6420 6973 2074 6865 2073 616d used is the sam │ │ │ │ -0006b270: 6520 6173 0a66 6f72 202a 6e6f 7465 2069 e as.for *note i │ │ │ │ -0006b280: 6e76 6572 7442 6972 6174 696f 6e61 6c4d nvertBirationalM │ │ │ │ -0006b290: 6170 3a20 2850 6172 616d 6574 7269 7a61 ap: (Parametriza │ │ │ │ -0006b2a0: 7469 6f6e 2969 6e76 6572 7442 6972 6174 tion)invertBirat │ │ │ │ -0006b2b0: 696f 6e61 6c4d 6170 2c20 696e 2074 6865 ionalMap, in the │ │ │ │ -0006b2c0: 0a70 6163 6b61 6765 202a 6e6f 7465 2050 .package *note P │ │ │ │ -0006b2d0: 6172 616d 6574 7269 7a61 7469 6f6e 3a20 arametrization: │ │ │ │ -0006b2e0: 2850 6172 616d 6574 7269 7a61 7469 6f6e (Parametrization │ │ │ │ -0006b2f0: 2954 6f70 2c2e 204e 6f74 6520 7468 6174 )Top,. Note that │ │ │ │ -0006b300: 2069 6e20 7468 6973 2063 6173 652c 0a74 in this case,.t │ │ │ │ -0006b310: 6865 2061 6e61 6c6f 676f 7573 206d 6574 he analogous met │ │ │ │ -0006b320: 686f 6420 2a6e 6f74 6520 696e 7665 7273 hod *note invers │ │ │ │ -0006b330: 654f 664d 6170 3a20 2852 6174 696f 6e61 eOfMap: (Rationa │ │ │ │ -0006b340: 6c4d 6170 7329 696e 7665 7273 654f 664d lMaps)inverseOfM │ │ │ │ -0006b350: 6170 2c20 696e 2074 6865 0a70 6163 6b61 ap, in the.packa │ │ │ │ -0006b360: 6765 2052 6174 696f 6e61 6c4d 6170 7320 ge RationalMaps │ │ │ │ -0006b370: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ -0006b380: 7461 7469 6f6e 2920 6765 6e65 7261 6c6c tation) generall │ │ │ │ -0006b390: 7920 7475 726e 7320 6f75 7420 746f 2062 y turns out to b │ │ │ │ -0006b3a0: 6520 6661 7374 6572 2e0a 0a2b 2d2d 2d2d e faster...+---- │ │ │ │ +0006aed0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +0006aee0: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +0006aef0: 2020 2069 6e76 6572 7365 4d61 7020 7068 inverseMap ph │ │ │ │ +0006af00: 690a 2020 2a20 496e 7075 7473 3a0a 2020 i. * Inputs:. │ │ │ │ +0006af10: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ +0006af20: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ +0006af30: 2052 6174 696f 6e61 6c4d 6170 2c2c 2061 RationalMap,, a │ │ │ │ +0006af40: 2062 6972 6174 696f 6e61 6c20 6d61 700a birational map. │ │ │ │ +0006af50: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ +0006af60: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ +0006af70: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ +0006af80: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ +0006af90: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ +0006afa0: 2020 2020 2020 2a20 2a6e 6f74 6520 426c * *note Bl │ │ │ │ +0006afb0: 6f77 5570 5374 7261 7465 6779 3a20 426c owUpStrategy: Bl │ │ │ │ +0006afc0: 6f77 5570 5374 7261 7465 6779 2c20 3d3e owUpStrategy, => │ │ │ │ +0006afd0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0006afe0: 6c75 650a 2020 2020 2020 2020 2245 6c69 lue. "Eli │ │ │ │ +0006aff0: 6d69 6e61 7465 222c 0a20 2020 2020 202a minate",. * │ │ │ │ +0006b000: 202a 6e6f 7465 2043 6572 7469 6679 3a20 *note Certify: │ │ │ │ +0006b010: 4365 7274 6966 792c 203d 3e20 2e2e 2e2c Certify, => ..., │ │ │ │ +0006b020: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ +0006b030: 616c 7365 2c20 7768 6574 6865 7220 746f alse, whether to │ │ │ │ +0006b040: 2065 6e73 7572 650a 2020 2020 2020 2020 ensure. │ │ │ │ +0006b050: 636f 7272 6563 746e 6573 7320 6f66 206f correctness of o │ │ │ │ +0006b060: 7574 7075 740a 2020 2020 2020 2a20 2a6e utput. * *n │ │ │ │ +0006b070: 6f74 6520 5665 7262 6f73 653a 2069 6e76 ote Verbose: inv │ │ │ │ +0006b080: 6572 7365 4d61 705f 6c70 5f70 645f 7064 erseMap_lp_pd_pd │ │ │ │ +0006b090: 5f70 645f 636d 5665 7262 6f73 653d 3e5f _pd_cmVerbose=>_ │ │ │ │ +0006b0a0: 7064 5f70 645f 7064 5f72 702c 203d 3e20 pd_pd_pd_rp, => │ │ │ │ +0006b0b0: 2e2e 2e2c 0a20 2020 2020 2020 2064 6566 ...,. def │ │ │ │ +0006b0c0: 6175 6c74 2076 616c 7565 2074 7275 652c ault value true, │ │ │ │ +0006b0d0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +0006b0e0: 2020 2020 2a20 6120 2a6e 6f74 6520 7261 * a *note ra │ │ │ │ +0006b0f0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ +0006b100: 6f6e 616c 4d61 702c 2c20 7468 6520 696e onalMap,, the in │ │ │ │ +0006b110: 7665 7273 6520 6d61 7020 6f66 2070 6869 verse map of phi │ │ │ │ +0006b120: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0006b130: 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6620 7468 =========..If th │ │ │ │ +0006b140: 6520 736f 7572 6365 2076 6172 6965 7479 e source variety │ │ │ │ +0006b150: 2069 7320 6120 7072 6f6a 6563 7469 7665 is a projective │ │ │ │ +0006b160: 2073 7061 6365 2061 6e64 2069 6620 6120 space and if a │ │ │ │ +0006b170: 6675 7274 6865 7220 7465 6368 6e69 6361 further technica │ │ │ │ +0006b180: 6c0a 636f 6e64 6974 696f 6e20 6973 2073 l.condition is s │ │ │ │ +0006b190: 6174 6973 6669 6564 2c20 7468 656e 2074 atisfied, then t │ │ │ │ +0006b1a0: 6865 2061 6c67 6f72 6974 686d 2075 7365 he algorithm use │ │ │ │ +0006b1b0: 6420 6973 2074 6861 7420 6465 7363 7269 d is that descri │ │ │ │ +0006b1c0: 6265 6420 696e 2074 6865 2070 6170 6572 bed in the paper │ │ │ │ +0006b1d0: 0a62 7920 5275 7373 6f20 616e 6420 5369 .by Russo and Si │ │ │ │ +0006b1e0: 6d69 7320 2d20 4f6e 2062 6972 6174 696f mis - On biratio │ │ │ │ +0006b1f0: 6e61 6c20 6d61 7073 2061 6e64 204a 6163 nal maps and Jac │ │ │ │ +0006b200: 6f62 6961 6e20 6d61 7472 6963 6573 202d obian matrices - │ │ │ │ +0006b210: 2043 6f6d 706f 732e 204d 6174 682e 0a31 Compos. Math..1 │ │ │ │ +0006b220: 3236 2028 3329 2c20 3333 352d 3335 382c 26 (3), 335-358, │ │ │ │ +0006b230: 2032 3030 312e 2046 6f72 2074 6865 2067 2001. For the g │ │ │ │ +0006b240: 656e 6572 616c 2063 6173 652c 2074 6865 eneral case, the │ │ │ │ +0006b250: 2061 6c67 6f72 6974 686d 2075 7365 6420 algorithm used │ │ │ │ +0006b260: 6973 2074 6865 2073 616d 6520 6173 0a66 is the same as.f │ │ │ │ +0006b270: 6f72 202a 6e6f 7465 2069 6e76 6572 7442 or *note invertB │ │ │ │ +0006b280: 6972 6174 696f 6e61 6c4d 6170 3a20 2850 irationalMap: (P │ │ │ │ +0006b290: 6172 616d 6574 7269 7a61 7469 6f6e 2969 arametrization)i │ │ │ │ +0006b2a0: 6e76 6572 7442 6972 6174 696f 6e61 6c4d nvertBirationalM │ │ │ │ +0006b2b0: 6170 2c20 696e 2074 6865 0a70 6163 6b61 ap, in the.packa │ │ │ │ +0006b2c0: 6765 202a 6e6f 7465 2050 6172 616d 6574 ge *note Paramet │ │ │ │ +0006b2d0: 7269 7a61 7469 6f6e 3a20 2850 6172 616d rization: (Param │ │ │ │ +0006b2e0: 6574 7269 7a61 7469 6f6e 2954 6f70 2c2e etrization)Top,. │ │ │ │ +0006b2f0: 204e 6f74 6520 7468 6174 2069 6e20 7468 Note that in th │ │ │ │ +0006b300: 6973 2063 6173 652c 0a74 6865 2061 6e61 is case,.the ana │ │ │ │ +0006b310: 6c6f 676f 7573 206d 6574 686f 6420 2a6e logous method *n │ │ │ │ +0006b320: 6f74 6520 696e 7665 7273 654f 664d 6170 ote inverseOfMap │ │ │ │ +0006b330: 3a20 2852 6174 696f 6e61 6c4d 6170 7329 : (RationalMaps) │ │ │ │ +0006b340: 696e 7665 7273 654f 664d 6170 2c20 696e inverseOfMap, in │ │ │ │ +0006b350: 2074 6865 0a70 6163 6b61 6765 2052 6174 the.package Rat │ │ │ │ +0006b360: 696f 6e61 6c4d 6170 7320 286d 6973 7369 ionalMaps (missi │ │ │ │ +0006b370: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +0006b380: 2920 6765 6e65 7261 6c6c 7920 7475 726e ) generally turn │ │ │ │ +0006b390: 7320 6f75 7420 746f 2062 6520 6661 7374 s out to be fast │ │ │ │ +0006b3a0: 6572 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d er...+---------- │ │ │ │ 0006b3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006b3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006b3f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -0006b400: 202d 2d20 4120 4372 656d 6f6e 6120 7472 -- A Cremona tr │ │ │ │ -0006b410: 616e 7366 6f72 6d61 7469 6f6e 206f 6620 ansformation of │ │ │ │ -0006b420: 505e 3230 2020 2020 2020 2020 2020 2020 P^20 │ │ │ │ +0006b3f0: 2d2d 2d2b 0a7c 6931 203a 202d 2d20 4120 ---+.|i1 : -- A │ │ │ │ +0006b400: 4372 656d 6f6e 6120 7472 616e 7366 6f72 Cremona transfor │ │ │ │ +0006b410: 6d61 7469 6f6e 206f 6620 505e 3230 2020 mation of P^20 │ │ │ │ +0006b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b440: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b450: 2070 6869 203d 2072 6174 696f 6e61 6c4d phi = rationalM │ │ │ │ -0006b460: 6170 206d 6170 2071 7561 6472 6f51 7561 ap map quadroQua │ │ │ │ -0006b470: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ -0006b480: 666f 726d 6174 696f 6e28 3230 2c31 2920 formation(20,1) │ │ │ │ -0006b490: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b440: 2020 207c 0a7c 2020 2020 2070 6869 203d |.| phi = │ │ │ │ +0006b450: 2072 6174 696f 6e61 6c4d 6170 206d 6170 rationalMap map │ │ │ │ +0006b460: 2071 7561 6472 6f51 7561 6472 6963 4372 quadroQuadricCr │ │ │ │ +0006b470: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ +0006b480: 696f 6e28 3230 2c31 2920 2020 2020 2020 ion(20,1) │ │ │ │ +0006b490: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b4e0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ -0006b4f0: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ -0006b500: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +0006b4e0: 2020 207c 0a7c 6f31 203d 202d 2d20 7261 |.|o1 = -- ra │ │ │ │ +0006b4f0: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ +0006b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b530: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b540: 2073 6f75 7263 653a 2050 726f 6a28 5151 source: Proj(QQ │ │ │ │ -0006b550: 5b77 202c 2077 202c 2077 202c 2077 202c [w , w , w , w , │ │ │ │ -0006b560: 2077 202c 2077 202c 2077 202c 2077 202c w , w , w , w , │ │ │ │ -0006b570: 2077 202c 2077 202c 2077 2020 2c20 7720 w , w , w , w │ │ │ │ -0006b580: 202c 2077 2020 2c20 207c 0a7c 2020 2020 , w , |.| │ │ │ │ -0006b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b5a0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0006b5b0: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -0006b5c0: 2020 3820 2020 3920 2020 3130 2020 2031 8 9 10 1 │ │ │ │ -0006b5d0: 3120 2020 3132 2020 207c 0a7c 2020 2020 1 12 |.| │ │ │ │ -0006b5e0: 2074 6172 6765 743a 2050 726f 6a28 5151 target: Proj(QQ │ │ │ │ -0006b5f0: 5b77 202c 2077 202c 2077 202c 2077 202c [w , w , w , w , │ │ │ │ -0006b600: 2077 202c 2077 202c 2077 202c 2077 202c w , w , w , w , │ │ │ │ -0006b610: 2077 202c 2077 202c 2077 2020 2c20 7720 w , w , w , w │ │ │ │ -0006b620: 202c 2077 2020 2c20 207c 0a7c 2020 2020 , w , |.| │ │ │ │ -0006b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b640: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0006b650: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -0006b660: 2020 3820 2020 3920 2020 3130 2020 2031 8 9 10 1 │ │ │ │ -0006b670: 3120 2020 3132 2020 207c 0a7c 2020 2020 1 12 |.| │ │ │ │ -0006b680: 2064 6566 696e 696e 6720 666f 726d 733a defining forms: │ │ │ │ -0006b690: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +0006b530: 2020 207c 0a7c 2020 2020 2073 6f75 7263 |.| sourc │ │ │ │ +0006b540: 653a 2050 726f 6a28 5151 5b77 202c 2077 e: Proj(QQ[w , w │ │ │ │ +0006b550: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006b560: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006b570: 202c 2077 2020 2c20 7720 202c 2077 2020 , w , w , w │ │ │ │ +0006b580: 2c20 207c 0a7c 2020 2020 2020 2020 2020 , |.| │ │ │ │ +0006b590: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006b5a0: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0006b5b0: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ +0006b5c0: 3920 2020 3130 2020 2031 3120 2020 3132 9 10 11 12 │ │ │ │ +0006b5d0: 2020 207c 0a7c 2020 2020 2074 6172 6765 |.| targe │ │ │ │ +0006b5e0: 743a 2050 726f 6a28 5151 5b77 202c 2077 t: Proj(QQ[w , w │ │ │ │ +0006b5f0: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006b600: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006b610: 202c 2077 2020 2c20 7720 202c 2077 2020 , w , w , w │ │ │ │ +0006b620: 2c20 207c 0a7c 2020 2020 2020 2020 2020 , |.| │ │ │ │ +0006b630: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006b640: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0006b650: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ +0006b660: 3920 2020 3130 2020 2031 3120 2020 3132 9 10 11 12 │ │ │ │ +0006b670: 2020 207c 0a7c 2020 2020 2064 6566 696e |.| defin │ │ │ │ +0006b680: 696e 6720 666f 726d 733a 207b 2020 2020 ing forms: { │ │ │ │ +0006b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b6e0: 2020 7720 2077 2020 202d 2077 2077 2020 w w - w w │ │ │ │ -0006b6f0: 202b 2077 2077 2020 2c20 2020 2020 2020 + w w , │ │ │ │ +0006b6c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b6d0: 2020 2020 2020 2020 2020 2020 7720 2077 w w │ │ │ │ +0006b6e0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006b6f0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b730: 2020 2031 3020 3135 2020 2020 3920 3136 10 15 9 16 │ │ │ │ -0006b740: 2020 2020 3620 3230 2020 2020 2020 2020 6 20 │ │ │ │ +0006b710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b720: 2020 2020 2020 2020 2020 2020 2031 3020 10 │ │ │ │ +0006b730: 3135 2020 2020 3920 3136 2020 2020 3620 15 9 16 6 │ │ │ │ +0006b740: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ 0006b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b760: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b760: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b7b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b7d0: 2020 7720 2077 2020 202d 2077 2077 2020 w w - w w │ │ │ │ -0006b7e0: 202b 2077 2077 2020 2c20 2020 2020 2020 + w w , │ │ │ │ +0006b7b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b7c0: 2020 2020 2020 2020 2020 2020 7720 2077 w w │ │ │ │ +0006b7d0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006b7e0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b800: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b820: 2020 2031 3020 3134 2020 2020 3820 3136 10 14 8 16 │ │ │ │ -0006b830: 2020 2020 3520 3230 2020 2020 2020 2020 5 20 │ │ │ │ +0006b800: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b810: 2020 2020 2020 2020 2020 2020 2031 3020 10 │ │ │ │ +0006b820: 3134 2020 2020 3820 3136 2020 2020 3520 14 8 16 5 │ │ │ │ +0006b830: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ 0006b840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b850: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b850: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b8a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b8c0: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006b8d0: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006b8a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b8b0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006b8c0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006b8d0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b8f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b910: 2020 2039 2031 3420 2020 2038 2031 3520 9 14 8 15 │ │ │ │ -0006b920: 2020 2034 2032 3020 2020 2020 2020 2020 4 20 │ │ │ │ +0006b8f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b900: 2020 2020 2020 2020 2020 2020 2039 2031 9 1 │ │ │ │ +0006b910: 3420 2020 2038 2031 3520 2020 2034 2032 4 8 15 4 2 │ │ │ │ +0006b920: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b940: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006b940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006b950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b990: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b9b0: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006b9c0: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006b990: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b9a0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006b9b0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006b9c0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006b9e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba00: 2020 2036 2031 3420 2020 2035 2031 3520 6 14 5 15 │ │ │ │ -0006ba10: 2020 2034 2031 3620 2020 2020 2020 2020 4 16 │ │ │ │ +0006b9e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006b9f0: 2020 2020 2020 2020 2020 2020 2036 2031 6 1 │ │ │ │ +0006ba00: 3420 2020 2035 2031 3520 2020 2034 2031 4 5 15 4 1 │ │ │ │ +0006ba10: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 0006ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006ba30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ba50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ba80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006baa0: 2020 7720 2077 2020 202d 2077 2020 7720 w w - w w │ │ │ │ -0006bab0: 2020 2b20 7720 2077 2020 202d 2077 2020 + w w - w │ │ │ │ -0006bac0: 7720 2020 2b20 7720 2077 2020 2c20 2020 w + w w , │ │ │ │ -0006bad0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006baf0: 2020 2031 3120 3133 2020 2020 3136 2031 11 13 16 1 │ │ │ │ -0006bb00: 3720 2020 2031 3520 3138 2020 2020 3134 7 15 18 14 │ │ │ │ -0006bb10: 2031 3920 2020 2031 3220 3230 2020 2020 19 12 20 │ │ │ │ -0006bb20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006ba80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ba90: 2020 2020 2020 2020 2020 2020 7720 2077 w w │ │ │ │ +0006baa0: 2020 202d 2077 2020 7720 2020 2b20 7720 - w w + w │ │ │ │ +0006bab0: 2077 2020 202d 2077 2020 7720 2020 2b20 w - w w + │ │ │ │ +0006bac0: 7720 2077 2020 2c20 2020 2020 2020 2020 w w , │ │ │ │ +0006bad0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bae0: 2020 2020 2020 2020 2020 2020 2031 3120 11 │ │ │ │ +0006baf0: 3133 2020 2020 3136 2031 3720 2020 2031 13 16 17 1 │ │ │ │ +0006bb00: 3520 3138 2020 2020 3134 2031 3920 2020 5 18 14 19 │ │ │ │ +0006bb10: 2031 3220 3230 2020 2020 2020 2020 2020 12 20 │ │ │ │ +0006bb20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bb70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bb90: 2020 7720 7720 2020 2d20 7720 2077 2020 w w - w w │ │ │ │ -0006bba0: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -0006bbb0: 202b 2077 2077 2020 2c20 2020 2020 2020 + w w , │ │ │ │ -0006bbc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bbe0: 2020 2033 2031 3320 2020 2031 3020 3137 3 13 10 17 │ │ │ │ -0006bbf0: 2020 2020 3920 3138 2020 2020 3820 3139 9 18 8 19 │ │ │ │ -0006bc00: 2020 2020 3720 3230 2020 2020 2020 2020 7 20 │ │ │ │ -0006bc10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006bb70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bb80: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006bb90: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006bba0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006bbb0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006bbc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bbd0: 2020 2020 2020 2020 2020 2020 2033 2031 3 1 │ │ │ │ +0006bbe0: 3320 2020 2031 3020 3137 2020 2020 3920 3 10 17 9 │ │ │ │ +0006bbf0: 3138 2020 2020 3820 3139 2020 2020 3720 18 8 19 7 │ │ │ │ +0006bc00: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006bc10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bc80: 2020 7720 2077 2020 202d 2077 2077 2020 w w - w w │ │ │ │ -0006bc90: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006bca0: 202b 2077 2077 2020 2c20 2020 2020 2020 + w w , │ │ │ │ -0006bcb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bcd0: 2020 2031 3020 3132 2020 2020 3220 3133 10 12 2 13 │ │ │ │ -0006bce0: 2020 2020 3720 3136 2020 2020 3620 3138 7 16 6 18 │ │ │ │ -0006bcf0: 2020 2020 3520 3139 2020 2020 2020 2020 5 19 │ │ │ │ -0006bd00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006bc60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bc70: 2020 2020 2020 2020 2020 2020 7720 2077 w w │ │ │ │ +0006bc80: 2020 202d 2077 2077 2020 202d 2077 2077 - w w - w w │ │ │ │ +0006bc90: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006bca0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006bcb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bcc0: 2020 2020 2020 2020 2020 2020 2031 3020 10 │ │ │ │ +0006bcd0: 3132 2020 2020 3220 3133 2020 2020 3720 12 2 13 7 │ │ │ │ +0006bce0: 3136 2020 2020 3620 3138 2020 2020 3520 16 6 18 5 │ │ │ │ +0006bcf0: 3139 2020 2020 2020 2020 2020 2020 2020 19 │ │ │ │ +0006bd00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bd70: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006bd80: 2d20 7720 7720 2020 2d20 7720 7720 2020 - w w - w w │ │ │ │ -0006bd90: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ -0006bda0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bdc0: 2020 2039 2031 3220 2020 2031 2031 3320 9 12 1 13 │ │ │ │ -0006bdd0: 2020 2037 2031 3520 2020 2036 2031 3720 7 15 6 17 │ │ │ │ -0006bde0: 2020 2034 2031 3920 2020 2020 2020 2020 4 19 │ │ │ │ -0006bdf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006bd50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bd60: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006bd70: 2020 2d20 7720 7720 2020 2d20 7720 7720 - w w - w w │ │ │ │ +0006bd80: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006bd90: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006bda0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bdb0: 2020 2020 2020 2020 2020 2020 2039 2031 9 1 │ │ │ │ +0006bdc0: 3220 2020 2031 2031 3320 2020 2037 2031 2 1 13 7 1 │ │ │ │ +0006bdd0: 3520 2020 2036 2031 3720 2020 2034 2031 5 6 17 4 1 │ │ │ │ +0006bde0: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +0006bdf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006be40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006be60: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006be70: 2d20 7720 7720 2020 2d20 7720 7720 2020 - w w - w w │ │ │ │ -0006be80: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ -0006be90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006beb0: 2020 2038 2031 3220 2020 2030 2031 3320 8 12 0 13 │ │ │ │ -0006bec0: 2020 2037 2031 3420 2020 2035 2031 3720 7 14 5 17 │ │ │ │ -0006bed0: 2020 2034 2031 3820 2020 2020 2020 2020 4 18 │ │ │ │ -0006bee0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006be40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006be50: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006be60: 2020 2d20 7720 7720 2020 2d20 7720 7720 - w w - w w │ │ │ │ +0006be70: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006be80: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006be90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bea0: 2020 2020 2020 2020 2020 2020 2038 2031 8 1 │ │ │ │ +0006beb0: 3220 2020 2030 2031 3320 2020 2037 2031 2 0 13 7 1 │ │ │ │ +0006bec0: 3420 2020 2035 2031 3720 2020 2034 2031 4 5 17 4 1 │ │ │ │ +0006bed0: 3820 2020 2020 2020 2020 2020 2020 2020 8 │ │ │ │ +0006bee0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bf40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf50: 2020 7720 2077 2020 202d 2077 2077 2020 w w - w w │ │ │ │ -0006bf60: 202b 2077 2077 2020 2c20 2020 2020 2020 + w w , │ │ │ │ +0006bf30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bf40: 2020 2020 2020 2020 2020 2020 7720 2077 w w │ │ │ │ +0006bf50: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006bf60: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006bf70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bf80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bfa0: 2020 2031 3020 3131 2020 2020 3320 3136 10 11 3 16 │ │ │ │ -0006bfb0: 2020 2020 3220 3230 2020 2020 2020 2020 2 20 │ │ │ │ +0006bf80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006bf90: 2020 2020 2020 2020 2020 2020 2031 3020 10 │ │ │ │ +0006bfa0: 3131 2020 2020 3320 3136 2020 2020 3220 11 3 16 2 │ │ │ │ +0006bfb0: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ 0006bfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006bfd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006bfd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006bfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006bff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c020: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c040: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c050: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006c020: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c030: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c040: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c050: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c070: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c090: 2020 2039 2031 3120 2020 2033 2031 3520 9 11 3 15 │ │ │ │ -0006c0a0: 2020 2031 2032 3020 2020 2020 2020 2020 1 20 │ │ │ │ +0006c070: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c080: 2020 2020 2020 2020 2020 2020 2039 2031 9 1 │ │ │ │ +0006c090: 3120 2020 2033 2031 3520 2020 2031 2032 1 3 15 1 2 │ │ │ │ +0006c0a0: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c0c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c0c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c110: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c130: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c140: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006c110: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c120: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c130: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c140: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c160: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c180: 2020 2038 2031 3120 2020 2033 2031 3420 8 11 3 14 │ │ │ │ -0006c190: 2020 2030 2032 3020 2020 2020 2020 2020 0 20 │ │ │ │ +0006c160: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c170: 2020 2020 2020 2020 2020 2020 2038 2031 8 1 │ │ │ │ +0006c180: 3120 2020 2033 2031 3420 2020 2030 2032 1 3 14 0 2 │ │ │ │ +0006c190: 3020 2020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0006c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c1b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c1b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c200: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c220: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c230: 2b20 7720 7720 2020 2d20 7720 7720 2020 + w w - w w │ │ │ │ -0006c240: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ -0006c250: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c270: 2020 2037 2031 3120 2020 2033 2031 3220 7 11 3 12 │ │ │ │ -0006c280: 2020 2032 2031 3720 2020 2031 2031 3820 2 17 1 18 │ │ │ │ -0006c290: 2020 2030 2031 3920 2020 2020 2020 2020 0 19 │ │ │ │ -0006c2a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c200: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c210: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c220: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c230: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c240: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006c250: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c260: 2020 2020 2020 2020 2020 2020 2037 2031 7 1 │ │ │ │ +0006c270: 3120 2020 2033 2031 3220 2020 2032 2031 1 3 12 2 1 │ │ │ │ +0006c280: 3720 2020 2031 2031 3820 2020 2030 2031 7 1 18 0 1 │ │ │ │ +0006c290: 3920 2020 2020 2020 2020 2020 2020 2020 9 │ │ │ │ +0006c2a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c2f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c310: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c320: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006c2f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c300: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c310: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c320: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c340: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c360: 2020 2036 2031 3120 2020 2032 2031 3520 6 11 2 15 │ │ │ │ -0006c370: 2020 2031 2031 3620 2020 2020 2020 2020 1 16 │ │ │ │ +0006c340: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c350: 2020 2020 2020 2020 2020 2020 2036 2031 6 1 │ │ │ │ +0006c360: 3120 2020 2032 2031 3520 2020 2031 2031 1 2 15 1 1 │ │ │ │ +0006c370: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 0006c380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c390: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c390: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c3e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c400: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c410: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006c3e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c3f0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c400: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c410: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006c420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c430: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c450: 2020 2035 2031 3120 2020 2032 2031 3420 5 11 2 14 │ │ │ │ -0006c460: 2020 2030 2031 3620 2020 2020 2020 2020 0 16 │ │ │ │ +0006c430: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c440: 2020 2020 2020 2020 2020 2020 2035 2031 5 1 │ │ │ │ +0006c450: 3120 2020 2032 2031 3420 2020 2030 2031 1 2 14 0 1 │ │ │ │ +0006c460: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 0006c470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c480: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c480: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c4d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c4f0: 2020 7720 7720 2020 2d20 7720 7720 2020 w w - w w │ │ │ │ -0006c500: 2b20 7720 7720 202c 2020 2020 2020 2020 + w w , │ │ │ │ +0006c4d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c4e0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c4f0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +0006c500: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c540: 2020 2034 2031 3120 2020 2031 2031 3420 4 11 1 14 │ │ │ │ -0006c550: 2020 2030 2031 3520 2020 2020 2020 2020 0 15 │ │ │ │ +0006c520: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c530: 2020 2020 2020 2020 2020 2020 2034 2031 4 1 │ │ │ │ +0006c540: 3120 2020 2031 2031 3420 2020 2030 2031 1 1 14 0 1 │ │ │ │ +0006c550: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0006c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c570: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c570: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c5c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c5e0: 2020 7720 7720 202d 2077 2077 2020 2b20 w w - w w + │ │ │ │ -0006c5f0: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ +0006c5c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c5d0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c5e0: 202d 2077 2077 2020 2b20 7720 7720 202c - w w + w w , │ │ │ │ +0006c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c610: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c630: 2020 2036 2038 2020 2020 3520 3920 2020 6 8 5 9 │ │ │ │ -0006c640: 2034 2031 3020 2020 2020 2020 2020 2020 4 10 │ │ │ │ +0006c610: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c620: 2020 2020 2020 2020 2020 2020 2036 2038 6 8 │ │ │ │ +0006c630: 2020 2020 3520 3920 2020 2034 2031 3020 5 9 4 10 │ │ │ │ +0006c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c660: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c660: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c6b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c6d0: 2020 7720 7720 202d 2077 2077 2020 2b20 w w - w w + │ │ │ │ -0006c6e0: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ +0006c6b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c6c0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c6d0: 202d 2077 2077 2020 2b20 7720 7720 202c - w w + w w , │ │ │ │ +0006c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c720: 2020 2033 2036 2020 2020 3220 3920 2020 3 6 2 9 │ │ │ │ -0006c730: 2031 2031 3020 2020 2020 2020 2020 2020 1 10 │ │ │ │ +0006c700: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c710: 2020 2020 2020 2020 2020 2020 2033 2036 3 6 │ │ │ │ +0006c720: 2020 2020 3220 3920 2020 2031 2031 3020 2 9 1 10 │ │ │ │ +0006c730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c750: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c750: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c7a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c7c0: 2020 7720 7720 202d 2077 2077 2020 2b20 w w - w w + │ │ │ │ -0006c7d0: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ +0006c7a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c7b0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c7c0: 202d 2077 2077 2020 2b20 7720 7720 202c - w w + w w , │ │ │ │ +0006c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c7f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c810: 2020 2033 2035 2020 2020 3220 3820 2020 3 5 2 8 │ │ │ │ -0006c820: 2030 2031 3020 2020 2020 2020 2020 2020 0 10 │ │ │ │ +0006c7f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c800: 2020 2020 2020 2020 2020 2020 2033 2035 3 5 │ │ │ │ +0006c810: 2020 2020 3220 3820 2020 2030 2031 3020 2 8 0 10 │ │ │ │ +0006c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c840: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c840: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c890: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c8b0: 2020 7720 7720 202d 2077 2077 2020 2b20 w w - w w + │ │ │ │ -0006c8c0: 7720 7720 2c20 2020 2020 2020 2020 2020 w w , │ │ │ │ +0006c890: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c8a0: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c8b0: 202d 2077 2077 2020 2b20 7720 7720 2c20 - w w + w w , │ │ │ │ +0006c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c8e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c900: 2020 2033 2034 2020 2020 3120 3820 2020 3 4 1 8 │ │ │ │ -0006c910: 2030 2039 2020 2020 2020 2020 2020 2020 0 9 │ │ │ │ +0006c8e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c8f0: 2020 2020 2020 2020 2020 2020 2033 2034 3 4 │ │ │ │ +0006c900: 2020 2020 3120 3820 2020 2030 2039 2020 1 8 0 9 │ │ │ │ +0006c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c930: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006c930: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006c940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c980: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c9a0: 2020 7720 7720 202d 2077 2077 2020 2b20 w w - w w + │ │ │ │ -0006c9b0: 7720 7720 2020 2020 2020 2020 2020 2020 w w │ │ │ │ +0006c980: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c990: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006c9a0: 202d 2077 2077 2020 2b20 7720 7720 2020 - w w + w w │ │ │ │ +0006c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c9d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006c9f0: 2020 2032 2034 2020 2020 3120 3520 2020 2 4 1 5 │ │ │ │ -0006ca00: 2030 2036 2020 2020 2020 2020 2020 2020 0 6 │ │ │ │ +0006c9d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006c9e0: 2020 2020 2020 2020 2020 2020 2032 2034 2 4 │ │ │ │ +0006c9f0: 2020 2020 3120 3520 2020 2030 2036 2020 1 5 0 6 │ │ │ │ +0006ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca40: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0006ca20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ca30: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +0006ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ca70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006ca70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006ca80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ca90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006caa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cac0: 2020 2020 2020 2020 207c 0a7c 6f31 203a |.|o1 : │ │ │ │ -0006cad0: 2052 6174 696f 6e61 6c4d 6170 2028 7175 RationalMap (qu │ │ │ │ -0006cae0: 6164 7261 7469 6320 4372 656d 6f6e 6120 adratic Cremona │ │ │ │ -0006caf0: 7472 616e 7366 6f72 6d61 7469 6f6e 206f transformation o │ │ │ │ -0006cb00: 6620 5050 5e32 3029 2020 2020 2020 2020 f PP^20) │ │ │ │ -0006cb10: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +0006cac0: 2020 207c 0a7c 6f31 203a 2052 6174 696f |.|o1 : Ratio │ │ │ │ +0006cad0: 6e61 6c4d 6170 2028 7175 6164 7261 7469 nalMap (quadrati │ │ │ │ +0006cae0: 6320 4372 656d 6f6e 6120 7472 616e 7366 c Cremona transf │ │ │ │ +0006caf0: 6f72 6d61 7469 6f6e 206f 6620 5050 5e32 ormation of PP^2 │ │ │ │ +0006cb00: 3029 2020 2020 2020 2020 2020 2020 2020 0) │ │ │ │ +0006cb10: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ 0006cb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006cb60: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 202c ---------|.|w , │ │ │ │ -0006cb70: 2077 2020 2c20 7720 202c 2077 2020 2c20 w , w , w , │ │ │ │ -0006cb80: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ -0006cb90: 2020 5d29 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0006cb60: 2d2d 2d7c 0a7c 7720 202c 2077 2020 2c20 ---|.|w , w , │ │ │ │ +0006cb70: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ +0006cb80: 2020 2c20 7720 202c 2077 2020 5d29 2020 , w , w ]) │ │ │ │ +0006cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cbb0: 2020 2020 2020 2020 207c 0a7c 2031 3320 |.| 13 │ │ │ │ -0006cbc0: 2020 3134 2020 2031 3520 2020 3136 2020 14 15 16 │ │ │ │ -0006cbd0: 2031 3720 2020 3138 2020 2031 3920 2020 17 18 19 │ │ │ │ -0006cbe0: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006cbb0: 2020 207c 0a7c 2031 3320 2020 3134 2020 |.| 13 14 │ │ │ │ +0006cbc0: 2031 3520 2020 3136 2020 2031 3720 2020 15 16 17 │ │ │ │ +0006cbd0: 3138 2020 2031 3920 2020 3230 2020 2020 18 19 20 │ │ │ │ +0006cbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc00: 2020 2020 2020 2020 207c 0a7c 7720 202c |.|w , │ │ │ │ -0006cc10: 2077 2020 2c20 7720 202c 2077 2020 2c20 w , w , w , │ │ │ │ -0006cc20: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ -0006cc30: 2020 5d29 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0006cc00: 2020 207c 0a7c 7720 202c 2077 2020 2c20 |.|w , w , │ │ │ │ +0006cc10: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ +0006cc20: 2020 2c20 7720 202c 2077 2020 5d29 2020 , w , w ]) │ │ │ │ +0006cc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cc50: 2020 2020 2020 2020 207c 0a7c 2031 3320 |.| 13 │ │ │ │ -0006cc60: 2020 3134 2020 2031 3520 2020 3136 2020 14 15 16 │ │ │ │ -0006cc70: 2031 3720 2020 3138 2020 2031 3920 2020 17 18 19 │ │ │ │ -0006cc80: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006cc50: 2020 207c 0a7c 2031 3320 2020 3134 2020 |.| 13 14 │ │ │ │ +0006cc60: 2031 3520 2020 3136 2020 2031 3720 2020 15 16 17 │ │ │ │ +0006cc70: 3138 2020 2031 3920 2020 3230 2020 2020 18 19 20 │ │ │ │ +0006cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cca0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006cca0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0006ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ccc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ccf0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ -0006cd00: 2074 696d 6520 7073 6920 3d20 696e 7665 time psi = inve │ │ │ │ -0006cd10: 7273 654d 6170 2070 6869 2020 2020 2020 rseMap phi │ │ │ │ +0006ccf0: 2d2d 2d2b 0a7c 6932 203a 2074 696d 6520 ---+.|i2 : time │ │ │ │ +0006cd00: 7073 6920 3d20 696e 7665 7273 654d 6170 psi = inverseMap │ │ │ │ +0006cd10: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ 0006cd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd40: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ -0006cd50: 7573 6564 2030 2e31 3834 3233 3273 2028 used 0.184232s ( │ │ │ │ -0006cd60: 6370 7529 3b20 302e 3132 3131 3573 2028 cpu); 0.12115s ( │ │ │ │ -0006cd70: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +0006cd40: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ +0006cd50: 2e32 3039 3537 7320 2863 7075 293b 2030 .20957s (cpu); 0 │ │ │ │ +0006cd60: 2e31 3136 3438 3273 2028 7468 7265 6164 .116482s (thread │ │ │ │ +0006cd70: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ 0006cd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cd90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006cd90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006cda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cde0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0006cdf0: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ -0006ce00: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +0006cde0: 2020 207c 0a7c 6f32 203d 202d 2d20 7261 |.|o2 = -- ra │ │ │ │ +0006cdf0: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ +0006ce00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ce10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ce20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ce30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006ce40: 2073 6f75 7263 653a 2050 726f 6a28 5151 source: Proj(QQ │ │ │ │ -0006ce50: 5b77 202c 2077 202c 2077 202c 2077 202c [w , w , w , w , │ │ │ │ -0006ce60: 2077 202c 2077 202c 2077 202c 2077 202c w , w , w , w , │ │ │ │ -0006ce70: 2077 202c 2077 202c 2077 2020 2c20 7720 w , w , w , w │ │ │ │ -0006ce80: 202c 2077 2020 2c20 207c 0a7c 2020 2020 , w , |.| │ │ │ │ -0006ce90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cea0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0006ceb0: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -0006cec0: 2020 3820 2020 3920 2020 3130 2020 2031 8 9 10 1 │ │ │ │ -0006ced0: 3120 2020 3132 2020 207c 0a7c 2020 2020 1 12 |.| │ │ │ │ -0006cee0: 2074 6172 6765 743a 2050 726f 6a28 5151 target: Proj(QQ │ │ │ │ -0006cef0: 5b77 202c 2077 202c 2077 202c 2077 202c [w , w , w , w , │ │ │ │ -0006cf00: 2077 202c 2077 202c 2077 202c 2077 202c w , w , w , w , │ │ │ │ -0006cf10: 2077 202c 2077 202c 2077 2020 2c20 7720 w , w , w , w │ │ │ │ -0006cf20: 202c 2077 2020 2c20 207c 0a7c 2020 2020 , w , |.| │ │ │ │ -0006cf30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cf40: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ -0006cf50: 2020 3420 2020 3520 2020 3620 2020 3720 4 5 6 7 │ │ │ │ -0006cf60: 2020 3820 2020 3920 2020 3130 2020 2031 8 9 10 1 │ │ │ │ -0006cf70: 3120 2020 3132 2020 207c 0a7c 2020 2020 1 12 |.| │ │ │ │ -0006cf80: 2064 6566 696e 696e 6720 666f 726d 733a defining forms: │ │ │ │ -0006cf90: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +0006ce30: 2020 207c 0a7c 2020 2020 2073 6f75 7263 |.| sourc │ │ │ │ +0006ce40: 653a 2050 726f 6a28 5151 5b77 202c 2077 e: Proj(QQ[w , w │ │ │ │ +0006ce50: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006ce60: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006ce70: 202c 2077 2020 2c20 7720 202c 2077 2020 , w , w , w │ │ │ │ +0006ce80: 2c20 207c 0a7c 2020 2020 2020 2020 2020 , |.| │ │ │ │ +0006ce90: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006cea0: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0006ceb0: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ +0006cec0: 3920 2020 3130 2020 2031 3120 2020 3132 9 10 11 12 │ │ │ │ +0006ced0: 2020 207c 0a7c 2020 2020 2074 6172 6765 |.| targe │ │ │ │ +0006cee0: 743a 2050 726f 6a28 5151 5b77 202c 2077 t: Proj(QQ[w , w │ │ │ │ +0006cef0: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006cf00: 202c 2077 202c 2077 202c 2077 202c 2077 , w , w , w , w │ │ │ │ +0006cf10: 202c 2077 2020 2c20 7720 202c 2077 2020 , w , w , w │ │ │ │ +0006cf20: 2c20 207c 0a7c 2020 2020 2020 2020 2020 , |.| │ │ │ │ +0006cf30: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006cf40: 3120 2020 3220 2020 3320 2020 3420 2020 1 2 3 4 │ │ │ │ +0006cf50: 3520 2020 3620 2020 3720 2020 3820 2020 5 6 7 8 │ │ │ │ +0006cf60: 3920 2020 3130 2020 2031 3120 2020 3132 9 10 11 12 │ │ │ │ +0006cf70: 2020 207c 0a7c 2020 2020 2064 6566 696e |.| defin │ │ │ │ +0006cf80: 696e 6720 666f 726d 733a 207b 2020 2020 ing forms: { │ │ │ │ +0006cf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006cfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cfc0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006cfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006cfe0: 2020 2d20 7720 2077 2020 202b 2077 2020 - w w + w │ │ │ │ -0006cff0: 7720 2020 2d20 7720 2077 2020 2c20 2020 w - w w , │ │ │ │ +0006cfc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006cfd0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006cfe0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006cff0: 7720 2077 2020 2c20 2020 2020 2020 2020 w w , │ │ │ │ 0006d000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d010: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d030: 2020 2020 2031 3520 3138 2020 2020 3134 15 18 14 │ │ │ │ -0006d040: 2031 3920 2020 2031 3120 3230 2020 2020 19 11 20 │ │ │ │ +0006d010: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d020: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d030: 3520 3138 2020 2020 3134 2031 3920 2020 5 18 14 19 │ │ │ │ +0006d040: 2031 3120 3230 2020 2020 2020 2020 2020 11 20 │ │ │ │ 0006d050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d060: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d060: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d0b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d0d0: 2020 2d20 7720 2077 2020 202b 2077 2020 - w w + w │ │ │ │ -0006d0e0: 7720 2020 2d20 7720 2077 2020 2c20 2020 w - w w , │ │ │ │ +0006d0b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d0c0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d0d0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006d0e0: 7720 2077 2020 2c20 2020 2020 2020 2020 w w , │ │ │ │ 0006d0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d100: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d120: 2020 2020 2031 3520 3137 2020 2020 3133 15 17 13 │ │ │ │ -0006d130: 2031 3920 2020 2031 3020 3230 2020 2020 19 10 20 │ │ │ │ +0006d100: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d110: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d120: 3520 3137 2020 2020 3133 2031 3920 2020 5 17 13 19 │ │ │ │ +0006d130: 2031 3020 3230 2020 2020 2020 2020 2020 10 20 │ │ │ │ 0006d140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d150: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d150: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1c0: 2020 2d20 7720 2077 2020 202b 2077 2020 - w w + w │ │ │ │ -0006d1d0: 7720 2020 2d20 7720 7720 202c 2020 2020 w - w w , │ │ │ │ +0006d1a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d1b0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d1c0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006d1d0: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ 0006d1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d1f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d210: 2020 2020 2031 3420 3137 2020 2020 3133 14 17 13 │ │ │ │ -0006d220: 2031 3820 2020 2039 2032 3020 2020 2020 18 9 20 │ │ │ │ +0006d1f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d200: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d210: 3420 3137 2020 2020 3133 2031 3820 2020 4 17 13 18 │ │ │ │ +0006d220: 2039 2032 3020 2020 2020 2020 2020 2020 9 20 │ │ │ │ 0006d230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d240: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d290: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d2b0: 2020 2d20 7720 2077 2020 202b 2077 2020 - w w + w │ │ │ │ -0006d2c0: 7720 2020 2d20 7720 7720 202c 2020 2020 w - w w , │ │ │ │ +0006d290: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d2a0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d2b0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006d2c0: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ 0006d2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d2e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d300: 2020 2020 2031 3120 3137 2020 2020 3130 11 17 10 │ │ │ │ -0006d310: 2031 3820 2020 2039 2031 3920 2020 2020 18 9 19 │ │ │ │ +0006d2e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d2f0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d300: 3120 3137 2020 2020 3130 2031 3820 2020 1 17 10 18 │ │ │ │ +0006d310: 2039 2031 3920 2020 2020 2020 2020 2020 9 19 │ │ │ │ 0006d320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d330: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d330: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d380: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d3a0: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006d3b0: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ +0006d380: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d390: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d3a0: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +0006d3b0: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d3d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d3f0: 2020 2020 2031 3520 3136 2020 2020 3320 15 16 3 │ │ │ │ -0006d400: 3139 2020 2020 3220 3230 2020 2020 2020 19 2 20 │ │ │ │ +0006d3d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d3e0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d3f0: 3520 3136 2020 2020 3320 3139 2020 2020 5 16 3 19 │ │ │ │ +0006d400: 3220 3230 2020 2020 2020 2020 2020 2020 2 20 │ │ │ │ 0006d410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d420: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d470: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d490: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006d4a0: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ +0006d470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d480: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d490: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +0006d4a0: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d4c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d4e0: 2020 2020 2031 3420 3136 2020 2020 3320 14 16 3 │ │ │ │ -0006d4f0: 3138 2020 2020 3120 3230 2020 2020 2020 18 1 20 │ │ │ │ +0006d4c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d4d0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d4e0: 3420 3136 2020 2020 3320 3138 2020 2020 4 16 3 18 │ │ │ │ +0006d4f0: 3120 3230 2020 2020 2020 2020 2020 2020 1 20 │ │ │ │ 0006d500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d510: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d510: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d560: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d580: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006d590: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ +0006d560: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d570: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d580: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +0006d590: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d5b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d5d0: 2020 2020 2031 3320 3136 2020 2020 3320 13 16 3 │ │ │ │ -0006d5e0: 3137 2020 2020 3020 3230 2020 2020 2020 17 0 20 │ │ │ │ +0006d5b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d5c0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d5d0: 3320 3136 2020 2020 3320 3137 2020 2020 3 16 3 17 │ │ │ │ +0006d5e0: 3020 3230 2020 2020 2020 2020 2020 2020 0 20 │ │ │ │ 0006d5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d600: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d670: 2020 2d20 7720 2077 2020 202d 2077 2077 - w w - w w │ │ │ │ -0006d680: 2020 202b 2077 2077 2020 202d 2077 2077 + w w - w w │ │ │ │ -0006d690: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ -0006d6a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d6c0: 2020 2020 2031 3220 3136 2020 2020 3820 12 16 8 │ │ │ │ -0006d6d0: 3137 2020 2020 3720 3138 2020 2020 3620 17 7 18 6 │ │ │ │ -0006d6e0: 3139 2020 2020 3520 3230 2020 2020 2020 19 5 20 │ │ │ │ -0006d6f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d660: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d670: 2077 2020 202d 2077 2077 2020 202b 2077 w - w w + w │ │ │ │ +0006d680: 2077 2020 202d 2077 2077 2020 202d 2077 w - w w - w │ │ │ │ +0006d690: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ +0006d6a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d6b0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d6c0: 3220 3136 2020 2020 3820 3137 2020 2020 2 16 8 17 │ │ │ │ +0006d6d0: 3720 3138 2020 2020 3620 3139 2020 2020 7 18 6 19 │ │ │ │ +0006d6e0: 3520 3230 2020 2020 2020 2020 2020 2020 5 20 │ │ │ │ +0006d6f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d740: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d760: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006d770: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ +0006d740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d750: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d760: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +0006d770: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d790: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d7b0: 2020 2020 2031 3120 3136 2020 2020 3220 11 16 2 │ │ │ │ -0006d7c0: 3138 2020 2020 3120 3139 2020 2020 2020 18 1 19 │ │ │ │ +0006d790: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d7a0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d7b0: 3120 3136 2020 2020 3220 3138 2020 2020 1 16 2 18 │ │ │ │ +0006d7c0: 3120 3139 2020 2020 2020 2020 2020 2020 1 19 │ │ │ │ 0006d7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d7e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d7e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d830: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d850: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006d860: 2020 202d 2077 2077 2020 2c20 2020 2020 - w w , │ │ │ │ +0006d830: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d840: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d850: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +0006d860: 2077 2020 2c20 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d880: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d8a0: 2020 2020 2031 3020 3136 2020 2020 3220 10 16 2 │ │ │ │ -0006d8b0: 3137 2020 2020 3020 3139 2020 2020 2020 17 0 19 │ │ │ │ +0006d880: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d890: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006d8a0: 3020 3136 2020 2020 3220 3137 2020 2020 0 16 2 17 │ │ │ │ +0006d8b0: 3020 3139 2020 2020 2020 2020 2020 2020 0 19 │ │ │ │ 0006d8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d8d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d8d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d920: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d940: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ -0006d950: 2020 2d20 7720 7720 202c 2020 2020 2020 - w w , │ │ │ │ +0006d920: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d930: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006d940: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006d950: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ 0006d960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d970: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006d980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d990: 2020 2020 2039 2031 3620 2020 2031 2031 9 16 1 1 │ │ │ │ -0006d9a0: 3720 2020 2030 2031 3820 2020 2020 2020 7 0 18 │ │ │ │ +0006d970: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006d980: 2020 2020 2020 2020 2020 2020 2020 2039 9 │ │ │ │ +0006d990: 2031 3620 2020 2031 2031 3720 2020 2030 16 1 17 0 │ │ │ │ +0006d9a0: 2031 3820 2020 2020 2020 2020 2020 2020 18 │ │ │ │ 0006d9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006d9c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006d9c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006d9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006da00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006da10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006da30: 2020 2d20 7720 2077 2020 202b 2077 2020 - w w + w │ │ │ │ -0006da40: 7720 2020 2d20 7720 7720 202c 2020 2020 w - w w , │ │ │ │ +0006da10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006da20: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006da30: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006da40: 7720 7720 202c 2020 2020 2020 2020 2020 w w , │ │ │ │ 0006da50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006da60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006da70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006da80: 2020 2020 2031 3120 3133 2020 2020 3130 11 13 10 │ │ │ │ -0006da90: 2031 3420 2020 2039 2031 3520 2020 2020 14 9 15 │ │ │ │ +0006da60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006da70: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ +0006da80: 3120 3133 2020 2020 3130 2031 3420 2020 1 13 10 14 │ │ │ │ +0006da90: 2039 2031 3520 2020 2020 2020 2020 2020 9 15 │ │ │ │ 0006daa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dab0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006dab0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006dac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006daf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006db00: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006db10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006db20: 2020 2d20 7720 7720 2020 2d20 7720 7720 - w w - w w │ │ │ │ -0006db30: 2020 2b20 7720 7720 2020 2d20 7720 7720 + w w - w w │ │ │ │ -0006db40: 2020 2d20 7720 7720 202c 2020 2020 2020 - w w , │ │ │ │ -0006db50: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006db70: 2020 2020 2033 2031 3220 2020 2038 2031 3 12 8 1 │ │ │ │ -0006db80: 3320 2020 2037 2031 3420 2020 2036 2031 3 7 14 6 1 │ │ │ │ -0006db90: 3520 2020 2034 2032 3020 2020 2020 2020 5 4 20 │ │ │ │ -0006dba0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006db00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006db10: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006db20: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006db30: 7720 2020 2d20 7720 7720 2020 2d20 7720 w - w w - w │ │ │ │ +0006db40: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ +0006db50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006db60: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +0006db70: 2031 3220 2020 2038 2031 3320 2020 2037 12 8 13 7 │ │ │ │ +0006db80: 2031 3420 2020 2036 2031 3520 2020 2034 14 6 15 4 │ │ │ │ +0006db90: 2032 3020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006dba0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006dbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dbf0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dc10: 2020 7720 7720 202b 2077 2077 2020 2d20 w w + w w - │ │ │ │ -0006dc20: 7720 7720 202b 2077 2077 2020 2d20 7720 w w + w w - w │ │ │ │ -0006dc30: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ -0006dc40: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dc60: 2020 2033 2035 2020 2020 3220 3620 2020 3 5 2 6 │ │ │ │ -0006dc70: 2031 2037 2020 2020 3020 3820 2020 2034 1 7 0 8 4 │ │ │ │ -0006dc80: 2031 3620 2020 2020 2020 2020 2020 2020 16 │ │ │ │ -0006dc90: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006dbf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dc00: 2020 2020 2020 2020 2020 2020 7720 7720 w w │ │ │ │ +0006dc10: 202b 2077 2077 2020 2d20 7720 7720 202b + w w - w w + │ │ │ │ +0006dc20: 2077 2077 2020 2d20 7720 7720 202c 2020 w w - w w , │ │ │ │ +0006dc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006dc40: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dc50: 2020 2020 2020 2020 2020 2020 2033 2035 3 5 │ │ │ │ +0006dc60: 2020 2020 3220 3620 2020 2031 2037 2020 2 6 1 7 │ │ │ │ +0006dc70: 2020 3020 3820 2020 2034 2031 3620 2020 0 8 4 16 │ │ │ │ +0006dc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0006dc90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006dca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dce0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dd00: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ -0006dd10: 2020 2d20 7720 7720 202c 2020 2020 2020 - w w , │ │ │ │ +0006dce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dcf0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006dd00: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006dd10: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ 0006dd20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dd30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dd50: 2020 2020 2033 2031 3120 2020 2032 2031 3 11 2 1 │ │ │ │ -0006dd60: 3420 2020 2031 2031 3520 2020 2020 2020 4 1 15 │ │ │ │ +0006dd30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dd40: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +0006dd50: 2031 3120 2020 2032 2031 3420 2020 2031 11 2 14 1 │ │ │ │ +0006dd60: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ 0006dd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dd80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006dd80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006dd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006ddc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ddd0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ddf0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ -0006de00: 2020 2d20 7720 7720 202c 2020 2020 2020 - w w , │ │ │ │ +0006ddd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dde0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006ddf0: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006de00: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ 0006de10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006de20: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006de30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006de40: 2020 2020 2033 2031 3020 2020 2032 2031 3 10 2 1 │ │ │ │ -0006de50: 3320 2020 2030 2031 3520 2020 2020 2020 3 0 15 │ │ │ │ +0006de20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006de30: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +0006de40: 2031 3020 2020 2032 2031 3320 2020 2030 10 2 13 0 │ │ │ │ +0006de50: 2031 3520 2020 2020 2020 2020 2020 2020 15 │ │ │ │ 0006de60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006de70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006de70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006deb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dec0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006ded0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dee0: 2020 2d20 7720 7720 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006def0: 202d 2077 2077 2020 2c20 2020 2020 2020 - w w , │ │ │ │ +0006dec0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006ded0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006dee0: 7720 202b 2077 2077 2020 202d 2077 2077 w + w w - w w │ │ │ │ +0006def0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0006df00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006df10: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006df20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006df30: 2020 2020 2033 2039 2020 2020 3120 3133 3 9 1 13 │ │ │ │ -0006df40: 2020 2020 3020 3134 2020 2020 2020 2020 0 14 │ │ │ │ +0006df10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006df20: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +0006df30: 2039 2020 2020 3120 3133 2020 2020 3020 9 1 13 0 │ │ │ │ +0006df40: 3134 2020 2020 2020 2020 2020 2020 2020 14 │ │ │ │ 0006df50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006df60: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006df60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006dfa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dfb0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006dfc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006dfd0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ -0006dfe0: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ -0006dff0: 2020 2d20 7720 7720 202c 2020 2020 2020 - w w , │ │ │ │ -0006e000: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e020: 2020 2020 2038 2031 3020 2020 2037 2031 8 10 7 1 │ │ │ │ -0006e030: 3120 2020 2032 2031 3220 2020 2035 2031 1 2 12 5 1 │ │ │ │ -0006e040: 3520 2020 2034 2031 3920 2020 2020 2020 5 4 19 │ │ │ │ -0006e050: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006dfb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006dfc0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006dfd0: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006dfe0: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006dff0: 7720 202c 2020 2020 2020 2020 2020 2020 w , │ │ │ │ +0006e000: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e010: 2020 2020 2020 2020 2020 2020 2020 2038 8 │ │ │ │ +0006e020: 2031 3020 2020 2037 2031 3120 2020 2032 10 7 11 2 │ │ │ │ +0006e030: 2031 3220 2020 2035 2031 3520 2020 2034 12 5 15 4 │ │ │ │ +0006e040: 2031 3920 2020 2020 2020 2020 2020 2020 19 │ │ │ │ +0006e050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006e060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e0a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e0c0: 2020 2d20 7720 7720 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006e0d0: 202d 2077 2077 2020 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006e0e0: 202d 2077 2077 2020 2c20 2020 2020 2020 - w w , │ │ │ │ -0006e0f0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e110: 2020 2020 2038 2039 2020 2020 3620 3131 8 9 6 11 │ │ │ │ -0006e120: 2020 2020 3120 3132 2020 2020 3520 3134 1 12 5 14 │ │ │ │ -0006e130: 2020 2020 3420 3138 2020 2020 2020 2020 4 18 │ │ │ │ -0006e140: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006e0a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e0b0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006e0c0: 7720 202b 2077 2077 2020 202d 2077 2077 w + w w - w w │ │ │ │ +0006e0d0: 2020 202b 2077 2077 2020 202d 2077 2077 + w w - w w │ │ │ │ +0006e0e0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006e0f0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e100: 2020 2020 2020 2020 2020 2020 2020 2038 8 │ │ │ │ +0006e110: 2039 2020 2020 3620 3131 2020 2020 3120 9 6 11 1 │ │ │ │ +0006e120: 3132 2020 2020 3520 3134 2020 2020 3420 12 5 14 4 │ │ │ │ +0006e130: 3138 2020 2020 2020 2020 2020 2020 2020 18 │ │ │ │ +0006e140: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006e150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e190: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e1b0: 2020 2d20 7720 7720 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006e1c0: 202d 2077 2077 2020 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006e1d0: 202d 2077 2077 2020 2c20 2020 2020 2020 - w w , │ │ │ │ -0006e1e0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e200: 2020 2020 2037 2039 2020 2020 3620 3130 7 9 6 10 │ │ │ │ -0006e210: 2020 2020 3020 3132 2020 2020 3520 3133 0 12 5 13 │ │ │ │ -0006e220: 2020 2020 3420 3137 2020 2020 2020 2020 4 17 │ │ │ │ -0006e230: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006e190: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e1a0: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006e1b0: 7720 202b 2077 2077 2020 202d 2077 2077 w + w w - w w │ │ │ │ +0006e1c0: 2020 202b 2077 2077 2020 202d 2077 2077 + w w - w w │ │ │ │ +0006e1d0: 2020 2c20 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0006e1e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e1f0: 2020 2020 2020 2020 2020 2020 2020 2037 7 │ │ │ │ +0006e200: 2039 2020 2020 3620 3130 2020 2020 3020 9 6 10 0 │ │ │ │ +0006e210: 3132 2020 2020 3520 3133 2020 2020 3420 12 5 13 4 │ │ │ │ +0006e220: 3137 2020 2020 2020 2020 2020 2020 2020 17 │ │ │ │ +0006e230: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e280: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e2a0: 2020 2d20 7720 7720 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006e2b0: 202d 2077 2077 2020 2020 2020 2020 2020 - w w │ │ │ │ +0006e280: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e290: 2020 2020 2020 2020 2020 2020 2d20 7720 - w │ │ │ │ +0006e2a0: 7720 202b 2077 2077 2020 202d 2077 2077 w + w w - w w │ │ │ │ +0006e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e2d0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e2f0: 2020 2020 2032 2039 2020 2020 3120 3130 2 9 1 10 │ │ │ │ -0006e300: 2020 2020 3020 3131 2020 2020 2020 2020 0 11 │ │ │ │ +0006e2d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e2e0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0006e2f0: 2039 2020 2020 3120 3130 2020 2020 3020 9 1 10 0 │ │ │ │ +0006e300: 3131 2020 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 0006e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e320: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0006e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e340: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0006e320: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e330: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +0006e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e370: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0006e370: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0006e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e3c0: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ -0006e3d0: 2052 6174 696f 6e61 6c4d 6170 2028 7175 RationalMap (qu │ │ │ │ -0006e3e0: 6164 7261 7469 6320 7261 7469 6f6e 616c adratic rational │ │ │ │ -0006e3f0: 206d 6170 2066 726f 6d20 5050 5e32 3020 map from PP^20 │ │ │ │ -0006e400: 746f 2050 505e 3230 2920 2020 2020 2020 to PP^20) │ │ │ │ -0006e410: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +0006e3c0: 2020 207c 0a7c 6f32 203a 2052 6174 696f |.|o2 : Ratio │ │ │ │ +0006e3d0: 6e61 6c4d 6170 2028 7175 6164 7261 7469 nalMap (quadrati │ │ │ │ +0006e3e0: 6320 7261 7469 6f6e 616c 206d 6170 2066 c rational map f │ │ │ │ +0006e3f0: 726f 6d20 5050 5e32 3020 746f 2050 505e rom PP^20 to PP^ │ │ │ │ +0006e400: 3230 2920 2020 2020 2020 2020 2020 2020 20) │ │ │ │ +0006e410: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ 0006e420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e460: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 202c ---------|.|w , │ │ │ │ -0006e470: 2077 2020 2c20 7720 202c 2077 2020 2c20 w , w , w , │ │ │ │ -0006e480: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ -0006e490: 2020 5d29 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0006e460: 2d2d 2d7c 0a7c 7720 202c 2077 2020 2c20 ---|.|w , w , │ │ │ │ +0006e470: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ +0006e480: 2020 2c20 7720 202c 2077 2020 5d29 2020 , w , w ]) │ │ │ │ +0006e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e4b0: 2020 2020 2020 2020 207c 0a7c 2031 3320 |.| 13 │ │ │ │ -0006e4c0: 2020 3134 2020 2031 3520 2020 3136 2020 14 15 16 │ │ │ │ -0006e4d0: 2031 3720 2020 3138 2020 2031 3920 2020 17 18 19 │ │ │ │ -0006e4e0: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006e4b0: 2020 207c 0a7c 2031 3320 2020 3134 2020 |.| 13 14 │ │ │ │ +0006e4c0: 2031 3520 2020 3136 2020 2031 3720 2020 15 16 17 │ │ │ │ +0006e4d0: 3138 2020 2031 3920 2020 3230 2020 2020 18 19 20 │ │ │ │ +0006e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e500: 2020 2020 2020 2020 207c 0a7c 7720 202c |.|w , │ │ │ │ -0006e510: 2077 2020 2c20 7720 202c 2077 2020 2c20 w , w , w , │ │ │ │ -0006e520: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ -0006e530: 2020 5d29 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0006e500: 2020 207c 0a7c 7720 202c 2077 2020 2c20 |.|w , w , │ │ │ │ +0006e510: 7720 202c 2077 2020 2c20 7720 202c 2077 w , w , w , w │ │ │ │ +0006e520: 2020 2c20 7720 202c 2077 2020 5d29 2020 , w , w ]) │ │ │ │ +0006e530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e550: 2020 2020 2020 2020 207c 0a7c 2031 3320 |.| 13 │ │ │ │ -0006e560: 2020 3134 2020 2031 3520 2020 3136 2020 14 15 16 │ │ │ │ -0006e570: 2031 3720 2020 3138 2020 2031 3920 2020 17 18 19 │ │ │ │ -0006e580: 3230 2020 2020 2020 2020 2020 2020 2020 20 │ │ │ │ +0006e550: 2020 207c 0a7c 2031 3320 2020 3134 2020 |.| 13 14 │ │ │ │ +0006e560: 2031 3520 2020 3136 2020 2031 3720 2020 15 16 17 │ │ │ │ +0006e570: 3138 2020 2031 3920 2020 3230 2020 2020 18 19 20 │ │ │ │ +0006e580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e5a0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006e5a0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0006e5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e5f0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ -0006e600: 2061 7373 6572 7428 7068 6920 2a20 7073 assert(phi * ps │ │ │ │ -0006e610: 6920 3d3d 2031 2920 2020 2020 2020 2020 i == 1) │ │ │ │ +0006e5f0: 2d2d 2d2b 0a7c 6933 203a 2061 7373 6572 ---+.|i3 : asser │ │ │ │ +0006e600: 7428 7068 6920 2a20 7073 6920 3d3d 2031 t(phi * psi == 1 │ │ │ │ +0006e610: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 0006e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e640: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +0006e640: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 0006e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e690: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5468 6520 ---------+..The │ │ │ │ -0006e6a0: 6d65 7468 6f64 2061 6c73 6f20 6163 6365 method also acce │ │ │ │ -0006e6b0: 7074 7320 6173 2069 6e70 7574 2061 202a pts as input a * │ │ │ │ -0006e6c0: 6e6f 7465 2072 696e 6720 6d61 703a 2028 note ring map: ( │ │ │ │ -0006e6d0: 4d61 6361 756c 6179 3244 6f63 2952 696e Macaulay2Doc)Rin │ │ │ │ -0006e6e0: 674d 6170 2c0a 7265 7072 6573 656e 7469 gMap,.representi │ │ │ │ -0006e6f0: 6e67 2061 2072 6174 696f 6e61 6c20 6d61 ng a rational ma │ │ │ │ -0006e700: 7020 245c 5068 6924 2062 6574 7765 656e p $\Phi$ between │ │ │ │ -0006e710: 2070 726f 6a65 6374 6976 6520 7661 7269 projective vari │ │ │ │ -0006e720: 6574 6965 732e 2049 6e20 7468 6973 2063 eties. In this c │ │ │ │ -0006e730: 6173 652c 0a74 6865 202a 6e6f 7465 2072 ase,.the *note r │ │ │ │ -0006e740: 696e 6720 6d61 703a 2028 4d61 6361 756c ing map: (Macaul │ │ │ │ -0006e750: 6179 3244 6f63 2952 696e 674d 6170 2c20 ay2Doc)RingMap, │ │ │ │ -0006e760: 6465 6669 6e69 6e67 2024 5c50 6869 5e7b defining $\Phi^{ │ │ │ │ -0006e770: 2d31 7d24 2069 7320 7265 7475 726e 6564 -1}$ is returned │ │ │ │ -0006e780: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +0006e690: 2d2d 2d2b 0a0a 5468 6520 6d65 7468 6f64 ---+..The method │ │ │ │ +0006e6a0: 2061 6c73 6f20 6163 6365 7074 7320 6173 also accepts as │ │ │ │ +0006e6b0: 2069 6e70 7574 2061 202a 6e6f 7465 2072 input a *note r │ │ │ │ +0006e6c0: 696e 6720 6d61 703a 2028 4d61 6361 756c ing map: (Macaul │ │ │ │ +0006e6d0: 6179 3244 6f63 2952 696e 674d 6170 2c0a ay2Doc)RingMap,. │ │ │ │ +0006e6e0: 7265 7072 6573 656e 7469 6e67 2061 2072 representing a r │ │ │ │ +0006e6f0: 6174 696f 6e61 6c20 6d61 7020 245c 5068 ational map $\Ph │ │ │ │ +0006e700: 6924 2062 6574 7765 656e 2070 726f 6a65 i$ between proje │ │ │ │ +0006e710: 6374 6976 6520 7661 7269 6574 6965 732e ctive varieties. │ │ │ │ +0006e720: 2049 6e20 7468 6973 2063 6173 652c 0a74 In this case,.t │ │ │ │ +0006e730: 6865 202a 6e6f 7465 2072 696e 6720 6d61 he *note ring ma │ │ │ │ +0006e740: 703a 2028 4d61 6361 756c 6179 3244 6f63 p: (Macaulay2Doc │ │ │ │ +0006e750: 2952 696e 674d 6170 2c20 6465 6669 6e69 )RingMap, defini │ │ │ │ +0006e760: 6e67 2024 5c50 6869 5e7b 2d31 7d24 2069 ng $\Phi^{-1}$ i │ │ │ │ +0006e770: 7320 7265 7475 726e 6564 2e0a 0a2b 2d2d s returned...+-- │ │ │ │ +0006e780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006e7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006e7d0: 2d2b 0a7c 6934 203a 202d 2d20 4120 4372 -+.|i4 : -- A Cr │ │ │ │ -0006e7e0: 656d 6f6e 6120 7472 616e 7366 6f72 6d61 emona transforma │ │ │ │ -0006e7f0: 7469 6f6e 206f 6620 505e 3236 2020 2020 tion of P^26 │ │ │ │ +0006e7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +0006e7d0: 203a 202d 2d20 4120 4372 656d 6f6e 6120 : -- A Cremona │ │ │ │ +0006e7e0: 7472 616e 7366 6f72 6d61 7469 6f6e 206f transformation o │ │ │ │ +0006e7f0: 6620 505e 3236 2020 2020 2020 2020 2020 f P^26 │ │ │ │ 0006e800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e820: 207c 0a7c 2020 2020 2070 6869 203d 206d |.| phi = m │ │ │ │ -0006e830: 6170 2071 7561 6472 6f51 7561 6472 6963 ap quadroQuadric │ │ │ │ -0006e840: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ -0006e850: 6174 696f 6e28 3236 2c31 2920 2020 2020 ation(26,1) │ │ │ │ -0006e860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e810: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006e820: 2020 2070 6869 203d 206d 6170 2071 7561 phi = map qua │ │ │ │ +0006e830: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ +0006e840: 6154 7261 6e73 666f 726d 6174 696f 6e28 aTransformation( │ │ │ │ +0006e850: 3236 2c31 2920 2020 2020 2020 2020 2020 26,1) │ │ │ │ +0006e860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e8c0: 207c 0a7c 6f34 203d 206d 6170 2028 5151 |.|o4 = map (QQ │ │ │ │ -0006e8d0: 5b77 202e 2e77 2020 5d2c 2051 515b 7720 [w ..w ], QQ[w │ │ │ │ -0006e8e0: 2e2e 7720 205d 2c20 7b77 2020 7720 2020 ..w ], {w w │ │ │ │ -0006e8f0: 2d20 7720 2077 2020 202d 2077 2020 7720 - w w - w w │ │ │ │ -0006e900: 2020 2d20 7720 2077 2020 202d 2020 2020 - w w - │ │ │ │ -0006e910: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006e920: 2020 3020 2020 3236 2020 2020 2020 2030 0 26 0 │ │ │ │ -0006e930: 2020 2032 3620 2020 2020 3231 2032 3220 26 21 22 │ │ │ │ -0006e940: 2020 2032 3020 3233 2020 2020 3135 2032 20 23 15 2 │ │ │ │ -0006e950: 3420 2020 2031 3020 3235 2020 2020 2020 4 10 25 │ │ │ │ -0006e960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006e8b0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0006e8c0: 203d 206d 6170 2028 5151 5b77 202e 2e77 = map (QQ[w ..w │ │ │ │ +0006e8d0: 2020 5d2c 2051 515b 7720 2e2e 7720 205d ], QQ[w ..w ] │ │ │ │ +0006e8e0: 2c20 7b77 2020 7720 2020 2d20 7720 2077 , {w w - w w │ │ │ │ +0006e8f0: 2020 202d 2077 2020 7720 2020 2d20 7720 - w w - w │ │ │ │ +0006e900: 2077 2020 202d 2020 2020 207c 0a7c 2020 w - |.| │ │ │ │ +0006e910: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006e920: 3236 2020 2020 2020 2030 2020 2032 3620 26 0 26 │ │ │ │ +0006e930: 2020 2020 3231 2032 3220 2020 2032 3020 21 22 20 │ │ │ │ +0006e940: 3233 2020 2020 3135 2032 3420 2020 2031 23 15 24 1 │ │ │ │ +0006e950: 3020 3235 2020 2020 2020 207c 0a7c 2020 0 25 |.| │ │ │ │ +0006e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e9b0: 207c 0a7c 6f34 203a 2052 696e 674d 6170 |.|o4 : RingMap │ │ │ │ -0006e9c0: 2051 515b 7720 2e2e 7720 205d 203c 2d2d QQ[w ..w ] <-- │ │ │ │ -0006e9d0: 2051 515b 7720 2e2e 7720 205d 2020 2020 QQ[w ..w ] │ │ │ │ +0006e9a0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +0006e9b0: 203a 2052 696e 674d 6170 2051 515b 7720 : RingMap QQ[w │ │ │ │ +0006e9c0: 2e2e 7720 205d 203c 2d2d 2051 515b 7720 ..w ] <-- QQ[w │ │ │ │ +0006e9d0: 2e2e 7720 205d 2020 2020 2020 2020 2020 ..w ] │ │ │ │ 0006e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006e9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ea00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006ea10: 2020 2020 2030 2020 2032 3620 2020 2020 0 26 │ │ │ │ -0006ea20: 2020 2020 2030 2020 2032 3620 2020 2020 0 26 │ │ │ │ +0006e9f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006ea00: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0006ea10: 2020 2032 3620 2020 2020 2020 2020 2030 26 0 │ │ │ │ +0006ea20: 2020 2032 3620 2020 2020 2020 2020 2020 26 │ │ │ │ 0006ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ea40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006ea50: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ea40: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +0006ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006eaa0: 2d7c 0a7c 7720 7720 202c 2077 2020 7720 -|.|w w , w w │ │ │ │ -0006eab0: 2020 2d20 7720 2077 2020 202d 2077 2020 - w w - w │ │ │ │ -0006eac0: 7720 2020 2d20 7720 2077 2020 202d 2077 w - w w - w │ │ │ │ -0006ead0: 2077 2020 2c20 7720 2077 2020 202d 2077 w , w w - w │ │ │ │ -0006eae0: 2020 7720 2020 2d20 7720 2077 2020 202d w - w w - │ │ │ │ -0006eaf0: 207c 0a7c 2030 2032 3620 2020 3139 2032 |.| 0 26 19 2 │ │ │ │ -0006eb00: 3220 2020 2031 3820 3233 2020 2020 3136 2 18 23 16 │ │ │ │ -0006eb10: 2032 3420 2020 2031 3120 3235 2020 2020 24 11 25 │ │ │ │ -0006eb20: 3120 3236 2020 2031 3920 3230 2020 2020 1 26 19 20 │ │ │ │ -0006eb30: 3138 2032 3120 2020 2031 3720 3234 2020 18 21 17 24 │ │ │ │ -0006eb40: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ea90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006eaa0: 7720 202c 2077 2020 7720 2020 2d20 7720 w , w w - w │ │ │ │ +0006eab0: 2077 2020 202d 2077 2020 7720 2020 2d20 w - w w - │ │ │ │ +0006eac0: 7720 2077 2020 202d 2077 2077 2020 2c20 w w - w w , │ │ │ │ +0006ead0: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ +0006eae0: 2d20 7720 2077 2020 202d 207c 0a7c 2030 - w w - |.| 0 │ │ │ │ +0006eaf0: 2032 3620 2020 3139 2032 3220 2020 2031 26 19 22 1 │ │ │ │ +0006eb00: 3820 3233 2020 2020 3136 2032 3420 2020 8 23 16 24 │ │ │ │ +0006eb10: 2031 3120 3235 2020 2020 3120 3236 2020 11 25 1 26 │ │ │ │ +0006eb20: 2031 3920 3230 2020 2020 3138 2032 3120 19 20 18 21 │ │ │ │ +0006eb30: 2020 2031 3720 3234 2020 207c 0a7c 2d2d 17 24 |.|-- │ │ │ │ +0006eb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006eb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006eb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006eb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006eb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006eb90: 2d7c 0a7c 7720 2077 2020 202d 2077 2077 -|.|w w - w w │ │ │ │ -0006eba0: 2020 2c20 7720 2077 2020 202d 2077 2020 , w w - w │ │ │ │ -0006ebb0: 7720 2020 2b20 7720 2077 2020 202d 2077 w + w w - w │ │ │ │ -0006ebc0: 2020 7720 2020 2d20 7720 7720 202c 2077 w - w w , w │ │ │ │ -0006ebd0: 2020 7720 2020 2d20 7720 2077 2020 202b w - w w + │ │ │ │ -0006ebe0: 207c 0a7c 2031 3220 3235 2020 2020 3220 |.| 12 25 2 │ │ │ │ -0006ebf0: 3236 2020 2031 3520 3139 2020 2020 3136 26 15 19 16 │ │ │ │ -0006ec00: 2032 3120 2020 2031 3720 3233 2020 2020 21 17 23 │ │ │ │ -0006ec10: 3133 2032 3520 2020 2033 2032 3620 2020 13 25 3 26 │ │ │ │ -0006ec20: 3130 2031 3920 2020 2031 3120 3231 2020 10 19 11 21 │ │ │ │ -0006ec30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006eb80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006eb90: 2077 2020 202d 2077 2077 2020 2c20 7720 w - w w , w │ │ │ │ +0006eba0: 2077 2020 202d 2077 2020 7720 2020 2b20 w - w w + │ │ │ │ +0006ebb0: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ +0006ebc0: 2d20 7720 7720 202c 2077 2020 7720 2020 - w w , w w │ │ │ │ +0006ebd0: 2d20 7720 2077 2020 202b 207c 0a7c 2031 - w w + |.| 1 │ │ │ │ +0006ebe0: 3220 3235 2020 2020 3220 3236 2020 2031 2 25 2 26 1 │ │ │ │ +0006ebf0: 3520 3139 2020 2020 3136 2032 3120 2020 5 19 16 21 │ │ │ │ +0006ec00: 2031 3720 3233 2020 2020 3133 2032 3520 17 23 13 25 │ │ │ │ +0006ec10: 2020 2033 2032 3620 2020 3130 2031 3920 3 26 10 19 │ │ │ │ +0006ec20: 2020 2031 3120 3231 2020 207c 0a7c 2d2d 11 21 |.|-- │ │ │ │ +0006ec30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ec40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ec50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ec60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ec80: 2d7c 0a7c 7720 2077 2020 202b 2077 2020 -|.|w w + w │ │ │ │ -0006ec90: 7720 2020 2d20 7720 7720 202c 2077 2077 w - w w , w w │ │ │ │ -0006eca0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -0006ecb0: 2020 202b 2077 2077 2020 202b 2077 2077 + w w + w w │ │ │ │ -0006ecc0: 2020 2c20 7720 2077 2020 202d 2020 2020 , w w - │ │ │ │ -0006ecd0: 207c 0a7c 2031 3220 3233 2020 2020 3133 |.| 12 23 13 │ │ │ │ -0006ece0: 2032 3420 2020 2034 2032 3620 2020 3020 24 4 26 0 │ │ │ │ -0006ecf0: 3139 2020 2020 3120 3231 2020 2020 3220 19 1 21 2 │ │ │ │ -0006ed00: 3233 2020 2020 3320 3234 2020 2020 3420 23 3 24 4 │ │ │ │ -0006ed10: 3235 2020 2031 3520 3138 2020 2020 2020 25 15 18 │ │ │ │ -0006ed20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ec70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006ec80: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006ec90: 7720 7720 202c 2077 2077 2020 202d 2077 w w , w w - w │ │ │ │ +0006eca0: 2077 2020 202b 2077 2077 2020 202b 2077 w + w w + w │ │ │ │ +0006ecb0: 2077 2020 202b 2077 2077 2020 2c20 7720 w + w w , w │ │ │ │ +0006ecc0: 2077 2020 202d 2020 2020 207c 0a7c 2031 w - |.| 1 │ │ │ │ +0006ecd0: 3220 3233 2020 2020 3133 2032 3420 2020 2 23 13 24 │ │ │ │ +0006ece0: 2034 2032 3620 2020 3020 3139 2020 2020 4 26 0 19 │ │ │ │ +0006ecf0: 3120 3231 2020 2020 3220 3233 2020 2020 1 21 2 23 │ │ │ │ +0006ed00: 3320 3234 2020 2020 3420 3235 2020 2031 3 24 4 25 1 │ │ │ │ +0006ed10: 3520 3138 2020 2020 2020 207c 0a7c 2d2d 5 18 |.|-- │ │ │ │ +0006ed20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ed50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ed60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ed70: 2d7c 0a7c 7720 2077 2020 202b 2077 2020 -|.|w w + w │ │ │ │ -0006ed80: 7720 2020 2d20 7720 2077 2020 202d 2077 w - w w - w │ │ │ │ -0006ed90: 2077 2020 2c20 7720 2077 2020 202d 2077 w , w w - w │ │ │ │ -0006eda0: 2020 7720 2020 2b20 7720 2077 2020 202b w + w w + │ │ │ │ -0006edb0: 2077 2020 7720 2020 2d20 7720 7720 202c w w - w w , │ │ │ │ -0006edc0: 207c 0a7c 2031 3620 3230 2020 2020 3137 |.| 16 20 17 │ │ │ │ -0006edd0: 2032 3220 2020 2031 3420 3235 2020 2020 22 14 25 │ │ │ │ -0006ede0: 3520 3236 2020 2031 3020 3138 2020 2020 5 26 10 18 │ │ │ │ -0006edf0: 3131 2032 3020 2020 2031 3220 3232 2020 11 20 12 22 │ │ │ │ -0006ee00: 2020 3134 2032 3420 2020 2036 2032 3620 14 24 6 26 │ │ │ │ -0006ee10: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ed60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006ed70: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006ed80: 7720 2077 2020 202d 2077 2077 2020 2c20 w w - w w , │ │ │ │ +0006ed90: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ +0006eda0: 2b20 7720 2077 2020 202b 2077 2020 7720 + w w + w w │ │ │ │ +0006edb0: 2020 2d20 7720 7720 202c 207c 0a7c 2031 - w w , |.| 1 │ │ │ │ +0006edc0: 3620 3230 2020 2020 3137 2032 3220 2020 6 20 17 22 │ │ │ │ +0006edd0: 2031 3420 3235 2020 2020 3520 3236 2020 14 25 5 26 │ │ │ │ +0006ede0: 2031 3020 3138 2020 2020 3131 2032 3020 10 18 11 20 │ │ │ │ +0006edf0: 2020 2031 3220 3232 2020 2020 3134 2032 12 22 14 2 │ │ │ │ +0006ee00: 3420 2020 2036 2032 3620 207c 0a7c 2d2d 4 6 26 |.|-- │ │ │ │ +0006ee10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ee20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ee30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ee40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ee50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ee60: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -0006ee70: 2020 2b20 7720 7720 2020 2b20 7720 7720 + w w + w w │ │ │ │ -0006ee80: 2020 2b20 7720 7720 202c 2077 2020 7720 + w w , w w │ │ │ │ -0006ee90: 2020 2d20 7720 2077 2020 202d 2077 2020 - w w - w │ │ │ │ -0006eea0: 7720 2020 2b20 7720 2077 2020 202d 2020 w + w w - │ │ │ │ -0006eeb0: 207c 0a7c 2030 2031 3820 2020 2031 2032 |.| 0 18 1 2 │ │ │ │ -0006eec0: 3020 2020 2032 2032 3220 2020 2035 2032 0 2 22 5 2 │ │ │ │ -0006eed0: 3420 2020 2036 2032 3520 2020 3132 2031 4 6 25 12 1 │ │ │ │ -0006eee0: 3620 2020 2031 3120 3137 2020 2020 3133 6 11 17 13 │ │ │ │ -0006eef0: 2031 3820 2020 2031 3420 3139 2020 2020 18 14 19 │ │ │ │ -0006ef00: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ee50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006ee60: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006ee70: 7720 2020 2b20 7720 7720 2020 2b20 7720 w + w w + w │ │ │ │ +0006ee80: 7720 202c 2077 2020 7720 2020 2d20 7720 w , w w - w │ │ │ │ +0006ee90: 2077 2020 202d 2077 2020 7720 2020 2b20 w - w w + │ │ │ │ +0006eea0: 7720 2077 2020 202d 2020 207c 0a7c 2030 w w - |.| 0 │ │ │ │ +0006eeb0: 2031 3820 2020 2031 2032 3020 2020 2032 18 1 20 2 │ │ │ │ +0006eec0: 2032 3220 2020 2035 2032 3420 2020 2036 22 5 24 6 │ │ │ │ +0006eed0: 2032 3520 2020 3132 2031 3620 2020 2031 25 12 16 1 │ │ │ │ +0006eee0: 3120 3137 2020 2020 3133 2031 3820 2020 1 17 13 18 │ │ │ │ +0006eef0: 2031 3420 3139 2020 2020 207c 0a7c 2d2d 14 19 |.|-- │ │ │ │ +0006ef00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ef10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ef20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ef30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ef50: 2d7c 0a7c 7720 7720 202c 2077 2077 2020 -|.|w w , w w │ │ │ │ -0006ef60: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006ef70: 202b 2077 2077 2020 202b 2077 2077 2020 + w w + w w │ │ │ │ -0006ef80: 2c20 7720 2077 2020 202d 2077 2020 7720 , w w - w w │ │ │ │ -0006ef90: 2020 2d20 7720 2077 2020 202b 2020 2020 - w w + │ │ │ │ -0006efa0: 207c 0a7c 2037 2032 3620 2020 3220 3136 |.| 7 26 2 16 │ │ │ │ -0006efb0: 2020 2020 3120 3137 2020 2020 3320 3138 1 17 3 18 │ │ │ │ -0006efc0: 2020 2020 3520 3139 2020 2020 3720 3235 5 19 7 25 │ │ │ │ -0006efd0: 2020 2031 3220 3135 2020 2020 3130 2031 12 15 10 1 │ │ │ │ -0006efe0: 3720 2020 2031 3320 3230 2020 2020 2020 7 13 20 │ │ │ │ -0006eff0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ef40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006ef50: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006ef60: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006ef70: 2020 202b 2077 2077 2020 2c20 7720 2077 + w w , w w │ │ │ │ +0006ef80: 2020 202d 2077 2020 7720 2020 2d20 7720 - w w - w │ │ │ │ +0006ef90: 2077 2020 202b 2020 2020 207c 0a7c 2037 w + |.| 7 │ │ │ │ +0006efa0: 2032 3620 2020 3220 3136 2020 2020 3120 26 2 16 1 │ │ │ │ +0006efb0: 3137 2020 2020 3320 3138 2020 2020 3520 17 3 18 5 │ │ │ │ +0006efc0: 3139 2020 2020 3720 3235 2020 2031 3220 19 7 25 12 │ │ │ │ +0006efd0: 3135 2020 2020 3130 2031 3720 2020 2031 15 10 17 1 │ │ │ │ +0006efe0: 3320 3230 2020 2020 2020 207c 0a7c 2d2d 3 20 |.|-- │ │ │ │ +0006eff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f040: 2d7c 0a7c 7720 2077 2020 202d 2077 2077 -|.|w w - w w │ │ │ │ -0006f050: 2020 2c20 7720 2077 2020 202d 2077 2020 , w w - w │ │ │ │ -0006f060: 7720 2020 2d20 7720 2077 2020 202b 2077 w - w w + w │ │ │ │ -0006f070: 2020 7720 2020 2d20 7720 7720 202c 2077 w - w w , w │ │ │ │ -0006f080: 2077 2020 202d 2077 2077 2020 202d 2020 w - w w - │ │ │ │ -0006f090: 207c 0a7c 2031 3420 3231 2020 2020 3820 |.| 14 21 8 │ │ │ │ -0006f0a0: 3236 2020 2031 3120 3135 2020 2020 3130 26 11 15 10 │ │ │ │ -0006f0b0: 2031 3620 2020 2031 3320 3232 2020 2020 16 13 22 │ │ │ │ -0006f0c0: 3134 2032 3320 2020 2039 2032 3620 2020 14 23 9 26 │ │ │ │ -0006f0d0: 3220 3135 2020 2020 3020 3137 2020 2020 2 15 0 17 │ │ │ │ -0006f0e0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f040: 2077 2020 202d 2077 2077 2020 2c20 7720 w - w w , w │ │ │ │ +0006f050: 2077 2020 202d 2077 2020 7720 2020 2d20 w - w w - │ │ │ │ +0006f060: 7720 2077 2020 202b 2077 2020 7720 2020 w w + w w │ │ │ │ +0006f070: 2d20 7720 7720 202c 2077 2077 2020 202d - w w , w w - │ │ │ │ +0006f080: 2077 2077 2020 202d 2020 207c 0a7c 2031 w w - |.| 1 │ │ │ │ +0006f090: 3420 3231 2020 2020 3820 3236 2020 2031 4 21 8 26 1 │ │ │ │ +0006f0a0: 3120 3135 2020 2020 3130 2031 3620 2020 1 15 10 16 │ │ │ │ +0006f0b0: 2031 3320 3232 2020 2020 3134 2032 3320 13 22 14 23 │ │ │ │ +0006f0c0: 2020 2039 2032 3620 2020 3220 3135 2020 9 26 2 15 │ │ │ │ +0006f0d0: 2020 3020 3137 2020 2020 207c 0a7c 2d2d 0 17 |.|-- │ │ │ │ +0006f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f130: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -0006f140: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -0006f150: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f160: 202b 2077 2077 2020 202b 2077 2077 2020 + w w + w w │ │ │ │ -0006f170: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f180: 2b7c 0a7c 2033 2032 3020 2020 2035 2032 +|.| 3 20 5 2 │ │ │ │ -0006f190: 3120 2020 2038 2032 3520 2020 3120 3135 1 8 25 1 15 │ │ │ │ -0006f1a0: 2020 2020 3020 3136 2020 2020 3320 3232 0 16 3 22 │ │ │ │ -0006f1b0: 2020 2020 3520 3233 2020 2020 3920 3235 5 23 9 25 │ │ │ │ -0006f1c0: 2020 2035 2031 3320 2020 2033 2031 3420 5 13 3 14 │ │ │ │ -0006f1d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f130: 7720 2020 2b20 7720 7720 2020 2b20 7720 w + w w + w │ │ │ │ +0006f140: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f150: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006f160: 2020 202b 2077 2077 2020 2c20 7720 7720 + w w , w w │ │ │ │ +0006f170: 2020 2d20 7720 7720 2020 2b7c 0a7c 2033 - w w +|.| 3 │ │ │ │ +0006f180: 2032 3020 2020 2035 2032 3120 2020 2038 20 5 21 8 │ │ │ │ +0006f190: 2032 3520 2020 3120 3135 2020 2020 3020 25 1 15 0 │ │ │ │ +0006f1a0: 3136 2020 2020 3320 3232 2020 2020 3520 16 3 22 5 │ │ │ │ +0006f1b0: 3233 2020 2020 3920 3235 2020 2035 2031 23 9 25 5 1 │ │ │ │ +0006f1c0: 3320 2020 2033 2031 3420 207c 0a7c 2d2d 3 3 14 |.|-- │ │ │ │ +0006f1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f220: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -0006f230: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -0006f240: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f250: 202d 2077 2077 2020 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006f260: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f270: 2d7c 0a7c 2037 2031 3520 2020 2038 2031 -|.| 7 15 8 1 │ │ │ │ -0006f280: 3620 2020 2039 2031 3720 2020 3520 3132 6 9 17 5 12 │ │ │ │ -0006f290: 2020 2020 3220 3134 2020 2020 3620 3137 2 14 6 17 │ │ │ │ -0006f2a0: 2020 2020 3820 3138 2020 2020 3720 3230 8 18 7 20 │ │ │ │ -0006f2b0: 2020 2033 2031 3220 2020 2032 2031 3320 3 12 2 13 │ │ │ │ -0006f2c0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f220: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006f230: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f240: 2020 202d 2077 2077 2020 202d 2077 2077 - w w - w w │ │ │ │ +0006f250: 2020 202b 2077 2077 2020 2c20 7720 7720 + w w , w w │ │ │ │ +0006f260: 2020 2d20 7720 7720 2020 2d7c 0a7c 2037 - w w -|.| 7 │ │ │ │ +0006f270: 2031 3520 2020 2038 2031 3620 2020 2039 15 8 16 9 │ │ │ │ +0006f280: 2031 3720 2020 3520 3132 2020 2020 3220 17 5 12 2 │ │ │ │ +0006f290: 3134 2020 2020 3620 3137 2020 2020 3820 14 6 17 8 │ │ │ │ +0006f2a0: 3138 2020 2020 3720 3230 2020 2033 2031 18 7 20 3 1 │ │ │ │ +0006f2b0: 3220 2020 2032 2031 3320 207c 0a7c 2d2d 2 2 13 |.|-- │ │ │ │ +0006f2c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f2d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f2e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f310: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -0006f320: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -0006f330: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f340: 202d 2077 2077 2020 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006f350: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f360: 2d7c 0a7c 2034 2031 3720 2020 2038 2031 -|.| 4 17 8 1 │ │ │ │ -0006f370: 3920 2020 2037 2032 3120 2020 3520 3131 9 7 21 5 11 │ │ │ │ -0006f380: 2020 2020 3120 3134 2020 2020 3620 3136 1 14 6 16 │ │ │ │ -0006f390: 2020 2020 3920 3138 2020 2020 3720 3232 9 18 7 22 │ │ │ │ -0006f3a0: 2020 2033 2031 3120 2020 2031 2031 3320 3 11 1 13 │ │ │ │ -0006f3b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f310: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006f320: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f330: 2020 202d 2077 2077 2020 202d 2077 2077 - w w - w w │ │ │ │ +0006f340: 2020 202b 2077 2077 2020 2c20 7720 7720 + w w , w w │ │ │ │ +0006f350: 2020 2d20 7720 7720 2020 2d7c 0a7c 2034 - w w -|.| 4 │ │ │ │ +0006f360: 2031 3720 2020 2038 2031 3920 2020 2037 17 8 19 7 │ │ │ │ +0006f370: 2032 3120 2020 3520 3131 2020 2020 3120 21 5 11 1 │ │ │ │ +0006f380: 3134 2020 2020 3620 3136 2020 2020 3920 14 6 16 9 │ │ │ │ +0006f390: 3138 2020 2020 3720 3232 2020 2033 2031 18 7 22 3 1 │ │ │ │ +0006f3a0: 3120 2020 2031 2031 3320 207c 0a7c 2d2d 1 1 13 |.|-- │ │ │ │ +0006f3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f400: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -0006f410: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -0006f420: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f430: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -0006f440: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f450: 2b7c 0a7c 2034 2031 3620 2020 2039 2031 +|.| 4 16 9 1 │ │ │ │ -0006f460: 3920 2020 2037 2032 3320 2020 3220 3131 9 7 23 2 11 │ │ │ │ -0006f470: 2020 2020 3120 3132 2020 2020 3420 3138 1 12 4 18 │ │ │ │ -0006f480: 2020 2020 3620 3139 2020 2020 3720 3234 6 19 7 24 │ │ │ │ -0006f490: 2020 2037 2031 3020 2020 2038 2031 3120 7 10 8 11 │ │ │ │ -0006f4a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f400: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006f410: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f420: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006f430: 2020 202d 2077 2077 2020 2c20 7720 7720 - w w , w w │ │ │ │ +0006f440: 2020 2d20 7720 7720 2020 2b7c 0a7c 2034 - w w +|.| 4 │ │ │ │ +0006f450: 2031 3620 2020 2039 2031 3920 2020 2037 16 9 19 7 │ │ │ │ +0006f460: 2032 3320 2020 3220 3131 2020 2020 3120 23 2 11 1 │ │ │ │ +0006f470: 3132 2020 2020 3420 3138 2020 2020 3620 12 4 18 6 │ │ │ │ +0006f480: 3139 2020 2020 3720 3234 2020 2037 2031 19 7 24 7 1 │ │ │ │ +0006f490: 3020 2020 2038 2031 3120 207c 0a7c 2d2d 0 8 11 |.|-- │ │ │ │ +0006f4a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f4b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f4c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f4d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f4f0: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -0006f500: 2020 2d20 7720 7720 202c 2077 2077 2020 - w w , w w │ │ │ │ -0006f510: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f520: 202d 2077 2077 2020 202b 2077 2077 2020 - w w + w w │ │ │ │ -0006f530: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f540: 2d7c 0a7c 2039 2031 3220 2020 2036 2031 -|.| 9 12 6 1 │ │ │ │ -0006f550: 3320 2020 2034 2031 3420 2020 3520 3130 3 4 14 5 10 │ │ │ │ -0006f560: 2020 2020 3020 3134 2020 2020 3620 3135 0 14 6 15 │ │ │ │ -0006f570: 2020 2020 3920 3230 2020 2020 3820 3232 9 20 8 22 │ │ │ │ -0006f580: 2020 2033 2031 3020 2020 2030 2031 3320 3 10 0 13 │ │ │ │ -0006f590: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f4e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f4f0: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006f500: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f510: 2020 202d 2077 2077 2020 202d 2077 2077 - w w - w w │ │ │ │ +0006f520: 2020 202b 2077 2077 2020 2c20 7720 7720 + w w , w w │ │ │ │ +0006f530: 2020 2d20 7720 7720 2020 2d7c 0a7c 2039 - w w -|.| 9 │ │ │ │ +0006f540: 2031 3220 2020 2036 2031 3320 2020 2034 12 6 13 4 │ │ │ │ +0006f550: 2031 3420 2020 3520 3130 2020 2020 3020 14 5 10 0 │ │ │ │ +0006f560: 3134 2020 2020 3620 3135 2020 2020 3920 14 6 15 9 │ │ │ │ +0006f570: 3230 2020 2020 3820 3232 2020 2033 2031 20 8 22 3 1 │ │ │ │ +0006f580: 3020 2020 2030 2031 3320 207c 0a7c 2d2d 0 0 13 |.|-- │ │ │ │ +0006f590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f5c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f5e0: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -0006f5f0: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -0006f600: 202d 2077 2077 2020 202d 2077 2077 2020 - w w - w w │ │ │ │ -0006f610: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -0006f620: 2c20 7720 7720 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -0006f630: 2d7c 0a7c 2034 2031 3520 2020 2039 2032 -|.| 4 15 9 2 │ │ │ │ -0006f640: 3120 2020 2038 2032 3320 2020 3220 3130 1 8 23 2 10 │ │ │ │ -0006f650: 2020 2020 3020 3132 2020 2020 3420 3230 0 12 4 20 │ │ │ │ -0006f660: 2020 2020 3620 3231 2020 2020 3820 3234 6 21 8 24 │ │ │ │ -0006f670: 2020 2031 2031 3020 2020 2030 2031 3120 1 10 0 11 │ │ │ │ -0006f680: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006f5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f5e0: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +0006f5f0: 7720 202c 2077 2077 2020 202d 2077 2077 w , w w - w w │ │ │ │ +0006f600: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +0006f610: 2020 202d 2077 2077 2020 2c20 7720 7720 - w w , w w │ │ │ │ +0006f620: 2020 2d20 7720 7720 2020 2d7c 0a7c 2034 - w w -|.| 4 │ │ │ │ +0006f630: 2031 3520 2020 2039 2032 3120 2020 2038 15 9 21 8 │ │ │ │ +0006f640: 2032 3320 2020 3220 3130 2020 2020 3020 23 2 10 0 │ │ │ │ +0006f650: 3132 2020 2020 3420 3230 2020 2020 3620 12 4 20 6 │ │ │ │ +0006f660: 3231 2020 2020 3820 3234 2020 2031 2031 21 8 24 1 1 │ │ │ │ +0006f670: 3020 2020 2030 2031 3120 207c 0a7c 2d2d 0 0 11 |.|-- │ │ │ │ +0006f680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f6d0: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -0006f6e0: 2020 2d20 7720 7720 202c 2077 2077 2020 - w w , w w │ │ │ │ -0006f6f0: 2d20 7720 7720 202d 2077 2077 2020 2b20 - w w - w w + │ │ │ │ -0006f700: 7720 7720 202d 2077 2077 207d 2920 2020 w w - w w }) │ │ │ │ -0006f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f720: 207c 0a7c 2034 2032 3220 2020 2036 2032 |.| 4 22 6 2 │ │ │ │ -0006f730: 3320 2020 2039 2032 3420 2020 3420 3520 3 9 24 4 5 │ │ │ │ -0006f740: 2020 2033 2036 2020 2020 3020 3720 2020 3 6 0 7 │ │ │ │ -0006f750: 2031 2038 2020 2020 3220 3920 2020 2020 1 8 2 9 │ │ │ │ -0006f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f770: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +0006f6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006f6d0: 7720 2020 2b20 7720 7720 2020 2d20 7720 w + w w - w │ │ │ │ +0006f6e0: 7720 202c 2077 2077 2020 2d20 7720 7720 w , w w - w w │ │ │ │ +0006f6f0: 202d 2077 2077 2020 2b20 7720 7720 202d - w w + w w - │ │ │ │ +0006f700: 2077 2077 207d 2920 2020 2020 2020 2020 w w }) │ │ │ │ +0006f710: 2020 2020 2020 2020 2020 207c 0a7c 2034 |.| 4 │ │ │ │ +0006f720: 2032 3220 2020 2036 2032 3320 2020 2039 22 6 23 9 │ │ │ │ +0006f730: 2032 3420 2020 3420 3520 2020 2033 2036 24 4 5 3 6 │ │ │ │ +0006f740: 2020 2020 3020 3720 2020 2031 2038 2020 0 7 1 8 │ │ │ │ +0006f750: 2020 3220 3920 2020 2020 2020 2020 2020 2 9 │ │ │ │ +0006f760: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +0006f770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006f7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006f7c0: 2d2b 0a7c 6935 203a 2074 696d 6520 7073 -+.|i5 : time ps │ │ │ │ -0006f7d0: 6920 3d20 696e 7665 7273 654d 6170 2070 i = inverseMap p │ │ │ │ -0006f7e0: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ +0006f7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +0006f7c0: 203a 2074 696d 6520 7073 6920 3d20 696e : time psi = in │ │ │ │ +0006f7d0: 7665 7273 654d 6170 2070 6869 2020 2020 verseMap phi │ │ │ │ +0006f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f810: 207c 0a7c 202d 2d20 7573 6564 2030 2e33 |.| -- used 0.3 │ │ │ │ -0006f820: 3731 3432 3873 2028 6370 7529 3b20 302e 71428s (cpu); 0. │ │ │ │ -0006f830: 3232 3436 3339 7320 2874 6872 6561 6429 224639s (thread) │ │ │ │ -0006f840: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ -0006f850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006f800: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +0006f810: 2d20 7573 6564 2030 2e34 3731 3834 3973 - used 0.471849s │ │ │ │ +0006f820: 2028 6370 7529 3b20 302e 3234 3930 3835 (cpu); 0.249085 │ │ │ │ +0006f830: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +0006f840: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +0006f850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f8b0: 207c 0a7c 6f35 203d 206d 6170 2028 5151 |.|o5 = map (QQ │ │ │ │ -0006f8c0: 5b77 202e 2e77 2020 5d2c 2051 515b 7720 [w ..w ], QQ[w │ │ │ │ -0006f8d0: 2e2e 7720 205d 2c20 7b2d 2077 2077 2020 ..w ], {- w w │ │ │ │ -0006f8e0: 202b 2077 2077 2020 202b 2077 2020 7720 + w w + w w │ │ │ │ -0006f8f0: 2020 2d20 7720 2077 2020 202d 2020 2020 - w w - │ │ │ │ -0006f900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006f910: 2020 3020 2020 3236 2020 2020 2020 2030 0 26 0 │ │ │ │ -0006f920: 2020 2032 3620 2020 2020 2020 3520 3232 26 5 22 │ │ │ │ -0006f930: 2020 2020 3820 3233 2020 2020 3134 2032 8 23 14 2 │ │ │ │ -0006f940: 3420 2020 2031 3320 3235 2020 2020 2020 4 13 25 │ │ │ │ -0006f950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0006f8a0: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +0006f8b0: 203d 206d 6170 2028 5151 5b77 202e 2e77 = map (QQ[w ..w │ │ │ │ +0006f8c0: 2020 5d2c 2051 515b 7720 2e2e 7720 205d ], QQ[w ..w ] │ │ │ │ +0006f8d0: 2c20 7b2d 2077 2077 2020 202b 2077 2077 , {- w w + w w │ │ │ │ +0006f8e0: 2020 202b 2077 2020 7720 2020 2d20 7720 + w w - w │ │ │ │ +0006f8f0: 2077 2020 202d 2020 2020 207c 0a7c 2020 w - |.| │ │ │ │ +0006f900: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +0006f910: 3236 2020 2020 2020 2030 2020 2032 3620 26 0 26 │ │ │ │ +0006f920: 2020 2020 2020 3520 3232 2020 2020 3820 5 22 8 │ │ │ │ +0006f930: 3233 2020 2020 3134 2032 3420 2020 2031 23 14 24 1 │ │ │ │ +0006f940: 3320 3235 2020 2020 2020 207c 0a7c 2020 3 25 |.| │ │ │ │ +0006f950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0006f980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f9a0: 207c 0a7c 6f35 203a 2052 696e 674d 6170 |.|o5 : RingMap │ │ │ │ -0006f9b0: 2051 515b 7720 2e2e 7720 205d 203c 2d2d QQ[w ..w ] <-- │ │ │ │ -0006f9c0: 2051 515b 7720 2e2e 7720 205d 2020 2020 QQ[w ..w ] │ │ │ │ +0006f990: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +0006f9a0: 203a 2052 696e 674d 6170 2051 515b 7720 : RingMap QQ[w │ │ │ │ +0006f9b0: 2e2e 7720 205d 203c 2d2d 2051 515b 7720 ..w ] <-- QQ[w │ │ │ │ +0006f9c0: 2e2e 7720 205d 2020 2020 2020 2020 2020 ..w ] │ │ │ │ 0006f9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006f9f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0006fa00: 2020 2020 2030 2020 2032 3620 2020 2020 0 26 │ │ │ │ -0006fa10: 2020 2020 2030 2020 2032 3620 2020 2020 0 26 │ │ │ │ +0006f9e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0006f9f0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0006fa00: 2020 2032 3620 2020 2020 2020 2020 2030 26 0 │ │ │ │ +0006fa10: 2020 2032 3620 2020 2020 2020 2020 2020 26 │ │ │ │ 0006fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0006fa40: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fa30: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +0006fa40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fa90: 2d7c 0a7c 7720 7720 202c 202d 2077 2077 -|.|w w , - w w │ │ │ │ -0006faa0: 2020 202b 2077 2077 2020 202b 2077 2020 + w w + w │ │ │ │ -0006fab0: 7720 2020 2d20 7720 2077 2020 202d 2077 w - w w - w │ │ │ │ -0006fac0: 2077 2020 2c20 2d20 7720 7720 2020 2b20 w , - w w + │ │ │ │ -0006fad0: 7720 7720 2020 2b20 7720 2077 2020 202d w w + w w - │ │ │ │ -0006fae0: 207c 0a7c 2030 2032 3620 2020 2020 3520 |.| 0 26 5 │ │ │ │ -0006faf0: 3138 2020 2020 3820 3139 2020 2020 3134 18 8 19 14 │ │ │ │ -0006fb00: 2032 3020 2020 2031 3020 3235 2020 2020 20 10 25 │ │ │ │ -0006fb10: 3120 3236 2020 2020 2035 2031 3620 2020 1 26 5 16 │ │ │ │ -0006fb20: 2038 2031 3720 2020 2031 3320 3230 2020 8 17 13 20 │ │ │ │ -0006fb30: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006fa90: 7720 202c 202d 2077 2077 2020 202b 2077 w , - w w + w │ │ │ │ +0006faa0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006fab0: 7720 2077 2020 202d 2077 2077 2020 2c20 w w - w w , │ │ │ │ +0006fac0: 2d20 7720 7720 2020 2b20 7720 7720 2020 - w w + w w │ │ │ │ +0006fad0: 2b20 7720 2077 2020 202d 207c 0a7c 2030 + w w - |.| 0 │ │ │ │ +0006fae0: 2032 3620 2020 2020 3520 3138 2020 2020 26 5 18 │ │ │ │ +0006faf0: 3820 3139 2020 2020 3134 2032 3020 2020 8 19 14 20 │ │ │ │ +0006fb00: 2031 3020 3235 2020 2020 3120 3236 2020 10 25 1 26 │ │ │ │ +0006fb10: 2020 2035 2031 3620 2020 2038 2031 3720 5 16 8 17 │ │ │ │ +0006fb20: 2020 2031 3320 3230 2020 207c 0a7c 2d2d 13 20 |.|-- │ │ │ │ +0006fb30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fb40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fb50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fb60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fb80: 2d7c 0a7c 7720 2077 2020 202d 2077 2077 -|.|w w - w w │ │ │ │ -0006fb90: 2020 2c20 2d20 7720 7720 2020 2d20 7720 , - w w - w │ │ │ │ -0006fba0: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ -0006fbb0: 7720 2077 2020 202d 2077 2077 2020 2c20 w w - w w , │ │ │ │ -0006fbc0: 2d20 7720 7720 2020 2d20 7720 2077 2020 - w w - w w │ │ │ │ -0006fbd0: 207c 0a7c 2031 3020 3234 2020 2020 3220 |.| 10 24 2 │ │ │ │ -0006fbe0: 3236 2020 2020 2035 2031 3520 2020 2031 26 5 15 1 │ │ │ │ -0006fbf0: 3420 3137 2020 2020 3133 2031 3920 2020 4 17 13 19 │ │ │ │ -0006fc00: 2031 3020 3233 2020 2020 3320 3236 2020 10 23 3 26 │ │ │ │ -0006fc10: 2020 2035 2032 3120 2020 2032 3020 3233 5 21 20 23 │ │ │ │ -0006fc20: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fb70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006fb80: 2077 2020 202d 2077 2077 2020 2c20 2d20 w - w w , - │ │ │ │ +0006fb90: 7720 7720 2020 2d20 7720 2077 2020 202b w w - w w + │ │ │ │ +0006fba0: 2077 2020 7720 2020 2d20 7720 2077 2020 w w - w w │ │ │ │ +0006fbb0: 202d 2077 2077 2020 2c20 2d20 7720 7720 - w w , - w w │ │ │ │ +0006fbc0: 2020 2d20 7720 2077 2020 207c 0a7c 2031 - w w |.| 1 │ │ │ │ +0006fbd0: 3020 3234 2020 2020 3220 3236 2020 2020 0 24 2 26 │ │ │ │ +0006fbe0: 2035 2031 3520 2020 2031 3420 3137 2020 5 15 14 17 │ │ │ │ +0006fbf0: 2020 3133 2031 3920 2020 2031 3020 3233 13 19 10 23 │ │ │ │ +0006fc00: 2020 2020 3320 3236 2020 2020 2035 2032 3 26 5 2 │ │ │ │ +0006fc10: 3120 2020 2032 3020 3233 207c 0a7c 2d2d 1 20 23 |.|-- │ │ │ │ +0006fc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fc70: 2d7c 0a7c 2b20 7720 2077 2020 202d 2077 -|.|+ w w - w │ │ │ │ -0006fc80: 2020 7720 2020 2d20 7720 7720 202c 202d w - w w , - │ │ │ │ -0006fc90: 2077 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ -0006fca0: 2b20 7720 2077 2020 202d 2077 2020 7720 + w w - w w │ │ │ │ -0006fcb0: 2020 2d20 7720 7720 202c 202d 2020 2020 - w w , - │ │ │ │ -0006fcc0: 207c 0a7c 2020 2031 3920 3234 2020 2020 |.| 19 24 │ │ │ │ -0006fcd0: 3137 2032 3520 2020 2034 2032 3620 2020 17 25 4 26 │ │ │ │ -0006fce0: 2020 3820 3135 2020 2020 3134 2031 3620 8 15 14 16 │ │ │ │ -0006fcf0: 2020 2031 3320 3138 2020 2020 3130 2032 13 18 10 2 │ │ │ │ -0006fd00: 3220 2020 2036 2032 3620 2020 2020 2020 2 6 26 │ │ │ │ -0006fd10: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2b20 -----------|.|+ │ │ │ │ +0006fc70: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ +0006fc80: 2d20 7720 7720 202c 202d 2077 2077 2020 - w w , - w w │ │ │ │ +0006fc90: 202d 2077 2020 7720 2020 2b20 7720 2077 - w w + w w │ │ │ │ +0006fca0: 2020 202d 2077 2020 7720 2020 2d20 7720 - w w - w │ │ │ │ +0006fcb0: 7720 202c 202d 2020 2020 207c 0a7c 2020 w , - |.| │ │ │ │ +0006fcc0: 2031 3920 3234 2020 2020 3137 2032 3520 19 24 17 25 │ │ │ │ +0006fcd0: 2020 2034 2032 3620 2020 2020 3820 3135 4 26 8 15 │ │ │ │ +0006fce0: 2020 2020 3134 2031 3620 2020 2031 3320 14 16 13 │ │ │ │ +0006fcf0: 3138 2020 2020 3130 2032 3220 2020 2036 18 10 22 6 │ │ │ │ +0006fd00: 2032 3620 2020 2020 2020 207c 0a7c 2d2d 26 |.|-- │ │ │ │ +0006fd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fd60: 2d7c 0a7c 7720 7720 2020 2d20 7720 2077 -|.|w w - w w │ │ │ │ -0006fd70: 2020 202b 2077 2020 7720 2020 2d20 7720 + w w - w │ │ │ │ -0006fd80: 2077 2020 202d 2077 2077 2020 2c20 7720 w - w w , w │ │ │ │ -0006fd90: 2077 2020 202d 2077 2020 7720 2020 2b20 w - w w + │ │ │ │ -0006fda0: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ -0006fdb0: 2d7c 0a7c 2038 2032 3120 2020 2032 3020 -|.| 8 21 20 │ │ │ │ -0006fdc0: 3232 2020 2020 3138 2032 3420 2020 2031 22 18 24 1 │ │ │ │ -0006fdd0: 3620 3235 2020 2020 3720 3236 2020 2031 6 25 7 26 1 │ │ │ │ -0006fde0: 3720 3138 2020 2020 3136 2031 3920 2020 7 18 16 19 │ │ │ │ -0006fdf0: 2031 3520 3230 2020 2020 3130 2032 3120 15 20 10 21 │ │ │ │ -0006fe00: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006fd60: 7720 2020 2d20 7720 2077 2020 202b 2077 w - w w + w │ │ │ │ +0006fd70: 2020 7720 2020 2d20 7720 2077 2020 202d w - w w - │ │ │ │ +0006fd80: 2077 2077 2020 2c20 7720 2077 2020 202d w w , w w - │ │ │ │ +0006fd90: 2077 2020 7720 2020 2b20 7720 2077 2020 w w + w w │ │ │ │ +0006fda0: 202d 2077 2020 7720 2020 2d7c 0a7c 2038 - w w -|.| 8 │ │ │ │ +0006fdb0: 2032 3120 2020 2032 3020 3232 2020 2020 21 20 22 │ │ │ │ +0006fdc0: 3138 2032 3420 2020 2031 3620 3235 2020 18 24 16 25 │ │ │ │ +0006fdd0: 2020 3720 3236 2020 2031 3720 3138 2020 7 26 17 18 │ │ │ │ +0006fde0: 2020 3136 2031 3920 2020 2031 3520 3230 16 19 15 20 │ │ │ │ +0006fdf0: 2020 2020 3130 2032 3120 207c 0a7c 2d2d 10 21 |.|-- │ │ │ │ +0006fe00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fe10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fe20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fe30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006fe50: 2d7c 0a7c 7720 7720 202c 202d 2077 2020 -|.|w w , - w │ │ │ │ -0006fe60: 7720 2020 2b20 7720 2077 2020 202d 2077 w + w w - w │ │ │ │ -0006fe70: 2020 7720 2020 2b20 7720 2077 2020 202d w + w w - │ │ │ │ -0006fe80: 2077 2020 7720 202c 202d 2077 2020 7720 w w , - w w │ │ │ │ -0006fe90: 2020 2b20 7720 2077 2020 202d 2020 2020 + w w - │ │ │ │ -0006fea0: 207c 0a7c 2039 2032 3620 2020 2020 3133 |.| 9 26 13 │ │ │ │ -0006feb0: 2032 3120 2020 2031 3720 3232 2020 2020 21 17 22 │ │ │ │ -0006fec0: 3136 2032 3320 2020 2031 3520 3234 2020 16 23 15 24 │ │ │ │ -0006fed0: 2020 3131 2032 3620 2020 2020 3134 2032 11 26 14 2 │ │ │ │ -0006fee0: 3120 2020 2031 3920 3232 2020 2020 2020 1 19 22 │ │ │ │ -0006fef0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006fe40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006fe50: 7720 202c 202d 2077 2020 7720 2020 2b20 w , - w w + │ │ │ │ +0006fe60: 7720 2077 2020 202d 2077 2020 7720 2020 w w - w w │ │ │ │ +0006fe70: 2b20 7720 2077 2020 202d 2077 2020 7720 + w w - w w │ │ │ │ +0006fe80: 202c 202d 2077 2020 7720 2020 2b20 7720 , - w w + w │ │ │ │ +0006fe90: 2077 2020 202d 2020 2020 207c 0a7c 2039 w - |.| 9 │ │ │ │ +0006fea0: 2032 3620 2020 2020 3133 2032 3120 2020 26 13 21 │ │ │ │ +0006feb0: 2031 3720 3232 2020 2020 3136 2032 3320 17 22 16 23 │ │ │ │ +0006fec0: 2020 2031 3520 3234 2020 2020 3131 2032 15 24 11 2 │ │ │ │ +0006fed0: 3620 2020 2020 3134 2032 3120 2020 2031 6 14 21 1 │ │ │ │ +0006fee0: 3920 3232 2020 2020 2020 207c 0a7c 2d2d 9 22 |.|-- │ │ │ │ +0006fef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ff00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ff10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006ff20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ff30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0006ff40: 2d7c 0a7c 7720 2077 2020 202b 2077 2020 -|.|w w + w │ │ │ │ -0006ff50: 7720 2020 2d20 7720 2077 2020 2c20 7720 w - w w , w │ │ │ │ -0006ff60: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ -0006ff70: 7720 2020 2b20 7720 2077 2020 202d 2077 w + w w - w │ │ │ │ -0006ff80: 2020 7720 202c 202d 2077 2077 2020 202b w , - w w + │ │ │ │ -0006ff90: 207c 0a7c 2031 3820 3233 2020 2020 3135 |.| 18 23 15 │ │ │ │ -0006ffa0: 2032 3520 2020 2031 3220 3236 2020 2030 25 12 26 0 │ │ │ │ -0006ffb0: 2032 3120 2020 2034 2032 3220 2020 2037 21 4 22 7 │ │ │ │ -0006ffc0: 2032 3320 2020 2031 3220 3234 2020 2020 23 12 24 │ │ │ │ -0006ffd0: 3131 2032 3520 2020 2020 3420 3138 2020 11 25 4 18 │ │ │ │ -0006ffe0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +0006ff30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +0006ff40: 2077 2020 202b 2077 2020 7720 2020 2d20 w + w w - │ │ │ │ +0006ff50: 7720 2077 2020 2c20 7720 7720 2020 2d20 w w , w w - │ │ │ │ +0006ff60: 7720 7720 2020 2b20 7720 7720 2020 2b20 w w + w w + │ │ │ │ +0006ff70: 7720 2077 2020 202d 2077 2020 7720 202c w w - w w , │ │ │ │ +0006ff80: 202d 2077 2077 2020 202b 207c 0a7c 2031 - w w + |.| 1 │ │ │ │ +0006ff90: 3820 3233 2020 2020 3135 2032 3520 2020 8 23 15 25 │ │ │ │ +0006ffa0: 2031 3220 3236 2020 2030 2032 3120 2020 12 26 0 21 │ │ │ │ +0006ffb0: 2034 2032 3220 2020 2037 2032 3320 2020 4 22 7 23 │ │ │ │ +0006ffc0: 2031 3220 3234 2020 2020 3131 2032 3520 12 24 11 25 │ │ │ │ +0006ffd0: 2020 2020 3420 3138 2020 207c 0a7c 2d2d 4 18 |.|-- │ │ │ │ +0006ffe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0006fff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070030: 2d7c 0a7c 7720 7720 2020 2b20 7720 2077 -|.|w w + w w │ │ │ │ -00070040: 2020 202b 2077 2077 2020 202d 2077 2077 + w w - w w │ │ │ │ -00070050: 2020 2c20 2d20 7720 7720 2020 2b20 7720 , - w w + w │ │ │ │ -00070060: 7720 2020 2b20 7720 2077 2020 202b 2077 w + w w + w │ │ │ │ -00070070: 2077 2020 202d 2077 2077 2020 2c20 2d20 w - w w , - │ │ │ │ -00070080: 207c 0a7c 2037 2031 3920 2020 2031 3220 |.| 7 19 12 │ │ │ │ -00070090: 3230 2020 2020 3120 3231 2020 2020 3920 20 1 21 9 │ │ │ │ -000700a0: 3235 2020 2020 2034 2031 3620 2020 2037 25 4 16 7 │ │ │ │ -000700b0: 2031 3720 2020 2031 3120 3230 2020 2020 17 11 20 │ │ │ │ -000700c0: 3220 3231 2020 2020 3920 3234 2020 2020 2 21 9 24 │ │ │ │ -000700d0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00070020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +00070030: 7720 2020 2b20 7720 2077 2020 202b 2077 w + w w + w │ │ │ │ +00070040: 2077 2020 202d 2077 2077 2020 2c20 2d20 w - w w , - │ │ │ │ +00070050: 7720 7720 2020 2b20 7720 7720 2020 2b20 w w + w w + │ │ │ │ +00070060: 7720 2077 2020 202b 2077 2077 2020 202d w w + w w - │ │ │ │ +00070070: 2077 2077 2020 2c20 2d20 207c 0a7c 2037 w w , - |.| 7 │ │ │ │ +00070080: 2031 3920 2020 2031 3220 3230 2020 2020 19 12 20 │ │ │ │ +00070090: 3120 3231 2020 2020 3920 3235 2020 2020 1 21 9 25 │ │ │ │ +000700a0: 2034 2031 3620 2020 2037 2031 3720 2020 4 16 7 17 │ │ │ │ +000700b0: 2031 3120 3230 2020 2020 3220 3231 2020 11 20 2 21 │ │ │ │ +000700c0: 2020 3920 3234 2020 2020 207c 0a7c 2d2d 9 24 |.|-- │ │ │ │ +000700d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000700e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000700f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070120: 2d7c 0a7c 7720 7720 2020 2d20 7720 2077 -|.|w w - w w │ │ │ │ -00070130: 2020 202b 2077 2020 7720 2020 2b20 7720 + w w + w │ │ │ │ -00070140: 7720 2020 2d20 7720 7720 202c 202d 2077 w - w w , - w │ │ │ │ -00070150: 2077 2020 202d 2077 2020 7720 2020 2b20 w - w w + │ │ │ │ -00070160: 7720 2077 2020 202b 2077 2077 2020 202d w w + w w - │ │ │ │ -00070170: 207c 0a7c 2034 2031 3520 2020 2031 3220 |.| 4 15 12 │ │ │ │ -00070180: 3137 2020 2020 3131 2031 3920 2020 2033 17 11 19 3 │ │ │ │ -00070190: 2032 3120 2020 2039 2032 3320 2020 2020 21 9 23 │ │ │ │ -000701a0: 3720 3135 2020 2020 3132 2031 3620 2020 7 15 12 16 │ │ │ │ -000701b0: 2031 3120 3138 2020 2020 3620 3231 2020 11 18 6 21 │ │ │ │ -000701c0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00070110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +00070120: 7720 2020 2d20 7720 2077 2020 202b 2077 w - w w + w │ │ │ │ +00070130: 2020 7720 2020 2b20 7720 7720 2020 2d20 w + w w - │ │ │ │ +00070140: 7720 7720 202c 202d 2077 2077 2020 202d w w , - w w - │ │ │ │ +00070150: 2077 2020 7720 2020 2b20 7720 2077 2020 w w + w w │ │ │ │ +00070160: 202b 2077 2077 2020 202d 207c 0a7c 2034 + w w - |.| 4 │ │ │ │ +00070170: 2031 3520 2020 2031 3220 3137 2020 2020 15 12 17 │ │ │ │ +00070180: 3131 2031 3920 2020 2033 2032 3120 2020 11 19 3 21 │ │ │ │ +00070190: 2039 2032 3320 2020 2020 3720 3135 2020 9 23 7 15 │ │ │ │ +000701a0: 2020 3132 2031 3620 2020 2031 3120 3138 12 16 11 18 │ │ │ │ +000701b0: 2020 2020 3620 3231 2020 207c 0a7c 2d2d 6 21 |.|-- │ │ │ │ +000701c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000701d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000701e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000701f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070210: 2d7c 0a7c 7720 7720 202c 2077 2020 7720 -|.|w w , w w │ │ │ │ -00070220: 2020 2d20 7720 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -00070230: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ -00070240: 2020 2c20 7720 2077 2020 202d 2077 2077 , w w - w w │ │ │ │ -00070250: 2020 202b 2077 2077 2020 202d 2020 2020 + w w - │ │ │ │ -00070260: 207c 0a7c 2039 2032 3220 2020 3132 2031 |.| 9 22 12 1 │ │ │ │ -00070270: 3320 2020 2031 3120 3134 2020 2020 3020 3 11 14 0 │ │ │ │ -00070280: 3135 2020 2020 3320 3232 2020 2020 3620 15 3 22 6 │ │ │ │ -00070290: 3233 2020 2031 3020 3132 2020 2020 3920 23 10 12 9 │ │ │ │ -000702a0: 3134 2020 2020 3120 3135 2020 2020 2020 14 1 15 │ │ │ │ -000702b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +00070200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +00070210: 7720 202c 2077 2020 7720 2020 2d20 7720 w , w w - w │ │ │ │ +00070220: 2077 2020 202b 2077 2077 2020 202d 2077 w + w w - w │ │ │ │ +00070230: 2077 2020 202b 2077 2077 2020 2c20 7720 w + w w , w │ │ │ │ +00070240: 2077 2020 202d 2077 2077 2020 202b 2077 w - w w + w │ │ │ │ +00070250: 2077 2020 202d 2020 2020 207c 0a7c 2039 w - |.| 9 │ │ │ │ +00070260: 2032 3220 2020 3132 2031 3320 2020 2031 22 12 13 1 │ │ │ │ +00070270: 3120 3134 2020 2020 3020 3135 2020 2020 1 14 0 15 │ │ │ │ +00070280: 3320 3232 2020 2020 3620 3233 2020 2031 3 22 6 23 1 │ │ │ │ +00070290: 3020 3132 2020 2020 3920 3134 2020 2020 0 12 9 14 │ │ │ │ +000702a0: 3120 3135 2020 2020 2020 207c 0a7c 2d2d 1 15 |.|-- │ │ │ │ +000702b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000702c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000702d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000702e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000702f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070300: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -00070310: 202c 2077 2020 7720 2020 2d20 7720 7720 , w w - w w │ │ │ │ -00070320: 2020 2b20 7720 7720 2020 2d20 7720 7720 + w w - w w │ │ │ │ -00070330: 2020 2b20 7720 7720 202c 2077 2077 2020 + w w , w w │ │ │ │ -00070340: 2d20 7720 7720 2020 2b20 7720 7720 2020 - w w + w w │ │ │ │ -00070350: 2d7c 0a7c 2033 2031 3820 2020 2036 2031 -|.| 3 18 6 1 │ │ │ │ -00070360: 3920 2020 3130 2031 3120 2020 2039 2031 9 10 11 9 1 │ │ │ │ -00070370: 3320 2020 2032 2031 3520 2020 2033 2031 3 2 15 3 1 │ │ │ │ -00070380: 3620 2020 2036 2031 3720 2020 3820 3920 6 6 17 8 9 │ │ │ │ -00070390: 2020 2037 2031 3020 2020 2031 2031 3620 7 10 1 16 │ │ │ │ -000703a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000702f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +00070300: 7720 2020 2b20 7720 7720 202c 2077 2020 w + w w , w │ │ │ │ +00070310: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +00070320: 7720 2020 2d20 7720 7720 2020 2b20 7720 w - w w + w │ │ │ │ +00070330: 7720 202c 2077 2077 2020 2d20 7720 7720 w , w w - w w │ │ │ │ +00070340: 2020 2b20 7720 7720 2020 2d7c 0a7c 2033 + w w -|.| 3 │ │ │ │ +00070350: 2031 3820 2020 2036 2031 3920 2020 3130 18 6 19 10 │ │ │ │ +00070360: 2031 3120 2020 2039 2031 3320 2020 2032 11 9 13 2 │ │ │ │ +00070370: 2031 3520 2020 2033 2031 3620 2020 2036 15 3 16 6 │ │ │ │ +00070380: 2031 3720 2020 3820 3920 2020 2037 2031 17 8 9 7 1 │ │ │ │ +00070390: 3020 2020 2031 2031 3620 207c 0a7c 2d2d 0 1 16 |.|-- │ │ │ │ +000703a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000703b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000703c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000703d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000703e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000703f0: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -00070400: 202c 2077 2077 2020 2d20 7720 7720 2020 , w w - w w │ │ │ │ -00070410: 2b20 7720 7720 2020 2d20 7720 7720 2020 + w w - w w │ │ │ │ -00070420: 2b20 7720 7720 202c 2077 2077 2020 202d + w w , w w - │ │ │ │ -00070430: 2077 2077 2020 202b 2077 2077 2020 202d w w + w w - │ │ │ │ -00070440: 207c 0a7c 2032 2031 3820 2020 2036 2032 |.| 2 18 6 2 │ │ │ │ -00070450: 3020 2020 3520 3920 2020 2034 2031 3020 0 5 9 4 10 │ │ │ │ -00070460: 2020 2031 2031 3720 2020 2032 2031 3920 1 17 2 19 │ │ │ │ -00070470: 2020 2033 2032 3020 2020 3820 3131 2020 3 20 8 11 │ │ │ │ -00070480: 2020 3720 3133 2020 2020 3020 3136 2020 7 13 0 16 │ │ │ │ -00070490: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000703e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +000703f0: 7720 2020 2b20 7720 7720 202c 2077 2077 w + w w , w w │ │ │ │ +00070400: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +00070410: 2020 2d20 7720 7720 2020 2b20 7720 7720 - w w + w w │ │ │ │ +00070420: 202c 2077 2077 2020 202d 2077 2077 2020 , w w - w w │ │ │ │ +00070430: 202b 2077 2077 2020 202d 207c 0a7c 2032 + w w - |.| 2 │ │ │ │ +00070440: 2031 3820 2020 2036 2032 3020 2020 3520 18 6 20 5 │ │ │ │ +00070450: 3920 2020 2034 2031 3020 2020 2031 2031 9 4 10 1 1 │ │ │ │ +00070460: 3720 2020 2032 2031 3920 2020 2033 2032 7 2 19 3 2 │ │ │ │ +00070470: 3020 2020 3820 3131 2020 2020 3720 3133 0 8 11 7 13 │ │ │ │ +00070480: 2020 2020 3020 3136 2020 207c 0a7c 2d2d 0 16 |.|-- │ │ │ │ +00070490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000704a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000704b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000704c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000704d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000704e0: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -000704f0: 202c 2077 2077 2020 202d 2077 2077 2020 , w w - w w │ │ │ │ -00070500: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -00070510: 202b 2077 2077 2020 2c20 7720 7720 2020 + w w , w w │ │ │ │ -00070520: 2d20 7720 7720 2020 2b20 7720 7720 2020 - w w + w w │ │ │ │ -00070530: 2d7c 0a7c 2032 2032 3220 2020 2036 2032 -|.| 2 22 6 2 │ │ │ │ -00070540: 3420 2020 3520 3131 2020 2020 3420 3133 4 5 11 4 13 │ │ │ │ -00070550: 2020 2020 3020 3137 2020 2020 3220 3233 0 17 2 23 │ │ │ │ -00070560: 2020 2020 3320 3234 2020 2038 2031 3220 3 24 8 12 │ │ │ │ -00070570: 2020 2037 2031 3420 2020 2030 2031 3820 7 14 0 18 │ │ │ │ -00070580: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000704d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +000704e0: 7720 2020 2b20 7720 7720 202c 2077 2077 w + w w , w w │ │ │ │ +000704f0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +00070500: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +00070510: 2020 2c20 7720 7720 2020 2d20 7720 7720 , w w - w w │ │ │ │ +00070520: 2020 2b20 7720 7720 2020 2d7c 0a7c 2032 + w w -|.| 2 │ │ │ │ +00070530: 2032 3220 2020 2036 2032 3420 2020 3520 22 6 24 5 │ │ │ │ +00070540: 3131 2020 2020 3420 3133 2020 2020 3020 11 4 13 0 │ │ │ │ +00070550: 3137 2020 2020 3220 3233 2020 2020 3320 17 2 23 3 │ │ │ │ +00070560: 3234 2020 2038 2031 3220 2020 2037 2031 24 8 12 7 1 │ │ │ │ +00070570: 3420 2020 2030 2031 3820 207c 0a7c 2d2d 4 0 18 |.|-- │ │ │ │ +00070580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000705a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000705b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000705c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000705d0: 2d7c 0a7c 7720 7720 2020 2b20 7720 7720 -|.|w w + w w │ │ │ │ -000705e0: 202c 2077 2077 2020 202d 2077 2077 2020 , w w - w w │ │ │ │ -000705f0: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -00070600: 202b 2077 2077 2020 2c20 7720 7720 202d + w w , w w - │ │ │ │ -00070610: 2077 2077 2020 2d20 7720 7720 2020 2b20 w w - w w + │ │ │ │ -00070620: 207c 0a7c 2031 2032 3220 2020 2036 2032 |.| 1 22 6 2 │ │ │ │ -00070630: 3520 2020 3520 3132 2020 2020 3420 3134 5 5 12 4 14 │ │ │ │ -00070640: 2020 2020 3020 3139 2020 2020 3120 3233 0 19 1 23 │ │ │ │ -00070650: 2020 2020 3320 3235 2020 2035 2037 2020 3 25 5 7 │ │ │ │ -00070660: 2020 3420 3820 2020 2030 2032 3020 2020 4 8 0 20 │ │ │ │ -00070670: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000705c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +000705d0: 7720 2020 2b20 7720 7720 202c 2077 2077 w + w w , w w │ │ │ │ +000705e0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +000705f0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +00070600: 2020 2c20 7720 7720 202d 2077 2077 2020 , w w - w w │ │ │ │ +00070610: 2d20 7720 7720 2020 2b20 207c 0a7c 2031 - w w + |.| 1 │ │ │ │ +00070620: 2032 3220 2020 2036 2032 3520 2020 3520 22 6 25 5 │ │ │ │ +00070630: 3132 2020 2020 3420 3134 2020 2020 3020 12 4 14 0 │ │ │ │ +00070640: 3139 2020 2020 3120 3233 2020 2020 3320 19 1 23 3 │ │ │ │ +00070650: 3235 2020 2035 2037 2020 2020 3420 3820 25 5 7 4 8 │ │ │ │ +00070660: 2020 2030 2032 3020 2020 207c 0a7c 2d2d 0 20 |.|-- │ │ │ │ +00070670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000706a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000706b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000706c0: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -000706d0: 202c 202d 2077 2077 2020 2b20 7720 7720 , - w w + w w │ │ │ │ -000706e0: 202b 2077 2077 2020 202d 2077 2077 2020 + w w - w w │ │ │ │ -000706f0: 202b 2077 2077 2020 2c20 7720 7720 202d + w w , w w - │ │ │ │ -00070700: 2077 2077 2020 2d20 7720 7720 202b 2020 w w - w w + │ │ │ │ -00070710: 207c 0a7c 2031 2032 3420 2020 2032 2032 |.| 1 24 2 2 │ │ │ │ -00070720: 3520 2020 2020 3520 3620 2020 2033 2038 5 5 6 3 8 │ │ │ │ -00070730: 2020 2020 3020 3130 2020 2020 3120 3133 0 10 1 13 │ │ │ │ -00070740: 2020 2020 3220 3134 2020 2034 2036 2020 2 14 4 6 │ │ │ │ -00070750: 2020 3320 3720 2020 2030 2039 2020 2020 3 7 0 9 │ │ │ │ -00070760: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000706b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +000706c0: 7720 2020 2d20 7720 7720 202c 202d 2077 w - w w , - w │ │ │ │ +000706d0: 2077 2020 2b20 7720 7720 202b 2077 2077 w + w w + w w │ │ │ │ +000706e0: 2020 202d 2077 2077 2020 202b 2077 2077 - w w + w w │ │ │ │ +000706f0: 2020 2c20 7720 7720 202d 2077 2077 2020 , w w - w w │ │ │ │ +00070700: 2d20 7720 7720 202b 2020 207c 0a7c 2031 - w w + |.| 1 │ │ │ │ +00070710: 2032 3420 2020 2032 2032 3520 2020 2020 24 2 25 │ │ │ │ +00070720: 3520 3620 2020 2033 2038 2020 2020 3020 5 6 3 8 0 │ │ │ │ +00070730: 3130 2020 2020 3120 3133 2020 2020 3220 10 1 13 2 │ │ │ │ +00070740: 3134 2020 2034 2036 2020 2020 3320 3720 14 4 6 3 7 │ │ │ │ +00070750: 2020 2030 2039 2020 2020 207c 0a7c 2d2d 0 9 |.|-- │ │ │ │ +00070760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000707a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000707b0: 2d7c 0a7c 7720 7720 2020 2d20 7720 7720 -|.|w w - w w │ │ │ │ -000707c0: 207d 2920 2020 2020 2020 2020 2020 2020 }) │ │ │ │ +000707a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7720 -----------|.|w │ │ │ │ +000707b0: 7720 2020 2d20 7720 7720 207d 2920 2020 w - w w }) │ │ │ │ +000707c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000707d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000707e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000707f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070800: 207c 0a7c 2031 2031 3120 2020 2032 2031 |.| 1 11 2 1 │ │ │ │ -00070810: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000707f0: 2020 2020 2020 2020 2020 207c 0a7c 2031 |.| 1 │ │ │ │ +00070800: 2031 3120 2020 2032 2031 3220 2020 2020 11 2 12 │ │ │ │ +00070810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070850: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +00070840: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +00070850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000708a0: 2d2b 0a7c 6936 203a 2061 7373 6572 7420 -+.|i6 : assert │ │ │ │ -000708b0: 6973 496e 7665 7273 654d 6170 2870 6869 isInverseMap(phi │ │ │ │ -000708c0: 2c70 7369 2920 2020 2020 2020 2020 2020 ,psi) │ │ │ │ +00070890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +000708a0: 203a 2061 7373 6572 7420 6973 496e 7665 : assert isInve │ │ │ │ +000708b0: 7273 654d 6170 2870 6869 2c70 7369 2920 rseMap(phi,psi) │ │ │ │ +000708c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000708d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000708e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000708f0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000708e0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000708f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070940: 2d2b 0a0a 4361 7665 6174 0a3d 3d3d 3d3d -+..Caveat.===== │ │ │ │ -00070950: 3d0a 0a49 6620 7468 6520 6d61 7020 7061 =..If the map pa │ │ │ │ -00070960: 7373 6564 2069 7320 6e6f 7420 6269 7261 ssed is not bira │ │ │ │ -00070970: 7469 6f6e 616c 2061 6e64 2074 6865 206f tional and the o │ │ │ │ -00070980: 7074 696f 6e20 2a6e 6f74 6520 4365 7274 ption *note Cert │ │ │ │ -00070990: 6966 793a 2043 6572 7469 6679 2c20 6973 ify: Certify, is │ │ │ │ -000709a0: 0a73 6574 2074 6f20 6661 6c73 652c 2079 .set to false, y │ │ │ │ -000709b0: 6f75 206d 6967 6874 206e 6f74 2067 6574 ou might not get │ │ │ │ -000709c0: 2061 6e79 2065 7272 6f72 206d 6573 7361 any error messa │ │ │ │ -000709d0: 6765 2e0a 0a53 6565 2061 6c73 6f0a 3d3d ge...See also.== │ │ │ │ -000709e0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ -000709f0: 6520 6170 7072 6f78 696d 6174 6549 6e76 e approximateInv │ │ │ │ -00070a00: 6572 7365 4d61 703a 2061 7070 726f 7869 erseMap: approxi │ │ │ │ -00070a10: 6d61 7465 496e 7665 7273 654d 6170 2c20 mateInverseMap, │ │ │ │ -00070a20: 2d2d 2072 616e 646f 6d20 6d61 7020 7265 -- random map re │ │ │ │ -00070a30: 6c61 7465 640a 2020 2020 746f 2074 6865 lated. to the │ │ │ │ -00070a40: 2069 6e76 6572 7365 206f 6620 6120 6269 inverse of a bi │ │ │ │ -00070a50: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -00070a60: 202a 6e6f 7465 2069 6e76 6572 7365 2852 *note inverse(R │ │ │ │ -00070a70: 6174 696f 6e61 6c4d 6170 293a 2069 6e76 ationalMap): inv │ │ │ │ -00070a80: 6572 7365 5f6c 7052 6174 696f 6e61 6c4d erse_lpRationalM │ │ │ │ -00070a90: 6170 5f72 702c 202d 2d20 696e 7665 7273 ap_rp, -- invers │ │ │ │ -00070aa0: 6520 6f66 2061 0a20 2020 2062 6972 6174 e of a. birat │ │ │ │ -00070ab0: 696f 6e61 6c20 6d61 700a 0a57 6179 7320 ional map..Ways │ │ │ │ -00070ac0: 746f 2075 7365 2069 6e76 6572 7365 4d61 to use inverseMa │ │ │ │ -00070ad0: 703a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d p:.============= │ │ │ │ -00070ae0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00070af0: 2269 6e76 6572 7365 4d61 7028 5261 7469 "inverseMap(Rati │ │ │ │ -00070b00: 6f6e 616c 4d61 7029 220a 2020 2a20 2269 onalMap)". * "i │ │ │ │ -00070b10: 6e76 6572 7365 4d61 7028 5269 6e67 4d61 nverseMap(RingMa │ │ │ │ -00070b20: 7029 220a 0a46 6f72 2074 6865 2070 726f p)"..For the pro │ │ │ │ -00070b30: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -00070b40: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -00070b50: 6f62 6a65 6374 202a 6e6f 7465 2069 6e76 object *note inv │ │ │ │ -00070b60: 6572 7365 4d61 703a 2069 6e76 6572 7365 erseMap: inverse │ │ │ │ -00070b70: 4d61 702c 2069 7320 6120 2a6e 6f74 6520 Map, is a *note │ │ │ │ -00070b80: 6d65 7468 6f64 2066 756e 6374 696f 6e20 method function │ │ │ │ -00070b90: 7769 7468 0a6f 7074 696f 6e73 3a20 284d with.options: (M │ │ │ │ -00070ba0: 6163 6175 6c61 7932 446f 6329 4d65 7468 acaulay2Doc)Meth │ │ │ │ -00070bb0: 6f64 4675 6e63 7469 6f6e 5769 7468 4f70 odFunctionWithOp │ │ │ │ -00070bc0: 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d tions,...------- │ │ │ │ +00070930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4361 -----------+..Ca │ │ │ │ +00070940: 7665 6174 0a3d 3d3d 3d3d 3d0a 0a49 6620 veat.======..If │ │ │ │ +00070950: 7468 6520 6d61 7020 7061 7373 6564 2069 the map passed i │ │ │ │ +00070960: 7320 6e6f 7420 6269 7261 7469 6f6e 616c s not birational │ │ │ │ +00070970: 2061 6e64 2074 6865 206f 7074 696f 6e20 and the option │ │ │ │ +00070980: 2a6e 6f74 6520 4365 7274 6966 793a 2043 *note Certify: C │ │ │ │ +00070990: 6572 7469 6679 2c20 6973 0a73 6574 2074 ertify, is.set t │ │ │ │ +000709a0: 6f20 6661 6c73 652c 2079 6f75 206d 6967 o false, you mig │ │ │ │ +000709b0: 6874 206e 6f74 2067 6574 2061 6e79 2065 ht not get any e │ │ │ │ +000709c0: 7272 6f72 206d 6573 7361 6765 2e0a 0a53 rror message...S │ │ │ │ +000709d0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ +000709e0: 0a0a 2020 2a20 2a6e 6f74 6520 6170 7072 .. * *note appr │ │ │ │ +000709f0: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +00070a00: 703a 2061 7070 726f 7869 6d61 7465 496e p: approximateIn │ │ │ │ +00070a10: 7665 7273 654d 6170 2c20 2d2d 2072 616e verseMap, -- ran │ │ │ │ +00070a20: 646f 6d20 6d61 7020 7265 6c61 7465 640a dom map related. │ │ │ │ +00070a30: 2020 2020 746f 2074 6865 2069 6e76 6572 to the inver │ │ │ │ +00070a40: 7365 206f 6620 6120 6269 7261 7469 6f6e se of a biration │ │ │ │ +00070a50: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +00070a60: 2069 6e76 6572 7365 2852 6174 696f 6e61 inverse(Rationa │ │ │ │ +00070a70: 6c4d 6170 293a 2069 6e76 6572 7365 5f6c lMap): inverse_l │ │ │ │ +00070a80: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +00070a90: 202d 2d20 696e 7665 7273 6520 6f66 2061 -- inverse of a │ │ │ │ +00070aa0: 0a20 2020 2062 6972 6174 696f 6e61 6c20 . birational │ │ │ │ +00070ab0: 6d61 700a 0a57 6179 7320 746f 2075 7365 map..Ways to use │ │ │ │ +00070ac0: 2069 6e76 6572 7365 4d61 703a 0a3d 3d3d inverseMap:.=== │ │ │ │ +00070ad0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00070ae0: 3d3d 3d3d 0a0a 2020 2a20 2269 6e76 6572 ====.. * "inver │ │ │ │ +00070af0: 7365 4d61 7028 5261 7469 6f6e 616c 4d61 seMap(RationalMa │ │ │ │ +00070b00: 7029 220a 2020 2a20 2269 6e76 6572 7365 p)". * "inverse │ │ │ │ +00070b10: 4d61 7028 5269 6e67 4d61 7029 220a 0a46 Map(RingMap)"..F │ │ │ │ +00070b20: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +00070b30: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +00070b40: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +00070b50: 202a 6e6f 7465 2069 6e76 6572 7365 4d61 *note inverseMa │ │ │ │ +00070b60: 703a 2069 6e76 6572 7365 4d61 702c 2069 p: inverseMap, i │ │ │ │ +00070b70: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +00070b80: 2066 756e 6374 696f 6e20 7769 7468 0a6f function with.o │ │ │ │ +00070b90: 7074 696f 6e73 3a20 284d 6163 6175 6c61 ptions: (Macaula │ │ │ │ +00070ba0: 7932 446f 6329 4d65 7468 6f64 4675 6e63 y2Doc)MethodFunc │ │ │ │ +00070bb0: 7469 6f6e 5769 7468 4f70 7469 6f6e 732c tionWithOptions, │ │ │ │ +00070bc0: 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...------------- │ │ │ │ 00070bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070c10: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00070c20: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00070c30: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00070c40: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00070c50: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00070c60: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00070c70: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00070c80: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ -00070c90: 7461 7469 6f6e 2e6d 323a 3139 353a 302e tation.m2:195:0. │ │ │ │ -00070ca0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ -00070cb0: 2e69 6e66 6f2c 204e 6f64 653a 2069 6e76 .info, Node: inv │ │ │ │ -00070cc0: 6572 7365 4d61 705f 6c70 5f70 645f 7064 erseMap_lp_pd_pd │ │ │ │ -00070cd0: 5f70 645f 636d 5665 7262 6f73 653d 3e5f _pd_cmVerbose=>_ │ │ │ │ -00070ce0: 7064 5f70 645f 7064 5f72 702c 204e 6578 pd_pd_pd_rp, Nex │ │ │ │ -00070cf0: 743a 2069 7342 6972 6174 696f 6e61 6c2c t: isBirational, │ │ │ │ -00070d00: 2050 7265 763a 2069 6e76 6572 7365 4d61 Prev: inverseMa │ │ │ │ -00070d10: 702c 2055 703a 2054 6f70 0a0a 696e 7665 p, Up: Top..inve │ │ │ │ -00070d20: 7273 654d 6170 282e 2e2e 2c56 6572 626f rseMap(...,Verbo │ │ │ │ -00070d30: 7365 3d3e 2e2e 2e29 0a2a 2a2a 2a2a 2a2a se=>...).******* │ │ │ │ -00070d40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00070d50: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -00070d60: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00070d70: 5468 6973 206f 7074 696f 6e20 6163 6365 This option acce │ │ │ │ -00070d80: 7074 7320 6120 2a6e 6f74 6520 426f 6f6c pts a *note Bool │ │ │ │ -00070d90: 6561 6e3a 2028 4d61 6361 756c 6179 3244 ean: (Macaulay2D │ │ │ │ -00070da0: 6f63 2942 6f6f 6c65 616e 2c20 7661 6c75 oc)Boolean, valu │ │ │ │ -00070db0: 652e 2053 6574 2074 6869 7320 746f 0a66 e. Set this to.f │ │ │ │ -00070dc0: 616c 7365 2069 6620 796f 7520 646f 6e27 alse if you don' │ │ │ │ -00070dd0: 7420 7761 6e74 2074 6f20 6765 7420 7468 t want to get th │ │ │ │ -00070de0: 6520 6365 7274 6966 6963 6174 696f 6e20 e certification │ │ │ │ -00070df0: 6d65 7373 6167 6520 6672 6f6d 202a 6e6f message from *no │ │ │ │ -00070e00: 7465 2043 6572 7469 6679 3a0a 4365 7274 te Certify:.Cert │ │ │ │ -00070e10: 6966 792c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d ify,...+-------- │ │ │ │ +00070c10: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00070c20: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00070c30: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00070c40: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00070c50: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00070c60: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00070c70: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ +00070c80: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ +00070c90: 2e6d 323a 3139 353a 302e 0a1f 0a46 696c .m2:195:0....Fil │ │ │ │ +00070ca0: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ +00070cb0: 204e 6f64 653a 2069 6e76 6572 7365 4d61 Node: inverseMa │ │ │ │ +00070cc0: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ +00070cd0: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ +00070ce0: 7064 5f72 702c 204e 6578 743a 2069 7342 pd_rp, Next: isB │ │ │ │ +00070cf0: 6972 6174 696f 6e61 6c2c 2050 7265 763a irational, Prev: │ │ │ │ +00070d00: 2069 6e76 6572 7365 4d61 702c 2055 703a inverseMap, Up: │ │ │ │ +00070d10: 2054 6f70 0a0a 696e 7665 7273 654d 6170 Top..inverseMap │ │ │ │ +00070d20: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ +00070d30: 2e29 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a .).************* │ │ │ │ +00070d40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00070d50: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00070d60: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 206f ========..This o │ │ │ │ +00070d70: 7074 696f 6e20 6163 6365 7074 7320 6120 ption accepts a │ │ │ │ +00070d80: 2a6e 6f74 6520 426f 6f6c 6561 6e3a 2028 *note Boolean: ( │ │ │ │ +00070d90: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ +00070da0: 6c65 616e 2c20 7661 6c75 652e 2053 6574 lean, value. Set │ │ │ │ +00070db0: 2074 6869 7320 746f 0a66 616c 7365 2069 this to.false i │ │ │ │ +00070dc0: 6620 796f 7520 646f 6e27 7420 7761 6e74 f you don't want │ │ │ │ +00070dd0: 2074 6f20 6765 7420 7468 6520 6365 7274 to get the cert │ │ │ │ +00070de0: 6966 6963 6174 696f 6e20 6d65 7373 6167 ification messag │ │ │ │ +00070df0: 6520 6672 6f6d 202a 6e6f 7465 2043 6572 e from *note Cer │ │ │ │ +00070e00: 7469 6679 3a0a 4365 7274 6966 792c 2e0a tify:.Certify,.. │ │ │ │ +00070e10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00070e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070e40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ -00070e50: 2066 203d 2074 6f4d 6170 2076 6172 7328 f = toMap vars( │ │ │ │ -00070e60: 5151 5b78 5f30 2e2e 785f 325d 293b 2020 QQ[x_0..x_2]); │ │ │ │ -00070e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00070e40: 2d2d 2d2b 0a7c 6931 203a 2066 203d 2074 ---+.|i1 : f = t │ │ │ │ +00070e50: 6f4d 6170 2076 6172 7328 5151 5b78 5f30 oMap vars(QQ[x_0 │ │ │ │ +00070e60: 2e2e 785f 325d 293b 2020 2020 2020 2020 ..x_2]); │ │ │ │ +00070e70: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00070e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070eb0: 207c 0a7c 6f31 203a 2052 696e 674d 6170 |.|o1 : RingMap │ │ │ │ -00070ec0: 2051 515b 7820 2e2e 7820 5d20 3c2d 2d20 QQ[x ..x ] <-- │ │ │ │ -00070ed0: 5151 5b78 202e 2e78 205d 2020 2020 2020 QQ[x ..x ] │ │ │ │ -00070ee0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00070ef0: 2020 2020 2020 2020 2030 2020 2032 2020 0 2 │ │ │ │ -00070f00: 2020 2020 2020 2020 3020 2020 3220 2020 0 2 │ │ │ │ -00070f10: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00070ea0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +00070eb0: 203a 2052 696e 674d 6170 2051 515b 7820 : RingMap QQ[x │ │ │ │ +00070ec0: 2e2e 7820 5d20 3c2d 2d20 5151 5b78 202e ..x ] <-- QQ[x . │ │ │ │ +00070ed0: 2e78 205d 2020 2020 2020 2020 2020 207c .x ] | │ │ │ │ +00070ee0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00070ef0: 2020 2030 2020 2032 2020 2020 2020 2020 0 2 │ │ │ │ +00070f00: 2020 3020 2020 3220 2020 2020 2020 2020 0 2 │ │ │ │ +00070f10: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ 00070f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00070f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00070f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00070f50: 6932 203a 2069 7342 6972 6174 696f 6e61 i2 : isBirationa │ │ │ │ -00070f60: 6c28 662c 4365 7274 6966 793d 3e74 7275 l(f,Certify=>tru │ │ │ │ -00070f70: 6529 2020 2020 2020 2020 2020 2020 2020 e) │ │ │ │ -00070f80: 207c 0a7c 4365 7274 6966 793a 206f 7574 |.|Certify: out │ │ │ │ -00070f90: 7075 7420 6365 7274 6966 6965 6421 2020 put certified! │ │ │ │ -00070fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070fb0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00070f40: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2069 -------+.|i2 : i │ │ │ │ +00070f50: 7342 6972 6174 696f 6e61 6c28 662c 4365 sBirational(f,Ce │ │ │ │ +00070f60: 7274 6966 793d 3e74 7275 6529 2020 2020 rtify=>true) │ │ │ │ +00070f70: 2020 2020 2020 2020 2020 207c 0a7c 4365 |.|Ce │ │ │ │ +00070f80: 7274 6966 793a 206f 7574 7075 7420 6365 rtify: output ce │ │ │ │ +00070f90: 7274 6966 6965 6421 2020 2020 2020 2020 rtified! │ │ │ │ +00070fa0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00070fb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00070fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00070fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00070fe0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -00070ff0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +00070fe0: 2020 207c 0a7c 6f32 203d 2074 7275 6520 |.|o2 = true │ │ │ │ +00070ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071010: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00071010: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00071020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071050: 2d2b 0a7c 6933 203a 2069 7342 6972 6174 -+.|i3 : isBirat │ │ │ │ -00071060: 696f 6e61 6c28 662c 4365 7274 6966 793d ional(f,Certify= │ │ │ │ -00071070: 3e74 7275 652c 5665 7262 6f73 653d 3e66 >true,Verbose=>f │ │ │ │ -00071080: 616c 7365 297c 0a7c 2020 2020 2020 2020 alse)|.| │ │ │ │ +00071040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +00071050: 203a 2069 7342 6972 6174 696f 6e61 6c28 : isBirational( │ │ │ │ +00071060: 662c 4365 7274 6966 793d 3e74 7275 652c f,Certify=>true, │ │ │ │ +00071070: 5665 7262 6f73 653d 3e66 616c 7365 297c Verbose=>false)| │ │ │ │ +00071080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00071090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000710a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000710b0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ -000710c0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +000710b0: 2020 207c 0a7c 6f33 203d 2074 7275 6520 |.|o3 = true │ │ │ │ +000710c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000710d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000710e0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +000710e0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 000710f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071120: 2d2b 0a0a 4675 6e63 7469 6f6e 7320 7769 -+..Functions wi │ │ │ │ -00071130: 7468 206f 7074 696f 6e61 6c20 6172 6775 th optional argu │ │ │ │ -00071140: 6d65 6e74 206e 616d 6564 2056 6572 626f ment named Verbo │ │ │ │ -00071150: 7365 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d se:.============ │ │ │ │ +00071110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 4675 -----------+..Fu │ │ │ │ +00071120: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00071130: 696f 6e61 6c20 6172 6775 6d65 6e74 206e ional argument n │ │ │ │ +00071140: 616d 6564 2056 6572 626f 7365 3a0a 3d3d amed Verbose:.== │ │ │ │ +00071150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 00071160: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00071170: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00071180: 3d3d 3d0a 0a20 202a 2022 6368 6563 6b28 ===.. * "check( │ │ │ │ -00071190: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -000711a0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -000711b0: 6368 6563 6b3a 2028 4d61 6361 756c 6179 check: (Macaulay │ │ │ │ -000711c0: 3244 6f63 2963 6865 636b 2c20 2d2d 0a20 2Doc)check, --. │ │ │ │ -000711d0: 2020 2070 6572 666f 726d 2074 6573 7473 perform tests │ │ │ │ -000711e0: 206f 6620 6120 7061 636b 6167 650a 2020 of a package. │ │ │ │ -000711f0: 2a20 2263 6f70 7944 6972 6563 746f 7279 * "copyDirectory │ │ │ │ -00071200: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ -00071210: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ -00071220: 0a20 2020 2063 6f70 7944 6972 6563 746f . copyDirecto │ │ │ │ -00071230: 7279 2853 7472 696e 672c 5374 7269 6e67 ry(String,String │ │ │ │ -00071240: 293a 0a20 2020 2028 4d61 6361 756c 6179 ):. (Macaulay │ │ │ │ -00071250: 3244 6f63 2963 6f70 7944 6972 6563 746f 2Doc)copyDirecto │ │ │ │ -00071260: 7279 5f6c 7053 7472 696e 675f 636d 5374 ry_lpString_cmSt │ │ │ │ -00071270: 7269 6e67 5f72 702c 0a20 202a 2022 636f ring_rp,. * "co │ │ │ │ -00071280: 7079 4669 6c65 282e 2e2e 2c56 6572 626f pyFile(...,Verbo │ │ │ │ -00071290: 7365 3d3e 2e2e 2e29 2220 2d2d 2073 6565 se=>...)" -- see │ │ │ │ -000712a0: 202a 6e6f 7465 2063 6f70 7946 696c 6528 *note copyFile( │ │ │ │ -000712b0: 5374 7269 6e67 2c53 7472 696e 6729 3a0a String,String):. │ │ │ │ -000712c0: 2020 2020 284d 6163 6175 6c61 7932 446f (Macaulay2Do │ │ │ │ -000712d0: 6329 636f 7079 4669 6c65 5f6c 7053 7472 c)copyFile_lpStr │ │ │ │ -000712e0: 696e 675f 636d 5374 7269 6e67 5f72 702c ing_cmString_rp, │ │ │ │ -000712f0: 0a20 202a 2022 6669 6e64 5072 6f67 7261 . * "findProgra │ │ │ │ -00071300: 6d28 2e2e 2e2c 5665 7262 6f73 653d 3e2e m(...,Verbose=>. │ │ │ │ -00071310: 2e2e 2922 202d 2d20 7365 6520 2a6e 6f74 ..)" -- see *not │ │ │ │ -00071320: 6520 6669 6e64 5072 6f67 7261 6d3a 0a20 e findProgram:. │ │ │ │ -00071330: 2020 2028 4d61 6361 756c 6179 3244 6f63 (Macaulay2Doc │ │ │ │ -00071340: 2966 696e 6450 726f 6772 616d 2c20 2d2d )findProgram, -- │ │ │ │ -00071350: 206c 6f61 6420 6578 7465 726e 616c 2070 load external p │ │ │ │ -00071360: 726f 6772 616d 0a20 202a 2022 696e 7374 rogram. * "inst │ │ │ │ -00071370: 616c 6c50 6163 6b61 6765 282e 2e2e 2c56 allPackage(...,V │ │ │ │ -00071380: 6572 626f 7365 3d3e 2e2e 2e29 2220 2d2d erbose=>...)" -- │ │ │ │ -00071390: 2073 6565 202a 6e6f 7465 2069 6e73 7461 see *note insta │ │ │ │ -000713a0: 6c6c 5061 636b 6167 653a 0a20 2020 2028 llPackage:. ( │ │ │ │ -000713b0: 4d61 6361 756c 6179 3244 6f63 2969 6e73 Macaulay2Doc)ins │ │ │ │ -000713c0: 7461 6c6c 5061 636b 6167 652c 202d 2d20 tallPackage, -- │ │ │ │ -000713d0: 6c6f 6164 2061 6e64 2069 6e73 7461 6c6c load and install │ │ │ │ -000713e0: 2061 2070 6163 6b61 6765 2061 6e64 2069 a package and i │ │ │ │ -000713f0: 7473 0a20 2020 2064 6f63 756d 656e 7461 ts. documenta │ │ │ │ -00071400: 7469 6f6e 0a20 202a 2022 6170 7072 6f78 tion. * "approx │ │ │ │ -00071410: 696d 6174 6549 6e76 6572 7365 4d61 7028 imateInverseMap( │ │ │ │ -00071420: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -00071430: 2922 0a20 202a 2022 4368 6572 6e53 6368 )". * "ChernSch │ │ │ │ -00071440: 7761 7274 7a4d 6163 5068 6572 736f 6e28 wartzMacPherson( │ │ │ │ -00071450: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -00071460: 2922 0a20 202a 2022 6465 6772 6565 4d61 )". * "degreeMa │ │ │ │ -00071470: 7028 2e2e 2e2c 5665 7262 6f73 653d 3e2e p(...,Verbose=>. │ │ │ │ -00071480: 2e2e 2922 0a20 202a 2022 4575 6c65 7243 ..)". * "EulerC │ │ │ │ -00071490: 6861 7261 6374 6572 6973 7469 6328 2e2e haracteristic(.. │ │ │ │ -000714a0: 2e2c 5665 7262 6f73 653d 3e2e 2e2e 2922 .,Verbose=>...)" │ │ │ │ -000714b0: 0a20 202a 202a 6e6f 7465 2069 6e76 6572 . * *note inver │ │ │ │ -000714c0: 7365 4d61 7028 2e2e 2e2c 5665 7262 6f73 seMap(...,Verbos │ │ │ │ -000714d0: 653d 3e2e 2e2e 293a 0a20 2020 2069 6e76 e=>...):. inv │ │ │ │ -000714e0: 6572 7365 4d61 705f 6c70 5f70 645f 7064 erseMap_lp_pd_pd │ │ │ │ -000714f0: 5f70 645f 636d 5665 7262 6f73 653d 3e5f _pd_cmVerbose=>_ │ │ │ │ -00071500: 7064 5f70 645f 7064 5f72 702c 0a20 202a pd_pd_pd_rp,. * │ │ │ │ -00071510: 2022 6973 4269 7261 7469 6f6e 616c 282e "isBirational(. │ │ │ │ -00071520: 2e2e 2c56 6572 626f 7365 3d3e 2e2e 2e29 ..,Verbose=>...) │ │ │ │ -00071530: 220a 2020 2a20 2269 7344 6f6d 696e 616e ". * "isDominan │ │ │ │ -00071540: 7428 2e2e 2e2c 5665 7262 6f73 653d 3e2e t(...,Verbose=>. │ │ │ │ -00071550: 2e2e 2922 0a20 202a 2022 7072 6f6a 6563 ..)". * "projec │ │ │ │ -00071560: 7469 7665 4465 6772 6565 7328 2e2e 2e2c tiveDegrees(..., │ │ │ │ -00071570: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ -00071580: 202a 2022 5365 6772 6543 6c61 7373 282e * "SegreClass(. │ │ │ │ -00071590: 2e2e 2c56 6572 626f 7365 3d3e 2e2e 2e29 ..,Verbose=>...) │ │ │ │ -000715a0: 220a 2020 2a20 226d 6f76 6546 696c 6528 ". * "moveFile( │ │ │ │ -000715b0: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ -000715c0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -000715d0: 6d6f 7665 4669 6c65 2853 7472 696e 672c moveFile(String, │ │ │ │ -000715e0: 5374 7269 6e67 293a 0a20 2020 2028 4d61 String):. (Ma │ │ │ │ -000715f0: 6361 756c 6179 3244 6f63 296d 6f76 6546 caulay2Doc)moveF │ │ │ │ -00071600: 696c 655f 6c70 5374 7269 6e67 5f63 6d53 ile_lpString_cmS │ │ │ │ -00071610: 7472 696e 675f 7270 2c0a 2020 2a20 2272 tring_rp,. * "r │ │ │ │ -00071620: 756e 5072 6f67 7261 6d28 2e2e 2e2c 5665 unProgram(...,Ve │ │ │ │ -00071630: 7262 6f73 653d 3e2e 2e2e 2922 202d 2d20 rbose=>...)" -- │ │ │ │ -00071640: 7365 6520 2a6e 6f74 6520 7275 6e50 726f see *note runPro │ │ │ │ -00071650: 6772 616d 3a0a 2020 2020 284d 6163 6175 gram:. (Macau │ │ │ │ -00071660: 6c61 7932 446f 6329 7275 6e50 726f 6772 lay2Doc)runProgr │ │ │ │ -00071670: 616d 2c20 2d2d 2072 756e 2061 6e20 6578 am, -- run an ex │ │ │ │ -00071680: 7465 726e 616c 2070 726f 6772 616d 0a20 ternal program. │ │ │ │ -00071690: 202a 2022 7379 6d6c 696e 6b44 6972 6563 * "symlinkDirec │ │ │ │ -000716a0: 746f 7279 282e 2e2e 2c56 6572 626f 7365 tory(...,Verbose │ │ │ │ -000716b0: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ -000716c0: 6e6f 7465 0a20 2020 2073 796d 6c69 6e6b note. symlink │ │ │ │ -000716d0: 4469 7265 6374 6f72 7928 5374 7269 6e67 Directory(String │ │ │ │ -000716e0: 2c53 7472 696e 6729 3a0a 2020 2020 284d ,String):. (M │ │ │ │ -000716f0: 6163 6175 6c61 7932 446f 6329 7379 6d6c acaulay2Doc)syml │ │ │ │ -00071700: 696e 6b44 6972 6563 746f 7279 5f6c 7053 inkDirectory_lpS │ │ │ │ -00071710: 7472 696e 675f 636d 5374 7269 6e67 5f72 tring_cmString_r │ │ │ │ -00071720: 702c 202d 2d20 6d61 6b65 2073 796d 626f p, -- make symbo │ │ │ │ -00071730: 6c69 6320 6c69 6e6b 730a 2020 2020 666f lic links. fo │ │ │ │ -00071740: 7220 616c 6c20 6669 6c65 7320 696e 2061 r all files in a │ │ │ │ -00071750: 2064 6972 6563 746f 7279 2074 7265 650a directory tree. │ │ │ │ -00071760: 0a46 7572 7468 6572 2069 6e66 6f72 6d61 .Further informa │ │ │ │ -00071770: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00071780: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 4465 ========.. * De │ │ │ │ -00071790: 6661 756c 7420 7661 6c75 653a 202a 6e6f fault value: *no │ │ │ │ -000717a0: 7465 2074 7275 653a 2028 4d61 6361 756c te true: (Macaul │ │ │ │ -000717b0: 6179 3244 6f63 2974 7275 652c 0a20 202a ay2Doc)true,. * │ │ │ │ -000717c0: 2046 756e 6374 696f 6e3a 202a 6e6f 7465 Function: *note │ │ │ │ -000717d0: 2069 6e76 6572 7365 4d61 703a 2069 6e76 inverseMap: inv │ │ │ │ -000717e0: 6572 7365 4d61 702c 202d 2d20 696e 7665 erseMap, -- inve │ │ │ │ -000717f0: 7273 6520 6f66 2061 2062 6972 6174 696f rse of a biratio │ │ │ │ -00071800: 6e61 6c20 6d61 700a 2020 2a20 4f70 7469 nal map. * Opti │ │ │ │ -00071810: 6f6e 206b 6579 3a20 2a6e 6f74 6520 5665 on key: *note Ve │ │ │ │ -00071820: 7262 6f73 653a 2028 4d61 6361 756c 6179 rbose: (Macaulay │ │ │ │ -00071830: 3244 6f63 2956 6572 626f 7365 2c20 2d2d 2Doc)Verbose, -- │ │ │ │ -00071840: 2061 6e20 6f70 7469 6f6e 616c 2061 7267 an optional arg │ │ │ │ -00071850: 756d 656e 740a 2d2d 2d2d 2d2d 2d2d 2d2d ument.---------- │ │ │ │ +00071170: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00071180: 202a 2022 6368 6563 6b28 2e2e 2e2c 5665 * "check(...,Ve │ │ │ │ +00071190: 7262 6f73 653d 3e2e 2e2e 2922 202d 2d20 rbose=>...)" -- │ │ │ │ +000711a0: 7365 6520 2a6e 6f74 6520 6368 6563 6b3a see *note check: │ │ │ │ +000711b0: 2028 4d61 6361 756c 6179 3244 6f63 2963 (Macaulay2Doc)c │ │ │ │ +000711c0: 6865 636b 2c20 2d2d 0a20 2020 2070 6572 heck, --. per │ │ │ │ +000711d0: 666f 726d 2074 6573 7473 206f 6620 6120 form tests of a │ │ │ │ +000711e0: 7061 636b 6167 650a 2020 2a20 2263 6f70 package. * "cop │ │ │ │ +000711f0: 7944 6972 6563 746f 7279 282e 2e2e 2c56 yDirectory(...,V │ │ │ │ +00071200: 6572 626f 7365 3d3e 2e2e 2e29 2220 2d2d erbose=>...)" -- │ │ │ │ +00071210: 2073 6565 202a 6e6f 7465 0a20 2020 2063 see *note. c │ │ │ │ +00071220: 6f70 7944 6972 6563 746f 7279 2853 7472 opyDirectory(Str │ │ │ │ +00071230: 696e 672c 5374 7269 6e67 293a 0a20 2020 ing,String):. │ │ │ │ +00071240: 2028 4d61 6361 756c 6179 3244 6f63 2963 (Macaulay2Doc)c │ │ │ │ +00071250: 6f70 7944 6972 6563 746f 7279 5f6c 7053 opyDirectory_lpS │ │ │ │ +00071260: 7472 696e 675f 636d 5374 7269 6e67 5f72 tring_cmString_r │ │ │ │ +00071270: 702c 0a20 202a 2022 636f 7079 4669 6c65 p,. * "copyFile │ │ │ │ +00071280: 282e 2e2e 2c56 6572 626f 7365 3d3e 2e2e (...,Verbose=>.. │ │ │ │ +00071290: 2e29 2220 2d2d 2073 6565 202a 6e6f 7465 .)" -- see *note │ │ │ │ +000712a0: 2063 6f70 7946 696c 6528 5374 7269 6e67 copyFile(String │ │ │ │ +000712b0: 2c53 7472 696e 6729 3a0a 2020 2020 284d ,String):. (M │ │ │ │ +000712c0: 6163 6175 6c61 7932 446f 6329 636f 7079 acaulay2Doc)copy │ │ │ │ +000712d0: 4669 6c65 5f6c 7053 7472 696e 675f 636d File_lpString_cm │ │ │ │ +000712e0: 5374 7269 6e67 5f72 702c 0a20 202a 2022 String_rp,. * " │ │ │ │ +000712f0: 6669 6e64 5072 6f67 7261 6d28 2e2e 2e2c findProgram(..., │ │ │ │ +00071300: 5665 7262 6f73 653d 3e2e 2e2e 2922 202d Verbose=>...)" - │ │ │ │ +00071310: 2d20 7365 6520 2a6e 6f74 6520 6669 6e64 - see *note find │ │ │ │ +00071320: 5072 6f67 7261 6d3a 0a20 2020 2028 4d61 Program:. (Ma │ │ │ │ +00071330: 6361 756c 6179 3244 6f63 2966 696e 6450 caulay2Doc)findP │ │ │ │ +00071340: 726f 6772 616d 2c20 2d2d 206c 6f61 6420 rogram, -- load │ │ │ │ +00071350: 6578 7465 726e 616c 2070 726f 6772 616d external program │ │ │ │ +00071360: 0a20 202a 2022 696e 7374 616c 6c50 6163 . * "installPac │ │ │ │ +00071370: 6b61 6765 282e 2e2e 2c56 6572 626f 7365 kage(...,Verbose │ │ │ │ +00071380: 3d3e 2e2e 2e29 2220 2d2d 2073 6565 202a =>...)" -- see * │ │ │ │ +00071390: 6e6f 7465 2069 6e73 7461 6c6c 5061 636b note installPack │ │ │ │ +000713a0: 6167 653a 0a20 2020 2028 4d61 6361 756c age:. (Macaul │ │ │ │ +000713b0: 6179 3244 6f63 2969 6e73 7461 6c6c 5061 ay2Doc)installPa │ │ │ │ +000713c0: 636b 6167 652c 202d 2d20 6c6f 6164 2061 ckage, -- load a │ │ │ │ +000713d0: 6e64 2069 6e73 7461 6c6c 2061 2070 6163 nd install a pac │ │ │ │ +000713e0: 6b61 6765 2061 6e64 2069 7473 0a20 2020 kage and its. │ │ │ │ +000713f0: 2064 6f63 756d 656e 7461 7469 6f6e 0a20 documentation. │ │ │ │ +00071400: 202a 2022 6170 7072 6f78 696d 6174 6549 * "approximateI │ │ │ │ +00071410: 6e76 6572 7365 4d61 7028 2e2e 2e2c 5665 nverseMap(...,Ve │ │ │ │ +00071420: 7262 6f73 653d 3e2e 2e2e 2922 0a20 202a rbose=>...)". * │ │ │ │ +00071430: 2022 4368 6572 6e53 6368 7761 7274 7a4d "ChernSchwartzM │ │ │ │ +00071440: 6163 5068 6572 736f 6e28 2e2e 2e2c 5665 acPherson(...,Ve │ │ │ │ +00071450: 7262 6f73 653d 3e2e 2e2e 2922 0a20 202a rbose=>...)". * │ │ │ │ +00071460: 2022 6465 6772 6565 4d61 7028 2e2e 2e2c "degreeMap(..., │ │ │ │ +00071470: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ +00071480: 202a 2022 4575 6c65 7243 6861 7261 6374 * "EulerCharact │ │ │ │ +00071490: 6572 6973 7469 6328 2e2e 2e2c 5665 7262 eristic(...,Verb │ │ │ │ +000714a0: 6f73 653d 3e2e 2e2e 2922 0a20 202a 202a ose=>...)". * * │ │ │ │ +000714b0: 6e6f 7465 2069 6e76 6572 7365 4d61 7028 note inverseMap( │ │ │ │ +000714c0: 2e2e 2e2c 5665 7262 6f73 653d 3e2e 2e2e ...,Verbose=>... │ │ │ │ +000714d0: 293a 0a20 2020 2069 6e76 6572 7365 4d61 ):. inverseMa │ │ │ │ +000714e0: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ +000714f0: 5665 7262 6f73 653d 3e5f 7064 5f70 645f Verbose=>_pd_pd_ │ │ │ │ +00071500: 7064 5f72 702c 0a20 202a 2022 6973 4269 pd_rp,. * "isBi │ │ │ │ +00071510: 7261 7469 6f6e 616c 282e 2e2e 2c56 6572 rational(...,Ver │ │ │ │ +00071520: 626f 7365 3d3e 2e2e 2e29 220a 2020 2a20 bose=>...)". * │ │ │ │ +00071530: 2269 7344 6f6d 696e 616e 7428 2e2e 2e2c "isDominant(..., │ │ │ │ +00071540: 5665 7262 6f73 653d 3e2e 2e2e 2922 0a20 Verbose=>...)". │ │ │ │ +00071550: 202a 2022 7072 6f6a 6563 7469 7665 4465 * "projectiveDe │ │ │ │ +00071560: 6772 6565 7328 2e2e 2e2c 5665 7262 6f73 grees(...,Verbos │ │ │ │ +00071570: 653d 3e2e 2e2e 2922 0a20 202a 2022 5365 e=>...)". * "Se │ │ │ │ +00071580: 6772 6543 6c61 7373 282e 2e2e 2c56 6572 greClass(...,Ver │ │ │ │ +00071590: 626f 7365 3d3e 2e2e 2e29 220a 2020 2a20 bose=>...)". * │ │ │ │ +000715a0: 226d 6f76 6546 696c 6528 2e2e 2e2c 5665 "moveFile(...,Ve │ │ │ │ +000715b0: 7262 6f73 653d 3e2e 2e2e 2922 202d 2d20 rbose=>...)" -- │ │ │ │ +000715c0: 7365 6520 2a6e 6f74 6520 6d6f 7665 4669 see *note moveFi │ │ │ │ +000715d0: 6c65 2853 7472 696e 672c 5374 7269 6e67 le(String,String │ │ │ │ +000715e0: 293a 0a20 2020 2028 4d61 6361 756c 6179 ):. (Macaulay │ │ │ │ +000715f0: 3244 6f63 296d 6f76 6546 696c 655f 6c70 2Doc)moveFile_lp │ │ │ │ +00071600: 5374 7269 6e67 5f63 6d53 7472 696e 675f String_cmString_ │ │ │ │ +00071610: 7270 2c0a 2020 2a20 2272 756e 5072 6f67 rp,. * "runProg │ │ │ │ +00071620: 7261 6d28 2e2e 2e2c 5665 7262 6f73 653d ram(...,Verbose= │ │ │ │ +00071630: 3e2e 2e2e 2922 202d 2d20 7365 6520 2a6e >...)" -- see *n │ │ │ │ +00071640: 6f74 6520 7275 6e50 726f 6772 616d 3a0a ote runProgram:. │ │ │ │ +00071650: 2020 2020 284d 6163 6175 6c61 7932 446f (Macaulay2Do │ │ │ │ +00071660: 6329 7275 6e50 726f 6772 616d 2c20 2d2d c)runProgram, -- │ │ │ │ +00071670: 2072 756e 2061 6e20 6578 7465 726e 616c run an external │ │ │ │ +00071680: 2070 726f 6772 616d 0a20 202a 2022 7379 program. * "sy │ │ │ │ +00071690: 6d6c 696e 6b44 6972 6563 746f 7279 282e mlinkDirectory(. │ │ │ │ +000716a0: 2e2e 2c56 6572 626f 7365 3d3e 2e2e 2e29 ..,Verbose=>...) │ │ │ │ +000716b0: 2220 2d2d 2073 6565 202a 6e6f 7465 0a20 " -- see *note. │ │ │ │ +000716c0: 2020 2073 796d 6c69 6e6b 4469 7265 6374 symlinkDirect │ │ │ │ +000716d0: 6f72 7928 5374 7269 6e67 2c53 7472 696e ory(String,Strin │ │ │ │ +000716e0: 6729 3a0a 2020 2020 284d 6163 6175 6c61 g):. (Macaula │ │ │ │ +000716f0: 7932 446f 6329 7379 6d6c 696e 6b44 6972 y2Doc)symlinkDir │ │ │ │ +00071700: 6563 746f 7279 5f6c 7053 7472 696e 675f ectory_lpString_ │ │ │ │ +00071710: 636d 5374 7269 6e67 5f72 702c 202d 2d20 cmString_rp, -- │ │ │ │ +00071720: 6d61 6b65 2073 796d 626f 6c69 6320 6c69 make symbolic li │ │ │ │ +00071730: 6e6b 730a 2020 2020 666f 7220 616c 6c20 nks. for all │ │ │ │ +00071740: 6669 6c65 7320 696e 2061 2064 6972 6563 files in a direc │ │ │ │ +00071750: 746f 7279 2074 7265 650a 0a46 7572 7468 tory tree..Furth │ │ │ │ +00071760: 6572 2069 6e66 6f72 6d61 7469 6f6e 0a3d er information.= │ │ │ │ +00071770: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00071780: 3d3d 0a0a 2020 2a20 4465 6661 756c 7420 ==.. * Default │ │ │ │ +00071790: 7661 6c75 653a 202a 6e6f 7465 2074 7275 value: *note tru │ │ │ │ +000717a0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +000717b0: 2974 7275 652c 0a20 202a 2046 756e 6374 )true,. * Funct │ │ │ │ +000717c0: 696f 6e3a 202a 6e6f 7465 2069 6e76 6572 ion: *note inver │ │ │ │ +000717d0: 7365 4d61 703a 2069 6e76 6572 7365 4d61 seMap: inverseMa │ │ │ │ +000717e0: 702c 202d 2d20 696e 7665 7273 6520 6f66 p, -- inverse of │ │ │ │ +000717f0: 2061 2062 6972 6174 696f 6e61 6c20 6d61 a birational ma │ │ │ │ +00071800: 700a 2020 2a20 4f70 7469 6f6e 206b 6579 p. * Option key │ │ │ │ +00071810: 3a20 2a6e 6f74 6520 5665 7262 6f73 653a : *note Verbose: │ │ │ │ +00071820: 2028 4d61 6361 756c 6179 3244 6f63 2956 (Macaulay2Doc)V │ │ │ │ +00071830: 6572 626f 7365 2c20 2d2d 2061 6e20 6f70 erbose, -- an op │ │ │ │ +00071840: 7469 6f6e 616c 2061 7267 756d 656e 740a tional argument. │ │ │ │ +00071850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000718a0: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -000718b0: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -000718c0: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -000718d0: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -000718e0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -000718f0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -00071900: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ -00071910: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ -00071920: 696f 6e2e 6d32 3a39 3539 3a30 2e0a 1f0a ion.m2:959:0.... │ │ │ │ -00071930: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ -00071940: 666f 2c20 4e6f 6465 3a20 6973 4269 7261 fo, Node: isBira │ │ │ │ -00071950: 7469 6f6e 616c 2c20 4e65 7874 3a20 6973 tional, Next: is │ │ │ │ -00071960: 446f 6d69 6e61 6e74 2c20 5072 6576 3a20 Dominant, Prev: │ │ │ │ -00071970: 696e 7665 7273 654d 6170 5f6c 705f 7064 inverseMap_lp_pd │ │ │ │ -00071980: 5f70 645f 7064 5f63 6d56 6572 626f 7365 _pd_pd_cmVerbose │ │ │ │ -00071990: 3d3e 5f70 645f 7064 5f70 645f 7270 2c20 =>_pd_pd_pd_rp, │ │ │ │ -000719a0: 5570 3a20 546f 700a 0a69 7342 6972 6174 Up: Top..isBirat │ │ │ │ -000719b0: 696f 6e61 6c20 2d2d 2077 6865 7468 6572 ional -- whether │ │ │ │ -000719c0: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -000719d0: 6973 2062 6972 6174 696f 6e61 6c0a 2a2a is birational.** │ │ │ │ +00071890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +000718a0: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +000718b0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +000718c0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +000718d0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +000718e0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +000718f0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +00071900: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ +00071910: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ +00071920: 3a39 3539 3a30 2e0a 1f0a 4669 6c65 3a20 :959:0....File: │ │ │ │ +00071930: 4372 656d 6f6e 612e 696e 666f 2c20 4e6f Cremona.info, No │ │ │ │ +00071940: 6465 3a20 6973 4269 7261 7469 6f6e 616c de: isBirational │ │ │ │ +00071950: 2c20 4e65 7874 3a20 6973 446f 6d69 6e61 , Next: isDomina │ │ │ │ +00071960: 6e74 2c20 5072 6576 3a20 696e 7665 7273 nt, Prev: invers │ │ │ │ +00071970: 654d 6170 5f6c 705f 7064 5f70 645f 7064 eMap_lp_pd_pd_pd │ │ │ │ +00071980: 5f63 6d56 6572 626f 7365 3d3e 5f70 645f _cmVerbose=>_pd_ │ │ │ │ +00071990: 7064 5f70 645f 7270 2c20 5570 3a20 546f pd_pd_rp, Up: To │ │ │ │ +000719a0: 700a 0a69 7342 6972 6174 696f 6e61 6c20 p..isBirational │ │ │ │ +000719b0: 2d2d 2077 6865 7468 6572 2061 2072 6174 -- whether a rat │ │ │ │ +000719c0: 696f 6e61 6c20 6d61 7020 6973 2062 6972 ional map is bir │ │ │ │ +000719d0: 6174 696f 6e61 6c0a 2a2a 2a2a 2a2a 2a2a ational.******** │ │ │ │ 000719e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000719f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00071a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00071a10: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -00071a20: 2020 2020 2020 2020 6973 4269 7261 7469 isBirati │ │ │ │ -00071a30: 6f6e 616c 2070 6869 0a20 202a 2049 6e70 onal phi. * Inp │ │ │ │ -00071a40: 7574 733a 0a20 2020 2020 202a 2070 6869 uts:. * phi │ │ │ │ -00071a50: 2c20 6120 2a6e 6f74 6520 7261 7469 6f6e , a *note ration │ │ │ │ -00071a60: 616c 206d 6170 3a20 5261 7469 6f6e 616c al map: Rational │ │ │ │ -00071a70: 4d61 702c 0a20 202a 202a 6e6f 7465 204f Map,. * *note O │ │ │ │ -00071a80: 7074 696f 6e61 6c20 696e 7075 7473 3a20 ptional inputs: │ │ │ │ -00071a90: 284d 6163 6175 6c61 7932 446f 6329 7573 (Macaulay2Doc)us │ │ │ │ -00071aa0: 696e 6720 6675 6e63 7469 6f6e 7320 7769 ing functions wi │ │ │ │ -00071ab0: 7468 206f 7074 696f 6e61 6c20 696e 7075 th optional inpu │ │ │ │ -00071ac0: 7473 2c3a 0a20 2020 2020 202a 202a 6e6f ts,:. * *no │ │ │ │ -00071ad0: 7465 2042 6c6f 7755 7053 7472 6174 6567 te BlowUpStrateg │ │ │ │ -00071ae0: 793a 2042 6c6f 7755 7053 7472 6174 6567 y: BlowUpStrateg │ │ │ │ -00071af0: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ -00071b00: 6c74 2076 616c 7565 0a20 2020 2020 2020 lt value. │ │ │ │ -00071b10: 2022 456c 696d 696e 6174 6522 2c0a 2020 "Eliminate",. │ │ │ │ -00071b20: 2020 2020 2a20 2a6e 6f74 6520 4365 7274 * *note Cert │ │ │ │ -00071b30: 6966 793a 2043 6572 7469 6679 2c20 3d3e ify: Certify, => │ │ │ │ -00071b40: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -00071b50: 6c75 6520 6661 6c73 652c 2077 6865 7468 lue false, wheth │ │ │ │ -00071b60: 6572 2074 6f20 656e 7375 7265 0a20 2020 er to ensure. │ │ │ │ -00071b70: 2020 2020 2063 6f72 7265 6374 6e65 7373 correctness │ │ │ │ -00071b80: 206f 6620 6f75 7470 7574 0a20 2020 2020 of output. │ │ │ │ -00071b90: 202a 202a 6e6f 7465 2056 6572 626f 7365 * *note Verbose │ │ │ │ -00071ba0: 3a20 696e 7665 7273 654d 6170 5f6c 705f : inverseMap_lp_ │ │ │ │ -00071bb0: 7064 5f70 645f 7064 5f63 6d56 6572 626f pd_pd_pd_cmVerbo │ │ │ │ -00071bc0: 7365 3d3e 5f70 645f 7064 5f70 645f 7270 se=>_pd_pd_pd_rp │ │ │ │ -00071bd0: 2c20 3d3e 202e 2e2e 2c0a 2020 2020 2020 , => ...,. │ │ │ │ -00071be0: 2020 6465 6661 756c 7420 7661 6c75 6520 default value │ │ │ │ -00071bf0: 7472 7565 2c0a 2020 2a20 4f75 7470 7574 true,. * Output │ │ │ │ -00071c00: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ -00071c10: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ -00071c20: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00071c30: 426f 6f6c 6561 6e2c 2c20 7768 6574 6865 Boolean,, whethe │ │ │ │ -00071c40: 7220 7068 6920 6973 0a20 2020 2020 2020 r phi is. │ │ │ │ -00071c50: 2062 6972 6174 696f 6e61 6c0a 0a44 6573 birational..Des │ │ │ │ -00071c60: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -00071c70: 3d3d 3d3d 0a0a 5468 6520 7465 7374 696e ====..The testin │ │ │ │ -00071c80: 6720 7061 7373 6573 2074 6872 6f75 6768 g passes through │ │ │ │ -00071c90: 2074 6865 206d 6574 686f 6473 202a 6e6f the methods *no │ │ │ │ -00071ca0: 7465 2070 726f 6a65 6374 6976 6544 6567 te projectiveDeg │ │ │ │ -00071cb0: 7265 6573 3a0a 7072 6f6a 6563 7469 7665 rees:.projective │ │ │ │ -00071cc0: 4465 6772 6565 732c 2c20 2a6e 6f74 6520 Degrees,, *note │ │ │ │ -00071cd0: 6465 6772 6565 4d61 703a 2064 6567 7265 degreeMap: degre │ │ │ │ -00071ce0: 654d 6170 2c20 616e 6420 2a6e 6f74 6520 eMap, and *note │ │ │ │ -00071cf0: 6973 446f 6d69 6e61 6e74 3a0a 6973 446f isDominant:.isDo │ │ │ │ -00071d00: 6d69 6e61 6e74 2c2e 0a0a 2b2d 2d2d 2d2d minant,...+----- │ │ │ │ +00071a00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00071a10: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00071a20: 2020 6973 4269 7261 7469 6f6e 616c 2070 isBirational p │ │ │ │ +00071a30: 6869 0a20 202a 2049 6e70 7574 733a 0a20 hi. * Inputs:. │ │ │ │ +00071a40: 2020 2020 202a 2070 6869 2c20 6120 2a6e * phi, a *n │ │ │ │ +00071a50: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ +00071a60: 3a20 5261 7469 6f6e 616c 4d61 702c 0a20 : RationalMap,. │ │ │ │ +00071a70: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ +00071a80: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ +00071a90: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ +00071aa0: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ +00071ab0: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ +00071ac0: 2020 2020 202a 202a 6e6f 7465 2042 6c6f * *note Blo │ │ │ │ +00071ad0: 7755 7053 7472 6174 6567 793a 2042 6c6f wUpStrategy: Blo │ │ │ │ +00071ae0: 7755 7053 7472 6174 6567 792c 203d 3e20 wUpStrategy, => │ │ │ │ +00071af0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +00071b00: 7565 0a20 2020 2020 2020 2022 456c 696d ue. "Elim │ │ │ │ +00071b10: 696e 6174 6522 2c0a 2020 2020 2020 2a20 inate",. * │ │ │ │ +00071b20: 2a6e 6f74 6520 4365 7274 6966 793a 2043 *note Certify: C │ │ │ │ +00071b30: 6572 7469 6679 2c20 3d3e 202e 2e2e 2c20 ertify, => ..., │ │ │ │ +00071b40: 6465 6661 756c 7420 7661 6c75 6520 6661 default value fa │ │ │ │ +00071b50: 6c73 652c 2077 6865 7468 6572 2074 6f20 lse, whether to │ │ │ │ +00071b60: 656e 7375 7265 0a20 2020 2020 2020 2063 ensure. c │ │ │ │ +00071b70: 6f72 7265 6374 6e65 7373 206f 6620 6f75 orrectness of ou │ │ │ │ +00071b80: 7470 7574 0a20 2020 2020 202a 202a 6e6f tput. * *no │ │ │ │ +00071b90: 7465 2056 6572 626f 7365 3a20 696e 7665 te Verbose: inve │ │ │ │ +00071ba0: 7273 654d 6170 5f6c 705f 7064 5f70 645f rseMap_lp_pd_pd_ │ │ │ │ +00071bb0: 7064 5f63 6d56 6572 626f 7365 3d3e 5f70 pd_cmVerbose=>_p │ │ │ │ +00071bc0: 645f 7064 5f70 645f 7270 2c20 3d3e 202e d_pd_pd_rp, => . │ │ │ │ +00071bd0: 2e2e 2c0a 2020 2020 2020 2020 6465 6661 ..,. defa │ │ │ │ +00071be0: 756c 7420 7661 6c75 6520 7472 7565 2c0a ult value true,. │ │ │ │ +00071bf0: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ +00071c00: 2020 202a 2061 202a 6e6f 7465 2042 6f6f * a *note Boo │ │ │ │ +00071c10: 6c65 616e 2076 616c 7565 3a20 284d 6163 lean value: (Mac │ │ │ │ +00071c20: 6175 6c61 7932 446f 6329 426f 6f6c 6561 aulay2Doc)Boolea │ │ │ │ +00071c30: 6e2c 2c20 7768 6574 6865 7220 7068 6920 n,, whether phi │ │ │ │ +00071c40: 6973 0a20 2020 2020 2020 2062 6972 6174 is. birat │ │ │ │ +00071c50: 696f 6e61 6c0a 0a44 6573 6372 6970 7469 ional..Descripti │ │ │ │ +00071c60: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +00071c70: 5468 6520 7465 7374 696e 6720 7061 7373 The testing pass │ │ │ │ +00071c80: 6573 2074 6872 6f75 6768 2074 6865 206d es through the m │ │ │ │ +00071c90: 6574 686f 6473 202a 6e6f 7465 2070 726f ethods *note pro │ │ │ │ +00071ca0: 6a65 6374 6976 6544 6567 7265 6573 3a0a jectiveDegrees:. │ │ │ │ +00071cb0: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ +00071cc0: 732c 2c20 2a6e 6f74 6520 6465 6772 6565 s,, *note degree │ │ │ │ +00071cd0: 4d61 703a 2064 6567 7265 654d 6170 2c20 Map: degreeMap, │ │ │ │ +00071ce0: 616e 6420 2a6e 6f74 6520 6973 446f 6d69 and *note isDomi │ │ │ │ +00071cf0: 6e61 6e74 3a0a 6973 446f 6d69 6e61 6e74 nant:.isDominant │ │ │ │ +00071d00: 2c2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...+----------- │ │ │ │ 00071d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071d50: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -00071d60: 4746 2833 3331 5e32 295b 745f 302e 2e74 GF(331^2)[t_0..t │ │ │ │ -00071d70: 5f34 5d20 2020 2020 2020 2020 2020 2020 _4] │ │ │ │ +00071d50: 2d2d 2b0a 7c69 3120 3a20 4746 2833 3331 --+.|i1 : GF(331 │ │ │ │ +00071d60: 5e32 295b 745f 302e 2e74 5f34 5d20 2020 ^2)[t_0..t_4] │ │ │ │ +00071d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071da0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00071da0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00071db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071df0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ -00071e00: 4746 2031 3039 3536 315b 7420 2e2e 7420 GF 109561[t ..t │ │ │ │ -00071e10: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00071df0: 2020 7c0a 7c6f 3120 3d20 4746 2031 3039 |.|o1 = GF 109 │ │ │ │ +00071e00: 3536 315b 7420 2e2e 7420 5d20 2020 2020 561[t ..t ] │ │ │ │ +00071e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00071e50: 2020 2020 2020 2020 2020 2030 2020 2034 0 4 │ │ │ │ +00071e40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00071e50: 2020 2020 2030 2020 2034 2020 2020 2020 0 4 │ │ │ │ 00071e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071e90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00071e90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00071ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071ee0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ -00071ef0: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +00071ee0: 2020 7c0a 7c6f 3120 3a20 506f 6c79 6e6f |.|o1 : Polyno │ │ │ │ +00071ef0: 6d69 616c 5269 6e67 2020 2020 2020 2020 mialRing │ │ │ │ 00071f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00071f30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00071f30: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00071f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00071f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00071f80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ -00071f90: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ -00071fa0: 7028 6d69 6e6f 7273 2832 2c6d 6174 7269 p(minors(2,matri │ │ │ │ -00071fb0: 787b 7b74 5f30 2e2e 745f 337d 2c7b 745f x{{t_0..t_3},{t_ │ │ │ │ -00071fc0: 312e 2e74 5f34 7d7d 292c 2020 2020 2020 1..t_4}}), │ │ │ │ -00071fd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00071f80: 2d2d 2b0a 7c69 3220 3a20 7068 6920 3d20 --+.|i2 : phi = │ │ │ │ +00071f90: 7261 7469 6f6e 616c 4d61 7028 6d69 6e6f rationalMap(mino │ │ │ │ +00071fa0: 7273 2832 2c6d 6174 7269 787b 7b74 5f30 rs(2,matrix{{t_0 │ │ │ │ +00071fb0: 2e2e 745f 337d 2c7b 745f 312e 2e74 5f34 ..t_3},{t_1..t_4 │ │ │ │ +00071fc0: 7d7d 292c 2020 2020 2020 2020 2020 2020 }}), │ │ │ │ +00071fd0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00071fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00071ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072020: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -00072030: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ -00072040: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +00072020: 2020 7c0a 7c6f 3220 3d20 2d2d 2072 6174 |.|o2 = -- rat │ │ │ │ +00072030: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +00072040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072080: 736f 7572 6365 3a20 5072 6f6a 2847 4620 source: Proj(GF │ │ │ │ -00072090: 3130 3935 3631 5b74 202c 2074 202c 2074 109561[t , t , t │ │ │ │ -000720a0: 202c 2074 202c 2074 205d 2920 2020 2020 , t , t ]) │ │ │ │ +00072070: 2020 7c0a 7c20 2020 2020 736f 7572 6365 |.| source │ │ │ │ +00072080: 3a20 5072 6f6a 2847 4620 3130 3935 3631 : Proj(GF 109561 │ │ │ │ +00072090: 5b74 202c 2074 202c 2074 202c 2074 202c [t , t , t , t , │ │ │ │ +000720a0: 2074 205d 2920 2020 2020 2020 2020 2020 t ]) │ │ │ │ 000720b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000720c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000720c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000720d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000720e0: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ -000720f0: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ +000720e0: 2020 3020 2020 3120 2020 3220 2020 3320 0 1 2 3 │ │ │ │ +000720f0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00072100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072120: 7461 7267 6574 3a20 7375 6276 6172 6965 target: subvarie │ │ │ │ -00072130: 7479 206f 6620 5072 6f6a 2847 4620 3130 ty of Proj(GF 10 │ │ │ │ -00072140: 3935 3631 5b78 202c 2078 202c 2078 202c 9561[x , x , x , │ │ │ │ -00072150: 2078 202c 2078 202c 2078 2020 2020 2020 x , x , x │ │ │ │ -00072160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072110: 2020 7c0a 7c20 2020 2020 7461 7267 6574 |.| target │ │ │ │ +00072120: 3a20 7375 6276 6172 6965 7479 206f 6620 : subvariety of │ │ │ │ +00072130: 5072 6f6a 2847 4620 3130 3935 3631 5b78 Proj(GF 109561[x │ │ │ │ +00072140: 202c 2078 202c 2078 202c 2078 202c 2078 , x , x , x , x │ │ │ │ +00072150: 202c 2078 2020 2020 2020 2020 2020 2020 , x │ │ │ │ +00072160: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072190: 2020 2020 2020 3020 2020 3120 2020 3220 0 1 2 │ │ │ │ -000721a0: 2020 3320 2020 3420 2020 2020 2020 2020 3 4 │ │ │ │ -000721b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000721c0: 2020 2020 2020 2020 7b20 2020 2020 2020 { │ │ │ │ +00072190: 3020 2020 3120 2020 3220 2020 3320 2020 0 1 2 3 │ │ │ │ +000721a0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000721b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000721c0: 2020 7b20 2020 2020 2020 2020 2020 2020 { │ │ │ │ 000721d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000721e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000721f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072210: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -00072220: 7820 7820 202b 2078 2078 2020 2020 2020 x x + x x │ │ │ │ +00072200: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072210: 2020 2078 2078 2020 2d20 7820 7820 202b x x - x x + │ │ │ │ +00072220: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ 00072230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072260: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -00072270: 2031 2034 2020 2020 3020 3520 2020 2020 1 4 0 5 │ │ │ │ +00072250: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072260: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ +00072270: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ 00072280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000722a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000722b0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +000722a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000722b0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000722c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000722d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000722e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000722f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072300: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ -00072310: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +000722f0: 2020 7c0a 7c20 2020 2020 6465 6669 6e69 |.| defini │ │ │ │ +00072300: 6e67 2066 6f72 6d73 3a20 7b20 2020 2020 ng forms: { │ │ │ │ +00072310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072360: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00072340: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072350: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00072360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000723a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000723b0: 202d 2074 2020 2b20 7420 7420 2c20 2020 - t + t t , │ │ │ │ +00072390: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000723a0: 2020 2020 2020 2020 2020 202d 2074 2020 - t │ │ │ │ +000723b0: 2b20 7420 7420 2c20 2020 2020 2020 2020 + t t , │ │ │ │ 000723c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000723d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000723e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000723f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072400: 2020 2020 3120 2020 2030 2032 2020 2020 1 0 2 │ │ │ │ +000723e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000723f0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00072400: 2020 2030 2032 2020 2020 2020 2020 2020 0 2 │ │ │ │ 00072410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072430: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000724a0: 202d 2074 2074 2020 2b20 7420 7420 2c20 - t t + t t , │ │ │ │ +00072480: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072490: 2020 2020 2020 2020 2020 202d 2074 2074 - t t │ │ │ │ +000724a0: 2020 2b20 7420 7420 2c20 2020 2020 2020 + t t , │ │ │ │ 000724b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000724c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000724d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000724e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000724f0: 2020 2020 3120 3220 2020 2030 2033 2020 1 2 0 3 │ │ │ │ +000724d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000724e0: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +000724f0: 3220 2020 2030 2033 2020 2020 2020 2020 2 0 3 │ │ │ │ 00072500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072520: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072590: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00072570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072580: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00072590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000725a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000725b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000725c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000725d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000725e0: 202d 2074 2020 2b20 7420 7420 2c20 2020 - t + t t , │ │ │ │ +000725c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000725d0: 2020 2020 2020 2020 2020 202d 2074 2020 - t │ │ │ │ +000725e0: 2b20 7420 7420 2c20 2020 2020 2020 2020 + t t , │ │ │ │ 000725f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072630: 2020 2020 3220 2020 2031 2033 2020 2020 2 1 3 │ │ │ │ +00072610: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072620: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00072630: 2020 2031 2033 2020 2020 2020 2020 2020 1 3 │ │ │ │ 00072640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000726a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000726b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000726c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000726d0: 202d 2074 2074 2020 2b20 7420 7420 2c20 - t t + t t , │ │ │ │ +000726b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000726c0: 2020 2020 2020 2020 2020 202d 2074 2074 - t t │ │ │ │ +000726d0: 2020 2b20 7420 7420 2c20 2020 2020 2020 + t t , │ │ │ │ 000726e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000726f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072720: 2020 2020 3120 3320 2020 2030 2034 2020 1 3 0 4 │ │ │ │ +00072700: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072710: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ +00072720: 3320 2020 2030 2034 2020 2020 2020 2020 3 0 4 │ │ │ │ 00072730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072750: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000727a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000727b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000727c0: 202d 2074 2074 2020 2b20 7420 7420 2c20 - t t + t t , │ │ │ │ +000727a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000727b0: 2020 2020 2020 2020 2020 202d 2074 2074 - t t │ │ │ │ +000727c0: 2020 2b20 7420 7420 2c20 2020 2020 2020 + t t , │ │ │ │ 000727d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000727e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000727f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072810: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ +000727f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072800: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00072810: 3320 2020 2031 2034 2020 2020 2020 2020 3 1 4 │ │ │ │ 00072820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072840: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000728a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000728b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00072890: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000728a0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000728b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000728c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000728d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000728e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000728f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072900: 202d 2074 2020 2b20 7420 7420 2020 2020 - t + t t │ │ │ │ +000728e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000728f0: 2020 2020 2020 2020 2020 202d 2074 2020 - t │ │ │ │ +00072900: 2b20 7420 7420 2020 2020 2020 2020 2020 + t t │ │ │ │ 00072910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072950: 2020 2020 3320 2020 2032 2034 2020 2020 3 2 4 │ │ │ │ +00072930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072940: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00072950: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ 00072960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00072990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000729a0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00072980: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00072990: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +000729a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000729b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000729c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000729d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000729d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000729e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000729f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072a20: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ -00072a30: 5261 7469 6f6e 616c 4d61 7020 2871 7561 RationalMap (qua │ │ │ │ -00072a40: 6472 6174 6963 2064 6f6d 696e 616e 7420 dratic dominant │ │ │ │ -00072a50: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -00072a60: 6d20 5050 5e34 2074 6f20 2020 2020 2020 m PP^4 to │ │ │ │ -00072a70: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00072a20: 2020 7c0a 7c6f 3220 3a20 5261 7469 6f6e |.|o2 : Ration │ │ │ │ +00072a30: 616c 4d61 7020 2871 7561 6472 6174 6963 alMap (quadratic │ │ │ │ +00072a40: 2064 6f6d 696e 616e 7420 7261 7469 6f6e dominant ration │ │ │ │ +00072a50: 616c 206d 6170 2066 726f 6d20 5050 5e34 al map from PP^4 │ │ │ │ +00072a60: 2074 6f20 2020 2020 2020 2020 2020 2020 to │ │ │ │ +00072a70: 2020 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|----------- │ │ │ │ 00072a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00072a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00072aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00072ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00072ac0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c44 6f6d 696e --------|.|Domin │ │ │ │ -00072ad0: 616e 743d 3e69 6e66 696e 6974 7929 2020 ant=>infinity) │ │ │ │ +00072ac0: 2d2d 7c0a 7c44 6f6d 696e 616e 743d 3e69 --|.|Dominant=>i │ │ │ │ +00072ad0: 6e66 696e 6974 7929 2020 2020 2020 2020 nfinity) │ │ │ │ 00072ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072b10: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072b60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072b60: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072bb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072bb0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072c00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072c00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072c50: 2020 2020 2020 2020 7c0a 7c20 5d29 2064 |.| ]) d │ │ │ │ -00072c60: 6566 696e 6564 2062 7920 2020 2020 2020 efined by │ │ │ │ +00072c50: 2020 7c0a 7c20 5d29 2064 6566 696e 6564 |.| ]) defined │ │ │ │ +00072c60: 2062 7920 2020 2020 2020 2020 2020 2020 by │ │ │ │ 00072c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072ca0: 2020 2020 2020 2020 7c0a 7c35 2020 2020 |.|5 │ │ │ │ +00072ca0: 2020 7c0a 7c35 2020 2020 2020 2020 2020 |.|5 │ │ │ │ 00072cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072cf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072cf0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072d40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072d40: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072d90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072d90: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072de0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072e30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072e80: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072ed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072ed0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072f20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072f20: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072f70: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00072fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00072fc0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00072fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00072ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073010: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073010: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073060: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073060: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000730a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000730b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000730b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000730c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000730d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000730e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000730f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073100: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073150: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000731a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000731a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000731b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000731c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000731d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000731e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000731f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000731f0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073240: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073290: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073290: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000732a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000732b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000732c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000732d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000732e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000732e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000732f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073330: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073380: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000733a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000733b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000733c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000733d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000733d0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000733e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000733f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073420: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073470: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000734a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000734b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000734c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000734c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000734d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000734e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000734f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073560: 2020 2020 2020 2020 7c0a 7c68 7970 6572 |.|hyper │ │ │ │ -00073570: 7375 7266 6163 6520 696e 2050 505e 3529 surface in PP^5) │ │ │ │ +00073560: 2020 7c0a 7c68 7970 6572 7375 7266 6163 |.|hypersurfac │ │ │ │ +00073570: 6520 696e 2050 505e 3529 2020 2020 2020 e in PP^5) │ │ │ │ 00073580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000735a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000735b0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000735b0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 000735c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000735d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000735e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000735f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073600: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -00073610: 7469 6d65 2069 7342 6972 6174 696f 6e61 time isBirationa │ │ │ │ -00073620: 6c20 7068 6920 2020 2020 2020 2020 2020 l phi │ │ │ │ +00073600: 2d2d 2b0a 7c69 3320 3a20 7469 6d65 2069 --+.|i3 : time i │ │ │ │ +00073610: 7342 6972 6174 696f 6e61 6c20 7068 6920 sBirational phi │ │ │ │ +00073620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073650: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073660: 7365 6420 302e 3031 3933 3230 3173 2028 sed 0.0193201s ( │ │ │ │ -00073670: 6370 7529 3b20 302e 3031 3933 3230 3673 cpu); 0.0193206s │ │ │ │ -00073680: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00073690: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ -000736a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073650: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +00073660: 3032 3533 3434 3873 2028 6370 7529 3b20 0253448s (cpu); │ │ │ │ +00073670: 302e 3032 3533 3437 3173 2028 7468 7265 0.0253471s (thre │ │ │ │ +00073680: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00073690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000736a0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 000736b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000736e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000736f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ -00073700: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +000736f0: 2020 7c0a 7c6f 3320 3d20 7472 7565 2020 |.|o3 = true │ │ │ │ +00073700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073740: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00073740: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00073750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073790: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ -000737a0: 7469 6d65 2069 7342 6972 6174 696f 6e61 time isBirationa │ │ │ │ -000737b0: 6c28 7068 692c 4365 7274 6966 793d 3e74 l(phi,Certify=>t │ │ │ │ -000737c0: 7275 6529 2020 2020 2020 2020 2020 2020 rue) │ │ │ │ +00073790: 2d2d 2b0a 7c69 3420 3a20 7469 6d65 2069 --+.|i4 : time i │ │ │ │ +000737a0: 7342 6972 6174 696f 6e61 6c28 7068 692c sBirational(phi, │ │ │ │ +000737b0: 4365 7274 6966 793d 3e74 7275 6529 2020 Certify=>true) │ │ │ │ +000737c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000737d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000737e0: 2020 2020 2020 2020 7c0a 7c43 6572 7469 |.|Certi │ │ │ │ -000737f0: 6679 3a20 6f75 7470 7574 2063 6572 7469 fy: output certi │ │ │ │ -00073800: 6669 6564 2120 2020 2020 2020 2020 2020 fied! │ │ │ │ +000737e0: 2020 7c0a 7c43 6572 7469 6679 3a20 6f75 |.|Certify: ou │ │ │ │ +000737f0: 7470 7574 2063 6572 7469 6669 6564 2120 tput certified! │ │ │ │ +00073800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073830: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ -00073840: 7365 6420 302e 3031 3336 3932 3573 2028 sed 0.0136925s ( │ │ │ │ -00073850: 6370 7529 3b20 302e 3031 3332 3931 3573 cpu); 0.0132915s │ │ │ │ -00073860: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ -00073870: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ -00073880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00073830: 2020 7c0a 7c20 2d2d 2075 7365 6420 302e |.| -- used 0. │ │ │ │ +00073840: 3032 3831 3230 3373 2028 6370 7529 3b20 0281203s (cpu); │ │ │ │ +00073850: 302e 3031 3538 3736 3273 2028 7468 7265 0.0158762s (thre │ │ │ │ +00073860: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00073870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00073880: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00073890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000738d0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ -000738e0: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ +000738d0: 2020 7c0a 7c6f 3420 3d20 7472 7565 2020 |.|o4 = true │ │ │ │ +000738e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000738f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073920: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00073920: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 00073930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073970: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00073980: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00073990: 2a20 2a6e 6f74 6520 6973 446f 6d69 6e61 * *note isDomina │ │ │ │ -000739a0: 6e74 3a20 6973 446f 6d69 6e61 6e74 2c20 nt: isDominant, │ │ │ │ -000739b0: 2d2d 2077 6865 7468 6572 2061 2072 6174 -- whether a rat │ │ │ │ -000739c0: 696f 6e61 6c20 6d61 7020 6973 2064 6f6d ional map is dom │ │ │ │ -000739d0: 696e 616e 740a 0a57 6179 7320 746f 2075 inant..Ways to u │ │ │ │ -000739e0: 7365 2069 7342 6972 6174 696f 6e61 6c3a se isBirational: │ │ │ │ -000739f0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00073a00: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00073a10: 2269 7342 6972 6174 696f 6e61 6c28 5261 "isBirational(Ra │ │ │ │ -00073a20: 7469 6f6e 616c 4d61 7029 220a 2020 2a20 tionalMap)". * │ │ │ │ -00073a30: 2269 7342 6972 6174 696f 6e61 6c28 5269 "isBirational(Ri │ │ │ │ -00073a40: 6e67 4d61 7029 220a 0a46 6f72 2074 6865 ngMap)"..For the │ │ │ │ -00073a50: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00073a60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00073a70: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00073a80: 2069 7342 6972 6174 696f 6e61 6c3a 2069 isBirational: i │ │ │ │ -00073a90: 7342 6972 6174 696f 6e61 6c2c 2069 7320 sBirational, is │ │ │ │ -00073aa0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ -00073ab0: 756e 6374 696f 6e20 7769 7468 0a6f 7074 unction with.opt │ │ │ │ -00073ac0: 696f 6e73 3a20 284d 6163 6175 6c61 7932 ions: (Macaulay2 │ │ │ │ -00073ad0: 446f 6329 4d65 7468 6f64 4675 6e63 7469 Doc)MethodFuncti │ │ │ │ -00073ae0: 6f6e 5769 7468 4f70 7469 6f6e 732c 2e0a onWithOptions,.. │ │ │ │ -00073af0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00073970: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +00073980: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +00073990: 6520 6973 446f 6d69 6e61 6e74 3a20 6973 e isDominant: is │ │ │ │ +000739a0: 446f 6d69 6e61 6e74 2c20 2d2d 2077 6865 Dominant, -- whe │ │ │ │ +000739b0: 7468 6572 2061 2072 6174 696f 6e61 6c20 ther a rational │ │ │ │ +000739c0: 6d61 7020 6973 2064 6f6d 696e 616e 740a map is dominant. │ │ │ │ +000739d0: 0a57 6179 7320 746f 2075 7365 2069 7342 .Ways to use isB │ │ │ │ +000739e0: 6972 6174 696f 6e61 6c3a 0a3d 3d3d 3d3d irational:.===== │ │ │ │ +000739f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00073a00: 3d3d 3d3d 0a0a 2020 2a20 2269 7342 6972 ====.. * "isBir │ │ │ │ +00073a10: 6174 696f 6e61 6c28 5261 7469 6f6e 616c ational(Rational │ │ │ │ +00073a20: 4d61 7029 220a 2020 2a20 2269 7342 6972 Map)". * "isBir │ │ │ │ +00073a30: 6174 696f 6e61 6c28 5269 6e67 4d61 7029 ational(RingMap) │ │ │ │ +00073a40: 220a 0a46 6f72 2074 6865 2070 726f 6772 "..For the progr │ │ │ │ +00073a50: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00073a60: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00073a70: 6a65 6374 202a 6e6f 7465 2069 7342 6972 ject *note isBir │ │ │ │ +00073a80: 6174 696f 6e61 6c3a 2069 7342 6972 6174 ational: isBirat │ │ │ │ +00073a90: 696f 6e61 6c2c 2069 7320 6120 2a6e 6f74 ional, is a *not │ │ │ │ +00073aa0: 6520 6d65 7468 6f64 2066 756e 6374 696f e method functio │ │ │ │ +00073ab0: 6e20 7769 7468 0a6f 7074 696f 6e73 3a20 n with.options: │ │ │ │ +00073ac0: 284d 6163 6175 6c61 7932 446f 6329 4d65 (Macaulay2Doc)Me │ │ │ │ +00073ad0: 7468 6f64 4675 6e63 7469 6f6e 5769 7468 thodFunctionWith │ │ │ │ +00073ae0: 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d 2d2d Options,...----- │ │ │ │ +00073af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073b40: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -00073b50: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -00073b60: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -00073b70: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -00073b80: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -00073b90: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -00073ba0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ -00073bb0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ -00073bc0: 323a 3134 303a 302e 0a1f 0a46 696c 653a 2:140:0....File: │ │ │ │ -00073bd0: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ -00073be0: 6f64 653a 2069 7344 6f6d 696e 616e 742c ode: isDominant, │ │ │ │ -00073bf0: 204e 6578 743a 2069 7349 6e76 6572 7365 Next: isInverse │ │ │ │ -00073c00: 4d61 702c 2050 7265 763a 2069 7342 6972 Map, Prev: isBir │ │ │ │ -00073c10: 6174 696f 6e61 6c2c 2055 703a 2054 6f70 ational, Up: Top │ │ │ │ -00073c20: 0a0a 6973 446f 6d69 6e61 6e74 202d 2d20 ..isDominant -- │ │ │ │ -00073c30: 7768 6574 6865 7220 6120 7261 7469 6f6e whether a ration │ │ │ │ -00073c40: 616c 206d 6170 2069 7320 646f 6d69 6e61 al map is domina │ │ │ │ -00073c50: 6e74 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a nt.************* │ │ │ │ +00073b30: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +00073b40: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +00073b50: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +00073b60: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +00073b70: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +00073b80: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +00073b90: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +00073ba0: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +00073bb0: 656e 7461 7469 6f6e 2e6d 323a 3134 303a entation.m2:140: │ │ │ │ +00073bc0: 302e 0a1f 0a46 696c 653a 2043 7265 6d6f 0....File: Cremo │ │ │ │ +00073bd0: 6e61 2e69 6e66 6f2c 204e 6f64 653a 2069 na.info, Node: i │ │ │ │ +00073be0: 7344 6f6d 696e 616e 742c 204e 6578 743a sDominant, Next: │ │ │ │ +00073bf0: 2069 7349 6e76 6572 7365 4d61 702c 2050 isInverseMap, P │ │ │ │ +00073c00: 7265 763a 2069 7342 6972 6174 696f 6e61 rev: isBirationa │ │ │ │ +00073c10: 6c2c 2055 703a 2054 6f70 0a0a 6973 446f l, Up: Top..isDo │ │ │ │ +00073c20: 6d69 6e61 6e74 202d 2d20 7768 6574 6865 minant -- whethe │ │ │ │ +00073c30: 7220 6120 7261 7469 6f6e 616c 206d 6170 r a rational map │ │ │ │ +00073c40: 2069 7320 646f 6d69 6e61 6e74 0a2a 2a2a is dominant.*** │ │ │ │ +00073c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00073c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00073c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00073c80: 2a2a 2a0a 0a20 202a 2055 7361 6765 3a20 ***.. * Usage: │ │ │ │ -00073c90: 0a20 2020 2020 2020 2069 7344 6f6d 696e . isDomin │ │ │ │ -00073ca0: 616e 7420 7068 690a 2020 2a20 496e 7075 ant phi. * Inpu │ │ │ │ -00073cb0: 7473 3a0a 2020 2020 2020 2a20 7068 692c ts:. * phi, │ │ │ │ -00073cc0: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ -00073cd0: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ -00073ce0: 6170 2c0a 2020 2a20 2a6e 6f74 6520 4f70 ap,. * *note Op │ │ │ │ -00073cf0: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -00073d00: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -00073d10: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -00073d20: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -00073d30: 732c 3a0a 2020 2020 2020 2a20 2a6e 6f74 s,:. * *not │ │ │ │ -00073d40: 6520 4365 7274 6966 793a 2043 6572 7469 e Certify: Certi │ │ │ │ -00073d50: 6679 2c20 3d3e 202e 2e2e 2c20 6465 6661 fy, => ..., defa │ │ │ │ -00073d60: 756c 7420 7661 6c75 6520 6661 6c73 652c ult value false, │ │ │ │ -00073d70: 2077 6865 7468 6572 2074 6f20 656e 7375 whether to ensu │ │ │ │ -00073d80: 7265 0a20 2020 2020 2020 2063 6f72 7265 re. corre │ │ │ │ -00073d90: 6374 6e65 7373 206f 6620 6f75 7470 7574 ctness of output │ │ │ │ -00073da0: 0a20 2020 2020 202a 202a 6e6f 7465 2056 . * *note V │ │ │ │ -00073db0: 6572 626f 7365 3a20 696e 7665 7273 654d erbose: inverseM │ │ │ │ -00073dc0: 6170 5f6c 705f 7064 5f70 645f 7064 5f63 ap_lp_pd_pd_pd_c │ │ │ │ -00073dd0: 6d56 6572 626f 7365 3d3e 5f70 645f 7064 mVerbose=>_pd_pd │ │ │ │ -00073de0: 5f70 645f 7270 2c20 3d3e 202e 2e2e 2c0a _pd_rp, => ...,. │ │ │ │ -00073df0: 2020 2020 2020 2020 6465 6661 756c 7420 default │ │ │ │ -00073e00: 7661 6c75 6520 7472 7565 2c0a 2020 2a20 value true,. * │ │ │ │ -00073e10: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ -00073e20: 2061 202a 6e6f 7465 2042 6f6f 6c65 616e a *note Boolean │ │ │ │ -00073e30: 2076 616c 7565 3a20 284d 6163 6175 6c61 value: (Macaula │ │ │ │ -00073e40: 7932 446f 6329 426f 6f6c 6561 6e2c 2c20 y2Doc)Boolean,, │ │ │ │ -00073e50: 7768 6574 6865 7220 7068 6920 6973 2064 whether phi is d │ │ │ │ -00073e60: 6f6d 696e 616e 740a 0a44 6573 6372 6970 ominant..Descrip │ │ │ │ -00073e70: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00073e80: 0a0a 5468 6973 206d 6574 686f 6420 6973 ..This method is │ │ │ │ -00073e90: 2062 6173 6564 206f 6e20 7468 6520 6669 based on the fi │ │ │ │ -00073ea0: 6272 6520 6469 6d65 6e73 696f 6e20 7468 bre dimension th │ │ │ │ -00073eb0: 656f 7265 6d2e 2041 206d 6f72 6520 7374 eorem. A more st │ │ │ │ -00073ec0: 616e 6461 7264 2077 6179 2077 6f75 6c64 andard way would │ │ │ │ -00073ed0: 0a62 6520 746f 2070 6572 666f 726d 2074 .be to perform t │ │ │ │ -00073ee0: 6865 2063 6f6d 6d61 6e64 206b 6572 6e65 he command kerne │ │ │ │ -00073ef0: 6c20 6d61 7020 7068 6920 3d3d 2030 2e0a l map phi == 0.. │ │ │ │ -00073f00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00073c70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ +00073c80: 202a 2055 7361 6765 3a20 0a20 2020 2020 * Usage: . │ │ │ │ +00073c90: 2020 2069 7344 6f6d 696e 616e 7420 7068 isDominant ph │ │ │ │ +00073ca0: 690a 2020 2a20 496e 7075 7473 3a0a 2020 i. * Inputs:. │ │ │ │ +00073cb0: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ +00073cc0: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ +00073cd0: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ +00073ce0: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ +00073cf0: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ +00073d00: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ +00073d10: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +00073d20: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ +00073d30: 2020 2020 2a20 2a6e 6f74 6520 4365 7274 * *note Cert │ │ │ │ +00073d40: 6966 793a 2043 6572 7469 6679 2c20 3d3e ify: Certify, => │ │ │ │ +00073d50: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +00073d60: 6c75 6520 6661 6c73 652c 2077 6865 7468 lue false, wheth │ │ │ │ +00073d70: 6572 2074 6f20 656e 7375 7265 0a20 2020 er to ensure. │ │ │ │ +00073d80: 2020 2020 2063 6f72 7265 6374 6e65 7373 correctness │ │ │ │ +00073d90: 206f 6620 6f75 7470 7574 0a20 2020 2020 of output. │ │ │ │ +00073da0: 202a 202a 6e6f 7465 2056 6572 626f 7365 * *note Verbose │ │ │ │ +00073db0: 3a20 696e 7665 7273 654d 6170 5f6c 705f : inverseMap_lp_ │ │ │ │ +00073dc0: 7064 5f70 645f 7064 5f63 6d56 6572 626f pd_pd_pd_cmVerbo │ │ │ │ +00073dd0: 7365 3d3e 5f70 645f 7064 5f70 645f 7270 se=>_pd_pd_pd_rp │ │ │ │ +00073de0: 2c20 3d3e 202e 2e2e 2c0a 2020 2020 2020 , => ...,. │ │ │ │ +00073df0: 2020 6465 6661 756c 7420 7661 6c75 6520 default value │ │ │ │ +00073e00: 7472 7565 2c0a 2020 2a20 4f75 7470 7574 true,. * Output │ │ │ │ +00073e10: 733a 0a20 2020 2020 202a 2061 202a 6e6f s:. * a *no │ │ │ │ +00073e20: 7465 2042 6f6f 6c65 616e 2076 616c 7565 te Boolean value │ │ │ │ +00073e30: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00073e40: 426f 6f6c 6561 6e2c 2c20 7768 6574 6865 Boolean,, whethe │ │ │ │ +00073e50: 7220 7068 6920 6973 2064 6f6d 696e 616e r phi is dominan │ │ │ │ +00073e60: 740a 0a44 6573 6372 6970 7469 6f6e 0a3d t..Description.= │ │ │ │ +00073e70: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +00073e80: 206d 6574 686f 6420 6973 2062 6173 6564 method is based │ │ │ │ +00073e90: 206f 6e20 7468 6520 6669 6272 6520 6469 on the fibre di │ │ │ │ +00073ea0: 6d65 6e73 696f 6e20 7468 656f 7265 6d2e mension theorem. │ │ │ │ +00073eb0: 2041 206d 6f72 6520 7374 616e 6461 7264 A more standard │ │ │ │ +00073ec0: 2077 6179 2077 6f75 6c64 0a62 6520 746f way would.be to │ │ │ │ +00073ed0: 2070 6572 666f 726d 2074 6865 2063 6f6d perform the com │ │ │ │ +00073ee0: 6d61 6e64 206b 6572 6e65 6c20 6d61 7020 mand kernel map │ │ │ │ +00073ef0: 7068 6920 3d3d 2030 2e0a 0a2b 2d2d 2d2d phi == 0...+---- │ │ │ │ +00073f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00073f50: 0a7c 6931 203a 2050 3820 3d20 5a5a 2f31 .|i1 : P8 = ZZ/1 │ │ │ │ -00073f60: 3031 5b78 5f30 2e2e 785f 385d 3b20 2020 01[x_0..x_8]; │ │ │ │ +00073f40: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a ---------+.|i1 : │ │ │ │ +00073f50: 2050 3820 3d20 5a5a 2f31 3031 5b78 5f30 P8 = ZZ/101[x_0 │ │ │ │ +00073f60: 2e2e 785f 385d 3b20 2020 2020 2020 2020 ..x_8]; │ │ │ │ 00073f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00073f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00073f90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00073fa0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00073f90: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00073fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00073fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00073fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00073ff0: 0a7c 6932 203a 2070 6869 203d 2072 6174 .|i2 : phi = rat │ │ │ │ -00074000: 696f 6e61 6c4d 6170 2069 6465 616c 206a ionalMap ideal j │ │ │ │ -00074010: 6163 6f62 6961 6e20 6964 6561 6c20 2020 acobian ideal │ │ │ │ +00073fe0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a ---------+.|i2 : │ │ │ │ +00073ff0: 2070 6869 203d 2072 6174 696f 6e61 6c4d phi = rationalM │ │ │ │ +00074000: 6170 2069 6465 616c 206a 6163 6f62 6961 ap ideal jacobia │ │ │ │ +00074010: 6e20 6964 6561 6c20 2020 2020 2020 2020 n ideal │ │ │ │ 00074020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074040: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00074030: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00074040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074090: 0a7c 6f32 203a 2052 6174 696f 6e61 6c4d .|o2 : RationalM │ │ │ │ -000740a0: 6170 2028 7261 7469 6f6e 616c 206d 6170 ap (rational map │ │ │ │ -000740b0: 2066 726f 6d20 5050 5e38 2074 6f20 2020 from PP^8 to │ │ │ │ +00074080: 2020 2020 2020 2020 207c 0a7c 6f32 203a |.|o2 : │ │ │ │ +00074090: 2052 6174 696f 6e61 6c4d 6170 2028 7261 RationalMap (ra │ │ │ │ +000740a0: 7469 6f6e 616c 206d 6170 2066 726f 6d20 tional map from │ │ │ │ +000740b0: 5050 5e38 2074 6f20 2020 2020 2020 2020 PP^8 to │ │ │ │ 000740c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000740d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000740e0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000740d0: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +000740e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000740f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074130: 0a7c 6465 7420 6d61 7472 6978 7b7b 785f .|det matrix{{x_ │ │ │ │ -00074140: 302e 2e78 5f34 7d2c 7b78 5f31 2e2e 785f 0..x_4},{x_1..x_ │ │ │ │ -00074150: 357d 2c7b 785f 322e 2e78 5f36 7d2c 7b78 5},{x_2..x_6},{x │ │ │ │ -00074160: 5f33 2e2e 785f 377d 2c7b 785f 342e 2e78 _3..x_7},{x_4..x │ │ │ │ -00074170: 5f38 7d7d 3b20 2020 2020 2020 2020 207c _8}}; | │ │ │ │ -00074180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00074120: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6465 7420 ---------|.|det │ │ │ │ +00074130: 6d61 7472 6978 7b7b 785f 302e 2e78 5f34 matrix{{x_0..x_4 │ │ │ │ +00074140: 7d2c 7b78 5f31 2e2e 785f 357d 2c7b 785f },{x_1..x_5},{x_ │ │ │ │ +00074150: 322e 2e78 5f36 7d2c 7b78 5f33 2e2e 785f 2..x_6},{x_3..x_ │ │ │ │ +00074160: 377d 2c7b 785f 342e 2e78 5f38 7d7d 3b20 7},{x_4..x_8}}; │ │ │ │ +00074170: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00074180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000741a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000741b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000741c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000741d0: 0a7c 5050 5e38 2920 2020 2020 2020 2020 .|PP^8) │ │ │ │ +000741c0: 2020 2020 2020 2020 207c 0a7c 5050 5e38 |.|PP^8 │ │ │ │ +000741d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000741e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000741f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074220: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00074210: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00074220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00074270: 0a7c 6933 203a 2074 696d 6520 6973 446f .|i3 : time isDo │ │ │ │ -00074280: 6d69 6e61 6e74 2870 6869 2c43 6572 7469 minant(phi,Certi │ │ │ │ -00074290: 6679 3d3e 7472 7565 2920 2020 2020 2020 fy=>true) │ │ │ │ +00074260: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a ---------+.|i3 : │ │ │ │ +00074270: 2074 696d 6520 6973 446f 6d69 6e61 6e74 time isDominant │ │ │ │ +00074280: 2870 6869 2c43 6572 7469 6679 3d3e 7472 (phi,Certify=>tr │ │ │ │ +00074290: 7565 2920 2020 2020 2020 2020 2020 2020 ue) │ │ │ │ 000742a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000742b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000742c0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ -000742d0: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ +000742b0: 2020 2020 2020 2020 207c 0a7c 4365 7274 |.|Cert │ │ │ │ +000742c0: 6966 793a 206f 7574 7075 7420 6365 7274 ify: output cert │ │ │ │ +000742d0: 6966 6965 6421 2020 2020 2020 2020 2020 ified! │ │ │ │ 000742e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000742f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074310: 0a7c 202d 2d20 7573 6564 2032 2e35 3833 .| -- used 2.583 │ │ │ │ -00074320: 3435 7320 2863 7075 293b 2032 2e30 3131 45s (cpu); 2.011 │ │ │ │ -00074330: 3334 7320 2874 6872 6561 6429 3b20 3073 34s (thread); 0s │ │ │ │ -00074340: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00074350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074360: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00074300: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +00074310: 7573 6564 2032 2e36 3534 3733 7320 2863 used 2.65473s (c │ │ │ │ +00074320: 7075 293b 2032 2e33 3139 3936 7320 2874 pu); 2.31996s (t │ │ │ │ +00074330: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00074340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00074350: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00074360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000743a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000743b0: 0a7c 6f33 203d 2074 7275 6520 2020 2020 .|o3 = true │ │ │ │ +000743a0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +000743b0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 000743c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000743d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000743e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000743f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074400: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +000743f0: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00074400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00074450: 0a7c 6934 203a 2050 3720 3d20 5a5a 2f31 .|i4 : P7 = ZZ/1 │ │ │ │ -00074460: 3031 5b78 5f30 2e2e 785f 375d 3b20 2020 01[x_0..x_7]; │ │ │ │ +00074440: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a ---------+.|i4 : │ │ │ │ +00074450: 2050 3720 3d20 5a5a 2f31 3031 5b78 5f30 P7 = ZZ/101[x_0 │ │ │ │ +00074460: 2e2e 785f 375d 3b20 2020 2020 2020 2020 ..x_7]; │ │ │ │ 00074470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000744a0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00074490: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +000744a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000744b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000744c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000744d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000744e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -000744f0: 0a7c 6935 203a 202d 2d20 6879 7065 7265 .|i5 : -- hypere │ │ │ │ -00074500: 6c6c 6970 7469 6320 6375 7276 6520 6f66 lliptic curve of │ │ │ │ -00074510: 2067 656e 7573 2033 2020 2020 2020 2020 genus 3 │ │ │ │ +000744e0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ +000744f0: 202d 2d20 6879 7065 7265 6c6c 6970 7469 -- hyperellipti │ │ │ │ +00074500: 6320 6375 7276 6520 6f66 2067 656e 7573 c curve of genus │ │ │ │ +00074510: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00074520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074540: 0a7c 2020 2020 2043 203d 2069 6465 616c .| C = ideal │ │ │ │ -00074550: 2878 5f34 2a78 5f35 2b32 332a 785f 355e (x_4*x_5+23*x_5^ │ │ │ │ -00074560: 322d 3233 2a78 5f30 2a78 5f36 2d31 382a 2-23*x_0*x_6-18* │ │ │ │ -00074570: 785f 312a 785f 362b 362a 785f 322a 785f x_1*x_6+6*x_2*x_ │ │ │ │ -00074580: 362b 3337 2a78 5f33 2a78 5f36 2b32 337c 6+37*x_3*x_6+23| │ │ │ │ -00074590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00074530: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00074540: 2043 203d 2069 6465 616c 2878 5f34 2a78 C = ideal(x_4*x │ │ │ │ +00074550: 5f35 2b32 332a 785f 355e 322d 3233 2a78 _5+23*x_5^2-23*x │ │ │ │ +00074560: 5f30 2a78 5f36 2d31 382a 785f 312a 785f _0*x_6-18*x_1*x_ │ │ │ │ +00074570: 362b 362a 785f 322a 785f 362b 3337 2a78 6+6*x_2*x_6+37*x │ │ │ │ +00074580: 5f33 2a78 5f36 2b32 337c 0a7c 2020 2020 _3*x_6+23|.| │ │ │ │ +00074590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000745a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000745b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000745c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000745d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000745e0: 0a7c 6f35 203a 2049 6465 616c 206f 6620 .|o5 : Ideal of │ │ │ │ -000745f0: 5037 2020 2020 2020 2020 2020 2020 2020 P7 │ │ │ │ +000745d0: 2020 2020 2020 2020 207c 0a7c 6f35 203a |.|o5 : │ │ │ │ +000745e0: 2049 6465 616c 206f 6620 5037 2020 2020 Ideal of P7 │ │ │ │ +000745f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00074610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00074620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00074630: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074620: 2020 2020 2020 2020 207c 0a7c 2d2d 2d2d |.|---- │ │ │ │ +00074630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074680: 0a7c 2a78 5f34 2a78 5f36 2d32 362a 785f .|*x_4*x_6-26*x_ │ │ │ │ -00074690: 352a 785f 362b 322a 785f 365e 322d 3235 5*x_6+2*x_6^2-25 │ │ │ │ -000746a0: 2a78 5f30 2a78 5f37 2b34 352a 785f 312a *x_0*x_7+45*x_1* │ │ │ │ -000746b0: 785f 372b 3330 2a78 5f32 2a78 5f37 2d34 x_7+30*x_2*x_7-4 │ │ │ │ -000746c0: 392a 785f 332a 785f 372d 3439 2a78 5f7c 9*x_3*x_7-49*x_| │ │ │ │ -000746d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074670: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f34 ---------|.|*x_4 │ │ │ │ +00074680: 2a78 5f36 2d32 362a 785f 352a 785f 362b *x_6-26*x_5*x_6+ │ │ │ │ +00074690: 322a 785f 365e 322d 3235 2a78 5f30 2a78 2*x_6^2-25*x_0*x │ │ │ │ +000746a0: 5f37 2b34 352a 785f 312a 785f 372b 3330 _7+45*x_1*x_7+30 │ │ │ │ +000746b0: 2a78 5f32 2a78 5f37 2d34 392a 785f 332a *x_2*x_7-49*x_3* │ │ │ │ +000746c0: 785f 372d 3439 2a78 5f7c 0a7c 2d2d 2d2d x_7-49*x_|.|---- │ │ │ │ +000746d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000746e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000746f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074720: 0a7c 342a 785f 372b 3530 2a78 5f35 2a78 .|4*x_7+50*x_5*x │ │ │ │ -00074730: 5f37 2c78 5f33 2a78 5f35 2d32 342a 785f _7,x_3*x_5-24*x_ │ │ │ │ -00074740: 355e 322b 3231 2a78 5f30 2a78 5f36 2b78 5^2+21*x_0*x_6+x │ │ │ │ -00074750: 5f31 2a78 5f36 2b34 362a 785f 332a 785f _1*x_6+46*x_3*x_ │ │ │ │ -00074760: 362b 3237 2a78 5f34 2a78 5f36 2b35 2a7c 6+27*x_4*x_6+5*| │ │ │ │ -00074770: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074710: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 342a 785f ---------|.|4*x_ │ │ │ │ +00074720: 372b 3530 2a78 5f35 2a78 5f37 2c78 5f33 7+50*x_5*x_7,x_3 │ │ │ │ +00074730: 2a78 5f35 2d32 342a 785f 355e 322b 3231 *x_5-24*x_5^2+21 │ │ │ │ +00074740: 2a78 5f30 2a78 5f36 2b78 5f31 2a78 5f36 *x_0*x_6+x_1*x_6 │ │ │ │ +00074750: 2b34 362a 785f 332a 785f 362b 3237 2a78 +46*x_3*x_6+27*x │ │ │ │ +00074760: 5f34 2a78 5f36 2b35 2a7c 0a7c 2d2d 2d2d _4*x_6+5*|.|---- │ │ │ │ +00074770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000747a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000747b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000747c0: 0a7c 785f 352a 785f 362b 3335 2a78 5f36 .|x_5*x_6+35*x_6 │ │ │ │ -000747d0: 5e32 2b32 302a 785f 302a 785f 372d 3233 ^2+20*x_0*x_7-23 │ │ │ │ -000747e0: 2a78 5f31 2a78 5f37 2b38 2a78 5f32 2a78 *x_1*x_7+8*x_2*x │ │ │ │ -000747f0: 5f37 2d32 322a 785f 332a 785f 372b 3230 _7-22*x_3*x_7+20 │ │ │ │ -00074800: 2a78 5f34 2a78 5f37 2d31 352a 785f 357c *x_4*x_7-15*x_5| │ │ │ │ -00074810: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000747b0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 785f 352a ---------|.|x_5* │ │ │ │ +000747c0: 785f 362b 3335 2a78 5f36 5e32 2b32 302a x_6+35*x_6^2+20* │ │ │ │ +000747d0: 785f 302a 785f 372d 3233 2a78 5f31 2a78 x_0*x_7-23*x_1*x │ │ │ │ +000747e0: 5f37 2b38 2a78 5f32 2a78 5f37 2d32 322a _7+8*x_2*x_7-22* │ │ │ │ +000747f0: 785f 332a 785f 372b 3230 2a78 5f34 2a78 x_3*x_7+20*x_4*x │ │ │ │ +00074800: 5f37 2d31 352a 785f 357c 0a7c 2d2d 2d2d _7-15*x_5|.|---- │ │ │ │ +00074810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074860: 0a7c 2a78 5f37 2c78 5f32 2a78 5f35 2b34 .|*x_7,x_2*x_5+4 │ │ │ │ -00074870: 372a 785f 355e 322d 3430 2a78 5f30 2a78 7*x_5^2-40*x_0*x │ │ │ │ -00074880: 5f36 2b33 372a 785f 312a 785f 362d 3235 _6+37*x_1*x_6-25 │ │ │ │ -00074890: 2a78 5f32 2a78 5f36 2d32 322a 785f 332a *x_2*x_6-22*x_3* │ │ │ │ -000748a0: 785f 362d 382a 785f 342a 785f 362b 207c x_6-8*x_4*x_6+ | │ │ │ │ -000748b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074850: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f37 ---------|.|*x_7 │ │ │ │ +00074860: 2c78 5f32 2a78 5f35 2b34 372a 785f 355e ,x_2*x_5+47*x_5^ │ │ │ │ +00074870: 322d 3430 2a78 5f30 2a78 5f36 2b33 372a 2-40*x_0*x_6+37* │ │ │ │ +00074880: 785f 312a 785f 362d 3235 2a78 5f32 2a78 x_1*x_6-25*x_2*x │ │ │ │ +00074890: 5f36 2d32 322a 785f 332a 785f 362d 382a _6-22*x_3*x_6-8* │ │ │ │ +000748a0: 785f 342a 785f 362b 207c 0a7c 2d2d 2d2d x_4*x_6+ |.|---- │ │ │ │ +000748b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000748c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000748d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000748e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000748f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074900: 0a7c 3237 2a78 5f35 2a78 5f36 2b31 352a .|27*x_5*x_6+15* │ │ │ │ -00074910: 785f 365e 322d 3233 2a78 5f30 2a78 5f37 x_6^2-23*x_0*x_7 │ │ │ │ -00074920: 2d34 322a 785f 312a 785f 372b 3237 2a78 -42*x_1*x_7+27*x │ │ │ │ -00074930: 5f32 2a78 5f37 2b33 352a 785f 332a 785f _2*x_7+35*x_3*x_ │ │ │ │ -00074940: 372b 3339 2a78 5f34 2a78 5f37 2b32 347c 7+39*x_4*x_7+24| │ │ │ │ -00074950: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000748f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3237 2a78 ---------|.|27*x │ │ │ │ +00074900: 5f35 2a78 5f36 2b31 352a 785f 365e 322d _5*x_6+15*x_6^2- │ │ │ │ +00074910: 3233 2a78 5f30 2a78 5f37 2d34 322a 785f 23*x_0*x_7-42*x_ │ │ │ │ +00074920: 312a 785f 372b 3237 2a78 5f32 2a78 5f37 1*x_7+27*x_2*x_7 │ │ │ │ +00074930: 2b33 352a 785f 332a 785f 372b 3339 2a78 +35*x_3*x_7+39*x │ │ │ │ +00074940: 5f34 2a78 5f37 2b32 347c 0a7c 2d2d 2d2d _4*x_7+24|.|---- │ │ │ │ +00074950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000749a0: 0a7c 2a78 5f35 2a78 5f37 2c78 5f31 2a78 .|*x_5*x_7,x_1*x │ │ │ │ -000749b0: 5f35 2b31 352a 785f 355e 322b 3439 2a78 _5+15*x_5^2+49*x │ │ │ │ -000749c0: 5f30 2a78 5f36 2b38 2a78 5f31 2a78 5f36 _0*x_6+8*x_1*x_6 │ │ │ │ -000749d0: 2d33 312a 785f 322a 785f 362b 392a 785f -31*x_2*x_6+9*x_ │ │ │ │ -000749e0: 332a 785f 362b 3338 2a78 5f34 2a78 5f7c 3*x_6+38*x_4*x_| │ │ │ │ -000749f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074990: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f35 ---------|.|*x_5 │ │ │ │ +000749a0: 2a78 5f37 2c78 5f31 2a78 5f35 2b31 352a *x_7,x_1*x_5+15* │ │ │ │ +000749b0: 785f 355e 322b 3439 2a78 5f30 2a78 5f36 x_5^2+49*x_0*x_6 │ │ │ │ +000749c0: 2b38 2a78 5f31 2a78 5f36 2d33 312a 785f +8*x_1*x_6-31*x_ │ │ │ │ +000749d0: 322a 785f 362b 392a 785f 332a 785f 362b 2*x_6+9*x_3*x_6+ │ │ │ │ +000749e0: 3338 2a78 5f34 2a78 5f7c 0a7c 2d2d 2d2d 38*x_4*x_|.|---- │ │ │ │ +000749f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074a40: 0a7c 362d 3336 2a78 5f35 2a78 5f36 2d33 .|6-36*x_5*x_6-3 │ │ │ │ -00074a50: 302a 785f 365e 322d 3333 2a78 5f30 2a78 0*x_6^2-33*x_0*x │ │ │ │ -00074a60: 5f37 2b32 362a 785f 312a 785f 372b 3332 _7+26*x_1*x_7+32 │ │ │ │ -00074a70: 2a78 5f32 2a78 5f37 2b32 372a 785f 332a *x_2*x_7+27*x_3* │ │ │ │ -00074a80: 785f 372b 362a 785f 342a 785f 372b 207c x_7+6*x_4*x_7+ | │ │ │ │ -00074a90: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074a30: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 362d 3336 ---------|.|6-36 │ │ │ │ +00074a40: 2a78 5f35 2a78 5f36 2d33 302a 785f 365e *x_5*x_6-30*x_6^ │ │ │ │ +00074a50: 322d 3333 2a78 5f30 2a78 5f37 2b32 362a 2-33*x_0*x_7+26* │ │ │ │ +00074a60: 785f 312a 785f 372b 3332 2a78 5f32 2a78 x_1*x_7+32*x_2*x │ │ │ │ +00074a70: 5f37 2b32 372a 785f 332a 785f 372b 362a _7+27*x_3*x_7+6* │ │ │ │ +00074a80: 785f 342a 785f 372b 207c 0a7c 2d2d 2d2d x_4*x_7+ |.|---- │ │ │ │ +00074a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074ae0: 0a7c 3336 2a78 5f35 2a78 5f37 2c78 5f30 .|36*x_5*x_7,x_0 │ │ │ │ -00074af0: 2a78 5f35 2b33 302a 785f 355e 322d 3131 *x_5+30*x_5^2-11 │ │ │ │ -00074b00: 2a78 5f30 2a78 5f36 2d33 382a 785f 312a *x_0*x_6-38*x_1* │ │ │ │ -00074b10: 785f 362b 3133 2a78 5f32 2a78 5f36 2d33 x_6+13*x_2*x_6-3 │ │ │ │ -00074b20: 322a 785f 332a 785f 362d 3330 2a78 5f7c 2*x_3*x_6-30*x_| │ │ │ │ -00074b30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074ad0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3336 2a78 ---------|.|36*x │ │ │ │ +00074ae0: 5f35 2a78 5f37 2c78 5f30 2a78 5f35 2b33 _5*x_7,x_0*x_5+3 │ │ │ │ +00074af0: 302a 785f 355e 322d 3131 2a78 5f30 2a78 0*x_5^2-11*x_0*x │ │ │ │ +00074b00: 5f36 2d33 382a 785f 312a 785f 362b 3133 _6-38*x_1*x_6+13 │ │ │ │ +00074b10: 2a78 5f32 2a78 5f36 2d33 322a 785f 332a *x_2*x_6-32*x_3* │ │ │ │ +00074b20: 785f 362d 3330 2a78 5f7c 0a7c 2d2d 2d2d x_6-30*x_|.|---- │ │ │ │ +00074b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074b80: 0a7c 342a 785f 362b 342a 785f 352a 785f .|4*x_6+4*x_5*x_ │ │ │ │ -00074b90: 362d 3238 2a78 5f36 5e32 2d33 302a 785f 6-28*x_6^2-30*x_ │ │ │ │ -00074ba0: 302a 785f 372d 362a 785f 312a 785f 372d 0*x_7-6*x_1*x_7- │ │ │ │ -00074bb0: 3435 2a78 5f32 2a78 5f37 2b33 342a 785f 45*x_2*x_7+34*x_ │ │ │ │ -00074bc0: 332a 785f 372b 3230 2a78 5f34 2a78 5f7c 3*x_7+20*x_4*x_| │ │ │ │ -00074bd0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074b70: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 342a 785f ---------|.|4*x_ │ │ │ │ +00074b80: 362b 342a 785f 352a 785f 362d 3238 2a78 6+4*x_5*x_6-28*x │ │ │ │ +00074b90: 5f36 5e32 2d33 302a 785f 302a 785f 372d _6^2-30*x_0*x_7- │ │ │ │ +00074ba0: 362a 785f 312a 785f 372d 3435 2a78 5f32 6*x_1*x_7-45*x_2 │ │ │ │ +00074bb0: 2a78 5f37 2b33 342a 785f 332a 785f 372b *x_7+34*x_3*x_7+ │ │ │ │ +00074bc0: 3230 2a78 5f34 2a78 5f7c 0a7c 2d2d 2d2d 20*x_4*x_|.|---- │ │ │ │ +00074bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074c20: 0a7c 372b 3438 2a78 5f35 2a78 5f37 2c78 .|7+48*x_5*x_7,x │ │ │ │ -00074c30: 5f33 2a78 5f34 2b34 362a 785f 355e 322d _3*x_4+46*x_5^2- │ │ │ │ -00074c40: 3337 2a78 5f30 2a78 5f36 2b32 372a 785f 37*x_0*x_6+27*x_ │ │ │ │ -00074c50: 312a 785f 362b 3333 2a78 5f32 2a78 5f36 1*x_6+33*x_2*x_6 │ │ │ │ -00074c60: 2b38 2a78 5f33 2a78 5f36 2d33 322a 787c +8*x_3*x_6-32*x| │ │ │ │ -00074c70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074c10: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 372b 3438 ---------|.|7+48 │ │ │ │ +00074c20: 2a78 5f35 2a78 5f37 2c78 5f33 2a78 5f34 *x_5*x_7,x_3*x_4 │ │ │ │ +00074c30: 2b34 362a 785f 355e 322d 3337 2a78 5f30 +46*x_5^2-37*x_0 │ │ │ │ +00074c40: 2a78 5f36 2b32 372a 785f 312a 785f 362b *x_6+27*x_1*x_6+ │ │ │ │ +00074c50: 3333 2a78 5f32 2a78 5f36 2b38 2a78 5f33 33*x_2*x_6+8*x_3 │ │ │ │ +00074c60: 2a78 5f36 2d33 322a 787c 0a7c 2d2d 2d2d *x_6-32*x|.|---- │ │ │ │ +00074c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074cc0: 0a7c 5f34 2a78 5f36 2b34 322a 785f 352a .|_4*x_6+42*x_5* │ │ │ │ -00074cd0: 785f 362d 3334 2a78 5f36 5e32 2d33 372a x_6-34*x_6^2-37* │ │ │ │ -00074ce0: 785f 302a 785f 372d 3238 2a78 5f31 2a78 x_0*x_7-28*x_1*x │ │ │ │ -00074cf0: 5f37 2b31 302a 785f 322a 785f 372d 3237 _7+10*x_2*x_7-27 │ │ │ │ -00074d00: 2a78 5f33 2a78 5f37 2d34 322a 785f 347c *x_3*x_7-42*x_4| │ │ │ │ -00074d10: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074cb0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f34 2a78 ---------|.|_4*x │ │ │ │ +00074cc0: 5f36 2b34 322a 785f 352a 785f 362d 3334 _6+42*x_5*x_6-34 │ │ │ │ +00074cd0: 2a78 5f36 5e32 2d33 372a 785f 302a 785f *x_6^2-37*x_0*x_ │ │ │ │ +00074ce0: 372d 3238 2a78 5f31 2a78 5f37 2b31 302a 7-28*x_1*x_7+10* │ │ │ │ +00074cf0: 785f 322a 785f 372d 3237 2a78 5f33 2a78 x_2*x_7-27*x_3*x │ │ │ │ +00074d00: 5f37 2d34 322a 785f 347c 0a7c 2d2d 2d2d _7-42*x_4|.|---- │ │ │ │ +00074d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074d60: 0a7c 2a78 5f37 2d38 2a78 5f35 2a78 5f37 .|*x_7-8*x_5*x_7 │ │ │ │ -00074d70: 2c78 5f32 2a78 5f34 2d32 352a 785f 355e ,x_2*x_4-25*x_5^ │ │ │ │ -00074d80: 322d 342a 785f 302a 785f 362b 322a 785f 2-4*x_0*x_6+2*x_ │ │ │ │ -00074d90: 312a 785f 362d 3331 2a78 5f32 2a78 5f36 1*x_6-31*x_2*x_6 │ │ │ │ -00074da0: 2d35 2a78 5f33 2a78 5f36 2b31 362a 787c -5*x_3*x_6+16*x| │ │ │ │ -00074db0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074d50: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f37 ---------|.|*x_7 │ │ │ │ +00074d60: 2d38 2a78 5f35 2a78 5f37 2c78 5f32 2a78 -8*x_5*x_7,x_2*x │ │ │ │ +00074d70: 5f34 2d32 352a 785f 355e 322d 342a 785f _4-25*x_5^2-4*x_ │ │ │ │ +00074d80: 302a 785f 362b 322a 785f 312a 785f 362d 0*x_6+2*x_1*x_6- │ │ │ │ +00074d90: 3331 2a78 5f32 2a78 5f36 2d35 2a78 5f33 31*x_2*x_6-5*x_3 │ │ │ │ +00074da0: 2a78 5f36 2b31 362a 787c 0a7c 2d2d 2d2d *x_6+16*x|.|---- │ │ │ │ +00074db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074e00: 0a7c 5f34 2a78 5f36 2d32 342a 785f 352a .|_4*x_6-24*x_5* │ │ │ │ -00074e10: 785f 362b 3331 2a78 5f36 5e32 2d33 302a x_6+31*x_6^2-30* │ │ │ │ -00074e20: 785f 302a 785f 372b 3332 2a78 5f31 2a78 x_0*x_7+32*x_1*x │ │ │ │ -00074e30: 5f37 2b31 322a 785f 322a 785f 372d 3430 _7+12*x_2*x_7-40 │ │ │ │ -00074e40: 2a78 5f33 2a78 5f37 2b33 2a78 5f34 2a7c *x_3*x_7+3*x_4*| │ │ │ │ -00074e50: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074df0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f34 2a78 ---------|.|_4*x │ │ │ │ +00074e00: 5f36 2d32 342a 785f 352a 785f 362b 3331 _6-24*x_5*x_6+31 │ │ │ │ +00074e10: 2a78 5f36 5e32 2d33 302a 785f 302a 785f *x_6^2-30*x_0*x_ │ │ │ │ +00074e20: 372b 3332 2a78 5f31 2a78 5f37 2b31 322a 7+32*x_1*x_7+12* │ │ │ │ +00074e30: 785f 322a 785f 372d 3430 2a78 5f33 2a78 x_2*x_7-40*x_3*x │ │ │ │ +00074e40: 5f37 2b33 2a78 5f34 2a7c 0a7c 2d2d 2d2d _7+3*x_4*|.|---- │ │ │ │ +00074e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074ea0: 0a7c 785f 372d 3238 2a78 5f35 2a78 5f37 .|x_7-28*x_5*x_7 │ │ │ │ -00074eb0: 2c78 5f30 2a78 5f34 2b31 352a 785f 355e ,x_0*x_4+15*x_5^ │ │ │ │ -00074ec0: 322b 3438 2a78 5f30 2a78 5f36 2d35 302a 2+48*x_0*x_6-50* │ │ │ │ -00074ed0: 785f 312a 785f 362b 3436 2a78 5f32 2a78 x_1*x_6+46*x_2*x │ │ │ │ -00074ee0: 5f36 2d34 382a 785f 332a 785f 362d 207c _6-48*x_3*x_6- | │ │ │ │ -00074ef0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074e90: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 785f 372d ---------|.|x_7- │ │ │ │ +00074ea0: 3238 2a78 5f35 2a78 5f37 2c78 5f30 2a78 28*x_5*x_7,x_0*x │ │ │ │ +00074eb0: 5f34 2b31 352a 785f 355e 322b 3438 2a78 _4+15*x_5^2+48*x │ │ │ │ +00074ec0: 5f30 2a78 5f36 2d35 302a 785f 312a 785f _0*x_6-50*x_1*x_ │ │ │ │ +00074ed0: 362b 3436 2a78 5f32 2a78 5f36 2d34 382a 6+46*x_2*x_6-48* │ │ │ │ +00074ee0: 785f 332a 785f 362d 207c 0a7c 2d2d 2d2d x_3*x_6- |.|---- │ │ │ │ +00074ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074f40: 0a7c 3233 2a78 5f34 2a78 5f36 2d32 382a .|23*x_4*x_6-28* │ │ │ │ -00074f50: 785f 352a 785f 362b 3339 2a78 5f36 5e32 x_5*x_6+39*x_6^2 │ │ │ │ -00074f60: 2b33 382a 785f 312a 785f 372d 352a 785f +38*x_1*x_7-5*x_ │ │ │ │ -00074f70: 332a 785f 372b 352a 785f 342a 785f 372d 3*x_7+5*x_4*x_7- │ │ │ │ -00074f80: 3334 2a78 5f35 2a78 5f37 2c78 5f33 5e7c 34*x_5*x_7,x_3^| │ │ │ │ -00074f90: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074f30: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3233 2a78 ---------|.|23*x │ │ │ │ +00074f40: 5f34 2a78 5f36 2d32 382a 785f 352a 785f _4*x_6-28*x_5*x_ │ │ │ │ +00074f50: 362b 3339 2a78 5f36 5e32 2b33 382a 785f 6+39*x_6^2+38*x_ │ │ │ │ +00074f60: 312a 785f 372d 352a 785f 332a 785f 372b 1*x_7-5*x_3*x_7+ │ │ │ │ +00074f70: 352a 785f 342a 785f 372d 3334 2a78 5f35 5*x_4*x_7-34*x_5 │ │ │ │ +00074f80: 2a78 5f37 2c78 5f33 5e7c 0a7c 2d2d 2d2d *x_7,x_3^|.|---- │ │ │ │ +00074f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00074fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00074fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00074fe0: 0a7c 322d 3331 2a78 5f35 5e32 2b34 312a .|2-31*x_5^2+41* │ │ │ │ -00074ff0: 785f 302a 785f 362d 3330 2a78 5f31 2a78 x_0*x_6-30*x_1*x │ │ │ │ -00075000: 5f36 2d34 2a78 5f32 2a78 5f36 2b34 332a _6-4*x_2*x_6+43* │ │ │ │ -00075010: 785f 332a 785f 362b 3233 2a78 5f34 2a78 x_3*x_6+23*x_4*x │ │ │ │ -00075020: 5f36 2b37 2a78 5f35 2a78 5f36 2b33 317c _6+7*x_5*x_6+31| │ │ │ │ -00075030: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00074fd0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 322d 3331 ---------|.|2-31 │ │ │ │ +00074fe0: 2a78 5f35 5e32 2b34 312a 785f 302a 785f *x_5^2+41*x_0*x_ │ │ │ │ +00074ff0: 362d 3330 2a78 5f31 2a78 5f36 2d34 2a78 6-30*x_1*x_6-4*x │ │ │ │ +00075000: 5f32 2a78 5f36 2b34 332a 785f 332a 785f _2*x_6+43*x_3*x_ │ │ │ │ +00075010: 362b 3233 2a78 5f34 2a78 5f36 2b37 2a78 6+23*x_4*x_6+7*x │ │ │ │ +00075020: 5f35 2a78 5f36 2b33 317c 0a7c 2d2d 2d2d _5*x_6+31|.|---- │ │ │ │ +00075030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075080: 0a7c 2a78 5f36 5e32 2d31 392a 785f 302a .|*x_6^2-19*x_0* │ │ │ │ -00075090: 785f 372b 3235 2a78 5f31 2a78 5f37 2d34 x_7+25*x_1*x_7-4 │ │ │ │ -000750a0: 392a 785f 322a 785f 372d 3136 2a78 5f33 9*x_2*x_7-16*x_3 │ │ │ │ -000750b0: 2a78 5f37 2d34 352a 785f 342a 785f 372b *x_7-45*x_4*x_7+ │ │ │ │ -000750c0: 3235 2a78 5f35 2a78 5f37 2c78 5f32 2a7c 25*x_5*x_7,x_2*| │ │ │ │ -000750d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075070: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f36 ---------|.|*x_6 │ │ │ │ +00075080: 5e32 2d31 392a 785f 302a 785f 372b 3235 ^2-19*x_0*x_7+25 │ │ │ │ +00075090: 2a78 5f31 2a78 5f37 2d34 392a 785f 322a *x_1*x_7-49*x_2* │ │ │ │ +000750a0: 785f 372d 3136 2a78 5f33 2a78 5f37 2d34 x_7-16*x_3*x_7-4 │ │ │ │ +000750b0: 352a 785f 342a 785f 372b 3235 2a78 5f35 5*x_4*x_7+25*x_5 │ │ │ │ +000750c0: 2a78 5f37 2c78 5f32 2a7c 0a7c 2d2d 2d2d *x_7,x_2*|.|---- │ │ │ │ +000750d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000750e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000750f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075120: 0a7c 785f 332b 3133 2a78 5f35 5e32 2d34 .|x_3+13*x_5^2-4 │ │ │ │ -00075130: 352a 785f 302a 785f 362d 3232 2a78 5f31 5*x_0*x_6-22*x_1 │ │ │ │ -00075140: 2a78 5f36 2b33 332a 785f 322a 785f 362d *x_6+33*x_2*x_6- │ │ │ │ -00075150: 3236 2a78 5f33 2a78 5f36 2d32 312a 785f 26*x_3*x_6-21*x_ │ │ │ │ -00075160: 342a 785f 362b 3334 2a78 5f35 2a78 5f7c 4*x_6+34*x_5*x_| │ │ │ │ -00075170: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075110: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 785f 332b ---------|.|x_3+ │ │ │ │ +00075120: 3133 2a78 5f35 5e32 2d34 352a 785f 302a 13*x_5^2-45*x_0* │ │ │ │ +00075130: 785f 362d 3232 2a78 5f31 2a78 5f36 2b33 x_6-22*x_1*x_6+3 │ │ │ │ +00075140: 332a 785f 322a 785f 362d 3236 2a78 5f33 3*x_2*x_6-26*x_3 │ │ │ │ +00075150: 2a78 5f36 2d32 312a 785f 342a 785f 362b *x_6-21*x_4*x_6+ │ │ │ │ +00075160: 3334 2a78 5f35 2a78 5f7c 0a7c 2d2d 2d2d 34*x_5*x_|.|---- │ │ │ │ +00075170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000751a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000751b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000751c0: 0a7c 362d 3231 2a78 5f36 5e32 2d34 372a .|6-21*x_6^2-47* │ │ │ │ -000751d0: 785f 302a 785f 372d 3130 2a78 5f31 2a78 x_0*x_7-10*x_1*x │ │ │ │ -000751e0: 5f37 2b32 392a 785f 322a 785f 372d 3436 _7+29*x_2*x_7-46 │ │ │ │ -000751f0: 2a78 5f33 2a78 5f37 2d78 5f34 2a78 5f37 *x_3*x_7-x_4*x_7 │ │ │ │ -00075200: 2b32 302a 785f 352a 785f 372c 785f 317c +20*x_5*x_7,x_1| │ │ │ │ -00075210: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000751b0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 362d 3231 ---------|.|6-21 │ │ │ │ +000751c0: 2a78 5f36 5e32 2d34 372a 785f 302a 785f *x_6^2-47*x_0*x_ │ │ │ │ +000751d0: 372d 3130 2a78 5f31 2a78 5f37 2b32 392a 7-10*x_1*x_7+29* │ │ │ │ +000751e0: 785f 322a 785f 372d 3436 2a78 5f33 2a78 x_2*x_7-46*x_3*x │ │ │ │ +000751f0: 5f37 2d78 5f34 2a78 5f37 2b32 302a 785f _7-x_4*x_7+20*x_ │ │ │ │ +00075200: 352a 785f 372c 785f 317c 0a7c 2d2d 2d2d 5*x_7,x_1|.|---- │ │ │ │ +00075210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075260: 0a7c 2a78 5f33 2b32 322a 785f 355e 322b .|*x_3+22*x_5^2+ │ │ │ │ -00075270: 342a 785f 302a 785f 362b 332a 785f 312a 4*x_0*x_6+3*x_1* │ │ │ │ -00075280: 785f 362b 3435 2a78 5f32 2a78 5f36 2b33 x_6+45*x_2*x_6+3 │ │ │ │ -00075290: 372a 785f 332a 785f 362b 3137 2a78 5f34 7*x_3*x_6+17*x_4 │ │ │ │ -000752a0: 2a78 5f36 2b33 362a 785f 352a 785f 367c *x_6+36*x_5*x_6| │ │ │ │ -000752b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075250: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f33 ---------|.|*x_3 │ │ │ │ +00075260: 2b32 322a 785f 355e 322b 342a 785f 302a +22*x_5^2+4*x_0* │ │ │ │ +00075270: 785f 362b 332a 785f 312a 785f 362b 3435 x_6+3*x_1*x_6+45 │ │ │ │ +00075280: 2a78 5f32 2a78 5f36 2b33 372a 785f 332a *x_2*x_6+37*x_3* │ │ │ │ +00075290: 785f 362b 3137 2a78 5f34 2a78 5f36 2b33 x_6+17*x_4*x_6+3 │ │ │ │ +000752a0: 362a 785f 352a 785f 367c 0a7c 2d2d 2d2d 6*x_5*x_6|.|---- │ │ │ │ +000752b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000752c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000752d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000752e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000752f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075300: 0a7c 2d32 2a78 5f36 5e32 2d33 312a 785f .|-2*x_6^2-31*x_ │ │ │ │ -00075310: 302a 785f 372b 332a 785f 312a 785f 372d 0*x_7+3*x_1*x_7- │ │ │ │ -00075320: 3132 2a78 5f32 2a78 5f37 2b31 392a 785f 12*x_2*x_7+19*x_ │ │ │ │ -00075330: 332a 785f 372b 3238 2a78 5f34 2a78 5f37 3*x_7+28*x_4*x_7 │ │ │ │ -00075340: 2b33 302a 785f 352a 785f 372c 785f 307c +30*x_5*x_7,x_0| │ │ │ │ -00075350: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000752f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d32 2a78 ---------|.|-2*x │ │ │ │ +00075300: 5f36 5e32 2d33 312a 785f 302a 785f 372b _6^2-31*x_0*x_7+ │ │ │ │ +00075310: 332a 785f 312a 785f 372d 3132 2a78 5f32 3*x_1*x_7-12*x_2 │ │ │ │ +00075320: 2a78 5f37 2b31 392a 785f 332a 785f 372b *x_7+19*x_3*x_7+ │ │ │ │ +00075330: 3238 2a78 5f34 2a78 5f37 2b33 302a 785f 28*x_4*x_7+30*x_ │ │ │ │ +00075340: 352a 785f 372c 785f 307c 0a7c 2d2d 2d2d 5*x_7,x_0|.|---- │ │ │ │ +00075350: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000753a0: 0a7c 2a78 5f33 2d34 372a 785f 355e 322d .|*x_3-47*x_5^2- │ │ │ │ -000753b0: 3433 2a78 5f30 2a78 5f36 2b36 2a78 5f31 43*x_0*x_6+6*x_1 │ │ │ │ -000753c0: 2a78 5f36 2d34 302a 785f 322a 785f 362b *x_6-40*x_2*x_6+ │ │ │ │ -000753d0: 3231 2a78 5f33 2a78 5f36 2b32 362a 785f 21*x_3*x_6+26*x_ │ │ │ │ -000753e0: 342a 785f 362d 352a 785f 352a 785f 367c 4*x_6-5*x_5*x_6| │ │ │ │ -000753f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075390: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f33 ---------|.|*x_3 │ │ │ │ +000753a0: 2d34 372a 785f 355e 322d 3433 2a78 5f30 -47*x_5^2-43*x_0 │ │ │ │ +000753b0: 2a78 5f36 2b36 2a78 5f31 2a78 5f36 2d34 *x_6+6*x_1*x_6-4 │ │ │ │ +000753c0: 302a 785f 322a 785f 362b 3231 2a78 5f33 0*x_2*x_6+21*x_3 │ │ │ │ +000753d0: 2a78 5f36 2b32 362a 785f 342a 785f 362d *x_6+26*x_4*x_6- │ │ │ │ +000753e0: 352a 785f 352a 785f 367c 0a7c 2d2d 2d2d 5*x_5*x_6|.|---- │ │ │ │ +000753f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075440: 0a7c 2d35 2a78 5f36 5e32 2b34 2a78 5f30 .|-5*x_6^2+4*x_0 │ │ │ │ -00075450: 2a78 5f37 2d31 352a 785f 312a 785f 372b *x_7-15*x_1*x_7+ │ │ │ │ -00075460: 3138 2a78 5f32 2a78 5f37 2d33 312a 785f 18*x_2*x_7-31*x_ │ │ │ │ -00075470: 332a 785f 372b 3530 2a78 5f34 2a78 5f37 3*x_7+50*x_4*x_7 │ │ │ │ -00075480: 2d34 362a 785f 352a 785f 372c 785f 327c -46*x_5*x_7,x_2| │ │ │ │ -00075490: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075430: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d35 2a78 ---------|.|-5*x │ │ │ │ +00075440: 5f36 5e32 2b34 2a78 5f30 2a78 5f37 2d31 _6^2+4*x_0*x_7-1 │ │ │ │ +00075450: 352a 785f 312a 785f 372b 3138 2a78 5f32 5*x_1*x_7+18*x_2 │ │ │ │ +00075460: 2a78 5f37 2d33 312a 785f 332a 785f 372b *x_7-31*x_3*x_7+ │ │ │ │ +00075470: 3530 2a78 5f34 2a78 5f37 2d34 362a 785f 50*x_4*x_7-46*x_ │ │ │ │ +00075480: 352a 785f 372c 785f 327c 0a7c 2d2d 2d2d 5*x_7,x_2|.|---- │ │ │ │ +00075490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000754a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000754b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000754c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000754d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000754e0: 0a7c 5e32 2b34 2a78 5f35 5e32 2b33 312a .|^2+4*x_5^2+31* │ │ │ │ -000754f0: 785f 302a 785f 362b 3431 2a78 5f31 2a78 x_0*x_6+41*x_1*x │ │ │ │ -00075500: 5f36 2b33 312a 785f 322a 785f 362b 3238 _6+31*x_2*x_6+28 │ │ │ │ -00075510: 2a78 5f33 2a78 5f36 2b34 322a 785f 342a *x_3*x_6+42*x_4* │ │ │ │ -00075520: 785f 362d 3238 2a78 5f35 2a78 5f36 2d7c x_6-28*x_5*x_6-| │ │ │ │ -00075530: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000754d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5e32 2b34 ---------|.|^2+4 │ │ │ │ +000754e0: 2a78 5f35 5e32 2b33 312a 785f 302a 785f *x_5^2+31*x_0*x_ │ │ │ │ +000754f0: 362b 3431 2a78 5f31 2a78 5f36 2b33 312a 6+41*x_1*x_6+31* │ │ │ │ +00075500: 785f 322a 785f 362b 3238 2a78 5f33 2a78 x_2*x_6+28*x_3*x │ │ │ │ +00075510: 5f36 2b34 322a 785f 342a 785f 362d 3238 _6+42*x_4*x_6-28 │ │ │ │ +00075520: 2a78 5f35 2a78 5f36 2d7c 0a7c 2d2d 2d2d *x_5*x_6-|.|---- │ │ │ │ +00075530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075580: 0a7c 342a 785f 365e 322d 372a 785f 302a .|4*x_6^2-7*x_0* │ │ │ │ -00075590: 785f 372b 3135 2a78 5f31 2a78 5f37 2d39 x_7+15*x_1*x_7-9 │ │ │ │ -000755a0: 2a78 5f32 2a78 5f37 2b33 312a 785f 332a *x_2*x_7+31*x_3* │ │ │ │ -000755b0: 785f 372b 332a 785f 342a 785f 372b 372a x_7+3*x_4*x_7+7* │ │ │ │ -000755c0: 785f 352a 785f 372c 785f 312a 785f 327c x_5*x_7,x_1*x_2| │ │ │ │ -000755d0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075570: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 342a 785f ---------|.|4*x_ │ │ │ │ +00075580: 365e 322d 372a 785f 302a 785f 372b 3135 6^2-7*x_0*x_7+15 │ │ │ │ +00075590: 2a78 5f31 2a78 5f37 2d39 2a78 5f32 2a78 *x_1*x_7-9*x_2*x │ │ │ │ +000755a0: 5f37 2b33 312a 785f 332a 785f 372b 332a _7+31*x_3*x_7+3* │ │ │ │ +000755b0: 785f 342a 785f 372b 372a 785f 352a 785f x_4*x_7+7*x_5*x_ │ │ │ │ +000755c0: 372c 785f 312a 785f 327c 0a7c 2d2d 2d2d 7,x_1*x_2|.|---- │ │ │ │ +000755d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000755e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000755f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075620: 0a7c 2d34 362a 785f 355e 322d 362a 785f .|-46*x_5^2-6*x_ │ │ │ │ -00075630: 302a 785f 362d 3530 2a78 5f31 2a78 5f36 0*x_6-50*x_1*x_6 │ │ │ │ -00075640: 2b33 322a 785f 322a 785f 362d 3130 2a78 +32*x_2*x_6-10*x │ │ │ │ -00075650: 5f33 2a78 5f36 2b34 322a 785f 342a 785f _3*x_6+42*x_4*x_ │ │ │ │ -00075660: 362b 3333 2a78 5f35 2a78 5f36 2b31 387c 6+33*x_5*x_6+18| │ │ │ │ -00075670: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075610: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d34 362a ---------|.|-46* │ │ │ │ +00075620: 785f 355e 322d 362a 785f 302a 785f 362d x_5^2-6*x_0*x_6- │ │ │ │ +00075630: 3530 2a78 5f31 2a78 5f36 2b33 322a 785f 50*x_1*x_6+32*x_ │ │ │ │ +00075640: 322a 785f 362d 3130 2a78 5f33 2a78 5f36 2*x_6-10*x_3*x_6 │ │ │ │ +00075650: 2b34 322a 785f 342a 785f 362b 3333 2a78 +42*x_4*x_6+33*x │ │ │ │ +00075660: 5f35 2a78 5f36 2b31 387c 0a7c 2d2d 2d2d _5*x_6+18|.|---- │ │ │ │ +00075670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000756a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000756b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000756c0: 0a7c 2a78 5f36 5e32 2d39 2a78 5f30 2a78 .|*x_6^2-9*x_0*x │ │ │ │ -000756d0: 5f37 2d32 302a 785f 312a 785f 372b 3435 _7-20*x_1*x_7+45 │ │ │ │ -000756e0: 2a78 5f32 2a78 5f37 2d39 2a78 5f33 2a78 *x_2*x_7-9*x_3*x │ │ │ │ -000756f0: 5f37 2b31 302a 785f 342a 785f 372d 382a _7+10*x_4*x_7-8* │ │ │ │ -00075700: 785f 352a 785f 372c 785f 302a 785f 327c x_5*x_7,x_0*x_2| │ │ │ │ -00075710: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000756b0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f36 ---------|.|*x_6 │ │ │ │ +000756c0: 5e32 2d39 2a78 5f30 2a78 5f37 2d32 302a ^2-9*x_0*x_7-20* │ │ │ │ +000756d0: 785f 312a 785f 372b 3435 2a78 5f32 2a78 x_1*x_7+45*x_2*x │ │ │ │ +000756e0: 5f37 2d39 2a78 5f33 2a78 5f37 2b31 302a _7-9*x_3*x_7+10* │ │ │ │ +000756f0: 785f 342a 785f 372d 382a 785f 352a 785f x_4*x_7-8*x_5*x_ │ │ │ │ +00075700: 372c 785f 302a 785f 327c 0a7c 2d2d 2d2d 7,x_0*x_2|.|---- │ │ │ │ +00075710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075760: 0a7c 2d39 2a78 5f35 5e32 2b33 342a 785f .|-9*x_5^2+34*x_ │ │ │ │ -00075770: 302a 785f 362d 3435 2a78 5f31 2a78 5f36 0*x_6-45*x_1*x_6 │ │ │ │ -00075780: 2b31 392a 785f 322a 785f 362b 3234 2a78 +19*x_2*x_6+24*x │ │ │ │ -00075790: 5f33 2a78 5f36 2b32 332a 785f 342a 785f _3*x_6+23*x_4*x_ │ │ │ │ -000757a0: 362d 3337 2a78 5f35 2a78 5f36 2d34 347c 6-37*x_5*x_6-44| │ │ │ │ -000757b0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075750: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d39 2a78 ---------|.|-9*x │ │ │ │ +00075760: 5f35 5e32 2b33 342a 785f 302a 785f 362d _5^2+34*x_0*x_6- │ │ │ │ +00075770: 3435 2a78 5f31 2a78 5f36 2b31 392a 785f 45*x_1*x_6+19*x_ │ │ │ │ +00075780: 322a 785f 362b 3234 2a78 5f33 2a78 5f36 2*x_6+24*x_3*x_6 │ │ │ │ +00075790: 2b32 332a 785f 342a 785f 362d 3337 2a78 +23*x_4*x_6-37*x │ │ │ │ +000757a0: 5f35 2a78 5f36 2d34 347c 0a7c 2d2d 2d2d _5*x_6-44|.|---- │ │ │ │ +000757b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000757c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000757d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000757e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000757f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075800: 0a7c 2a78 5f36 5e32 2b32 342a 785f 302a .|*x_6^2+24*x_0* │ │ │ │ -00075810: 785f 372d 3333 2a78 5f32 2a78 5f37 2b34 x_7-33*x_2*x_7+4 │ │ │ │ -00075820: 312a 785f 332a 785f 372d 3430 2a78 5f34 1*x_3*x_7-40*x_4 │ │ │ │ -00075830: 2a78 5f37 2b34 2a78 5f35 2a78 5f37 2c78 *x_7+4*x_5*x_7,x │ │ │ │ -00075840: 5f31 5e32 2b78 5f31 2a78 5f34 2b78 5f7c _1^2+x_1*x_4+x_| │ │ │ │ -00075850: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000757f0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 5f36 ---------|.|*x_6 │ │ │ │ +00075800: 5e32 2b32 342a 785f 302a 785f 372d 3333 ^2+24*x_0*x_7-33 │ │ │ │ +00075810: 2a78 5f32 2a78 5f37 2b34 312a 785f 332a *x_2*x_7+41*x_3* │ │ │ │ +00075820: 785f 372d 3430 2a78 5f34 2a78 5f37 2b34 x_7-40*x_4*x_7+4 │ │ │ │ +00075830: 2a78 5f35 2a78 5f37 2c78 5f31 5e32 2b78 *x_5*x_7,x_1^2+x │ │ │ │ +00075840: 5f31 2a78 5f34 2b78 5f7c 0a7c 2d2d 2d2d _1*x_4+x_|.|---- │ │ │ │ +00075850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000758a0: 0a7c 345e 322d 3238 2a78 5f35 5e32 2d33 .|4^2-28*x_5^2-3 │ │ │ │ -000758b0: 332a 785f 302a 785f 362d 3137 2a78 5f31 3*x_0*x_6-17*x_1 │ │ │ │ -000758c0: 2a78 5f36 2b31 312a 785f 332a 785f 362b *x_6+11*x_3*x_6+ │ │ │ │ -000758d0: 3230 2a78 5f34 2a78 5f36 2b32 352a 785f 20*x_4*x_6+25*x_ │ │ │ │ -000758e0: 352a 785f 362d 3231 2a78 5f36 5e32 2d7c 5*x_6-21*x_6^2-| │ │ │ │ -000758f0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075890: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 345e 322d ---------|.|4^2- │ │ │ │ +000758a0: 3238 2a78 5f35 5e32 2d33 332a 785f 302a 28*x_5^2-33*x_0* │ │ │ │ +000758b0: 785f 362d 3137 2a78 5f31 2a78 5f36 2b31 x_6-17*x_1*x_6+1 │ │ │ │ +000758c0: 312a 785f 332a 785f 362b 3230 2a78 5f34 1*x_3*x_6+20*x_4 │ │ │ │ +000758d0: 2a78 5f36 2b32 352a 785f 352a 785f 362d *x_6+25*x_5*x_6- │ │ │ │ +000758e0: 3231 2a78 5f36 5e32 2d7c 0a7c 2d2d 2d2d 21*x_6^2-|.|---- │ │ │ │ +000758f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075940: 0a7c 3232 2a78 5f30 2a78 5f37 2b32 342a .|22*x_0*x_7+24* │ │ │ │ -00075950: 785f 312a 785f 372d 3134 2a78 5f32 2a78 x_1*x_7-14*x_2*x │ │ │ │ -00075960: 5f37 2b35 2a78 5f33 2a78 5f37 2d33 392a _7+5*x_3*x_7-39* │ │ │ │ -00075970: 785f 342a 785f 372d 3138 2a78 5f35 2a78 x_4*x_7-18*x_5*x │ │ │ │ -00075980: 5f37 2c78 5f30 2a78 5f31 2d34 372a 787c _7,x_0*x_1-47*x| │ │ │ │ -00075990: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075930: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3232 2a78 ---------|.|22*x │ │ │ │ +00075940: 5f30 2a78 5f37 2b32 342a 785f 312a 785f _0*x_7+24*x_1*x_ │ │ │ │ +00075950: 372d 3134 2a78 5f32 2a78 5f37 2b35 2a78 7-14*x_2*x_7+5*x │ │ │ │ +00075960: 5f33 2a78 5f37 2d33 392a 785f 342a 785f _3*x_7-39*x_4*x_ │ │ │ │ +00075970: 372d 3138 2a78 5f35 2a78 5f37 2c78 5f30 7-18*x_5*x_7,x_0 │ │ │ │ +00075980: 2a78 5f31 2d34 372a 787c 0a7c 2d2d 2d2d *x_1-47*x|.|---- │ │ │ │ +00075990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000759a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000759b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000759c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000759d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -000759e0: 0a7c 5f35 5e32 2d35 2a78 5f30 2a78 5f36 .|_5^2-5*x_0*x_6 │ │ │ │ -000759f0: 2d39 2a78 5f31 2a78 5f36 2d34 352a 785f -9*x_1*x_6-45*x_ │ │ │ │ -00075a00: 322a 785f 362b 3438 2a78 5f33 2a78 5f36 2*x_6+48*x_3*x_6 │ │ │ │ -00075a10: 2b34 352a 785f 342a 785f 362d 3239 2a78 +45*x_4*x_6-29*x │ │ │ │ -00075a20: 5f35 2a78 5f36 2b33 2a78 5f36 5e32 2b7c _5*x_6+3*x_6^2+| │ │ │ │ -00075a30: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +000759d0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f35 5e32 ---------|.|_5^2 │ │ │ │ +000759e0: 2d35 2a78 5f30 2a78 5f36 2d39 2a78 5f31 -5*x_0*x_6-9*x_1 │ │ │ │ +000759f0: 2a78 5f36 2d34 352a 785f 322a 785f 362b *x_6-45*x_2*x_6+ │ │ │ │ +00075a00: 3438 2a78 5f33 2a78 5f36 2b34 352a 785f 48*x_3*x_6+45*x_ │ │ │ │ +00075a10: 342a 785f 362d 3239 2a78 5f35 2a78 5f36 4*x_6-29*x_5*x_6 │ │ │ │ +00075a20: 2b33 2a78 5f36 5e32 2b7c 0a7c 2d2d 2d2d +3*x_6^2+|.|---- │ │ │ │ +00075a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075a80: 0a7c 3239 2a78 5f30 2a78 5f37 2b34 302a .|29*x_0*x_7+40* │ │ │ │ -00075a90: 785f 312a 785f 372b 3436 2a78 5f32 2a78 x_1*x_7+46*x_2*x │ │ │ │ -00075aa0: 5f37 2b32 372a 785f 332a 785f 372d 3336 _7+27*x_3*x_7-36 │ │ │ │ -00075ab0: 2a78 5f34 2a78 5f37 2d33 392a 785f 352a *x_4*x_7-39*x_5* │ │ │ │ -00075ac0: 785f 372c 785f 305e 322d 3331 2a78 5f7c x_7,x_0^2-31*x_| │ │ │ │ -00075ad0: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075a70: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3239 2a78 ---------|.|29*x │ │ │ │ +00075a80: 5f30 2a78 5f37 2b34 302a 785f 312a 785f _0*x_7+40*x_1*x_ │ │ │ │ +00075a90: 372b 3436 2a78 5f32 2a78 5f37 2b32 372a 7+46*x_2*x_7+27* │ │ │ │ +00075aa0: 785f 332a 785f 372d 3336 2a78 5f34 2a78 x_3*x_7-36*x_4*x │ │ │ │ +00075ab0: 5f37 2d33 392a 785f 352a 785f 372c 785f _7-39*x_5*x_7,x_ │ │ │ │ +00075ac0: 305e 322d 3331 2a78 5f7c 0a7c 2d2d 2d2d 0^2-31*x_|.|---- │ │ │ │ +00075ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075b20: 0a7c 355e 322b 3336 2a78 5f30 2a78 5f36 .|5^2+36*x_0*x_6 │ │ │ │ -00075b30: 2d33 302a 785f 312a 785f 362d 3130 2a78 -30*x_1*x_6-10*x │ │ │ │ -00075b40: 5f32 2a78 5f36 2b34 322a 785f 332a 785f _2*x_6+42*x_3*x_ │ │ │ │ -00075b50: 362b 392a 785f 342a 785f 362b 3334 2a78 6+9*x_4*x_6+34*x │ │ │ │ -00075b60: 5f35 2a78 5f36 2d36 2a78 5f36 5e32 2b7c _5*x_6-6*x_6^2+| │ │ │ │ -00075b70: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ +00075b10: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 355e 322b ---------|.|5^2+ │ │ │ │ +00075b20: 3336 2a78 5f30 2a78 5f36 2d33 302a 785f 36*x_0*x_6-30*x_ │ │ │ │ +00075b30: 312a 785f 362d 3130 2a78 5f32 2a78 5f36 1*x_6-10*x_2*x_6 │ │ │ │ +00075b40: 2b34 322a 785f 332a 785f 362b 392a 785f +42*x_3*x_6+9*x_ │ │ │ │ +00075b50: 342a 785f 362b 3334 2a78 5f35 2a78 5f36 4*x_6+34*x_5*x_6 │ │ │ │ +00075b60: 2d36 2a78 5f36 5e32 2b7c 0a7c 2d2d 2d2d -6*x_6^2+|.|---- │ │ │ │ +00075b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ -00075bc0: 0a7c 3438 2a78 5f30 2a78 5f37 2d34 372a .|48*x_0*x_7-47* │ │ │ │ -00075bd0: 785f 312a 785f 372d 3139 2a78 5f32 2a78 x_1*x_7-19*x_2*x │ │ │ │ -00075be0: 5f37 2b32 352a 785f 332a 785f 372b 3238 _7+25*x_3*x_7+28 │ │ │ │ -00075bf0: 2a78 5f34 2a78 5f37 2b33 342a 785f 352a *x_4*x_7+34*x_5* │ │ │ │ -00075c00: 785f 3729 3b20 2020 2020 2020 2020 207c x_7); | │ │ │ │ -00075c10: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00075bb0: 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 3438 2a78 ---------|.|48*x │ │ │ │ +00075bc0: 5f30 2a78 5f37 2d34 372a 785f 312a 785f _0*x_7-47*x_1*x_ │ │ │ │ +00075bd0: 372d 3139 2a78 5f32 2a78 5f37 2b32 352a 7-19*x_2*x_7+25* │ │ │ │ +00075be0: 785f 332a 785f 372b 3238 2a78 5f34 2a78 x_3*x_7+28*x_4*x │ │ │ │ +00075bf0: 5f37 2b33 342a 785f 352a 785f 3729 3b20 _7+34*x_5*x_7); │ │ │ │ +00075c00: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00075c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075c40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00075c60: 0a7c 6936 203a 2070 6869 203d 2072 6174 .|i6 : phi = rat │ │ │ │ -00075c70: 696f 6e61 6c4d 6170 2843 2c33 2c32 293b ionalMap(C,3,2); │ │ │ │ +00075c50: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 203a ---------+.|i6 : │ │ │ │ +00075c60: 2070 6869 203d 2072 6174 696f 6e61 6c4d phi = rationalM │ │ │ │ +00075c70: 6170 2843 2c33 2c32 293b 2020 2020 2020 ap(C,3,2); │ │ │ │ 00075c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075ca0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075cb0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00075ca0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00075cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075cf0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075d00: 0a7c 6f36 203a 2052 6174 696f 6e61 6c4d .|o6 : RationalM │ │ │ │ -00075d10: 6170 2028 6375 6269 6320 7261 7469 6f6e ap (cubic ration │ │ │ │ -00075d20: 616c 206d 6170 2066 726f 6d20 5050 5e37 al map from PP^7 │ │ │ │ -00075d30: 2074 6f20 5050 5e37 2920 2020 2020 2020 to PP^7) │ │ │ │ -00075d40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075d50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00075cf0: 2020 2020 2020 2020 207c 0a7c 6f36 203a |.|o6 : │ │ │ │ +00075d00: 2052 6174 696f 6e61 6c4d 6170 2028 6375 RationalMap (cu │ │ │ │ +00075d10: 6269 6320 7261 7469 6f6e 616c 206d 6170 bic rational map │ │ │ │ +00075d20: 2066 726f 6d20 5050 5e37 2074 6f20 5050 from PP^7 to PP │ │ │ │ +00075d30: 5e37 2920 2020 2020 2020 2020 2020 2020 ^7) │ │ │ │ +00075d40: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00075d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00075da0: 0a7c 6937 203a 2074 696d 6520 6973 446f .|i7 : time isDo │ │ │ │ -00075db0: 6d69 6e61 6e74 2870 6869 2c43 6572 7469 minant(phi,Certi │ │ │ │ -00075dc0: 6679 3d3e 7472 7565 2920 2020 2020 2020 fy=>true) │ │ │ │ +00075d90: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6937 203a ---------+.|i7 : │ │ │ │ +00075da0: 2074 696d 6520 6973 446f 6d69 6e61 6e74 time isDominant │ │ │ │ +00075db0: 2870 6869 2c43 6572 7469 6679 3d3e 7472 (phi,Certify=>tr │ │ │ │ +00075dc0: 7565 2920 2020 2020 2020 2020 2020 2020 ue) │ │ │ │ 00075dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075de0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075df0: 0a7c 4365 7274 6966 793a 206f 7574 7075 .|Certify: outpu │ │ │ │ -00075e00: 7420 6365 7274 6966 6965 6421 2020 2020 t certified! │ │ │ │ +00075de0: 2020 2020 2020 2020 207c 0a7c 4365 7274 |.|Cert │ │ │ │ +00075df0: 6966 793a 206f 7574 7075 7420 6365 7274 ify: output cert │ │ │ │ +00075e00: 6966 6965 6421 2020 2020 2020 2020 2020 ified! │ │ │ │ 00075e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075e40: 0a7c 202d 2d20 7573 6564 2033 2e38 3838 .| -- used 3.888 │ │ │ │ -00075e50: 3434 7320 2863 7075 293b 2032 2e35 3438 44s (cpu); 2.548 │ │ │ │ -00075e60: 3832 7320 2874 6872 6561 6429 3b20 3073 82s (thread); 0s │ │ │ │ -00075e70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00075e80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075e90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00075e30: 2020 2020 2020 2020 207c 0a7c 202d 2d20 |.| -- │ │ │ │ +00075e40: 7573 6564 2033 2e39 3437 3833 7320 2863 used 3.94783s (c │ │ │ │ +00075e50: 7075 293b 2032 2e39 3439 3831 7320 2874 pu); 2.94981s (t │ │ │ │ +00075e60: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00075e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00075e80: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00075e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075ed0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075ee0: 0a7c 6f37 203d 2066 616c 7365 2020 2020 .|o7 = false │ │ │ │ +00075ed0: 2020 2020 2020 2020 207c 0a7c 6f37 203d |.|o7 = │ │ │ │ +00075ee0: 2066 616c 7365 2020 2020 2020 2020 2020 false │ │ │ │ 00075ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00075f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00075f20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00075f30: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00075f20: 2020 2020 2020 2020 207c 0a2b 2d2d 2d2d |.+---- │ │ │ │ +00075f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00075f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00075f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ -00075f80: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -00075f90: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2069 ===.. * *note i │ │ │ │ -00075fa0: 7342 6972 6174 696f 6e61 6c3a 2069 7342 sBirational: isB │ │ │ │ -00075fb0: 6972 6174 696f 6e61 6c2c 202d 2d20 7768 irational, -- wh │ │ │ │ -00075fc0: 6574 6865 7220 6120 7261 7469 6f6e 616c ether a rational │ │ │ │ -00075fd0: 206d 6170 2069 7320 6269 7261 7469 6f6e map is biration │ │ │ │ -00075fe0: 616c 0a0a 5761 7973 2074 6f20 7573 6520 al..Ways to use │ │ │ │ -00075ff0: 6973 446f 6d69 6e61 6e74 3a0a 3d3d 3d3d isDominant:.==== │ │ │ │ -00076000: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00076010: 3d3d 3d0a 0a20 202a 2022 6973 446f 6d69 ===.. * "isDomi │ │ │ │ -00076020: 6e61 6e74 2852 6174 696f 6e61 6c4d 6170 nant(RationalMap │ │ │ │ -00076030: 2922 0a20 202a 2022 6973 446f 6d69 6e61 )". * "isDomina │ │ │ │ -00076040: 6e74 2852 696e 674d 6170 2922 0a0a 466f nt(RingMap)"..Fo │ │ │ │ -00076050: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -00076060: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -00076070: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -00076080: 2a6e 6f74 6520 6973 446f 6d69 6e61 6e74 *note isDominant │ │ │ │ -00076090: 3a20 6973 446f 6d69 6e61 6e74 2c20 6973 : isDominant, is │ │ │ │ -000760a0: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -000760b0: 6675 6e63 7469 6f6e 2077 6974 680a 6f70 function with.op │ │ │ │ -000760c0: 7469 6f6e 733a 2028 4d61 6361 756c 6179 tions: (Macaulay │ │ │ │ -000760d0: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -000760e0: 696f 6e57 6974 684f 7074 696f 6e73 2c2e ionWithOptions,. │ │ │ │ -000760f0: 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..-------------- │ │ │ │ +00075f70: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ +00075f80: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +00075f90: 202a 202a 6e6f 7465 2069 7342 6972 6174 * *note isBirat │ │ │ │ +00075fa0: 696f 6e61 6c3a 2069 7342 6972 6174 696f ional: isBiratio │ │ │ │ +00075fb0: 6e61 6c2c 202d 2d20 7768 6574 6865 7220 nal, -- whether │ │ │ │ +00075fc0: 6120 7261 7469 6f6e 616c 206d 6170 2069 a rational map i │ │ │ │ +00075fd0: 7320 6269 7261 7469 6f6e 616c 0a0a 5761 s birational..Wa │ │ │ │ +00075fe0: 7973 2074 6f20 7573 6520 6973 446f 6d69 ys to use isDomi │ │ │ │ +00075ff0: 6e61 6e74 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d nant:.========== │ │ │ │ +00076000: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00076010: 202a 2022 6973 446f 6d69 6e61 6e74 2852 * "isDominant(R │ │ │ │ +00076020: 6174 696f 6e61 6c4d 6170 2922 0a20 202a ationalMap)". * │ │ │ │ +00076030: 2022 6973 446f 6d69 6e61 6e74 2852 696e "isDominant(Rin │ │ │ │ +00076040: 674d 6170 2922 0a0a 466f 7220 7468 6520 gMap)"..For the │ │ │ │ +00076050: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +00076060: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +00076070: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +00076080: 6973 446f 6d69 6e61 6e74 3a20 6973 446f isDominant: isDo │ │ │ │ +00076090: 6d69 6e61 6e74 2c20 6973 2061 202a 6e6f minant, is a *no │ │ │ │ +000760a0: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +000760b0: 6f6e 2077 6974 680a 6f70 7469 6f6e 733a on with.options: │ │ │ │ +000760c0: 2028 4d61 6361 756c 6179 3244 6f63 294d (Macaulay2Doc)M │ │ │ │ +000760d0: 6574 686f 6446 756e 6374 696f 6e57 6974 ethodFunctionWit │ │ │ │ +000760e0: 684f 7074 696f 6e73 2c2e 0a0a 2d2d 2d2d hOptions,...---- │ │ │ │ +000760f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00076130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00076140: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00076150: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00076160: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00076170: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00076180: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00076190: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -000761a0: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -000761b0: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -000761c0: 6d32 3a31 3630 3a30 2e0a 1f0a 4669 6c65 m2:160:0....File │ │ │ │ -000761d0: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -000761e0: 4e6f 6465 3a20 6973 496e 7665 7273 654d Node: isInverseM │ │ │ │ -000761f0: 6170 2c20 4e65 7874 3a20 6973 496e 7665 ap, Next: isInve │ │ │ │ -00076200: 7273 654d 6170 5f6c 7052 6174 696f 6e61 rseMap_lpRationa │ │ │ │ -00076210: 6c4d 6170 5f63 6d52 6174 696f 6e61 6c4d lMap_cmRationalM │ │ │ │ -00076220: 6170 5f72 702c 2050 7265 763a 2069 7344 ap_rp, Prev: isD │ │ │ │ -00076230: 6f6d 696e 616e 742c 2055 703a 2054 6f70 ominant, Up: Top │ │ │ │ -00076240: 0a0a 6973 496e 7665 7273 654d 6170 202d ..isInverseMap - │ │ │ │ -00076250: 2d20 6368 6563 6b73 2077 6865 7468 6572 - checks whether │ │ │ │ -00076260: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -00076270: 6973 2074 6865 2069 6e76 6572 7365 206f is the inverse o │ │ │ │ -00076280: 6620 616e 6f74 6865 720a 2a2a 2a2a 2a2a f another.****** │ │ │ │ +00076130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00076140: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00076150: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00076160: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00076170: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00076180: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00076190: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +000761a0: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ +000761b0: 6d65 6e74 6174 696f 6e2e 6d32 3a31 3630 mentation.m2:160 │ │ │ │ +000761c0: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ +000761d0: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ +000761e0: 6973 496e 7665 7273 654d 6170 2c20 4e65 isInverseMap, Ne │ │ │ │ +000761f0: 7874 3a20 6973 496e 7665 7273 654d 6170 xt: isInverseMap │ │ │ │ +00076200: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f63 _lpRationalMap_c │ │ │ │ +00076210: 6d52 6174 696f 6e61 6c4d 6170 5f72 702c mRationalMap_rp, │ │ │ │ +00076220: 2050 7265 763a 2069 7344 6f6d 696e 616e Prev: isDominan │ │ │ │ +00076230: 742c 2055 703a 2054 6f70 0a0a 6973 496e t, Up: Top..isIn │ │ │ │ +00076240: 7665 7273 654d 6170 202d 2d20 6368 6563 verseMap -- chec │ │ │ │ +00076250: 6b73 2077 6865 7468 6572 2061 2072 6174 ks whether a rat │ │ │ │ +00076260: 696f 6e61 6c20 6d61 7020 6973 2074 6865 ional map is the │ │ │ │ +00076270: 2069 6e76 6572 7365 206f 6620 616e 6f74 inverse of anot │ │ │ │ +00076280: 6865 720a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a her.************ │ │ │ │ 00076290: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000762a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000762b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000762c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000762d0: 2a0a 0a20 202a 2055 7361 6765 3a20 0a20 *.. * Usage: . │ │ │ │ -000762e0: 2020 2020 2020 2069 7349 6e76 6572 7365 isInverse │ │ │ │ -000762f0: 4d61 7028 7068 692c 7073 6929 0a20 202a Map(phi,psi). * │ │ │ │ -00076300: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -00076310: 2070 6869 2c20 6120 2a6e 6f74 6520 7269 phi, a *note ri │ │ │ │ -00076320: 6e67 206d 6170 3a20 284d 6163 6175 6c61 ng map: (Macaula │ │ │ │ -00076330: 7932 446f 6329 5269 6e67 4d61 702c 2c20 y2Doc)RingMap,, │ │ │ │ -00076340: 7265 7072 6573 656e 7469 6e67 2061 2072 representing a r │ │ │ │ -00076350: 6174 696f 6e61 6c0a 2020 2020 2020 2020 ational. │ │ │ │ -00076360: 6d61 7020 245c 5068 693a 5820 5c64 6173 map $\Phi:X \das │ │ │ │ -00076370: 6872 6967 6874 6172 726f 7720 5924 0a20 hrightarrow Y$. │ │ │ │ -00076380: 2020 2020 202a 2070 7369 2c20 6120 2a6e * psi, a *n │ │ │ │ -00076390: 6f74 6520 7269 6e67 206d 6170 3a20 284d ote ring map: (M │ │ │ │ -000763a0: 6163 6175 6c61 7932 446f 6329 5269 6e67 acaulay2Doc)Ring │ │ │ │ -000763b0: 4d61 702c 2c20 7265 7072 6573 656e 7469 Map,, representi │ │ │ │ -000763c0: 6e67 2061 2072 6174 696f 6e61 6c0a 2020 ng a rational. │ │ │ │ -000763d0: 2020 2020 2020 6d61 7020 245c 5073 693a map $\Psi: │ │ │ │ -000763e0: 5920 5c64 6173 6872 6967 6874 6172 726f Y \dashrightarro │ │ │ │ -000763f0: 7720 5824 0a20 202a 204f 7574 7075 7473 w X$. * Outputs │ │ │ │ -00076400: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -00076410: 6520 426f 6f6c 6561 6e20 7661 6c75 653a e Boolean value: │ │ │ │ -00076420: 2028 4d61 6361 756c 6179 3244 6f63 2942 (Macaulay2Doc)B │ │ │ │ -00076430: 6f6f 6c65 616e 2c2c 2061 6363 6f72 6469 oolean,, accordi │ │ │ │ -00076440: 6e67 2074 6f20 7468 650a 2020 2020 2020 ng to the. │ │ │ │ -00076450: 2020 636f 6e64 6974 696f 6e20 7468 6174 condition that │ │ │ │ -00076460: 2074 6865 2063 6f6d 706f 7369 7469 6f6e the composition │ │ │ │ -00076470: 2024 5c50 7369 5c2c 5c50 6869 3a58 205c $\Psi\,\Phi:X \ │ │ │ │ -00076480: 6461 7368 7269 6768 7461 7272 6f77 2058 dashrightarrow X │ │ │ │ -00076490: 240a 2020 2020 2020 2020 636f 696e 6369 $. coinci │ │ │ │ -000764a0: 6465 7320 7769 7468 2074 6865 2069 6465 des with the ide │ │ │ │ -000764b0: 6e74 6974 7920 6f66 2024 5824 2028 6173 ntity of $X$ (as │ │ │ │ -000764c0: 2061 2072 6174 696f 6e61 6c20 6d61 7029 a rational map) │ │ │ │ -000764d0: 0a0a 5761 7973 2074 6f20 7573 6520 6973 ..Ways to use is │ │ │ │ -000764e0: 496e 7665 7273 654d 6170 3a0a 3d3d 3d3d InverseMap:.==== │ │ │ │ -000764f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00076500: 3d3d 3d3d 3d0a 0a20 202a 2022 6973 496e =====.. * "isIn │ │ │ │ -00076510: 7665 7273 654d 6170 2852 696e 674d 6170 verseMap(RingMap │ │ │ │ -00076520: 2c52 696e 674d 6170 2922 0a20 202a 202a ,RingMap)". * * │ │ │ │ -00076530: 6e6f 7465 2069 7349 6e76 6572 7365 4d61 note isInverseMa │ │ │ │ -00076540: 7028 5261 7469 6f6e 616c 4d61 702c 5261 p(RationalMap,Ra │ │ │ │ -00076550: 7469 6f6e 616c 4d61 7029 3a0a 2020 2020 tionalMap):. │ │ │ │ -00076560: 6973 496e 7665 7273 654d 6170 5f6c 7052 isInverseMap_lpR │ │ │ │ -00076570: 6174 696f 6e61 6c4d 6170 5f63 6d52 6174 ationalMap_cmRat │ │ │ │ -00076580: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ -00076590: 6368 6563 6b73 2077 6865 7468 6572 2074 checks whether t │ │ │ │ -000765a0: 776f 2072 6174 696f 6e61 6c0a 2020 2020 wo rational. │ │ │ │ -000765b0: 6d61 7073 2061 7265 206f 6e65 2074 6865 maps are one the │ │ │ │ -000765c0: 2069 6e76 6572 7365 206f 6620 7468 6520 inverse of the │ │ │ │ -000765d0: 6f74 6865 720a 0a46 6f72 2074 6865 2070 other..For the p │ │ │ │ -000765e0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -000765f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00076600: 6520 6f62 6a65 6374 202a 6e6f 7465 2069 e object *note i │ │ │ │ -00076610: 7349 6e76 6572 7365 4d61 703a 2069 7349 sInverseMap: isI │ │ │ │ -00076620: 6e76 6572 7365 4d61 702c 2069 7320 6120 nverseMap, is a │ │ │ │ -00076630: 2a6e 6f74 6520 6d65 7468 6f64 2066 756e *note method fun │ │ │ │ -00076640: 6374 696f 6e3a 0a28 4d61 6361 756c 6179 ction:.(Macaulay │ │ │ │ -00076650: 3244 6f63 294d 6574 686f 6446 756e 6374 2Doc)MethodFunct │ │ │ │ -00076660: 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ion,...--------- │ │ │ │ +000762c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +000762d0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +000762e0: 2069 7349 6e76 6572 7365 4d61 7028 7068 isInverseMap(ph │ │ │ │ +000762f0: 692c 7073 6929 0a20 202a 2049 6e70 7574 i,psi). * Input │ │ │ │ +00076300: 733a 0a20 2020 2020 202a 2070 6869 2c20 s:. * phi, │ │ │ │ +00076310: 6120 2a6e 6f74 6520 7269 6e67 206d 6170 a *note ring map │ │ │ │ +00076320: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +00076330: 5269 6e67 4d61 702c 2c20 7265 7072 6573 RingMap,, repres │ │ │ │ +00076340: 656e 7469 6e67 2061 2072 6174 696f 6e61 enting a rationa │ │ │ │ +00076350: 6c0a 2020 2020 2020 2020 6d61 7020 245c l. map $\ │ │ │ │ +00076360: 5068 693a 5820 5c64 6173 6872 6967 6874 Phi:X \dashright │ │ │ │ +00076370: 6172 726f 7720 5924 0a20 2020 2020 202a arrow Y$. * │ │ │ │ +00076380: 2070 7369 2c20 6120 2a6e 6f74 6520 7269 psi, a *note ri │ │ │ │ +00076390: 6e67 206d 6170 3a20 284d 6163 6175 6c61 ng map: (Macaula │ │ │ │ +000763a0: 7932 446f 6329 5269 6e67 4d61 702c 2c20 y2Doc)RingMap,, │ │ │ │ +000763b0: 7265 7072 6573 656e 7469 6e67 2061 2072 representing a r │ │ │ │ +000763c0: 6174 696f 6e61 6c0a 2020 2020 2020 2020 ational. │ │ │ │ +000763d0: 6d61 7020 245c 5073 693a 5920 5c64 6173 map $\Psi:Y \das │ │ │ │ +000763e0: 6872 6967 6874 6172 726f 7720 5824 0a20 hrightarrow X$. │ │ │ │ +000763f0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +00076400: 2020 2a20 6120 2a6e 6f74 6520 426f 6f6c * a *note Bool │ │ │ │ +00076410: 6561 6e20 7661 6c75 653a 2028 4d61 6361 ean value: (Maca │ │ │ │ +00076420: 756c 6179 3244 6f63 2942 6f6f 6c65 616e ulay2Doc)Boolean │ │ │ │ +00076430: 2c2c 2061 6363 6f72 6469 6e67 2074 6f20 ,, according to │ │ │ │ +00076440: 7468 650a 2020 2020 2020 2020 636f 6e64 the. cond │ │ │ │ +00076450: 6974 696f 6e20 7468 6174 2074 6865 2063 ition that the c │ │ │ │ +00076460: 6f6d 706f 7369 7469 6f6e 2024 5c50 7369 omposition $\Psi │ │ │ │ +00076470: 5c2c 5c50 6869 3a58 205c 6461 7368 7269 \,\Phi:X \dashri │ │ │ │ +00076480: 6768 7461 7272 6f77 2058 240a 2020 2020 ghtarrow X$. │ │ │ │ +00076490: 2020 2020 636f 696e 6369 6465 7320 7769 coincides wi │ │ │ │ +000764a0: 7468 2074 6865 2069 6465 6e74 6974 7920 th the identity │ │ │ │ +000764b0: 6f66 2024 5824 2028 6173 2061 2072 6174 of $X$ (as a rat │ │ │ │ +000764c0: 696f 6e61 6c20 6d61 7029 0a0a 5761 7973 ional map)..Ways │ │ │ │ +000764d0: 2074 6f20 7573 6520 6973 496e 7665 7273 to use isInvers │ │ │ │ +000764e0: 654d 6170 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d eMap:.========== │ │ │ │ +000764f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +00076500: 0a20 202a 2022 6973 496e 7665 7273 654d . * "isInverseM │ │ │ │ +00076510: 6170 2852 696e 674d 6170 2c52 696e 674d ap(RingMap,RingM │ │ │ │ +00076520: 6170 2922 0a20 202a 202a 6e6f 7465 2069 ap)". * *note i │ │ │ │ +00076530: 7349 6e76 6572 7365 4d61 7028 5261 7469 sInverseMap(Rati │ │ │ │ +00076540: 6f6e 616c 4d61 702c 5261 7469 6f6e 616c onalMap,Rational │ │ │ │ +00076550: 4d61 7029 3a0a 2020 2020 6973 496e 7665 Map):. isInve │ │ │ │ +00076560: 7273 654d 6170 5f6c 7052 6174 696f 6e61 rseMap_lpRationa │ │ │ │ +00076570: 6c4d 6170 5f63 6d52 6174 696f 6e61 6c4d lMap_cmRationalM │ │ │ │ +00076580: 6170 5f72 702c 202d 2d20 6368 6563 6b73 ap_rp, -- checks │ │ │ │ +00076590: 2077 6865 7468 6572 2074 776f 2072 6174 whether two rat │ │ │ │ +000765a0: 696f 6e61 6c0a 2020 2020 6d61 7073 2061 ional. maps a │ │ │ │ +000765b0: 7265 206f 6e65 2074 6865 2069 6e76 6572 re one the inver │ │ │ │ +000765c0: 7365 206f 6620 7468 6520 6f74 6865 720a se of the other. │ │ │ │ +000765d0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +000765e0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +000765f0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00076600: 6374 202a 6e6f 7465 2069 7349 6e76 6572 ct *note isInver │ │ │ │ +00076610: 7365 4d61 703a 2069 7349 6e76 6572 7365 seMap: isInverse │ │ │ │ +00076620: 4d61 702c 2069 7320 6120 2a6e 6f74 6520 Map, is a *note │ │ │ │ +00076630: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ +00076640: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ +00076650: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ +00076660: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00076670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000766a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000766b0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -000766c0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -000766d0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -000766e0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -000766f0: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00076700: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00076710: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -00076720: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -00076730: 7469 6f6e 2e6d 323a 3137 303a 302e 0a1f tion.m2:170:0... │ │ │ │ -00076740: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -00076750: 6e66 6f2c 204e 6f64 653a 2069 7349 6e76 nfo, Node: isInv │ │ │ │ -00076760: 6572 7365 4d61 705f 6c70 5261 7469 6f6e erseMap_lpRation │ │ │ │ -00076770: 616c 4d61 705f 636d 5261 7469 6f6e 616c alMap_cmRational │ │ │ │ -00076780: 4d61 705f 7270 2c20 4e65 7874 3a20 6973 Map_rp, Next: is │ │ │ │ -00076790: 4973 6f6d 6f72 7068 6973 6d5f 6c70 5261 Isomorphism_lpRa │ │ │ │ -000767a0: 7469 6f6e 616c 4d61 705f 7270 2c20 5072 tionalMap_rp, Pr │ │ │ │ -000767b0: 6576 3a20 6973 496e 7665 7273 654d 6170 ev: isInverseMap │ │ │ │ -000767c0: 2c20 5570 3a20 546f 700a 0a69 7349 6e76 , Up: Top..isInv │ │ │ │ -000767d0: 6572 7365 4d61 7028 5261 7469 6f6e 616c erseMap(Rational │ │ │ │ -000767e0: 4d61 702c 5261 7469 6f6e 616c 4d61 7029 Map,RationalMap) │ │ │ │ -000767f0: 202d 2d20 6368 6563 6b73 2077 6865 7468 -- checks wheth │ │ │ │ -00076800: 6572 2074 776f 2072 6174 696f 6e61 6c20 er two rational │ │ │ │ -00076810: 6d61 7073 2061 7265 206f 6e65 2074 6865 maps are one the │ │ │ │ -00076820: 2069 6e76 6572 7365 206f 6620 7468 6520 inverse of the │ │ │ │ -00076830: 6f74 6865 720a 2a2a 2a2a 2a2a 2a2a 2a2a other.********** │ │ │ │ +000766b0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +000766c0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +000766d0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +000766e0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +000766f0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00076700: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00076710: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +00076720: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +00076730: 323a 3137 303a 302e 0a1f 0a46 696c 653a 2:170:0....File: │ │ │ │ +00076740: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +00076750: 6f64 653a 2069 7349 6e76 6572 7365 4d61 ode: isInverseMa │ │ │ │ +00076760: 705f 6c70 5261 7469 6f6e 616c 4d61 705f p_lpRationalMap_ │ │ │ │ +00076770: 636d 5261 7469 6f6e 616c 4d61 705f 7270 cmRationalMap_rp │ │ │ │ +00076780: 2c20 4e65 7874 3a20 6973 4973 6f6d 6f72 , Next: isIsomor │ │ │ │ +00076790: 7068 6973 6d5f 6c70 5261 7469 6f6e 616c phism_lpRational │ │ │ │ +000767a0: 4d61 705f 7270 2c20 5072 6576 3a20 6973 Map_rp, Prev: is │ │ │ │ +000767b0: 496e 7665 7273 654d 6170 2c20 5570 3a20 InverseMap, Up: │ │ │ │ +000767c0: 546f 700a 0a69 7349 6e76 6572 7365 4d61 Top..isInverseMa │ │ │ │ +000767d0: 7028 5261 7469 6f6e 616c 4d61 702c 5261 p(RationalMap,Ra │ │ │ │ +000767e0: 7469 6f6e 616c 4d61 7029 202d 2d20 6368 tionalMap) -- ch │ │ │ │ +000767f0: 6563 6b73 2077 6865 7468 6572 2074 776f ecks whether two │ │ │ │ +00076800: 2072 6174 696f 6e61 6c20 6d61 7073 2061 rational maps a │ │ │ │ +00076810: 7265 206f 6e65 2074 6865 2069 6e76 6572 re one the inver │ │ │ │ +00076820: 7365 206f 6620 7468 6520 6f74 6865 720a se of the other. │ │ │ │ +00076830: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076840: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076850: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076860: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076870: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076880: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00076890: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000768a0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -000768b0: 2a6e 6f74 6520 6973 496e 7665 7273 654d *note isInverseM │ │ │ │ -000768c0: 6170 3a20 6973 496e 7665 7273 654d 6170 ap: isInverseMap │ │ │ │ -000768d0: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -000768e0: 2020 2020 2020 6973 496e 7665 7273 654d isInverseM │ │ │ │ -000768f0: 6170 2870 6869 2c70 7369 290a 2020 2a20 ap(phi,psi). * │ │ │ │ -00076900: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -00076910: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ -00076920: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00076930: 6e61 6c4d 6170 2c0a 2020 2020 2020 2a20 nalMap,. * │ │ │ │ -00076940: 7073 692c 2061 202a 6e6f 7465 2072 6174 psi, a *note rat │ │ │ │ -00076950: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -00076960: 6e61 6c4d 6170 2c0a 2020 2a20 4f75 7470 nalMap,. * Outp │ │ │ │ -00076970: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -00076980: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ -00076990: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ -000769a0: 6329 426f 6f6c 6561 6e2c 2c20 7768 6574 c)Boolean,, whet │ │ │ │ -000769b0: 6865 7220 7068 6920 2a20 7073 6920 3d3d her phi * psi == │ │ │ │ -000769c0: 2031 0a20 2020 2020 2020 2061 6e64 2070 1. and p │ │ │ │ -000769d0: 7369 202a 2070 6869 203d 3d20 310a 2020 si * phi == 1. │ │ │ │ -000769e0: 2a20 436f 6e73 6571 7565 6e63 6573 3a0a * Consequences:. │ │ │ │ -000769f0: 2020 2020 2020 2a20 4966 2074 6865 2061 * If the a │ │ │ │ -00076a00: 6e73 7765 7220 6973 2061 6666 6972 6d61 nswer is affirma │ │ │ │ -00076a10: 7469 7665 2c20 7468 656e 2074 6865 2073 tive, then the s │ │ │ │ -00076a20: 7973 7465 6d20 7769 6c6c 2062 6520 696e ystem will be in │ │ │ │ -00076a30: 666f 726d 6564 2061 6e64 2073 6f0a 2020 formed and so. │ │ │ │ -00076a40: 2020 2020 2020 636f 6d6d 616e 6473 206c commands l │ │ │ │ -00076a50: 696b 6520 2769 6e76 6572 7365 2070 6869 ike 'inverse phi │ │ │ │ -00076a60: 2720 7769 6c6c 2065 7865 6375 7465 2066 ' will execute f │ │ │ │ -00076a70: 6173 742e 0a0a 5365 6520 616c 736f 0a3d ast...See also.= │ │ │ │ -00076a80: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -00076a90: 7465 2052 6174 696f 6e61 6c4d 6170 203d te RationalMap = │ │ │ │ -00076aa0: 3d20 5261 7469 6f6e 616c 4d61 703a 2052 = RationalMap: R │ │ │ │ -00076ab0: 6174 696f 6e61 6c4d 6170 203d 3d20 5261 ationalMap == Ra │ │ │ │ -00076ac0: 7469 6f6e 616c 4d61 702c 202d 2d20 6571 tionalMap, -- eq │ │ │ │ -00076ad0: 7561 6c69 7479 0a20 2020 206f 6620 7261 uality. of ra │ │ │ │ -00076ae0: 7469 6f6e 616c 206d 6170 730a 2020 2a20 tional maps. * │ │ │ │ -00076af0: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ -00076b00: 7020 2a20 5261 7469 6f6e 616c 4d61 703a p * RationalMap: │ │ │ │ -00076b10: 2052 6174 696f 6e61 6c4d 6170 205f 7374 RationalMap _st │ │ │ │ -00076b20: 2052 6174 696f 6e61 6c4d 6170 2c20 2d2d RationalMap, -- │ │ │ │ -00076b30: 0a20 2020 2063 6f6d 706f 7369 7469 6f6e . composition │ │ │ │ -00076b40: 206f 6620 7261 7469 6f6e 616c 206d 6170 of rational map │ │ │ │ -00076b50: 730a 2020 2a20 2a6e 6f74 6520 6973 496e s. * *note isIn │ │ │ │ -00076b60: 7665 7273 654d 6170 2852 696e 674d 6170 verseMap(RingMap │ │ │ │ -00076b70: 2c52 696e 674d 6170 293a 2069 7349 6e76 ,RingMap): isInv │ │ │ │ -00076b80: 6572 7365 4d61 702c 202d 2d20 6368 6563 erseMap, -- chec │ │ │ │ -00076b90: 6b73 2077 6865 7468 6572 2061 0a20 2020 ks whether a. │ │ │ │ -00076ba0: 2072 6174 696f 6e61 6c20 6d61 7020 6973 rational map is │ │ │ │ -00076bb0: 2074 6865 2069 6e76 6572 7365 206f 6620 the inverse of │ │ │ │ -00076bc0: 616e 6f74 6865 720a 2020 2a20 2a6e 6f74 another. * *not │ │ │ │ -00076bd0: 6520 696e 7665 7273 6528 5261 7469 6f6e e inverse(Ration │ │ │ │ -00076be0: 616c 4d61 7029 3a20 696e 7665 7273 655f alMap): inverse_ │ │ │ │ -00076bf0: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -00076c00: 2c20 2d2d 2069 6e76 6572 7365 206f 6620 , -- inverse of │ │ │ │ -00076c10: 610a 2020 2020 6269 7261 7469 6f6e 616c a. birational │ │ │ │ -00076c20: 206d 6170 0a20 202a 202a 6e6f 7465 2066 map. * *note f │ │ │ │ -00076c30: 6f72 6365 496e 7665 7273 654d 6170 3a20 orceInverseMap: │ │ │ │ -00076c40: 666f 7263 6549 6e76 6572 7365 4d61 702c forceInverseMap, │ │ │ │ -00076c50: 202d 2d20 6465 636c 6172 6520 7468 6174 -- declare that │ │ │ │ -00076c60: 2074 776f 2072 6174 696f 6e61 6c20 6d61 two rational ma │ │ │ │ -00076c70: 7073 0a20 2020 2061 7265 206f 6e65 2074 ps. are one t │ │ │ │ -00076c80: 6865 2069 6e76 6572 7365 206f 6620 7468 he inverse of th │ │ │ │ -00076c90: 6520 6f74 6865 720a 0a57 6179 7320 746f e other..Ways to │ │ │ │ -00076ca0: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ -00076cb0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00076cc0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00076cd0: 2a6e 6f74 6520 6973 496e 7665 7273 654d *note isInverseM │ │ │ │ -00076ce0: 6170 2852 6174 696f 6e61 6c4d 6170 2c52 ap(RationalMap,R │ │ │ │ -00076cf0: 6174 696f 6e61 6c4d 6170 293a 0a20 2020 ationalMap):. │ │ │ │ -00076d00: 2069 7349 6e76 6572 7365 4d61 705f 6c70 isInverseMap_lp │ │ │ │ -00076d10: 5261 7469 6f6e 616c 4d61 705f 636d 5261 RationalMap_cmRa │ │ │ │ -00076d20: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -00076d30: 2063 6865 636b 7320 7768 6574 6865 7220 checks whether │ │ │ │ -00076d40: 7477 6f20 7261 7469 6f6e 616c 0a20 2020 two rational. │ │ │ │ -00076d50: 206d 6170 7320 6172 6520 6f6e 6520 7468 maps are one th │ │ │ │ -00076d60: 6520 696e 7665 7273 6520 6f66 2074 6865 e inverse of the │ │ │ │ -00076d70: 206f 7468 6572 0a2d 2d2d 2d2d 2d2d 2d2d other.--------- │ │ │ │ +00076890: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +000768a0: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +000768b0: 6973 496e 7665 7273 654d 6170 3a20 6973 isInverseMap: is │ │ │ │ +000768c0: 496e 7665 7273 654d 6170 2c0a 2020 2a20 InverseMap,. * │ │ │ │ +000768d0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +000768e0: 6973 496e 7665 7273 654d 6170 2870 6869 isInverseMap(phi │ │ │ │ +000768f0: 2c70 7369 290a 2020 2a20 496e 7075 7473 ,psi). * Inputs │ │ │ │ +00076900: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ +00076910: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00076920: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00076930: 2c0a 2020 2020 2020 2a20 7073 692c 2061 ,. * psi, a │ │ │ │ +00076940: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +00076950: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +00076960: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ +00076970: 2020 2020 202a 2061 202a 6e6f 7465 2042 * a *note B │ │ │ │ +00076980: 6f6f 6c65 616e 2076 616c 7565 3a20 284d oolean value: (M │ │ │ │ +00076990: 6163 6175 6c61 7932 446f 6329 426f 6f6c acaulay2Doc)Bool │ │ │ │ +000769a0: 6561 6e2c 2c20 7768 6574 6865 7220 7068 ean,, whether ph │ │ │ │ +000769b0: 6920 2a20 7073 6920 3d3d 2031 0a20 2020 i * psi == 1. │ │ │ │ +000769c0: 2020 2020 2061 6e64 2070 7369 202a 2070 and psi * p │ │ │ │ +000769d0: 6869 203d 3d20 310a 2020 2a20 436f 6e73 hi == 1. * Cons │ │ │ │ +000769e0: 6571 7565 6e63 6573 3a0a 2020 2020 2020 equences:. │ │ │ │ +000769f0: 2a20 4966 2074 6865 2061 6e73 7765 7220 * If the answer │ │ │ │ +00076a00: 6973 2061 6666 6972 6d61 7469 7665 2c20 is affirmative, │ │ │ │ +00076a10: 7468 656e 2074 6865 2073 7973 7465 6d20 then the system │ │ │ │ +00076a20: 7769 6c6c 2062 6520 696e 666f 726d 6564 will be informed │ │ │ │ +00076a30: 2061 6e64 2073 6f0a 2020 2020 2020 2020 and so. │ │ │ │ +00076a40: 636f 6d6d 616e 6473 206c 696b 6520 2769 commands like 'i │ │ │ │ +00076a50: 6e76 6572 7365 2070 6869 2720 7769 6c6c nverse phi' will │ │ │ │ +00076a60: 2065 7865 6375 7465 2066 6173 742e 0a0a execute fast... │ │ │ │ +00076a70: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ +00076a80: 3d0a 0a20 202a 202a 6e6f 7465 2052 6174 =.. * *note Rat │ │ │ │ +00076a90: 696f 6e61 6c4d 6170 203d 3d20 5261 7469 ionalMap == Rati │ │ │ │ +00076aa0: 6f6e 616c 4d61 703a 2052 6174 696f 6e61 onalMap: Rationa │ │ │ │ +00076ab0: 6c4d 6170 203d 3d20 5261 7469 6f6e 616c lMap == Rational │ │ │ │ +00076ac0: 4d61 702c 202d 2d20 6571 7561 6c69 7479 Map, -- equality │ │ │ │ +00076ad0: 0a20 2020 206f 6620 7261 7469 6f6e 616c . of rational │ │ │ │ +00076ae0: 206d 6170 730a 2020 2a20 2a6e 6f74 6520 maps. * *note │ │ │ │ +00076af0: 5261 7469 6f6e 616c 4d61 7020 2a20 5261 RationalMap * Ra │ │ │ │ +00076b00: 7469 6f6e 616c 4d61 703a 2052 6174 696f tionalMap: Ratio │ │ │ │ +00076b10: 6e61 6c4d 6170 205f 7374 2052 6174 696f nalMap _st Ratio │ │ │ │ +00076b20: 6e61 6c4d 6170 2c20 2d2d 0a20 2020 2063 nalMap, --. c │ │ │ │ +00076b30: 6f6d 706f 7369 7469 6f6e 206f 6620 7261 omposition of ra │ │ │ │ +00076b40: 7469 6f6e 616c 206d 6170 730a 2020 2a20 tional maps. * │ │ │ │ +00076b50: 2a6e 6f74 6520 6973 496e 7665 7273 654d *note isInverseM │ │ │ │ +00076b60: 6170 2852 696e 674d 6170 2c52 696e 674d ap(RingMap,RingM │ │ │ │ +00076b70: 6170 293a 2069 7349 6e76 6572 7365 4d61 ap): isInverseMa │ │ │ │ +00076b80: 702c 202d 2d20 6368 6563 6b73 2077 6865 p, -- checks whe │ │ │ │ +00076b90: 7468 6572 2061 0a20 2020 2072 6174 696f ther a. ratio │ │ │ │ +00076ba0: 6e61 6c20 6d61 7020 6973 2074 6865 2069 nal map is the i │ │ │ │ +00076bb0: 6e76 6572 7365 206f 6620 616e 6f74 6865 nverse of anothe │ │ │ │ +00076bc0: 720a 2020 2a20 2a6e 6f74 6520 696e 7665 r. * *note inve │ │ │ │ +00076bd0: 7273 6528 5261 7469 6f6e 616c 4d61 7029 rse(RationalMap) │ │ │ │ +00076be0: 3a20 696e 7665 7273 655f 6c70 5261 7469 : inverse_lpRati │ │ │ │ +00076bf0: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2069 onalMap_rp, -- i │ │ │ │ +00076c00: 6e76 6572 7365 206f 6620 610a 2020 2020 nverse of a. │ │ │ │ +00076c10: 6269 7261 7469 6f6e 616c 206d 6170 0a20 birational map. │ │ │ │ +00076c20: 202a 202a 6e6f 7465 2066 6f72 6365 496e * *note forceIn │ │ │ │ +00076c30: 7665 7273 654d 6170 3a20 666f 7263 6549 verseMap: forceI │ │ │ │ +00076c40: 6e76 6572 7365 4d61 702c 202d 2d20 6465 nverseMap, -- de │ │ │ │ +00076c50: 636c 6172 6520 7468 6174 2074 776f 2072 clare that two r │ │ │ │ +00076c60: 6174 696f 6e61 6c20 6d61 7073 0a20 2020 ational maps. │ │ │ │ +00076c70: 2061 7265 206f 6e65 2074 6865 2069 6e76 are one the inv │ │ │ │ +00076c80: 6572 7365 206f 6620 7468 6520 6f74 6865 erse of the othe │ │ │ │ +00076c90: 720a 0a57 6179 7320 746f 2075 7365 2074 r..Ways to use t │ │ │ │ +00076ca0: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ +00076cb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00076cc0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00076cd0: 6973 496e 7665 7273 654d 6170 2852 6174 isInverseMap(Rat │ │ │ │ +00076ce0: 696f 6e61 6c4d 6170 2c52 6174 696f 6e61 ionalMap,Rationa │ │ │ │ +00076cf0: 6c4d 6170 293a 0a20 2020 2069 7349 6e76 lMap):. isInv │ │ │ │ +00076d00: 6572 7365 4d61 705f 6c70 5261 7469 6f6e erseMap_lpRation │ │ │ │ +00076d10: 616c 4d61 705f 636d 5261 7469 6f6e 616c alMap_cmRational │ │ │ │ +00076d20: 4d61 705f 7270 2c20 2d2d 2063 6865 636b Map_rp, -- check │ │ │ │ +00076d30: 7320 7768 6574 6865 7220 7477 6f20 7261 s whether two ra │ │ │ │ +00076d40: 7469 6f6e 616c 0a20 2020 206d 6170 7320 tional. maps │ │ │ │ +00076d50: 6172 6520 6f6e 6520 7468 6520 696e 7665 are one the inve │ │ │ │ +00076d60: 7273 6520 6f66 2074 6865 206f 7468 6572 rse of the other │ │ │ │ +00076d70: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00076d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076da0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00076db0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00076dc0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00076dd0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00076de0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00076df0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00076e00: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00076e10: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00076e20: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -00076e30: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -00076e40: 7469 6f6e 2e6d 323a 3635 373a 302e 0a1f tion.m2:657:0... │ │ │ │ -00076e50: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -00076e60: 6e66 6f2c 204e 6f64 653a 2069 7349 736f nfo, Node: isIso │ │ │ │ -00076e70: 6d6f 7270 6869 736d 5f6c 7052 6174 696f morphism_lpRatio │ │ │ │ -00076e80: 6e61 6c4d 6170 5f72 702c 204e 6578 743a nalMap_rp, Next: │ │ │ │ -00076e90: 2069 734d 6f72 7068 6973 6d2c 2050 7265 isMorphism, Pre │ │ │ │ -00076ea0: 763a 2069 7349 6e76 6572 7365 4d61 705f v: isInverseMap_ │ │ │ │ -00076eb0: 6c70 5261 7469 6f6e 616c 4d61 705f 636d lpRationalMap_cm │ │ │ │ -00076ec0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -00076ed0: 5570 3a20 546f 700a 0a69 7349 736f 6d6f Up: Top..isIsomo │ │ │ │ -00076ee0: 7270 6869 736d 2852 6174 696f 6e61 6c4d rphism(RationalM │ │ │ │ -00076ef0: 6170 2920 2d2d 2077 6865 7468 6572 2061 ap) -- whether a │ │ │ │ -00076f00: 2062 6972 6174 696f 6e61 6c20 6d61 7020 birational map │ │ │ │ -00076f10: 6973 2061 6e20 6973 6f6d 6f72 7068 6973 is an isomorphis │ │ │ │ -00076f20: 6d0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a m.************** │ │ │ │ +00076dc0: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00076dd0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00076de0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00076df0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00076e00: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00076e10: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00076e20: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +00076e30: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +00076e40: 323a 3635 373a 302e 0a1f 0a46 696c 653a 2:657:0....File: │ │ │ │ +00076e50: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +00076e60: 6f64 653a 2069 7349 736f 6d6f 7270 6869 ode: isIsomorphi │ │ │ │ +00076e70: 736d 5f6c 7052 6174 696f 6e61 6c4d 6170 sm_lpRationalMap │ │ │ │ +00076e80: 5f72 702c 204e 6578 743a 2069 734d 6f72 _rp, Next: isMor │ │ │ │ +00076e90: 7068 6973 6d2c 2050 7265 763a 2069 7349 phism, Prev: isI │ │ │ │ +00076ea0: 6e76 6572 7365 4d61 705f 6c70 5261 7469 nverseMap_lpRati │ │ │ │ +00076eb0: 6f6e 616c 4d61 705f 636d 5261 7469 6f6e onalMap_cmRation │ │ │ │ +00076ec0: 616c 4d61 705f 7270 2c20 5570 3a20 546f alMap_rp, Up: To │ │ │ │ +00076ed0: 700a 0a69 7349 736f 6d6f 7270 6869 736d p..isIsomorphism │ │ │ │ +00076ee0: 2852 6174 696f 6e61 6c4d 6170 2920 2d2d (RationalMap) -- │ │ │ │ +00076ef0: 2077 6865 7468 6572 2061 2062 6972 6174 whether a birat │ │ │ │ +00076f00: 696f 6e61 6c20 6d61 7020 6973 2061 6e20 ional map is an │ │ │ │ +00076f10: 6973 6f6d 6f72 7068 6973 6d0a 2a2a 2a2a isomorphism.**** │ │ │ │ +00076f20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076f30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076f40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00076f50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00076f60: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -00076f70: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ -00076f80: 6973 4973 6f6d 6f72 7068 6973 6d3a 2028 isIsomorphism: ( │ │ │ │ -00076f90: 4d61 6361 756c 6179 3244 6f63 2969 7349 Macaulay2Doc)isI │ │ │ │ -00076fa0: 736f 6d6f 7270 6869 736d 2c0a 2020 2a20 somorphism,. * │ │ │ │ -00076fb0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -00076fc0: 6973 4973 6f6d 6f72 7068 6973 6d20 7068 isIsomorphism ph │ │ │ │ -00076fd0: 690a 2020 2a20 496e 7075 7473 3a0a 2020 i. * Inputs:. │ │ │ │ -00076fe0: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ -00076ff0: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ -00077000: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ -00077010: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -00077020: 202a 2061 202a 6e6f 7465 2042 6f6f 6c65 * a *note Boole │ │ │ │ -00077030: 616e 2076 616c 7565 3a20 284d 6163 6175 an value: (Macau │ │ │ │ -00077040: 6c61 7932 446f 6329 426f 6f6c 6561 6e2c lay2Doc)Boolean, │ │ │ │ -00077050: 2c20 7768 6574 6865 7220 7068 6920 6973 , whether phi is │ │ │ │ -00077060: 2061 6e0a 2020 2020 2020 2020 6973 6f6d an. isom │ │ │ │ -00077070: 6f72 7068 6973 6d0a 0a44 6573 6372 6970 orphism..Descrip │ │ │ │ -00077080: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00077090: 0a0a 5468 6973 206d 6574 686f 6420 636f ..This method co │ │ │ │ -000770a0: 6d70 7574 6573 2074 6865 2069 6e76 6572 mputes the inver │ │ │ │ -000770b0: 7365 2072 6174 696f 6e61 6c20 6d61 7020 se rational map │ │ │ │ -000770c0: 7573 696e 6720 2a6e 6f74 6520 696e 7665 using *note inve │ │ │ │ -000770d0: 7273 653a 0a69 6e76 6572 7365 5f6c 7052 rse:.inverse_lpR │ │ │ │ -000770e0: 6174 696f 6e61 6c4d 6170 5f72 702c 2e0a ationalMap_rp,.. │ │ │ │ -000770f0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +00076f60: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +00076f70: 6f6e 3a20 2a6e 6f74 6520 6973 4973 6f6d on: *note isIsom │ │ │ │ +00076f80: 6f72 7068 6973 6d3a 2028 4d61 6361 756c orphism: (Macaul │ │ │ │ +00076f90: 6179 3244 6f63 2969 7349 736f 6d6f 7270 ay2Doc)isIsomorp │ │ │ │ +00076fa0: 6869 736d 2c0a 2020 2a20 5573 6167 653a hism,. * Usage: │ │ │ │ +00076fb0: 200a 2020 2020 2020 2020 6973 4973 6f6d . isIsom │ │ │ │ +00076fc0: 6f72 7068 6973 6d20 7068 690a 2020 2a20 orphism phi. * │ │ │ │ +00076fd0: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +00076fe0: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ +00076ff0: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ +00077000: 6e61 6c4d 6170 2c0a 2020 2a20 4f75 7470 nalMap,. * Outp │ │ │ │ +00077010: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +00077020: 6e6f 7465 2042 6f6f 6c65 616e 2076 616c note Boolean val │ │ │ │ +00077030: 7565 3a20 284d 6163 6175 6c61 7932 446f ue: (Macaulay2Do │ │ │ │ +00077040: 6329 426f 6f6c 6561 6e2c 2c20 7768 6574 c)Boolean,, whet │ │ │ │ +00077050: 6865 7220 7068 6920 6973 2061 6e0a 2020 her phi is an. │ │ │ │ +00077060: 2020 2020 2020 6973 6f6d 6f72 7068 6973 isomorphis │ │ │ │ +00077070: 6d0a 0a44 6573 6372 6970 7469 6f6e 0a3d m..Description.= │ │ │ │ +00077080: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ +00077090: 206d 6574 686f 6420 636f 6d70 7574 6573 method computes │ │ │ │ +000770a0: 2074 6865 2069 6e76 6572 7365 2072 6174 the inverse rat │ │ │ │ +000770b0: 696f 6e61 6c20 6d61 7020 7573 696e 6720 ional map using │ │ │ │ +000770c0: 2a6e 6f74 6520 696e 7665 7273 653a 0a69 *note inverse:.i │ │ │ │ +000770d0: 6e76 6572 7365 5f6c 7052 6174 696f 6e61 nverse_lpRationa │ │ │ │ +000770e0: 6c4d 6170 5f72 702c 2e0a 0a2b 2d2d 2d2d lMap_rp,...+---- │ │ │ │ +000770f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00077130: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5031 ------+.|i1 : P1 │ │ │ │ -00077140: 203a 3d20 5151 5b61 2c62 5d3b 2050 3420 := QQ[a,b]; P4 │ │ │ │ -00077150: 3a3d 2051 515b 782c 792c 7a2c 775d 3b20 := QQ[x,y,z,w]; │ │ │ │ +00077130: 2b0a 7c69 3120 3a20 5031 203a 3d20 5151 +.|i1 : P1 := QQ │ │ │ │ +00077140: 5b61 2c62 5d3b 2050 3420 3a3d 2051 515b [a,b]; P4 := QQ[ │ │ │ │ +00077150: 782c 792c 7a2c 775d 3b20 2020 2020 2020 x,y,z,w]; │ │ │ │ 00077160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077170: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00077170: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00077180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000771a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000771b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000771c0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7068 6920 ----+.|i3 : phi │ │ │ │ -000771d0: 3d20 7261 7469 6f6e 616c 4d61 7028 7b61 = rationalMap({a │ │ │ │ -000771e0: 5e34 2c61 5e33 2a62 2c61 5e32 2a62 5e32 ^4,a^3*b,a^2*b^2 │ │ │ │ -000771f0: 2c61 2a62 5e33 2c62 5e34 7d2c 446f 6d69 ,a*b^3,b^4},Domi │ │ │ │ -00077200: 6e61 6e74 3d3e 7472 7565 297c 0a7c 2020 nant=>true)|.| │ │ │ │ +000771b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000771c0: 7c69 3320 3a20 7068 6920 3d20 7261 7469 |i3 : phi = rati │ │ │ │ +000771d0: 6f6e 616c 4d61 7028 7b61 5e34 2c61 5e33 onalMap({a^4,a^3 │ │ │ │ +000771e0: 2a62 2c61 5e32 2a62 5e32 2c61 2a62 5e33 *b,a^2*b^2,a*b^3 │ │ │ │ +000771f0: 2c62 5e34 7d2c 446f 6d69 6e61 6e74 3d3e ,b^4},Dominant=> │ │ │ │ +00077200: 7472 7565 297c 0a7c 2020 2020 2020 2020 true)|.| │ │ │ │ 00077210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077250: 2020 7c0a 7c6f 3320 3d20 2d2d 2072 6174 |.|o3 = -- rat │ │ │ │ -00077260: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +00077240: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ +00077250: 3320 3d20 2d2d 2072 6174 696f 6e61 6c20 3 = -- rational │ │ │ │ +00077260: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ 00077270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077290: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -000772a0: 2073 6f75 7263 653a 2050 726f 6a28 5151 source: Proj(QQ │ │ │ │ -000772b0: 5b61 2c20 625d 2920 2020 2020 2020 2020 [a, b]) │ │ │ │ +00077290: 2020 207c 0a7c 2020 2020 2073 6f75 7263 |.| sourc │ │ │ │ +000772a0: 653a 2050 726f 6a28 5151 5b61 2c20 625d e: Proj(QQ[a, b] │ │ │ │ +000772b0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 000772c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000772d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000772e0: 7c0a 7c20 2020 2020 7461 7267 6574 3a20 |.| target: │ │ │ │ -000772f0: 7375 6276 6172 6965 7479 206f 6620 5072 subvariety of Pr │ │ │ │ -00077300: 6f6a 2851 515b 7420 2c20 7420 2c20 7420 oj(QQ[t , t , t │ │ │ │ -00077310: 2c20 7420 2c20 7420 5d29 2064 6566 696e , t , t ]) defin │ │ │ │ -00077320: 6564 2062 7920 207c 0a7c 2020 2020 2020 ed by |.| │ │ │ │ +000772d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000772e0: 2020 7461 7267 6574 3a20 7375 6276 6172 target: subvar │ │ │ │ +000772f0: 6965 7479 206f 6620 5072 6f6a 2851 515b iety of Proj(QQ[ │ │ │ │ +00077300: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ +00077310: 7420 5d29 2064 6566 696e 6564 2062 7920 t ]) defined by │ │ │ │ +00077320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00077330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077340: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00077350: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -00077360: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00077370: 7c20 2020 2020 2020 2020 2020 2020 7b20 | { │ │ │ │ +00077340: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00077350: 3220 2020 3320 2020 3420 2020 2020 2020 2 3 4 │ │ │ │ +00077360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00077370: 2020 2020 2020 2020 7b20 2020 2020 2020 { │ │ │ │ 00077380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000773a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000773b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000773c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000773a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000773b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000773c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000773d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000773e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000773f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00077400: 2020 2020 2020 2020 2020 2020 2074 2020 t │ │ │ │ -00077410: 2d20 7420 7420 2c20 2020 2020 2020 2020 - t t , │ │ │ │ +000773f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00077400: 2020 2020 2020 2074 2020 2d20 7420 7420 t - t t │ │ │ │ +00077410: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 00077420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077440: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00077450: 2020 2020 2033 2020 2020 3220 3420 2020 3 2 4 │ │ │ │ +00077430: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00077440: 2020 2020 2020 2020 2020 2020 2020 2033 3 │ │ │ │ +00077450: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ 00077460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00077480: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00077490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000774a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000774b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000774c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000774d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000774e0: 2020 7420 7420 202d 2074 2074 202c 2020 t t - t t , │ │ │ │ +000774c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000774d0: 2020 2020 2020 2020 2020 2020 7420 7420 t t │ │ │ │ +000774e0: 202d 2074 2074 202c 2020 2020 2020 2020 - t t , │ │ │ │ 000774f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00077520: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -00077530: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ +00077510: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077520: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ +00077530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077550: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00077560: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00077550: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +00077560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000775a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -000775b0: 2020 2020 2020 2074 2074 2020 2d20 7420 t t - t │ │ │ │ -000775c0: 7420 2c20 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +000775a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000775b0: 2074 2074 2020 2d20 7420 7420 2c20 2020 t t - t t , │ │ │ │ +000775c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000775d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000775e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000775f0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00077600: 2033 2020 2020 3020 3420 2020 2020 2020 3 0 4 │ │ │ │ +000775e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000775f0: 2020 2020 2020 2020 2031 2033 2020 2020 1 3 │ │ │ │ +00077600: 3020 3420 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ 00077610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077630: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00077620: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00077630: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00077640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077670: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00077680: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00077670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00077680: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00077690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000776a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000776b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000776c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000776d0: 2020 2074 2020 2d20 7420 7420 2c20 2020 t - t t , │ │ │ │ +000776b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000776c0: 2020 2020 2020 2020 2020 2020 2074 2020 t │ │ │ │ +000776d0: 2d20 7420 7420 2c20 2020 2020 2020 2020 - t t , │ │ │ │ 000776e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000776f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077700: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00077710: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00077720: 3020 3420 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00077700: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077710: 2020 2020 2032 2020 2020 3020 3420 2020 2 0 4 │ │ │ │ +00077720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077750: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077740: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00077750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077790: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000777a0: 2020 2020 2020 2020 7420 7420 202d 2074 t t - t │ │ │ │ -000777b0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +00077790: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000777a0: 2020 7420 7420 202d 2074 2074 202c 2020 t t - t t , │ │ │ │ +000777b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000777c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000777d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000777e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000777f0: 3120 3220 2020 2030 2033 2020 2020 2020 1 2 0 3 │ │ │ │ +000777d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000777e0: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ +000777f0: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ 00077800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077820: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00077810: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00077820: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00077830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00077870: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00077860: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00077870: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00077880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000778a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000778b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000778c0: 2020 2020 7420 202d 2074 2074 2020 2020 t - t t │ │ │ │ +000778a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000778b0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ +000778c0: 202d 2074 2074 2020 2020 2020 2020 2020 - t t │ │ │ │ 000778d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000778e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000778f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00077900: 2020 2020 2020 2020 2020 2020 3120 2020 1 │ │ │ │ -00077910: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000778f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00077900: 2020 2020 2020 3120 2020 2030 2032 2020 1 0 2 │ │ │ │ +00077910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077940: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00077950: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +00077930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00077940: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +00077950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00077990: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ -000779a0: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +00077980: 2020 7c0a 7c20 2020 2020 6465 6669 6e69 |.| defini │ │ │ │ +00077990: 6e67 2066 6f72 6d73 3a20 7b20 2020 2020 ng forms: { │ │ │ │ +000779a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000779b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000779c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -000779d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -000779e0: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ +000779c0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +000779d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000779e0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 000779f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077a10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00077a20: 2020 2020 2020 2020 2020 2020 2020 2061 a │ │ │ │ -00077a30: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00077a10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077a20: 2020 2020 2020 2020 2061 202c 2020 2020 a , │ │ │ │ +00077a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00077a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00077a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077aa0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00077ab0: 2020 2020 2020 2020 2020 2020 2020 3320 3 │ │ │ │ +00077a90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00077aa0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00077ab0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ 00077ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077ae0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -00077af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077b00: 2020 2020 6120 622c 2020 2020 2020 2020 a b, │ │ │ │ +00077ae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00077af0: 2020 2020 2020 2020 2020 2020 2020 6120 a │ │ │ │ +00077b00: 622c 2020 2020 2020 2020 2020 2020 2020 b, │ │ │ │ 00077b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077b30: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00077b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077b70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -00077b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077b90: 2020 2032 2032 2020 2020 2020 2020 2020 2 2 │ │ │ │ +00077b70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00077b80: 2020 2020 2020 2020 2020 2020 2032 2032 2 2 │ │ │ │ +00077b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077bc0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00077bd0: 2020 2020 2020 2020 2061 2062 202c 2020 a b , │ │ │ │ +00077bb0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00077bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00077bd0: 2020 2061 2062 202c 2020 2020 2020 2020 a b , │ │ │ │ 00077be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077c00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +00077c00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00077c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00077c50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00077c60: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +00077c40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00077c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00077c60: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ 00077c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077c90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00077ca0: 2020 2020 2020 2020 2020 2020 2020 612a a* │ │ │ │ -00077cb0: 6220 2c20 2020 2020 2020 2020 2020 2020 b , │ │ │ │ +00077c80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00077c90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00077ca0: 2020 2020 2020 2020 612a 6220 2c20 2020 a*b , │ │ │ │ +00077cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077cd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00077cd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00077ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077d20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00077d30: 2020 2020 2020 2020 2020 2020 2034 2020 4 │ │ │ │ +00077d10: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00077d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00077d30: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ 00077d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077d60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00077d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077d80: 2020 2062 2020 2020 2020 2020 2020 2020 b │ │ │ │ +00077d60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00077d70: 2020 2020 2020 2020 2020 2020 2062 2020 b │ │ │ │ +00077d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077db0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00077dc0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +00077da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +00077db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00077dc0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00077dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077df0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00077df0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00077e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077e30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -00077e40: 0a7c 6f33 203a 2052 6174 696f 6e61 6c4d .|o3 : RationalM │ │ │ │ -00077e50: 6170 2028 646f 6d69 6e61 6e74 2072 6174 ap (dominant rat │ │ │ │ -00077e60: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ -00077e70: 505e 3120 746f 2063 7572 7665 2069 6e20 P^1 to curve in │ │ │ │ -00077e80: 5050 5e34 2920 7c0a 2b2d 2d2d 2d2d 2d2d PP^4) |.+------- │ │ │ │ +00077e30: 2020 2020 2020 2020 207c 0a7c 6f33 203a |.|o3 : │ │ │ │ +00077e40: 2052 6174 696f 6e61 6c4d 6170 2028 646f RationalMap (do │ │ │ │ +00077e50: 6d69 6e61 6e74 2072 6174 696f 6e61 6c20 minant rational │ │ │ │ +00077e60: 6d61 7020 6672 6f6d 2050 505e 3120 746f map from PP^1 to │ │ │ │ +00077e70: 2063 7572 7665 2069 6e20 5050 5e34 2920 curve in PP^4) │ │ │ │ +00077e80: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 00077e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00077ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00077ed0: 6934 203a 2069 7349 736f 6d6f 7270 6869 i4 : isIsomorphi │ │ │ │ -00077ee0: 736d 2070 6869 2020 2020 2020 2020 2020 sm phi │ │ │ │ +00077ec0: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2069 -------+.|i4 : i │ │ │ │ +00077ed0: 7349 736f 6d6f 7270 6869 736d 2070 6869 sIsomorphism phi │ │ │ │ +00077ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077f10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00077f00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00077f10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00077f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077f50: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ -00077f60: 203d 2074 7275 6520 2020 2020 2020 2020 = true │ │ │ │ +00077f50: 2020 2020 207c 0a7c 6f34 203d 2074 7275 |.|o4 = tru │ │ │ │ +00077f60: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00077f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00077f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00077fa0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +00077f90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00077fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00077fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00077fe0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 ---------+..See │ │ │ │ -00077ff0: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ -00078000: 202a 202a 6e6f 7465 2069 6465 616c 2852 * *note ideal(R │ │ │ │ -00078010: 6174 696f 6e61 6c4d 6170 293a 2069 6465 ationalMap): ide │ │ │ │ -00078020: 616c 5f6c 7052 6174 696f 6e61 6c4d 6170 al_lpRationalMap │ │ │ │ -00078030: 5f72 702c 202d 2d20 6261 7365 206c 6f63 _rp, -- base loc │ │ │ │ -00078040: 7573 206f 6620 610a 2020 2020 7261 7469 us of a. rati │ │ │ │ -00078050: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ -00078060: 7465 2069 7342 6972 6174 696f 6e61 6c3a te isBirational: │ │ │ │ -00078070: 2069 7342 6972 6174 696f 6e61 6c2c 202d isBirational, - │ │ │ │ -00078080: 2d20 7768 6574 6865 7220 6120 7261 7469 - whether a rati │ │ │ │ -00078090: 6f6e 616c 206d 6170 2069 7320 6269 7261 onal map is bira │ │ │ │ -000780a0: 7469 6f6e 616c 0a20 202a 202a 6e6f 7465 tional. * *note │ │ │ │ -000780b0: 2069 734d 6f72 7068 6973 6d3a 2069 734d isMorphism: isM │ │ │ │ -000780c0: 6f72 7068 6973 6d2c 202d 2d20 7768 6574 orphism, -- whet │ │ │ │ -000780d0: 6865 7220 6120 7261 7469 6f6e 616c 206d her a rational m │ │ │ │ -000780e0: 6170 2069 7320 6120 6d6f 7270 6869 736d ap is a morphism │ │ │ │ -000780f0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ -00078100: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ -00078110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00078120: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2069 ===.. * *note i │ │ │ │ -00078130: 7349 736f 6d6f 7270 6869 736d 2852 6174 sIsomorphism(Rat │ │ │ │ -00078140: 696f 6e61 6c4d 6170 293a 2069 7349 736f ionalMap): isIso │ │ │ │ -00078150: 6d6f 7270 6869 736d 5f6c 7052 6174 696f morphism_lpRatio │ │ │ │ -00078160: 6e61 6c4d 6170 5f72 702c 202d 2d0a 2020 nalMap_rp, --. │ │ │ │ -00078170: 2020 7768 6574 6865 7220 6120 6269 7261 whether a bira │ │ │ │ -00078180: 7469 6f6e 616c 206d 6170 2069 7320 616e tional map is an │ │ │ │ -00078190: 2069 736f 6d6f 7270 6869 736d 0a2d 2d2d isomorphism.--- │ │ │ │ +00077fe0: 2d2d 2d2b 0a0a 5365 6520 616c 736f 0a3d ---+..See also.= │ │ │ │ +00077ff0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ +00078000: 7465 2069 6465 616c 2852 6174 696f 6e61 te ideal(Rationa │ │ │ │ +00078010: 6c4d 6170 293a 2069 6465 616c 5f6c 7052 lMap): ideal_lpR │ │ │ │ +00078020: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +00078030: 2d20 6261 7365 206c 6f63 7573 206f 6620 - base locus of │ │ │ │ +00078040: 610a 2020 2020 7261 7469 6f6e 616c 206d a. rational m │ │ │ │ +00078050: 6170 0a20 202a 202a 6e6f 7465 2069 7342 ap. * *note isB │ │ │ │ +00078060: 6972 6174 696f 6e61 6c3a 2069 7342 6972 irational: isBir │ │ │ │ +00078070: 6174 696f 6e61 6c2c 202d 2d20 7768 6574 ational, -- whet │ │ │ │ +00078080: 6865 7220 6120 7261 7469 6f6e 616c 206d her a rational m │ │ │ │ +00078090: 6170 2069 7320 6269 7261 7469 6f6e 616c ap is birational │ │ │ │ +000780a0: 0a20 202a 202a 6e6f 7465 2069 734d 6f72 . * *note isMor │ │ │ │ +000780b0: 7068 6973 6d3a 2069 734d 6f72 7068 6973 phism: isMorphis │ │ │ │ +000780c0: 6d2c 202d 2d20 7768 6574 6865 7220 6120 m, -- whether a │ │ │ │ +000780d0: 7261 7469 6f6e 616c 206d 6170 2069 7320 rational map is │ │ │ │ +000780e0: 6120 6d6f 7270 6869 736d 0a0a 5761 7973 a morphism..Ways │ │ │ │ +000780f0: 2074 6f20 7573 6520 7468 6973 206d 6574 to use this met │ │ │ │ +00078100: 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d hod:.=========== │ │ │ │ +00078110: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00078120: 202a 202a 6e6f 7465 2069 7349 736f 6d6f * *note isIsomo │ │ │ │ +00078130: 7270 6869 736d 2852 6174 696f 6e61 6c4d rphism(RationalM │ │ │ │ +00078140: 6170 293a 2069 7349 736f 6d6f 7270 6869 ap): isIsomorphi │ │ │ │ +00078150: 736d 5f6c 7052 6174 696f 6e61 6c4d 6170 sm_lpRationalMap │ │ │ │ +00078160: 5f72 702c 202d 2d0a 2020 2020 7768 6574 _rp, --. whet │ │ │ │ +00078170: 6865 7220 6120 6269 7261 7469 6f6e 616c her a birational │ │ │ │ +00078180: 206d 6170 2069 7320 616e 2069 736f 6d6f map is an isomo │ │ │ │ +00078190: 7270 6869 736d 0a2d 2d2d 2d2d 2d2d 2d2d rphism.--------- │ │ │ │ 000781a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000781b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000781c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000781d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000781e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -000781f0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -00078200: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -00078210: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00078220: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00078230: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00078240: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00078250: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ -00078260: 756d 656e 7461 7469 6f6e 2e6d 323a 3131 umentation.m2:11 │ │ │ │ -00078270: 3437 3a30 2e0a 1f0a 4669 6c65 3a20 4372 47:0....File: Cr │ │ │ │ -00078280: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -00078290: 3a20 6973 4d6f 7270 6869 736d 2c20 4e65 : isMorphism, Ne │ │ │ │ -000782a0: 7874 3a20 6b65 726e 656c 5f6c 7052 696e xt: kernel_lpRin │ │ │ │ -000782b0: 674d 6170 5f63 6d5a 5a5f 7270 2c20 5072 gMap_cmZZ_rp, Pr │ │ │ │ -000782c0: 6576 3a20 6973 4973 6f6d 6f72 7068 6973 ev: isIsomorphis │ │ │ │ -000782d0: 6d5f 6c70 5261 7469 6f6e 616c 4d61 705f m_lpRationalMap_ │ │ │ │ -000782e0: 7270 2c20 5570 3a20 546f 700a 0a69 734d rp, Up: Top..isM │ │ │ │ -000782f0: 6f72 7068 6973 6d20 2d2d 2077 6865 7468 orphism -- wheth │ │ │ │ -00078300: 6572 2061 2072 6174 696f 6e61 6c20 6d61 er a rational ma │ │ │ │ -00078310: 7020 6973 2061 206d 6f72 7068 6973 6d0a p is a morphism. │ │ │ │ +000781e0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +000781f0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +00078200: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +00078210: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00078220: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00078230: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00078240: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ +00078250: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ +00078260: 7469 6f6e 2e6d 323a 3131 3437 3a30 2e0a tion.m2:1147:0.. │ │ │ │ +00078270: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ +00078280: 696e 666f 2c20 4e6f 6465 3a20 6973 4d6f info, Node: isMo │ │ │ │ +00078290: 7270 6869 736d 2c20 4e65 7874 3a20 6b65 rphism, Next: ke │ │ │ │ +000782a0: 726e 656c 5f6c 7052 696e 674d 6170 5f63 rnel_lpRingMap_c │ │ │ │ +000782b0: 6d5a 5a5f 7270 2c20 5072 6576 3a20 6973 mZZ_rp, Prev: is │ │ │ │ +000782c0: 4973 6f6d 6f72 7068 6973 6d5f 6c70 5261 Isomorphism_lpRa │ │ │ │ +000782d0: 7469 6f6e 616c 4d61 705f 7270 2c20 5570 tionalMap_rp, Up │ │ │ │ +000782e0: 3a20 546f 700a 0a69 734d 6f72 7068 6973 : Top..isMorphis │ │ │ │ +000782f0: 6d20 2d2d 2077 6865 7468 6572 2061 2072 m -- whether a r │ │ │ │ +00078300: 6174 696f 6e61 6c20 6d61 7020 6973 2061 ational map is a │ │ │ │ +00078310: 206d 6f72 7068 6973 6d0a 2a2a 2a2a 2a2a morphism.****** │ │ │ │ 00078320: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00078330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00078340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00078350: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ -00078360: 2020 2020 2020 2020 6973 4d6f 7270 6869 isMorphi │ │ │ │ -00078370: 736d 2070 6869 0a20 202a 2049 6e70 7574 sm phi. * Input │ │ │ │ -00078380: 733a 0a20 2020 2020 202a 2070 6869 2c20 s:. * phi, │ │ │ │ -00078390: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ -000783a0: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ -000783b0: 702c 0a20 202a 204f 7574 7075 7473 3a0a p,. * Outputs:. │ │ │ │ -000783c0: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ -000783d0: 426f 6f6c 6561 6e20 7661 6c75 653a 2028 Boolean value: ( │ │ │ │ -000783e0: 4d61 6361 756c 6179 3244 6f63 2942 6f6f Macaulay2Doc)Boo │ │ │ │ -000783f0: 6c65 616e 2c2c 2077 6865 7468 6572 2070 lean,, whether p │ │ │ │ -00078400: 6869 2069 7320 610a 2020 2020 2020 2020 hi is a. │ │ │ │ -00078410: 6d6f 7270 6869 736d 2028 692e 652e 2c20 morphism (i.e., │ │ │ │ -00078420: 6576 6572 7977 6865 7265 2064 6566 696e everywhere defin │ │ │ │ -00078430: 6564 290a 0a44 6573 6372 6970 7469 6f6e ed)..Description │ │ │ │ -00078440: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ +00078340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 ************.. │ │ │ │ +00078350: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00078360: 2020 6973 4d6f 7270 6869 736d 2070 6869 isMorphism phi │ │ │ │ +00078370: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ +00078380: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ +00078390: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ +000783a0: 5261 7469 6f6e 616c 4d61 702c 0a20 202a RationalMap,. * │ │ │ │ +000783b0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +000783c0: 2a20 6120 2a6e 6f74 6520 426f 6f6c 6561 * a *note Boolea │ │ │ │ +000783d0: 6e20 7661 6c75 653a 2028 4d61 6361 756c n value: (Macaul │ │ │ │ +000783e0: 6179 3244 6f63 2942 6f6f 6c65 616e 2c2c ay2Doc)Boolean,, │ │ │ │ +000783f0: 2077 6865 7468 6572 2070 6869 2069 7320 whether phi is │ │ │ │ +00078400: 610a 2020 2020 2020 2020 6d6f 7270 6869 a. morphi │ │ │ │ +00078410: 736d 2028 692e 652e 2c20 6576 6572 7977 sm (i.e., everyw │ │ │ │ +00078420: 6865 7265 2064 6566 696e 6564 290a 0a44 here defined)..D │ │ │ │ +00078430: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +00078440: 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d ======..+------- │ │ │ │ 00078450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00078490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000784a0: 3120 3a20 7068 6920 3d20 7175 6164 726f 1 : phi = quadro │ │ │ │ -000784b0: 5175 6164 7269 6343 7265 6d6f 6e61 5472 QuadricCremonaTr │ │ │ │ -000784c0: 616e 7366 6f72 6d61 7469 6f6e 2835 2c31 ansformation(5,1 │ │ │ │ -000784d0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ -000784e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078490: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7068 ------+.|i1 : ph │ │ │ │ +000784a0: 6920 3d20 7175 6164 726f 5175 6164 7269 i = quadroQuadri │ │ │ │ +000784b0: 6343 7265 6d6f 6e61 5472 616e 7366 6f72 cCremonaTransfor │ │ │ │ +000784c0: 6d61 7469 6f6e 2835 2c31 2920 2020 2020 mation(5,1) │ │ │ │ +000784d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000784e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000784f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078530: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00078540: 3120 3d20 2d2d 2072 6174 696f 6e61 6c20 1 = -- rational │ │ │ │ -00078550: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +00078530: 2020 2020 2020 7c0a 7c6f 3120 3d20 2d2d |.|o1 = -- │ │ │ │ +00078540: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00078550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078580: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00078590: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -000785a0: 2851 515b 782c 2079 2c20 7a2c 2074 2c20 (QQ[x, y, z, t, │ │ │ │ -000785b0: 752c 2076 5d29 2020 2020 2020 2020 2020 u, v]) │ │ │ │ +00078580: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +00078590: 7572 6365 3a20 5072 6f6a 2851 515b 782c urce: Proj(QQ[x, │ │ │ │ +000785a0: 2079 2c20 7a2c 2074 2c20 752c 2076 5d29 y, z, t, u, v]) │ │ │ │ +000785b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000785c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000785d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000785e0: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -000785f0: 2851 515b 782c 2079 2c20 7a2c 2074 2c20 (QQ[x, y, z, t, │ │ │ │ -00078600: 752c 2076 5d29 2020 2020 2020 2020 2020 u, v]) │ │ │ │ +000785d0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +000785e0: 7267 6574 3a20 5072 6f6a 2851 515b 782c rget: Proj(QQ[x, │ │ │ │ +000785f0: 2079 2c20 7a2c 2074 2c20 752c 2076 5d29 y, z, t, u, v]) │ │ │ │ +00078600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078620: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00078630: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -00078640: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +00078620: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +00078630: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00078640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078670: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078670: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078690: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00078690: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000786a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000786b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000786c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000786d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000786e0: 2020 2020 2079 2a7a 202d 2076 202c 2020 y*z - v , │ │ │ │ +000786c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000786d0: 2020 2020 2020 2020 2020 2020 2020 2079 y │ │ │ │ +000786e0: 2a7a 202d 2076 202c 2020 2020 2020 2020 *z - v , │ │ │ │ 000786f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078760: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078760: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078780: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00078780: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00078790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000787a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000787b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000787c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000787d0: 2020 2020 2078 2a7a 202d 2075 202c 2020 x*z - u , │ │ │ │ +000787b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000787c0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000787d0: 2a7a 202d 2075 202c 2020 2020 2020 2020 *z - u , │ │ │ │ 000787e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000787f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078800: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078850: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078870: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00078870: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00078880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000788a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000788b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000788c0: 2020 2020 2078 2a79 202d 2074 202c 2020 x*y - t , │ │ │ │ +000788a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000788b0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000788c0: 2a79 202d 2074 202c 2020 2020 2020 2020 *y - t , │ │ │ │ 000788d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000788e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000788f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000788f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00078950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078960: 2020 2020 202d 207a 2a74 202b 2075 2a76 - z*t + u*v │ │ │ │ -00078970: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00078940: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00078950: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +00078960: 207a 2a74 202b 2075 2a76 2c20 2020 2020 z*t + u*v, │ │ │ │ +00078970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078990: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078990: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000789a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000789b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000789c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000789d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000789e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000789f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078a00: 2020 2020 202d 2079 2a75 202b 2074 2a76 - y*u + t*v │ │ │ │ -00078a10: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000789e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000789f0: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +00078a00: 2079 2a75 202b 2074 2a76 2c20 2020 2020 y*u + t*v, │ │ │ │ +00078a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078a30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078a30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078a80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00078a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078aa0: 2020 2020 2074 2a75 202d 2078 2a76 2020 t*u - x*v │ │ │ │ +00078a80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00078a90: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +00078aa0: 2a75 202d 2078 2a76 2020 2020 2020 2020 *u - x*v │ │ │ │ 00078ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078ad0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00078ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078af0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00078ad0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00078ae0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00078af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078b70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00078b80: 3120 3a20 5261 7469 6f6e 616c 4d61 7020 1 : RationalMap │ │ │ │ -00078b90: 2843 7265 6d6f 6e61 2074 7261 6e73 666f (Cremona transfo │ │ │ │ -00078ba0: 726d 6174 696f 6e20 6f66 2050 505e 3520 rmation of PP^5 │ │ │ │ -00078bb0: 6f66 2074 7970 6520 2832 2c32 2929 2020 of type (2,2)) │ │ │ │ -00078bc0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00078b70: 2020 2020 2020 7c0a 7c6f 3120 3a20 5261 |.|o1 : Ra │ │ │ │ +00078b80: 7469 6f6e 616c 4d61 7020 2843 7265 6d6f tionalMap (Cremo │ │ │ │ +00078b90: 6e61 2074 7261 6e73 666f 726d 6174 696f na transformatio │ │ │ │ +00078ba0: 6e20 6f66 2050 505e 3520 6f66 2074 7970 n of PP^5 of typ │ │ │ │ +00078bb0: 6520 2832 2c32 2929 2020 2020 2020 2020 e (2,2)) │ │ │ │ +00078bc0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00078bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00078c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00078c20: 3220 3a20 6973 4d6f 7270 6869 736d 2070 2 : isMorphism p │ │ │ │ -00078c30: 6869 2020 2020 2020 2020 2020 2020 2020 hi │ │ │ │ +00078c10: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 6973 ------+.|i2 : is │ │ │ │ +00078c20: 4d6f 7270 6869 736d 2070 6869 2020 2020 Morphism phi │ │ │ │ +00078c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078c60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00078cc0: 3220 3d20 6661 6c73 6520 2020 2020 2020 2 = false │ │ │ │ +00078cb0: 2020 2020 2020 7c0a 7c6f 3220 3d20 6661 |.|o2 = fa │ │ │ │ +00078cc0: 6c73 6520 2020 2020 2020 2020 2020 2020 lse │ │ │ │ 00078cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078d00: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00078d00: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00078d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00078d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00078d60: 3320 3a20 7068 6927 203d 206c 6173 7420 3 : phi' = last │ │ │ │ -00078d70: 6772 6170 6820 7068 693b 2020 2020 2020 graph phi; │ │ │ │ +00078d50: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 7068 ------+.|i3 : ph │ │ │ │ +00078d60: 6927 203d 206c 6173 7420 6772 6170 6820 i' = last graph │ │ │ │ +00078d70: 7068 693b 2020 2020 2020 2020 2020 2020 phi; │ │ │ │ 00078d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078da0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078df0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00078e00: 3320 3a20 4d75 6c74 6968 6f6d 6f67 656e 3 : Multihomogen │ │ │ │ -00078e10: 656f 7573 5261 7469 6f6e 616c 4d61 7020 eousRationalMap │ │ │ │ -00078e20: 2862 6972 6174 696f 6e61 6c20 6d61 7020 (birational map │ │ │ │ -00078e30: 6672 6f6d 2035 2d64 696d 656e 7369 6f6e from 5-dimension │ │ │ │ -00078e40: 616c 2020 2020 2020 2020 2020 7c0a 7c2d al |.|- │ │ │ │ +00078df0: 2020 2020 2020 7c0a 7c6f 3320 3a20 4d75 |.|o3 : Mu │ │ │ │ +00078e00: 6c74 6968 6f6d 6f67 656e 656f 7573 5261 ltihomogeneousRa │ │ │ │ +00078e10: 7469 6f6e 616c 4d61 7020 2862 6972 6174 tionalMap (birat │ │ │ │ +00078e20: 696f 6e61 6c20 6d61 7020 6672 6f6d 2035 ional map from 5 │ │ │ │ +00078e30: 2d64 696d 656e 7369 6f6e 616c 2020 2020 -dimensional │ │ │ │ +00078e40: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 00078e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00078e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c73 ------------|.|s │ │ │ │ -00078ea0: 7562 7661 7269 6574 7920 6f66 2050 505e ubvariety of PP^ │ │ │ │ -00078eb0: 3520 7820 5050 5e35 2074 6f20 5050 5e35 5 x PP^5 to PP^5 │ │ │ │ -00078ec0: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00078e90: 2d2d 2d2d 2d2d 7c0a 7c73 7562 7661 7269 ------|.|subvari │ │ │ │ +00078ea0: 6574 7920 6f66 2050 505e 3520 7820 5050 ety of PP^5 x PP │ │ │ │ +00078eb0: 5e35 2074 6f20 5050 5e35 2920 2020 2020 ^5 to PP^5) │ │ │ │ +00078ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078ee0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00078ee0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00078ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00078f20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00078f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00078f40: 3420 3a20 6973 4d6f 7270 6869 736d 2070 4 : isMorphism p │ │ │ │ -00078f50: 6869 2720 2020 2020 2020 2020 2020 2020 hi' │ │ │ │ +00078f30: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 6973 ------+.|i4 : is │ │ │ │ +00078f40: 4d6f 7270 6869 736d 2070 6869 2720 2020 Morphism phi' │ │ │ │ +00078f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078f80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00078f80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00078f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00078fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00078fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00078fe0: 3420 3d20 7472 7565 2020 2020 2020 2020 4 = true │ │ │ │ +00078fd0: 2020 2020 2020 7c0a 7c6f 3420 3d20 7472 |.|o4 = tr │ │ │ │ +00078fe0: 7565 2020 2020 2020 2020 2020 2020 2020 ue │ │ │ │ 00078ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079020: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00079020: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00079030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -00079080: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -00079090: 0a0a 2020 2a20 2a6e 6f74 6520 6964 6561 .. * *note idea │ │ │ │ -000790a0: 6c28 5261 7469 6f6e 616c 4d61 7029 3a20 l(RationalMap): │ │ │ │ -000790b0: 6964 6561 6c5f 6c70 5261 7469 6f6e 616c ideal_lpRational │ │ │ │ -000790c0: 4d61 705f 7270 2c20 2d2d 2062 6173 6520 Map_rp, -- base │ │ │ │ -000790d0: 6c6f 6375 7320 6f66 2061 0a20 2020 2072 locus of a. r │ │ │ │ -000790e0: 6174 696f 6e61 6c20 6d61 700a 2020 2a20 ational map. * │ │ │ │ -000790f0: 2a6e 6f74 6520 6973 4973 6f6d 6f72 7068 *note isIsomorph │ │ │ │ -00079100: 6973 6d28 5261 7469 6f6e 616c 4d61 7029 ism(RationalMap) │ │ │ │ -00079110: 3a20 6973 4973 6f6d 6f72 7068 6973 6d5f : isIsomorphism_ │ │ │ │ -00079120: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -00079130: 2c20 2d2d 0a20 2020 2077 6865 7468 6572 , --. whether │ │ │ │ -00079140: 2061 2062 6972 6174 696f 6e61 6c20 6d61 a birational ma │ │ │ │ -00079150: 7020 6973 2061 6e20 6973 6f6d 6f72 7068 p is an isomorph │ │ │ │ -00079160: 6973 6d0a 0a57 6179 7320 746f 2075 7365 ism..Ways to use │ │ │ │ -00079170: 2069 734d 6f72 7068 6973 6d3a 0a3d 3d3d isMorphism:.=== │ │ │ │ -00079180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00079190: 3d3d 3d3d 0a0a 2020 2a20 2269 734d 6f72 ====.. * "isMor │ │ │ │ -000791a0: 7068 6973 6d28 5261 7469 6f6e 616c 4d61 phism(RationalMa │ │ │ │ -000791b0: 7029 220a 0a46 6f72 2074 6865 2070 726f p)"..For the pro │ │ │ │ -000791c0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -000791d0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -000791e0: 6f62 6a65 6374 202a 6e6f 7465 2069 734d object *note isM │ │ │ │ -000791f0: 6f72 7068 6973 6d3a 2069 734d 6f72 7068 orphism: isMorph │ │ │ │ -00079200: 6973 6d2c 2069 7320 6120 2a6e 6f74 6520 ism, is a *note │ │ │ │ -00079210: 6d65 7468 6f64 2066 756e 6374 696f 6e3a method function: │ │ │ │ -00079220: 0a28 4d61 6361 756c 6179 3244 6f63 294d .(Macaulay2Doc)M │ │ │ │ -00079230: 6574 686f 6446 756e 6374 696f 6e2c 2e0a ethodFunction,.. │ │ │ │ -00079240: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ +00079070: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +00079080: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +00079090: 2a6e 6f74 6520 6964 6561 6c28 5261 7469 *note ideal(Rati │ │ │ │ +000790a0: 6f6e 616c 4d61 7029 3a20 6964 6561 6c5f onalMap): ideal_ │ │ │ │ +000790b0: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +000790c0: 2c20 2d2d 2062 6173 6520 6c6f 6375 7320 , -- base locus │ │ │ │ +000790d0: 6f66 2061 0a20 2020 2072 6174 696f 6e61 of a. rationa │ │ │ │ +000790e0: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ +000790f0: 6973 4973 6f6d 6f72 7068 6973 6d28 5261 isIsomorphism(Ra │ │ │ │ +00079100: 7469 6f6e 616c 4d61 7029 3a20 6973 4973 tionalMap): isIs │ │ │ │ +00079110: 6f6d 6f72 7068 6973 6d5f 6c70 5261 7469 omorphism_lpRati │ │ │ │ +00079120: 6f6e 616c 4d61 705f 7270 2c20 2d2d 0a20 onalMap_rp, --. │ │ │ │ +00079130: 2020 2077 6865 7468 6572 2061 2062 6972 whether a bir │ │ │ │ +00079140: 6174 696f 6e61 6c20 6d61 7020 6973 2061 ational map is a │ │ │ │ +00079150: 6e20 6973 6f6d 6f72 7068 6973 6d0a 0a57 n isomorphism..W │ │ │ │ +00079160: 6179 7320 746f 2075 7365 2069 734d 6f72 ays to use isMor │ │ │ │ +00079170: 7068 6973 6d3a 0a3d 3d3d 3d3d 3d3d 3d3d phism:.========= │ │ │ │ +00079180: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +00079190: 2020 2a20 2269 734d 6f72 7068 6973 6d28 * "isMorphism( │ │ │ │ +000791a0: 5261 7469 6f6e 616c 4d61 7029 220a 0a46 RationalMap)"..F │ │ │ │ +000791b0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +000791c0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +000791d0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +000791e0: 202a 6e6f 7465 2069 734d 6f72 7068 6973 *note isMorphis │ │ │ │ +000791f0: 6d3a 2069 734d 6f72 7068 6973 6d2c 2069 m: isMorphism, i │ │ │ │ +00079200: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ +00079210: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ +00079220: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ +00079230: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +00079240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079290: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ -000792a0: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ -000792b0: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ -000792c0: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ -000792d0: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ -000792e0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ -000792f0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ -00079300: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ -00079310: 323a 3131 3334 3a30 2e0a 1f0a 4669 6c65 2:1134:0....File │ │ │ │ -00079320: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -00079330: 4e6f 6465 3a20 6b65 726e 656c 5f6c 7052 Node: kernel_lpR │ │ │ │ -00079340: 696e 674d 6170 5f63 6d5a 5a5f 7270 2c20 ingMap_cmZZ_rp, │ │ │ │ -00079350: 4e65 7874 3a20 6d61 705f 6c70 5261 7469 Next: map_lpRati │ │ │ │ -00079360: 6f6e 616c 4d61 705f 7270 2c20 5072 6576 onalMap_rp, Prev │ │ │ │ -00079370: 3a20 6973 4d6f 7270 6869 736d 2c20 5570 : isMorphism, Up │ │ │ │ -00079380: 3a20 546f 700a 0a6b 6572 6e65 6c28 5269 : Top..kernel(Ri │ │ │ │ -00079390: 6e67 4d61 702c 5a5a 2920 2d2d 2068 6f6d ngMap,ZZ) -- hom │ │ │ │ -000793a0: 6f67 656e 656f 7573 2063 6f6d 706f 6e65 ogeneous compone │ │ │ │ -000793b0: 6e74 7320 6f66 2074 6865 206b 6572 6e65 nts of the kerne │ │ │ │ -000793c0: 6c20 6f66 2061 2068 6f6d 6f67 656e 656f l of a homogeneo │ │ │ │ -000793d0: 7573 2072 696e 6720 6d61 700a 2a2a 2a2a us ring map.**** │ │ │ │ +00079280: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ +00079290: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ +000792a0: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ +000792b0: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ +000792c0: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ +000792d0: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ +000792e0: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ +000792f0: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ +00079300: 656e 7461 7469 6f6e 2e6d 323a 3131 3334 entation.m2:1134 │ │ │ │ +00079310: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ +00079320: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ +00079330: 6b65 726e 656c 5f6c 7052 696e 674d 6170 kernel_lpRingMap │ │ │ │ +00079340: 5f63 6d5a 5a5f 7270 2c20 4e65 7874 3a20 _cmZZ_rp, Next: │ │ │ │ +00079350: 6d61 705f 6c70 5261 7469 6f6e 616c 4d61 map_lpRationalMa │ │ │ │ +00079360: 705f 7270 2c20 5072 6576 3a20 6973 4d6f p_rp, Prev: isMo │ │ │ │ +00079370: 7270 6869 736d 2c20 5570 3a20 546f 700a rphism, Up: Top. │ │ │ │ +00079380: 0a6b 6572 6e65 6c28 5269 6e67 4d61 702c .kernel(RingMap, │ │ │ │ +00079390: 5a5a 2920 2d2d 2068 6f6d 6f67 656e 656f ZZ) -- homogeneo │ │ │ │ +000793a0: 7573 2063 6f6d 706f 6e65 6e74 7320 6f66 us components of │ │ │ │ +000793b0: 2074 6865 206b 6572 6e65 6c20 6f66 2061 the kernel of a │ │ │ │ +000793c0: 2068 6f6d 6f67 656e 656f 7573 2072 696e homogeneous rin │ │ │ │ +000793d0: 6720 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a g map.********** │ │ │ │ 000793e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000793f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00079400: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00079410: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00079420: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00079430: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -00079440: 2a6e 6f74 6520 6b65 726e 656c 3a20 284d *note kernel: (M │ │ │ │ -00079450: 6163 6175 6c61 7932 446f 6329 6b65 726e acaulay2Doc)kern │ │ │ │ -00079460: 656c 2c0a 2020 2a20 5573 6167 653a 200a el,. * Usage: . │ │ │ │ -00079470: 2020 2020 2020 2020 6b65 726e 656c 2870 kernel(p │ │ │ │ -00079480: 6869 2c64 290a 2020 2a20 496e 7075 7473 hi,d). * Inputs │ │ │ │ -00079490: 3a0a 2020 2020 2020 2a20 7068 692c 2061 :. * phi, a │ │ │ │ -000794a0: 202a 6e6f 7465 2072 696e 6720 6d61 703a *note ring map: │ │ │ │ -000794b0: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ -000794c0: 696e 674d 6170 2c2c 2024 4b5b 795f 302c ingMap,, $K[y_0, │ │ │ │ -000794d0: 5c6c 646f 7473 2c79 5f6d 5d2f 4a20 5c74 \ldots,y_m]/J \t │ │ │ │ -000794e0: 6f0a 2020 2020 2020 2020 4b5b 785f 302c o. K[x_0, │ │ │ │ -000794f0: 5c6c 646f 7473 2c78 5f6e 5d2f 4924 2c20 \ldots,x_n]/I$, │ │ │ │ -00079500: 6465 6669 6e65 6420 6279 2068 6f6d 6f67 defined by homog │ │ │ │ -00079510: 656e 656f 7573 2066 6f72 6d73 206f 6620 eneous forms of │ │ │ │ -00079520: 7468 6520 7361 6d65 2064 6567 7265 650a the same degree. │ │ │ │ -00079530: 2020 2020 2020 2020 616e 6420 7768 6572 and wher │ │ │ │ -00079540: 6520 244a 2420 616e 6420 2449 2420 6172 e $J$ and $I$ ar │ │ │ │ -00079550: 6520 686f 6d6f 6765 6e65 6f75 7320 6964 e homogeneous id │ │ │ │ -00079560: 6561 6c73 0a20 2020 2020 202a 2064 2c20 eals. * d, │ │ │ │ -00079570: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -00079580: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00079590: 5a5a 2c0a 2020 2a20 2a6e 6f74 6520 4f70 ZZ,. * *note Op │ │ │ │ -000795a0: 7469 6f6e 616c 2069 6e70 7574 733a 2028 tional inputs: ( │ │ │ │ -000795b0: 4d61 6361 756c 6179 3244 6f63 2975 7369 Macaulay2Doc)usi │ │ │ │ -000795c0: 6e67 2066 756e 6374 696f 6e73 2077 6974 ng functions wit │ │ │ │ -000795d0: 6820 6f70 7469 6f6e 616c 2069 6e70 7574 h optional input │ │ │ │ -000795e0: 732c 3a0a 2020 2020 2020 2a20 4465 6772 s,:. * Degr │ │ │ │ -000795f0: 6565 4c69 6d69 7420 286d 6973 7369 6e67 eeLimit (missing │ │ │ │ -00079600: 2064 6f63 756d 656e 7461 7469 6f6e 2920 documentation) │ │ │ │ -00079610: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ -00079620: 7661 6c75 6520 7b7d 2c20 0a20 2020 2020 value {}, . │ │ │ │ -00079630: 202a 2053 7472 6174 6567 7920 286d 6973 * Strategy (mis │ │ │ │ -00079640: 7369 6e67 2064 6f63 756d 656e 7461 7469 sing documentati │ │ │ │ -00079650: 6f6e 2920 3d3e 202e 2e2e 2c20 6465 6661 on) => ..., defa │ │ │ │ -00079660: 756c 7420 7661 6c75 6520 7b7d 2c20 0a20 ult value {}, . │ │ │ │ -00079670: 2020 2020 202a 202a 6e6f 7465 2053 7562 * *note Sub │ │ │ │ -00079680: 7269 6e67 4c69 6d69 743a 2028 4d61 6361 ringLimit: (Maca │ │ │ │ -00079690: 756c 6179 3244 6f63 296b 6572 6e65 6c5f ulay2Doc)kernel_ │ │ │ │ -000796a0: 6c70 5f70 645f 7064 5f70 645f 636d 5375 lp_pd_pd_pd_cmSu │ │ │ │ -000796b0: 6272 696e 674c 696d 6974 3d3e 5f0a 2020 bringLimit=>_. │ │ │ │ -000796c0: 2020 2020 2020 7064 5f70 645f 7064 5f72 pd_pd_pd_r │ │ │ │ -000796d0: 702c 203d 3e20 2e2e 2e2c 2064 6566 6175 p, => ..., defau │ │ │ │ -000796e0: 6c74 2076 616c 7565 2069 6e66 696e 6974 lt value infinit │ │ │ │ -000796f0: 792c 0a20 202a 204f 7574 7075 7473 3a0a y,. * Outputs:. │ │ │ │ -00079700: 2020 2020 2020 2a20 7468 6520 2a6e 6f74 * the *not │ │ │ │ -00079710: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ -00079720: 6179 3244 6f63 2949 6465 616c 2c20 6765 ay2Doc)Ideal, ge │ │ │ │ -00079730: 6e65 7261 7465 6420 6279 2061 6c6c 2068 nerated by all h │ │ │ │ -00079740: 6f6d 6f67 656e 656f 7573 0a20 2020 2020 omogeneous. │ │ │ │ -00079750: 2020 2065 6c65 6d65 6e74 7320 6f66 2064 elements of d │ │ │ │ -00079760: 6567 7265 6520 6420 6265 6c6f 6e67 696e egree d belongin │ │ │ │ -00079770: 6720 746f 2074 6865 206b 6572 6e65 6c20 g to the kernel │ │ │ │ -00079780: 6f66 2070 6869 0a0a 4465 7363 7269 7074 of phi..Descript │ │ │ │ -00079790: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -000797a0: 0a54 6869 7320 6973 2065 7175 6976 616c .This is equival │ │ │ │ -000797b0: 656e 7420 746f 2069 6465 616c 2069 6d61 ent to ideal ima │ │ │ │ -000797c0: 6765 2062 6173 6973 2864 2c6b 6572 6e65 ge basis(d,kerne │ │ │ │ -000797d0: 6c20 7068 6929 2c20 6275 7420 7765 2075 l phi), but we u │ │ │ │ -000797e0: 7365 2061 206d 6f72 6520 6469 7265 6374 se a more direct │ │ │ │ -000797f0: 0a61 6c67 6f72 6974 686d 2e20 5765 2074 .algorithm. We t │ │ │ │ -00079800: 616b 6520 6164 7661 6e74 6167 6520 6f66 ake advantage of │ │ │ │ -00079810: 2074 6865 2068 6f6d 6f67 656e 6569 7479 the homogeneity │ │ │ │ -00079820: 2061 6e64 2072 6564 7563 6520 7468 6520 and reduce the │ │ │ │ -00079830: 7072 6f62 6c65 6d20 746f 0a6c 696e 6561 problem to.linea │ │ │ │ -00079840: 7220 616c 6765 6272 612e 2046 6f72 2073 r algebra. For s │ │ │ │ -00079850: 6d61 6c6c 2076 616c 7565 7320 6f66 2064 mall values of d │ │ │ │ -00079860: 2074 6869 7320 6d65 7468 6f64 2063 616e this method can │ │ │ │ -00079870: 2062 6520 7665 7279 2066 6173 742c 2061 be very fast, a │ │ │ │ -00079880: 7320 7468 650a 666f 6c6c 6f77 696e 6720 s the.following │ │ │ │ -00079890: 6578 616d 706c 6520 7368 6f77 732e 0a0a example shows... │ │ │ │ -000798a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00079420: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00079430: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +00079440: 6b65 726e 656c 3a20 284d 6163 6175 6c61 kernel: (Macaula │ │ │ │ +00079450: 7932 446f 6329 6b65 726e 656c 2c0a 2020 y2Doc)kernel,. │ │ │ │ +00079460: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ +00079470: 2020 6b65 726e 656c 2870 6869 2c64 290a kernel(phi,d). │ │ │ │ +00079480: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +00079490: 2020 2a20 7068 692c 2061 202a 6e6f 7465 * phi, a *note │ │ │ │ +000794a0: 2072 696e 6720 6d61 703a 2028 4d61 6361 ring map: (Maca │ │ │ │ +000794b0: 756c 6179 3244 6f63 2952 696e 674d 6170 ulay2Doc)RingMap │ │ │ │ +000794c0: 2c2c 2024 4b5b 795f 302c 5c6c 646f 7473 ,, $K[y_0,\ldots │ │ │ │ +000794d0: 2c79 5f6d 5d2f 4a20 5c74 6f0a 2020 2020 ,y_m]/J \to. │ │ │ │ +000794e0: 2020 2020 4b5b 785f 302c 5c6c 646f 7473 K[x_0,\ldots │ │ │ │ +000794f0: 2c78 5f6e 5d2f 4924 2c20 6465 6669 6e65 ,x_n]/I$, define │ │ │ │ +00079500: 6420 6279 2068 6f6d 6f67 656e 656f 7573 d by homogeneous │ │ │ │ +00079510: 2066 6f72 6d73 206f 6620 7468 6520 7361 forms of the sa │ │ │ │ +00079520: 6d65 2064 6567 7265 650a 2020 2020 2020 me degree. │ │ │ │ +00079530: 2020 616e 6420 7768 6572 6520 244a 2420 and where $J$ │ │ │ │ +00079540: 616e 6420 2449 2420 6172 6520 686f 6d6f and $I$ are homo │ │ │ │ +00079550: 6765 6e65 6f75 7320 6964 6561 6c73 0a20 geneous ideals. │ │ │ │ +00079560: 2020 2020 202a 2064 2c20 616e 202a 6e6f * d, an *no │ │ │ │ +00079570: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +00079580: 6175 6c61 7932 446f 6329 5a5a 2c0a 2020 aulay2Doc)ZZ,. │ │ │ │ +00079590: 2a20 2a6e 6f74 6520 4f70 7469 6f6e 616c * *note Optional │ │ │ │ +000795a0: 2069 6e70 7574 733a 2028 4d61 6361 756c inputs: (Macaul │ │ │ │ +000795b0: 6179 3244 6f63 2975 7369 6e67 2066 756e ay2Doc)using fun │ │ │ │ +000795c0: 6374 696f 6e73 2077 6974 6820 6f70 7469 ctions with opti │ │ │ │ +000795d0: 6f6e 616c 2069 6e70 7574 732c 3a0a 2020 onal inputs,:. │ │ │ │ +000795e0: 2020 2020 2a20 4465 6772 6565 4c69 6d69 * DegreeLimi │ │ │ │ +000795f0: 7420 286d 6973 7369 6e67 2064 6f63 756d t (missing docum │ │ │ │ +00079600: 656e 7461 7469 6f6e 2920 3d3e 202e 2e2e entation) => ... │ │ │ │ +00079610: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ +00079620: 7b7d 2c20 0a20 2020 2020 202a 2053 7472 {}, . * Str │ │ │ │ +00079630: 6174 6567 7920 286d 6973 7369 6e67 2064 ategy (missing d │ │ │ │ +00079640: 6f63 756d 656e 7461 7469 6f6e 2920 3d3e ocumentation) => │ │ │ │ +00079650: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +00079660: 6c75 6520 7b7d 2c20 0a20 2020 2020 202a lue {}, . * │ │ │ │ +00079670: 202a 6e6f 7465 2053 7562 7269 6e67 4c69 *note SubringLi │ │ │ │ +00079680: 6d69 743a 2028 4d61 6361 756c 6179 3244 mit: (Macaulay2D │ │ │ │ +00079690: 6f63 296b 6572 6e65 6c5f 6c70 5f70 645f oc)kernel_lp_pd_ │ │ │ │ +000796a0: 7064 5f70 645f 636d 5375 6272 696e 674c pd_pd_cmSubringL │ │ │ │ +000796b0: 696d 6974 3d3e 5f0a 2020 2020 2020 2020 imit=>_. │ │ │ │ +000796c0: 7064 5f70 645f 7064 5f72 702c 203d 3e20 pd_pd_pd_rp, => │ │ │ │ +000796d0: 2e2e 2e2c 2064 6566 6175 6c74 2076 616c ..., default val │ │ │ │ +000796e0: 7565 2069 6e66 696e 6974 792c 0a20 202a ue infinity,. * │ │ │ │ +000796f0: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +00079700: 2a20 7468 6520 2a6e 6f74 6520 6964 6561 * the *note idea │ │ │ │ +00079710: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +00079720: 2949 6465 616c 2c20 6765 6e65 7261 7465 )Ideal, generate │ │ │ │ +00079730: 6420 6279 2061 6c6c 2068 6f6d 6f67 656e d by all homogen │ │ │ │ +00079740: 656f 7573 0a20 2020 2020 2020 2065 6c65 eous. ele │ │ │ │ +00079750: 6d65 6e74 7320 6f66 2064 6567 7265 6520 ments of degree │ │ │ │ +00079760: 6420 6265 6c6f 6e67 696e 6720 746f 2074 d belonging to t │ │ │ │ +00079770: 6865 206b 6572 6e65 6c20 6f66 2070 6869 he kernel of phi │ │ │ │ +00079780: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +00079790: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ +000797a0: 6973 2065 7175 6976 616c 656e 7420 746f is equivalent to │ │ │ │ +000797b0: 2069 6465 616c 2069 6d61 6765 2062 6173 ideal image bas │ │ │ │ +000797c0: 6973 2864 2c6b 6572 6e65 6c20 7068 6929 is(d,kernel phi) │ │ │ │ +000797d0: 2c20 6275 7420 7765 2075 7365 2061 206d , but we use a m │ │ │ │ +000797e0: 6f72 6520 6469 7265 6374 0a61 6c67 6f72 ore direct.algor │ │ │ │ +000797f0: 6974 686d 2e20 5765 2074 616b 6520 6164 ithm. We take ad │ │ │ │ +00079800: 7661 6e74 6167 6520 6f66 2074 6865 2068 vantage of the h │ │ │ │ +00079810: 6f6d 6f67 656e 6569 7479 2061 6e64 2072 omogeneity and r │ │ │ │ +00079820: 6564 7563 6520 7468 6520 7072 6f62 6c65 educe the proble │ │ │ │ +00079830: 6d20 746f 0a6c 696e 6561 7220 616c 6765 m to.linear alge │ │ │ │ +00079840: 6272 612e 2046 6f72 2073 6d61 6c6c 2076 bra. For small v │ │ │ │ +00079850: 616c 7565 7320 6f66 2064 2074 6869 7320 alues of d this │ │ │ │ +00079860: 6d65 7468 6f64 2063 616e 2062 6520 7665 method can be ve │ │ │ │ +00079870: 7279 2066 6173 742c 2061 7320 7468 650a ry fast, as the. │ │ │ │ +00079880: 666f 6c6c 6f77 696e 6720 6578 616d 706c following exampl │ │ │ │ +00079890: 6520 7368 6f77 732e 0a0a 2b2d 2d2d 2d2d e shows...+----- │ │ │ │ +000798a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000798b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000798c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000798d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000798e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000798f0: 7c69 3120 3a20 7068 6920 3d20 746f 4d61 |i1 : phi = toMa │ │ │ │ -00079900: 7020 6d61 7020 7370 6563 6961 6c51 7561 p map specialQua │ │ │ │ -00079910: 6472 6174 6963 5472 616e 7366 6f72 6d61 draticTransforma │ │ │ │ -00079920: 7469 6f6e 2038 2020 2020 2020 2020 2020 tion 8 │ │ │ │ -00079930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079940: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000798e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +000798f0: 7068 6920 3d20 746f 4d61 7020 6d61 7020 phi = toMap map │ │ │ │ +00079900: 7370 6563 6961 6c51 7561 6472 6174 6963 specialQuadratic │ │ │ │ +00079910: 5472 616e 7366 6f72 6d61 7469 6f6e 2038 Transformation 8 │ │ │ │ +00079920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00079930: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00079940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00079980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00079990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000799a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000799b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000799c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000799d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000799e0: 7c6f 3120 3d20 6d61 7020 2851 515b 7820 |o1 = map (QQ[x │ │ │ │ -000799f0: 2e2e 7820 5d2c 2051 515b 7920 2e2e 7920 ..x ], QQ[y ..y │ │ │ │ -00079a00: 205d 2c20 7b2d 2035 7820 7820 202b 2078 ], {- 5x x + x │ │ │ │ -00079a10: 2078 2020 2b20 7820 7820 202b 2033 3578 x + x x + 35x │ │ │ │ -00079a20: 2078 2020 2d20 3778 2078 2020 2b20 7c0a x - 7x x + |. │ │ │ │ -00079a30: 7c20 2020 2020 2020 2020 2020 2020 2030 | 0 │ │ │ │ -00079a40: 2020 2038 2020 2020 2020 2030 2020 2031 8 0 1 │ │ │ │ -00079a50: 3120 2020 2020 2020 2030 2033 2020 2020 1 0 3 │ │ │ │ -00079a60: 3220 3420 2020 2033 2034 2020 2020 2020 2 4 3 4 │ │ │ │ -00079a70: 3020 3520 2020 2020 3220 3520 2020 7c0a 0 5 2 5 |. │ │ │ │ -00079a80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000799d0: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +000799e0: 6d61 7020 2851 515b 7820 2e2e 7820 5d2c map (QQ[x ..x ], │ │ │ │ +000799f0: 2051 515b 7920 2e2e 7920 205d 2c20 7b2d QQ[y ..y ], {- │ │ │ │ +00079a00: 2035 7820 7820 202b 2078 2078 2020 2b20 5x x + x x + │ │ │ │ +00079a10: 7820 7820 202b 2033 3578 2078 2020 2d20 x x + 35x x - │ │ │ │ +00079a20: 3778 2078 2020 2b20 7c0a 7c20 2020 2020 7x x + |.| │ │ │ │ +00079a30: 2020 2020 2020 2020 2030 2020 2038 2020 0 8 │ │ │ │ +00079a40: 2020 2020 2030 2020 2031 3120 2020 2020 0 11 │ │ │ │ +00079a50: 2020 2030 2033 2020 2020 3220 3420 2020 0 3 2 4 │ │ │ │ +00079a60: 2033 2034 2020 2020 2020 3020 3520 2020 3 4 0 5 │ │ │ │ +00079a70: 2020 3220 3520 2020 7c0a 7c20 2020 2020 2 5 |.| │ │ │ │ +00079a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079ac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079ad0: 7c6f 3120 3a20 5269 6e67 4d61 7020 5151 |o1 : RingMap QQ │ │ │ │ -00079ae0: 5b78 202e 2e78 205d 203c 2d2d 2051 515b [x ..x ] <-- QQ[ │ │ │ │ -00079af0: 7920 2e2e 7920 205d 2020 2020 2020 2020 y ..y ] │ │ │ │ +00079ac0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +00079ad0: 5269 6e67 4d61 7020 5151 5b78 202e 2e78 RingMap QQ[x ..x │ │ │ │ +00079ae0: 205d 203c 2d2d 2051 515b 7920 2e2e 7920 ] <-- QQ[y ..y │ │ │ │ +00079af0: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00079b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079b10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079b20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00079b30: 2020 3020 2020 3820 2020 2020 2020 2020 0 8 │ │ │ │ -00079b40: 2030 2020 2031 3120 2020 2020 2020 2020 0 11 │ │ │ │ +00079b10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00079b20: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ +00079b30: 3820 2020 2020 2020 2020 2030 2020 2031 8 0 1 │ │ │ │ +00079b40: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00079b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079b60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079b70: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00079b60: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00079b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00079bc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00079bd0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00079bb0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00079bc0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00079bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079bf0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00079c00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079c10: 7c78 2078 2020 2d20 7820 7820 202d 2034 |x x - x x - 4 │ │ │ │ -00079c20: 3978 2020 2d20 3578 2078 2020 2b20 3278 9x - 5x x + 2x │ │ │ │ -00079c30: 2078 2020 2d20 7820 7820 202b 2032 3778 x - x x + 27x │ │ │ │ -00079c40: 2078 2020 2d20 3478 2020 2b20 7820 7820 x - 4x + x x │ │ │ │ -00079c50: 202d 2037 7820 7820 202b 2020 2020 7c0a - 7x x + |. │ │ │ │ -00079c60: 7c20 3320 3520 2020 2034 2035 2020 2020 | 3 5 4 5 │ │ │ │ -00079c70: 2020 3520 2020 2020 3020 3620 2020 2020 5 0 6 │ │ │ │ -00079c80: 3220 3620 2020 2034 2036 2020 2020 2020 2 6 4 6 │ │ │ │ -00079c90: 3520 3620 2020 2020 3620 2020 2034 2037 5 6 6 4 7 │ │ │ │ -00079ca0: 2020 2020 2035 2037 2020 2020 2020 7c0a 5 7 |. │ │ │ │ -00079cb0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00079bf0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00079c00: 2020 2020 2020 2020 7c0a 7c78 2078 2020 |.|x x │ │ │ │ +00079c10: 2d20 7820 7820 202d 2034 3978 2020 2d20 - x x - 49x - │ │ │ │ +00079c20: 3578 2078 2020 2b20 3278 2078 2020 2d20 5x x + 2x x - │ │ │ │ +00079c30: 7820 7820 202b 2032 3778 2078 2020 2d20 x x + 27x x - │ │ │ │ +00079c40: 3478 2020 2b20 7820 7820 202d 2037 7820 4x + x x - 7x │ │ │ │ +00079c50: 7820 202b 2020 2020 7c0a 7c20 3320 3520 x + |.| 3 5 │ │ │ │ +00079c60: 2020 2034 2035 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +00079c70: 2020 3020 3620 2020 2020 3220 3620 2020 0 6 2 6 │ │ │ │ +00079c80: 2034 2036 2020 2020 2020 3520 3620 2020 4 6 5 6 │ │ │ │ +00079c90: 2020 3620 2020 2034 2037 2020 2020 2035 6 4 7 5 │ │ │ │ +00079ca0: 2037 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 7 |.|----- │ │ │ │ +00079cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00079d00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00079cf0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00079d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079d40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079d50: 7c32 7820 7820 202d 2032 7820 7820 202b |2x x - 2x x + │ │ │ │ -00079d60: 2031 3478 2078 2020 2d20 3478 2078 202c 14x x - 4x x , │ │ │ │ -00079d70: 202d 2078 2078 2020 2d20 3678 2078 2020 - x x - 6x x │ │ │ │ -00079d80: 2d20 3578 2078 2020 2b20 3278 2078 2020 - 5x x + 2x x │ │ │ │ -00079d90: 2b20 7820 7820 202b 2078 2078 2020 7c0a + x x + x x |. │ │ │ │ -00079da0: 7c20 2036 2037 2020 2020 2034 2038 2020 | 6 7 4 8 │ │ │ │ -00079db0: 2020 2020 3520 3820 2020 2020 3620 3820 5 8 6 8 │ │ │ │ -00079dc0: 2020 2020 3120 3220 2020 2020 3120 3520 1 2 1 5 │ │ │ │ -00079dd0: 2020 2020 3020 3620 2020 2020 3120 3620 0 6 1 6 │ │ │ │ -00079de0: 2020 2034 2036 2020 2020 3520 3620 7c0a 4 6 5 6 |. │ │ │ │ -00079df0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00079d40: 2020 2020 2020 2020 7c0a 7c32 7820 7820 |.|2x x │ │ │ │ +00079d50: 202d 2032 7820 7820 202b 2031 3478 2078 - 2x x + 14x x │ │ │ │ +00079d60: 2020 2d20 3478 2078 202c 202d 2078 2078 - 4x x , - x x │ │ │ │ +00079d70: 2020 2d20 3678 2078 2020 2d20 3578 2078 - 6x x - 5x x │ │ │ │ +00079d80: 2020 2b20 3278 2078 2020 2b20 7820 7820 + 2x x + x x │ │ │ │ +00079d90: 202b 2078 2078 2020 7c0a 7c20 2036 2037 + x x |.| 6 7 │ │ │ │ +00079da0: 2020 2020 2034 2038 2020 2020 2020 3520 4 8 5 │ │ │ │ +00079db0: 3820 2020 2020 3620 3820 2020 2020 3120 8 6 8 1 │ │ │ │ +00079dc0: 3220 2020 2020 3120 3520 2020 2020 3020 2 1 5 0 │ │ │ │ +00079dd0: 3620 2020 2020 3120 3620 2020 2034 2036 6 1 6 4 6 │ │ │ │ +00079de0: 2020 2020 3520 3620 7c0a 7c2d 2d2d 2d2d 5 6 |.|----- │ │ │ │ +00079df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00079e40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00079e30: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00079e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079e70: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00079e80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079e90: 7c2d 2035 7820 7820 202d 2078 2078 2020 |- 5x x - x x │ │ │ │ -00079ea0: 2b20 3278 2078 2020 2b20 3778 2078 2020 + 2x x + 7x x │ │ │ │ -00079eb0: 2d20 3278 2078 2020 2b20 3278 2078 2020 - 2x x + 2x x │ │ │ │ -00079ec0: 2d20 3378 2078 202c 202d 2032 3578 2020 - 3x x , - 25x │ │ │ │ -00079ed0: 2b20 3978 2078 2020 2b20 2020 2020 7c0a + 9x x + |. │ │ │ │ -00079ee0: 7c20 2020 2030 2037 2020 2020 3120 3720 | 0 7 1 7 │ │ │ │ -00079ef0: 2020 2020 3220 3720 2020 2020 3520 3720 2 7 5 7 │ │ │ │ -00079f00: 2020 2020 3620 3720 2020 2020 3120 3820 6 7 1 8 │ │ │ │ -00079f10: 2020 2020 3720 3820 2020 2020 2020 3020 7 8 0 │ │ │ │ -00079f20: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00079f30: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00079e70: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00079e80: 2020 2020 2020 2020 7c0a 7c2d 2035 7820 |.|- 5x │ │ │ │ +00079e90: 7820 202d 2078 2078 2020 2b20 3278 2078 x - x x + 2x x │ │ │ │ +00079ea0: 2020 2b20 3778 2078 2020 2d20 3278 2078 + 7x x - 2x x │ │ │ │ +00079eb0: 2020 2b20 3278 2078 2020 2d20 3378 2078 + 2x x - 3x x │ │ │ │ +00079ec0: 202c 202d 2032 3578 2020 2b20 3978 2078 , - 25x + 9x x │ │ │ │ +00079ed0: 2020 2b20 2020 2020 7c0a 7c20 2020 2030 + |.| 0 │ │ │ │ +00079ee0: 2037 2020 2020 3120 3720 2020 2020 3220 7 1 7 2 │ │ │ │ +00079ef0: 3720 2020 2020 3520 3720 2020 2020 3620 7 5 7 6 │ │ │ │ +00079f00: 3720 2020 2020 3120 3820 2020 2020 3720 7 1 8 7 │ │ │ │ +00079f10: 3820 2020 2020 2020 3020 2020 2020 3020 8 0 0 │ │ │ │ +00079f20: 3220 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2 |.|----- │ │ │ │ +00079f30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079f40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079f50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00079f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00079f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00079f80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00079f90: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00079f70: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00079f80: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00079f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00079fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00079fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00079fd0: 7c31 3078 2078 2020 2d20 3278 2078 2020 |10x x - 2x x │ │ │ │ -00079fe0: 2d20 7820 202b 2032 3978 2078 2020 2d20 - x + 29x x - │ │ │ │ -00079ff0: 7820 7820 202d 2037 7820 7820 202d 2031 x x - 7x x - 1 │ │ │ │ -0007a000: 3378 2078 2020 2b20 3378 2078 2020 2b20 3x x + 3x x + │ │ │ │ -0007a010: 7820 7820 202d 2078 2078 2020 2b20 7c0a x x - x x + |. │ │ │ │ -0007a020: 7c20 2020 3020 3420 2020 2020 3220 3420 | 0 4 2 4 │ │ │ │ -0007a030: 2020 2034 2020 2020 2020 3020 3520 2020 4 0 5 │ │ │ │ -0007a040: 2032 2035 2020 2020 2034 2035 2020 2020 2 5 4 5 │ │ │ │ -0007a050: 2020 3020 3620 2020 2020 3420 3620 2020 0 6 4 6 │ │ │ │ -0007a060: 2035 2036 2020 2020 3020 3720 2020 7c0a 5 6 0 7 |. │ │ │ │ -0007a070: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00079fc0: 2020 2020 2020 2020 7c0a 7c31 3078 2078 |.|10x x │ │ │ │ +00079fd0: 2020 2d20 3278 2078 2020 2d20 7820 202b - 2x x - x + │ │ │ │ +00079fe0: 2032 3978 2078 2020 2d20 7820 7820 202d 29x x - x x - │ │ │ │ +00079ff0: 2037 7820 7820 202d 2031 3378 2078 2020 7x x - 13x x │ │ │ │ +0007a000: 2b20 3378 2078 2020 2b20 7820 7820 202d + 3x x + x x - │ │ │ │ +0007a010: 2078 2078 2020 2b20 7c0a 7c20 2020 3020 x x + |.| 0 │ │ │ │ +0007a020: 3420 2020 2020 3220 3420 2020 2034 2020 4 2 4 4 │ │ │ │ +0007a030: 2020 2020 3020 3520 2020 2032 2035 2020 0 5 2 5 │ │ │ │ +0007a040: 2020 2034 2035 2020 2020 2020 3020 3620 4 5 0 6 │ │ │ │ +0007a050: 2020 2020 3420 3620 2020 2035 2036 2020 4 6 5 6 │ │ │ │ +0007a060: 2020 3020 3720 2020 7c0a 7c2d 2d2d 2d2d 0 7 |.|----- │ │ │ │ +0007a070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a0c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a0b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a100: 2020 2020 2020 3220 2020 2020 2020 7c0a 2 |. │ │ │ │ -0007a110: 7c32 7820 7820 202d 2078 2078 2020 2b20 |2x x - x x + │ │ │ │ -0007a120: 3778 2078 2020 2d20 3278 2078 2020 2d20 7x x - 2x x - │ │ │ │ -0007a130: 3878 2078 2020 2b20 3278 2078 2020 2d20 8x x + 2x x - │ │ │ │ -0007a140: 3378 2078 202c 2078 2078 2020 2b20 7820 3x x , x x + x │ │ │ │ -0007a150: 7820 202b 2078 2020 2b20 2020 2020 7c0a x + x + |. │ │ │ │ -0007a160: 7c20 2032 2037 2020 2020 3420 3720 2020 | 2 7 4 7 │ │ │ │ -0007a170: 2020 3520 3720 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -0007a180: 2020 3020 3820 2020 2020 3420 3820 2020 0 8 4 8 │ │ │ │ -0007a190: 2020 3720 3820 2020 3220 3420 2020 2033 7 8 2 4 3 │ │ │ │ -0007a1a0: 2034 2020 2020 3420 2020 2020 2020 7c0a 4 4 |. │ │ │ │ -0007a1b0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a100: 3220 2020 2020 2020 7c0a 7c32 7820 7820 2 |.|2x x │ │ │ │ +0007a110: 202d 2078 2078 2020 2b20 3778 2078 2020 - x x + 7x x │ │ │ │ +0007a120: 2d20 3278 2078 2020 2d20 3878 2078 2020 - 2x x - 8x x │ │ │ │ +0007a130: 2b20 3278 2078 2020 2d20 3378 2078 202c + 2x x - 3x x , │ │ │ │ +0007a140: 2078 2078 2020 2b20 7820 7820 202b 2078 x x + x x + x │ │ │ │ +0007a150: 2020 2b20 2020 2020 7c0a 7c20 2032 2037 + |.| 2 7 │ │ │ │ +0007a160: 2020 2020 3420 3720 2020 2020 3520 3720 4 7 5 7 │ │ │ │ +0007a170: 2020 2020 3620 3720 2020 2020 3020 3820 6 7 0 8 │ │ │ │ +0007a180: 2020 2020 3420 3820 2020 2020 3720 3820 4 8 7 8 │ │ │ │ +0007a190: 2020 3220 3420 2020 2033 2034 2020 2020 2 4 3 4 │ │ │ │ +0007a1a0: 3420 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 4 |.|----- │ │ │ │ +0007a1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a200: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007a210: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0007a1f0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007a210: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0007a220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a250: 7c37 7820 7820 202d 2039 7820 7820 202b |7x x - 9x x + │ │ │ │ -0007a260: 2031 3278 2078 2020 2d20 3478 2020 2b20 12x x - 4x + │ │ │ │ -0007a270: 3278 2078 2020 2b20 3278 2078 2020 2d20 2x x + 2x x - │ │ │ │ -0007a280: 3134 7820 7820 202b 2034 7820 7820 202b 14x x + 4x x + │ │ │ │ -0007a290: 2078 2078 2020 2d20 7820 7820 202d 7c0a x x - x x -|. │ │ │ │ -0007a2a0: 7c20 2032 2035 2020 2020 2034 2035 2020 | 2 5 4 5 │ │ │ │ -0007a2b0: 2020 2020 3520 3620 2020 2020 3620 2020 5 6 6 │ │ │ │ -0007a2c0: 2020 3320 3720 2020 2020 3420 3720 2020 3 7 4 7 │ │ │ │ -0007a2d0: 2020 2035 2037 2020 2020 2036 2037 2020 5 7 6 7 │ │ │ │ -0007a2e0: 2020 3320 3820 2020 2034 2038 2020 7c0a 3 8 4 8 |. │ │ │ │ -0007a2f0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a240: 2020 2020 2020 2020 7c0a 7c37 7820 7820 |.|7x x │ │ │ │ +0007a250: 202d 2039 7820 7820 202b 2031 3278 2078 - 9x x + 12x x │ │ │ │ +0007a260: 2020 2d20 3478 2020 2b20 3278 2078 2020 - 4x + 2x x │ │ │ │ +0007a270: 2b20 3278 2078 2020 2d20 3134 7820 7820 + 2x x - 14x x │ │ │ │ +0007a280: 202b 2034 7820 7820 202b 2078 2078 2020 + 4x x + x x │ │ │ │ +0007a290: 2d20 7820 7820 202d 7c0a 7c20 2032 2035 - x x -|.| 2 5 │ │ │ │ +0007a2a0: 2020 2020 2034 2035 2020 2020 2020 3520 4 5 5 │ │ │ │ +0007a2b0: 3620 2020 2020 3620 2020 2020 3320 3720 6 6 3 7 │ │ │ │ +0007a2c0: 2020 2020 3420 3720 2020 2020 2035 2037 4 7 5 7 │ │ │ │ +0007a2d0: 2020 2020 2036 2037 2020 2020 3320 3820 6 7 3 8 │ │ │ │ +0007a2e0: 2020 2034 2038 2020 7c0a 7c2d 2d2d 2d2d 4 8 |.|----- │ │ │ │ +0007a2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a340: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a330: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a380: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a390: 7c31 3478 2078 2020 2b20 7820 7820 2c20 |14x x + x x , │ │ │ │ -0007a3a0: 2d20 3578 2078 2020 2b20 7820 7820 202d - 5x x + x x - │ │ │ │ -0007a3b0: 2037 7820 7820 202b 2038 7820 7820 202d 7x x + 8x x - │ │ │ │ -0007a3c0: 2035 7820 7820 202b 2032 7820 7820 202d 5x x + 2x x - │ │ │ │ -0007a3d0: 2078 2078 2020 2b20 7820 7820 202d 7c0a x x + x x -|. │ │ │ │ -0007a3e0: 7c20 2020 3520 3820 2020 2036 2038 2020 | 5 8 6 8 │ │ │ │ -0007a3f0: 2020 2020 3020 3420 2020 2032 2034 2020 0 4 2 4 │ │ │ │ -0007a400: 2020 2032 2035 2020 2020 2034 2035 2020 2 5 4 5 │ │ │ │ -0007a410: 2020 2030 2036 2020 2020 2032 2036 2020 0 6 2 6 │ │ │ │ -0007a420: 2020 3420 3620 2020 2035 2036 2020 7c0a 4 6 5 6 |. │ │ │ │ -0007a430: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a380: 2020 2020 2020 2020 7c0a 7c31 3478 2078 |.|14x x │ │ │ │ +0007a390: 2020 2b20 7820 7820 2c20 2d20 3578 2078 + x x , - 5x x │ │ │ │ +0007a3a0: 2020 2b20 7820 7820 202d 2037 7820 7820 + x x - 7x x │ │ │ │ +0007a3b0: 202b 2038 7820 7820 202d 2035 7820 7820 + 8x x - 5x x │ │ │ │ +0007a3c0: 202b 2032 7820 7820 202d 2078 2078 2020 + 2x x - x x │ │ │ │ +0007a3d0: 2b20 7820 7820 202d 7c0a 7c20 2020 3520 + x x -|.| 5 │ │ │ │ +0007a3e0: 3820 2020 2036 2038 2020 2020 2020 3020 8 6 8 0 │ │ │ │ +0007a3f0: 3420 2020 2032 2034 2020 2020 2032 2035 4 2 4 2 5 │ │ │ │ +0007a400: 2020 2020 2034 2035 2020 2020 2030 2036 4 5 0 6 │ │ │ │ +0007a410: 2020 2020 2032 2036 2020 2020 3420 3620 2 6 4 6 │ │ │ │ +0007a420: 2020 2035 2036 2020 7c0a 7c2d 2d2d 2d2d 5 6 |.|----- │ │ │ │ +0007a430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a480: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a470: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a4b0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0007a4c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a4d0: 7c78 2078 2020 2b20 3778 2078 2020 2d20 |x x + 7x x - │ │ │ │ -0007a4e0: 3278 2078 2020 2d20 7820 7820 202b 2037 2x x - x x + 7 │ │ │ │ -0007a4f0: 7820 7820 202d 2032 7820 7820 2c20 7820 x x - 2x x , x │ │ │ │ -0007a500: 7820 202b 2078 2020 2d20 3778 2078 2020 x + x - 7x x │ │ │ │ -0007a510: 2d20 3878 2078 2020 2b20 7820 7820 7c0a - 8x x + x x |. │ │ │ │ -0007a520: 7c20 3420 3720 2020 2020 3520 3720 2020 | 4 7 5 7 │ │ │ │ -0007a530: 2020 3620 3720 2020 2034 2038 2020 2020 6 7 4 8 │ │ │ │ -0007a540: 2035 2038 2020 2020 2036 2038 2020 2030 5 8 6 8 0 │ │ │ │ -0007a550: 2034 2020 2020 3420 2020 2020 3120 3520 4 4 1 5 │ │ │ │ -0007a560: 2020 2020 3420 3520 2020 2030 2036 7c0a 4 5 0 6|. │ │ │ │ -0007a570: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a4b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0007a4c0: 2020 2020 2020 2020 7c0a 7c78 2078 2020 |.|x x │ │ │ │ +0007a4d0: 2b20 3778 2078 2020 2d20 3278 2078 2020 + 7x x - 2x x │ │ │ │ +0007a4e0: 2d20 7820 7820 202b 2037 7820 7820 202d - x x + 7x x - │ │ │ │ +0007a4f0: 2032 7820 7820 2c20 7820 7820 202b 2078 2x x , x x + x │ │ │ │ +0007a500: 2020 2d20 3778 2078 2020 2d20 3878 2078 - 7x x - 8x x │ │ │ │ +0007a510: 2020 2b20 7820 7820 7c0a 7c20 3420 3720 + x x |.| 4 7 │ │ │ │ +0007a520: 2020 2020 3520 3720 2020 2020 3620 3720 5 7 6 7 │ │ │ │ +0007a530: 2020 2034 2038 2020 2020 2035 2038 2020 4 8 5 8 │ │ │ │ +0007a540: 2020 2036 2038 2020 2030 2034 2020 2020 6 8 0 4 │ │ │ │ +0007a550: 3420 2020 2020 3120 3520 2020 2020 3420 4 1 5 4 │ │ │ │ +0007a560: 3520 2020 2030 2036 7c0a 7c2d 2d2d 2d2d 5 0 6|.|----- │ │ │ │ +0007a570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a5b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a5c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a5b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a610: 7c2b 2078 2078 2020 2b20 3278 2078 2020 |+ x x + 2x x │ │ │ │ -0007a620: 2d20 7820 7820 202b 2078 2078 2020 2d20 - x x + x x - │ │ │ │ -0007a630: 3778 2078 2020 2b20 3278 2078 2020 2b20 7x x + 2x x + │ │ │ │ -0007a640: 7820 7820 202d 2037 7820 7820 202b 2032 x x - 7x x + 2 │ │ │ │ -0007a650: 7820 7820 2c20 7820 7820 202b 2020 7c0a x x , x x + |. │ │ │ │ -0007a660: 7c20 2020 3120 3620 2020 2020 3420 3620 | 1 6 4 6 │ │ │ │ -0007a670: 2020 2035 2036 2020 2020 3420 3720 2020 5 6 4 7 │ │ │ │ -0007a680: 2020 3520 3720 2020 2020 3620 3720 2020 5 7 6 7 │ │ │ │ -0007a690: 2034 2038 2020 2020 2035 2038 2020 2020 4 8 5 8 │ │ │ │ -0007a6a0: 2036 2038 2020 2032 2033 2020 2020 7c0a 6 8 2 3 |. │ │ │ │ -0007a6b0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a600: 2020 2020 2020 2020 7c0a 7c2b 2078 2078 |.|+ x x │ │ │ │ +0007a610: 2020 2b20 3278 2078 2020 2d20 7820 7820 + 2x x - x x │ │ │ │ +0007a620: 202b 2078 2078 2020 2d20 3778 2078 2020 + x x - 7x x │ │ │ │ +0007a630: 2b20 3278 2078 2020 2b20 7820 7820 202d + 2x x + x x - │ │ │ │ +0007a640: 2037 7820 7820 202b 2032 7820 7820 2c20 7x x + 2x x , │ │ │ │ +0007a650: 7820 7820 202b 2020 7c0a 7c20 2020 3120 x x + |.| 1 │ │ │ │ +0007a660: 3620 2020 2020 3420 3620 2020 2035 2036 6 4 6 5 6 │ │ │ │ +0007a670: 2020 2020 3420 3720 2020 2020 3520 3720 4 7 5 7 │ │ │ │ +0007a680: 2020 2020 3620 3720 2020 2034 2038 2020 6 7 4 8 │ │ │ │ +0007a690: 2020 2035 2038 2020 2020 2036 2038 2020 5 8 6 8 │ │ │ │ +0007a6a0: 2032 2033 2020 2020 7c0a 7c2d 2d2d 2d2d 2 3 |.|----- │ │ │ │ +0007a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a700: 7c20 3220 2020 2020 2020 2020 2020 2020 | 2 │ │ │ │ -0007a710: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +0007a6f0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 3220 2020 --------|.| 2 │ │ │ │ +0007a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007a710: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0007a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a750: 7c78 2020 2d20 3878 2078 2020 2b20 7820 |x - 8x x + x │ │ │ │ -0007a760: 7820 202b 2036 7820 7820 202d 2032 7820 x + 6x x - 2x │ │ │ │ -0007a770: 202b 2078 2078 2020 2b20 7820 7820 202d + x x + x x - │ │ │ │ -0007a780: 2037 7820 7820 202b 2032 7820 7820 202b 7x x + 2x x + │ │ │ │ -0007a790: 2078 2078 2020 2d20 3778 2078 2020 7c0a x x - 7x x |. │ │ │ │ -0007a7a0: 7c20 3420 2020 2020 3420 3520 2020 2034 | 4 4 5 4 │ │ │ │ -0007a7b0: 2036 2020 2020 2035 2036 2020 2020 2036 6 5 6 6 │ │ │ │ -0007a7c0: 2020 2020 3320 3720 2020 2034 2037 2020 3 7 4 7 │ │ │ │ -0007a7d0: 2020 2035 2037 2020 2020 2036 2037 2020 5 7 6 7 │ │ │ │ -0007a7e0: 2020 3420 3820 2020 2020 3520 3820 7c0a 4 8 5 8 |. │ │ │ │ -0007a7f0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a740: 2020 2020 2020 2020 7c0a 7c78 2020 2d20 |.|x - │ │ │ │ +0007a750: 3878 2078 2020 2b20 7820 7820 202b 2036 8x x + x x + 6 │ │ │ │ +0007a760: 7820 7820 202d 2032 7820 202b 2078 2078 x x - 2x + x x │ │ │ │ +0007a770: 2020 2b20 7820 7820 202d 2037 7820 7820 + x x - 7x x │ │ │ │ +0007a780: 202b 2032 7820 7820 202b 2078 2078 2020 + 2x x + x x │ │ │ │ +0007a790: 2d20 3778 2078 2020 7c0a 7c20 3420 2020 - 7x x |.| 4 │ │ │ │ +0007a7a0: 2020 3420 3520 2020 2034 2036 2020 2020 4 5 4 6 │ │ │ │ +0007a7b0: 2035 2036 2020 2020 2036 2020 2020 3320 5 6 6 3 │ │ │ │ +0007a7c0: 3720 2020 2034 2037 2020 2020 2035 2037 7 4 7 5 7 │ │ │ │ +0007a7d0: 2020 2020 2036 2037 2020 2020 3420 3820 6 7 4 8 │ │ │ │ +0007a7e0: 2020 2020 3520 3820 7c0a 7c2d 2d2d 2d2d 5 8 |.|----- │ │ │ │ +0007a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a830: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a870: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0007a880: 2020 2020 2020 2020 2020 2020 2032 7c0a 2|. │ │ │ │ -0007a890: 7c2b 2032 7820 7820 2c20 7820 7820 202d |+ 2x x , x x - │ │ │ │ -0007a8a0: 2037 7820 7820 202b 2078 2078 2020 2b20 7x x + x x + │ │ │ │ -0007a8b0: 7820 7820 202d 2037 7820 7820 202b 2032 x x - 7x x + 2 │ │ │ │ -0007a8c0: 7820 202d 2078 2078 202c 202d 2034 7820 x - x x , - 4x │ │ │ │ -0007a8d0: 7820 202b 2078 2078 2020 2d20 7820 7c0a x + x x - x |. │ │ │ │ -0007a8e0: 7c20 2020 2036 2038 2020 2031 2033 2020 | 6 8 1 3 │ │ │ │ -0007a8f0: 2020 2031 2035 2020 2020 3120 3620 2020 1 5 1 6 │ │ │ │ -0007a900: 2034 2036 2020 2020 2035 2036 2020 2020 4 6 5 6 │ │ │ │ -0007a910: 2036 2020 2020 3320 3720 2020 2020 2030 6 3 7 0 │ │ │ │ -0007a920: 2033 2020 2020 3320 3420 2020 2034 7c0a 3 3 4 4|. │ │ │ │ -0007a930: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a860: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0007a870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007a880: 2020 2020 2020 2032 7c0a 7c2b 2032 7820 2|.|+ 2x │ │ │ │ +0007a890: 7820 2c20 7820 7820 202d 2037 7820 7820 x , x x - 7x x │ │ │ │ +0007a8a0: 202b 2078 2078 2020 2b20 7820 7820 202d + x x + x x - │ │ │ │ +0007a8b0: 2037 7820 7820 202b 2032 7820 202d 2078 7x x + 2x - x │ │ │ │ +0007a8c0: 2078 202c 202d 2034 7820 7820 202b 2078 x , - 4x x + x │ │ │ │ +0007a8d0: 2078 2020 2d20 7820 7c0a 7c20 2020 2036 x - x |.| 6 │ │ │ │ +0007a8e0: 2038 2020 2031 2033 2020 2020 2031 2035 8 1 3 1 5 │ │ │ │ +0007a8f0: 2020 2020 3120 3620 2020 2034 2036 2020 1 6 4 6 │ │ │ │ +0007a900: 2020 2035 2036 2020 2020 2036 2020 2020 5 6 6 │ │ │ │ +0007a910: 3320 3720 2020 2020 2030 2033 2020 2020 3 7 0 3 │ │ │ │ +0007a920: 3320 3420 2020 2034 7c0a 7c2d 2d2d 2d2d 3 4 4|.|----- │ │ │ │ +0007a930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007a960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007a970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007a980: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007a970: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007a980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007a990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a9a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0007a9a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 0007a9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007a9c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007a9d0: 7c2d 2037 7820 7820 202b 2038 7820 7820 |- 7x x + 8x x │ │ │ │ -0007a9e0: 202b 2078 2078 2020 2d20 7820 7820 202d + x x - x x - │ │ │ │ -0007a9f0: 2036 7820 7820 202b 2032 7820 202d 2078 6x x + 2x - x │ │ │ │ -0007aa00: 2078 2020 2d20 7820 7820 202b 2037 7820 x - x x + 7x │ │ │ │ -0007aa10: 7820 202d 2032 7820 7820 202d 2020 7c0a x - 2x x - |. │ │ │ │ -0007aa20: 7c20 2020 2030 2035 2020 2020 2034 2035 | 0 5 4 5 │ │ │ │ -0007aa30: 2020 2020 3020 3620 2020 2034 2036 2020 0 6 4 6 │ │ │ │ -0007aa40: 2020 2035 2036 2020 2020 2036 2020 2020 5 6 6 │ │ │ │ -0007aa50: 3320 3720 2020 2034 2037 2020 2020 2035 3 7 4 7 5 │ │ │ │ -0007aa60: 2037 2020 2020 2036 2037 2020 2020 7c0a 7 6 7 |. │ │ │ │ -0007aa70: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007a9c0: 2020 2020 2020 2020 7c0a 7c2d 2037 7820 |.|- 7x │ │ │ │ +0007a9d0: 7820 202b 2038 7820 7820 202b 2078 2078 x + 8x x + x x │ │ │ │ +0007a9e0: 2020 2d20 7820 7820 202d 2036 7820 7820 - x x - 6x x │ │ │ │ +0007a9f0: 202b 2032 7820 202d 2078 2078 2020 2d20 + 2x - x x - │ │ │ │ +0007aa00: 7820 7820 202b 2037 7820 7820 202d 2032 x x + 7x x - 2 │ │ │ │ +0007aa10: 7820 7820 202d 2020 7c0a 7c20 2020 2030 x x - |.| 0 │ │ │ │ +0007aa20: 2035 2020 2020 2034 2035 2020 2020 3020 5 4 5 0 │ │ │ │ +0007aa30: 3620 2020 2034 2036 2020 2020 2035 2036 6 4 6 5 6 │ │ │ │ +0007aa40: 2020 2020 2036 2020 2020 3320 3720 2020 6 3 7 │ │ │ │ +0007aa50: 2034 2037 2020 2020 2035 2037 2020 2020 4 7 5 7 │ │ │ │ +0007aa60: 2036 2037 2020 2020 7c0a 7c2d 2d2d 2d2d 6 7 |.|----- │ │ │ │ +0007aa70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007aa80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007aa90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007aaa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007aab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007aac0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007aad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007aae0: 2020 2032 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ +0007aab0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007aac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007aad0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0007aae0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 0007aaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ab00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ab10: 7c78 2078 2020 2b20 3778 2078 2020 2d20 |x x + 7x x - │ │ │ │ -0007ab20: 3278 2078 202c 202d 2035 7820 7820 202b 2x x , - 5x x + │ │ │ │ -0007ab30: 2032 7820 202b 2078 2078 2020 2d20 7820 2x + x x - x │ │ │ │ -0007ab40: 202d 2078 2078 2020 2b20 3878 2078 2020 - x x + 8x x │ │ │ │ -0007ab50: 2d20 3130 7820 7820 202b 2020 2020 7c0a - 10x x + |. │ │ │ │ -0007ab60: 7c20 3420 3820 2020 2020 3520 3820 2020 | 4 8 5 8 │ │ │ │ -0007ab70: 2020 3620 3820 2020 2020 2030 2032 2020 6 8 0 2 │ │ │ │ -0007ab80: 2020 2032 2020 2020 3220 3420 2020 2034 2 2 4 4 │ │ │ │ -0007ab90: 2020 2020 3220 3520 2020 2020 3420 3520 2 5 4 5 │ │ │ │ -0007aba0: 2020 2020 2030 2036 2020 2020 2020 7c0a 0 6 |. │ │ │ │ -0007abb0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007ab00: 2020 2020 2020 2020 7c0a 7c78 2078 2020 |.|x x │ │ │ │ +0007ab10: 2b20 3778 2078 2020 2d20 3278 2078 202c + 7x x - 2x x , │ │ │ │ +0007ab20: 202d 2035 7820 7820 202b 2032 7820 202b - 5x x + 2x + │ │ │ │ +0007ab30: 2078 2078 2020 2d20 7820 202d 2078 2078 x x - x - x x │ │ │ │ +0007ab40: 2020 2b20 3878 2078 2020 2d20 3130 7820 + 8x x - 10x │ │ │ │ +0007ab50: 7820 202b 2020 2020 7c0a 7c20 3420 3820 x + |.| 4 8 │ │ │ │ +0007ab60: 2020 2020 3520 3820 2020 2020 3620 3820 5 8 6 8 │ │ │ │ +0007ab70: 2020 2020 2030 2032 2020 2020 2032 2020 0 2 2 │ │ │ │ +0007ab80: 2020 3220 3420 2020 2034 2020 2020 3220 2 4 4 2 │ │ │ │ +0007ab90: 3520 2020 2020 3420 3520 2020 2020 2030 5 4 5 0 │ │ │ │ +0007aba0: 2036 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 6 |.|----- │ │ │ │ +0007abb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007abc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007abd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007abe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007abf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007ac00: 7c32 7820 7820 202b 2032 7820 7820 202d |2x x + 2x x - │ │ │ │ -0007ac10: 2032 7820 7820 202b 2031 3478 2078 2020 2x x + 14x x │ │ │ │ -0007ac20: 2d20 3478 2078 2020 2b20 3578 2078 2020 - 4x x + 5x x │ │ │ │ -0007ac30: 2d20 3378 2078 2020 2d20 3278 2078 2020 - 3x x - 2x x │ │ │ │ -0007ac40: 2b20 3778 2078 2020 2d20 2020 2020 7c0a + 7x x - |. │ │ │ │ -0007ac50: 7c20 2035 2036 2020 2020 2032 2037 2020 | 5 6 2 7 │ │ │ │ -0007ac60: 2020 2034 2037 2020 2020 2020 3520 3720 4 7 5 7 │ │ │ │ -0007ac70: 2020 2020 3620 3720 2020 2020 3020 3820 6 7 0 8 │ │ │ │ -0007ac80: 2020 2020 3220 3820 2020 2020 3420 3820 2 8 4 8 │ │ │ │ -0007ac90: 2020 2020 3520 3820 2020 2020 2020 7c0a 5 8 |. │ │ │ │ -0007aca0: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007abf0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c32 7820 7820 --------|.|2x x │ │ │ │ +0007ac00: 202b 2032 7820 7820 202d 2032 7820 7820 + 2x x - 2x x │ │ │ │ +0007ac10: 202b 2031 3478 2078 2020 2d20 3478 2078 + 14x x - 4x x │ │ │ │ +0007ac20: 2020 2b20 3578 2078 2020 2d20 3378 2078 + 5x x - 3x x │ │ │ │ +0007ac30: 2020 2d20 3278 2078 2020 2b20 3778 2078 - 2x x + 7x x │ │ │ │ +0007ac40: 2020 2d20 2020 2020 7c0a 7c20 2035 2036 - |.| 5 6 │ │ │ │ +0007ac50: 2020 2020 2032 2037 2020 2020 2034 2037 2 7 4 7 │ │ │ │ +0007ac60: 2020 2020 2020 3520 3720 2020 2020 3620 5 7 6 │ │ │ │ +0007ac70: 3720 2020 2020 3020 3820 2020 2020 3220 7 0 8 2 │ │ │ │ +0007ac80: 3820 2020 2020 3420 3820 2020 2020 3520 8 4 8 5 │ │ │ │ +0007ac90: 3820 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 8 |.|----- │ │ │ │ +0007aca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007acb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007acc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007acd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007ace0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007acf0: 7c32 7820 7820 202d 2033 7820 7820 2c20 |2x x - 3x x , │ │ │ │ -0007ad00: 2d20 3578 2078 2020 2b20 7820 7820 202b - 5x x + x x + │ │ │ │ -0007ad10: 2078 2078 2020 2d20 3478 2078 2020 2d20 x x - 4x x - │ │ │ │ -0007ad20: 7820 7820 202b 2078 2078 2020 2b20 7820 x x + x x + x │ │ │ │ -0007ad30: 7820 2c20 7820 7820 202d 2020 2020 7c0a x , x x - |. │ │ │ │ -0007ad40: 7c20 2036 2038 2020 2020 2037 2038 2020 | 6 8 7 8 │ │ │ │ -0007ad50: 2020 2020 3020 3120 2020 2031 2032 2020 0 1 1 2 │ │ │ │ -0007ad60: 2020 3120 3420 2020 2020 3020 3620 2020 1 4 0 6 │ │ │ │ -0007ad70: 2031 2036 2020 2020 3420 3620 2020 2030 1 6 4 6 0 │ │ │ │ -0007ad80: 2037 2020 2030 2032 2020 2020 2020 7c0a 7 0 2 |. │ │ │ │ -0007ad90: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007ace0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c32 7820 7820 --------|.|2x x │ │ │ │ +0007acf0: 202d 2033 7820 7820 2c20 2d20 3578 2078 - 3x x , - 5x x │ │ │ │ +0007ad00: 2020 2b20 7820 7820 202b 2078 2078 2020 + x x + x x │ │ │ │ +0007ad10: 2d20 3478 2078 2020 2d20 7820 7820 202b - 4x x - x x + │ │ │ │ +0007ad20: 2078 2078 2020 2b20 7820 7820 2c20 7820 x x + x x , x │ │ │ │ +0007ad30: 7820 202d 2020 2020 7c0a 7c20 2036 2038 x - |.| 6 8 │ │ │ │ +0007ad40: 2020 2020 2037 2038 2020 2020 2020 3020 7 8 0 │ │ │ │ +0007ad50: 3120 2020 2031 2032 2020 2020 3120 3420 1 1 2 1 4 │ │ │ │ +0007ad60: 2020 2020 3020 3620 2020 2031 2036 2020 0 6 1 6 │ │ │ │ +0007ad70: 2020 3420 3620 2020 2030 2037 2020 2030 4 6 0 7 0 │ │ │ │ +0007ad80: 2032 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2 |.|----- │ │ │ │ +0007ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007adc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007add0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007ade0: 7c78 2078 2020 2b20 3578 2078 2020 2b20 |x x + 5x x + │ │ │ │ -0007adf0: 7820 7820 202d 2031 3478 2078 2020 2d20 x x - 14x x - │ │ │ │ -0007ae00: 7820 7820 202d 2038 7820 7820 202d 2038 x x - 8x x - 8 │ │ │ │ -0007ae10: 7820 7820 202b 2032 7820 7820 202b 2034 x x + 2x x + 4 │ │ │ │ -0007ae20: 7820 7820 202b 2032 7820 7820 202b 7c0a x x + 2x x +|. │ │ │ │ -0007ae30: 7c20 3120 3220 2020 2020 3020 3420 2020 | 1 2 0 4 │ │ │ │ -0007ae40: 2031 2034 2020 2020 2020 3120 3520 2020 1 4 1 5 │ │ │ │ -0007ae50: 2032 2035 2020 2020 2034 2035 2020 2020 2 5 4 5 │ │ │ │ -0007ae60: 2030 2036 2020 2020 2031 2036 2020 2020 0 6 1 6 │ │ │ │ -0007ae70: 2034 2036 2020 2020 2032 2037 2020 7c0a 4 6 2 7 |. │ │ │ │ -0007ae80: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007add0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c78 2078 2020 --------|.|x x │ │ │ │ +0007ade0: 2b20 3578 2078 2020 2b20 7820 7820 202d + 5x x + x x - │ │ │ │ +0007adf0: 2031 3478 2078 2020 2d20 7820 7820 202d 14x x - x x - │ │ │ │ +0007ae00: 2038 7820 7820 202d 2038 7820 7820 202b 8x x - 8x x + │ │ │ │ +0007ae10: 2032 7820 7820 202b 2034 7820 7820 202b 2x x + 4x x + │ │ │ │ +0007ae20: 2032 7820 7820 202b 7c0a 7c20 3120 3220 2x x +|.| 1 2 │ │ │ │ +0007ae30: 2020 2020 3020 3420 2020 2031 2034 2020 0 4 1 4 │ │ │ │ +0007ae40: 2020 2020 3120 3520 2020 2032 2035 2020 1 5 2 5 │ │ │ │ +0007ae50: 2020 2034 2035 2020 2020 2030 2036 2020 4 5 0 6 │ │ │ │ +0007ae60: 2020 2031 2036 2020 2020 2034 2036 2020 1 6 4 6 │ │ │ │ +0007ae70: 2020 2032 2037 2020 7c0a 7c2d 2d2d 2d2d 2 7 |.|----- │ │ │ │ +0007ae80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ae90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007aea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007aeb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007aec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007aed0: 7c34 7820 7820 202b 2033 7820 7820 202d |4x x + 3x x - │ │ │ │ -0007aee0: 2037 7820 7820 202b 2032 7820 7820 202d 7x x + 2x x - │ │ │ │ -0007aef0: 2033 7820 7820 7d29 2020 2020 2020 2020 3x x }) │ │ │ │ +0007aec0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c34 7820 7820 --------|.|4x x │ │ │ │ +0007aed0: 202b 2033 7820 7820 202d 2037 7820 7820 + 3x x - 7x x │ │ │ │ +0007aee0: 202b 2032 7820 7820 202d 2033 7820 7820 + 2x x - 3x x │ │ │ │ +0007aef0: 7d29 2020 2020 2020 2020 2020 2020 2020 }) │ │ │ │ 0007af00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007af10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007af20: 7c20 2030 2038 2020 2020 2031 2038 2020 | 0 8 1 8 │ │ │ │ -0007af30: 2020 2035 2038 2020 2020 2036 2038 2020 5 8 6 8 │ │ │ │ -0007af40: 2020 2037 2038 2020 2020 2020 2020 2020 7 8 │ │ │ │ +0007af10: 2020 2020 2020 2020 7c0a 7c20 2030 2038 |.| 0 8 │ │ │ │ +0007af20: 2020 2020 2031 2038 2020 2020 2035 2038 1 8 5 8 │ │ │ │ +0007af30: 2020 2020 2036 2038 2020 2020 2037 2038 6 8 7 8 │ │ │ │ +0007af40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007af50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007af60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007af70: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007af60: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007af70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007af80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007af90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007afa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007afb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007afc0: 7c69 3220 3a20 7469 6d65 206b 6572 6e65 |i2 : time kerne │ │ │ │ -0007afd0: 6c28 7068 692c 3129 2020 2020 2020 2020 l(phi,1) │ │ │ │ +0007afb0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0007afc0: 7469 6d65 206b 6572 6e65 6c28 7068 692c time kernel(phi, │ │ │ │ +0007afd0: 3129 2020 2020 2020 2020 2020 2020 2020 1) │ │ │ │ 0007afe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007aff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b000: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b010: 7c20 2d2d 2075 7365 6420 302e 3031 3734 | -- used 0.0174 │ │ │ │ -0007b020: 3434 3673 2028 6370 7529 3b20 302e 3031 446s (cpu); 0.01 │ │ │ │ -0007b030: 3734 3431 3173 2028 7468 7265 6164 293b 74411s (thread); │ │ │ │ -0007b040: 2030 7320 2867 6329 2020 2020 2020 2020 0s (gc) │ │ │ │ -0007b050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b060: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007b000: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +0007b010: 7365 6420 302e 3032 3135 3430 3473 2028 sed 0.0215404s ( │ │ │ │ +0007b020: 6370 7529 3b20 302e 3032 3135 3431 3873 cpu); 0.0215418s │ │ │ │ +0007b030: 2028 7468 7265 6164 293b 2030 7320 2867 (thread); 0s (g │ │ │ │ +0007b040: 6329 2020 2020 2020 2020 2020 2020 2020 c) │ │ │ │ +0007b050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b0a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b0b0: 7c6f 3220 3d20 6964 6561 6c20 2829 2020 |o2 = ideal () │ │ │ │ +0007b0a0: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +0007b0b0: 6964 6561 6c20 2829 2020 2020 2020 2020 ideal () │ │ │ │ 0007b0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b0f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007b0f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b140: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b150: 7c6f 3220 3a20 4964 6561 6c20 6f66 2051 |o2 : Ideal of Q │ │ │ │ -0007b160: 515b 7920 2e2e 7920 205d 2020 2020 2020 Q[y ..y ] │ │ │ │ +0007b140: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +0007b150: 4964 6561 6c20 6f66 2051 515b 7920 2e2e Ideal of QQ[y .. │ │ │ │ +0007b160: 7920 205d 2020 2020 2020 2020 2020 2020 y ] │ │ │ │ 0007b170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b1a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007b1b0: 2020 2030 2020 2031 3120 2020 2020 2020 0 11 │ │ │ │ +0007b190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b1a0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +0007b1b0: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 0007b1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b1e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b1f0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007b1e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007b1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b200: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007b240: 7c69 3320 3a20 7469 6d65 206b 6572 6e65 |i3 : time kerne │ │ │ │ -0007b250: 6c28 7068 692c 3229 2020 2020 2020 2020 l(phi,2) │ │ │ │ +0007b230: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0007b240: 7469 6d65 206b 6572 6e65 6c28 7068 692c time kernel(phi, │ │ │ │ +0007b250: 3229 2020 2020 2020 2020 2020 2020 2020 2) │ │ │ │ 0007b260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b280: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b290: 7c20 2d2d 2075 7365 6420 302e 3931 3136 | -- used 0.9116 │ │ │ │ -0007b2a0: 3835 7320 2863 7075 293b 2030 2e34 3439 85s (cpu); 0.449 │ │ │ │ -0007b2b0: 3333 3573 2028 7468 7265 6164 293b 2030 335s (thread); 0 │ │ │ │ -0007b2c0: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0007b2d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b2e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007b280: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +0007b290: 7365 6420 312e 3134 3533 3673 2028 6370 sed 1.14536s (cp │ │ │ │ +0007b2a0: 7529 3b20 302e 3533 3832 3938 7320 2874 u); 0.538298s (t │ │ │ │ +0007b2b0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +0007b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007b2d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b330: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007b340: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0007b320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007b340: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0007b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b380: 7c6f 3320 3d20 6964 6561 6c20 2879 2079 |o3 = ideal (y y │ │ │ │ -0007b390: 2020 2b20 7920 7920 202b 2079 2020 2b20 + y y + y + │ │ │ │ -0007b3a0: 3579 2079 2020 2b20 7920 7920 202b 2035 5y y + y y + 5 │ │ │ │ -0007b3b0: 7920 7920 202d 2079 2079 2020 2d20 3479 y y - y y - 4y │ │ │ │ -0007b3c0: 2079 2020 2d20 3579 2079 2020 2d20 7c0a y - 5y y - |. │ │ │ │ -0007b3d0: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ -0007b3e0: 3420 2020 2033 2034 2020 2020 3420 2020 4 3 4 4 │ │ │ │ -0007b3f0: 2020 3220 3520 2020 2033 2035 2020 2020 2 5 3 5 │ │ │ │ -0007b400: 2034 2035 2020 2020 3120 3620 2020 2020 4 5 1 6 │ │ │ │ -0007b410: 3220 3620 2020 2020 3520 3620 2020 7c0a 2 6 5 6 |. │ │ │ │ -0007b420: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b370: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0007b380: 6964 6561 6c20 2879 2079 2020 2b20 7920 ideal (y y + y │ │ │ │ +0007b390: 7920 202b 2079 2020 2b20 3579 2079 2020 y + y + 5y y │ │ │ │ +0007b3a0: 2b20 7920 7920 202b 2035 7920 7920 202d + y y + 5y y - │ │ │ │ +0007b3b0: 2079 2079 2020 2d20 3479 2079 2020 2d20 y y - 4y y - │ │ │ │ +0007b3c0: 3579 2079 2020 2d20 7c0a 7c20 2020 2020 5y y - |.| │ │ │ │ +0007b3d0: 2020 2020 2020 2020 3220 3420 2020 2033 2 4 3 │ │ │ │ +0007b3e0: 2034 2020 2020 3420 2020 2020 3220 3520 4 4 2 5 │ │ │ │ +0007b3f0: 2020 2033 2035 2020 2020 2034 2035 2020 3 5 4 5 │ │ │ │ +0007b400: 2020 3120 3620 2020 2020 3220 3620 2020 1 6 2 6 │ │ │ │ +0007b410: 2020 3520 3620 2020 7c0a 7c20 2020 2020 5 6 |.| │ │ │ │ +0007b420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b470: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007b460: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b4b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007b4c0: 7c20 2020 2020 3479 2079 2020 2d20 3279 | 4y y - 2y │ │ │ │ -0007b4d0: 2079 2020 2d20 7920 7920 202b 2034 7920 y - y y + 4y │ │ │ │ -0007b4e0: 7920 202d 2035 7920 7920 202d 2034 7920 y - 5y y - 4y │ │ │ │ -0007b4f0: 7920 202b 2033 7920 7920 202d 2034 7920 y + 3y y - 4y │ │ │ │ -0007b500: 7920 202d 2079 2079 2020 202d 2020 7c0a y - y y - |. │ │ │ │ -0007b510: 7c20 2020 2020 2020 3220 3720 2020 2020 | 2 7 │ │ │ │ -0007b520: 3420 3720 2020 2031 2038 2020 2020 2034 4 7 1 8 4 │ │ │ │ -0007b530: 2038 2020 2020 2035 2038 2020 2020 2035 8 5 8 5 │ │ │ │ -0007b540: 2039 2020 2020 2037 2039 2020 2020 2038 9 7 9 8 │ │ │ │ -0007b550: 2039 2020 2020 3320 3130 2020 2020 7c0a 9 3 10 |. │ │ │ │ -0007b560: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b4b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007b4c0: 3479 2079 2020 2d20 3279 2079 2020 2d20 4y y - 2y y - │ │ │ │ +0007b4d0: 7920 7920 202b 2034 7920 7920 202d 2035 y y + 4y y - 5 │ │ │ │ +0007b4e0: 7920 7920 202d 2034 7920 7920 202b 2033 y y - 4y y + 3 │ │ │ │ +0007b4f0: 7920 7920 202d 2034 7920 7920 202d 2079 y y - 4y y - y │ │ │ │ +0007b500: 2079 2020 202d 2020 7c0a 7c20 2020 2020 y - |.| │ │ │ │ +0007b510: 2020 3220 3720 2020 2020 3420 3720 2020 2 7 4 7 │ │ │ │ +0007b520: 2031 2038 2020 2020 2034 2038 2020 2020 1 8 4 8 │ │ │ │ +0007b530: 2035 2038 2020 2020 2035 2039 2020 2020 5 8 5 9 │ │ │ │ +0007b540: 2037 2039 2020 2020 2038 2039 2020 2020 7 9 8 9 │ │ │ │ +0007b550: 3320 3130 2020 2020 7c0a 7c20 2020 2020 3 10 |.| │ │ │ │ +0007b560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b5a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b5b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007b5a0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007b5f0: 2020 2020 2020 2020 2032 2020 2020 7c0a 2 |. │ │ │ │ -0007b600: 7c20 2020 2020 3379 2079 2020 202d 2035 | 3y y - 5 │ │ │ │ -0007b610: 7920 7920 2020 2d20 7920 7920 2020 2b20 y y - y y + │ │ │ │ -0007b620: 3479 2079 2020 202b 2035 7920 7920 202c 4y y + 5y y , │ │ │ │ -0007b630: 2033 7920 7920 202d 2079 2079 2020 2d20 3y y - y y - │ │ │ │ -0007b640: 3379 2079 2020 2d20 7920 202b 2020 7c0a 3y y - y + |. │ │ │ │ -0007b650: 7c20 2020 2020 2020 3620 3130 2020 2020 | 6 10 │ │ │ │ -0007b660: 2038 2031 3020 2020 2034 2031 3120 2020 8 10 4 11 │ │ │ │ -0007b670: 2020 3620 3131 2020 2020 2038 2031 3120 6 11 8 11 │ │ │ │ -0007b680: 2020 2031 2033 2020 2020 3220 3320 2020 1 3 2 3 │ │ │ │ -0007b690: 2020 3320 3420 2020 2034 2020 2020 7c0a 3 4 4 |. │ │ │ │ -0007b6a0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b5f0: 2020 2032 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +0007b600: 3379 2079 2020 202d 2035 7920 7920 2020 3y y - 5y y │ │ │ │ +0007b610: 2d20 7920 7920 2020 2b20 3479 2079 2020 - y y + 4y y │ │ │ │ +0007b620: 202b 2035 7920 7920 202c 2033 7920 7920 + 5y y , 3y y │ │ │ │ +0007b630: 202d 2079 2079 2020 2d20 3379 2079 2020 - y y - 3y y │ │ │ │ +0007b640: 2d20 7920 202b 2020 7c0a 7c20 2020 2020 - y + |.| │ │ │ │ +0007b650: 2020 3620 3130 2020 2020 2038 2031 3020 6 10 8 10 │ │ │ │ +0007b660: 2020 2034 2031 3120 2020 2020 3620 3131 4 11 6 11 │ │ │ │ +0007b670: 2020 2020 2038 2031 3120 2020 2031 2033 8 11 1 3 │ │ │ │ +0007b680: 2020 2020 3220 3320 2020 2020 3320 3420 2 3 3 4 │ │ │ │ +0007b690: 2020 2034 2020 2020 7c0a 7c20 2020 2020 4 |.| │ │ │ │ +0007b6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b6c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b6d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b6e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b6f0: 7c20 2020 2020 3279 2079 2020 2d20 7920 | 2y y - y │ │ │ │ -0007b700: 7920 202b 2079 2079 2020 2b20 3279 2079 y + y y + 2y y │ │ │ │ -0007b710: 2020 2b20 3379 2079 2020 2d20 3779 2079 + 3y y - 7y y │ │ │ │ -0007b720: 2020 2d20 3479 2079 2020 2b20 3779 2079 - 4y y + 7y y │ │ │ │ -0007b730: 2020 2d20 3279 2079 2020 2b20 2020 7c0a - 2y y + |. │ │ │ │ -0007b740: 7c20 2020 2020 2020 3020 3520 2020 2033 | 0 5 3 │ │ │ │ -0007b750: 2035 2020 2020 3120 3620 2020 2020 3220 5 1 6 2 │ │ │ │ -0007b760: 3620 2020 2020 3520 3620 2020 2020 3220 6 5 6 2 │ │ │ │ -0007b770: 3720 2020 2020 3420 3720 2020 2020 3120 7 4 7 1 │ │ │ │ -0007b780: 3820 2020 2020 3420 3820 2020 2020 7c0a 8 4 8 |. │ │ │ │ -0007b790: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b6e0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b6f0: 3279 2079 2020 2d20 7920 7920 202b 2079 2y y - y y + y │ │ │ │ +0007b700: 2079 2020 2b20 3279 2079 2020 2b20 3379 y + 2y y + 3y │ │ │ │ +0007b710: 2079 2020 2d20 3779 2079 2020 2d20 3479 y - 7y y - 4y │ │ │ │ +0007b720: 2079 2020 2b20 3779 2079 2020 2d20 3279 y + 7y y - 2y │ │ │ │ +0007b730: 2079 2020 2b20 2020 7c0a 7c20 2020 2020 y + |.| │ │ │ │ +0007b740: 2020 3020 3520 2020 2033 2035 2020 2020 0 5 3 5 │ │ │ │ +0007b750: 3120 3620 2020 2020 3220 3620 2020 2020 1 6 2 6 │ │ │ │ +0007b760: 3520 3620 2020 2020 3220 3720 2020 2020 5 6 2 7 │ │ │ │ +0007b770: 3420 3720 2020 2020 3120 3820 2020 2020 4 7 1 8 │ │ │ │ +0007b780: 3420 3820 2020 2020 7c0a 7c20 2020 2020 4 8 |.| │ │ │ │ +0007b790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b7a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b7e0: 7c20 2020 2020 7920 7920 202d 2079 2079 | y y - y y │ │ │ │ -0007b7f0: 2020 2b20 3279 2079 2020 2b20 3279 2079 + 2y y + 2y y │ │ │ │ -0007b800: 2020 2b20 7920 7920 202d 2037 7920 7920 + y y - 7y y │ │ │ │ -0007b810: 2020 2b20 3579 2079 2020 202d 2033 7920 + 5y y - 3y │ │ │ │ -0007b820: 7920 2020 2d20 7920 7920 2020 2d20 7c0a y - y y - |. │ │ │ │ -0007b830: 7c20 2020 2020 2030 2039 2020 2020 3420 | 0 9 4 │ │ │ │ -0007b840: 3920 2020 2020 3520 3920 2020 2020 3720 9 5 9 7 │ │ │ │ -0007b850: 3920 2020 2038 2039 2020 2020 2030 2031 9 8 9 0 1 │ │ │ │ -0007b860: 3020 2020 2020 3320 3130 2020 2020 2036 0 3 10 6 │ │ │ │ -0007b870: 2031 3020 2020 2030 2031 3120 2020 7c0a 10 0 11 |. │ │ │ │ -0007b880: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b7d0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b7e0: 7920 7920 202d 2079 2079 2020 2b20 3279 y y - y y + 2y │ │ │ │ +0007b7f0: 2079 2020 2b20 3279 2079 2020 2b20 7920 y + 2y y + y │ │ │ │ +0007b800: 7920 202d 2037 7920 7920 2020 2b20 3579 y - 7y y + 5y │ │ │ │ +0007b810: 2079 2020 202d 2033 7920 7920 2020 2d20 y - 3y y - │ │ │ │ +0007b820: 7920 7920 2020 2d20 7c0a 7c20 2020 2020 y y - |.| │ │ │ │ +0007b830: 2030 2039 2020 2020 3420 3920 2020 2020 0 9 4 9 │ │ │ │ +0007b840: 3520 3920 2020 2020 3720 3920 2020 2038 5 9 7 9 8 │ │ │ │ +0007b850: 2039 2020 2020 2030 2031 3020 2020 2020 9 0 10 │ │ │ │ +0007b860: 3320 3130 2020 2020 2036 2031 3020 2020 3 10 6 10 │ │ │ │ +0007b870: 2030 2031 3120 2020 7c0a 7c20 2020 2020 0 11 |.| │ │ │ │ +0007b880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b8b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b8c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b8d0: 7c20 2020 2020 3279 2079 2020 202d 2032 | 2y y - 2 │ │ │ │ -0007b8e0: 7920 7920 202c 2037 7920 7920 202b 2079 y y , 7y y + y │ │ │ │ -0007b8f0: 2079 2020 2b20 3779 2079 2020 2d20 7920 y + 7y y - y │ │ │ │ -0007b900: 7920 202b 2038 7920 7920 202d 2079 2079 y + 8y y - y y │ │ │ │ -0007b910: 2020 2d20 7920 7920 202b 2020 2020 7c0a - y y + |. │ │ │ │ -0007b920: 7c20 2020 2020 2020 3320 3131 2020 2020 | 3 11 │ │ │ │ -0007b930: 2034 2031 3120 2020 2030 2031 2020 2020 4 11 0 1 │ │ │ │ -0007b940: 3020 3420 2020 2020 3120 3420 2020 2033 0 4 1 4 3 │ │ │ │ -0007b950: 2034 2020 2020 2030 2035 2020 2020 3320 4 0 5 3 │ │ │ │ -0007b960: 3520 2020 2031 2036 2020 2020 2020 7c0a 5 1 6 |. │ │ │ │ -0007b970: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b8c0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b8d0: 3279 2079 2020 202d 2032 7920 7920 202c 2y y - 2y y , │ │ │ │ +0007b8e0: 2037 7920 7920 202b 2079 2079 2020 2b20 7y y + y y + │ │ │ │ +0007b8f0: 3779 2079 2020 2d20 7920 7920 202b 2038 7y y - y y + 8 │ │ │ │ +0007b900: 7920 7920 202d 2079 2079 2020 2d20 7920 y y - y y - y │ │ │ │ +0007b910: 7920 202b 2020 2020 7c0a 7c20 2020 2020 y + |.| │ │ │ │ +0007b920: 2020 3320 3131 2020 2020 2034 2031 3120 3 11 4 11 │ │ │ │ +0007b930: 2020 2030 2031 2020 2020 3020 3420 2020 0 1 0 4 │ │ │ │ +0007b940: 2020 3120 3420 2020 2033 2034 2020 2020 1 4 3 4 │ │ │ │ +0007b950: 2030 2035 2020 2020 3320 3520 2020 2031 0 5 3 5 1 │ │ │ │ +0007b960: 2036 2020 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +0007b970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007b9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007b9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007b9c0: 7c20 2020 2020 3779 2079 2020 2b20 3879 | 7y y + 8y │ │ │ │ -0007b9d0: 2079 2020 2b20 7920 7920 202b 2038 7920 y + y y + 8y │ │ │ │ -0007b9e0: 7920 202d 2079 2079 2020 2d20 3879 2079 y - y y - 8y y │ │ │ │ -0007b9f0: 2020 2b20 3779 2079 2020 2d20 3879 2079 + 7y y - 8y y │ │ │ │ -0007ba00: 2020 2b20 3779 2079 2020 2b20 2020 7c0a + 7y y + |. │ │ │ │ -0007ba10: 7c20 2020 2020 2020 3220 3620 2020 2020 | 2 6 │ │ │ │ -0007ba20: 3520 3620 2020 2032 2037 2020 2020 2034 5 6 2 7 4 │ │ │ │ -0007ba30: 2037 2020 2020 3120 3820 2020 2020 3420 7 1 8 4 │ │ │ │ -0007ba40: 3820 2020 2020 3520 3920 2020 2020 3720 8 5 9 7 │ │ │ │ -0007ba50: 3920 2020 2020 3820 3920 2020 2020 7c0a 9 8 9 |. │ │ │ │ -0007ba60: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007b9b0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007b9c0: 3779 2079 2020 2b20 3879 2079 2020 2b20 7y y + 8y y + │ │ │ │ +0007b9d0: 7920 7920 202b 2038 7920 7920 202d 2079 y y + 8y y - y │ │ │ │ +0007b9e0: 2079 2020 2d20 3879 2079 2020 2b20 3779 y - 8y y + 7y │ │ │ │ +0007b9f0: 2079 2020 2d20 3879 2079 2020 2b20 3779 y - 8y y + 7y │ │ │ │ +0007ba00: 2079 2020 2b20 2020 7c0a 7c20 2020 2020 y + |.| │ │ │ │ +0007ba10: 2020 3220 3620 2020 2020 3520 3620 2020 2 6 5 6 │ │ │ │ +0007ba20: 2032 2037 2020 2020 2034 2037 2020 2020 2 7 4 7 │ │ │ │ +0007ba30: 3120 3820 2020 2020 3420 3820 2020 2020 1 8 4 8 │ │ │ │ +0007ba40: 3520 3920 2020 2020 3720 3920 2020 2020 5 9 7 9 │ │ │ │ +0007ba50: 3820 3920 2020 2020 7c0a 7c20 2020 2020 8 9 |.| │ │ │ │ +0007ba60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ba70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ba80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ba90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007baa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007bab0: 7c20 2020 2020 7920 7920 2020 2d20 7920 | y y - y │ │ │ │ -0007bac0: 7920 2020 2b20 3879 2079 2020 202d 2037 y + 8y y - 7 │ │ │ │ -0007bad0: 7920 7920 2020 2d20 3779 2079 2020 202d y y - 7y y - │ │ │ │ -0007bae0: 2037 7920 7920 2029 2020 2020 2020 2020 7y y ) │ │ │ │ -0007baf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007bb00: 7c20 2020 2020 2030 2031 3020 2020 2033 | 0 10 3 │ │ │ │ -0007bb10: 2031 3020 2020 2020 3620 3130 2020 2020 10 6 10 │ │ │ │ -0007bb20: 2030 2031 3120 2020 2020 3420 3131 2020 0 11 4 11 │ │ │ │ -0007bb30: 2020 2036 2031 3120 2020 2020 2020 2020 6 11 │ │ │ │ -0007bb40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007bb50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007baa0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007bab0: 7920 7920 2020 2d20 7920 7920 2020 2b20 y y - y y + │ │ │ │ +0007bac0: 3879 2079 2020 202d 2037 7920 7920 2020 8y y - 7y y │ │ │ │ +0007bad0: 2d20 3779 2079 2020 202d 2037 7920 7920 - 7y y - 7y y │ │ │ │ +0007bae0: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0007baf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007bb00: 2030 2031 3020 2020 2033 2031 3020 2020 0 10 3 10 │ │ │ │ +0007bb10: 2020 3620 3130 2020 2020 2030 2031 3120 6 10 0 11 │ │ │ │ +0007bb20: 2020 2020 3420 3131 2020 2020 2036 2031 4 11 6 1 │ │ │ │ +0007bb30: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +0007bb40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007bb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007bb90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007bba0: 7c6f 3320 3a20 4964 6561 6c20 6f66 2051 |o3 : Ideal of Q │ │ │ │ -0007bbb0: 515b 7920 2e2e 7920 205d 2020 2020 2020 Q[y ..y ] │ │ │ │ +0007bb90: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0007bba0: 4964 6561 6c20 6f66 2051 515b 7920 2e2e Ideal of QQ[y .. │ │ │ │ +0007bbb0: 7920 205d 2020 2020 2020 2020 2020 2020 y ] │ │ │ │ 0007bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007bbe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007bbf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007bc00: 2020 2030 2020 2031 3120 2020 2020 2020 0 11 │ │ │ │ +0007bbe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007bbf0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +0007bc00: 2031 3120 2020 2020 2020 2020 2020 2020 11 │ │ │ │ 0007bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007bc30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007bc40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007bc30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bc70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007bc80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007bc90: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0007bca0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 6b65 ==.. * *note ke │ │ │ │ -0007bcb0: 726e 656c 2852 696e 674d 6170 293a 2028 rnel(RingMap): ( │ │ │ │ -0007bcc0: 4d61 6361 756c 6179 3244 6f63 296b 6572 Macaulay2Doc)ker │ │ │ │ -0007bcd0: 6e65 6c5f 6c70 5269 6e67 4d61 705f 7270 nel_lpRingMap_rp │ │ │ │ -0007bce0: 2c20 2d2d 206b 6572 6e65 6c20 6f66 2061 , -- kernel of a │ │ │ │ -0007bcf0: 0a20 2020 2072 696e 676d 6170 0a0a 5761 . ringmap..Wa │ │ │ │ -0007bd00: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ -0007bd10: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ -0007bd20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -0007bd30: 0a20 202a 202a 6e6f 7465 206b 6572 6e65 . * *note kerne │ │ │ │ -0007bd40: 6c28 5269 6e67 4d61 702c 5a5a 293a 206b l(RingMap,ZZ): k │ │ │ │ -0007bd50: 6572 6e65 6c5f 6c70 5269 6e67 4d61 705f ernel_lpRingMap_ │ │ │ │ -0007bd60: 636d 5a5a 5f72 702c 202d 2d20 686f 6d6f cmZZ_rp, -- homo │ │ │ │ -0007bd70: 6765 6e65 6f75 730a 2020 2020 636f 6d70 geneous. comp │ │ │ │ -0007bd80: 6f6e 656e 7473 206f 6620 7468 6520 6b65 onents of the ke │ │ │ │ -0007bd90: 726e 656c 206f 6620 6120 686f 6d6f 6765 rnel of a homoge │ │ │ │ -0007bda0: 6e65 6f75 7320 7269 6e67 206d 6170 0a2d neous ring map.- │ │ │ │ +0007bc80: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +0007bc90: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +0007bca0: 2a20 2a6e 6f74 6520 6b65 726e 656c 2852 * *note kernel(R │ │ │ │ +0007bcb0: 696e 674d 6170 293a 2028 4d61 6361 756c ingMap): (Macaul │ │ │ │ +0007bcc0: 6179 3244 6f63 296b 6572 6e65 6c5f 6c70 ay2Doc)kernel_lp │ │ │ │ +0007bcd0: 5269 6e67 4d61 705f 7270 2c20 2d2d 206b RingMap_rp, -- k │ │ │ │ +0007bce0: 6572 6e65 6c20 6f66 2061 0a20 2020 2072 ernel of a. r │ │ │ │ +0007bcf0: 696e 676d 6170 0a0a 5761 7973 2074 6f20 ingmap..Ways to │ │ │ │ +0007bd00: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ +0007bd10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0007bd20: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ +0007bd30: 6e6f 7465 206b 6572 6e65 6c28 5269 6e67 note kernel(Ring │ │ │ │ +0007bd40: 4d61 702c 5a5a 293a 206b 6572 6e65 6c5f Map,ZZ): kernel_ │ │ │ │ +0007bd50: 6c70 5269 6e67 4d61 705f 636d 5a5a 5f72 lpRingMap_cmZZ_r │ │ │ │ +0007bd60: 702c 202d 2d20 686f 6d6f 6765 6e65 6f75 p, -- homogeneou │ │ │ │ +0007bd70: 730a 2020 2020 636f 6d70 6f6e 656e 7473 s. components │ │ │ │ +0007bd80: 206f 6620 7468 6520 6b65 726e 656c 206f of the kernel o │ │ │ │ +0007bd90: 6620 6120 686f 6d6f 6765 6e65 6f75 7320 f a homogeneous │ │ │ │ +0007bda0: 7269 6e67 206d 6170 0a2d 2d2d 2d2d 2d2d ring map.------- │ │ │ │ 0007bdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007bde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007bdf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0007be00: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0007be10: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0007be20: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0007be30: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0007be40: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0007be50: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0007be60: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -0007be70: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -0007be80: 3132 343a 302e 0a1f 0a46 696c 653a 2043 124:0....File: C │ │ │ │ -0007be90: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -0007bea0: 653a 206d 6170 5f6c 7052 6174 696f 6e61 e: map_lpRationa │ │ │ │ -0007beb0: 6c4d 6170 5f72 702c 204e 6578 743a 206d lMap_rp, Next: m │ │ │ │ -0007bec0: 6174 7269 785f 6c70 5261 7469 6f6e 616c atrix_lpRational │ │ │ │ -0007bed0: 4d61 705f 7270 2c20 5072 6576 3a20 6b65 Map_rp, Prev: ke │ │ │ │ -0007bee0: 726e 656c 5f6c 7052 696e 674d 6170 5f63 rnel_lpRingMap_c │ │ │ │ -0007bef0: 6d5a 5a5f 7270 2c20 5570 3a20 546f 700a mZZ_rp, Up: Top. │ │ │ │ -0007bf00: 0a6d 6170 2852 6174 696f 6e61 6c4d 6170 .map(RationalMap │ │ │ │ -0007bf10: 2920 2d2d 2067 6574 2074 6865 2072 696e ) -- get the rin │ │ │ │ -0007bf20: 6720 6d61 7020 6465 6669 6e69 6e67 2061 g map defining a │ │ │ │ -0007bf30: 2072 6174 696f 6e61 6c20 6d61 700a 2a2a rational map.** │ │ │ │ +0007bdf0: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0007be00: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0007be10: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0007be20: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0007be30: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0007be40: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0007be50: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0007be60: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +0007be70: 7461 7469 6f6e 2e6d 323a 3132 343a 302e tation.m2:124:0. │ │ │ │ +0007be80: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +0007be90: 2e69 6e66 6f2c 204e 6f64 653a 206d 6170 .info, Node: map │ │ │ │ +0007bea0: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ +0007beb0: 702c 204e 6578 743a 206d 6174 7269 785f p, Next: matrix_ │ │ │ │ +0007bec0: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +0007bed0: 2c20 5072 6576 3a20 6b65 726e 656c 5f6c , Prev: kernel_l │ │ │ │ +0007bee0: 7052 696e 674d 6170 5f63 6d5a 5a5f 7270 pRingMap_cmZZ_rp │ │ │ │ +0007bef0: 2c20 5570 3a20 546f 700a 0a6d 6170 2852 , Up: Top..map(R │ │ │ │ +0007bf00: 6174 696f 6e61 6c4d 6170 2920 2d2d 2067 ationalMap) -- g │ │ │ │ +0007bf10: 6574 2074 6865 2072 696e 6720 6d61 7020 et the ring map │ │ │ │ +0007bf20: 6465 6669 6e69 6e67 2061 2072 6174 696f defining a ratio │ │ │ │ +0007bf30: 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a nal map.******** │ │ │ │ 0007bf40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007bf50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007bf60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0007bf70: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0007bf80: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ -0007bf90: 6d61 703a 2028 4d61 6361 756c 6179 3244 map: (Macaulay2D │ │ │ │ -0007bfa0: 6f63 296d 6170 2c0a 2020 2a20 5573 6167 oc)map,. * Usag │ │ │ │ -0007bfb0: 653a 200a 2020 2020 2020 2020 6d61 7020 e: . map │ │ │ │ -0007bfc0: 5068 690a 2020 2a20 496e 7075 7473 3a0a Phi. * Inputs:. │ │ │ │ -0007bfd0: 2020 2020 2020 2a20 5068 692c 2061 202a * Phi, a * │ │ │ │ -0007bfe0: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ -0007bff0: 703a 2052 6174 696f 6e61 6c4d 6170 2c0a p: RationalMap,. │ │ │ │ -0007c000: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ -0007c010: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ -0007c020: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ -0007c030: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -0007c040: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -0007c050: 2020 2020 2020 2a20 2a6e 6f74 6520 4465 * *note De │ │ │ │ -0007c060: 6772 6565 3a20 284d 6163 6175 6c61 7932 gree: (Macaulay2 │ │ │ │ -0007c070: 446f 6329 6d61 705f 6c70 5f70 645f 7064 Doc)map_lp_pd_pd │ │ │ │ -0007c080: 5f70 645f 636d 4465 6772 6565 3d3e 5f70 _pd_cmDegree=>_p │ │ │ │ -0007c090: 645f 7064 5f70 645f 7270 2c20 3d3e 0a20 d_pd_pd_rp, =>. │ │ │ │ -0007c0a0: 2020 2020 2020 202e 2e2e 2c20 6465 6661 ..., defa │ │ │ │ -0007c0b0: 756c 7420 7661 6c75 6520 6e75 6c6c 2c0a ult value null,. │ │ │ │ -0007c0c0: 2020 2020 2020 2a20 2a6e 6f74 6520 4465 * *note De │ │ │ │ -0007c0d0: 6772 6565 4c69 6674 3a20 284d 6163 6175 greeLift: (Macau │ │ │ │ -0007c0e0: 6c61 7932 446f 6329 6d61 705f 6c70 5269 lay2Doc)map_lpRi │ │ │ │ -0007c0f0: 6e67 5f63 6d52 696e 675f 636d 4d61 7472 ng_cmRing_cmMatr │ │ │ │ -0007c100: 6978 5f72 702c 203d 3e20 2e2e 2e2c 0a20 ix_rp, => ...,. │ │ │ │ -0007c110: 2020 2020 2020 2064 6566 6175 6c74 2076 default v │ │ │ │ -0007c120: 616c 7565 206e 756c 6c2c 0a20 2020 2020 alue null,. │ │ │ │ -0007c130: 202a 202a 6e6f 7465 2044 6567 7265 654d * *note DegreeM │ │ │ │ -0007c140: 6170 3a20 284d 6163 6175 6c61 7932 446f ap: (Macaulay2Do │ │ │ │ -0007c150: 6329 6d61 705f 6c70 5269 6e67 5f63 6d52 c)map_lpRing_cmR │ │ │ │ -0007c160: 696e 675f 636d 4d61 7472 6978 5f72 702c ing_cmMatrix_rp, │ │ │ │ -0007c170: 203d 3e20 2e2e 2e2c 0a20 2020 2020 2020 => ...,. │ │ │ │ -0007c180: 2064 6566 6175 6c74 2076 616c 7565 206e default value n │ │ │ │ -0007c190: 756c 6c2c 0a20 202a 204f 7574 7075 7473 ull,. * Outputs │ │ │ │ -0007c1a0: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -0007c1b0: 6520 7269 6e67 206d 6170 3a20 284d 6163 e ring map: (Mac │ │ │ │ -0007c1c0: 6175 6c61 7932 446f 6329 5269 6e67 4d61 aulay2Doc)RingMa │ │ │ │ -0007c1d0: 702c 2c20 7468 6520 7269 6e67 206d 6170 p,, the ring map │ │ │ │ -0007c1e0: 2066 726f 6d20 7768 6963 6820 7468 650a from which the. │ │ │ │ -0007c1f0: 2020 2020 2020 2020 7261 7469 6f6e 616c rational │ │ │ │ -0007c200: 206d 6170 2050 6869 2077 6173 2064 6566 map Phi was def │ │ │ │ -0007c210: 696e 6564 0a0a 4465 7363 7269 7074 696f ined..Descriptio │ │ │ │ -0007c220: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b n.===========..+ │ │ │ │ +0007bf70: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +0007bf80: 6f6e 3a20 2a6e 6f74 6520 6d61 703a 2028 on: *note map: ( │ │ │ │ +0007bf90: 4d61 6361 756c 6179 3244 6f63 296d 6170 Macaulay2Doc)map │ │ │ │ +0007bfa0: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ +0007bfb0: 2020 2020 2020 6d61 7020 5068 690a 2020 map Phi. │ │ │ │ +0007bfc0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ +0007bfd0: 2a20 5068 692c 2061 202a 6e6f 7465 2072 * Phi, a *note r │ │ │ │ +0007bfe0: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ +0007bff0: 696f 6e61 6c4d 6170 2c0a 2020 2a20 2a6e ionalMap,. * *n │ │ │ │ +0007c000: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ +0007c010: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ +0007c020: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ +0007c030: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +0007c040: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ +0007c050: 2a20 2a6e 6f74 6520 4465 6772 6565 3a20 * *note Degree: │ │ │ │ +0007c060: 284d 6163 6175 6c61 7932 446f 6329 6d61 (Macaulay2Doc)ma │ │ │ │ +0007c070: 705f 6c70 5f70 645f 7064 5f70 645f 636d p_lp_pd_pd_pd_cm │ │ │ │ +0007c080: 4465 6772 6565 3d3e 5f70 645f 7064 5f70 Degree=>_pd_pd_p │ │ │ │ +0007c090: 645f 7270 2c20 3d3e 0a20 2020 2020 2020 d_rp, =>. │ │ │ │ +0007c0a0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0007c0b0: 6c75 6520 6e75 6c6c 2c0a 2020 2020 2020 lue null,. │ │ │ │ +0007c0c0: 2a20 2a6e 6f74 6520 4465 6772 6565 4c69 * *note DegreeLi │ │ │ │ +0007c0d0: 6674 3a20 284d 6163 6175 6c61 7932 446f ft: (Macaulay2Do │ │ │ │ +0007c0e0: 6329 6d61 705f 6c70 5269 6e67 5f63 6d52 c)map_lpRing_cmR │ │ │ │ +0007c0f0: 696e 675f 636d 4d61 7472 6978 5f72 702c ing_cmMatrix_rp, │ │ │ │ +0007c100: 203d 3e20 2e2e 2e2c 0a20 2020 2020 2020 => ...,. │ │ │ │ +0007c110: 2064 6566 6175 6c74 2076 616c 7565 206e default value n │ │ │ │ +0007c120: 756c 6c2c 0a20 2020 2020 202a 202a 6e6f ull,. * *no │ │ │ │ +0007c130: 7465 2044 6567 7265 654d 6170 3a20 284d te DegreeMap: (M │ │ │ │ +0007c140: 6163 6175 6c61 7932 446f 6329 6d61 705f acaulay2Doc)map_ │ │ │ │ +0007c150: 6c70 5269 6e67 5f63 6d52 696e 675f 636d lpRing_cmRing_cm │ │ │ │ +0007c160: 4d61 7472 6978 5f72 702c 203d 3e20 2e2e Matrix_rp, => .. │ │ │ │ +0007c170: 2e2c 0a20 2020 2020 2020 2064 6566 6175 .,. defau │ │ │ │ +0007c180: 6c74 2076 616c 7565 206e 756c 6c2c 0a20 lt value null,. │ │ │ │ +0007c190: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0007c1a0: 2020 2a20 6120 2a6e 6f74 6520 7269 6e67 * a *note ring │ │ │ │ +0007c1b0: 206d 6170 3a20 284d 6163 6175 6c61 7932 map: (Macaulay2 │ │ │ │ +0007c1c0: 446f 6329 5269 6e67 4d61 702c 2c20 7468 Doc)RingMap,, th │ │ │ │ +0007c1d0: 6520 7269 6e67 206d 6170 2066 726f 6d20 e ring map from │ │ │ │ +0007c1e0: 7768 6963 6820 7468 650a 2020 2020 2020 which the. │ │ │ │ +0007c1f0: 2020 7261 7469 6f6e 616c 206d 6170 2050 rational map P │ │ │ │ +0007c200: 6869 2077 6173 2064 6566 696e 6564 0a0a hi was defined.. │ │ │ │ +0007c210: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +0007c220: 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d 2d2d 2d2d =======..+------ │ │ │ │ 0007c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007c270: 2d2d 2d2b 0a7c 6931 203a 2051 515b 745f ---+.|i1 : QQ[t_ │ │ │ │ -0007c280: 302e 2e74 5f33 5d20 2020 2020 2020 2020 0..t_3] │ │ │ │ +0007c260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0007c270: 6931 203a 2051 515b 745f 302e 2e74 5f33 i1 : QQ[t_0..t_3 │ │ │ │ +0007c280: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 0007c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c2b0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0007c2b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0007c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c2f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0007c300: 0a7c 6f31 203d 2051 515b 7420 2e2e 7420 .|o1 = QQ[t ..t │ │ │ │ -0007c310: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0007c2f0: 2020 2020 2020 2020 207c 0a7c 6f31 203d |.|o1 = │ │ │ │ +0007c300: 2051 515b 7420 2e2e 7420 5d20 2020 2020 QQ[t ..t ] │ │ │ │ +0007c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c340: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0007c350: 2030 2020 2033 2020 2020 2020 2020 2020 0 3 │ │ │ │ +0007c330: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0007c340: 0a7c 2020 2020 2020 2020 2030 2020 2033 .| 0 3 │ │ │ │ +0007c350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0007c380: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0007c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c3d0: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ -0007c3e0: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +0007c3c0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +0007c3d0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +0007c3e0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 0007c3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c410: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0007c410: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0007c420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007c430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0007c460: 6932 203a 2050 6869 203d 2072 6174 696f i2 : Phi = ratio │ │ │ │ -0007c470: 6e61 6c4d 6170 207b 745f 315e 322b 745f nalMap {t_1^2+t_ │ │ │ │ -0007c480: 325e 322b 745f 335e 322c 745f 302a 745f 2^2+t_3^2,t_0*t_ │ │ │ │ -0007c490: 312c 745f 302a 745f 322c 745f 302a 745f 1,t_0*t_2,t_0*t_ │ │ │ │ -0007c4a0: 337d 207c 0a7c 2020 2020 2020 2020 2020 3} |.| │ │ │ │ +0007c450: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2050 -------+.|i2 : P │ │ │ │ +0007c460: 6869 203d 2072 6174 696f 6e61 6c4d 6170 hi = rationalMap │ │ │ │ +0007c470: 207b 745f 315e 322b 745f 325e 322b 745f {t_1^2+t_2^2+t_ │ │ │ │ +0007c480: 335e 322c 745f 302a 745f 312c 745f 302a 3^2,t_0*t_1,t_0* │ │ │ │ +0007c490: 745f 322c 745f 302a 745f 337d 207c 0a7c t_2,t_0*t_3} |.| │ │ │ │ +0007c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c4e0: 2020 2020 2020 2020 207c 0a7c 6f32 203d |.|o2 = │ │ │ │ -0007c4f0: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ -0007c500: 202d 2d20 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +0007c4e0: 2020 207c 0a7c 6f32 203d 202d 2d20 7261 |.|o2 = -- ra │ │ │ │ +0007c4f0: 7469 6f6e 616c 206d 6170 202d 2d20 2020 tional map -- │ │ │ │ +0007c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0007c530: 0a7c 2020 2020 2073 6f75 7263 653a 2050 .| source: P │ │ │ │ -0007c540: 726f 6a28 5151 5b74 202c 2074 202c 2074 roj(QQ[t , t , t │ │ │ │ -0007c550: 202c 2074 205d 2920 2020 2020 2020 2020 , t ]) │ │ │ │ -0007c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c570: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0007c580: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0007c590: 2020 3120 2020 3220 2020 3320 2020 2020 1 2 3 │ │ │ │ +0007c520: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0007c530: 2073 6f75 7263 653a 2050 726f 6a28 5151 source: Proj(QQ │ │ │ │ +0007c540: 5b74 202c 2074 202c 2074 202c 2074 205d [t , t , t , t ] │ │ │ │ +0007c550: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +0007c560: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0007c570: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0007c580: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +0007c590: 3220 2020 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ 0007c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c5b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0007c5c0: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ -0007c5d0: 5151 5b74 202c 2074 202c 2074 202c 2074 QQ[t , t , t , t │ │ │ │ -0007c5e0: 205d 2920 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ -0007c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c600: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0007c610: 2020 2020 2020 2020 2020 3020 2020 3120 0 1 │ │ │ │ -0007c620: 2020 3220 2020 3320 2020 2020 2020 2020 2 3 │ │ │ │ +0007c5b0: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ +0007c5c0: 6765 743a 2050 726f 6a28 5151 5b74 202c get: Proj(QQ[t , │ │ │ │ +0007c5d0: 2074 202c 2074 202c 2074 205d 2920 2020 t , t , t ]) │ │ │ │ +0007c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007c5f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0007c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007c610: 2020 2020 3020 2020 3120 2020 3220 2020 0 1 2 │ │ │ │ +0007c620: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0007c630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c640: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -0007c650: 6566 696e 696e 6720 666f 726d 733a 207b efining forms: { │ │ │ │ +0007c640: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +0007c650: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 0007c660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c680: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0007c680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0007c690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c6a0: 2020 2020 2020 2032 2020 2020 3220 2020 2 2 │ │ │ │ -0007c6b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0007c6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c6d0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -0007c6e0: 2020 2020 2020 2020 2020 2020 7420 202b t + │ │ │ │ -0007c6f0: 2074 2020 2b20 7420 2c20 2020 2020 2020 t + t , │ │ │ │ +0007c6a0: 2032 2020 2020 3220 2020 2032 2020 2020 2 2 2 │ │ │ │ +0007c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007c6c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0007c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007c6e0: 2020 2020 2020 7420 202b 2074 2020 2b20 t + t + │ │ │ │ +0007c6f0: 7420 2c20 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007c700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c710: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0007c720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c730: 2020 2031 2020 2020 3220 2020 2033 2020 1 2 3 │ │ │ │ +0007c710: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007c720: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +0007c730: 2020 3220 2020 2033 2020 2020 2020 2020 2 3 │ │ │ │ 0007c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0007c760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0007c750: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0007c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c7a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0007c7b0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -0007c7c0: 7420 2c20 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +0007c790: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0007c7a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0007c7b0: 2020 2020 2020 2020 7420 7420 2c20 2020 t t , │ │ │ │ +0007c7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c7e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0007c7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c800: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ +0007c7e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +0007c7f0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +0007c800: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0007c810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c830: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007c820: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0007c830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c870: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0007c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c890: 7420 7420 2c20 2020 2020 2020 2020 2020 t t , │ │ │ │ +0007c870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007c880: 2020 2020 2020 2020 2020 7420 7420 2c20 t t , │ │ │ │ +0007c890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c8b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0007c8b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 0007c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c8d0: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +0007c8d0: 2030 2032 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ 0007c8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c900: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007c8f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0007c900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c940: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0007c950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c960: 2020 7420 7420 2020 2020 2020 2020 2020 t t │ │ │ │ +0007c940: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007c950: 2020 2020 2020 2020 2020 2020 7420 7420 t t │ │ │ │ +0007c960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007c970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0007c990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ -0007c9a0: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +0007c980: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0007c990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007c9a0: 2020 2030 2033 2020 2020 2020 2020 2020 0 3 │ │ │ │ 0007c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007c9d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -0007c9e0: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +0007c9c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0007c9d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0007c9e0: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 0007c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ca10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0007ca10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ 0007ca20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ca30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ca60: 207c 0a7c 6f32 203a 2052 6174 696f 6e61 |.|o2 : Rationa │ │ │ │ -0007ca70: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ -0007ca80: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -0007ca90: 6d20 5050 5e33 2074 6f20 5050 5e33 2920 m PP^3 to PP^3) │ │ │ │ -0007caa0: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +0007ca50: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +0007ca60: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +0007ca70: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ +0007ca80: 616c 206d 6170 2066 726f 6d20 5050 5e33 al map from PP^3 │ │ │ │ +0007ca90: 2074 6f20 5050 5e33 2920 2020 2020 2020 to PP^3) │ │ │ │ +0007caa0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 0007cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007cae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0007caf0: 6933 203a 206d 6170 2050 6869 2020 2020 i3 : map Phi │ │ │ │ +0007cae0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 206d -------+.|i3 : m │ │ │ │ +0007caf0: 6170 2050 6869 2020 2020 2020 2020 2020 ap Phi │ │ │ │ 0007cb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cb30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007cb20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0007cb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cb70: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0007cb70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ 0007cb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cba0: 3220 2020 2032 2020 2020 3220 2020 2020 2 2 2 │ │ │ │ -0007cbb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0007cbc0: 0a7c 6f33 203d 206d 6170 2028 5151 5b74 .|o3 = map (QQ[t │ │ │ │ -0007cbd0: 202e 2e74 205d 2c20 5151 5b74 202e 2e74 ..t ], QQ[t ..t │ │ │ │ -0007cbe0: 205d 2c20 7b74 2020 2b20 7420 202b 2074 ], {t + t + t │ │ │ │ -0007cbf0: 202c 2074 2074 202c 2074 2074 202c 2074 , t t , t t , t │ │ │ │ -0007cc00: 2074 207d 297c 0a7c 2020 2020 2020 2020 t })|.| │ │ │ │ -0007cc10: 2020 2020 2020 3020 2020 3320 2020 2020 0 3 │ │ │ │ -0007cc20: 2020 3020 2020 3320 2020 2020 3120 2020 0 3 1 │ │ │ │ -0007cc30: 2032 2020 2020 3320 2020 3020 3120 2020 2 3 0 1 │ │ │ │ -0007cc40: 3020 3220 2020 3020 3320 207c 0a7c 2020 0 2 0 3 |.| │ │ │ │ +0007cb90: 2020 2020 2020 2020 2020 3220 2020 2032 2 2 │ │ │ │ +0007cba0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0007cbb0: 2020 2020 2020 2020 207c 0a7c 6f33 203d |.|o3 = │ │ │ │ +0007cbc0: 206d 6170 2028 5151 5b74 202e 2e74 205d map (QQ[t ..t ] │ │ │ │ +0007cbd0: 2c20 5151 5b74 202e 2e74 205d 2c20 7b74 , QQ[t ..t ], {t │ │ │ │ +0007cbe0: 2020 2b20 7420 202b 2074 202c 2074 2074 + t + t , t t │ │ │ │ +0007cbf0: 202c 2074 2074 202c 2074 2074 207d 297c , t t , t t })| │ │ │ │ +0007cc00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +0007cc10: 3020 2020 3320 2020 2020 2020 3020 2020 0 3 0 │ │ │ │ +0007cc20: 3320 2020 2020 3120 2020 2032 2020 2020 3 1 2 │ │ │ │ +0007cc30: 3320 2020 3020 3120 2020 3020 3220 2020 3 0 1 0 2 │ │ │ │ +0007cc40: 3020 3320 207c 0a7c 2020 2020 2020 2020 0 3 |.| │ │ │ │ 0007cc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007cc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cc90: 207c 0a7c 6f33 203a 2052 696e 674d 6170 |.|o3 : RingMap │ │ │ │ -0007cca0: 2051 515b 7420 2e2e 7420 5d20 3c2d 2d20 QQ[t ..t ] <-- │ │ │ │ -0007ccb0: 5151 5b74 202e 2e74 205d 2020 2020 2020 QQ[t ..t ] │ │ │ │ +0007cc80: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +0007cc90: 203a 2052 696e 674d 6170 2051 515b 7420 : RingMap QQ[t │ │ │ │ +0007cca0: 2e2e 7420 5d20 3c2d 2d20 5151 5b74 202e ..t ] <-- QQ[t . │ │ │ │ +0007ccb0: 2e74 205d 2020 2020 2020 2020 2020 2020 .t ] │ │ │ │ 0007ccc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ccd0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -0007cce0: 2020 2020 2020 2020 2020 2030 2020 2033 0 3 │ │ │ │ -0007ccf0: 2020 2020 2020 2020 2020 3020 2020 3320 0 3 │ │ │ │ +0007ccd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0007cce0: 2020 2020 2030 2020 2033 2020 2020 2020 0 3 │ │ │ │ +0007ccf0: 2020 2020 3020 2020 3320 2020 2020 2020 0 3 │ │ │ │ 0007cd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007cd10: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0007cd10: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 0007cd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007cd60: 2d2d 2d2b 0a0a 5468 6520 636f 6d6d 616e ---+..The comman │ │ │ │ -0007cd70: 6420 6d61 7020 5068 6920 6973 2065 7175 d map Phi is equ │ │ │ │ -0007cd80: 6976 616c 656e 7420 746f 206d 6170 2830 ivalent to map(0 │ │ │ │ -0007cd90: 2c50 6869 292e 204d 6f72 6520 6765 6e65 ,Phi). More gene │ │ │ │ -0007cda0: 7261 6c6c 792c 2074 6865 2063 6f6d 6d61 rally, the comma │ │ │ │ -0007cdb0: 6e64 0a6d 6170 2869 2c50 6869 2920 7265 nd.map(i,Phi) re │ │ │ │ -0007cdc0: 7475 726e 7320 7468 6520 692d 7468 2072 turns the i-th r │ │ │ │ -0007cdd0: 6570 7265 7365 6e74 6174 6976 6520 6f66 epresentative of │ │ │ │ -0007cde0: 2074 6865 206d 6170 2050 6869 2e0a 0a53 the map Phi...S │ │ │ │ -0007cdf0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0007ce00: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 7472 .. * *note matr │ │ │ │ -0007ce10: 6978 2852 6174 696f 6e61 6c4d 6170 293a ix(RationalMap): │ │ │ │ -0007ce20: 206d 6174 7269 785f 6c70 5261 7469 6f6e matrix_lpRation │ │ │ │ -0007ce30: 616c 4d61 705f 7270 2c20 2d2d 2074 6865 alMap_rp, -- the │ │ │ │ -0007ce40: 206d 6174 7269 780a 2020 2020 6173 736f matrix. asso │ │ │ │ -0007ce50: 6369 6174 6564 2074 6f20 6120 7261 7469 ciated to a rati │ │ │ │ -0007ce60: 6f6e 616c 206d 6170 0a0a 5761 7973 2074 onal map..Ways t │ │ │ │ -0007ce70: 6f20 7573 6520 7468 6973 206d 6574 686f o use this metho │ │ │ │ -0007ce80: 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d d:.============= │ │ │ │ -0007ce90: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -0007cea0: 202a 6e6f 7465 206d 6170 2852 6174 696f *note map(Ratio │ │ │ │ -0007ceb0: 6e61 6c4d 6170 293a 206d 6170 5f6c 7052 nalMap): map_lpR │ │ │ │ -0007cec0: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ -0007ced0: 2d20 6765 7420 7468 6520 7269 6e67 206d - get the ring m │ │ │ │ -0007cee0: 6170 2064 6566 696e 696e 670a 2020 2020 ap defining. │ │ │ │ -0007cef0: 6120 7261 7469 6f6e 616c 206d 6170 0a20 a rational map. │ │ │ │ -0007cf00: 202a 2022 6d61 7028 5a5a 2c52 6174 696f * "map(ZZ,Ratio │ │ │ │ -0007cf10: 6e61 6c4d 6170 2922 0a2d 2d2d 2d2d 2d2d nalMap)".------- │ │ │ │ +0007cd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0007cd60: 5468 6520 636f 6d6d 616e 6420 6d61 7020 The command map │ │ │ │ +0007cd70: 5068 6920 6973 2065 7175 6976 616c 656e Phi is equivalen │ │ │ │ +0007cd80: 7420 746f 206d 6170 2830 2c50 6869 292e t to map(0,Phi). │ │ │ │ +0007cd90: 204d 6f72 6520 6765 6e65 7261 6c6c 792c More generally, │ │ │ │ +0007cda0: 2074 6865 2063 6f6d 6d61 6e64 0a6d 6170 the command.map │ │ │ │ +0007cdb0: 2869 2c50 6869 2920 7265 7475 726e 7320 (i,Phi) returns │ │ │ │ +0007cdc0: 7468 6520 692d 7468 2072 6570 7265 7365 the i-th represe │ │ │ │ +0007cdd0: 6e74 6174 6976 6520 6f66 2074 6865 206d ntative of the m │ │ │ │ +0007cde0: 6170 2050 6869 2e0a 0a53 6565 2061 6c73 ap Phi...See als │ │ │ │ +0007cdf0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0007ce00: 2a6e 6f74 6520 6d61 7472 6978 2852 6174 *note matrix(Rat │ │ │ │ +0007ce10: 696f 6e61 6c4d 6170 293a 206d 6174 7269 ionalMap): matri │ │ │ │ +0007ce20: 785f 6c70 5261 7469 6f6e 616c 4d61 705f x_lpRationalMap_ │ │ │ │ +0007ce30: 7270 2c20 2d2d 2074 6865 206d 6174 7269 rp, -- the matri │ │ │ │ +0007ce40: 780a 2020 2020 6173 736f 6369 6174 6564 x. associated │ │ │ │ +0007ce50: 2074 6f20 6120 7261 7469 6f6e 616c 206d to a rational m │ │ │ │ +0007ce60: 6170 0a0a 5761 7973 2074 6f20 7573 6520 ap..Ways to use │ │ │ │ +0007ce70: 7468 6973 206d 6574 686f 643a 0a3d 3d3d this method:.=== │ │ │ │ +0007ce80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0007ce90: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ +0007cea0: 206d 6170 2852 6174 696f 6e61 6c4d 6170 map(RationalMap │ │ │ │ +0007ceb0: 293a 206d 6170 5f6c 7052 6174 696f 6e61 ): map_lpRationa │ │ │ │ +0007cec0: 6c4d 6170 5f72 702c 202d 2d20 6765 7420 lMap_rp, -- get │ │ │ │ +0007ced0: 7468 6520 7269 6e67 206d 6170 2064 6566 the ring map def │ │ │ │ +0007cee0: 696e 696e 670a 2020 2020 6120 7261 7469 ining. a rati │ │ │ │ +0007cef0: 6f6e 616c 206d 6170 0a20 202a 2022 6d61 onal map. * "ma │ │ │ │ +0007cf00: 7028 5a5a 2c52 6174 696f 6e61 6c4d 6170 p(ZZ,RationalMap │ │ │ │ +0007cf10: 2922 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d )".------------- │ │ │ │ 0007cf20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cf30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cf40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007cf50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007cf60: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0007cf70: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0007cf80: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0007cf90: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0007cfa0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0007cfb0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0007cfc0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0007cfd0: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ -0007cfe0: 7461 7469 6f6e 2e6d 323a 3731 383a 302e tation.m2:718:0. │ │ │ │ -0007cff0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ -0007d000: 2e69 6e66 6f2c 204e 6f64 653a 206d 6174 .info, Node: mat │ │ │ │ -0007d010: 7269 785f 6c70 5261 7469 6f6e 616c 4d61 rix_lpRationalMa │ │ │ │ -0007d020: 705f 7270 2c20 4e65 7874 3a20 4e75 6d44 p_rp, Next: NumD │ │ │ │ -0007d030: 6567 7265 6573 2c20 5072 6576 3a20 6d61 egrees, Prev: ma │ │ │ │ -0007d040: 705f 6c70 5261 7469 6f6e 616c 4d61 705f p_lpRationalMap_ │ │ │ │ -0007d050: 7270 2c20 5570 3a20 546f 700a 0a6d 6174 rp, Up: Top..mat │ │ │ │ -0007d060: 7269 7828 5261 7469 6f6e 616c 4d61 7029 rix(RationalMap) │ │ │ │ -0007d070: 202d 2d20 7468 6520 6d61 7472 6978 2061 -- the matrix a │ │ │ │ -0007d080: 7373 6f63 6961 7465 6420 746f 2061 2072 ssociated to a r │ │ │ │ -0007d090: 6174 696f 6e61 6c20 6d61 700a 2a2a 2a2a ational map.**** │ │ │ │ +0007cf60: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0007cf70: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0007cf80: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0007cf90: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0007cfa0: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0007cfb0: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0007cfc0: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ +0007cfd0: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ +0007cfe0: 2e6d 323a 3731 383a 302e 0a1f 0a46 696c .m2:718:0....Fil │ │ │ │ +0007cff0: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ +0007d000: 204e 6f64 653a 206d 6174 7269 785f 6c70 Node: matrix_lp │ │ │ │ +0007d010: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +0007d020: 4e65 7874 3a20 4e75 6d44 6567 7265 6573 Next: NumDegrees │ │ │ │ +0007d030: 2c20 5072 6576 3a20 6d61 705f 6c70 5261 , Prev: map_lpRa │ │ │ │ +0007d040: 7469 6f6e 616c 4d61 705f 7270 2c20 5570 tionalMap_rp, Up │ │ │ │ +0007d050: 3a20 546f 700a 0a6d 6174 7269 7828 5261 : Top..matrix(Ra │ │ │ │ +0007d060: 7469 6f6e 616c 4d61 7029 202d 2d20 7468 tionalMap) -- th │ │ │ │ +0007d070: 6520 6d61 7472 6978 2061 7373 6f63 6961 e matrix associa │ │ │ │ +0007d080: 7465 6420 746f 2061 2072 6174 696f 6e61 ted to a rationa │ │ │ │ +0007d090: 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a l map.********** │ │ │ │ 0007d0a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007d0b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007d0c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0007d0d0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0007d0e0: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ -0007d0f0: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ -0007d100: 7932 446f 6329 6d61 7472 6978 2c0a 2020 y2Doc)matrix,. │ │ │ │ -0007d110: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0007d120: 2020 6d61 7472 6978 2050 6869 0a20 202a matrix Phi. * │ │ │ │ -0007d130: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0007d140: 2050 6869 2c20 6120 2a6e 6f74 6520 7261 Phi, a *note ra │ │ │ │ -0007d150: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ -0007d160: 6f6e 616c 4d61 702c 0a20 202a 202a 6e6f onalMap,. * *no │ │ │ │ -0007d170: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ -0007d180: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ -0007d190: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ -0007d1a0: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ -0007d1b0: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ -0007d1c0: 202a 6e6f 7465 2044 6567 7265 653a 2028 *note Degree: ( │ │ │ │ -0007d1d0: 4d61 6361 756c 6179 3244 6f63 296d 6174 Macaulay2Doc)mat │ │ │ │ -0007d1e0: 7269 785f 6c70 4c69 7374 5f72 702c 203d rix_lpList_rp, = │ │ │ │ -0007d1f0: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ -0007d200: 616c 7565 0a20 2020 2020 2020 206e 756c alue. nul │ │ │ │ -0007d210: 6c2c 0a20 202a 204f 7574 7075 7473 3a0a l,. * Outputs:. │ │ │ │ -0007d220: 2020 2020 2020 2a20 6120 2a6e 6f74 6520 * a *note │ │ │ │ -0007d230: 6d61 7472 6978 3a20 284d 6163 6175 6c61 matrix: (Macaula │ │ │ │ -0007d240: 7932 446f 6329 4d61 7472 6978 2c2c 2074 y2Doc)Matrix,, t │ │ │ │ -0007d250: 6865 206d 6174 7269 7820 6173 736f 6369 he matrix associ │ │ │ │ -0007d260: 6174 6564 2074 6f20 7468 650a 2020 2020 ated to the. │ │ │ │ -0007d270: 2020 2020 7269 6e67 206d 6170 2064 6566 ring map def │ │ │ │ -0007d280: 696e 696e 6720 7468 6520 7261 7469 6f6e ining the ration │ │ │ │ -0007d290: 616c 206d 6170 2050 6869 0a0a 4465 7363 al map Phi..Desc │ │ │ │ -0007d2a0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ -0007d2b0: 3d3d 3d0a 0a54 6869 7320 6973 2065 7175 ===..This is equ │ │ │ │ -0007d2c0: 6976 616c 656e 7420 746f 206d 6174 7269 ivalent to matri │ │ │ │ -0007d2d0: 7820 6d61 7020 5068 692e 204d 6f72 656f x map Phi. Moreo │ │ │ │ -0007d2e0: 7665 722c 2074 6865 2063 6f6d 6d61 6e64 ver, the command │ │ │ │ -0007d2f0: 206d 6174 7269 7820 5068 6920 6973 0a65 matrix Phi is.e │ │ │ │ -0007d300: 7175 6976 616c 656e 7420 746f 206d 6174 quivalent to mat │ │ │ │ -0007d310: 7269 7828 302c 5068 6929 2c20 616e 6420 rix(0,Phi), and │ │ │ │ -0007d320: 6d6f 7265 2067 656e 6572 616c 6c79 2074 more generally t │ │ │ │ -0007d330: 6865 2063 6f6d 6d61 6e64 206d 6174 7269 he command matri │ │ │ │ -0007d340: 7828 692c 5068 6929 0a72 6574 7572 6e73 x(i,Phi).returns │ │ │ │ -0007d350: 2074 6865 206d 6174 7269 7820 6f66 2074 the matrix of t │ │ │ │ -0007d360: 6865 2069 2d74 6820 7265 7072 6573 656e he i-th represen │ │ │ │ -0007d370: 7461 7469 7665 206f 6620 5068 692e 0a0a tative of Phi... │ │ │ │ -0007d380: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -0007d390: 3d0a 0a20 202a 202a 6e6f 7465 206d 6170 =.. * *note map │ │ │ │ -0007d3a0: 2852 6174 696f 6e61 6c4d 6170 293a 206d (RationalMap): m │ │ │ │ -0007d3b0: 6170 5f6c 7052 6174 696f 6e61 6c4d 6170 ap_lpRationalMap │ │ │ │ -0007d3c0: 5f72 702c 202d 2d20 6765 7420 7468 6520 _rp, -- get the │ │ │ │ -0007d3d0: 7269 6e67 206d 6170 2064 6566 696e 696e ring map definin │ │ │ │ -0007d3e0: 670a 2020 2020 6120 7261 7469 6f6e 616c g. a rational │ │ │ │ -0007d3f0: 206d 6170 0a20 202a 202a 6e6f 7465 206d map. * *note m │ │ │ │ -0007d400: 6174 7269 7828 5269 6e67 4d61 7029 3a20 atrix(RingMap): │ │ │ │ -0007d410: 284d 6163 6175 6c61 7932 446f 6329 6d61 (Macaulay2Doc)ma │ │ │ │ -0007d420: 7472 6978 5f6c 7052 696e 674d 6170 5f72 trix_lpRingMap_r │ │ │ │ -0007d430: 702c 202d 2d20 7468 6520 6d61 7472 6978 p, -- the matrix │ │ │ │ -0007d440: 0a20 2020 2061 7373 6f63 6961 7465 6420 . associated │ │ │ │ -0007d450: 746f 2061 2072 696e 6720 6d61 700a 0a57 to a ring map..W │ │ │ │ -0007d460: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -0007d470: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -0007d480: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0007d490: 0a0a 2020 2a20 2a6e 6f74 6520 6d61 7472 .. * *note matr │ │ │ │ -0007d4a0: 6978 2852 6174 696f 6e61 6c4d 6170 293a ix(RationalMap): │ │ │ │ -0007d4b0: 206d 6174 7269 785f 6c70 5261 7469 6f6e matrix_lpRation │ │ │ │ -0007d4c0: 616c 4d61 705f 7270 2c20 2d2d 2074 6865 alMap_rp, -- the │ │ │ │ -0007d4d0: 206d 6174 7269 780a 2020 2020 6173 736f matrix. asso │ │ │ │ -0007d4e0: 6369 6174 6564 2074 6f20 6120 7261 7469 ciated to a rati │ │ │ │ -0007d4f0: 6f6e 616c 206d 6170 0a20 202a 2022 6d61 onal map. * "ma │ │ │ │ -0007d500: 7472 6978 285a 5a2c 5261 7469 6f6e 616c trix(ZZ,Rational │ │ │ │ -0007d510: 4d61 7029 220a 2d2d 2d2d 2d2d 2d2d 2d2d Map)".---------- │ │ │ │ +0007d0d0: 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 7469 ****.. * Functi │ │ │ │ +0007d0e0: 6f6e 3a20 2a6e 6f74 6520 6d61 7472 6978 on: *note matrix │ │ │ │ +0007d0f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0007d100: 6d61 7472 6978 2c0a 2020 2a20 5573 6167 matrix,. * Usag │ │ │ │ +0007d110: 653a 200a 2020 2020 2020 2020 6d61 7472 e: . matr │ │ │ │ +0007d120: 6978 2050 6869 0a20 202a 2049 6e70 7574 ix Phi. * Input │ │ │ │ +0007d130: 733a 0a20 2020 2020 202a 2050 6869 2c20 s:. * Phi, │ │ │ │ +0007d140: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ +0007d150: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ +0007d160: 702c 0a20 202a 202a 6e6f 7465 204f 7074 p,. * *note Opt │ │ │ │ +0007d170: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ +0007d180: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ +0007d190: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ +0007d1a0: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ +0007d1b0: 2c3a 0a20 2020 2020 202a 202a 6e6f 7465 ,:. * *note │ │ │ │ +0007d1c0: 2044 6567 7265 653a 2028 4d61 6361 756c Degree: (Macaul │ │ │ │ +0007d1d0: 6179 3244 6f63 296d 6174 7269 785f 6c70 ay2Doc)matrix_lp │ │ │ │ +0007d1e0: 4c69 7374 5f72 702c 203d 3e20 2e2e 2e2c List_rp, => ..., │ │ │ │ +0007d1f0: 2064 6566 6175 6c74 2076 616c 7565 0a20 default value. │ │ │ │ +0007d200: 2020 2020 2020 206e 756c 6c2c 0a20 202a null,. * │ │ │ │ +0007d210: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0007d220: 2a20 6120 2a6e 6f74 6520 6d61 7472 6978 * a *note matrix │ │ │ │ +0007d230: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0007d240: 4d61 7472 6978 2c2c 2074 6865 206d 6174 Matrix,, the mat │ │ │ │ +0007d250: 7269 7820 6173 736f 6369 6174 6564 2074 rix associated t │ │ │ │ +0007d260: 6f20 7468 650a 2020 2020 2020 2020 7269 o the. ri │ │ │ │ +0007d270: 6e67 206d 6170 2064 6566 696e 696e 6720 ng map defining │ │ │ │ +0007d280: 7468 6520 7261 7469 6f6e 616c 206d 6170 the rational map │ │ │ │ +0007d290: 2050 6869 0a0a 4465 7363 7269 7074 696f Phi..Descriptio │ │ │ │ +0007d2a0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 n.===========..T │ │ │ │ +0007d2b0: 6869 7320 6973 2065 7175 6976 616c 656e his is equivalen │ │ │ │ +0007d2c0: 7420 746f 206d 6174 7269 7820 6d61 7020 t to matrix map │ │ │ │ +0007d2d0: 5068 692e 204d 6f72 656f 7665 722c 2074 Phi. Moreover, t │ │ │ │ +0007d2e0: 6865 2063 6f6d 6d61 6e64 206d 6174 7269 he command matri │ │ │ │ +0007d2f0: 7820 5068 6920 6973 0a65 7175 6976 616c x Phi is.equival │ │ │ │ +0007d300: 656e 7420 746f 206d 6174 7269 7828 302c ent to matrix(0, │ │ │ │ +0007d310: 5068 6929 2c20 616e 6420 6d6f 7265 2067 Phi), and more g │ │ │ │ +0007d320: 656e 6572 616c 6c79 2074 6865 2063 6f6d enerally the com │ │ │ │ +0007d330: 6d61 6e64 206d 6174 7269 7828 692c 5068 mand matrix(i,Ph │ │ │ │ +0007d340: 6929 0a72 6574 7572 6e73 2074 6865 206d i).returns the m │ │ │ │ +0007d350: 6174 7269 7820 6f66 2074 6865 2069 2d74 atrix of the i-t │ │ │ │ +0007d360: 6820 7265 7072 6573 656e 7461 7469 7665 h representative │ │ │ │ +0007d370: 206f 6620 5068 692e 0a0a 5365 6520 616c of Phi...See al │ │ │ │ +0007d380: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +0007d390: 202a 6e6f 7465 206d 6170 2852 6174 696f *note map(Ratio │ │ │ │ +0007d3a0: 6e61 6c4d 6170 293a 206d 6170 5f6c 7052 nalMap): map_lpR │ │ │ │ +0007d3b0: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0007d3c0: 2d20 6765 7420 7468 6520 7269 6e67 206d - get the ring m │ │ │ │ +0007d3d0: 6170 2064 6566 696e 696e 670a 2020 2020 ap defining. │ │ │ │ +0007d3e0: 6120 7261 7469 6f6e 616c 206d 6170 0a20 a rational map. │ │ │ │ +0007d3f0: 202a 202a 6e6f 7465 206d 6174 7269 7828 * *note matrix( │ │ │ │ +0007d400: 5269 6e67 4d61 7029 3a20 284d 6163 6175 RingMap): (Macau │ │ │ │ +0007d410: 6c61 7932 446f 6329 6d61 7472 6978 5f6c lay2Doc)matrix_l │ │ │ │ +0007d420: 7052 696e 674d 6170 5f72 702c 202d 2d20 pRingMap_rp, -- │ │ │ │ +0007d430: 7468 6520 6d61 7472 6978 0a20 2020 2061 the matrix. a │ │ │ │ +0007d440: 7373 6f63 6961 7465 6420 746f 2061 2072 ssociated to a r │ │ │ │ +0007d450: 696e 6720 6d61 700a 0a57 6179 7320 746f ing map..Ways to │ │ │ │ +0007d460: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ +0007d470: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0007d480: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0007d490: 2a6e 6f74 6520 6d61 7472 6978 2852 6174 *note matrix(Rat │ │ │ │ +0007d4a0: 696f 6e61 6c4d 6170 293a 206d 6174 7269 ionalMap): matri │ │ │ │ +0007d4b0: 785f 6c70 5261 7469 6f6e 616c 4d61 705f x_lpRationalMap_ │ │ │ │ +0007d4c0: 7270 2c20 2d2d 2074 6865 206d 6174 7269 rp, -- the matri │ │ │ │ +0007d4d0: 780a 2020 2020 6173 736f 6369 6174 6564 x. associated │ │ │ │ +0007d4e0: 2074 6f20 6120 7261 7469 6f6e 616c 206d to a rational m │ │ │ │ +0007d4f0: 6170 0a20 202a 2022 6d61 7472 6978 285a ap. * "matrix(Z │ │ │ │ +0007d500: 5a2c 5261 7469 6f6e 616c 4d61 7029 220a Z,RationalMap)". │ │ │ │ +0007d510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007d560: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0007d570: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0007d580: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0007d590: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0007d5a0: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0007d5b0: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0007d5c0: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ -0007d5d0: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ -0007d5e0: 696f 6e2e 6d32 3a37 3239 3a30 2e0a 1f0a ion.m2:729:0.... │ │ │ │ -0007d5f0: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ -0007d600: 666f 2c20 4e6f 6465 3a20 4e75 6d44 6567 fo, Node: NumDeg │ │ │ │ -0007d610: 7265 6573 2c20 4e65 7874 3a20 7061 7261 rees, Next: para │ │ │ │ -0007d620: 6d65 7472 697a 652c 2050 7265 763a 206d metrize, Prev: m │ │ │ │ -0007d630: 6174 7269 785f 6c70 5261 7469 6f6e 616c atrix_lpRational │ │ │ │ -0007d640: 4d61 705f 7270 2c20 5570 3a20 546f 700a Map_rp, Up: Top. │ │ │ │ -0007d650: 0a4e 756d 4465 6772 6565 730a 2a2a 2a2a .NumDegrees.**** │ │ │ │ -0007d660: 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 7074 ******..Descript │ │ │ │ -0007d670: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ -0007d680: 0a54 6869 7320 6973 2061 6e20 6f70 7469 .This is an opti │ │ │ │ -0007d690: 6f6e 616c 2061 7267 756d 656e 7420 666f onal argument fo │ │ │ │ -0007d6a0: 7220 2a6e 6f74 6520 7072 6f6a 6563 7469 r *note projecti │ │ │ │ -0007d6b0: 7665 4465 6772 6565 733a 2070 726f 6a65 veDegrees: proje │ │ │ │ -0007d6c0: 6374 6976 6544 6567 7265 6573 2c0a 616e ctiveDegrees,.an │ │ │ │ -0007d6d0: 6420 6163 6365 7074 7320 6120 6e6f 6e2d d accepts a non- │ │ │ │ -0007d6e0: 6e65 6761 7469 7665 2069 6e74 6567 6572 negative integer │ │ │ │ -0007d6f0: 2c20 3120 6c65 7373 2074 6861 6e20 7468 , 1 less than th │ │ │ │ -0007d700: 6520 6e75 6d62 6572 206f 6620 7072 6f6a e number of proj │ │ │ │ -0007d710: 6563 7469 7665 0a64 6567 7265 6573 2074 ective.degrees t │ │ │ │ -0007d720: 6f20 6265 2063 6f6d 7075 7465 642e 0a0a o be computed... │ │ │ │ -0007d730: 4675 6e63 7469 6f6e 7320 7769 7468 206f Functions with o │ │ │ │ -0007d740: 7074 696f 6e61 6c20 6172 6775 6d65 6e74 ptional argument │ │ │ │ -0007d750: 206e 616d 6564 204e 756d 4465 6772 6565 named NumDegree │ │ │ │ -0007d760: 733a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d s:.============= │ │ │ │ +0007d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0007d560: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0007d570: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0007d580: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0007d590: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0007d5a0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0007d5b0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0007d5c0: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ +0007d5d0: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ +0007d5e0: 3a37 3239 3a30 2e0a 1f0a 4669 6c65 3a20 :729:0....File: │ │ │ │ +0007d5f0: 4372 656d 6f6e 612e 696e 666f 2c20 4e6f Cremona.info, No │ │ │ │ +0007d600: 6465 3a20 4e75 6d44 6567 7265 6573 2c20 de: NumDegrees, │ │ │ │ +0007d610: 4e65 7874 3a20 7061 7261 6d65 7472 697a Next: parametriz │ │ │ │ +0007d620: 652c 2050 7265 763a 206d 6174 7269 785f e, Prev: matrix_ │ │ │ │ +0007d630: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +0007d640: 2c20 5570 3a20 546f 700a 0a4e 756d 4465 , Up: Top..NumDe │ │ │ │ +0007d650: 6772 6565 730a 2a2a 2a2a 2a2a 2a2a 2a2a grees.********** │ │ │ │ +0007d660: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ +0007d670: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 7320 =========..This │ │ │ │ +0007d680: 6973 2061 6e20 6f70 7469 6f6e 616c 2061 is an optional a │ │ │ │ +0007d690: 7267 756d 656e 7420 666f 7220 2a6e 6f74 rgument for *not │ │ │ │ +0007d6a0: 6520 7072 6f6a 6563 7469 7665 4465 6772 e projectiveDegr │ │ │ │ +0007d6b0: 6565 733a 2070 726f 6a65 6374 6976 6544 ees: projectiveD │ │ │ │ +0007d6c0: 6567 7265 6573 2c0a 616e 6420 6163 6365 egrees,.and acce │ │ │ │ +0007d6d0: 7074 7320 6120 6e6f 6e2d 6e65 6761 7469 pts a non-negati │ │ │ │ +0007d6e0: 7665 2069 6e74 6567 6572 2c20 3120 6c65 ve integer, 1 le │ │ │ │ +0007d6f0: 7373 2074 6861 6e20 7468 6520 6e75 6d62 ss than the numb │ │ │ │ +0007d700: 6572 206f 6620 7072 6f6a 6563 7469 7665 er of projective │ │ │ │ +0007d710: 0a64 6567 7265 6573 2074 6f20 6265 2063 .degrees to be c │ │ │ │ +0007d720: 6f6d 7075 7465 642e 0a0a 4675 6e63 7469 omputed...Functi │ │ │ │ +0007d730: 6f6e 7320 7769 7468 206f 7074 696f 6e61 ons with optiona │ │ │ │ +0007d740: 6c20 6172 6775 6d65 6e74 206e 616d 6564 l argument named │ │ │ │ +0007d750: 204e 756d 4465 6772 6565 733a 0a3d 3d3d NumDegrees:.=== │ │ │ │ +0007d760: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0007d770: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0007d780: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0007d790: 3d3d 3d3d 3d0a 0a20 202a 2022 7072 6f6a =====.. * "proj │ │ │ │ -0007d7a0: 6563 7469 7665 4465 6772 6565 7328 2e2e ectiveDegrees(.. │ │ │ │ -0007d7b0: 2e2c 4e75 6d44 6567 7265 6573 3d3e 2e2e .,NumDegrees=>.. │ │ │ │ -0007d7c0: 2e29 220a 0a46 6f72 2074 6865 2070 726f .)"..For the pro │ │ │ │ -0007d7d0: 6772 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d grammer.======== │ │ │ │ -0007d7e0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 ==========..The │ │ │ │ -0007d7f0: 6f62 6a65 6374 202a 6e6f 7465 204e 756d object *note Num │ │ │ │ -0007d800: 4465 6772 6565 733a 204e 756d 4465 6772 Degrees: NumDegr │ │ │ │ -0007d810: 6565 732c 2069 7320 6120 2a6e 6f74 6520 ees, is a *note │ │ │ │ -0007d820: 7379 6d62 6f6c 3a0a 284d 6163 6175 6c61 symbol:.(Macaula │ │ │ │ -0007d830: 7932 446f 6329 5379 6d62 6f6c 2c2e 0a0a y2Doc)Symbol,... │ │ │ │ +0007d780: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0007d790: 0a20 202a 2022 7072 6f6a 6563 7469 7665 . * "projective │ │ │ │ +0007d7a0: 4465 6772 6565 7328 2e2e 2e2c 4e75 6d44 Degrees(...,NumD │ │ │ │ +0007d7b0: 6567 7265 6573 3d3e 2e2e 2e29 220a 0a46 egrees=>...)"..F │ │ │ │ +0007d7c0: 6f72 2074 6865 2070 726f 6772 616d 6d65 or the programme │ │ │ │ +0007d7d0: 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d r.============== │ │ │ │ +0007d7e0: 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 6374 ====..The object │ │ │ │ +0007d7f0: 202a 6e6f 7465 204e 756d 4465 6772 6565 *note NumDegree │ │ │ │ +0007d800: 733a 204e 756d 4465 6772 6565 732c 2069 s: NumDegrees, i │ │ │ │ +0007d810: 7320 6120 2a6e 6f74 6520 7379 6d62 6f6c s a *note symbol │ │ │ │ +0007d820: 3a0a 284d 6163 6175 6c61 7932 446f 6329 :.(Macaulay2Doc) │ │ │ │ +0007d830: 5379 6d62 6f6c 2c2e 0a0a 2d2d 2d2d 2d2d Symbol,...------ │ │ │ │ 0007d840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007d870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007d880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -0007d890: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -0007d8a0: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -0007d8b0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -0007d8c0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -0007d8d0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -0007d8e0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -0007d8f0: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ -0007d900: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ -0007d910: 3a39 323a 302e 0a1f 0a46 696c 653a 2043 :92:0....File: C │ │ │ │ -0007d920: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -0007d930: 653a 2070 6172 616d 6574 7269 7a65 2c20 e: parametrize, │ │ │ │ -0007d940: 4e65 7874 3a20 7061 7261 6d65 7472 697a Next: parametriz │ │ │ │ -0007d950: 655f 6c70 4964 6561 6c5f 7270 2c20 5072 e_lpIdeal_rp, Pr │ │ │ │ -0007d960: 6576 3a20 4e75 6d44 6567 7265 6573 2c20 ev: NumDegrees, │ │ │ │ -0007d970: 5570 3a20 546f 700a 0a70 6172 616d 6574 Up: Top..paramet │ │ │ │ -0007d980: 7269 7a65 202d 2d20 7061 7261 6d65 7472 rize -- parametr │ │ │ │ -0007d990: 697a 6174 696f 6e20 6f66 2061 2072 6174 ization of a rat │ │ │ │ -0007d9a0: 696f 6e61 6c20 7072 6f6a 6563 7469 7665 ional projective │ │ │ │ -0007d9b0: 2076 6172 6965 7479 0a2a 2a2a 2a2a 2a2a variety.******* │ │ │ │ +0007d880: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +0007d890: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +0007d8a0: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +0007d8b0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +0007d8c0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +0007d8d0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +0007d8e0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +0007d8f0: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ +0007d900: 6e74 6174 696f 6e2e 6d32 3a39 323a 302e ntation.m2:92:0. │ │ │ │ +0007d910: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +0007d920: 2e69 6e66 6f2c 204e 6f64 653a 2070 6172 .info, Node: par │ │ │ │ +0007d930: 616d 6574 7269 7a65 2c20 4e65 7874 3a20 ametrize, Next: │ │ │ │ +0007d940: 7061 7261 6d65 7472 697a 655f 6c70 4964 parametrize_lpId │ │ │ │ +0007d950: 6561 6c5f 7270 2c20 5072 6576 3a20 4e75 eal_rp, Prev: Nu │ │ │ │ +0007d960: 6d44 6567 7265 6573 2c20 5570 3a20 546f mDegrees, Up: To │ │ │ │ +0007d970: 700a 0a70 6172 616d 6574 7269 7a65 202d p..parametrize - │ │ │ │ +0007d980: 2d20 7061 7261 6d65 7472 697a 6174 696f - parametrizatio │ │ │ │ +0007d990: 6e20 6f66 2061 2072 6174 696f 6e61 6c20 n of a rational │ │ │ │ +0007d9a0: 7072 6f6a 6563 7469 7665 2076 6172 6965 projective varie │ │ │ │ +0007d9b0: 7479 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ty.************* │ │ │ │ 0007d9c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007d9d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007d9e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0007d9f0: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ -0007da00: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -0007da10: 3d0a 0a53 6565 202a 6e6f 7465 2070 6172 =..See *note par │ │ │ │ -0007da20: 616d 6574 7269 7a65 284d 756c 7469 7072 ametrize(Multipr │ │ │ │ -0007da30: 6f6a 6563 7469 7665 5661 7269 6574 7929 ojectiveVariety) │ │ │ │ -0007da40: 3a0a 284d 756c 7469 7072 6f6a 6563 7469 :.(Multiprojecti │ │ │ │ -0007da50: 7665 5661 7269 6574 6965 7329 7061 7261 veVarieties)para │ │ │ │ -0007da60: 6d65 7472 697a 655f 6c70 4d75 6c74 6970 metrize_lpMultip │ │ │ │ -0007da70: 726f 6a65 6374 6976 6556 6172 6965 7479 rojectiveVariety │ │ │ │ -0007da80: 5f72 702c 2061 6e64 202a 6e6f 7465 0a70 _rp, and *note.p │ │ │ │ -0007da90: 6172 616d 6574 7269 7a65 2851 756f 7469 arametrize(Quoti │ │ │ │ -0007daa0: 656e 7452 696e 6729 3a20 7061 7261 6d65 entRing): parame │ │ │ │ -0007dab0: 7472 697a 655f 6c70 4964 6561 6c5f 7270 trize_lpIdeal_rp │ │ │ │ -0007dac0: 2c2e 0a0a 5761 7973 2074 6f20 7573 6520 ,...Ways to use │ │ │ │ -0007dad0: 7061 7261 6d65 7472 697a 653a 0a3d 3d3d parametrize:.=== │ │ │ │ -0007dae0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0007daf0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0007db00: 2070 6172 616d 6574 7269 7a65 2849 6465 parametrize(Ide │ │ │ │ -0007db10: 616c 293a 2070 6172 616d 6574 7269 7a65 al): parametrize │ │ │ │ -0007db20: 5f6c 7049 6465 616c 5f72 702c 202d 2d20 _lpIdeal_rp, -- │ │ │ │ -0007db30: 7061 7261 6d65 7472 697a 6174 696f 6e20 parametrization │ │ │ │ -0007db40: 6f66 0a20 2020 206c 696e 6561 7220 7661 of. linear va │ │ │ │ -0007db50: 7269 6574 6965 7320 616e 6420 6879 7065 rieties and hype │ │ │ │ -0007db60: 7271 7561 6472 6963 730a 2020 2a20 2270 rquadrics. * "p │ │ │ │ -0007db70: 6172 616d 6574 7269 7a65 2850 6f6c 796e arametrize(Polyn │ │ │ │ -0007db80: 6f6d 6961 6c52 696e 6729 2220 2d2d 2073 omialRing)" -- s │ │ │ │ -0007db90: 6565 202a 6e6f 7465 2070 6172 616d 6574 ee *note paramet │ │ │ │ -0007dba0: 7269 7a65 2849 6465 616c 293a 0a20 2020 rize(Ideal):. │ │ │ │ -0007dbb0: 2070 6172 616d 6574 7269 7a65 5f6c 7049 parametrize_lpI │ │ │ │ -0007dbc0: 6465 616c 5f72 702c 202d 2d20 7061 7261 deal_rp, -- para │ │ │ │ -0007dbd0: 6d65 7472 697a 6174 696f 6e20 6f66 206c metrization of l │ │ │ │ -0007dbe0: 696e 6561 7220 7661 7269 6574 6965 7320 inear varieties │ │ │ │ -0007dbf0: 616e 640a 2020 2020 6879 7065 7271 7561 and. hyperqua │ │ │ │ -0007dc00: 6472 6963 730a 2020 2a20 2270 6172 616d drics. * "param │ │ │ │ -0007dc10: 6574 7269 7a65 2851 756f 7469 656e 7452 etrize(QuotientR │ │ │ │ -0007dc20: 696e 6729 2220 2d2d 2073 6565 202a 6e6f ing)" -- see *no │ │ │ │ -0007dc30: 7465 2070 6172 616d 6574 7269 7a65 2849 te parametrize(I │ │ │ │ -0007dc40: 6465 616c 293a 0a20 2020 2070 6172 616d deal):. param │ │ │ │ -0007dc50: 6574 7269 7a65 5f6c 7049 6465 616c 5f72 etrize_lpIdeal_r │ │ │ │ -0007dc60: 702c 202d 2d20 7061 7261 6d65 7472 697a p, -- parametriz │ │ │ │ -0007dc70: 6174 696f 6e20 6f66 206c 696e 6561 7220 ation of linear │ │ │ │ -0007dc80: 7661 7269 6574 6965 7320 616e 640a 2020 varieties and. │ │ │ │ -0007dc90: 2020 6879 7065 7271 7561 6472 6963 730a hyperquadrics. │ │ │ │ -0007dca0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ -0007dcb0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ -0007dcc0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ -0007dcd0: 6374 202a 6e6f 7465 2070 6172 616d 6574 ct *note paramet │ │ │ │ -0007dce0: 7269 7a65 3a20 7061 7261 6d65 7472 697a rize: parametriz │ │ │ │ -0007dcf0: 652c 2069 7320 6120 2a6e 6f74 6520 6d65 e, is a *note me │ │ │ │ -0007dd00: 7468 6f64 2066 756e 6374 696f 6e3a 0a28 thod function:.( │ │ │ │ -0007dd10: 4d61 6361 756c 6179 3244 6f63 294d 6574 Macaulay2Doc)Met │ │ │ │ -0007dd20: 686f 6446 756e 6374 696f 6e2c 2e0a 0a2d hodFunction,...- │ │ │ │ +0007d9f0: 2a2a 0a0a 4465 7363 7269 7074 696f 6e0a **..Description. │ │ │ │ +0007da00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a53 6565 ===========..See │ │ │ │ +0007da10: 202a 6e6f 7465 2070 6172 616d 6574 7269 *note parametri │ │ │ │ +0007da20: 7a65 284d 756c 7469 7072 6f6a 6563 7469 ze(Multiprojecti │ │ │ │ +0007da30: 7665 5661 7269 6574 7929 3a0a 284d 756c veVariety):.(Mul │ │ │ │ +0007da40: 7469 7072 6f6a 6563 7469 7665 5661 7269 tiprojectiveVari │ │ │ │ +0007da50: 6574 6965 7329 7061 7261 6d65 7472 697a eties)parametriz │ │ │ │ +0007da60: 655f 6c70 4d75 6c74 6970 726f 6a65 6374 e_lpMultiproject │ │ │ │ +0007da70: 6976 6556 6172 6965 7479 5f72 702c 2061 iveVariety_rp, a │ │ │ │ +0007da80: 6e64 202a 6e6f 7465 0a70 6172 616d 6574 nd *note.paramet │ │ │ │ +0007da90: 7269 7a65 2851 756f 7469 656e 7452 696e rize(QuotientRin │ │ │ │ +0007daa0: 6729 3a20 7061 7261 6d65 7472 697a 655f g): parametrize_ │ │ │ │ +0007dab0: 6c70 4964 6561 6c5f 7270 2c2e 0a0a 5761 lpIdeal_rp,...Wa │ │ │ │ +0007dac0: 7973 2074 6f20 7573 6520 7061 7261 6d65 ys to use parame │ │ │ │ +0007dad0: 7472 697a 653a 0a3d 3d3d 3d3d 3d3d 3d3d trize:.========= │ │ │ │ +0007dae0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ +0007daf0: 0a20 202a 202a 6e6f 7465 2070 6172 616d . * *note param │ │ │ │ +0007db00: 6574 7269 7a65 2849 6465 616c 293a 2070 etrize(Ideal): p │ │ │ │ +0007db10: 6172 616d 6574 7269 7a65 5f6c 7049 6465 arametrize_lpIde │ │ │ │ +0007db20: 616c 5f72 702c 202d 2d20 7061 7261 6d65 al_rp, -- parame │ │ │ │ +0007db30: 7472 697a 6174 696f 6e20 6f66 0a20 2020 trization of. │ │ │ │ +0007db40: 206c 696e 6561 7220 7661 7269 6574 6965 linear varietie │ │ │ │ +0007db50: 7320 616e 6420 6879 7065 7271 7561 6472 s and hyperquadr │ │ │ │ +0007db60: 6963 730a 2020 2a20 2270 6172 616d 6574 ics. * "paramet │ │ │ │ +0007db70: 7269 7a65 2850 6f6c 796e 6f6d 6961 6c52 rize(PolynomialR │ │ │ │ +0007db80: 696e 6729 2220 2d2d 2073 6565 202a 6e6f ing)" -- see *no │ │ │ │ +0007db90: 7465 2070 6172 616d 6574 7269 7a65 2849 te parametrize(I │ │ │ │ +0007dba0: 6465 616c 293a 0a20 2020 2070 6172 616d deal):. param │ │ │ │ +0007dbb0: 6574 7269 7a65 5f6c 7049 6465 616c 5f72 etrize_lpIdeal_r │ │ │ │ +0007dbc0: 702c 202d 2d20 7061 7261 6d65 7472 697a p, -- parametriz │ │ │ │ +0007dbd0: 6174 696f 6e20 6f66 206c 696e 6561 7220 ation of linear │ │ │ │ +0007dbe0: 7661 7269 6574 6965 7320 616e 640a 2020 varieties and. │ │ │ │ +0007dbf0: 2020 6879 7065 7271 7561 6472 6963 730a hyperquadrics. │ │ │ │ +0007dc00: 2020 2a20 2270 6172 616d 6574 7269 7a65 * "parametrize │ │ │ │ +0007dc10: 2851 756f 7469 656e 7452 696e 6729 2220 (QuotientRing)" │ │ │ │ +0007dc20: 2d2d 2073 6565 202a 6e6f 7465 2070 6172 -- see *note par │ │ │ │ +0007dc30: 616d 6574 7269 7a65 2849 6465 616c 293a ametrize(Ideal): │ │ │ │ +0007dc40: 0a20 2020 2070 6172 616d 6574 7269 7a65 . parametrize │ │ │ │ +0007dc50: 5f6c 7049 6465 616c 5f72 702c 202d 2d20 _lpIdeal_rp, -- │ │ │ │ +0007dc60: 7061 7261 6d65 7472 697a 6174 696f 6e20 parametrization │ │ │ │ +0007dc70: 6f66 206c 696e 6561 7220 7661 7269 6574 of linear variet │ │ │ │ +0007dc80: 6965 7320 616e 640a 2020 2020 6879 7065 ies and. hype │ │ │ │ +0007dc90: 7271 7561 6472 6963 730a 0a46 6f72 2074 rquadrics..For t │ │ │ │ +0007dca0: 6865 2070 726f 6772 616d 6d65 720a 3d3d he programmer.== │ │ │ │ +0007dcb0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0007dcc0: 0a0a 5468 6520 6f62 6a65 6374 202a 6e6f ..The object *no │ │ │ │ +0007dcd0: 7465 2070 6172 616d 6574 7269 7a65 3a20 te parametrize: │ │ │ │ +0007dce0: 7061 7261 6d65 7472 697a 652c 2069 7320 parametrize, is │ │ │ │ +0007dcf0: 6120 2a6e 6f74 6520 6d65 7468 6f64 2066 a *note method f │ │ │ │ +0007dd00: 756e 6374 696f 6e3a 0a28 4d61 6361 756c unction:.(Macaul │ │ │ │ +0007dd10: 6179 3244 6f63 294d 6574 686f 6446 756e ay2Doc)MethodFun │ │ │ │ +0007dd20: 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d ction,...------- │ │ │ │ 0007dd30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007dd40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007dd50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007dd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007dd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0007dd80: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0007dd90: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0007dda0: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0007ddb0: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0007ddc0: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0007ddd0: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0007dde0: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -0007ddf0: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -0007de00: 3638 363a 302e 0a1f 0a46 696c 653a 2043 686:0....File: C │ │ │ │ -0007de10: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -0007de20: 653a 2070 6172 616d 6574 7269 7a65 5f6c e: parametrize_l │ │ │ │ -0007de30: 7049 6465 616c 5f72 702c 204e 6578 743a pIdeal_rp, Next: │ │ │ │ -0007de40: 2070 6f69 6e74 2c20 5072 6576 3a20 7061 point, Prev: pa │ │ │ │ -0007de50: 7261 6d65 7472 697a 652c 2055 703a 2054 rametrize, Up: T │ │ │ │ -0007de60: 6f70 0a0a 7061 7261 6d65 7472 697a 6528 op..parametrize( │ │ │ │ -0007de70: 4964 6561 6c29 202d 2d20 7061 7261 6d65 Ideal) -- parame │ │ │ │ -0007de80: 7472 697a 6174 696f 6e20 6f66 206c 696e trization of lin │ │ │ │ -0007de90: 6561 7220 7661 7269 6574 6965 7320 616e ear varieties an │ │ │ │ -0007dea0: 6420 6879 7065 7271 7561 6472 6963 730a d hyperquadrics. │ │ │ │ +0007dd70: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0007dd80: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0007dd90: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0007dda0: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0007ddb0: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0007ddc0: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0007ddd0: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0007dde0: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +0007ddf0: 7461 7469 6f6e 2e6d 323a 3638 363a 302e tation.m2:686:0. │ │ │ │ +0007de00: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +0007de10: 2e69 6e66 6f2c 204e 6f64 653a 2070 6172 .info, Node: par │ │ │ │ +0007de20: 616d 6574 7269 7a65 5f6c 7049 6465 616c ametrize_lpIdeal │ │ │ │ +0007de30: 5f72 702c 204e 6578 743a 2070 6f69 6e74 _rp, Next: point │ │ │ │ +0007de40: 2c20 5072 6576 3a20 7061 7261 6d65 7472 , Prev: parametr │ │ │ │ +0007de50: 697a 652c 2055 703a 2054 6f70 0a0a 7061 ize, Up: Top..pa │ │ │ │ +0007de60: 7261 6d65 7472 697a 6528 4964 6561 6c29 rametrize(Ideal) │ │ │ │ +0007de70: 202d 2d20 7061 7261 6d65 7472 697a 6174 -- parametrizat │ │ │ │ +0007de80: 696f 6e20 6f66 206c 696e 6561 7220 7661 ion of linear va │ │ │ │ +0007de90: 7269 6574 6965 7320 616e 6420 6879 7065 rieties and hype │ │ │ │ +0007dea0: 7271 7561 6472 6963 730a 2a2a 2a2a 2a2a rquadrics.****** │ │ │ │ 0007deb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007dec0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007ded0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0007dee0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0007def0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ -0007df00: 2046 756e 6374 696f 6e3a 202a 6e6f 7465 Function: *note │ │ │ │ -0007df10: 2070 6172 616d 6574 7269 7a65 3a20 7061 parametrize: pa │ │ │ │ -0007df20: 7261 6d65 7472 697a 652c 0a20 202a 2055 rametrize,. * U │ │ │ │ -0007df30: 7361 6765 3a20 0a20 2020 2020 2020 2070 sage: . p │ │ │ │ -0007df40: 6172 616d 6574 7269 7a65 2049 0a20 202a arametrize I. * │ │ │ │ -0007df50: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -0007df60: 2049 2c20 616e 202a 6e6f 7465 2069 6465 I, an *note ide │ │ │ │ -0007df70: 616c 3a20 284d 6163 6175 6c61 7932 446f al: (Macaulay2Do │ │ │ │ -0007df80: 6329 4964 6561 6c2c 2c20 7468 6520 6964 c)Ideal,, the id │ │ │ │ -0007df90: 6561 6c20 6f66 2061 206c 696e 6561 7220 eal of a linear │ │ │ │ -0007dfa0: 7661 7269 6574 790a 2020 2020 2020 2020 variety. │ │ │ │ -0007dfb0: 6f72 206f 6620 6120 6879 7065 7271 7561 or of a hyperqua │ │ │ │ -0007dfc0: 6472 6963 0a20 202a 204f 7574 7075 7473 dric. * Outputs │ │ │ │ -0007dfd0: 3a0a 2020 2020 2020 2a20 6120 2a6e 6f74 :. * a *not │ │ │ │ -0007dfe0: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ -0007dff0: 5261 7469 6f6e 616c 4d61 702c 2c20 6120 RationalMap,, a │ │ │ │ -0007e000: 6269 7261 7469 6f6e 616c 206d 6170 2070 birational map p │ │ │ │ -0007e010: 6869 2073 7563 6820 7468 6174 2049 203d hi such that I = │ │ │ │ -0007e020: 3d0a 2020 2020 2020 2020 696d 6167 6520 =. image │ │ │ │ -0007e030: 7068 690a 0a44 6573 6372 6970 7469 6f6e phi..Description │ │ │ │ -0007e040: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 .===========..Th │ │ │ │ -0007e050: 6973 2066 756e 6374 696f 6e20 6861 7320 is function has │ │ │ │ -0007e060: 6265 656e 2069 6d70 726f 7665 6420 616e been improved an │ │ │ │ -0007e070: 6420 6578 7465 6e64 6564 2069 6e20 7468 d extended in th │ │ │ │ -0007e080: 6520 7061 636b 6167 650a 4d75 6c74 6970 e package.Multip │ │ │ │ -0007e090: 726f 6a65 6374 6976 6556 6172 6965 7469 rojectiveVarieti │ │ │ │ -0007e0a0: 6573 2028 6d69 7373 696e 6720 646f 6375 es (missing docu │ │ │ │ -0007e0b0: 6d65 6e74 6174 696f 6e29 2c20 7365 6520 mentation), see │ │ │ │ -0007e0c0: 2a6e 6f74 650a 7061 7261 6d65 7472 697a *note.parametriz │ │ │ │ -0007e0d0: 6528 4d75 6c74 6970 726f 6a65 6374 6976 e(Multiprojectiv │ │ │ │ -0007e0e0: 6556 6172 6965 7479 293a 0a28 4d75 6c74 eVariety):.(Mult │ │ │ │ -0007e0f0: 6970 726f 6a65 6374 6976 6556 6172 6965 iprojectiveVarie │ │ │ │ -0007e100: 7469 6573 2970 6172 616d 6574 7269 7a65 ties)parametrize │ │ │ │ -0007e110: 5f6c 704d 756c 7469 7072 6f6a 6563 7469 _lpMultiprojecti │ │ │ │ -0007e120: 7665 5661 7269 6574 795f 7270 2c2e 0a0a veVariety_rp,... │ │ │ │ -0007e130: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007def0: 2a2a 2a2a 2a0a 0a20 202a 2046 756e 6374 *****.. * Funct │ │ │ │ +0007df00: 696f 6e3a 202a 6e6f 7465 2070 6172 616d ion: *note param │ │ │ │ +0007df10: 6574 7269 7a65 3a20 7061 7261 6d65 7472 etrize: parametr │ │ │ │ +0007df20: 697a 652c 0a20 202a 2055 7361 6765 3a20 ize,. * Usage: │ │ │ │ +0007df30: 0a20 2020 2020 2020 2070 6172 616d 6574 . paramet │ │ │ │ +0007df40: 7269 7a65 2049 0a20 202a 2049 6e70 7574 rize I. * Input │ │ │ │ +0007df50: 733a 0a20 2020 2020 202a 2049 2c20 616e s:. * I, an │ │ │ │ +0007df60: 202a 6e6f 7465 2069 6465 616c 3a20 284d *note ideal: (M │ │ │ │ +0007df70: 6163 6175 6c61 7932 446f 6329 4964 6561 acaulay2Doc)Idea │ │ │ │ +0007df80: 6c2c 2c20 7468 6520 6964 6561 6c20 6f66 l,, the ideal of │ │ │ │ +0007df90: 2061 206c 696e 6561 7220 7661 7269 6574 a linear variet │ │ │ │ +0007dfa0: 790a 2020 2020 2020 2020 6f72 206f 6620 y. or of │ │ │ │ +0007dfb0: 6120 6879 7065 7271 7561 6472 6963 0a20 a hyperquadric. │ │ │ │ +0007dfc0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ +0007dfd0: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ +0007dfe0: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ +0007dff0: 616c 4d61 702c 2c20 6120 6269 7261 7469 alMap,, a birati │ │ │ │ +0007e000: 6f6e 616c 206d 6170 2070 6869 2073 7563 onal map phi suc │ │ │ │ +0007e010: 6820 7468 6174 2049 203d 3d0a 2020 2020 h that I ==. │ │ │ │ +0007e020: 2020 2020 696d 6167 6520 7068 690a 0a44 image phi..D │ │ │ │ +0007e030: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0007e040: 3d3d 3d3d 3d3d 0a0a 5468 6973 2066 756e ======..This fun │ │ │ │ +0007e050: 6374 696f 6e20 6861 7320 6265 656e 2069 ction has been i │ │ │ │ +0007e060: 6d70 726f 7665 6420 616e 6420 6578 7465 mproved and exte │ │ │ │ +0007e070: 6e64 6564 2069 6e20 7468 6520 7061 636b nded in the pack │ │ │ │ +0007e080: 6167 650a 4d75 6c74 6970 726f 6a65 6374 age.Multiproject │ │ │ │ +0007e090: 6976 6556 6172 6965 7469 6573 2028 6d69 iveVarieties (mi │ │ │ │ +0007e0a0: 7373 696e 6720 646f 6375 6d65 6e74 6174 ssing documentat │ │ │ │ +0007e0b0: 696f 6e29 2c20 7365 6520 2a6e 6f74 650a ion), see *note. │ │ │ │ +0007e0c0: 7061 7261 6d65 7472 697a 6528 4d75 6c74 parametrize(Mult │ │ │ │ +0007e0d0: 6970 726f 6a65 6374 6976 6556 6172 6965 iprojectiveVarie │ │ │ │ +0007e0e0: 7479 293a 0a28 4d75 6c74 6970 726f 6a65 ty):.(Multiproje │ │ │ │ +0007e0f0: 6374 6976 6556 6172 6965 7469 6573 2970 ctiveVarieties)p │ │ │ │ +0007e100: 6172 616d 6574 7269 7a65 5f6c 704d 756c arametrize_lpMul │ │ │ │ +0007e110: 7469 7072 6f6a 6563 7469 7665 5661 7269 tiprojectiveVari │ │ │ │ +0007e120: 6574 795f 7270 2c2e 0a0a 2b2d 2d2d 2d2d ety_rp,...+----- │ │ │ │ +0007e130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007e180: 7c69 3120 3a20 5039 203a 3d20 5a5a 2f31 |i1 : P9 := ZZ/1 │ │ │ │ -0007e190: 3030 3030 3031 395b 785f 302e 2e78 5f39 0000019[x_0..x_9 │ │ │ │ -0007e1a0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +0007e170: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +0007e180: 5039 203a 3d20 5a5a 2f31 3030 3030 3031 P9 := ZZ/1000001 │ │ │ │ +0007e190: 395b 785f 302e 2e78 5f39 5d20 2020 2020 9[x_0..x_9] │ │ │ │ +0007e1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e1c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e1d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007e1c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e1d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e220: 7c20 2020 2020 2020 205a 5a20 2020 2020 | ZZ │ │ │ │ +0007e210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e220: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0007e230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e270: 7c6f 3120 3d20 2d2d 2d2d 2d2d 2d2d 5b78 |o1 = --------[x │ │ │ │ -0007e280: 202e 2e78 205d 2020 2020 2020 2020 2020 ..x ] │ │ │ │ +0007e260: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +0007e270: 2d2d 2d2d 2d2d 2d2d 5b78 202e 2e78 205d --------[x ..x ] │ │ │ │ +0007e280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e2b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e2c0: 7c20 2020 2020 3130 3030 3030 3139 2020 | 10000019 │ │ │ │ -0007e2d0: 3020 2020 3920 2020 2020 2020 2020 2020 0 9 │ │ │ │ +0007e2b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e2c0: 3130 3030 3030 3139 2020 3020 2020 3920 10000019 0 9 │ │ │ │ +0007e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007e300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e360: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ -0007e370: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ +0007e350: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +0007e360: 506f 6c79 6e6f 6d69 616c 5269 6e67 2020 PolynomialRing │ │ │ │ +0007e370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e3a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e3b0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007e3a0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e3c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e3d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e3e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e3f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007e400: 7c69 3220 3a20 4c20 3d20 7472 696d 2069 |i2 : L = trim i │ │ │ │ -0007e410: 6465 616c 2872 616e 646f 6d28 312c 5039 deal(random(1,P9 │ │ │ │ -0007e420: 292c 7261 6e64 6f6d 2831 2c50 3929 2c72 ),random(1,P9),r │ │ │ │ -0007e430: 616e 646f 6d28 312c 5039 292c 7261 6e64 andom(1,P9),rand │ │ │ │ -0007e440: 6f6d 2831 2c50 3929 2920 2020 2020 7c0a om(1,P9)) |. │ │ │ │ -0007e450: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007e3f0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0007e400: 4c20 3d20 7472 696d 2069 6465 616c 2872 L = trim ideal(r │ │ │ │ +0007e410: 616e 646f 6d28 312c 5039 292c 7261 6e64 andom(1,P9),rand │ │ │ │ +0007e420: 6f6d 2831 2c50 3929 2c72 616e 646f 6d28 om(1,P9),random( │ │ │ │ +0007e430: 312c 5039 292c 7261 6e64 6f6d 2831 2c50 1,P9),random(1,P │ │ │ │ +0007e440: 3929 2920 2020 2020 7c0a 7c20 2020 2020 9)) |.| │ │ │ │ +0007e450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e4a0: 7c6f 3220 3d20 6964 6561 6c20 2878 2020 |o2 = ideal (x │ │ │ │ -0007e4b0: 2d20 3131 3132 3031 3678 2020 2d20 3339 - 1112016x - 39 │ │ │ │ -0007e4c0: 3031 3336 3178 2020 2d20 3331 3933 3836 01361x - 319386 │ │ │ │ -0007e4d0: 3378 2020 2b20 3431 3433 3034 3078 2020 3x + 4143040x │ │ │ │ -0007e4e0: 2d20 3139 3634 3431 3778 2020 2b20 7c0a - 1964417x + |. │ │ │ │ -0007e4f0: 7c20 2020 2020 2020 2020 2020 2020 3320 | 3 │ │ │ │ -0007e500: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ -0007e510: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ -0007e520: 2020 3620 2020 2020 2020 2020 2020 3720 6 7 │ │ │ │ -0007e530: 2020 2020 2020 2020 2020 3820 2020 7c0a 8 |. │ │ │ │ -0007e540: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007e490: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ +0007e4a0: 6964 6561 6c20 2878 2020 2d20 3131 3132 ideal (x - 1112 │ │ │ │ +0007e4b0: 3031 3678 2020 2d20 3339 3031 3336 3178 016x - 3901361x │ │ │ │ +0007e4c0: 2020 2d20 3331 3933 3836 3378 2020 2b20 - 3193863x + │ │ │ │ +0007e4d0: 3431 3433 3034 3078 2020 2d20 3139 3634 4143040x - 1964 │ │ │ │ +0007e4e0: 3431 3778 2020 2b20 7c0a 7c20 2020 2020 417x + |.| │ │ │ │ +0007e4f0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +0007e500: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0007e510: 3520 2020 2020 2020 2020 2020 3620 2020 5 6 │ │ │ │ +0007e520: 2020 2020 2020 2020 3720 2020 2020 2020 7 │ │ │ │ +0007e530: 2020 2020 3820 2020 7c0a 7c20 2020 2020 8 |.| │ │ │ │ +0007e540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007e590: 7c20 2020 2020 3130 3734 3935 3878 202c | 1074958x , │ │ │ │ -0007e5a0: 2078 2020 2b20 3633 3232 3834 7820 202b x + 632284x + │ │ │ │ -0007e5b0: 2034 3932 3435 3878 2020 2b20 3338 3639 492458x + 3869 │ │ │ │ -0007e5c0: 3235 3478 2020 2b20 3238 3430 3236 3678 254x + 2840266x │ │ │ │ -0007e5d0: 2020 2b20 3438 3833 3937 3478 2020 7c0a + 4883974x |. │ │ │ │ -0007e5e0: 7c20 2020 2020 2020 2020 2020 2020 3920 | 9 │ │ │ │ -0007e5f0: 2020 3220 2020 2020 2020 2020 2034 2020 2 4 │ │ │ │ -0007e600: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ -0007e610: 2020 2020 3620 2020 2020 2020 2020 2020 6 │ │ │ │ -0007e620: 3720 2020 2020 2020 2020 2020 3820 7c0a 7 8 |. │ │ │ │ -0007e630: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007e580: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007e590: 3130 3734 3935 3878 202c 2078 2020 2b20 1074958x , x + │ │ │ │ +0007e5a0: 3633 3232 3834 7820 202b 2034 3932 3435 632284x + 49245 │ │ │ │ +0007e5b0: 3878 2020 2b20 3338 3639 3235 3478 2020 8x + 3869254x │ │ │ │ +0007e5c0: 2b20 3238 3430 3236 3678 2020 2b20 3438 + 2840266x + 48 │ │ │ │ +0007e5d0: 3833 3937 3478 2020 7c0a 7c20 2020 2020 83974x |.| │ │ │ │ +0007e5e0: 2020 2020 2020 2020 3920 2020 3220 2020 9 2 │ │ │ │ +0007e5f0: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +0007e600: 2020 3520 2020 2020 2020 2020 2020 3620 5 6 │ │ │ │ +0007e610: 2020 2020 2020 2020 2020 3720 2020 2020 7 │ │ │ │ +0007e620: 2020 2020 2020 3820 7c0a 7c20 2020 2020 8 |.| │ │ │ │ +0007e630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007e680: 7c20 2020 2020 2b20 3333 3430 3936 3178 | + 3340961x │ │ │ │ -0007e690: 202c 2078 2020 2b20 3437 3234 3730 3978 , x + 4724709x │ │ │ │ -0007e6a0: 2020 2d20 3335 3035 3338 3678 2020 2b20 - 3505386x + │ │ │ │ -0007e6b0: 3234 3639 3230 3678 2020 2d20 3133 3831 2469206x - 1381 │ │ │ │ -0007e6c0: 3531 3578 2020 2b20 2020 2020 2020 7c0a 515x + |. │ │ │ │ -0007e6d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007e6e0: 3920 2020 3120 2020 2020 2020 2020 2020 9 1 │ │ │ │ -0007e6f0: 3420 2020 2020 2020 2020 2020 3520 2020 4 5 │ │ │ │ -0007e700: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ -0007e710: 2020 2020 3720 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -0007e720: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007e670: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007e680: 2b20 3333 3430 3936 3178 202c 2078 2020 + 3340961x , x │ │ │ │ +0007e690: 2b20 3437 3234 3730 3978 2020 2d20 3335 + 4724709x - 35 │ │ │ │ +0007e6a0: 3035 3338 3678 2020 2b20 3234 3639 3230 05386x + 246920 │ │ │ │ +0007e6b0: 3678 2020 2d20 3133 3831 3531 3578 2020 6x - 1381515x │ │ │ │ +0007e6c0: 2b20 2020 2020 2020 7c0a 7c20 2020 2020 + |.| │ │ │ │ +0007e6d0: 2020 2020 2020 2020 2020 3920 2020 3120 9 1 │ │ │ │ +0007e6e0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ +0007e6f0: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +0007e700: 2020 3620 2020 2020 2020 2020 2020 3720 6 7 │ │ │ │ +0007e710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007e770: 7c20 2020 2020 3233 3331 3238 3078 2020 | 2331280x │ │ │ │ -0007e780: 2d20 3439 3336 3232 3978 202c 2078 2020 - 4936229x , x │ │ │ │ -0007e790: 2d20 3230 3934 3435 3678 2020 2d20 3339 - 2094456x - 39 │ │ │ │ -0007e7a0: 3336 3439 3878 2020 2d20 3436 3635 3430 36498x - 466540 │ │ │ │ -0007e7b0: 3478 2020 2d20 3733 3639 3433 7820 7c0a 4x - 736943x |. │ │ │ │ -0007e7c0: 7c20 2020 2020 2020 2020 2020 2020 3820 | 8 │ │ │ │ -0007e7d0: 2020 2020 2020 2020 2020 3920 2020 3020 9 0 │ │ │ │ -0007e7e0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ -0007e7f0: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ -0007e800: 2020 3620 2020 2020 2020 2020 2037 7c0a 6 7|. │ │ │ │ -0007e810: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007e760: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007e770: 3233 3331 3238 3078 2020 2d20 3439 3336 2331280x - 4936 │ │ │ │ +0007e780: 3232 3978 202c 2078 2020 2d20 3230 3934 229x , x - 2094 │ │ │ │ +0007e790: 3435 3678 2020 2d20 3339 3336 3439 3878 456x - 3936498x │ │ │ │ +0007e7a0: 2020 2d20 3436 3635 3430 3478 2020 2d20 - 4665404x - │ │ │ │ +0007e7b0: 3733 3639 3433 7820 7c0a 7c20 2020 2020 736943x |.| │ │ │ │ +0007e7c0: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ +0007e7d0: 2020 2020 3920 2020 3020 2020 2020 2020 9 0 │ │ │ │ +0007e7e0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0007e7f0: 3520 2020 2020 2020 2020 2020 3620 2020 5 6 │ │ │ │ +0007e800: 2020 2020 2020 2037 7c0a 7c20 2020 2020 7|.| │ │ │ │ +0007e810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007e840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007e850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007e860: 7c20 2020 2020 2d20 3834 3936 3731 7820 | - 849671x │ │ │ │ -0007e870: 202b 2033 3033 3431 3337 7820 2920 2020 + 3034137x ) │ │ │ │ +0007e850: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007e860: 2d20 3834 3936 3731 7820 202b 2033 3033 - 849671x + 303 │ │ │ │ +0007e870: 3431 3337 7820 2920 2020 2020 2020 2020 4137x ) │ │ │ │ 0007e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e8a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e8b0: 7c20 2020 2020 2020 2020 2020 2020 2038 | 8 │ │ │ │ -0007e8c0: 2020 2020 2020 2020 2020 2039 2020 2020 9 │ │ │ │ +0007e8a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e8b0: 2020 2020 2020 2020 2038 2020 2020 2020 8 │ │ │ │ +0007e8c0: 2020 2020 2039 2020 2020 2020 2020 2020 9 │ │ │ │ 0007e8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e8f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e900: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007e8f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e950: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007e960: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0007e940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e950: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +0007e960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e9a0: 7c6f 3220 3a20 4964 6561 6c20 6f66 202d |o2 : Ideal of - │ │ │ │ -0007e9b0: 2d2d 2d2d 2d2d 2d5b 7820 2e2e 7820 5d20 -------[x ..x ] │ │ │ │ +0007e990: 2020 2020 2020 2020 7c0a 7c6f 3220 3a20 |.|o2 : │ │ │ │ +0007e9a0: 4964 6561 6c20 6f66 202d 2d2d 2d2d 2d2d Ideal of ------- │ │ │ │ +0007e9b0: 2d5b 7820 2e2e 7820 5d20 2020 2020 2020 -[x ..x ] │ │ │ │ 0007e9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007e9e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007e9f0: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ -0007ea00: 3030 3030 3031 3920 2030 2020 2039 2020 0000019 0 9 │ │ │ │ +0007e9e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007e9f0: 2020 2020 2020 2020 2031 3030 3030 3031 1000001 │ │ │ │ +0007ea00: 3920 2030 2020 2039 2020 2020 2020 2020 9 0 9 │ │ │ │ 0007ea10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ea30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ea40: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007ea30: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007ea40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ea50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ea60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ea70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007ea80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007ea90: 7c69 3320 3a20 7469 6d65 2070 6172 616d |i3 : time param │ │ │ │ -0007eaa0: 6574 7269 7a65 204c 2020 2020 2020 2020 etrize L │ │ │ │ +0007ea80: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ +0007ea90: 7469 6d65 2070 6172 616d 6574 7269 7a65 time parametrize │ │ │ │ +0007eaa0: 204c 2020 2020 2020 2020 2020 2020 2020 L │ │ │ │ 0007eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ead0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eae0: 7c20 2d2d 2075 7365 6420 302e 3030 3530 | -- used 0.0050 │ │ │ │ -0007eaf0: 3036 3138 7320 2863 7075 293b 2030 2e30 0618s (cpu); 0.0 │ │ │ │ -0007eb00: 3035 3030 3136 3873 2028 7468 7265 6164 0500168s (thread │ │ │ │ -0007eb10: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -0007eb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eb30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007ead0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +0007eae0: 7365 6420 302e 3030 3633 3634 3434 7320 sed 0.00636444s │ │ │ │ +0007eaf0: 2863 7075 293b 2030 2e30 3036 3338 3333 (cpu); 0.0063833 │ │ │ │ +0007eb00: 3873 2028 7468 7265 6164 293b 2030 7320 8s (thread); 0s │ │ │ │ +0007eb10: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ +0007eb20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007eb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007eb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eb80: 7c6f 3320 3d20 2d2d 2072 6174 696f 6e61 |o3 = -- rationa │ │ │ │ -0007eb90: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ +0007eb70: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0007eb80: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ +0007eb90: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 0007eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ebc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ebd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ebe0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +0007ebc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ebd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ebe0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0007ebf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ec10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ec20: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ -0007ec30: 6f6a 282d 2d2d 2d2d 2d2d 2d5b 7420 2c20 oj(--------[t , │ │ │ │ -0007ec40: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -0007ec50: 7420 5d29 2020 2020 2020 2020 2020 2020 t ]) │ │ │ │ -0007ec60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ec70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ec80: 2020 2031 3030 3030 3031 3920 2030 2020 10000019 0 │ │ │ │ -0007ec90: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0007eca0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -0007ecb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ecc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ecd0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +0007ec10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ec20: 736f 7572 6365 3a20 5072 6f6a 282d 2d2d source: Proj(--- │ │ │ │ +0007ec30: 2d2d 2d2d 2d5b 7420 2c20 7420 2c20 7420 -----[t , t , t │ │ │ │ +0007ec40: 2c20 7420 2c20 7420 2c20 7420 5d29 2020 , t , t , t ]) │ │ │ │ +0007ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ec60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ec70: 2020 2020 2020 2020 2020 2020 2031 3030 100 │ │ │ │ +0007ec80: 3030 3031 3920 2030 2020 2031 2020 2032 00019 0 1 2 │ │ │ │ +0007ec90: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ +0007eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ecb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ecc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ecd0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 0007ece0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ed00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ed10: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -0007ed20: 6f6a 282d 2d2d 2d2d 2d2d 2d5b 7820 2c20 oj(--------[x , │ │ │ │ -0007ed30: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -0007ed40: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -0007ed50: 7820 5d29 2020 2020 2020 2020 2020 7c0a x ]) |. │ │ │ │ -0007ed60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ed70: 2020 2031 3030 3030 3031 3920 2030 2020 10000019 0 │ │ │ │ -0007ed80: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0007ed90: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ -0007eda0: 2039 2020 2020 2020 2020 2020 2020 7c0a 9 |. │ │ │ │ -0007edb0: 7c20 2020 2020 6465 6669 6e69 6e67 2066 | defining f │ │ │ │ -0007edc0: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ +0007ed00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ed10: 7461 7267 6574 3a20 5072 6f6a 282d 2d2d target: Proj(--- │ │ │ │ +0007ed20: 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 7820 -----[x , x , x │ │ │ │ +0007ed30: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +0007ed40: 2c20 7820 2c20 7820 2c20 7820 5d29 2020 , x , x , x ]) │ │ │ │ +0007ed50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ed60: 2020 2020 2020 2020 2020 2020 2031 3030 100 │ │ │ │ +0007ed70: 3030 3031 3920 2030 2020 2031 2020 2032 00019 0 1 2 │ │ │ │ +0007ed80: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +0007ed90: 2020 2037 2020 2038 2020 2039 2020 2020 7 8 9 │ │ │ │ +0007eda0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007edb0: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ +0007edc0: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0007edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007edf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007ee00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ee10: 2020 2020 2020 2032 3039 3434 3536 7420 2094456t │ │ │ │ -0007ee20: 202b 2033 3933 3634 3938 7420 202b 2034 + 3936498t + 4 │ │ │ │ -0007ee30: 3636 3534 3034 7420 202b 2037 3336 3934 665404t + 73694 │ │ │ │ -0007ee40: 3374 2020 2b20 2020 2020 2020 2020 7c0a 3t + |. │ │ │ │ -0007ee50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ee60: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -0007ee70: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0007ee80: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0007ee90: 2020 3320 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -0007eea0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007edf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ee00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ee10: 2032 3039 3434 3536 7420 202b 2033 3933 2094456t + 393 │ │ │ │ +0007ee20: 3634 3938 7420 202b 2034 3636 3534 3034 6498t + 4665404 │ │ │ │ +0007ee30: 7420 202b 2037 3336 3934 3374 2020 2b20 t + 736943t + │ │ │ │ +0007ee40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ee50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ee60: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0007ee70: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0007ee80: 2032 2020 2020 2020 2020 2020 3320 2020 2 3 │ │ │ │ +0007ee90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007eea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007eee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007eef0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ef00: 2020 2020 2020 202d 2034 3732 3437 3039 - 4724709 │ │ │ │ -0007ef10: 7420 202b 2033 3530 3533 3836 7420 202d t + 3505386t - │ │ │ │ -0007ef20: 2032 3436 3932 3036 7420 202b 2031 3338 2469206t + 138 │ │ │ │ -0007ef30: 3135 3135 7420 2020 2020 2020 2020 7c0a 1515t |. │ │ │ │ -0007ef40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ef60: 2030 2020 2020 2020 2020 2020 2031 2020 0 1 │ │ │ │ -0007ef70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -0007ef80: 2020 2020 2033 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -0007ef90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007eee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007eef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ef00: 202d 2034 3732 3437 3039 7420 202b 2033 - 4724709t + 3 │ │ │ │ +0007ef10: 3530 3533 3836 7420 202d 2032 3436 3932 505386t - 24692 │ │ │ │ +0007ef20: 3036 7420 202b 2031 3338 3135 3135 7420 06t + 1381515t │ │ │ │ +0007ef30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ef40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007ef50: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +0007ef60: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +0007ef70: 2020 2032 2020 2020 2020 2020 2020 2033 2 3 │ │ │ │ +0007ef80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007ef90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007efb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007efd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007efe0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007eff0: 2020 2020 2020 202d 2036 3332 3238 3474 - 632284t │ │ │ │ -0007f000: 2020 2d20 3439 3234 3538 7420 202d 2033 - 492458t - 3 │ │ │ │ -0007f010: 3836 3932 3534 7420 202d 2032 3834 3032 869254t - 28402 │ │ │ │ -0007f020: 3636 7420 202d 2020 2020 2020 2020 7c0a 66t - |. │ │ │ │ -0007f030: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f050: 3020 2020 2020 2020 2020 2031 2020 2020 0 1 │ │ │ │ -0007f060: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0007f070: 2020 2033 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -0007f080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007efd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007efe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007eff0: 202d 2036 3332 3238 3474 2020 2d20 3439 - 632284t - 49 │ │ │ │ +0007f000: 3234 3538 7420 202d 2033 3836 3932 3534 2458t - 3869254 │ │ │ │ +0007f010: 7420 202d 2032 3834 3032 3636 7420 202d t - 2840266t - │ │ │ │ +0007f020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f040: 2020 2020 2020 2020 2020 3020 2020 2020 0 │ │ │ │ +0007f050: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0007f060: 2032 2020 2020 2020 2020 2020 2033 2020 2 3 │ │ │ │ +0007f070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f0c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f0d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f0e0: 2020 2020 2020 2031 3131 3230 3136 7420 1112016t │ │ │ │ -0007f0f0: 202b 2033 3930 3133 3631 7420 202b 2033 + 3901361t + 3 │ │ │ │ -0007f100: 3139 3338 3633 7420 202d 2034 3134 3330 193863t - 41430 │ │ │ │ -0007f110: 3430 7420 202b 2020 2020 2020 2020 7c0a 40t + |. │ │ │ │ -0007f120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f130: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -0007f140: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -0007f150: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0007f160: 2020 2033 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -0007f170: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f0c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f0e0: 2031 3131 3230 3136 7420 202b 2033 3930 1112016t + 390 │ │ │ │ +0007f0f0: 3133 3631 7420 202b 2033 3139 3338 3633 1361t + 3193863 │ │ │ │ +0007f100: 7420 202d 2034 3134 3330 3430 7420 202b t - 4143040t + │ │ │ │ +0007f110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f130: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +0007f140: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +0007f150: 2032 2020 2020 2020 2020 2020 2033 2020 2 3 │ │ │ │ +0007f160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f1b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f1c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f1d0: 2020 2020 2020 2074 202c 2020 2020 2020 t , │ │ │ │ +0007f1b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f1d0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007f1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f210: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f220: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +0007f200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f220: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 0007f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f260: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f250: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f2a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f2b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f2c0: 2020 2020 2020 2074 202c 2020 2020 2020 t , │ │ │ │ +0007f2a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f2c0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007f2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f2f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f310: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0007f2f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f310: 2020 3120 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 0007f320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f350: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f3a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f3b0: 2020 2020 2020 2074 202c 2020 2020 2020 t , │ │ │ │ +0007f390: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f3b0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007f3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f3e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f3f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f400: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0007f3e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f400: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0007f410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f490: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f4a0: 2020 2020 2020 2074 202c 2020 2020 2020 t , │ │ │ │ +0007f480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f4a0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f4d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f4e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f4f0: 2020 2020 2020 2020 3320 2020 2020 2020 3 │ │ │ │ +0007f4d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f4f0: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0007f500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f530: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f580: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f590: 2020 2020 2020 2074 202c 2020 2020 2020 t , │ │ │ │ +0007f570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f590: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ 0007f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f5c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f5d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f5e0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +0007f5c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f5e0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 0007f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f660: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f670: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f680: 2020 2020 2020 2074 2020 2020 2020 2020 t │ │ │ │ +0007f660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f680: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 0007f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f6b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f6c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f6d0: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +0007f6b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f6d0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0007f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f710: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0007f720: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0007f700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0007f720: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0007f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f7a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f7b0: 7c6f 3320 3a20 5261 7469 6f6e 616c 4d61 |o3 : RationalMa │ │ │ │ -0007f7c0: 7020 286c 696e 6561 7220 7261 7469 6f6e p (linear ration │ │ │ │ -0007f7d0: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ -0007f7e0: 2074 6f20 5050 5e39 2920 2020 2020 2020 to PP^9) │ │ │ │ -0007f7f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f800: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +0007f7a0: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0007f7b0: 5261 7469 6f6e 616c 4d61 7020 286c 696e RationalMap (lin │ │ │ │ +0007f7c0: 6561 7220 7261 7469 6f6e 616c 206d 6170 ear rational map │ │ │ │ +0007f7d0: 2066 726f 6d20 5050 5e35 2074 6f20 5050 from PP^5 to PP │ │ │ │ +0007f7e0: 5e39 2920 2020 2020 2020 2020 2020 2020 ^9) │ │ │ │ +0007f7f0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +0007f800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007f810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007f820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007f830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007f840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007f850: 7c38 3439 3637 3174 2020 2d20 3330 3334 |849671t - 3034 │ │ │ │ -0007f860: 3133 3774 202c 2020 2020 2020 2020 2020 137t , │ │ │ │ +0007f840: 2d2d 2d2d 2d2d 2d2d 7c0a 7c38 3439 3637 --------|.|84967 │ │ │ │ +0007f850: 3174 2020 2d20 3330 3334 3133 3774 202c 1t - 3034137t , │ │ │ │ +0007f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f8a0: 7c20 2020 2020 2020 3420 2020 2020 2020 | 4 │ │ │ │ -0007f8b0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +0007f890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f8a0: 2020 3420 2020 2020 2020 2020 2020 3520 4 5 │ │ │ │ +0007f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f8e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f8f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f8e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f940: 7c20 2d20 3233 3331 3238 3074 2020 2b20 | - 2331280t + │ │ │ │ -0007f950: 3439 3336 3232 3974 202c 2020 2020 2020 4936229t , │ │ │ │ +0007f930: 2020 2020 2020 2020 7c0a 7c20 2d20 3233 |.| - 23 │ │ │ │ +0007f940: 3331 3238 3074 2020 2b20 3439 3336 3232 31280t + 493622 │ │ │ │ +0007f950: 3974 202c 2020 2020 2020 2020 2020 2020 9t , │ │ │ │ 0007f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f990: 7c20 2020 2020 2020 2020 2020 3420 2020 | 4 │ │ │ │ -0007f9a0: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +0007f980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f990: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +0007f9a0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0007f9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007f9d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007f9e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007f9d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fa20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fa30: 7c20 3438 3833 3937 3474 2020 2d20 3333 | 4883974t - 33 │ │ │ │ -0007fa40: 3430 3936 3174 202c 2020 2020 2020 2020 40961t , │ │ │ │ +0007fa20: 2020 2020 2020 2020 7c0a 7c20 3438 3833 |.| 4883 │ │ │ │ +0007fa30: 3937 3474 2020 2d20 3333 3430 3936 3174 974t - 3340961t │ │ │ │ +0007fa40: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0007fa50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fa60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fa70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fa80: 7c20 2020 2020 2020 2020 3420 2020 2020 | 4 │ │ │ │ -0007fa90: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +0007fa70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fa80: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0007fa90: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0007faa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fad0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007fac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fb10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fb20: 7c20 3139 3634 3431 3774 2020 2d20 3130 | 1964417t - 10 │ │ │ │ -0007fb30: 3734 3935 3874 202c 2020 2020 2020 2020 74958t , │ │ │ │ +0007fb10: 2020 2020 2020 2020 7c0a 7c20 3139 3634 |.| 1964 │ │ │ │ +0007fb20: 3431 3774 2020 2d20 3130 3734 3935 3874 417t - 1074958t │ │ │ │ +0007fb30: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 0007fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fb60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fb70: 7c20 2020 2020 2020 2020 3420 2020 2020 | 4 │ │ │ │ -0007fb80: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +0007fb60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fb70: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +0007fb80: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0007fb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fbb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fbc0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0007fbb0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0007fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007fc00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0007fc10: 7c69 3420 3a20 5120 3d20 7472 696d 2069 |i4 : Q = trim i │ │ │ │ -0007fc20: 6465 616c 2872 616e 646f 6d28 322c 5039 deal(random(2,P9 │ │ │ │ -0007fc30: 292c 7261 6e64 6f6d 2831 2c50 3929 2c72 ),random(1,P9),r │ │ │ │ -0007fc40: 616e 646f 6d28 312c 5039 2929 2020 2020 andom(1,P9)) │ │ │ │ -0007fc50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fc60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007fc00: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +0007fc10: 5120 3d20 7472 696d 2069 6465 616c 2872 Q = trim ideal(r │ │ │ │ +0007fc20: 616e 646f 6d28 322c 5039 292c 7261 6e64 andom(2,P9),rand │ │ │ │ +0007fc30: 6f6d 2831 2c50 3929 2c72 616e 646f 6d28 om(1,P9),random( │ │ │ │ +0007fc40: 312c 5039 2929 2020 2020 2020 2020 2020 1,P9)) │ │ │ │ +0007fc50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fca0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fcb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007fca0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fcf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fd00: 7c6f 3420 3d20 6964 6561 6c20 2878 2020 |o4 = ideal (x │ │ │ │ -0007fd10: 2d20 3337 3331 3238 3578 2020 2b20 3536 - 3731285x + 56 │ │ │ │ -0007fd20: 3934 3835 7820 202b 2034 3235 3532 3031 9485x + 4255201 │ │ │ │ -0007fd30: 7820 202d 2032 3039 3837 3132 7820 202d x - 2098712x - │ │ │ │ -0007fd40: 2034 3234 3839 3930 7820 202d 2020 7c0a 4248990x - |. │ │ │ │ -0007fd50: 7c20 2020 2020 2020 2020 2020 2020 3120 | 1 │ │ │ │ -0007fd60: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -0007fd70: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -0007fd80: 2034 2020 2020 2020 2020 2020 2035 2020 4 5 │ │ │ │ -0007fd90: 2020 2020 2020 2020 2036 2020 2020 7c0a 6 |. │ │ │ │ -0007fda0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007fcf0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +0007fd00: 6964 6561 6c20 2878 2020 2d20 3337 3331 ideal (x - 3731 │ │ │ │ +0007fd10: 3238 3578 2020 2b20 3536 3934 3835 7820 285x + 569485x │ │ │ │ +0007fd20: 202b 2034 3235 3532 3031 7820 202d 2032 + 4255201x - 2 │ │ │ │ +0007fd30: 3039 3837 3132 7820 202d 2034 3234 3839 098712x - 42489 │ │ │ │ +0007fd40: 3930 7820 202d 2020 7c0a 7c20 2020 2020 90x - |.| │ │ │ │ +0007fd50: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ +0007fd60: 2020 2020 3220 2020 2020 2020 2020 2033 2 3 │ │ │ │ +0007fd70: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +0007fd80: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +0007fd90: 2020 2036 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +0007fda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fdb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fdc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fdd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007fde0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007fdf0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007fde0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007fdf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fe00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007fe30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0007fe40: 7c20 2020 2020 3138 3031 3334 3278 2020 | 1801342x │ │ │ │ -0007fe50: 2b20 3430 3530 3232 3978 2020 2d20 3233 + 4050229x - 23 │ │ │ │ -0007fe60: 3139 3236 3378 202c 2078 2020 2d20 3330 19263x , x - 30 │ │ │ │ -0007fe70: 3934 3638 3978 2020 2d20 3434 3130 3138 94689x - 441018 │ │ │ │ -0007fe80: 3678 2020 2b20 2020 2020 2020 2020 7c0a 6x + |. │ │ │ │ -0007fe90: 7c20 2020 2020 2020 2020 2020 2020 3720 | 7 │ │ │ │ -0007fea0: 2020 2020 2020 2020 2020 3820 2020 2020 8 │ │ │ │ -0007feb0: 2020 2020 2020 3920 2020 3020 2020 2020 9 0 │ │ │ │ -0007fec0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -0007fed0: 2020 3320 2020 2020 2020 2020 2020 7c0a 3 |. │ │ │ │ -0007fee0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007fe30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fe40: 3138 3031 3334 3278 2020 2b20 3430 3530 1801342x + 4050 │ │ │ │ +0007fe50: 3232 3978 2020 2d20 3233 3139 3236 3378 229x - 2319263x │ │ │ │ +0007fe60: 202c 2078 2020 2d20 3330 3934 3638 3978 , x - 3094689x │ │ │ │ +0007fe70: 2020 2d20 3434 3130 3138 3678 2020 2b20 - 4410186x + │ │ │ │ +0007fe80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fe90: 2020 2020 2020 2020 3720 2020 2020 2020 7 │ │ │ │ +0007fea0: 2020 2020 3820 2020 2020 2020 2020 2020 8 │ │ │ │ +0007feb0: 3920 2020 3020 2020 2020 2020 2020 2020 9 0 │ │ │ │ +0007fec0: 3220 2020 2020 2020 2020 2020 3320 2020 2 3 │ │ │ │ +0007fed0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0007fee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007fef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ff00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0007ff10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0007ff20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0007ff30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0007ff20: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0007ff30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0007ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0007ff70: 2020 2020 2020 2020 2020 2020 2032 7c0a 2|. │ │ │ │ -0007ff80: 7c20 2020 2020 3331 3936 3134 3678 2020 | 3196146x │ │ │ │ -0007ff90: 2b20 3237 3133 3737 3178 2020 2b20 3232 + 2713771x + 22 │ │ │ │ -0007ffa0: 3631 3431 3278 2020 2d20 3132 3637 3139 61412x - 126719 │ │ │ │ -0007ffb0: 3678 2020 2d20 3432 3130 3430 3378 2020 6x - 4210403x │ │ │ │ -0007ffc0: 2b20 3238 3539 3332 7820 2c20 7820 7c0a + 285932x , x |. │ │ │ │ -0007ffd0: 7c20 2020 2020 2020 2020 2020 2020 3420 | 4 │ │ │ │ -0007ffe0: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ -0007fff0: 2020 2020 2020 3620 2020 2020 2020 2020 6 │ │ │ │ -00080000: 2020 3720 2020 2020 2020 2020 2020 3820 7 8 │ │ │ │ -00080010: 2020 2020 2020 2020 2039 2020 2032 7c0a 9 2|. │ │ │ │ -00080020: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0007ff70: 2020 2020 2020 2032 7c0a 7c20 2020 2020 2|.| │ │ │ │ +0007ff80: 3331 3936 3134 3678 2020 2b20 3237 3133 3196146x + 2713 │ │ │ │ +0007ff90: 3737 3178 2020 2b20 3232 3631 3431 3278 771x + 2261412x │ │ │ │ +0007ffa0: 2020 2d20 3132 3637 3139 3678 2020 2d20 - 1267196x - │ │ │ │ +0007ffb0: 3432 3130 3430 3378 2020 2b20 3238 3539 4210403x + 2859 │ │ │ │ +0007ffc0: 3332 7820 2c20 7820 7c0a 7c20 2020 2020 32x , x |.| │ │ │ │ +0007ffd0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +0007ffe0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +0007fff0: 3620 2020 2020 2020 2020 2020 3720 2020 6 7 │ │ │ │ +00080000: 2020 2020 2020 2020 3820 2020 2020 2020 8 │ │ │ │ +00080010: 2020 2039 2020 2032 7c0a 7c20 2020 2020 9 2|.| │ │ │ │ +00080020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00080060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00080070: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080080: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00080060: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00080070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080080: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00080090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000800a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000800b0: 2020 2020 2032 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ -000800c0: 7c20 2020 2020 2b20 3130 3435 3432 3178 | + 1045421x │ │ │ │ -000800d0: 2078 2020 2b20 3731 3835 3332 7820 202d x + 718532x - │ │ │ │ -000800e0: 2033 3730 3136 3238 7820 7820 202b 2033 3701628x x + 3 │ │ │ │ -000800f0: 3930 3337 3938 7820 7820 202b 2032 3834 903798x x + 284 │ │ │ │ -00080100: 3233 3937 7820 202d 2020 2020 2020 7c0a 2397x - |. │ │ │ │ -00080110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080120: 3220 3320 2020 2020 2020 2020 2033 2020 2 3 3 │ │ │ │ -00080130: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -00080140: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ -00080150: 2020 2020 2034 2020 2020 2020 2020 7c0a 4 |. │ │ │ │ -00080160: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +000800a0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +000800b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000800c0: 2b20 3130 3435 3432 3178 2078 2020 2b20 + 1045421x x + │ │ │ │ +000800d0: 3731 3835 3332 7820 202d 2033 3730 3136 718532x - 37016 │ │ │ │ +000800e0: 3238 7820 7820 202b 2033 3930 3337 3938 28x x + 3903798 │ │ │ │ +000800f0: 7820 7820 202b 2032 3834 3233 3937 7820 x x + 2842397x │ │ │ │ +00080100: 202d 2020 2020 2020 7c0a 7c20 2020 2020 - |.| │ │ │ │ +00080110: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ +00080120: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ +00080130: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ +00080140: 2033 2034 2020 2020 2020 2020 2020 2034 3 4 4 │ │ │ │ +00080150: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000801a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000801b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000801a0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000801b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000801c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000801d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000801e0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000801f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080200: 7c20 2020 2020 3239 3937 3936 3278 2078 | 2997962x x │ │ │ │ -00080210: 2020 2b20 3431 3839 3833 3578 2078 2020 + 4189835x x │ │ │ │ -00080220: 2b20 3134 3839 3232 3578 2078 2020 2d20 + 1489225x x - │ │ │ │ -00080230: 3232 3739 3935 3578 2020 2b20 3235 3230 2279955x + 2520 │ │ │ │ -00080240: 3738 3278 2078 2020 2b20 2020 2020 7c0a 782x x + |. │ │ │ │ -00080250: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ -00080260: 3520 2020 2020 2020 2020 2020 3320 3520 5 3 5 │ │ │ │ -00080270: 2020 2020 2020 2020 2020 3420 3520 2020 4 5 │ │ │ │ -00080280: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ -00080290: 2020 2020 3220 3620 2020 2020 2020 7c0a 2 6 |. │ │ │ │ -000802a0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +000801e0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000801f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080200: 3239 3937 3936 3278 2078 2020 2b20 3431 2997962x x + 41 │ │ │ │ +00080210: 3839 3833 3578 2078 2020 2b20 3134 3839 89835x x + 1489 │ │ │ │ +00080220: 3232 3578 2078 2020 2d20 3232 3739 3935 225x x - 227995 │ │ │ │ +00080230: 3578 2020 2b20 3235 3230 3738 3278 2078 5x + 2520782x x │ │ │ │ +00080240: 2020 2b20 2020 2020 7c0a 7c20 2020 2020 + |.| │ │ │ │ +00080250: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ +00080260: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ +00080270: 2020 2020 3420 3520 2020 2020 2020 2020 4 5 │ │ │ │ +00080280: 2020 3520 2020 2020 2020 2020 2020 3220 5 2 │ │ │ │ +00080290: 3620 2020 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +000802a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000802b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000802c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000802d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000802e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000802f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000802e0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000802f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080320: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -00080330: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080340: 7c20 2020 2020 3434 3934 3238 3078 2078 | 4494280x x │ │ │ │ -00080350: 2020 2b20 3331 3031 3235 3578 2078 2020 + 3101255x x │ │ │ │ -00080360: 2d20 3638 3139 3530 7820 7820 202b 2031 - 681950x x + 1 │ │ │ │ -00080370: 3330 3734 3930 7820 202b 2032 3639 3037 307490x + 26907 │ │ │ │ -00080380: 3637 7820 7820 202b 2020 2020 2020 7c0a 67x x + |. │ │ │ │ -00080390: 7c20 2020 2020 2020 2020 2020 2020 3320 | 3 │ │ │ │ -000803a0: 3620 2020 2020 2020 2020 2020 3420 3620 6 4 6 │ │ │ │ -000803b0: 2020 2020 2020 2020 2035 2036 2020 2020 5 6 │ │ │ │ -000803c0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ -000803d0: 2020 2032 2037 2020 2020 2020 2020 7c0a 2 7 |. │ │ │ │ -000803e0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +00080320: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00080330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080340: 3434 3934 3238 3078 2078 2020 2b20 3331 4494280x x + 31 │ │ │ │ +00080350: 3031 3235 3578 2078 2020 2d20 3638 3139 01255x x - 6819 │ │ │ │ +00080360: 3530 7820 7820 202b 2031 3330 3734 3930 50x x + 1307490 │ │ │ │ +00080370: 7820 202b 2032 3639 3037 3637 7820 7820 x + 2690767x x │ │ │ │ +00080380: 202b 2020 2020 2020 7c0a 7c20 2020 2020 + |.| │ │ │ │ +00080390: 2020 2020 2020 2020 3320 3620 2020 2020 3 6 │ │ │ │ +000803a0: 2020 2020 2020 3420 3620 2020 2020 2020 4 6 │ │ │ │ +000803b0: 2020 2035 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ +000803c0: 2036 2020 2020 2020 2020 2020 2032 2037 6 2 7 │ │ │ │ +000803d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000803e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000803f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00080420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00080430: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080420: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00080430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080470: 2020 2020 2032 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ -00080480: 7c20 2020 2020 3435 3033 3635 3178 2078 | 4503651x x │ │ │ │ -00080490: 2020 2b20 3137 3632 3532 3878 2078 2020 + 1762528x x │ │ │ │ -000804a0: 2b20 3133 3736 3832 7820 7820 202d 2032 + 137682x x - 2 │ │ │ │ -000804b0: 3232 3930 3933 7820 7820 202d 2034 3031 229093x x - 401 │ │ │ │ -000804c0: 3839 3637 7820 202b 2020 2020 2020 7c0a 8967x + |. │ │ │ │ -000804d0: 7c20 2020 2020 2020 2020 2020 2020 3320 | 3 │ │ │ │ -000804e0: 3720 2020 2020 2020 2020 2020 3420 3720 7 4 7 │ │ │ │ -000804f0: 2020 2020 2020 2020 2035 2037 2020 2020 5 7 │ │ │ │ -00080500: 2020 2020 2020 2036 2037 2020 2020 2020 6 7 │ │ │ │ -00080510: 2020 2020 2037 2020 2020 2020 2020 7c0a 7 |. │ │ │ │ -00080520: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +00080460: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00080470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080480: 3435 3033 3635 3178 2078 2020 2b20 3137 4503651x x + 17 │ │ │ │ +00080490: 3632 3532 3878 2078 2020 2b20 3133 3736 62528x x + 1376 │ │ │ │ +000804a0: 3832 7820 7820 202d 2032 3232 3930 3933 82x x - 2229093 │ │ │ │ +000804b0: 7820 7820 202d 2034 3031 3839 3637 7820 x x - 4018967x │ │ │ │ +000804c0: 202b 2020 2020 2020 7c0a 7c20 2020 2020 + |.| │ │ │ │ +000804d0: 2020 2020 2020 2020 3320 3720 2020 2020 3 7 │ │ │ │ +000804e0: 2020 2020 2020 3420 3720 2020 2020 2020 4 7 │ │ │ │ +000804f0: 2020 2035 2037 2020 2020 2020 2020 2020 5 7 │ │ │ │ +00080500: 2036 2037 2020 2020 2020 2020 2020 2037 6 7 7 │ │ │ │ +00080510: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00080560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00080570: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080560: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00080570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000805a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000805b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000805c0: 7c20 2020 2020 3435 3336 3131 3778 2078 | 4536117x x │ │ │ │ -000805d0: 2020 2d20 3235 3431 3330 3978 2078 2020 - 2541309x x │ │ │ │ -000805e0: 2b20 3338 3130 3936 3878 2078 2020 2d20 + 3810968x x - │ │ │ │ -000805f0: 3432 3038 3139 3478 2078 2020 2d20 3136 4208194x x - 16 │ │ │ │ -00080600: 3433 3536 3078 2078 2020 2b20 2020 7c0a 43560x x + |. │ │ │ │ -00080610: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ -00080620: 3820 2020 2020 2020 2020 2020 3320 3820 8 3 8 │ │ │ │ -00080630: 2020 2020 2020 2020 2020 3420 3820 2020 4 8 │ │ │ │ -00080640: 2020 2020 2020 2020 3520 3820 2020 2020 5 8 │ │ │ │ -00080650: 2020 2020 2020 3620 3820 2020 2020 7c0a 6 8 |. │ │ │ │ -00080660: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +000805b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000805c0: 3435 3336 3131 3778 2078 2020 2d20 3235 4536117x x - 25 │ │ │ │ +000805d0: 3431 3330 3978 2078 2020 2b20 3338 3130 41309x x + 3810 │ │ │ │ +000805e0: 3936 3878 2078 2020 2d20 3432 3038 3139 968x x - 420819 │ │ │ │ +000805f0: 3478 2078 2020 2d20 3136 3433 3536 3078 4x x - 1643560x │ │ │ │ +00080600: 2078 2020 2b20 2020 7c0a 7c20 2020 2020 x + |.| │ │ │ │ +00080610: 2020 2020 2020 2020 3220 3820 2020 2020 2 8 │ │ │ │ +00080620: 2020 2020 2020 3320 3820 2020 2020 2020 3 8 │ │ │ │ +00080630: 2020 2020 3420 3820 2020 2020 2020 2020 4 8 │ │ │ │ +00080640: 2020 3520 3820 2020 2020 2020 2020 2020 5 8 │ │ │ │ +00080650: 3620 3820 2020 2020 7c0a 7c20 2020 2020 6 8 |.| │ │ │ │ +00080660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000806a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000806b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000806c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000806a0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000806b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000806c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000806d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000806e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000806f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080700: 7c20 2020 2020 3333 3330 3537 3378 2078 | 3330573x x │ │ │ │ -00080710: 2020 2d20 3232 3830 3531 3678 2020 2d20 - 2280516x - │ │ │ │ -00080720: 3135 3332 3035 3678 2078 2020 2b20 3138 1532056x x + 18 │ │ │ │ -00080730: 3833 3933 3578 2078 2020 2b20 3138 3837 83935x x + 1887 │ │ │ │ -00080740: 3636 3778 2078 2020 2b20 2020 2020 7c0a 667x x + |. │ │ │ │ -00080750: 7c20 2020 2020 2020 2020 2020 2020 3720 | 7 │ │ │ │ -00080760: 3820 2020 2020 2020 2020 2020 3820 2020 8 8 │ │ │ │ -00080770: 2020 2020 2020 2020 3220 3920 2020 2020 2 9 │ │ │ │ -00080780: 2020 2020 2020 3320 3920 2020 2020 2020 3 9 │ │ │ │ -00080790: 2020 2020 3420 3920 2020 2020 2020 7c0a 4 9 |. │ │ │ │ -000807a0: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +000806f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080700: 3333 3330 3537 3378 2078 2020 2d20 3232 3330573x x - 22 │ │ │ │ +00080710: 3830 3531 3678 2020 2d20 3135 3332 3035 80516x - 153205 │ │ │ │ +00080720: 3678 2078 2020 2b20 3138 3833 3933 3578 6x x + 1883935x │ │ │ │ +00080730: 2078 2020 2b20 3138 3837 3636 3778 2078 x + 1887667x x │ │ │ │ +00080740: 2020 2b20 2020 2020 7c0a 7c20 2020 2020 + |.| │ │ │ │ +00080750: 2020 2020 2020 2020 3720 3820 2020 2020 7 8 │ │ │ │ +00080760: 2020 2020 2020 3820 2020 2020 2020 2020 8 │ │ │ │ +00080770: 2020 3220 3920 2020 2020 2020 2020 2020 2 9 │ │ │ │ +00080780: 3320 3920 2020 2020 2020 2020 2020 3420 3 9 4 │ │ │ │ +00080790: 3920 2020 2020 2020 7c0a 7c20 2020 2020 9 |.| │ │ │ │ +000807a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000807b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000807c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000807d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000807e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000807f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000807e0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000807f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080830: 2020 2020 2020 3220 2020 2020 2020 7c0a 2 |. │ │ │ │ -00080840: 7c20 2020 2020 3132 3131 3630 3178 2078 | 1211601x x │ │ │ │ -00080850: 2020 2d20 3231 3638 3539 3478 2078 2020 - 2168594x x │ │ │ │ -00080860: 2d20 3138 3031 3736 3278 2078 2020 2b20 - 1801762x x + │ │ │ │ -00080870: 3330 3232 3234 3278 2078 2020 2b20 3336 3022242x x + 36 │ │ │ │ -00080880: 3138 3738 3978 2029 2020 2020 2020 7c0a 18789x ) |. │ │ │ │ -00080890: 7c20 2020 2020 2020 2020 2020 2020 3520 | 5 │ │ │ │ -000808a0: 3920 2020 2020 2020 2020 2020 3620 3920 9 6 9 │ │ │ │ -000808b0: 2020 2020 2020 2020 2020 3720 3920 2020 7 9 │ │ │ │ -000808c0: 2020 2020 2020 2020 3820 3920 2020 2020 8 9 │ │ │ │ -000808d0: 2020 2020 2020 3920 2020 2020 2020 7c0a 9 |. │ │ │ │ -000808e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080830: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00080840: 3132 3131 3630 3178 2078 2020 2d20 3231 1211601x x - 21 │ │ │ │ +00080850: 3638 3539 3478 2078 2020 2d20 3138 3031 68594x x - 1801 │ │ │ │ +00080860: 3736 3278 2078 2020 2b20 3330 3232 3234 762x x + 302224 │ │ │ │ +00080870: 3278 2078 2020 2b20 3336 3138 3738 3978 2x x + 3618789x │ │ │ │ +00080880: 2029 2020 2020 2020 7c0a 7c20 2020 2020 ) |.| │ │ │ │ +00080890: 2020 2020 2020 2020 3520 3920 2020 2020 5 9 │ │ │ │ +000808a0: 2020 2020 2020 3620 3920 2020 2020 2020 6 9 │ │ │ │ +000808b0: 2020 2020 3720 3920 2020 2020 2020 2020 7 9 │ │ │ │ +000808c0: 2020 3820 3920 2020 2020 2020 2020 2020 8 9 │ │ │ │ +000808d0: 3920 2020 2020 2020 7c0a 7c20 2020 2020 9 |.| │ │ │ │ +000808e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000808f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080940: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00080920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080930: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +00080940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080980: 7c6f 3420 3a20 4964 6561 6c20 6f66 202d |o4 : Ideal of - │ │ │ │ -00080990: 2d2d 2d2d 2d2d 2d5b 7820 2e2e 7820 5d20 -------[x ..x ] │ │ │ │ +00080970: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +00080980: 4964 6561 6c20 6f66 202d 2d2d 2d2d 2d2d Ideal of ------- │ │ │ │ +00080990: 2d5b 7820 2e2e 7820 5d20 2020 2020 2020 -[x ..x ] │ │ │ │ 000809a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000809b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000809c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000809d0: 7c20 2020 2020 2020 2020 2020 2020 2031 | 1 │ │ │ │ -000809e0: 3030 3030 3031 3920 2030 2020 2039 2020 0000019 0 9 │ │ │ │ +000809c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000809d0: 2020 2020 2020 2020 2031 3030 3030 3031 1000001 │ │ │ │ +000809e0: 3920 2030 2020 2039 2020 2020 2020 2020 9 0 9 │ │ │ │ 000809f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080a10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080a20: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00080a10: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00080a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00080a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00080a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -00080a70: 7c69 3520 3a20 7469 6d65 2070 6172 616d |i5 : time param │ │ │ │ -00080a80: 6574 7269 7a65 2051 2020 2020 2020 2020 etrize Q │ │ │ │ +00080a60: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +00080a70: 7469 6d65 2070 6172 616d 6574 7269 7a65 time parametrize │ │ │ │ +00080a80: 2051 2020 2020 2020 2020 2020 2020 2020 Q │ │ │ │ 00080a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080ac0: 7c20 2d2d 2075 7365 6420 302e 3534 3636 | -- used 0.5466 │ │ │ │ -00080ad0: 7320 2863 7075 293b 2030 2e33 3934 3339 s (cpu); 0.39439 │ │ │ │ -00080ae0: 3273 2028 7468 7265 6164 293b 2030 7320 2s (thread); 0s │ │ │ │ -00080af0: 2867 6329 2020 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00080b00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080b10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080ab0: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +00080ac0: 7365 6420 302e 3633 3233 3037 7320 2863 sed 0.632307s (c │ │ │ │ +00080ad0: 7075 293b 2030 2e34 3636 3235 3473 2028 pu); 0.466254s ( │ │ │ │ +00080ae0: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +00080af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080b50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080b60: 7c6f 3520 3d20 2d2d 2072 6174 696f 6e61 |o5 = -- rationa │ │ │ │ -00080b70: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ +00080b50: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ +00080b60: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ +00080b70: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 00080b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080ba0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080bb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080bc0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +00080ba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080bc0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00080bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080bf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080c00: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ -00080c10: 6f6a 282d 2d2d 2d2d 2d2d 2d5b 7420 2c20 oj(--------[t , │ │ │ │ -00080c20: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -00080c30: 7420 2c20 7420 5d29 2020 2020 2020 2020 t , t ]) │ │ │ │ -00080c40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080c50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080c60: 2020 2031 3030 3030 3031 3920 2030 2020 10000019 0 │ │ │ │ -00080c70: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -00080c80: 2035 2020 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00080c90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080ca0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080cb0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +00080bf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080c00: 736f 7572 6365 3a20 5072 6f6a 282d 2d2d source: Proj(--- │ │ │ │ +00080c10: 2d2d 2d2d 2d5b 7420 2c20 7420 2c20 7420 -----[t , t , t │ │ │ │ +00080c20: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +00080c30: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +00080c40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080c50: 2020 2020 2020 2020 2020 2020 2031 3030 100 │ │ │ │ +00080c60: 3030 3031 3920 2030 2020 2031 2020 2032 00019 0 1 2 │ │ │ │ +00080c70: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +00080c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080c90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080cb0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00080cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080ce0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080cf0: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -00080d00: 6f6a 282d 2d2d 2d2d 2d2d 2d5b 7820 2c20 oj(--------[x , │ │ │ │ -00080d10: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -00080d20: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -00080d30: 7820 5d29 2020 2020 2020 2020 2020 7c0a x ]) |. │ │ │ │ -00080d40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080d50: 2020 2031 3030 3030 3031 3920 2030 2020 10000019 0 │ │ │ │ -00080d60: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -00080d70: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ -00080d80: 2039 2020 2020 2020 2020 2020 2020 7c0a 9 |. │ │ │ │ -00080d90: 7c20 2020 2020 6465 6669 6e69 6e67 2066 | defining f │ │ │ │ -00080da0: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ +00080ce0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080cf0: 7461 7267 6574 3a20 5072 6f6a 282d 2d2d target: Proj(--- │ │ │ │ +00080d00: 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 7820 -----[x , x , x │ │ │ │ +00080d10: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +00080d20: 2c20 7820 2c20 7820 2c20 7820 5d29 2020 , x , x , x ]) │ │ │ │ +00080d30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080d40: 2020 2020 2020 2020 2020 2020 2031 3030 100 │ │ │ │ +00080d50: 3030 3031 3920 2030 2020 2031 2020 2032 00019 0 1 2 │ │ │ │ +00080d60: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +00080d70: 2020 2037 2020 2038 2020 2039 2020 2020 7 8 9 │ │ │ │ +00080d80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080d90: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ +00080da0: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 00080db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080dd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080de0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080df0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00080dd0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080df0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00080e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080e10: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00080e20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080e30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080e40: 2020 2020 2020 2038 3137 3939 3874 2020 817998t │ │ │ │ -00080e50: 2b20 3133 3239 3231 3674 2074 2020 2d20 + 1329216t t - │ │ │ │ -00080e60: 3131 3134 3138 3274 2020 2b20 3133 3434 1114182t + 1344 │ │ │ │ -00080e70: 3832 3174 2074 2020 2d20 3137 3830 7c0a 821t t - 1780|. │ │ │ │ -00080e80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080e90: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00080ea0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -00080eb0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00080ec0: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00080ed0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080e10: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00080e20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080e40: 2038 3137 3939 3874 2020 2b20 3133 3239 817998t + 1329 │ │ │ │ +00080e50: 3231 3674 2074 2020 2d20 3131 3134 3138 216t t - 111418 │ │ │ │ +00080e60: 3274 2020 2b20 3133 3434 3832 3174 2074 2t + 1344821t t │ │ │ │ +00080e70: 2020 2d20 3137 3830 7c0a 7c20 2020 2020 - 1780|.| │ │ │ │ +00080e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080e90: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +00080ea0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00080eb0: 2020 3120 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +00080ec0: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00080ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00080f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080f10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080f20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080f30: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00080f10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080f30: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00080f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00080f50: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00080f60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00080f70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080f80: 2020 2020 2020 2032 3639 3932 3932 7420 2699292t │ │ │ │ -00080f90: 202d 2039 3133 3238 3674 2074 2020 2b20 - 913286t t + │ │ │ │ -00080fa0: 3133 3038 3536 3774 2020 2b20 3337 3432 1308567t + 3742 │ │ │ │ -00080fb0: 3136 3574 2074 2020 2b20 3232 3334 7c0a 165t t + 2234|. │ │ │ │ -00080fc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00080fd0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00080fe0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -00080ff0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00081000: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00081010: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00080f50: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00080f60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00080f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080f80: 2032 3639 3932 3932 7420 202d 2039 3133 2699292t - 913 │ │ │ │ +00080f90: 3238 3674 2074 2020 2b20 3133 3038 3536 286t t + 130856 │ │ │ │ +00080fa0: 3774 2020 2b20 3337 3432 3136 3574 2074 7t + 3742165t t │ │ │ │ +00080fb0: 2020 2b20 3232 3334 7c0a 7c20 2020 2020 + 2234|.| │ │ │ │ +00080fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00080fd0: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00080fe0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00080ff0: 2020 3120 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +00081000: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00081010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081050: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081060: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081070: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00081050: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081070: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00081080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081090: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000810a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000810b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000810c0: 2020 2020 2020 2032 3430 3937 3235 7420 2409725t │ │ │ │ -000810d0: 202d 2035 3238 3334 3174 2074 2020 2b20 - 528341t t + │ │ │ │ -000810e0: 3136 3735 3430 3274 2020 2d20 3730 3736 1675402t - 7076 │ │ │ │ -000810f0: 3136 7420 7420 202d 2031 3238 3138 7c0a 16t t - 12818|. │ │ │ │ -00081100: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081110: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00081120: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -00081130: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00081140: 2020 2030 2032 2020 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00081150: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081090: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000810a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000810b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000810c0: 2032 3430 3937 3235 7420 202d 2035 3238 2409725t - 528 │ │ │ │ +000810d0: 3334 3174 2074 2020 2b20 3136 3735 3430 341t t + 167540 │ │ │ │ +000810e0: 3274 2020 2d20 3730 3736 3136 7420 7420 2t - 707616t t │ │ │ │ +000810f0: 202d 2031 3238 3138 7c0a 7c20 2020 2020 - 12818|.| │ │ │ │ +00081100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081110: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00081120: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +00081130: 2020 3120 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ +00081140: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000811a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000811b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000811c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000811d0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000811e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000811f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081200: 2020 2020 2020 202d 2033 3235 3733 3737 - 3257377 │ │ │ │ -00081210: 7420 202d 2031 3839 3532 3532 7420 7420 t - 1895252t t │ │ │ │ -00081220: 202b 2032 3539 3237 3330 7420 202b 2032 + 2592730t + 2 │ │ │ │ -00081230: 3630 3138 3332 7420 7420 202d 2032 7c0a 601832t t - 2|. │ │ │ │ -00081240: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081260: 2030 2020 2020 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -00081270: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -00081280: 2020 2020 2020 2030 2032 2020 2020 7c0a 0 2 |. │ │ │ │ -00081290: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081190: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000811a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000811b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000811c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000811d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000811e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000811f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081200: 202d 2033 3235 3733 3737 7420 202d 2031 - 3257377t - 1 │ │ │ │ +00081210: 3839 3532 3532 7420 7420 202b 2032 3539 895252t t + 259 │ │ │ │ +00081220: 3237 3330 7420 202b 2032 3630 3138 3332 2730t + 2601832 │ │ │ │ +00081230: 7420 7420 202d 2032 7c0a 7c20 2020 2020 t t - 2|.| │ │ │ │ +00081240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081250: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00081260: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +00081270: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +00081280: 2030 2032 2020 2020 7c0a 7c20 2020 2020 0 2 |.| │ │ │ │ +00081290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000812a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000812b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000812c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000812d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000812e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000812f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000812d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000812e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000812f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00081300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081310: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00081320: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081330: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081340: 2020 2020 2020 2033 3636 3434 3674 2020 366446t │ │ │ │ -00081350: 2b20 3432 3937 3231 3374 2074 2020 2b20 + 4297213t t + │ │ │ │ -00081360: 3437 3038 3634 3374 2020 2b20 3237 3436 4708643t + 2746 │ │ │ │ -00081370: 3439 3374 2074 2020 2d20 3330 3134 7c0a 493t t - 3014|. │ │ │ │ -00081380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081390: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000813a0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -000813b0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -000813c0: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -000813d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081310: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081320: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081340: 2033 3636 3434 3674 2020 2b20 3432 3937 366446t + 4297 │ │ │ │ +00081350: 3231 3374 2074 2020 2b20 3437 3038 3634 213t t + 470864 │ │ │ │ +00081360: 3374 2020 2b20 3237 3436 3439 3374 2074 3t + 2746493t t │ │ │ │ +00081370: 2020 2d20 3330 3134 7c0a 7c20 2020 2020 - 3014|.| │ │ │ │ +00081380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081390: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +000813a0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +000813b0: 2020 3120 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +000813c0: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +000813d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000813e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000813f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081410: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081420: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081430: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00081410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081430: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00081440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081450: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00081460: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081470: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081480: 2020 2020 2020 2031 3633 3237 3374 2020 163273t │ │ │ │ -00081490: 2d20 3131 3830 3037 3574 2074 2020 2d20 - 1180075t t - │ │ │ │ -000814a0: 3231 3530 3533 3274 2020 2b20 3239 3838 2150532t + 2988 │ │ │ │ -000814b0: 3539 3874 2074 2020 2b20 3433 3835 7c0a 598t t + 4385|. │ │ │ │ -000814c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000814d0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000814e0: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -000814f0: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00081500: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00081510: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081450: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081460: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081480: 2031 3633 3237 3374 2020 2d20 3131 3830 163273t - 1180 │ │ │ │ +00081490: 3037 3574 2074 2020 2d20 3231 3530 3533 075t t - 215053 │ │ │ │ +000814a0: 3274 2020 2b20 3239 3838 3539 3874 2074 2t + 2988598t t │ │ │ │ +000814b0: 2020 2b20 3433 3835 7c0a 7c20 2020 2020 + 4385|.| │ │ │ │ +000814c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000814d0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +000814e0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ +000814f0: 2020 3120 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +00081500: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00081510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081550: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081560: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081570: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00081550: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081570: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00081580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081590: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000815a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000815b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000815c0: 2020 2020 2020 2032 3132 3933 3932 7420 2129392t │ │ │ │ -000815d0: 202d 2032 3736 3236 3430 7420 7420 202b - 2762640t t + │ │ │ │ -000815e0: 2032 3036 3839 3335 7420 202d 2036 3635 2068935t - 665 │ │ │ │ -000815f0: 3333 3574 2074 2020 2b20 3136 3534 7c0a 335t t + 1654|. │ │ │ │ -00081600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081610: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00081620: 2020 2020 2020 2020 2020 2030 2031 2020 0 1 │ │ │ │ -00081630: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ -00081640: 2020 2020 3020 3220 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00081650: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081590: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000815a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000815b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000815c0: 2032 3132 3933 3932 7420 202d 2032 3736 2129392t - 276 │ │ │ │ +000815d0: 3236 3430 7420 7420 202b 2032 3036 3839 2640t t + 20689 │ │ │ │ +000815e0: 3335 7420 202d 2036 3635 3333 3574 2074 35t - 665335t t │ │ │ │ +000815f0: 2020 2b20 3136 3534 7c0a 7c20 2020 2020 + 1654|.| │ │ │ │ +00081600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081610: 2020 2020 2020 2020 2030 2020 2020 2020 0 │ │ │ │ +00081620: 2020 2020 2030 2031 2020 2020 2020 2020 0 1 │ │ │ │ +00081630: 2020 2031 2020 2020 2020 2020 2020 3020 1 0 │ │ │ │ +00081640: 3220 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00081650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081690: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000816a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000816b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000816c0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000816d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -000816e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000816f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081700: 2020 2020 2020 202d 2032 3134 3035 3436 - 2140546 │ │ │ │ -00081710: 7420 202d 2034 3335 3532 3131 7420 7420 t - 4355211t t │ │ │ │ -00081720: 202d 2033 3436 3539 3674 2020 2d20 3538 - 346596t - 58 │ │ │ │ -00081730: 3836 3532 7420 7420 202b 2034 3438 7c0a 8652t t + 448|. │ │ │ │ -00081740: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081760: 2030 2020 2020 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -00081770: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ -00081780: 2020 2020 2030 2032 2020 2020 2020 7c0a 0 2 |. │ │ │ │ -00081790: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000816a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000816b0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000816c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000816d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +000816e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000816f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081700: 202d 2032 3134 3035 3436 7420 202d 2034 - 2140546t - 4 │ │ │ │ +00081710: 3335 3532 3131 7420 7420 202d 2033 3436 355211t t - 346 │ │ │ │ +00081720: 3539 3674 2020 2d20 3538 3836 3532 7420 596t - 588652t │ │ │ │ +00081730: 7420 202b 2034 3438 7c0a 7c20 2020 2020 t + 448|.| │ │ │ │ +00081740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081750: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +00081760: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +00081770: 2020 2020 3120 2020 2020 2020 2020 2030 1 0 │ │ │ │ +00081780: 2032 2020 2020 2020 7c0a 7c20 2020 2020 2 |.| │ │ │ │ +00081790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000817a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000817b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000817c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000817d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000817e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000817f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081800: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00081810: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00081820: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081830: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081840: 2020 2020 2020 202d 2032 3735 3939 3233 - 2759923 │ │ │ │ -00081850: 7420 202b 2033 3731 3937 3637 7420 7420 t + 3719767t t │ │ │ │ -00081860: 202d 2031 3936 3930 3135 7420 202d 2039 - 1969015t - 9 │ │ │ │ -00081870: 3639 3236 3274 2074 2020 2d20 3831 7c0a 69262t t - 81|. │ │ │ │ -00081880: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000818a0: 2030 2020 2020 2020 2020 2020 2030 2031 0 0 1 │ │ │ │ -000818b0: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -000818c0: 2020 2020 2020 3020 3220 2020 2020 7c0a 0 2 |. │ │ │ │ -000818d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000817d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000817e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000817f0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00081800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081810: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00081820: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081840: 202d 2032 3735 3939 3233 7420 202b 2033 - 2759923t + 3 │ │ │ │ +00081850: 3731 3937 3637 7420 7420 202d 2031 3936 719767t t - 196 │ │ │ │ +00081860: 3930 3135 7420 202d 2039 3639 3236 3274 9015t - 969262t │ │ │ │ +00081870: 2074 2020 2d20 3831 7c0a 7c20 2020 2020 t - 81|.| │ │ │ │ +00081880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081890: 2020 2020 2020 2020 2020 2030 2020 2020 0 │ │ │ │ +000818a0: 2020 2020 2020 2030 2031 2020 2020 2020 0 1 │ │ │ │ +000818b0: 2020 2020 2031 2020 2020 2020 2020 2020 1 │ │ │ │ +000818c0: 3020 3220 2020 2020 7c0a 7c20 2020 2020 0 2 |.| │ │ │ │ +000818d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000818e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000818f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081910: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081920: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081930: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -00081940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081950: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00081960: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081970: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081980: 2020 2020 2020 2074 2020 2b20 3235 3537 t + 2557 │ │ │ │ -00081990: 3230 3174 2074 2020 2b20 3839 3735 3832 201t t + 897582 │ │ │ │ -000819a0: 7420 202d 2031 3935 3536 3637 7420 7420 t - 1955667t t │ │ │ │ -000819b0: 202d 2034 3136 3238 3332 7420 7420 7c0a - 4162832t t |. │ │ │ │ -000819c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000819d0: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ -000819e0: 2020 2020 3020 3120 2020 2020 2020 2020 0 1 │ │ │ │ -000819f0: 2031 2020 2020 2020 2020 2020 2030 2032 1 0 2 │ │ │ │ -00081a00: 2020 2020 2020 2020 2020 2031 2032 7c0a 1 2|. │ │ │ │ -00081a10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081a20: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +00081910: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081930: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081940: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00081950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081960: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081980: 2074 2020 2b20 3235 3537 3230 3174 2074 t + 2557201t t │ │ │ │ +00081990: 2020 2b20 3839 3735 3832 7420 202d 2031 + 897582t - 1 │ │ │ │ +000819a0: 3935 3536 3637 7420 7420 202d 2034 3136 955667t t - 416 │ │ │ │ +000819b0: 3238 3332 7420 7420 7c0a 7c20 2020 2020 2832t t |.| │ │ │ │ +000819c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000819d0: 2020 3020 2020 2020 2020 2020 2020 3020 0 0 │ │ │ │ +000819e0: 3120 2020 2020 2020 2020 2031 2020 2020 1 1 │ │ │ │ +000819f0: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +00081a00: 2020 2020 2031 2032 7c0a 7c20 2020 2020 1 2|.| │ │ │ │ +00081a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081a20: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 00081a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081a50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081a60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081a50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081aa0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081ab0: 7c6f 3520 3a20 5261 7469 6f6e 616c 4d61 |o5 : RationalMa │ │ │ │ -00081ac0: 7020 2871 7561 6472 6174 6963 2072 6174 p (quadratic rat │ │ │ │ -00081ad0: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ -00081ae0: 505e 3620 746f 2050 505e 3929 2020 2020 P^6 to PP^9) │ │ │ │ -00081af0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081b00: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00081aa0: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ +00081ab0: 5261 7469 6f6e 616c 4d61 7020 2871 7561 RationalMap (qua │ │ │ │ +00081ac0: 6472 6174 6963 2072 6174 696f 6e61 6c20 dratic rational │ │ │ │ +00081ad0: 6d61 7020 6672 6f6d 2050 505e 3620 746f map from PP^6 to │ │ │ │ +00081ae0: 2050 505e 3929 2020 2020 2020 2020 2020 PP^9) │ │ │ │ +00081af0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00081b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00081b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00081b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00081b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00081b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00081b50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081b60: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081b40: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00081b50: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00081b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081b90: 2020 2020 2020 2032 2020 2020 2020 7c0a 2 |. │ │ │ │ -00081ba0: 7c34 3934 7420 7420 202b 2032 3336 3039 |494t t + 23609 │ │ │ │ -00081bb0: 3631 7420 202d 2032 3330 3031 3874 2074 61t - 230018t t │ │ │ │ -00081bc0: 2020 2b20 3431 3238 3931 3674 2074 2020 + 4128916t t │ │ │ │ -00081bd0: 2d20 3432 3130 3032 7420 7420 202b 2034 - 421002t t + 4 │ │ │ │ -00081be0: 3832 3335 3130 7420 202b 2031 3930 7c0a 823510t + 190|. │ │ │ │ -00081bf0: 7c20 2020 2031 2032 2020 2020 2020 2020 | 1 2 │ │ │ │ -00081c00: 2020 2032 2020 2020 2020 2020 2020 3020 2 0 │ │ │ │ -00081c10: 3320 2020 2020 2020 2020 2020 3120 3320 3 1 3 │ │ │ │ -00081c20: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -00081c30: 2020 2020 2020 2033 2020 2020 2020 7c0a 3 |. │ │ │ │ -00081c40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081b90: 2032 2020 2020 2020 7c0a 7c34 3934 7420 2 |.|494t │ │ │ │ +00081ba0: 7420 202b 2032 3336 3039 3631 7420 202d t + 2360961t - │ │ │ │ +00081bb0: 2032 3330 3031 3874 2074 2020 2b20 3431 230018t t + 41 │ │ │ │ +00081bc0: 3238 3931 3674 2074 2020 2d20 3432 3130 28916t t - 4210 │ │ │ │ +00081bd0: 3032 7420 7420 202b 2034 3832 3335 3130 02t t + 4823510 │ │ │ │ +00081be0: 7420 202b 2031 3930 7c0a 7c20 2020 2031 t + 190|.| 1 │ │ │ │ +00081bf0: 2032 2020 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00081c00: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ +00081c10: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ +00081c20: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00081c30: 2033 2020 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00081c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081c80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081c90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081ca0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081c80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081c90: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00081ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081cd0: 2020 2020 2020 3220 2020 2020 2020 7c0a 2 |. │ │ │ │ -00081ce0: 7c37 3438 7420 7420 202d 2031 3039 3038 |748t t - 10908 │ │ │ │ -00081cf0: 3437 7420 202b 2032 3436 3430 7420 7420 47t + 24640t t │ │ │ │ -00081d00: 202b 2033 3335 3732 3338 7420 7420 202b + 3357238t t + │ │ │ │ -00081d10: 2033 3430 3134 3531 7420 7420 202d 2036 3401451t t - 6 │ │ │ │ -00081d20: 3930 3639 3174 2020 2d20 3130 3932 7c0a 90691t - 1092|. │ │ │ │ -00081d30: 7c20 2020 2031 2032 2020 2020 2020 2020 | 1 2 │ │ │ │ -00081d40: 2020 2032 2020 2020 2020 2020 2030 2033 2 0 3 │ │ │ │ -00081d50: 2020 2020 2020 2020 2020 2031 2033 2020 1 3 │ │ │ │ -00081d60: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -00081d70: 2020 2020 2020 3320 2020 2020 2020 7c0a 3 |. │ │ │ │ -00081d80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081cd0: 3220 2020 2020 2020 7c0a 7c37 3438 7420 2 |.|748t │ │ │ │ +00081ce0: 7420 202d 2031 3039 3038 3437 7420 202b t - 1090847t + │ │ │ │ +00081cf0: 2032 3436 3430 7420 7420 202b 2033 3335 24640t t + 335 │ │ │ │ +00081d00: 3732 3338 7420 7420 202b 2033 3430 3134 7238t t + 34014 │ │ │ │ +00081d10: 3531 7420 7420 202d 2036 3930 3639 3174 51t t - 690691t │ │ │ │ +00081d20: 2020 2d20 3130 3932 7c0a 7c20 2020 2031 - 1092|.| 1 │ │ │ │ +00081d30: 2032 2020 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00081d40: 2020 2020 2020 2030 2033 2020 2020 2020 0 3 │ │ │ │ +00081d50: 2020 2020 2031 2033 2020 2020 2020 2020 1 3 │ │ │ │ +00081d60: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00081d70: 3320 2020 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00081d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081dc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081dd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081de0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00081dc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081dd0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00081de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081e10: 2020 2020 2020 2020 3220 2020 2020 7c0a 2 |. │ │ │ │ -00081e20: 7c30 3674 2074 2020 2b20 3135 3337 3330 |06t t + 153730 │ │ │ │ -00081e30: 3074 2020 2d20 3335 3335 3030 3274 2074 0t - 3535002t t │ │ │ │ -00081e40: 2020 2d20 3239 3133 3137 3574 2074 2020 - 2913175t t │ │ │ │ -00081e50: 2b20 3138 3639 3539 3674 2074 2020 2d20 + 1869596t t - │ │ │ │ -00081e60: 3237 3531 3234 3674 2020 2d20 3635 7c0a 2751246t - 65|. │ │ │ │ -00081e70: 7c20 2020 3120 3220 2020 2020 2020 2020 | 1 2 │ │ │ │ -00081e80: 2020 3220 2020 2020 2020 2020 2020 3020 2 0 │ │ │ │ -00081e90: 3320 2020 2020 2020 2020 2020 3120 3320 3 1 3 │ │ │ │ -00081ea0: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -00081eb0: 2020 2020 2020 2020 3320 2020 2020 7c0a 3 |. │ │ │ │ -00081ec0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081e10: 2020 3220 2020 2020 7c0a 7c30 3674 2074 2 |.|06t t │ │ │ │ +00081e20: 2020 2b20 3135 3337 3330 3074 2020 2d20 + 1537300t - │ │ │ │ +00081e30: 3335 3335 3030 3274 2074 2020 2d20 3239 3535002t t - 29 │ │ │ │ +00081e40: 3133 3137 3574 2074 2020 2b20 3138 3639 13175t t + 1869 │ │ │ │ +00081e50: 3539 3674 2074 2020 2d20 3237 3531 3234 596t t - 275124 │ │ │ │ +00081e60: 3674 2020 2d20 3635 7c0a 7c20 2020 3120 6t - 65|.| 1 │ │ │ │ +00081e70: 3220 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00081e80: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ +00081e90: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ +00081ea0: 2020 2020 3220 3320 2020 2020 2020 2020 2 3 │ │ │ │ +00081eb0: 2020 3320 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00081ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081f00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00081f10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00081f20: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00081f00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00081f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00081f20: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00081f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00081f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00081f50: 2020 2020 2020 2020 2020 2020 3220 7c0a 2 |. │ │ │ │ -00081f60: 7c35 3532 3132 3774 2074 2020 2d20 3333 |552127t t - 33 │ │ │ │ -00081f70: 3334 3835 3074 2020 2d20 3235 3436 3233 34850t - 254623 │ │ │ │ -00081f80: 3174 2074 2020 2d20 3436 3636 3033 3874 1t t - 4666038t │ │ │ │ -00081f90: 2074 2020 2d20 3332 3734 3739 3374 2074 t - 3274793t t │ │ │ │ -00081fa0: 2020 2d20 3235 3731 3338 3774 2020 7c0a - 2571387t |. │ │ │ │ -00081fb0: 7c20 2020 2020 2020 3120 3220 2020 2020 | 1 2 │ │ │ │ -00081fc0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ -00081fd0: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ -00081fe0: 3120 3320 2020 2020 2020 2020 2020 3220 1 3 2 │ │ │ │ -00081ff0: 3320 2020 2020 2020 2020 2020 3320 7c0a 3 3 |. │ │ │ │ -00082000: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00081f50: 2020 2020 2020 3220 7c0a 7c35 3532 3132 2 |.|55212 │ │ │ │ +00081f60: 3774 2074 2020 2d20 3333 3334 3835 3074 7t t - 3334850t │ │ │ │ +00081f70: 2020 2d20 3235 3436 3233 3174 2074 2020 - 2546231t t │ │ │ │ +00081f80: 2d20 3436 3636 3033 3874 2074 2020 2d20 - 4666038t t - │ │ │ │ +00081f90: 3332 3734 3739 3374 2074 2020 2d20 3235 3274793t t - 25 │ │ │ │ +00081fa0: 3731 3338 3774 2020 7c0a 7c20 2020 2020 71387t |.| │ │ │ │ +00081fb0: 2020 3120 3220 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00081fc0: 3220 2020 2020 2020 2020 2020 3020 3320 2 0 3 │ │ │ │ +00081fd0: 2020 2020 2020 2020 2020 3120 3320 2020 1 3 │ │ │ │ +00081fe0: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ +00081ff0: 2020 2020 2020 3320 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00082000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082040: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082050: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00082060: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00082040: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082050: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00082060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082090: 2020 2020 2020 2032 2020 2020 2020 7c0a 2 |. │ │ │ │ -000820a0: 7c36 3930 7420 7420 202d 2039 3637 3833 |690t t - 96783 │ │ │ │ -000820b0: 3574 2020 2b20 3435 3436 3730 3874 2074 5t + 4546708t t │ │ │ │ -000820c0: 2020 2d20 3233 3537 3230 7420 7420 202b - 235720t t + │ │ │ │ -000820d0: 2033 3934 3037 3033 7420 7420 202b 2034 3940703t t + 4 │ │ │ │ -000820e0: 3731 3431 3139 7420 202d 2032 3236 7c0a 714119t - 226|. │ │ │ │ -000820f0: 7c20 2020 2031 2032 2020 2020 2020 2020 | 1 2 │ │ │ │ -00082100: 2020 3220 2020 2020 2020 2020 2020 3020 2 0 │ │ │ │ -00082110: 3320 2020 2020 2020 2020 2031 2033 2020 3 1 3 │ │ │ │ -00082120: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -00082130: 2020 2020 2020 2033 2020 2020 2020 7c0a 3 |. │ │ │ │ -00082140: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082090: 2032 2020 2020 2020 7c0a 7c36 3930 7420 2 |.|690t │ │ │ │ +000820a0: 7420 202d 2039 3637 3833 3574 2020 2b20 t - 967835t + │ │ │ │ +000820b0: 3435 3436 3730 3874 2074 2020 2d20 3233 4546708t t - 23 │ │ │ │ +000820c0: 3537 3230 7420 7420 202b 2033 3934 3037 5720t t + 39407 │ │ │ │ +000820d0: 3033 7420 7420 202b 2034 3731 3431 3139 03t t + 4714119 │ │ │ │ +000820e0: 7420 202d 2032 3236 7c0a 7c20 2020 2031 t - 226|.| 1 │ │ │ │ +000820f0: 2032 2020 2020 2020 2020 2020 3220 2020 2 2 │ │ │ │ +00082100: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ +00082110: 2020 2020 2031 2033 2020 2020 2020 2020 1 3 │ │ │ │ +00082120: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00082130: 2033 2020 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00082140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082180: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082190: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000821a0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00082180: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082190: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000821a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000821b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000821c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000821d0: 2020 2020 2020 2032 2020 2020 2020 7c0a 2 |. │ │ │ │ -000821e0: 7c36 3439 7420 7420 202d 2034 3533 3633 |649t t - 45363 │ │ │ │ -000821f0: 3135 7420 202b 2032 3337 3936 3030 7420 15t + 2379600t │ │ │ │ -00082200: 7420 202d 2033 3132 3031 3374 2074 2020 t - 312013t t │ │ │ │ -00082210: 2d20 3632 3939 3736 7420 7420 202b 2031 - 629976t t + 1 │ │ │ │ -00082220: 3737 3038 3937 7420 202d 2034 3533 7c0a 770897t - 453|. │ │ │ │ -00082230: 7c20 2020 2031 2032 2020 2020 2020 2020 | 1 2 │ │ │ │ -00082240: 2020 2032 2020 2020 2020 2020 2020 2030 2 0 │ │ │ │ -00082250: 2033 2020 2020 2020 2020 2020 3120 3320 3 1 3 │ │ │ │ -00082260: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -00082270: 2020 2020 2020 2033 2020 2020 2020 7c0a 3 |. │ │ │ │ -00082280: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000821d0: 2032 2020 2020 2020 7c0a 7c36 3439 7420 2 |.|649t │ │ │ │ +000821e0: 7420 202d 2034 3533 3633 3135 7420 202b t - 4536315t + │ │ │ │ +000821f0: 2032 3337 3936 3030 7420 7420 202d 2033 2379600t t - 3 │ │ │ │ +00082200: 3132 3031 3374 2074 2020 2d20 3632 3939 12013t t - 6299 │ │ │ │ +00082210: 3736 7420 7420 202b 2031 3737 3038 3937 76t t + 1770897 │ │ │ │ +00082220: 7420 202d 2034 3533 7c0a 7c20 2020 2031 t - 453|.| 1 │ │ │ │ +00082230: 2032 2020 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00082240: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +00082250: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ +00082260: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00082270: 2033 2020 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00082280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000822a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000822b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000822c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000822d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000822e0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000822c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000822d0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000822e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000822f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082310: 2020 2020 2020 2020 2032 2020 2020 7c0a 2 |. │ │ │ │ -00082320: 7c38 3133 7420 7420 202b 2033 3039 3738 |813t t + 30978 │ │ │ │ -00082330: 3730 7420 202b 2034 3333 3037 3732 7420 70t + 4330772t │ │ │ │ -00082340: 7420 202b 2034 3130 3634 3830 7420 7420 t + 4106480t t │ │ │ │ -00082350: 202d 2032 3035 3838 3338 7420 7420 202b - 2058838t t + │ │ │ │ -00082360: 2034 3932 3238 3035 7420 202b 2033 7c0a 4922805t + 3|. │ │ │ │ -00082370: 7c20 2020 2031 2032 2020 2020 2020 2020 | 1 2 │ │ │ │ -00082380: 2020 2032 2020 2020 2020 2020 2020 2030 2 0 │ │ │ │ -00082390: 2033 2020 2020 2020 2020 2020 2031 2033 3 1 3 │ │ │ │ -000823a0: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ -000823b0: 2020 2020 2020 2020 2033 2020 2020 7c0a 3 |. │ │ │ │ -000823c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082310: 2020 2032 2020 2020 7c0a 7c38 3133 7420 2 |.|813t │ │ │ │ +00082320: 7420 202b 2033 3039 3738 3730 7420 202b t + 3097870t + │ │ │ │ +00082330: 2034 3333 3037 3732 7420 7420 202b 2034 4330772t t + 4 │ │ │ │ +00082340: 3130 3634 3830 7420 7420 202d 2032 3035 106480t t - 205 │ │ │ │ +00082350: 3838 3338 7420 7420 202b 2034 3932 3238 8838t t + 49228 │ │ │ │ +00082360: 3035 7420 202b 2033 7c0a 7c20 2020 2031 05t + 3|.| 1 │ │ │ │ +00082370: 2032 2020 2020 2020 2020 2020 2032 2020 2 2 │ │ │ │ +00082380: 2020 2020 2020 2020 2030 2033 2020 2020 0 3 │ │ │ │ +00082390: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ +000823a0: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ +000823b0: 2020 2033 2020 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +000823c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000823d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000823e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000823f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082400: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082410: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00082420: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00082400: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082410: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00082420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082450: 2020 2020 2020 2020 2020 3220 2020 7c0a 2 |. │ │ │ │ -00082460: 7c31 3530 3174 2074 2020 2b20 3230 3931 |1501t t + 2091 │ │ │ │ -00082470: 3133 3074 2020 2d20 3139 3735 3639 3474 130t - 1975694t │ │ │ │ -00082480: 2074 2020 2b20 3234 3132 3030 3274 2074 t + 2412002t t │ │ │ │ -00082490: 2020 2b20 3437 3539 3939 3974 2074 2020 + 4759999t t │ │ │ │ -000824a0: 2b20 3239 3332 3631 3074 2020 2b20 7c0a + 2932610t + |. │ │ │ │ -000824b0: 7c20 2020 2020 3120 3220 2020 2020 2020 | 1 2 │ │ │ │ -000824c0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -000824d0: 3020 3320 2020 2020 2020 2020 2020 3120 0 3 1 │ │ │ │ -000824e0: 3320 2020 2020 2020 2020 2020 3220 3320 3 2 3 │ │ │ │ -000824f0: 2020 2020 2020 2020 2020 3320 2020 7c0a 3 |. │ │ │ │ -00082500: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082450: 2020 2020 3220 2020 7c0a 7c31 3530 3174 2 |.|1501t │ │ │ │ +00082460: 2074 2020 2b20 3230 3931 3133 3074 2020 t + 2091130t │ │ │ │ +00082470: 2d20 3139 3735 3639 3474 2074 2020 2b20 - 1975694t t + │ │ │ │ +00082480: 3234 3132 3030 3274 2074 2020 2b20 3437 2412002t t + 47 │ │ │ │ +00082490: 3539 3939 3974 2074 2020 2b20 3239 3332 59999t t + 2932 │ │ │ │ +000824a0: 3631 3074 2020 2b20 7c0a 7c20 2020 2020 610t + |.| │ │ │ │ +000824b0: 3120 3220 2020 2020 2020 2020 2020 3220 1 2 2 │ │ │ │ +000824c0: 2020 2020 2020 2020 2020 3020 3320 2020 0 3 │ │ │ │ +000824d0: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ +000824e0: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +000824f0: 2020 2020 3320 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00082500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082540: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082550: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00082560: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00082540: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082550: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00082560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082590: 2020 2020 2020 2020 2020 3220 2020 7c0a 2 |. │ │ │ │ -000825a0: 7c39 3239 3174 2074 2020 2b20 3336 3238 |9291t t + 3628 │ │ │ │ -000825b0: 3132 3474 2020 2d20 3437 3831 3139 3574 124t - 4781195t │ │ │ │ -000825c0: 2074 2020 2d20 3431 3639 3535 3774 2074 t - 4169557t t │ │ │ │ -000825d0: 2020 2d20 3237 3037 3938 3474 2074 2020 - 2707984t t │ │ │ │ -000825e0: 2d20 3236 3733 3339 3574 2020 2d20 7c0a - 2673395t - |. │ │ │ │ -000825f0: 7c20 2020 2020 3120 3220 2020 2020 2020 | 1 2 │ │ │ │ -00082600: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00082610: 3020 3320 2020 2020 2020 2020 2020 3120 0 3 1 │ │ │ │ -00082620: 3320 2020 2020 2020 2020 2020 3220 3320 3 2 3 │ │ │ │ -00082630: 2020 2020 2020 2020 2020 3320 2020 7c0a 3 |. │ │ │ │ -00082640: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082590: 2020 2020 3220 2020 7c0a 7c39 3239 3174 2 |.|9291t │ │ │ │ +000825a0: 2074 2020 2b20 3336 3238 3132 3474 2020 t + 3628124t │ │ │ │ +000825b0: 2d20 3437 3831 3139 3574 2074 2020 2d20 - 4781195t t - │ │ │ │ +000825c0: 3431 3639 3535 3774 2074 2020 2d20 3237 4169557t t - 27 │ │ │ │ +000825d0: 3037 3938 3474 2074 2020 2d20 3236 3733 07984t t - 2673 │ │ │ │ +000825e0: 3339 3574 2020 2d20 7c0a 7c20 2020 2020 395t - |.| │ │ │ │ +000825f0: 3120 3220 2020 2020 2020 2020 2020 3220 1 2 2 │ │ │ │ +00082600: 2020 2020 2020 2020 2020 3020 3320 2020 0 3 │ │ │ │ +00082610: 2020 2020 2020 2020 3120 3320 2020 2020 1 3 │ │ │ │ +00082620: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +00082630: 2020 2020 3320 2020 7c0a 7c20 2020 2020 3 |.| │ │ │ │ +00082640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082680: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082690: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ +00082680: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082690: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000826a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000826b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000826c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000826d0: 3220 2020 2020 2020 2020 2020 2020 7c0a 2 |. │ │ │ │ -000826e0: 7c20 2b20 3239 3137 3937 3474 2020 2d20 | + 2917974t - │ │ │ │ -000826f0: 3234 3134 3034 3574 2074 2020 2d20 3331 2414045t t - 31 │ │ │ │ -00082700: 3333 3435 3674 2074 2020 2b20 3133 3032 33456t t + 1302 │ │ │ │ -00082710: 3639 7420 7420 202d 2039 3231 3032 3574 69t t - 921025t │ │ │ │ -00082720: 2020 2b20 3439 3234 3736 3774 2074 7c0a + 4924767t t|. │ │ │ │ -00082730: 7c20 2020 2020 2020 2020 2020 3220 2020 | 2 │ │ │ │ -00082740: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ -00082750: 2020 2020 2020 3120 3320 2020 2020 2020 1 3 │ │ │ │ -00082760: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ -00082770: 3320 2020 2020 2020 2020 2020 3020 7c0a 3 0 |. │ │ │ │ -00082780: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +000826c0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000826d0: 2020 2020 2020 2020 7c0a 7c20 2b20 3239 |.| + 29 │ │ │ │ +000826e0: 3137 3937 3474 2020 2d20 3234 3134 3034 17974t - 241404 │ │ │ │ +000826f0: 3574 2074 2020 2d20 3331 3333 3435 3674 5t t - 3133456t │ │ │ │ +00082700: 2074 2020 2b20 3133 3032 3639 7420 7420 t + 130269t t │ │ │ │ +00082710: 202d 2039 3231 3032 3574 2020 2b20 3439 - 921025t + 49 │ │ │ │ +00082720: 3234 3736 3774 2074 7c0a 7c20 2020 2020 24767t t|.| │ │ │ │ +00082730: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00082740: 2020 3020 3320 2020 2020 2020 2020 2020 0 3 │ │ │ │ +00082750: 3120 3320 2020 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ +00082760: 2020 2020 2020 2020 2020 3320 2020 2020 3 │ │ │ │ +00082770: 2020 2020 2020 3020 7c0a 7c2d 2d2d 2d2d 0 |.|----- │ │ │ │ +00082780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00082790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000827a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000827b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000827c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000827d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000827c0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000827d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000827e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000827f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082820: 7c32 3433 3074 2074 2020 2b20 3334 3336 |2430t t + 3436 │ │ │ │ -00082830: 3438 3374 2074 2020 2b20 3135 3335 3532 483t t + 153552 │ │ │ │ -00082840: 3874 2074 2020 2d20 3130 3833 3538 3774 8t t - 1083587t │ │ │ │ -00082850: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00082860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082870: 7c20 2020 2020 3020 3420 2020 2020 2020 | 0 4 │ │ │ │ -00082880: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ -00082890: 2020 3220 3420 2020 2020 2020 2020 2020 2 4 │ │ │ │ -000828a0: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -000828b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000828c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082810: 2020 2020 2020 2020 7c0a 7c32 3433 3074 |.|2430t │ │ │ │ +00082820: 2074 2020 2b20 3334 3336 3438 3374 2074 t + 3436483t t │ │ │ │ +00082830: 2020 2b20 3135 3335 3532 3874 2074 2020 + 1535528t t │ │ │ │ +00082840: 2d20 3130 3833 3538 3774 2074 2020 2020 - 1083587t t │ │ │ │ +00082850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082870: 3020 3420 2020 2020 2020 2020 2020 3120 0 4 1 │ │ │ │ +00082880: 3420 2020 2020 2020 2020 2020 3220 3420 4 2 4 │ │ │ │ +00082890: 2020 2020 2020 2020 2020 3320 3420 2020 3 4 │ │ │ │ +000828a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000828b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000828c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000828d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000828e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000828f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082900: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082910: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082900: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082950: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082960: 7c34 3230 7420 7420 202d 2032 3932 3033 |420t t - 29203 │ │ │ │ -00082970: 3633 7420 7420 202b 2032 3730 3639 3434 63t t + 2706944 │ │ │ │ -00082980: 7420 7420 202b 2034 3632 3639 3439 7420 t t + 4626949t │ │ │ │ -00082990: 7420 202d 2020 2020 2020 2020 2020 2020 t - │ │ │ │ -000829a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000829b0: 7c20 2020 2030 2034 2020 2020 2020 2020 | 0 4 │ │ │ │ -000829c0: 2020 2031 2034 2020 2020 2020 2020 2020 1 4 │ │ │ │ -000829d0: 2032 2034 2020 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ -000829e0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -000829f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082a00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082950: 2020 2020 2020 2020 7c0a 7c34 3230 7420 |.|420t │ │ │ │ +00082960: 7420 202d 2032 3932 3033 3633 7420 7420 t - 2920363t t │ │ │ │ +00082970: 202b 2032 3730 3639 3434 7420 7420 202b + 2706944t t + │ │ │ │ +00082980: 2034 3632 3639 3439 7420 7420 202d 2020 4626949t t - │ │ │ │ +00082990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000829a0: 2020 2020 2020 2020 7c0a 7c20 2020 2030 |.| 0 │ │ │ │ +000829b0: 2034 2020 2020 2020 2020 2020 2031 2034 4 1 4 │ │ │ │ +000829c0: 2020 2020 2020 2020 2020 2032 2034 2020 2 4 │ │ │ │ +000829d0: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +000829e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000829f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082a40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082a50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082a40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082a90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082aa0: 7c34 3437 3474 2074 2020 2d20 3339 3030 |4474t t - 3900 │ │ │ │ -00082ab0: 3936 3974 2074 2020 2d20 3231 3737 3239 969t t - 217729 │ │ │ │ -00082ac0: 3074 2074 2020 2b20 3439 3131 3536 3674 0t t + 4911566t │ │ │ │ -00082ad0: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ -00082ae0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082af0: 7c20 2020 2020 3020 3420 2020 2020 2020 | 0 4 │ │ │ │ -00082b00: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ -00082b10: 2020 3220 3420 2020 2020 2020 2020 2020 2 4 │ │ │ │ -00082b20: 3320 3420 2020 2020 2020 2020 2020 2020 3 4 │ │ │ │ -00082b30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082b40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082a90: 2020 2020 2020 2020 7c0a 7c34 3437 3474 |.|4474t │ │ │ │ +00082aa0: 2074 2020 2d20 3339 3030 3936 3974 2074 t - 3900969t t │ │ │ │ +00082ab0: 2020 2d20 3231 3737 3239 3074 2074 2020 - 2177290t t │ │ │ │ +00082ac0: 2b20 3439 3131 3536 3674 2074 2020 2020 + 4911566t t │ │ │ │ +00082ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082ae0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082af0: 3020 3420 2020 2020 2020 2020 2020 3120 0 4 1 │ │ │ │ +00082b00: 3420 2020 2020 2020 2020 2020 3220 3420 4 2 4 │ │ │ │ +00082b10: 2020 2020 2020 2020 2020 3320 3420 2020 3 4 │ │ │ │ +00082b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082b30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082b80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082b90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082b80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082bd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082be0: 7c2d 2032 3237 3637 3538 7420 7420 202d |- 2276758t t - │ │ │ │ -00082bf0: 2034 3539 3833 3230 7420 7420 202d 2037 4598320t t - 7 │ │ │ │ -00082c00: 3031 3532 7420 7420 202b 2032 3135 3032 0152t t + 21502 │ │ │ │ -00082c10: 3933 7420 2020 2020 2020 2020 2020 2020 93t │ │ │ │ -00082c20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082c30: 7c20 2020 2020 2020 2020 2030 2034 2020 | 0 4 │ │ │ │ -00082c40: 2020 2020 2020 2020 2031 2034 2020 2020 1 4 │ │ │ │ -00082c50: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ -00082c60: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00082c70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082c80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082bd0: 2020 2020 2020 2020 7c0a 7c2d 2032 3237 |.|- 227 │ │ │ │ +00082be0: 3637 3538 7420 7420 202d 2034 3539 3833 6758t t - 45983 │ │ │ │ +00082bf0: 3230 7420 7420 202d 2037 3031 3532 7420 20t t - 70152t │ │ │ │ +00082c00: 7420 202b 2032 3135 3032 3933 7420 2020 t + 2150293t │ │ │ │ +00082c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082c20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082c30: 2020 2020 2030 2034 2020 2020 2020 2020 0 4 │ │ │ │ +00082c40: 2020 2031 2034 2020 2020 2020 2020 2032 1 4 2 │ │ │ │ +00082c50: 2034 2020 2020 2020 2020 2020 2033 2020 4 3 │ │ │ │ +00082c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082c70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082cc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082cd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082cc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082d10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082d20: 7c30 3737 3274 2074 2020 2d20 3333 3738 |0772t t - 3378 │ │ │ │ -00082d30: 3736 3474 2074 2020 2d20 3432 3437 3631 764t t - 424761 │ │ │ │ -00082d40: 3774 2074 2020 2b20 3137 3331 3336 7420 7t t + 173136t │ │ │ │ -00082d50: 7420 202b 2020 2020 2020 2020 2020 2020 t + │ │ │ │ -00082d60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082d70: 7c20 2020 2020 3020 3420 2020 2020 2020 | 0 4 │ │ │ │ -00082d80: 2020 2020 3120 3420 2020 2020 2020 2020 1 4 │ │ │ │ -00082d90: 2020 3220 3420 2020 2020 2020 2020 2033 2 4 3 │ │ │ │ -00082da0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00082db0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082dc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082d10: 2020 2020 2020 2020 7c0a 7c30 3737 3274 |.|0772t │ │ │ │ +00082d20: 2074 2020 2d20 3333 3738 3736 3474 2074 t - 3378764t t │ │ │ │ +00082d30: 2020 2d20 3432 3437 3631 3774 2074 2020 - 4247617t t │ │ │ │ +00082d40: 2b20 3137 3331 3336 7420 7420 202b 2020 + 173136t t + │ │ │ │ +00082d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082d60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082d70: 3020 3420 2020 2020 2020 2020 2020 3120 0 4 1 │ │ │ │ +00082d80: 3420 2020 2020 2020 2020 2020 3220 3420 4 2 4 │ │ │ │ +00082d90: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ +00082da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082db0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082e00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082e10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082e00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082e50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082e60: 7c36 3174 2074 2020 2b20 3234 3836 3834 |61t t + 248684 │ │ │ │ -00082e70: 3674 2074 2020 2d20 3233 3434 3439 3774 6t t - 2344497t │ │ │ │ -00082e80: 2074 2020 2d20 3431 3631 3235 3374 2074 t - 4161253t t │ │ │ │ -00082e90: 2020 2b20 2020 2020 2020 2020 2020 2020 + │ │ │ │ -00082ea0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082eb0: 7c20 2020 3020 3420 2020 2020 2020 2020 | 0 4 │ │ │ │ -00082ec0: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ -00082ed0: 3220 3420 2020 2020 2020 2020 2020 3320 2 4 3 │ │ │ │ -00082ee0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00082ef0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082f00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082e50: 2020 2020 2020 2020 7c0a 7c36 3174 2074 |.|61t t │ │ │ │ +00082e60: 2020 2b20 3234 3836 3834 3674 2074 2020 + 2486846t t │ │ │ │ +00082e70: 2d20 3233 3434 3439 3774 2074 2020 2d20 - 2344497t t - │ │ │ │ +00082e80: 3431 3631 3235 3374 2074 2020 2b20 2020 4161253t t + │ │ │ │ +00082e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082ea0: 2020 2020 2020 2020 7c0a 7c20 2020 3020 |.| 0 │ │ │ │ +00082eb0: 3420 2020 2020 2020 2020 2020 3120 3420 4 1 4 │ │ │ │ +00082ec0: 2020 2020 2020 2020 2020 3220 3420 2020 2 4 │ │ │ │ +00082ed0: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ +00082ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082ef0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082f40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082f50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082f40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00082f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00082f90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082fa0: 7c35 3332 3034 3574 2074 2020 2b20 3131 |532045t t + 11 │ │ │ │ -00082fb0: 3134 3838 3674 2074 2020 2b20 3135 3033 14886t t + 1503 │ │ │ │ -00082fc0: 3838 3574 2074 2020 2d20 3431 3531 3435 885t t - 415145 │ │ │ │ -00082fd0: 3174 2074 2020 2020 2020 2020 2020 2020 1t t │ │ │ │ -00082fe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00082ff0: 7c20 2020 2020 2020 3020 3420 2020 2020 | 0 4 │ │ │ │ -00083000: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ -00083010: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -00083020: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00083030: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083040: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00082f90: 2020 2020 2020 2020 7c0a 7c35 3332 3034 |.|53204 │ │ │ │ +00082fa0: 3574 2074 2020 2b20 3131 3134 3838 3674 5t t + 1114886t │ │ │ │ +00082fb0: 2074 2020 2b20 3135 3033 3838 3574 2074 t + 1503885t t │ │ │ │ +00082fc0: 2020 2d20 3431 3531 3435 3174 2074 2020 - 4151451t t │ │ │ │ +00082fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00082fe0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00082ff0: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00083000: 3120 3420 2020 2020 2020 2020 2020 3220 1 4 2 │ │ │ │ +00083010: 3420 2020 2020 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00083020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00083030: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083080: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083090: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083080: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000830a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000830b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000830c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000830d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000830e0: 7c34 3231 3839 3133 7420 7420 202d 2032 |4218913t t - 2 │ │ │ │ -000830f0: 3239 3439 3674 2074 2020 2d20 3135 3136 29496t t - 1516 │ │ │ │ -00083100: 3831 3974 2074 2020 2d20 3239 3836 3730 819t t - 298670 │ │ │ │ -00083110: 3174 2074 2020 2020 2020 2020 2020 2020 1t t │ │ │ │ -00083120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083130: 7c20 2020 2020 2020 2030 2034 2020 2020 | 0 4 │ │ │ │ -00083140: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ -00083150: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -00083160: 2020 3320 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00083170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083180: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000830d0: 2020 2020 2020 2020 7c0a 7c34 3231 3839 |.|42189 │ │ │ │ +000830e0: 3133 7420 7420 202d 2032 3239 3439 3674 13t t - 229496t │ │ │ │ +000830f0: 2074 2020 2d20 3135 3136 3831 3974 2074 t - 1516819t t │ │ │ │ +00083100: 2020 2d20 3239 3836 3730 3174 2074 2020 - 2986701t t │ │ │ │ +00083110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00083120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083130: 2020 2030 2034 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00083140: 3120 3420 2020 2020 2020 2020 2020 3220 1 4 2 │ │ │ │ +00083150: 3420 2020 2020 2020 2020 2020 3320 2020 4 3 │ │ │ │ +00083160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00083170: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000831a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000831b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000831c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000831d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000831c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000831d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000831e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000831f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083220: 7c32 3737 3930 3638 7420 7420 202d 2033 |2779068t t - 3 │ │ │ │ -00083230: 3832 3934 3036 7420 7420 202b 2032 3739 829406t t + 279 │ │ │ │ -00083240: 3139 3837 7420 7420 202b 2031 3232 3936 1987t t + 12296 │ │ │ │ -00083250: 3032 7420 2020 2020 2020 2020 2020 2020 02t │ │ │ │ -00083260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083270: 7c20 2020 2020 2020 2030 2034 2020 2020 | 0 4 │ │ │ │ -00083280: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ -00083290: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ -000832a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000832b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000832c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083210: 2020 2020 2020 2020 7c0a 7c32 3737 3930 |.|27790 │ │ │ │ +00083220: 3638 7420 7420 202d 2033 3832 3934 3036 68t t - 3829406 │ │ │ │ +00083230: 7420 7420 202b 2032 3739 3139 3837 7420 t t + 2791987t │ │ │ │ +00083240: 7420 202b 2031 3232 3936 3032 7420 2020 t + 1229602t │ │ │ │ +00083250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00083260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083270: 2020 2030 2034 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00083280: 2031 2034 2020 2020 2020 2020 2020 2032 1 4 2 │ │ │ │ +00083290: 2034 2020 2020 2020 2020 2020 2033 2020 4 3 │ │ │ │ +000832a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000832b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000832c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000832d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000832e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000832f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083360: 7c20 202b 2032 3638 3834 3474 2074 2020 | + 268844t t │ │ │ │ -00083370: 2d20 3131 3739 3838 3174 2074 2020 2d20 - 1179881t t - │ │ │ │ -00083380: 3139 3834 3235 3274 2074 2020 2b20 3835 1984252t t + 85 │ │ │ │ -00083390: 3235 3974 2020 2020 2020 2020 2020 2020 259t │ │ │ │ -000833a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000833b0: 7c34 2020 2020 2020 2020 2020 3120 3420 |4 1 4 │ │ │ │ -000833c0: 2020 2020 2020 2020 2020 3220 3420 2020 2 4 │ │ │ │ -000833d0: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ +00083350: 2020 2020 2020 2020 7c0a 7c20 202b 2032 |.| + 2 │ │ │ │ +00083360: 3638 3834 3474 2074 2020 2d20 3131 3739 68844t t - 1179 │ │ │ │ +00083370: 3838 3174 2074 2020 2d20 3139 3834 3235 881t t - 198425 │ │ │ │ +00083380: 3274 2074 2020 2b20 3835 3235 3974 2020 2t t + 85259t │ │ │ │ +00083390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000833a0: 2020 2020 2020 2020 7c0a 7c34 2020 2020 |.|4 │ │ │ │ +000833b0: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ +000833c0: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ +000833d0: 2020 3320 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ 000833e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000833f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083400: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +000833f0: 2020 2020 2020 2020 7c0a 7c2d 2d2d 2d2d |.|----- │ │ │ │ +00083400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00083410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00083420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00083430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00083440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00083450: 7c20 2020 2020 2020 2020 2032 2020 2020 | 2 │ │ │ │ +00083440: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00083450: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 00083460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000834a0: 7c2b 2031 3535 3839 3736 7420 202d 2033 |+ 1558976t - 3 │ │ │ │ -000834b0: 3130 3638 3930 7420 7420 202d 2031 3832 106890t t - 182 │ │ │ │ -000834c0: 3734 3535 7420 7420 202b 2034 3935 3339 7455t t + 49539 │ │ │ │ -000834d0: 3131 7420 7420 202b 2033 3636 3830 3933 11t t + 3668093 │ │ │ │ -000834e0: 7420 7420 202d 2033 3838 3132 3737 7c0a t t - 3881277|. │ │ │ │ -000834f0: 7c20 2020 2020 2020 2020 2034 2020 2020 | 4 │ │ │ │ -00083500: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ -00083510: 2020 2020 2031 2035 2020 2020 2020 2020 1 5 │ │ │ │ -00083520: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ -00083530: 2033 2035 2020 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -00083540: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083490: 2020 2020 2020 2020 7c0a 7c2b 2031 3535 |.|+ 155 │ │ │ │ +000834a0: 3839 3736 7420 202d 2033 3130 3638 3930 8976t - 3106890 │ │ │ │ +000834b0: 7420 7420 202d 2031 3832 3734 3535 7420 t t - 1827455t │ │ │ │ +000834c0: 7420 202b 2034 3935 3339 3131 7420 7420 t + 4953911t t │ │ │ │ +000834d0: 202b 2033 3636 3830 3933 7420 7420 202d + 3668093t t - │ │ │ │ +000834e0: 2033 3838 3132 3737 7c0a 7c20 2020 2020 3881277|.| │ │ │ │ +000834f0: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ +00083500: 2030 2035 2020 2020 2020 2020 2020 2031 0 5 1 │ │ │ │ +00083510: 2035 2020 2020 2020 2020 2020 2032 2035 5 2 5 │ │ │ │ +00083520: 2020 2020 2020 2020 2020 2033 2035 2020 3 5 │ │ │ │ +00083530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083590: 7c20 2020 2020 2020 2020 3220 2020 2020 | 2 │ │ │ │ +00083580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083590: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000835a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000835b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000835c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000835d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000835e0: 7c20 3135 3030 3633 3874 2020 2d20 3137 | 1500638t - 17 │ │ │ │ -000835f0: 3633 3639 7420 7420 202d 2032 3139 3233 6369t t - 21923 │ │ │ │ -00083600: 3239 7420 7420 202d 2032 3332 3534 3839 29t t - 2325489 │ │ │ │ -00083610: 7420 7420 202b 2031 3138 3239 3532 7420 t t + 1182952t │ │ │ │ -00083620: 7420 202b 2037 3136 3235 3974 2074 7c0a t + 716259t t|. │ │ │ │ -00083630: 7c20 2020 2020 2020 2020 3420 2020 2020 | 4 │ │ │ │ -00083640: 2020 2020 2030 2035 2020 2020 2020 2020 0 5 │ │ │ │ -00083650: 2020 2031 2035 2020 2020 2020 2020 2020 1 5 │ │ │ │ -00083660: 2032 2035 2020 2020 2020 2020 2020 2033 2 5 3 │ │ │ │ -00083670: 2035 2020 2020 2020 2020 2020 3420 7c0a 5 4 |. │ │ │ │ -00083680: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000835d0: 2020 2020 2020 2020 7c0a 7c20 3135 3030 |.| 1500 │ │ │ │ +000835e0: 3633 3874 2020 2d20 3137 3633 3639 7420 638t - 176369t │ │ │ │ +000835f0: 7420 202d 2032 3139 3233 3239 7420 7420 t - 2192329t t │ │ │ │ +00083600: 202d 2032 3332 3534 3839 7420 7420 202b - 2325489t t + │ │ │ │ +00083610: 2031 3138 3239 3532 7420 7420 202b 2037 1182952t t + 7 │ │ │ │ +00083620: 3136 3235 3974 2074 7c0a 7c20 2020 2020 16259t t|.| │ │ │ │ +00083630: 2020 2020 3420 2020 2020 2020 2020 2030 4 0 │ │ │ │ +00083640: 2035 2020 2020 2020 2020 2020 2031 2035 5 1 5 │ │ │ │ +00083650: 2020 2020 2020 2020 2020 2032 2035 2020 2 5 │ │ │ │ +00083660: 2020 2020 2020 2020 2033 2035 2020 2020 3 5 │ │ │ │ +00083670: 2020 2020 2020 3420 7c0a 7c20 2020 2020 4 |.| │ │ │ │ +00083680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000836a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000836b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000836c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000836d0: 7c20 2020 2020 2020 2020 2032 2020 2020 | 2 │ │ │ │ +000836c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000836d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000836e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000836f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083720: 7c2d 2032 3034 3237 3535 7420 202d 2032 |- 2042755t - 2 │ │ │ │ -00083730: 3231 3830 3938 7420 7420 202d 2033 3739 218098t t - 379 │ │ │ │ -00083740: 3538 3138 7420 7420 202b 2032 3830 3933 5818t t + 28093 │ │ │ │ -00083750: 3136 7420 7420 202b 2031 3033 3139 3731 16t t + 1031971 │ │ │ │ -00083760: 7420 7420 202d 2035 3639 3838 3774 7c0a t t - 569887t|. │ │ │ │ -00083770: 7c20 2020 2020 2020 2020 2034 2020 2020 | 4 │ │ │ │ -00083780: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ -00083790: 2020 2020 2031 2035 2020 2020 2020 2020 1 5 │ │ │ │ -000837a0: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ -000837b0: 2033 2035 2020 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -000837c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083710: 2020 2020 2020 2020 7c0a 7c2d 2032 3034 |.|- 204 │ │ │ │ +00083720: 3237 3535 7420 202d 2032 3231 3830 3938 2755t - 2218098 │ │ │ │ +00083730: 7420 7420 202d 2033 3739 3538 3138 7420 t t - 3795818t │ │ │ │ +00083740: 7420 202b 2032 3830 3933 3136 7420 7420 t + 2809316t t │ │ │ │ +00083750: 202b 2031 3033 3139 3731 7420 7420 202d + 1031971t t - │ │ │ │ +00083760: 2035 3639 3838 3774 7c0a 7c20 2020 2020 569887t|.| │ │ │ │ +00083770: 2020 2020 2034 2020 2020 2020 2020 2020 4 │ │ │ │ +00083780: 2030 2035 2020 2020 2020 2020 2020 2031 0 5 1 │ │ │ │ +00083790: 2035 2020 2020 2020 2020 2020 2032 2035 5 2 5 │ │ │ │ +000837a0: 2020 2020 2020 2020 2020 2033 2035 2020 3 5 │ │ │ │ +000837b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000837c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000837d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000837e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000837f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083810: 7c20 2020 2020 2020 2020 2020 2032 2020 | 2 │ │ │ │ +00083800: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083810: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00083820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083860: 7c74 2020 2d20 3137 3739 3735 7420 202d |t - 177975t - │ │ │ │ -00083870: 2038 3133 3035 7420 7420 202d 2034 3330 81305t t - 430 │ │ │ │ -00083880: 3031 3036 7420 7420 202b 2037 3639 3939 0106t t + 76999 │ │ │ │ -00083890: 7420 7420 202b 2031 3830 3431 3235 7420 t t + 1804125t │ │ │ │ -000838a0: 7420 202b 2032 3138 3335 3635 7420 7c0a t + 2183565t |. │ │ │ │ -000838b0: 7c20 3420 2020 2020 2020 2020 2034 2020 | 4 4 │ │ │ │ -000838c0: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ -000838d0: 2020 2020 2031 2035 2020 2020 2020 2020 1 5 │ │ │ │ -000838e0: 2032 2035 2020 2020 2020 2020 2020 2033 2 5 3 │ │ │ │ -000838f0: 2035 2020 2020 2020 2020 2020 2034 7c0a 5 4|. │ │ │ │ -00083900: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083850: 2020 2020 2020 2020 7c0a 7c74 2020 2d20 |.|t - │ │ │ │ +00083860: 3137 3739 3735 7420 202d 2038 3133 3035 177975t - 81305 │ │ │ │ +00083870: 7420 7420 202d 2034 3330 3031 3036 7420 t t - 4300106t │ │ │ │ +00083880: 7420 202b 2037 3639 3939 7420 7420 202b t + 76999t t + │ │ │ │ +00083890: 2031 3830 3431 3235 7420 7420 202b 2032 1804125t t + 2 │ │ │ │ +000838a0: 3138 3335 3635 7420 7c0a 7c20 3420 2020 183565t |.| 4 │ │ │ │ +000838b0: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +000838c0: 2030 2035 2020 2020 2020 2020 2020 2031 0 5 1 │ │ │ │ +000838d0: 2035 2020 2020 2020 2020 2032 2035 2020 5 2 5 │ │ │ │ +000838e0: 2020 2020 2020 2020 2033 2035 2020 2020 3 5 │ │ │ │ +000838f0: 2020 2020 2020 2034 7c0a 7c20 2020 2020 4|.| │ │ │ │ +00083900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083950: 7c20 2020 2020 2020 2020 3220 2020 2020 | 2 │ │ │ │ +00083940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083950: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00083960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000839a0: 7c20 3237 3630 3135 3874 2020 2d20 3235 | 2760158t - 25 │ │ │ │ -000839b0: 3436 3335 3074 2074 2020 2b20 3232 3637 46350t t + 2267 │ │ │ │ -000839c0: 3334 3274 2074 2020 2b20 3337 3637 3035 342t t + 376705 │ │ │ │ -000839d0: 3174 2074 2020 2d20 3137 3637 3933 3574 1t t - 1767935t │ │ │ │ -000839e0: 2074 2020 2d20 3430 3930 3033 3774 7c0a t - 4090037t|. │ │ │ │ -000839f0: 7c20 2020 2020 2020 2020 3420 2020 2020 | 4 │ │ │ │ -00083a00: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ -00083a10: 2020 2020 3120 3520 2020 2020 2020 2020 1 5 │ │ │ │ -00083a20: 2020 3220 3520 2020 2020 2020 2020 2020 2 5 │ │ │ │ -00083a30: 3320 3520 2020 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -00083a40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083990: 2020 2020 2020 2020 7c0a 7c20 3237 3630 |.| 2760 │ │ │ │ +000839a0: 3135 3874 2020 2d20 3235 3436 3335 3074 158t - 2546350t │ │ │ │ +000839b0: 2074 2020 2b20 3232 3637 3334 3274 2074 t + 2267342t t │ │ │ │ +000839c0: 2020 2b20 3337 3637 3035 3174 2074 2020 + 3767051t t │ │ │ │ +000839d0: 2d20 3137 3637 3933 3574 2074 2020 2d20 - 1767935t t - │ │ │ │ +000839e0: 3430 3930 3033 3774 7c0a 7c20 2020 2020 4090037t|.| │ │ │ │ +000839f0: 2020 2020 3420 2020 2020 2020 2020 2020 4 │ │ │ │ +00083a00: 3020 3520 2020 2020 2020 2020 2020 3120 0 5 1 │ │ │ │ +00083a10: 3520 2020 2020 2020 2020 2020 3220 3520 5 2 5 │ │ │ │ +00083a20: 2020 2020 2020 2020 2020 3320 3520 2020 3 5 │ │ │ │ +00083a30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083a80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083a90: 7c20 2020 2020 2020 3220 2020 2020 2020 | 2 │ │ │ │ +00083a80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083a90: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00083aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083ad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083ae0: 7c34 3636 3235 3974 2020 2b20 3537 3039 |466259t + 5709 │ │ │ │ -00083af0: 3139 7420 7420 202b 2034 3432 3636 3836 19t t + 4426686 │ │ │ │ -00083b00: 7420 7420 202d 2032 3438 3639 3574 2074 t t - 248695t t │ │ │ │ -00083b10: 2020 2d20 3435 3134 3333 7420 7420 202b - 451433t t + │ │ │ │ -00083b20: 2034 3032 3332 3938 7420 7420 202b 7c0a 4023298t t +|. │ │ │ │ -00083b30: 7c20 2020 2020 2020 3420 2020 2020 2020 | 4 │ │ │ │ -00083b40: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ -00083b50: 2031 2035 2020 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ -00083b60: 3520 2020 2020 2020 2020 2033 2035 2020 5 3 5 │ │ │ │ -00083b70: 2020 2020 2020 2020 2034 2035 2020 7c0a 4 5 |. │ │ │ │ -00083b80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083ad0: 2020 2020 2020 2020 7c0a 7c34 3636 3235 |.|46625 │ │ │ │ +00083ae0: 3974 2020 2b20 3537 3039 3139 7420 7420 9t + 570919t t │ │ │ │ +00083af0: 202b 2034 3432 3636 3836 7420 7420 202d + 4426686t t - │ │ │ │ +00083b00: 2032 3438 3639 3574 2074 2020 2d20 3435 248695t t - 45 │ │ │ │ +00083b10: 3134 3333 7420 7420 202b 2034 3032 3332 1433t t + 40232 │ │ │ │ +00083b20: 3938 7420 7420 202b 7c0a 7c20 2020 2020 98t t +|.| │ │ │ │ +00083b30: 2020 3420 2020 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ +00083b40: 2020 2020 2020 2020 2020 2031 2035 2020 1 5 │ │ │ │ +00083b50: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ +00083b60: 2020 2020 2033 2035 2020 2020 2020 2020 3 5 │ │ │ │ +00083b70: 2020 2034 2035 2020 7c0a 7c20 2020 2020 4 5 |.| │ │ │ │ +00083b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083bc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083bd0: 7c20 2020 2020 2020 2020 2020 2032 2020 | 2 │ │ │ │ +00083bc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083bd0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00083be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083c10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083c20: 7c20 202d 2032 3937 3335 3030 7420 202d | - 2973500t - │ │ │ │ -00083c30: 2034 3231 3831 3336 7420 7420 202d 2033 4218136t t - 3 │ │ │ │ -00083c40: 3830 3434 3233 7420 7420 202b 2032 3732 804423t t + 272 │ │ │ │ -00083c50: 3632 3635 7420 7420 202b 2034 3532 3339 6265t t + 45239 │ │ │ │ -00083c60: 3138 7420 7420 202d 2032 3130 3332 7c0a 18t t - 21032|. │ │ │ │ -00083c70: 7c34 2020 2020 2020 2020 2020 2034 2020 |4 4 │ │ │ │ -00083c80: 2020 2020 2020 2020 2030 2035 2020 2020 0 5 │ │ │ │ -00083c90: 2020 2020 2020 2031 2035 2020 2020 2020 1 5 │ │ │ │ -00083ca0: 2020 2020 2032 2035 2020 2020 2020 2020 2 5 │ │ │ │ -00083cb0: 2020 2033 2035 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -00083cc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083c10: 2020 2020 2020 2020 7c0a 7c20 202d 2032 |.| - 2 │ │ │ │ +00083c20: 3937 3335 3030 7420 202d 2034 3231 3831 973500t - 42181 │ │ │ │ +00083c30: 3336 7420 7420 202d 2033 3830 3434 3233 36t t - 3804423 │ │ │ │ +00083c40: 7420 7420 202b 2032 3732 3632 3635 7420 t t + 2726265t │ │ │ │ +00083c50: 7420 202b 2034 3532 3339 3138 7420 7420 t + 4523918t t │ │ │ │ +00083c60: 202d 2032 3130 3332 7c0a 7c34 2020 2020 - 21032|.|4 │ │ │ │ +00083c70: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +00083c80: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +00083c90: 2031 2035 2020 2020 2020 2020 2020 2032 1 5 2 │ │ │ │ +00083ca0: 2035 2020 2020 2020 2020 2020 2033 2035 5 3 5 │ │ │ │ +00083cb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083d10: 7c20 2020 2020 2020 2020 2020 2032 2020 | 2 │ │ │ │ +00083d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083d10: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00083d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083d50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083d60: 7c20 202d 2033 3335 3235 3934 7420 202d | - 3352594t - │ │ │ │ -00083d70: 2034 3437 3138 3939 7420 7420 202d 2032 4471899t t - 2 │ │ │ │ -00083d80: 3632 3935 3330 7420 7420 202b 2036 3736 629530t t + 676 │ │ │ │ -00083d90: 3732 3974 2074 2020 2d20 3233 3338 3236 729t t - 233826 │ │ │ │ -00083da0: 3574 2074 2020 2d20 3430 3738 3330 7c0a 5t t - 407830|. │ │ │ │ -00083db0: 7c34 2020 2020 2020 2020 2020 2034 2020 |4 4 │ │ │ │ -00083dc0: 2020 2020 2020 2020 2030 2035 2020 2020 0 5 │ │ │ │ -00083dd0: 2020 2020 2020 2031 2035 2020 2020 2020 1 5 │ │ │ │ -00083de0: 2020 2020 3220 3520 2020 2020 2020 2020 2 5 │ │ │ │ -00083df0: 2020 3320 3520 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -00083e00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083d50: 2020 2020 2020 2020 7c0a 7c20 202d 2033 |.| - 3 │ │ │ │ +00083d60: 3335 3235 3934 7420 202d 2034 3437 3138 352594t - 44718 │ │ │ │ +00083d70: 3939 7420 7420 202d 2032 3632 3935 3330 99t t - 2629530 │ │ │ │ +00083d80: 7420 7420 202b 2036 3736 3732 3974 2074 t t + 676729t t │ │ │ │ +00083d90: 2020 2d20 3233 3338 3236 3574 2074 2020 - 2338265t t │ │ │ │ +00083da0: 2d20 3430 3738 3330 7c0a 7c34 2020 2020 - 407830|.|4 │ │ │ │ +00083db0: 2020 2020 2020 2034 2020 2020 2020 2020 4 │ │ │ │ +00083dc0: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +00083dd0: 2031 2035 2020 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ +00083de0: 3520 2020 2020 2020 2020 2020 3320 3520 5 3 5 │ │ │ │ +00083df0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083e40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083e50: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00083e40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083e50: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00083e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083e90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083ea0: 7c74 2020 2b20 3439 3032 3837 3074 2020 |t + 4902870t │ │ │ │ -00083eb0: 2b20 3830 3039 3532 7420 7420 202d 2033 + 800952t t - 3 │ │ │ │ -00083ec0: 3832 3136 3231 7420 7420 202d 2038 3638 821621t t - 868 │ │ │ │ -00083ed0: 3536 3774 2074 2020 2b20 3938 3439 3331 567t t + 984931 │ │ │ │ -00083ee0: 7420 7420 202b 2039 3734 3534 3174 7c0a t t + 974541t|. │ │ │ │ -00083ef0: 7c20 3420 2020 2020 2020 2020 2020 3420 | 4 4 │ │ │ │ -00083f00: 2020 2020 2020 2020 2030 2035 2020 2020 0 5 │ │ │ │ -00083f10: 2020 2020 2020 2031 2035 2020 2020 2020 1 5 │ │ │ │ -00083f20: 2020 2020 3220 3520 2020 2020 2020 2020 2 5 │ │ │ │ -00083f30: 2033 2035 2020 2020 2020 2020 2020 7c0a 3 5 |. │ │ │ │ -00083f40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00083e90: 2020 2020 2020 2020 7c0a 7c74 2020 2b20 |.|t + │ │ │ │ +00083ea0: 3439 3032 3837 3074 2020 2b20 3830 3039 4902870t + 8009 │ │ │ │ +00083eb0: 3532 7420 7420 202d 2033 3832 3136 3231 52t t - 3821621 │ │ │ │ +00083ec0: 7420 7420 202d 2038 3638 3536 3774 2074 t t - 868567t t │ │ │ │ +00083ed0: 2020 2b20 3938 3439 3331 7420 7420 202b + 984931t t + │ │ │ │ +00083ee0: 2039 3734 3534 3174 7c0a 7c20 3420 2020 974541t|.| 4 │ │ │ │ +00083ef0: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +00083f00: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ +00083f10: 2031 2035 2020 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ +00083f20: 3520 2020 2020 2020 2020 2033 2035 2020 5 3 5 │ │ │ │ +00083f30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00083f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083f80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083f90: 7c32 2020 2020 2020 2020 2020 2020 2020 |2 │ │ │ │ +00083f80: 2020 2020 2020 2020 7c0a 7c32 2020 2020 |.|2 │ │ │ │ +00083f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00083fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00083fd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00083fe0: 7c20 202d 2039 3839 3536 3874 2074 2020 | - 989568t t │ │ │ │ -00083ff0: 2d20 3233 3033 3931 3274 2074 2020 2d20 - 2303912t t - │ │ │ │ -00084000: 3430 3734 3539 3674 2074 2020 2d20 3137 4074596t t - 17 │ │ │ │ -00084010: 3431 3632 3974 2074 2020 2d20 3132 3531 41629t t - 1251 │ │ │ │ -00084020: 3638 3574 2074 2020 2d20 3231 3935 7c0a 685t t - 2195|. │ │ │ │ -00084030: 7c34 2020 2020 2020 2020 2020 3020 3520 |4 0 5 │ │ │ │ -00084040: 2020 2020 2020 2020 2020 3120 3520 2020 1 5 │ │ │ │ -00084050: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ -00084060: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ -00084070: 2020 2020 3420 3520 2020 2020 2020 7c0a 4 5 |. │ │ │ │ -00084080: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00083fd0: 2020 2020 2020 2020 7c0a 7c20 202d 2039 |.| - 9 │ │ │ │ +00083fe0: 3839 3536 3874 2074 2020 2d20 3233 3033 89568t t - 2303 │ │ │ │ +00083ff0: 3931 3274 2074 2020 2d20 3430 3734 3539 912t t - 407459 │ │ │ │ +00084000: 3674 2074 2020 2d20 3137 3431 3632 3974 6t t - 1741629t │ │ │ │ +00084010: 2074 2020 2d20 3132 3531 3638 3574 2074 t - 1251685t t │ │ │ │ +00084020: 2020 2d20 3231 3935 7c0a 7c34 2020 2020 - 2195|.|4 │ │ │ │ +00084030: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ +00084040: 2020 2020 3120 3520 2020 2020 2020 2020 1 5 │ │ │ │ +00084050: 2020 3220 3520 2020 2020 2020 2020 2020 2 5 │ │ │ │ +00084060: 3320 3520 2020 2020 2020 2020 2020 3420 3 5 4 │ │ │ │ +00084070: 3520 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 5 |.|----- │ │ │ │ +00084080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00084090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000840a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000840b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000840c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -000840d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000840e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000840c0: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +000840d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000840e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000840f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084120: 7c74 2074 2020 2b20 3234 3433 3330 3774 |t t + 2443307t │ │ │ │ -00084130: 2020 2b20 3435 3134 3838 3974 2074 2020 + 4514889t t │ │ │ │ -00084140: 2d20 3230 3734 3437 3874 2074 2020 2b20 - 2074478t t + │ │ │ │ -00084150: 3433 3238 3839 3374 2074 2020 2d20 3631 4328893t t - 61 │ │ │ │ -00084160: 3034 3438 7420 7420 202d 2032 3736 7c0a 0448t t - 276|. │ │ │ │ -00084170: 7c20 3420 3520 2020 2020 2020 2020 2020 | 4 5 │ │ │ │ -00084180: 3520 2020 2020 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ -00084190: 2020 2020 2020 2020 2020 3120 3620 2020 1 6 │ │ │ │ -000841a0: 2020 2020 2020 2020 3220 3620 2020 2020 2 6 │ │ │ │ -000841b0: 2020 2020 2033 2036 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -000841c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084110: 2020 2020 2020 2020 7c0a 7c74 2074 2020 |.|t t │ │ │ │ +00084120: 2b20 3234 3433 3330 3774 2020 2b20 3435 + 2443307t + 45 │ │ │ │ +00084130: 3134 3838 3974 2074 2020 2d20 3230 3734 14889t t - 2074 │ │ │ │ +00084140: 3437 3874 2074 2020 2b20 3433 3238 3839 478t t + 432889 │ │ │ │ +00084150: 3374 2074 2020 2d20 3631 3034 3438 7420 3t t - 610448t │ │ │ │ +00084160: 7420 202d 2032 3736 7c0a 7c20 3420 3520 t - 276|.| 4 5 │ │ │ │ +00084170: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ +00084180: 2020 2020 2020 3020 3620 2020 2020 2020 0 6 │ │ │ │ +00084190: 2020 2020 3120 3620 2020 2020 2020 2020 1 6 │ │ │ │ +000841a0: 2020 3220 3620 2020 2020 2020 2020 2033 2 6 3 │ │ │ │ +000841b0: 2036 2020 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +000841c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000841d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000841e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000841f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084210: 7c20 2020 2020 2020 2020 2020 2032 2020 | 2 │ │ │ │ +00084200: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084210: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00084220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084250: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084260: 7c20 202b 2032 3032 3431 3435 7420 202b | + 2024145t + │ │ │ │ -00084270: 2038 3130 3233 3274 2074 2020 2d20 3436 810232t t - 46 │ │ │ │ -00084280: 3334 3430 3374 2074 2020 2d20 3130 3739 34403t t - 1079 │ │ │ │ -00084290: 3634 3774 2074 2020 2d20 3437 3239 3335 647t t - 472935 │ │ │ │ -000842a0: 3674 2074 2020 2d20 3236 3230 3937 7c0a 6t t - 262097|. │ │ │ │ -000842b0: 7c35 2020 2020 2020 2020 2020 2035 2020 |5 5 │ │ │ │ -000842c0: 2020 2020 2020 2020 3020 3620 2020 2020 0 6 │ │ │ │ -000842d0: 2020 2020 2020 3120 3620 2020 2020 2020 1 6 │ │ │ │ -000842e0: 2020 2020 3220 3620 2020 2020 2020 2020 2 6 │ │ │ │ -000842f0: 2020 3320 3620 2020 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -00084300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084250: 2020 2020 2020 2020 7c0a 7c20 202b 2032 |.| + 2 │ │ │ │ +00084260: 3032 3431 3435 7420 202b 2038 3130 3233 024145t + 81023 │ │ │ │ +00084270: 3274 2074 2020 2d20 3436 3334 3430 3374 2t t - 4634403t │ │ │ │ +00084280: 2074 2020 2d20 3130 3739 3634 3774 2074 t - 1079647t t │ │ │ │ +00084290: 2020 2d20 3437 3239 3335 3674 2074 2020 - 4729356t t │ │ │ │ +000842a0: 2d20 3236 3230 3937 7c0a 7c35 2020 2020 - 262097|.|5 │ │ │ │ +000842b0: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +000842c0: 2020 3020 3620 2020 2020 2020 2020 2020 0 6 │ │ │ │ +000842d0: 3120 3620 2020 2020 2020 2020 2020 3220 1 6 2 │ │ │ │ +000842e0: 3620 2020 2020 2020 2020 2020 3320 3620 6 3 6 │ │ │ │ +000842f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084350: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00084340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084350: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00084360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000843a0: 7c20 7420 202b 2036 3230 3132 3174 2020 | t + 620121t │ │ │ │ -000843b0: 2d20 3133 3031 3236 7420 7420 202d 2033 - 130126t t - 3 │ │ │ │ -000843c0: 3330 3134 3337 7420 7420 202d 2032 3739 301437t t - 279 │ │ │ │ -000843d0: 3637 3937 7420 7420 202d 2032 3231 3730 6797t t - 22170 │ │ │ │ -000843e0: 3834 7420 7420 202b 2033 3635 3133 7c0a 84t t + 36513|. │ │ │ │ -000843f0: 7c34 2035 2020 2020 2020 2020 2020 3520 |4 5 5 │ │ │ │ -00084400: 2020 2020 2020 2020 2030 2036 2020 2020 0 6 │ │ │ │ -00084410: 2020 2020 2020 2031 2036 2020 2020 2020 1 6 │ │ │ │ -00084420: 2020 2020 2032 2036 2020 2020 2020 2020 2 6 │ │ │ │ -00084430: 2020 2033 2036 2020 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -00084440: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084390: 2020 2020 2020 2020 7c0a 7c20 7420 202b |.| t + │ │ │ │ +000843a0: 2036 3230 3132 3174 2020 2d20 3133 3031 620121t - 1301 │ │ │ │ +000843b0: 3236 7420 7420 202d 2033 3330 3134 3337 26t t - 3301437 │ │ │ │ +000843c0: 7420 7420 202d 2032 3739 3637 3937 7420 t t - 2796797t │ │ │ │ +000843d0: 7420 202d 2032 3231 3730 3834 7420 7420 t - 2217084t t │ │ │ │ +000843e0: 202b 2033 3635 3133 7c0a 7c34 2035 2020 + 36513|.|4 5 │ │ │ │ +000843f0: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +00084400: 2020 2030 2036 2020 2020 2020 2020 2020 0 6 │ │ │ │ +00084410: 2031 2036 2020 2020 2020 2020 2020 2032 1 6 2 │ │ │ │ +00084420: 2036 2020 2020 2020 2020 2020 2033 2036 6 3 6 │ │ │ │ +00084430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084480: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084490: 7c20 2020 2020 2020 2020 2020 2020 3220 | 2 │ │ │ │ +00084480: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084490: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 000844a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000844b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000844c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000844d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000844e0: 7c74 2020 2b20 3237 3632 3936 3274 2020 |t + 2762962t │ │ │ │ -000844f0: 2d20 3130 3733 3334 3574 2074 2020 2b20 - 1073345t t + │ │ │ │ -00084500: 3232 3733 3030 3074 2074 2020 2d20 3136 2273000t t - 16 │ │ │ │ -00084510: 3434 3139 3774 2074 2020 2d20 3838 3034 44197t t - 8804 │ │ │ │ -00084520: 3038 7420 7420 202d 2032 3839 3035 7c0a 08t t - 28905|. │ │ │ │ -00084530: 7c20 3520 2020 2020 2020 2020 2020 3520 | 5 5 │ │ │ │ -00084540: 2020 2020 2020 2020 2020 3020 3620 2020 0 6 │ │ │ │ -00084550: 2020 2020 2020 2020 3120 3620 2020 2020 1 6 │ │ │ │ -00084560: 2020 2020 2020 3220 3620 2020 2020 2020 2 6 │ │ │ │ -00084570: 2020 2033 2036 2020 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -00084580: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000844d0: 2020 2020 2020 2020 7c0a 7c74 2020 2b20 |.|t + │ │ │ │ +000844e0: 3237 3632 3936 3274 2020 2d20 3130 3733 2762962t - 1073 │ │ │ │ +000844f0: 3334 3574 2074 2020 2b20 3232 3733 3030 345t t + 227300 │ │ │ │ +00084500: 3074 2074 2020 2d20 3136 3434 3139 3774 0t t - 1644197t │ │ │ │ +00084510: 2074 2020 2d20 3838 3034 3038 7420 7420 t - 880408t t │ │ │ │ +00084520: 202d 2032 3839 3035 7c0a 7c20 3520 2020 - 28905|.| 5 │ │ │ │ +00084530: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +00084540: 2020 2020 3020 3620 2020 2020 2020 2020 0 6 │ │ │ │ +00084550: 2020 3120 3620 2020 2020 2020 2020 2020 1 6 │ │ │ │ +00084560: 3220 3620 2020 2020 2020 2020 2033 2036 2 6 3 6 │ │ │ │ +00084570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000845a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000845b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000845c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000845d0: 7c20 2020 2020 2020 2020 2020 2020 2032 | 2 │ │ │ │ +000845c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000845d0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 000845e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000845f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084620: 7c20 7420 202b 2032 3030 3637 3036 7420 | t + 2006706t │ │ │ │ -00084630: 202d 2039 3732 3335 3174 2074 2020 2d20 - 972351t t - │ │ │ │ -00084640: 3338 3833 3030 3974 2074 2020 2b20 3438 3883009t t + 48 │ │ │ │ -00084650: 3331 3133 3174 2074 2020 2b20 3434 3338 31131t t + 4438 │ │ │ │ -00084660: 3332 3474 2074 2020 2d20 3735 3637 7c0a 324t t - 7567|. │ │ │ │ -00084670: 7c34 2035 2020 2020 2020 2020 2020 2035 |4 5 5 │ │ │ │ -00084680: 2020 2020 2020 2020 2020 3020 3620 2020 0 6 │ │ │ │ -00084690: 2020 2020 2020 2020 3120 3620 2020 2020 1 6 │ │ │ │ -000846a0: 2020 2020 2020 3220 3620 2020 2020 2020 2 6 │ │ │ │ -000846b0: 2020 2020 3320 3620 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -000846c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084610: 2020 2020 2020 2020 7c0a 7c20 7420 202b |.| t + │ │ │ │ +00084620: 2032 3030 3637 3036 7420 202d 2039 3732 2006706t - 972 │ │ │ │ +00084630: 3335 3174 2074 2020 2d20 3338 3833 3030 351t t - 388300 │ │ │ │ +00084640: 3974 2074 2020 2b20 3438 3331 3133 3174 9t t + 4831131t │ │ │ │ +00084650: 2074 2020 2b20 3434 3338 3332 3474 2074 t + 4438324t t │ │ │ │ +00084660: 2020 2d20 3735 3637 7c0a 7c34 2035 2020 - 7567|.|4 5 │ │ │ │ +00084670: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ +00084680: 2020 2020 3020 3620 2020 2020 2020 2020 0 6 │ │ │ │ +00084690: 2020 3120 3620 2020 2020 2020 2020 2020 1 6 │ │ │ │ +000846a0: 3220 3620 2020 2020 2020 2020 2020 3320 2 6 3 │ │ │ │ +000846b0: 3620 2020 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +000846c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000846d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000846e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000846f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084710: 7c20 2020 2020 2020 2020 3220 2020 2020 | 2 │ │ │ │ +00084700: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084710: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00084720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084760: 7c20 3135 3434 3133 3374 2020 2b20 3132 | 1544133t + 12 │ │ │ │ -00084770: 3334 3735 3974 2074 2020 2b20 3930 3239 34759t t + 9029 │ │ │ │ -00084780: 3074 2074 2020 2d20 3235 3435 3538 3674 0t t - 2545586t │ │ │ │ -00084790: 2074 2020 2d20 3131 3530 3733 3974 2074 t - 1150739t t │ │ │ │ -000847a0: 2020 2d20 3137 3837 3737 3774 2074 7c0a - 1787777t t|. │ │ │ │ -000847b0: 7c20 2020 2020 2020 2020 3520 2020 2020 | 5 │ │ │ │ -000847c0: 2020 2020 2020 3020 3620 2020 2020 2020 0 6 │ │ │ │ -000847d0: 2020 3120 3620 2020 2020 2020 2020 2020 1 6 │ │ │ │ -000847e0: 3220 3620 2020 2020 2020 2020 2020 3320 2 6 3 │ │ │ │ -000847f0: 3620 2020 2020 2020 2020 2020 3420 7c0a 6 4 |. │ │ │ │ -00084800: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084750: 2020 2020 2020 2020 7c0a 7c20 3135 3434 |.| 1544 │ │ │ │ +00084760: 3133 3374 2020 2b20 3132 3334 3735 3974 133t + 1234759t │ │ │ │ +00084770: 2074 2020 2b20 3930 3239 3074 2074 2020 t + 90290t t │ │ │ │ +00084780: 2d20 3235 3435 3538 3674 2074 2020 2d20 - 2545586t t - │ │ │ │ +00084790: 3131 3530 3733 3974 2074 2020 2d20 3137 1150739t t - 17 │ │ │ │ +000847a0: 3837 3737 3774 2074 7c0a 7c20 2020 2020 87777t t|.| │ │ │ │ +000847b0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +000847c0: 3020 3620 2020 2020 2020 2020 3120 3620 0 6 1 6 │ │ │ │ +000847d0: 2020 2020 2020 2020 2020 3220 3620 2020 2 6 │ │ │ │ +000847e0: 2020 2020 2020 2020 3320 3620 2020 2020 3 6 │ │ │ │ +000847f0: 2020 2020 2020 3420 7c0a 7c20 2020 2020 4 |.| │ │ │ │ +00084800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084850: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00084860: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00084840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084850: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00084860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000848a0: 7c31 7420 7420 202b 2033 3736 3638 3339 |1t t + 3766839 │ │ │ │ -000848b0: 7420 202b 2031 3639 3432 3739 7420 7420 t + 1694279t t │ │ │ │ -000848c0: 202b 2032 3439 3035 3338 7420 7420 202b + 2490538t t + │ │ │ │ -000848d0: 2037 3538 3437 3674 2074 2020 2b20 3435 758476t t + 45 │ │ │ │ -000848e0: 3735 3534 3774 2074 2020 2d20 3431 7c0a 75547t t - 41|. │ │ │ │ -000848f0: 7c20 2034 2035 2020 2020 2020 2020 2020 | 4 5 │ │ │ │ -00084900: 2035 2020 2020 2020 2020 2020 2030 2036 5 0 6 │ │ │ │ -00084910: 2020 2020 2020 2020 2020 2031 2036 2020 1 6 │ │ │ │ -00084920: 2020 2020 2020 2020 3220 3620 2020 2020 2 6 │ │ │ │ -00084930: 2020 2020 2020 3320 3620 2020 2020 7c0a 3 6 |. │ │ │ │ -00084940: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084890: 2020 2020 2020 2020 7c0a 7c31 7420 7420 |.|1t t │ │ │ │ +000848a0: 202b 2033 3736 3638 3339 7420 202b 2031 + 3766839t + 1 │ │ │ │ +000848b0: 3639 3432 3739 7420 7420 202b 2032 3439 694279t t + 249 │ │ │ │ +000848c0: 3035 3338 7420 7420 202b 2037 3538 3437 0538t t + 75847 │ │ │ │ +000848d0: 3674 2074 2020 2b20 3435 3735 3534 3774 6t t + 4575547t │ │ │ │ +000848e0: 2074 2020 2d20 3431 7c0a 7c20 2034 2035 t - 41|.| 4 5 │ │ │ │ +000848f0: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ +00084900: 2020 2020 2020 2030 2036 2020 2020 2020 0 6 │ │ │ │ +00084910: 2020 2020 2031 2036 2020 2020 2020 2020 1 6 │ │ │ │ +00084920: 2020 3220 3620 2020 2020 2020 2020 2020 2 6 │ │ │ │ +00084930: 3320 3620 2020 2020 7c0a 7c20 2020 2020 3 6 |.| │ │ │ │ +00084940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084980: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084990: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000849a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00084980: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084990: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000849a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000849b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000849c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000849d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000849e0: 7c38 7420 7420 202b 2033 3634 3435 3035 |8t t + 3644505 │ │ │ │ -000849f0: 7420 202d 2031 3733 3830 3137 7420 7420 t - 1738017t t │ │ │ │ -00084a00: 202d 2033 3838 3530 3331 7420 7420 202d - 3885031t t - │ │ │ │ -00084a10: 2034 3734 3039 3539 7420 7420 202d 2033 4740959t t - 3 │ │ │ │ -00084a20: 3435 3931 3433 7420 7420 202d 2031 7c0a 459143t t - 1|. │ │ │ │ -00084a30: 7c20 2034 2035 2020 2020 2020 2020 2020 | 4 5 │ │ │ │ -00084a40: 2035 2020 2020 2020 2020 2020 2030 2036 5 0 6 │ │ │ │ -00084a50: 2020 2020 2020 2020 2020 2031 2036 2020 1 6 │ │ │ │ -00084a60: 2020 2020 2020 2020 2032 2036 2020 2020 2 6 │ │ │ │ -00084a70: 2020 2020 2020 2033 2036 2020 2020 7c0a 3 6 |. │ │ │ │ -00084a80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000849d0: 2020 2020 2020 2020 7c0a 7c38 7420 7420 |.|8t t │ │ │ │ +000849e0: 202b 2033 3634 3435 3035 7420 202d 2031 + 3644505t - 1 │ │ │ │ +000849f0: 3733 3830 3137 7420 7420 202d 2033 3838 738017t t - 388 │ │ │ │ +00084a00: 3530 3331 7420 7420 202d 2034 3734 3039 5031t t - 47409 │ │ │ │ +00084a10: 3539 7420 7420 202d 2033 3435 3931 3433 59t t - 3459143 │ │ │ │ +00084a20: 7420 7420 202d 2031 7c0a 7c20 2034 2035 t t - 1|.| 4 5 │ │ │ │ +00084a30: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ +00084a40: 2020 2020 2020 2030 2036 2020 2020 2020 0 6 │ │ │ │ +00084a50: 2020 2020 2031 2036 2020 2020 2020 2020 1 6 │ │ │ │ +00084a60: 2020 2032 2036 2020 2020 2020 2020 2020 2 6 │ │ │ │ +00084a70: 2033 2036 2020 2020 7c0a 7c20 2020 2020 3 6 |.| │ │ │ │ +00084a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084ac0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084ad0: 7c20 2020 2020 2020 2020 2020 2020 2032 | 2 │ │ │ │ +00084ac0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084ad0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00084ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084b10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084b20: 7c20 7420 202d 2034 3239 3334 3334 7420 | t - 4293434t │ │ │ │ -00084b30: 202d 2031 3633 3336 3037 7420 7420 202b - 1633607t t + │ │ │ │ -00084b40: 2032 3033 3036 3531 7420 7420 202d 2033 2030651t t - 3 │ │ │ │ -00084b50: 3536 3434 3134 7420 7420 202d 2034 3835 564414t t - 485 │ │ │ │ -00084b60: 3934 3931 7420 7420 202b 2033 3135 7c0a 9491t t + 315|. │ │ │ │ -00084b70: 7c34 2035 2020 2020 2020 2020 2020 2035 |4 5 5 │ │ │ │ -00084b80: 2020 2020 2020 2020 2020 2030 2036 2020 0 6 │ │ │ │ -00084b90: 2020 2020 2020 2020 2031 2036 2020 2020 1 6 │ │ │ │ -00084ba0: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ -00084bb0: 2020 2020 2033 2036 2020 2020 2020 7c0a 3 6 |. │ │ │ │ -00084bc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084b10: 2020 2020 2020 2020 7c0a 7c20 7420 202d |.| t - │ │ │ │ +00084b20: 2034 3239 3334 3334 7420 202d 2031 3633 4293434t - 163 │ │ │ │ +00084b30: 3336 3037 7420 7420 202b 2032 3033 3036 3607t t + 20306 │ │ │ │ +00084b40: 3531 7420 7420 202d 2033 3536 3434 3134 51t t - 3564414 │ │ │ │ +00084b50: 7420 7420 202d 2034 3835 3934 3931 7420 t t - 4859491t │ │ │ │ +00084b60: 7420 202b 2033 3135 7c0a 7c34 2035 2020 t + 315|.|4 5 │ │ │ │ +00084b70: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ +00084b80: 2020 2020 2030 2036 2020 2020 2020 2020 0 6 │ │ │ │ +00084b90: 2020 2031 2036 2020 2020 2020 2020 2020 1 6 │ │ │ │ +00084ba0: 2032 2036 2020 2020 2020 2020 2020 2033 2 6 3 │ │ │ │ +00084bb0: 2036 2020 2020 2020 7c0a 7c20 2020 2020 6 |.| │ │ │ │ +00084bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084c00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084c10: 7c20 2020 2032 2020 2020 2020 2020 2020 | 2 │ │ │ │ +00084c00: 2020 2020 2020 2020 7c0a 7c20 2020 2032 |.| 2 │ │ │ │ +00084c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084c50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084c60: 7c35 3230 7420 202b 2031 3039 3033 3932 |520t + 1090392 │ │ │ │ -00084c70: 7420 7420 202d 2034 3232 3133 3530 7420 t t - 4221350t │ │ │ │ -00084c80: 7420 202d 2033 3633 3338 3735 7420 7420 t - 3633875t t │ │ │ │ -00084c90: 202b 2032 3836 3338 3574 2074 2020 2d20 + 286385t t - │ │ │ │ -00084ca0: 3431 3238 3235 3874 2074 2020 2d20 7c0a 4128258t t - |. │ │ │ │ -00084cb0: 7c20 2020 2035 2020 2020 2020 2020 2020 | 5 │ │ │ │ -00084cc0: 2030 2036 2020 2020 2020 2020 2020 2031 0 6 1 │ │ │ │ -00084cd0: 2036 2020 2020 2020 2020 2020 2032 2036 6 2 6 │ │ │ │ -00084ce0: 2020 2020 2020 2020 2020 3320 3620 2020 3 6 │ │ │ │ -00084cf0: 2020 2020 2020 2020 3420 3620 2020 7c0a 4 6 |. │ │ │ │ -00084d00: 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |--------------- │ │ │ │ +00084c50: 2020 2020 2020 2020 7c0a 7c35 3230 7420 |.|520t │ │ │ │ +00084c60: 202b 2031 3039 3033 3932 7420 7420 202d + 1090392t t - │ │ │ │ +00084c70: 2034 3232 3133 3530 7420 7420 202d 2033 4221350t t - 3 │ │ │ │ +00084c80: 3633 3338 3735 7420 7420 202b 2032 3836 633875t t + 286 │ │ │ │ +00084c90: 3338 3574 2074 2020 2d20 3431 3238 3235 385t t - 412825 │ │ │ │ +00084ca0: 3874 2074 2020 2d20 7c0a 7c20 2020 2035 8t t - |.| 5 │ │ │ │ +00084cb0: 2020 2020 2020 2020 2020 2030 2036 2020 0 6 │ │ │ │ +00084cc0: 2020 2020 2020 2020 2031 2036 2020 2020 1 6 │ │ │ │ +00084cd0: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ +00084ce0: 2020 2020 3320 3620 2020 2020 2020 2020 3 6 │ │ │ │ +00084cf0: 2020 3420 3620 2020 7c0a 7c2d 2d2d 2d2d 4 6 |.|----- │ │ │ │ +00084d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00084d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00084d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00084d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00084d40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -00084d50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00084d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084d70: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00084d40: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +00084d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00084d60: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00084d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084d90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084da0: 7c37 3534 3974 2074 2020 2d20 3338 3930 |7549t t - 3890 │ │ │ │ -00084db0: 3934 3874 2074 2020 2b20 3133 3330 3935 948t t + 133095 │ │ │ │ -00084dc0: 3074 202c 2020 2020 2020 2020 2020 2020 0t , │ │ │ │ +00084d90: 2020 2020 2020 2020 7c0a 7c37 3534 3974 |.|7549t │ │ │ │ +00084da0: 2074 2020 2d20 3338 3930 3934 3874 2074 t - 3890948t t │ │ │ │ +00084db0: 2020 2b20 3133 3330 3935 3074 202c 2020 + 1330950t , │ │ │ │ +00084dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084de0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084df0: 7c20 2020 2020 3420 3620 2020 2020 2020 | 4 6 │ │ │ │ -00084e00: 2020 2020 3520 3620 2020 2020 2020 2020 5 6 │ │ │ │ -00084e10: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00084de0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084df0: 3420 3620 2020 2020 2020 2020 2020 3520 4 6 5 │ │ │ │ +00084e00: 3620 2020 2020 2020 2020 2020 3620 2020 6 6 │ │ │ │ +00084e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084e30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084e40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084e30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084e80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084e90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00084ea0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00084e80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00084ea0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ 00084eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084ed0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084ee0: 7c31 7420 7420 202b 2033 3532 3437 3430 |1t t + 3524740 │ │ │ │ -00084ef0: 7420 7420 202d 2031 3739 3633 3231 7420 t t - 1796321t │ │ │ │ -00084f00: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00084ed0: 2020 2020 2020 2020 7c0a 7c31 7420 7420 |.|1t t │ │ │ │ +00084ee0: 202b 2033 3532 3437 3430 7420 7420 202d + 3524740t t - │ │ │ │ +00084ef0: 2031 3739 3633 3231 7420 2c20 2020 2020 1796321t , │ │ │ │ +00084f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084f20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084f30: 7c20 2034 2036 2020 2020 2020 2020 2020 | 4 6 │ │ │ │ -00084f40: 2035 2036 2020 2020 2020 2020 2020 2036 5 6 6 │ │ │ │ +00084f20: 2020 2020 2020 2020 7c0a 7c20 2034 2036 |.| 4 6 │ │ │ │ +00084f30: 2020 2020 2020 2020 2020 2035 2036 2020 5 6 │ │ │ │ +00084f40: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ 00084f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084f70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084f80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00084f70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00084fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084fc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00084fd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00084fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00084ff0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00084fc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00084fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00084fe0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00084ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085010: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085020: 7c35 3874 2074 2020 2d20 3434 3930 3633 |58t t - 449063 │ │ │ │ -00085030: 3874 2074 2020 2d20 3436 3236 3337 3874 8t t - 4626378t │ │ │ │ -00085040: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00085010: 2020 2020 2020 2020 7c0a 7c35 3874 2074 |.|58t t │ │ │ │ +00085020: 2020 2d20 3434 3930 3633 3874 2074 2020 - 4490638t t │ │ │ │ +00085030: 2d20 3436 3236 3337 3874 202c 2020 2020 - 4626378t , │ │ │ │ +00085040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085060: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085070: 7c20 2020 3420 3620 2020 2020 2020 2020 | 4 6 │ │ │ │ -00085080: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00085090: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00085060: 2020 2020 2020 2020 7c0a 7c20 2020 3420 |.| 4 │ │ │ │ +00085070: 3620 2020 2020 2020 2020 2020 3520 3620 6 5 6 │ │ │ │ +00085080: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ +00085090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000850a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000850b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000850c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000850b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000850c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000850d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000850e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000850f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00085120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085130: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00085100: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00085120: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00085130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085150: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085160: 7c34 3774 2074 2020 2d20 3136 3138 3730 |47t t - 161870 │ │ │ │ -00085170: 3174 2074 2020 2b20 3238 3835 3734 3574 1t t + 2885745t │ │ │ │ -00085180: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00085150: 2020 2020 2020 2020 7c0a 7c34 3774 2074 |.|47t t │ │ │ │ +00085160: 2020 2d20 3136 3138 3730 3174 2074 2020 - 1618701t t │ │ │ │ +00085170: 2b20 3238 3835 3734 3574 202c 2020 2020 + 2885745t , │ │ │ │ +00085180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000851a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000851b0: 7c20 2020 3420 3620 2020 2020 2020 2020 | 4 6 │ │ │ │ -000851c0: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ -000851d0: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000851a0: 2020 2020 2020 2020 7c0a 7c20 2020 3420 |.| 4 │ │ │ │ +000851b0: 3620 2020 2020 2020 2020 2020 3520 3620 6 5 6 │ │ │ │ +000851c0: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ +000851d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000851e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000851f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085200: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000851f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085240: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085250: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00085260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085270: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00085240: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00085260: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00085270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085290: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000852a0: 7c38 3674 2074 2020 2b20 3433 3735 3835 |86t t + 437585 │ │ │ │ -000852b0: 3974 2074 2020 2d20 3135 3538 3931 3374 9t t - 1558913t │ │ │ │ -000852c0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00085290: 2020 2020 2020 2020 7c0a 7c38 3674 2074 |.|86t t │ │ │ │ +000852a0: 2020 2b20 3433 3735 3835 3974 2074 2020 + 4375859t t │ │ │ │ +000852b0: 2d20 3135 3538 3931 3374 202c 2020 2020 - 1558913t , │ │ │ │ +000852c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000852d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000852e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000852f0: 7c20 2020 3420 3620 2020 2020 2020 2020 | 4 6 │ │ │ │ -00085300: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00085310: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000852e0: 2020 2020 2020 2020 7c0a 7c20 2020 3420 |.| 4 │ │ │ │ +000852f0: 3620 2020 2020 2020 2020 2020 3520 3620 6 5 6 │ │ │ │ +00085300: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ +00085310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085330: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085340: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00085330: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085380: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085390: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000853a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +00085380: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000853a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000853b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000853c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000853d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000853e0: 7c20 202b 2031 3830 3239 3131 7420 7420 | + 1802911t t │ │ │ │ -000853f0: 202b 2032 3333 3239 3035 7420 2c20 2020 + 2332905t , │ │ │ │ +000853d0: 2020 2020 2020 2020 7c0a 7c20 202b 2031 |.| + 1 │ │ │ │ +000853e0: 3830 3239 3131 7420 7420 202b 2032 3333 802911t t + 233 │ │ │ │ +000853f0: 3239 3035 7420 2c20 2020 2020 2020 2020 2905t , │ │ │ │ 00085400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085430: 7c36 2020 2020 2020 2020 2020 2035 2036 |6 5 6 │ │ │ │ -00085440: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ +00085420: 2020 2020 2020 2020 7c0a 7c36 2020 2020 |.|6 │ │ │ │ +00085430: 2020 2020 2020 2035 2036 2020 2020 2020 5 6 │ │ │ │ +00085440: 2020 2020 2036 2020 2020 2020 2020 2020 6 │ │ │ │ 00085450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085470: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085480: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00085470: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000854a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000854b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000854c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000854d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000854e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000854f0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000854c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000854d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000854e0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000854f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085510: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085520: 7c30 3630 3633 7420 7420 202b 2031 3836 |06063t t + 186 │ │ │ │ -00085530: 3433 3230 7420 7420 202b 2032 3132 3830 4320t t + 21280 │ │ │ │ -00085540: 3932 7420 2c20 2020 2020 2020 2020 2020 92t , │ │ │ │ +00085510: 2020 2020 2020 2020 7c0a 7c30 3630 3633 |.|06063 │ │ │ │ +00085520: 7420 7420 202b 2031 3836 3433 3230 7420 t t + 1864320t │ │ │ │ +00085530: 7420 202b 2032 3132 3830 3932 7420 2c20 t + 2128092t , │ │ │ │ +00085540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085560: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085570: 7c20 2020 2020 2034 2036 2020 2020 2020 | 4 6 │ │ │ │ -00085580: 2020 2020 2035 2036 2020 2020 2020 2020 5 6 │ │ │ │ -00085590: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +00085560: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085570: 2034 2036 2020 2020 2020 2020 2020 2035 4 6 5 │ │ │ │ +00085580: 2036 2020 2020 2020 2020 2020 2036 2020 6 6 │ │ │ │ +00085590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000855a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000855b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000855c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000855b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000855c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000855d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000855e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000855f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085600: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085610: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00085620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085630: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00085600: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00085620: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00085630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085650: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085660: 7c31 3432 3334 3874 2074 2020 2d20 3236 |142348t t - 26 │ │ │ │ -00085670: 3738 3234 3774 2074 2020 2b20 3531 3735 78247t t + 5175 │ │ │ │ -00085680: 3134 7420 2c20 2020 2020 2020 2020 2020 14t , │ │ │ │ +00085650: 2020 2020 2020 2020 7c0a 7c31 3432 3334 |.|14234 │ │ │ │ +00085660: 3874 2074 2020 2d20 3236 3738 3234 3774 8t t - 2678247t │ │ │ │ +00085670: 2074 2020 2b20 3531 3735 3134 7420 2c20 t + 517514t , │ │ │ │ +00085680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000856a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000856b0: 7c20 2020 2020 2020 3420 3620 2020 2020 | 4 6 │ │ │ │ -000856c0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ -000856d0: 2020 2036 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000856a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000856b0: 2020 3420 3620 2020 2020 2020 2020 2020 4 6 │ │ │ │ +000856c0: 3520 3620 2020 2020 2020 2020 2036 2020 5 6 6 │ │ │ │ +000856d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000856e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000856f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085700: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000856f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085740: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085750: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00085760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085770: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00085740: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00085760: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00085770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085790: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000857a0: 7c33 3433 3874 2074 2020 2d20 3635 3632 |3438t t - 6562 │ │ │ │ -000857b0: 3139 7420 7420 202b 2033 3939 3934 3874 19t t + 399948t │ │ │ │ -000857c0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +00085790: 2020 2020 2020 2020 7c0a 7c33 3433 3874 |.|3438t │ │ │ │ +000857a0: 2074 2020 2d20 3635 3632 3139 7420 7420 t - 656219t t │ │ │ │ +000857b0: 202b 2033 3939 3934 3874 202c 2020 2020 + 399948t , │ │ │ │ +000857c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000857d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000857e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000857f0: 7c20 2020 2020 3420 3620 2020 2020 2020 | 4 6 │ │ │ │ -00085800: 2020 2035 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00085810: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ +000857e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000857f0: 3420 3620 2020 2020 2020 2020 2035 2036 4 6 5 6 │ │ │ │ +00085800: 2020 2020 2020 2020 2020 3620 2020 2020 6 │ │ │ │ +00085810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085830: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00085830: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085880: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085890: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -000858a0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00085880: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000858a0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000858b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000858c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000858d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000858e0: 7c32 3831 3237 3638 7420 7420 202d 2032 |2812768t t - 2 │ │ │ │ -000858f0: 3635 3235 3432 7420 2020 2020 2020 2020 652542t │ │ │ │ +000858d0: 2020 2020 2020 2020 7c0a 7c32 3831 3237 |.|28127 │ │ │ │ +000858e0: 3638 7420 7420 202d 2032 3635 3235 3432 68t t - 2652542 │ │ │ │ +000858f0: 7420 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ 00085900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085930: 7c20 2020 2020 2020 2035 2036 2020 2020 | 5 6 │ │ │ │ -00085940: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ +00085920: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00085930: 2020 2035 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ +00085940: 2036 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 00085950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00085960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00085970: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00085980: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00085970: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00085980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000859a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000859b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000859c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -000859d0: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ -000859e0: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ -000859f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00085a00: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 7061 ==.. * *note pa │ │ │ │ -00085a10: 7261 6d65 7472 697a 6528 4964 6561 6c29 rametrize(Ideal) │ │ │ │ -00085a20: 3a20 7061 7261 6d65 7472 697a 655f 6c70 : parametrize_lp │ │ │ │ -00085a30: 4964 6561 6c5f 7270 2c20 2d2d 2070 6172 Ideal_rp, -- par │ │ │ │ -00085a40: 616d 6574 7269 7a61 7469 6f6e 206f 660a ametrization of. │ │ │ │ -00085a50: 2020 2020 6c69 6e65 6172 2076 6172 6965 linear varie │ │ │ │ -00085a60: 7469 6573 2061 6e64 2068 7970 6572 7175 ties and hyperqu │ │ │ │ -00085a70: 6164 7269 6373 0a20 202a 2022 7061 7261 adrics. * "para │ │ │ │ -00085a80: 6d65 7472 697a 6528 506f 6c79 6e6f 6d69 metrize(Polynomi │ │ │ │ -00085a90: 616c 5269 6e67 2922 0a20 202a 2022 7061 alRing)". * "pa │ │ │ │ -00085aa0: 7261 6d65 7472 697a 6528 5175 6f74 6965 rametrize(Quotie │ │ │ │ -00085ab0: 6e74 5269 6e67 2922 0a2d 2d2d 2d2d 2d2d ntRing)".------- │ │ │ │ +000859c0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 7320 --------+..Ways │ │ │ │ +000859d0: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ +000859e0: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ +000859f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +00085a00: 2a20 2a6e 6f74 6520 7061 7261 6d65 7472 * *note parametr │ │ │ │ +00085a10: 697a 6528 4964 6561 6c29 3a20 7061 7261 ize(Ideal): para │ │ │ │ +00085a20: 6d65 7472 697a 655f 6c70 4964 6561 6c5f metrize_lpIdeal_ │ │ │ │ +00085a30: 7270 2c20 2d2d 2070 6172 616d 6574 7269 rp, -- parametri │ │ │ │ +00085a40: 7a61 7469 6f6e 206f 660a 2020 2020 6c69 zation of. li │ │ │ │ +00085a50: 6e65 6172 2076 6172 6965 7469 6573 2061 near varieties a │ │ │ │ +00085a60: 6e64 2068 7970 6572 7175 6164 7269 6373 nd hyperquadrics │ │ │ │ +00085a70: 0a20 202a 2022 7061 7261 6d65 7472 697a . * "parametriz │ │ │ │ +00085a80: 6528 506f 6c79 6e6f 6d69 616c 5269 6e67 e(PolynomialRing │ │ │ │ +00085a90: 2922 0a20 202a 2022 7061 7261 6d65 7472 )". * "parametr │ │ │ │ +00085aa0: 697a 6528 5175 6f74 6965 6e74 5269 6e67 ize(QuotientRing │ │ │ │ +00085ab0: 2922 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d )".------------- │ │ │ │ 00085ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085ae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00085b00: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -00085b10: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -00085b20: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -00085b30: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -00085b40: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -00085b50: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -00085b60: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -00085b70: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ -00085b80: 7461 7469 6f6e 2e6d 323a 3730 333a 302e tation.m2:703:0. │ │ │ │ -00085b90: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ -00085ba0: 2e69 6e66 6f2c 204e 6f64 653a 2070 6f69 .info, Node: poi │ │ │ │ -00085bb0: 6e74 2c20 4e65 7874 3a20 706f 696e 745f nt, Next: point_ │ │ │ │ -00085bc0: 6c70 5175 6f74 6965 6e74 5269 6e67 5f72 lpQuotientRing_r │ │ │ │ -00085bd0: 702c 2050 7265 763a 2070 6172 616d 6574 p, Prev: paramet │ │ │ │ -00085be0: 7269 7a65 5f6c 7049 6465 616c 5f72 702c rize_lpIdeal_rp, │ │ │ │ -00085bf0: 2055 703a 2054 6f70 0a0a 706f 696e 7420 Up: Top..point │ │ │ │ -00085c00: 2d2d 2070 6963 6b20 6120 7261 6e64 6f6d -- pick a random │ │ │ │ -00085c10: 2072 6174 696f 6e61 6c20 706f 696e 7420 rational point │ │ │ │ -00085c20: 6f6e 2061 2070 726f 6a65 6374 6976 6520 on a projective │ │ │ │ -00085c30: 7661 7269 6574 790a 2a2a 2a2a 2a2a 2a2a variety.******** │ │ │ │ +00085b00: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +00085b10: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +00085b20: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +00085b30: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +00085b40: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +00085b50: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +00085b60: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ +00085b70: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ +00085b80: 2e6d 323a 3730 333a 302e 0a1f 0a46 696c .m2:703:0....Fil │ │ │ │ +00085b90: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ +00085ba0: 204e 6f64 653a 2070 6f69 6e74 2c20 4e65 Node: point, Ne │ │ │ │ +00085bb0: 7874 3a20 706f 696e 745f 6c70 5175 6f74 xt: point_lpQuot │ │ │ │ +00085bc0: 6965 6e74 5269 6e67 5f72 702c 2050 7265 ientRing_rp, Pre │ │ │ │ +00085bd0: 763a 2070 6172 616d 6574 7269 7a65 5f6c v: parametrize_l │ │ │ │ +00085be0: 7049 6465 616c 5f72 702c 2055 703a 2054 pIdeal_rp, Up: T │ │ │ │ +00085bf0: 6f70 0a0a 706f 696e 7420 2d2d 2070 6963 op..point -- pic │ │ │ │ +00085c00: 6b20 6120 7261 6e64 6f6d 2072 6174 696f k a random ratio │ │ │ │ +00085c10: 6e61 6c20 706f 696e 7420 6f6e 2061 2070 nal point on a p │ │ │ │ +00085c20: 726f 6a65 6374 6976 6520 7661 7269 6574 rojective variet │ │ │ │ +00085c30: 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a y.************** │ │ │ │ 00085c40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00085c50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00085c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00085c70: 2a2a 2a2a 2a0a 0a44 6573 6372 6970 7469 *****..Descripti │ │ │ │ -00085c80: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00085c90: 5365 6520 706f 696e 7428 4d75 6c74 6970 See point(Multip │ │ │ │ -00085ca0: 726f 6a65 6374 6976 6556 6172 6965 7469 rojectiveVarieti │ │ │ │ -00085cb0: 6573 2920 286d 6973 7369 6e67 2064 6f63 es) (missing doc │ │ │ │ -00085cc0: 756d 656e 7461 7469 6f6e 2920 616e 6420 umentation) and │ │ │ │ -00085cd0: 2a6e 6f74 650a 706f 696e 7428 5175 6f74 *note.point(Quot │ │ │ │ -00085ce0: 6965 6e74 5269 6e67 293a 2070 6f69 6e74 ientRing): point │ │ │ │ -00085cf0: 5f6c 7051 756f 7469 656e 7452 696e 675f _lpQuotientRing_ │ │ │ │ -00085d00: 7270 2c2e 0a0a 5761 7973 2074 6f20 7573 rp,...Ways to us │ │ │ │ -00085d10: 6520 706f 696e 743a 0a3d 3d3d 3d3d 3d3d e point:.======= │ │ │ │ -00085d20: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00085d30: 2022 706f 696e 7428 506f 6c79 6e6f 6d69 "point(Polynomi │ │ │ │ -00085d40: 616c 5269 6e67 2922 202d 2d20 7365 6520 alRing)" -- see │ │ │ │ -00085d50: 2a6e 6f74 6520 706f 696e 7428 5175 6f74 *note point(Quot │ │ │ │ -00085d60: 6965 6e74 5269 6e67 293a 0a20 2020 2070 ientRing):. p │ │ │ │ -00085d70: 6f69 6e74 5f6c 7051 756f 7469 656e 7452 oint_lpQuotientR │ │ │ │ -00085d80: 696e 675f 7270 2c20 2d2d 2070 6963 6b20 ing_rp, -- pick │ │ │ │ -00085d90: 6120 7261 6e64 6f6d 2072 6174 696f 6e61 a random rationa │ │ │ │ -00085da0: 6c20 706f 696e 7420 6f6e 2061 2070 726f l point on a pro │ │ │ │ -00085db0: 6a65 6374 6976 650a 2020 2020 7661 7269 jective. vari │ │ │ │ -00085dc0: 6574 790a 2020 2a20 2a6e 6f74 6520 706f ety. * *note po │ │ │ │ -00085dd0: 696e 7428 5175 6f74 6965 6e74 5269 6e67 int(QuotientRing │ │ │ │ -00085de0: 293a 2070 6f69 6e74 5f6c 7051 756f 7469 ): point_lpQuoti │ │ │ │ -00085df0: 656e 7452 696e 675f 7270 2c20 2d2d 2070 entRing_rp, -- p │ │ │ │ -00085e00: 6963 6b20 6120 7261 6e64 6f6d 0a20 2020 ick a random. │ │ │ │ -00085e10: 2072 6174 696f 6e61 6c20 706f 696e 7420 rational point │ │ │ │ -00085e20: 6f6e 2061 2070 726f 6a65 6374 6976 6520 on a projective │ │ │ │ -00085e30: 7661 7269 6574 790a 0a46 6f72 2074 6865 variety..For the │ │ │ │ -00085e40: 2070 726f 6772 616d 6d65 720a 3d3d 3d3d programmer.==== │ │ │ │ -00085e50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ -00085e60: 5468 6520 6f62 6a65 6374 202a 6e6f 7465 The object *note │ │ │ │ -00085e70: 2070 6f69 6e74 3a20 706f 696e 742c 2069 point: point, i │ │ │ │ -00085e80: 7320 6120 2a6e 6f74 6520 6d65 7468 6f64 s a *note method │ │ │ │ -00085e90: 2066 756e 6374 696f 6e3a 0a28 4d61 6361 function:.(Maca │ │ │ │ -00085ea0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -00085eb0: 756e 6374 696f 6e2c 2e0a 0a2d 2d2d 2d2d unction,...----- │ │ │ │ +00085c60: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +00085c70: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00085c80: 3d3d 3d3d 3d3d 3d3d 0a0a 5365 6520 706f ========..See po │ │ │ │ +00085c90: 696e 7428 4d75 6c74 6970 726f 6a65 6374 int(Multiproject │ │ │ │ +00085ca0: 6976 6556 6172 6965 7469 6573 2920 286d iveVarieties) (m │ │ │ │ +00085cb0: 6973 7369 6e67 2064 6f63 756d 656e 7461 issing documenta │ │ │ │ +00085cc0: 7469 6f6e 2920 616e 6420 2a6e 6f74 650a tion) and *note. │ │ │ │ +00085cd0: 706f 696e 7428 5175 6f74 6965 6e74 5269 point(QuotientRi │ │ │ │ +00085ce0: 6e67 293a 2070 6f69 6e74 5f6c 7051 756f ng): point_lpQuo │ │ │ │ +00085cf0: 7469 656e 7452 696e 675f 7270 2c2e 0a0a tientRing_rp,... │ │ │ │ +00085d00: 5761 7973 2074 6f20 7573 6520 706f 696e Ways to use poin │ │ │ │ +00085d10: 743a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d t:.============= │ │ │ │ +00085d20: 3d3d 3d3d 3d0a 0a20 202a 2022 706f 696e =====.. * "poin │ │ │ │ +00085d30: 7428 506f 6c79 6e6f 6d69 616c 5269 6e67 t(PolynomialRing │ │ │ │ +00085d40: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +00085d50: 706f 696e 7428 5175 6f74 6965 6e74 5269 point(QuotientRi │ │ │ │ +00085d60: 6e67 293a 0a20 2020 2070 6f69 6e74 5f6c ng):. point_l │ │ │ │ +00085d70: 7051 756f 7469 656e 7452 696e 675f 7270 pQuotientRing_rp │ │ │ │ +00085d80: 2c20 2d2d 2070 6963 6b20 6120 7261 6e64 , -- pick a rand │ │ │ │ +00085d90: 6f6d 2072 6174 696f 6e61 6c20 706f 696e om rational poin │ │ │ │ +00085da0: 7420 6f6e 2061 2070 726f 6a65 6374 6976 t on a projectiv │ │ │ │ +00085db0: 650a 2020 2020 7661 7269 6574 790a 2020 e. variety. │ │ │ │ +00085dc0: 2a20 2a6e 6f74 6520 706f 696e 7428 5175 * *note point(Qu │ │ │ │ +00085dd0: 6f74 6965 6e74 5269 6e67 293a 2070 6f69 otientRing): poi │ │ │ │ +00085de0: 6e74 5f6c 7051 756f 7469 656e 7452 696e nt_lpQuotientRin │ │ │ │ +00085df0: 675f 7270 2c20 2d2d 2070 6963 6b20 6120 g_rp, -- pick a │ │ │ │ +00085e00: 7261 6e64 6f6d 0a20 2020 2072 6174 696f random. ratio │ │ │ │ +00085e10: 6e61 6c20 706f 696e 7420 6f6e 2061 2070 nal point on a p │ │ │ │ +00085e20: 726f 6a65 6374 6976 6520 7661 7269 6574 rojective variet │ │ │ │ +00085e30: 790a 0a46 6f72 2074 6865 2070 726f 6772 y..For the progr │ │ │ │ +00085e40: 616d 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d ammer.========== │ │ │ │ +00085e50: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 ========..The ob │ │ │ │ +00085e60: 6a65 6374 202a 6e6f 7465 2070 6f69 6e74 ject *note point │ │ │ │ +00085e70: 3a20 706f 696e 742c 2069 7320 6120 2a6e : point, is a *n │ │ │ │ +00085e80: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ +00085e90: 696f 6e3a 0a28 4d61 6361 756c 6179 3244 ion:.(Macaulay2D │ │ │ │ +00085ea0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +00085eb0: 6e2c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d n,...----------- │ │ │ │ 00085ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00085ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00085f00: 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 ----------..The │ │ │ │ -00085f10: 736f 7572 6365 206f 6620 7468 6973 2064 source of this d │ │ │ │ -00085f20: 6f63 756d 656e 7420 6973 2069 6e0a 2f62 ocument is in./b │ │ │ │ -00085f30: 7569 6c64 2f72 6570 726f 6475 6369 626c uild/reproducibl │ │ │ │ -00085f40: 652d 7061 7468 2f6d 6163 6175 6c61 7932 e-path/macaulay2 │ │ │ │ -00085f50: 2d31 2e32 352e 3131 2b64 732f 4d32 2f4d -1.25.11+ds/M2/M │ │ │ │ -00085f60: 6163 6175 6c61 7932 2f70 6163 6b61 6765 acaulay2/package │ │ │ │ -00085f70: 732f 4372 656d 6f6e 612f 0a64 6f63 756d s/Cremona/.docum │ │ │ │ -00085f80: 656e 7461 7469 6f6e 2e6d 323a 3130 3137 entation.m2:1017 │ │ │ │ -00085f90: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ -00085fa0: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ -00085fb0: 706f 696e 745f 6c70 5175 6f74 6965 6e74 point_lpQuotient │ │ │ │ -00085fc0: 5269 6e67 5f72 702c 204e 6578 743a 2070 Ring_rp, Next: p │ │ │ │ -00085fd0: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -00085fe0: 2c20 5072 6576 3a20 706f 696e 742c 2055 , Prev: point, U │ │ │ │ -00085ff0: 703a 2054 6f70 0a0a 706f 696e 7428 5175 p: Top..point(Qu │ │ │ │ -00086000: 6f74 6965 6e74 5269 6e67 2920 2d2d 2070 otientRing) -- p │ │ │ │ -00086010: 6963 6b20 6120 7261 6e64 6f6d 2072 6174 ick a random rat │ │ │ │ -00086020: 696f 6e61 6c20 706f 696e 7420 6f6e 2061 ional point on a │ │ │ │ -00086030: 2070 726f 6a65 6374 6976 6520 7661 7269 projective vari │ │ │ │ -00086040: 6574 790a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a ety.************ │ │ │ │ +00085f00: 2d2d 2d2d 0a0a 5468 6520 736f 7572 6365 ----..The source │ │ │ │ +00085f10: 206f 6620 7468 6973 2064 6f63 756d 656e of this documen │ │ │ │ +00085f20: 7420 6973 2069 6e0a 2f62 7569 6c64 2f72 t is in./build/r │ │ │ │ +00085f30: 6570 726f 6475 6369 626c 652d 7061 7468 eproducible-path │ │ │ │ +00085f40: 2f6d 6163 6175 6c61 7932 2d31 2e32 352e /macaulay2-1.25. │ │ │ │ +00085f50: 3131 2b64 732f 4d32 2f4d 6163 6175 6c61 11+ds/M2/Macaula │ │ │ │ +00085f60: 7932 2f70 6163 6b61 6765 732f 4372 656d y2/packages/Crem │ │ │ │ +00085f70: 6f6e 612f 0a64 6f63 756d 656e 7461 7469 ona/.documentati │ │ │ │ +00085f80: 6f6e 2e6d 323a 3130 3137 3a30 2e0a 1f0a on.m2:1017:0.... │ │ │ │ +00085f90: 4669 6c65 3a20 4372 656d 6f6e 612e 696e File: Cremona.in │ │ │ │ +00085fa0: 666f 2c20 4e6f 6465 3a20 706f 696e 745f fo, Node: point_ │ │ │ │ +00085fb0: 6c70 5175 6f74 6965 6e74 5269 6e67 5f72 lpQuotientRing_r │ │ │ │ +00085fc0: 702c 204e 6578 743a 2070 726f 6a65 6374 p, Next: project │ │ │ │ +00085fd0: 6976 6544 6567 7265 6573 2c20 5072 6576 iveDegrees, Prev │ │ │ │ +00085fe0: 3a20 706f 696e 742c 2055 703a 2054 6f70 : point, Up: Top │ │ │ │ +00085ff0: 0a0a 706f 696e 7428 5175 6f74 6965 6e74 ..point(Quotient │ │ │ │ +00086000: 5269 6e67 2920 2d2d 2070 6963 6b20 6120 Ring) -- pick a │ │ │ │ +00086010: 7261 6e64 6f6d 2072 6174 696f 6e61 6c20 random rational │ │ │ │ +00086020: 706f 696e 7420 6f6e 2061 2070 726f 6a65 point on a proje │ │ │ │ +00086030: 6374 6976 6520 7661 7269 6574 790a 2a2a ctive variety.** │ │ │ │ +00086040: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00086050: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00086060: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00086070: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00086080: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -00086090: 0a20 202a 2046 756e 6374 696f 6e3a 202a . * Function: * │ │ │ │ -000860a0: 6e6f 7465 2070 6f69 6e74 3a20 706f 696e note point: poin │ │ │ │ -000860b0: 742c 0a20 202a 2055 7361 6765 3a20 0a20 t,. * Usage: . │ │ │ │ -000860c0: 2020 2020 2020 2070 6f69 6e74 2052 0a20 point R. │ │ │ │ -000860d0: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ -000860e0: 202a 2052 2c20 6120 2a6e 6f74 6520 7175 * R, a *note qu │ │ │ │ -000860f0: 6f74 6965 6e74 2072 696e 673a 2028 4d61 otient ring: (Ma │ │ │ │ -00086100: 6361 756c 6179 3244 6f63 2951 756f 7469 caulay2Doc)Quoti │ │ │ │ -00086110: 656e 7452 696e 672c 2c20 7468 6520 686f entRing,, the ho │ │ │ │ -00086120: 6d6f 6765 6e65 6f75 730a 2020 2020 2020 mogeneous. │ │ │ │ -00086130: 2020 636f 6f72 6469 6e61 7465 2072 696e coordinate rin │ │ │ │ -00086140: 6720 6f66 2061 2063 6c6f 7365 6420 7375 g of a closed su │ │ │ │ -00086150: 6273 6368 656d 6520 2458 5c73 7562 7365 bscheme $X\subse │ │ │ │ -00086160: 7465 715c 6d61 7468 6262 7b50 7d5e 6e24 teq\mathbb{P}^n$ │ │ │ │ -00086170: 206f 7665 7220 610a 2020 2020 2020 2020 over a. │ │ │ │ -00086180: 6669 6e69 7465 2067 726f 756e 6420 6669 finite ground fi │ │ │ │ -00086190: 656c 640a 2020 2a20 4f75 7470 7574 733a eld. * Outputs: │ │ │ │ -000861a0: 0a20 2020 2020 202a 2061 6e20 2a6e 6f74 . * an *not │ │ │ │ -000861b0: 6520 6964 6561 6c3a 2028 4d61 6361 756c e ideal: (Macaul │ │ │ │ -000861c0: 6179 3244 6f63 2949 6465 616c 2c2c 2061 ay2Doc)Ideal,, a │ │ │ │ -000861d0: 6e20 6964 6561 6c20 696e 2052 2064 6566 n ideal in R def │ │ │ │ -000861e0: 696e 696e 6720 6120 706f 696e 7420 6f6e ining a point on │ │ │ │ -000861f0: 0a20 2020 2020 2020 2024 5824 0a0a 4465 . $X$..De │ │ │ │ -00086200: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -00086210: 3d3d 3d3d 3d0a 0a54 6869 7320 6675 6e63 =====..This func │ │ │ │ -00086220: 7469 6f6e 2069 7320 6120 7661 7269 616e tion is a varian │ │ │ │ -00086230: 7420 6f66 2074 6865 202a 6e6f 7465 2072 t of the *note r │ │ │ │ -00086240: 616e 646f 6d4b 5261 7469 6f6e 616c 506f andomKRationalPo │ │ │ │ -00086250: 696e 743a 0a28 4d61 6361 756c 6179 3244 int:.(Macaulay2D │ │ │ │ -00086260: 6f63 2972 616e 646f 6d4b 5261 7469 6f6e oc)randomKRation │ │ │ │ -00086270: 616c 506f 696e 742c 2066 756e 6374 696f alPoint, functio │ │ │ │ -00086280: 6e2c 2077 6869 6368 2068 6173 2062 6565 n, which has bee │ │ │ │ -00086290: 6e20 6675 7274 6865 7220 696d 7072 6f76 n further improv │ │ │ │ -000862a0: 6564 0a61 6e64 2065 7874 656e 6465 6420 ed.and extended │ │ │ │ -000862b0: 696e 2074 6865 2070 6163 6b61 6765 204d in the package M │ │ │ │ -000862c0: 756c 7469 7072 6f6a 6563 7469 7665 5661 ultiprojectiveVa │ │ │ │ -000862d0: 7269 6574 6965 7320 286d 6973 7369 6e67 rieties (missing │ │ │ │ -000862e0: 2064 6f63 756d 656e 7461 7469 6f6e 292c documentation), │ │ │ │ -000862f0: 0a73 6565 202a 6e6f 7465 2070 6f69 6e74 .see *note point │ │ │ │ -00086300: 284d 756c 7469 7072 6f6a 6563 7469 7665 (Multiprojective │ │ │ │ -00086310: 5661 7269 6574 7929 3a0a 284d 756c 7469 Variety):.(Multi │ │ │ │ -00086320: 7072 6f6a 6563 7469 7665 5661 7269 6574 projectiveVariet │ │ │ │ -00086330: 6965 7329 706f 696e 745f 6c70 4d75 6c74 ies)point_lpMult │ │ │ │ -00086340: 6970 726f 6a65 6374 6976 6556 6172 6965 iprojectiveVarie │ │ │ │ -00086350: 7479 5f72 702c 2e0a 0a42 656c 6f77 2077 ty_rp,...Below w │ │ │ │ -00086360: 6520 7665 7269 6679 2074 6865 2062 6972 e verify the bir │ │ │ │ -00086370: 6174 696f 6e61 6c69 7479 206f 6620 6120 ationality of a │ │ │ │ -00086380: 7261 7469 6f6e 616c 206d 6170 2e0a 0a2b rational map...+ │ │ │ │ +00086080: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 *********.. * F │ │ │ │ +00086090: 756e 6374 696f 6e3a 202a 6e6f 7465 2070 unction: *note p │ │ │ │ +000860a0: 6f69 6e74 3a20 706f 696e 742c 0a20 202a oint: point,. * │ │ │ │ +000860b0: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ +000860c0: 2070 6f69 6e74 2052 0a20 202a 2049 6e70 point R. * Inp │ │ │ │ +000860d0: 7574 733a 0a20 2020 2020 202a 2052 2c20 uts:. * R, │ │ │ │ +000860e0: 6120 2a6e 6f74 6520 7175 6f74 6965 6e74 a *note quotient │ │ │ │ +000860f0: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ +00086100: 3244 6f63 2951 756f 7469 656e 7452 696e 2Doc)QuotientRin │ │ │ │ +00086110: 672c 2c20 7468 6520 686f 6d6f 6765 6e65 g,, the homogene │ │ │ │ +00086120: 6f75 730a 2020 2020 2020 2020 636f 6f72 ous. coor │ │ │ │ +00086130: 6469 6e61 7465 2072 696e 6720 6f66 2061 dinate ring of a │ │ │ │ +00086140: 2063 6c6f 7365 6420 7375 6273 6368 656d closed subschem │ │ │ │ +00086150: 6520 2458 5c73 7562 7365 7465 715c 6d61 e $X\subseteq\ma │ │ │ │ +00086160: 7468 6262 7b50 7d5e 6e24 206f 7665 7220 thbb{P}^n$ over │ │ │ │ +00086170: 610a 2020 2020 2020 2020 6669 6e69 7465 a. finite │ │ │ │ +00086180: 2067 726f 756e 6420 6669 656c 640a 2020 ground field. │ │ │ │ +00086190: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ +000861a0: 202a 2061 6e20 2a6e 6f74 6520 6964 6561 * an *note idea │ │ │ │ +000861b0: 6c3a 2028 4d61 6361 756c 6179 3244 6f63 l: (Macaulay2Doc │ │ │ │ +000861c0: 2949 6465 616c 2c2c 2061 6e20 6964 6561 )Ideal,, an idea │ │ │ │ +000861d0: 6c20 696e 2052 2064 6566 696e 696e 6720 l in R defining │ │ │ │ +000861e0: 6120 706f 696e 7420 6f6e 0a20 2020 2020 a point on. │ │ │ │ +000861f0: 2020 2024 5824 0a0a 4465 7363 7269 7074 $X$..Descript │ │ │ │ +00086200: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +00086210: 0a54 6869 7320 6675 6e63 7469 6f6e 2069 .This function i │ │ │ │ +00086220: 7320 6120 7661 7269 616e 7420 6f66 2074 s a variant of t │ │ │ │ +00086230: 6865 202a 6e6f 7465 2072 616e 646f 6d4b he *note randomK │ │ │ │ +00086240: 5261 7469 6f6e 616c 506f 696e 743a 0a28 RationalPoint:.( │ │ │ │ +00086250: 4d61 6361 756c 6179 3244 6f63 2972 616e Macaulay2Doc)ran │ │ │ │ +00086260: 646f 6d4b 5261 7469 6f6e 616c 506f 696e domKRationalPoin │ │ │ │ +00086270: 742c 2066 756e 6374 696f 6e2c 2077 6869 t, function, whi │ │ │ │ +00086280: 6368 2068 6173 2062 6565 6e20 6675 7274 ch has been furt │ │ │ │ +00086290: 6865 7220 696d 7072 6f76 6564 0a61 6e64 her improved.and │ │ │ │ +000862a0: 2065 7874 656e 6465 6420 696e 2074 6865 extended in the │ │ │ │ +000862b0: 2070 6163 6b61 6765 204d 756c 7469 7072 package Multipr │ │ │ │ +000862c0: 6f6a 6563 7469 7665 5661 7269 6574 6965 ojectiveVarietie │ │ │ │ +000862d0: 7320 286d 6973 7369 6e67 2064 6f63 756d s (missing docum │ │ │ │ +000862e0: 656e 7461 7469 6f6e 292c 0a73 6565 202a entation),.see * │ │ │ │ +000862f0: 6e6f 7465 2070 6f69 6e74 284d 756c 7469 note point(Multi │ │ │ │ +00086300: 7072 6f6a 6563 7469 7665 5661 7269 6574 projectiveVariet │ │ │ │ +00086310: 7929 3a0a 284d 756c 7469 7072 6f6a 6563 y):.(Multiprojec │ │ │ │ +00086320: 7469 7665 5661 7269 6574 6965 7329 706f tiveVarieties)po │ │ │ │ +00086330: 696e 745f 6c70 4d75 6c74 6970 726f 6a65 int_lpMultiproje │ │ │ │ +00086340: 6374 6976 6556 6172 6965 7479 5f72 702c ctiveVariety_rp, │ │ │ │ +00086350: 2e0a 0a42 656c 6f77 2077 6520 7665 7269 ...Below we veri │ │ │ │ +00086360: 6679 2074 6865 2062 6972 6174 696f 6e61 fy the birationa │ │ │ │ +00086370: 6c69 7479 206f 6620 6120 7261 7469 6f6e lity of a ration │ │ │ │ +00086380: 616c 206d 6170 2e0a 0a2b 2d2d 2d2d 2d2d al map...+------ │ │ │ │ 00086390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000863a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000863b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000863c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000863d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000863e0: 6931 203a 2066 203d 2069 6e76 6572 7365 i1 : f = inverse │ │ │ │ -000863f0: 4d61 7020 7370 6563 6961 6c51 7561 6472 Map specialQuadr │ │ │ │ -00086400: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ -00086410: 6f6e 2839 2c5a 5a2f 3333 3333 3129 3b20 on(9,ZZ/33331); │ │ │ │ -00086420: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000863d0: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2066 -------+.|i1 : f │ │ │ │ +000863e0: 203d 2069 6e76 6572 7365 4d61 7020 7370 = inverseMap sp │ │ │ │ +000863f0: 6563 6961 6c51 7561 6472 6174 6963 5472 ecialQuadraticTr │ │ │ │ +00086400: 616e 7366 6f72 6d61 7469 6f6e 2839 2c5a ansformation(9,Z │ │ │ │ +00086410: 5a2f 3333 3333 3129 3b20 2020 2020 2020 Z/33331); │ │ │ │ +00086420: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00086430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086470: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086480: 6f31 203a 2052 6174 696f 6e61 6c4d 6170 o1 : RationalMap │ │ │ │ -00086490: 2028 6375 6269 6320 7261 7469 6f6e 616c (cubic rational │ │ │ │ -000864a0: 206d 6170 2066 726f 6d20 382d 6469 6d65 map from 8-dime │ │ │ │ -000864b0: 6e73 696f 6e61 6c20 7375 6276 6172 6965 nsional subvarie │ │ │ │ -000864c0: 7479 206f 6620 5050 5e31 3120 207c 0a7c ty of PP^11 |.| │ │ │ │ +00086470: 2020 2020 2020 207c 0a7c 6f31 203a 2052 |.|o1 : R │ │ │ │ +00086480: 6174 696f 6e61 6c4d 6170 2028 6375 6269 ationalMap (cubi │ │ │ │ +00086490: 6320 7261 7469 6f6e 616c 206d 6170 2066 c rational map f │ │ │ │ +000864a0: 726f 6d20 382d 6469 6d65 6e73 696f 6e61 rom 8-dimensiona │ │ │ │ +000864b0: 6c20 7375 6276 6172 6965 7479 206f 6620 l subvariety of │ │ │ │ +000864c0: 5050 5e31 3120 207c 0a7c 2d2d 2d2d 2d2d PP^11 |.|------ │ │ │ │ 000864d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000864e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000864f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086500: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00086520: 746f 2050 505e 3829 2020 2020 2020 2020 to PP^8) │ │ │ │ +00086510: 2d2d 2d2d 2d2d 2d7c 0a7c 746f 2050 505e -------|.|to PP^ │ │ │ │ +00086520: 3829 2020 2020 2020 2020 2020 2020 2020 8) │ │ │ │ 00086530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086560: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00086560: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00086570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000865a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000865b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -000865c0: 6932 203a 2074 696d 6520 7020 3d20 706f i2 : time p = po │ │ │ │ -000865d0: 696e 7420 736f 7572 6365 2066 2020 2020 int source f │ │ │ │ +000865b0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2074 -------+.|i2 : t │ │ │ │ +000865c0: 696d 6520 7020 3d20 706f 696e 7420 736f ime p = point so │ │ │ │ +000865d0: 7572 6365 2066 2020 2020 2020 2020 2020 urce f │ │ │ │ 000865e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000865f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086600: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086610: 202d 2d20 7573 6564 2030 2e34 3633 3036 -- used 0.46306 │ │ │ │ -00086620: 3873 2028 6370 7529 3b20 302e 3230 3831 8s (cpu); 0.2081 │ │ │ │ -00086630: 3934 7320 2874 6872 6561 6429 3b20 3073 94s (thread); 0s │ │ │ │ -00086640: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00086650: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00086600: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ +00086610: 6564 2030 2e34 3937 3933 3473 2028 6370 ed 0.497934s (cp │ │ │ │ +00086620: 7529 3b20 302e 3233 3830 3937 7320 2874 u); 0.238097s (t │ │ │ │ +00086630: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ +00086640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00086650: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00086660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000866a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000866b0: 6f32 203d 2069 6465 616c 2028 7920 2020 o2 = ideal (y │ │ │ │ -000866c0: 2d20 3932 3335 7920 202c 2079 2020 2b20 - 9235y , y + │ │ │ │ -000866d0: 3131 3037 3579 2020 2c20 7920 202d 2035 11075y , y - 5 │ │ │ │ -000866e0: 3834 3779 2020 2c20 7920 202b 2037 3339 847y , y + 739 │ │ │ │ -000866f0: 3679 2020 2c20 7920 202b 2020 207c 0a7c 6y , y + |.| │ │ │ │ -00086700: 2020 2020 2020 2020 2020 2020 2031 3020 10 │ │ │ │ -00086710: 2020 2020 2020 2031 3120 2020 3920 2020 11 9 │ │ │ │ -00086720: 2020 2020 2020 3131 2020 2038 2020 2020 11 8 │ │ │ │ -00086730: 2020 2020 3131 2020 2037 2020 2020 2020 11 7 │ │ │ │ -00086740: 2020 3131 2020 2036 2020 2020 207c 0a7c 11 6 |.| │ │ │ │ -00086750: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ +000866a0: 2020 2020 2020 207c 0a7c 6f32 203d 2069 |.|o2 = i │ │ │ │ +000866b0: 6465 616c 2028 7920 2020 2d20 3932 3335 deal (y - 9235 │ │ │ │ +000866c0: 7920 202c 2079 2020 2b20 3131 3037 3579 y , y + 11075y │ │ │ │ +000866d0: 2020 2c20 7920 202d 2035 3834 3779 2020 , y - 5847y │ │ │ │ +000866e0: 2c20 7920 202b 2037 3339 3679 2020 2c20 , y + 7396y , │ │ │ │ +000866f0: 7920 202b 2020 207c 0a7c 2020 2020 2020 y + |.| │ │ │ │ +00086700: 2020 2020 2020 2031 3020 2020 2020 2020 10 │ │ │ │ +00086710: 2031 3120 2020 3920 2020 2020 2020 2020 11 9 │ │ │ │ +00086720: 3131 2020 2038 2020 2020 2020 2020 3131 11 8 11 │ │ │ │ +00086730: 2020 2037 2020 2020 2020 2020 3131 2020 7 11 │ │ │ │ +00086740: 2036 2020 2020 207c 0a7c 2020 2020 202d 6 |.| - │ │ │ │ +00086750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086780: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086790: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -000867a0: 2020 2020 2031 3335 3330 7920 202c 2079 13530y , y │ │ │ │ -000867b0: 2020 2b20 3433 3539 7920 202c 2079 2020 + 4359y , y │ │ │ │ -000867c0: 2d20 3239 3234 7920 202c 2079 2020 2b20 - 2924y , y + │ │ │ │ -000867d0: 3133 3034 3079 2020 2c20 7920 202b 2036 13040y , y + 6 │ │ │ │ -000867e0: 3930 3479 2020 2c20 7920 202d 207c 0a7c 904y , y - |.| │ │ │ │ -000867f0: 2020 2020 2020 2020 2020 2031 3120 2020 11 │ │ │ │ -00086800: 3520 2020 2020 2020 2031 3120 2020 3420 5 11 4 │ │ │ │ -00086810: 2020 2020 2020 2031 3120 2020 3320 2020 11 3 │ │ │ │ -00086820: 2020 2020 2020 3131 2020 2032 2020 2020 11 2 │ │ │ │ -00086830: 2020 2020 3131 2020 2031 2020 207c 0a7c 11 1 |.| │ │ │ │ -00086840: 2020 2020 202d 2d2d 2d2d 2d2d 2d2d 2d2d ----------- │ │ │ │ +00086790: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2031 -------|.| 1 │ │ │ │ +000867a0: 3335 3330 7920 202c 2079 2020 2b20 3433 3530y , y + 43 │ │ │ │ +000867b0: 3539 7920 202c 2079 2020 2d20 3239 3234 59y , y - 2924 │ │ │ │ +000867c0: 7920 202c 2079 2020 2b20 3133 3034 3079 y , y + 13040y │ │ │ │ +000867d0: 2020 2c20 7920 202b 2036 3930 3479 2020 , y + 6904y │ │ │ │ +000867e0: 2c20 7920 202d 207c 0a7c 2020 2020 2020 , y - |.| │ │ │ │ +000867f0: 2020 2020 2031 3120 2020 3520 2020 2020 11 5 │ │ │ │ +00086800: 2020 2031 3120 2020 3420 2020 2020 2020 11 4 │ │ │ │ +00086810: 2031 3120 2020 3320 2020 2020 2020 2020 11 3 │ │ │ │ +00086820: 3131 2020 2032 2020 2020 2020 2020 3131 11 2 11 │ │ │ │ +00086830: 2020 2031 2020 207c 0a7c 2020 2020 202d 1 |.| - │ │ │ │ +00086840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00086890: 2020 2020 2031 3232 3237 7920 202c 2079 12227y , y │ │ │ │ -000868a0: 2020 2d20 3536 3533 7920 2029 2020 2020 - 5653y ) │ │ │ │ +00086880: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2031 -------|.| 1 │ │ │ │ +00086890: 3232 3237 7920 202c 2079 2020 2d20 3536 2227y , y - 56 │ │ │ │ +000868a0: 3533 7920 2029 2020 2020 2020 2020 2020 53y ) │ │ │ │ 000868b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000868c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000868d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -000868e0: 2020 2020 2020 2020 2020 2031 3120 2020 11 │ │ │ │ -000868f0: 3020 2020 2020 2020 2031 3120 2020 2020 0 11 │ │ │ │ +000868d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000868e0: 2020 2020 2031 3120 2020 3020 2020 2020 11 0 │ │ │ │ +000868f0: 2020 2031 3120 2020 2020 2020 2020 2020 11 │ │ │ │ 00086900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086920: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00086920: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00086930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086970: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00086970: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00086980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000869a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000869b0: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ -000869c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000869b0: 2020 2020 2020 205a 5a20 2020 2020 2020 ZZ │ │ │ │ +000869c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 000869d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000869e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000869f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086a00: 2020 2020 2020 2020 2020 202d 2d2d 2d2d ----- │ │ │ │ -00086a10: 5b79 202e 2e79 2020 5d20 2020 207c 0a7c [y ..y ] |.| │ │ │ │ +00086a00: 2020 2020 202d 2d2d 2d2d 5b79 202e 2e79 -----[y ..y │ │ │ │ +00086a10: 2020 5d20 2020 207c 0a7c 2020 2020 2020 ] |.| │ │ │ │ 00086a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086a50: 2020 2020 2020 2020 2020 2033 3333 3331 33331 │ │ │ │ -00086a60: 2020 3020 2020 3131 2020 2020 207c 0a7c 0 11 |.| │ │ │ │ -00086a70: 6f32 203a 2049 6465 616c 206f 6620 2d2d o2 : Ideal of -- │ │ │ │ +00086a50: 2020 2020 2033 3333 3331 2020 3020 2020 33331 0 │ │ │ │ +00086a60: 3131 2020 2020 207c 0a7c 6f32 203a 2049 11 |.|o2 : I │ │ │ │ +00086a70: 6465 616c 206f 6620 2d2d 2d2d 2d2d 2d2d deal of -------- │ │ │ │ 00086a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ -00086ac0: 2020 2020 2020 2020 2020 2020 2020 2879 (y │ │ │ │ -00086ad0: 2079 2020 2d20 7920 7920 202b 2079 2079 y - y y + y y │ │ │ │ -00086ae0: 2020 2c20 7920 7920 202d 2079 2079 2020 , y y - y y │ │ │ │ -00086af0: 2b20 7920 7920 202c 2079 2079 2020 2d20 + y y , y y - │ │ │ │ -00086b00: 7920 7920 202b 2079 2079 2020 2c7c 0a7c y y + y y ,|.| │ │ │ │ -00086b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086b20: 3620 3720 2020 2035 2038 2020 2020 3420 6 7 5 8 4 │ │ │ │ -00086b30: 3131 2020 2033 2037 2020 2020 3220 3820 11 3 7 2 8 │ │ │ │ -00086b40: 2020 2031 2031 3120 2020 3320 3520 2020 1 11 3 5 │ │ │ │ -00086b50: 2032 2036 2020 2020 3020 3131 207c 0a7c 2 6 0 11 |.| │ │ │ │ +00086ab0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ +00086ac0: 2020 2020 2020 2020 2879 2079 2020 2d20 (y y - │ │ │ │ +00086ad0: 7920 7920 202b 2079 2079 2020 2c20 7920 y y + y y , y │ │ │ │ +00086ae0: 7920 202d 2079 2079 2020 2b20 7920 7920 y - y y + y y │ │ │ │ +00086af0: 202c 2079 2079 2020 2d20 7920 7920 202b , y y - y y + │ │ │ │ +00086b00: 2079 2079 2020 2c7c 0a7c 2020 2020 2020 y y ,|.| │ │ │ │ +00086b10: 2020 2020 2020 2020 2020 3620 3720 2020 6 7 │ │ │ │ +00086b20: 2035 2038 2020 2020 3420 3131 2020 2033 5 8 4 11 3 │ │ │ │ +00086b30: 2037 2020 2020 3220 3820 2020 2031 2031 7 2 8 1 1 │ │ │ │ +00086b40: 3120 2020 3320 3520 2020 2032 2036 2020 1 3 5 2 6 │ │ │ │ +00086b50: 2020 3020 3131 207c 0a7c 2d2d 2d2d 2d2d 0 11 |.|------ │ │ │ │ 00086b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086b80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00086ba0: 2d2d 2d2d 2d2d 2d7c 0a7c 2d2d 2d2d 2d2d -------|.|------ │ │ │ │ 00086bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086bd0: 2d2d 2d2d 2d2d 2d2d 2020 2020 2020 2020 -------- │ │ │ │ +00086bd0: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 00086be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086bf0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086c00: 2079 2079 2020 2d20 7920 7920 202b 2079 y y - y y + y │ │ │ │ -00086c10: 2079 202c 2079 2079 2020 2d20 7920 7920 y , y y - y y │ │ │ │ -00086c20: 202b 2079 2079 2029 2020 2020 2020 2020 + y y ) │ │ │ │ +00086bf0: 2020 2020 2020 207c 0a7c 2079 2079 2020 |.| y y │ │ │ │ +00086c00: 2d20 7920 7920 202b 2079 2079 202c 2079 - y y + y y , y │ │ │ │ +00086c10: 2079 2020 2d20 7920 7920 202b 2079 2079 y - y y + y y │ │ │ │ +00086c20: 2029 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ 00086c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086c40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086c50: 2020 3320 3420 2020 2031 2036 2020 2020 3 4 1 6 │ │ │ │ -00086c60: 3020 3820 2020 3220 3420 2020 2031 2035 0 8 2 4 1 5 │ │ │ │ -00086c70: 2020 2020 3020 3720 2020 2020 2020 2020 0 7 │ │ │ │ +00086c40: 2020 2020 2020 207c 0a7c 2020 3320 3420 |.| 3 4 │ │ │ │ +00086c50: 2020 2031 2036 2020 2020 3020 3820 2020 1 6 0 8 │ │ │ │ +00086c60: 3220 3420 2020 2031 2035 2020 2020 3020 2 4 1 5 0 │ │ │ │ +00086c70: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 00086c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086c90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00086c90: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00086ca0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086cb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086cc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -00086cf0: 6933 203a 2074 696d 6520 7020 3d3d 2066 i3 : time p == f │ │ │ │ -00086d00: 5e2a 2066 2070 2020 2020 2020 2020 2020 ^* f p │ │ │ │ +00086ce0: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2074 -------+.|i3 : t │ │ │ │ +00086cf0: 696d 6520 7020 3d3d 2066 5e2a 2066 2070 ime p == f^* f p │ │ │ │ +00086d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086d40: 202d 2d20 7573 6564 2030 2e32 3132 3436 -- used 0.21246 │ │ │ │ -00086d50: 3873 2028 6370 7529 3b20 302e 3133 3538 8s (cpu); 0.1358 │ │ │ │ -00086d60: 3132 7320 2874 6872 6561 6429 3b20 3073 12s (thread); 0s │ │ │ │ -00086d70: 2028 6763 2920 2020 2020 2020 2020 2020 (gc) │ │ │ │ -00086d80: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00086d30: 2020 2020 2020 207c 0a7c 202d 2d20 7573 |.| -- us │ │ │ │ +00086d40: 6564 2030 2e32 3330 3636 3373 2028 6370 ed 0.230663s (cp │ │ │ │ +00086d50: 7529 3b20 302e 3134 3273 2028 7468 7265 u); 0.142s (thre │ │ │ │ +00086d60: 6164 293b 2030 7320 2867 6329 2020 2020 ad); 0s (gc) │ │ │ │ +00086d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00086d80: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ 00086d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086dd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -00086de0: 6f33 203d 2074 7275 6520 2020 2020 2020 o3 = true │ │ │ │ +00086dd0: 2020 2020 2020 207c 0a7c 6f33 203d 2074 |.|o3 = t │ │ │ │ +00086de0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ 00086df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00086e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00086e20: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00086e20: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ 00086e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00086e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ -00086e80: 5365 6520 616c 736f 0a3d 3d3d 3d3d 3d3d See also.======= │ │ │ │ -00086e90: 3d0a 0a20 202a 202a 6e6f 7465 2072 616e =.. * *note ran │ │ │ │ -00086ea0: 646f 6d4b 5261 7469 6f6e 616c 506f 696e domKRationalPoin │ │ │ │ -00086eb0: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -00086ec0: 2972 616e 646f 6d4b 5261 7469 6f6e 616c )randomKRational │ │ │ │ -00086ed0: 506f 696e 742c 202d 2d20 7069 636b 2061 Point, -- pick a │ │ │ │ -00086ee0: 0a20 2020 2072 616e 646f 6d20 4b20 7261 . random K ra │ │ │ │ -00086ef0: 7469 6f6e 616c 2070 6f69 6e74 206f 6e20 tional point on │ │ │ │ -00086f00: 7468 6520 7363 6865 6d65 2058 2064 6566 the scheme X def │ │ │ │ -00086f10: 696e 6564 2062 7920 490a 0a57 6179 7320 ined by I..Ways │ │ │ │ -00086f20: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ -00086f30: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ -00086f40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ -00086f50: 2a20 2270 6f69 6e74 2850 6f6c 796e 6f6d * "point(Polynom │ │ │ │ -00086f60: 6961 6c52 696e 6729 220a 2020 2a20 2a6e ialRing)". * *n │ │ │ │ -00086f70: 6f74 6520 706f 696e 7428 5175 6f74 6965 ote point(Quotie │ │ │ │ -00086f80: 6e74 5269 6e67 293a 2070 6f69 6e74 5f6c ntRing): point_l │ │ │ │ -00086f90: 7051 756f 7469 656e 7452 696e 675f 7270 pQuotientRing_rp │ │ │ │ -00086fa0: 2c20 2d2d 2070 6963 6b20 6120 7261 6e64 , -- pick a rand │ │ │ │ -00086fb0: 6f6d 0a20 2020 2072 6174 696f 6e61 6c20 om. rational │ │ │ │ -00086fc0: 706f 696e 7420 6f6e 2061 2070 726f 6a65 point on a proje │ │ │ │ -00086fd0: 6374 6976 6520 7661 7269 6574 790a 2d2d ctive variety.-- │ │ │ │ +00086e70: 2d2d 2d2d 2d2d 2d2b 0a0a 5365 6520 616c -------+..See al │ │ │ │ +00086e80: 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a so.========.. * │ │ │ │ +00086e90: 202a 6e6f 7465 2072 616e 646f 6d4b 5261 *note randomKRa │ │ │ │ +00086ea0: 7469 6f6e 616c 506f 696e 743a 2028 4d61 tionalPoint: (Ma │ │ │ │ +00086eb0: 6361 756c 6179 3244 6f63 2972 616e 646f caulay2Doc)rando │ │ │ │ +00086ec0: 6d4b 5261 7469 6f6e 616c 506f 696e 742c mKRationalPoint, │ │ │ │ +00086ed0: 202d 2d20 7069 636b 2061 0a20 2020 2072 -- pick a. r │ │ │ │ +00086ee0: 616e 646f 6d20 4b20 7261 7469 6f6e 616c andom K rational │ │ │ │ +00086ef0: 2070 6f69 6e74 206f 6e20 7468 6520 7363 point on the sc │ │ │ │ +00086f00: 6865 6d65 2058 2064 6566 696e 6564 2062 heme X defined b │ │ │ │ +00086f10: 7920 490a 0a57 6179 7320 746f 2075 7365 y I..Ways to use │ │ │ │ +00086f20: 2074 6869 7320 6d65 7468 6f64 3a0a 3d3d this method:.== │ │ │ │ +00086f30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00086f40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2270 6f69 ======.. * "poi │ │ │ │ +00086f50: 6e74 2850 6f6c 796e 6f6d 6961 6c52 696e nt(PolynomialRin │ │ │ │ +00086f60: 6729 220a 2020 2a20 2a6e 6f74 6520 706f g)". * *note po │ │ │ │ +00086f70: 696e 7428 5175 6f74 6965 6e74 5269 6e67 int(QuotientRing │ │ │ │ +00086f80: 293a 2070 6f69 6e74 5f6c 7051 756f 7469 ): point_lpQuoti │ │ │ │ +00086f90: 656e 7452 696e 675f 7270 2c20 2d2d 2070 entRing_rp, -- p │ │ │ │ +00086fa0: 6963 6b20 6120 7261 6e64 6f6d 0a20 2020 ick a random. │ │ │ │ +00086fb0: 2072 6174 696f 6e61 6c20 706f 696e 7420 rational point │ │ │ │ +00086fc0: 6f6e 2061 2070 726f 6a65 6374 6976 6520 on a projective │ │ │ │ +00086fd0: 7661 7269 6574 790a 2d2d 2d2d 2d2d 2d2d variety.-------- │ │ │ │ 00086fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00086ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00087020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -00087030: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -00087040: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -00087050: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -00087060: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -00087070: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -00087080: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -00087090: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -000870a0: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a31 cumentation.m2:1 │ │ │ │ -000870b0: 3033 343a 302e 0a1f 0a46 696c 653a 2043 034:0....File: C │ │ │ │ -000870c0: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -000870d0: 653a 2070 726f 6a65 6374 6976 6544 6567 e: projectiveDeg │ │ │ │ -000870e0: 7265 6573 2c20 4e65 7874 3a20 7072 6f6a rees, Next: proj │ │ │ │ -000870f0: 6563 7469 7665 4465 6772 6565 735f 6c70 ectiveDegrees_lp │ │ │ │ -00087100: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -00087110: 5072 6576 3a20 706f 696e 745f 6c70 5175 Prev: point_lpQu │ │ │ │ -00087120: 6f74 6965 6e74 5269 6e67 5f72 702c 2055 otientRing_rp, U │ │ │ │ -00087130: 703a 2054 6f70 0a0a 7072 6f6a 6563 7469 p: Top..projecti │ │ │ │ -00087140: 7665 4465 6772 6565 7320 2d2d 2070 726f veDegrees -- pro │ │ │ │ -00087150: 6a65 6374 6976 6520 6465 6772 6565 7320 jective degrees │ │ │ │ -00087160: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ -00087170: 7020 6265 7477 6565 6e20 7072 6f6a 6563 p between projec │ │ │ │ -00087180: 7469 7665 2076 6172 6965 7469 6573 0a2a tive varieties.* │ │ │ │ +00087020: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +00087030: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +00087040: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +00087050: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +00087060: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +00087070: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +00087080: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +00087090: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +000870a0: 6174 696f 6e2e 6d32 3a31 3033 343a 302e ation.m2:1034:0. │ │ │ │ +000870b0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +000870c0: 2e69 6e66 6f2c 204e 6f64 653a 2070 726f .info, Node: pro │ │ │ │ +000870d0: 6a65 6374 6976 6544 6567 7265 6573 2c20 jectiveDegrees, │ │ │ │ +000870e0: 4e65 7874 3a20 7072 6f6a 6563 7469 7665 Next: projective │ │ │ │ +000870f0: 4465 6772 6565 735f 6c70 5261 7469 6f6e Degrees_lpRation │ │ │ │ +00087100: 616c 4d61 705f 7270 2c20 5072 6576 3a20 alMap_rp, Prev: │ │ │ │ +00087110: 706f 696e 745f 6c70 5175 6f74 6965 6e74 point_lpQuotient │ │ │ │ +00087120: 5269 6e67 5f72 702c 2055 703a 2054 6f70 Ring_rp, Up: Top │ │ │ │ +00087130: 0a0a 7072 6f6a 6563 7469 7665 4465 6772 ..projectiveDegr │ │ │ │ +00087140: 6565 7320 2d2d 2070 726f 6a65 6374 6976 ees -- projectiv │ │ │ │ +00087150: 6520 6465 6772 6565 7320 6f66 2061 2072 e degrees of a r │ │ │ │ +00087160: 6174 696f 6e61 6c20 6d61 7020 6265 7477 ational map betw │ │ │ │ +00087170: 6565 6e20 7072 6f6a 6563 7469 7665 2076 een projective v │ │ │ │ +00087180: 6172 6965 7469 6573 0a2a 2a2a 2a2a 2a2a arieties.******* │ │ │ │ 00087190: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000871a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000871b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000871c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000871d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000871e0: 2a2a 2a2a 2a0a 0a20 202a 2055 7361 6765 *****.. * Usage │ │ │ │ -000871f0: 3a20 0a20 2020 2020 2020 2070 726f 6a65 : . proje │ │ │ │ -00087200: 6374 6976 6544 6567 7265 6573 2070 6869 ctiveDegrees phi │ │ │ │ -00087210: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -00087220: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ -00087230: 6520 7269 6e67 206d 6170 3a20 284d 6163 e ring map: (Mac │ │ │ │ -00087240: 6175 6c61 7932 446f 6329 5269 6e67 4d61 aulay2Doc)RingMa │ │ │ │ -00087250: 702c 2c20 7768 6963 6820 7265 7072 6573 p,, which repres │ │ │ │ -00087260: 656e 7473 2061 0a20 2020 2020 2020 2072 ents a. r │ │ │ │ -00087270: 6174 696f 6e61 6c20 6d61 7020 245c 5068 ational map $\Ph │ │ │ │ -00087280: 6924 2062 6574 7765 656e 2070 726f 6a65 i$ between proje │ │ │ │ -00087290: 6374 6976 6520 7661 7269 6574 6965 730a ctive varieties. │ │ │ │ -000872a0: 2020 2a20 2a6e 6f74 6520 4f70 7469 6f6e * *note Option │ │ │ │ -000872b0: 616c 2069 6e70 7574 733a 2028 4d61 6361 al inputs: (Maca │ │ │ │ -000872c0: 756c 6179 3244 6f63 2975 7369 6e67 2066 ulay2Doc)using f │ │ │ │ -000872d0: 756e 6374 696f 6e73 2077 6974 6820 6f70 unctions with op │ │ │ │ -000872e0: 7469 6f6e 616c 2069 6e70 7574 732c 3a0a tional inputs,:. │ │ │ │ -000872f0: 2020 2020 2020 2a20 2a6e 6f74 6520 426c * *note Bl │ │ │ │ -00087300: 6f77 5570 5374 7261 7465 6779 3a20 426c owUpStrategy: Bl │ │ │ │ -00087310: 6f77 5570 5374 7261 7465 6779 2c20 3d3e owUpStrategy, => │ │ │ │ -00087320: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ -00087330: 6c75 650a 2020 2020 2020 2020 2245 6c69 lue. "Eli │ │ │ │ -00087340: 6d69 6e61 7465 222c 0a20 2020 2020 202a minate",. * │ │ │ │ -00087350: 202a 6e6f 7465 2043 6572 7469 6679 3a20 *note Certify: │ │ │ │ -00087360: 4365 7274 6966 792c 203d 3e20 2e2e 2e2c Certify, => ..., │ │ │ │ -00087370: 2064 6566 6175 6c74 2076 616c 7565 2066 default value f │ │ │ │ -00087380: 616c 7365 2c20 7768 6574 6865 7220 746f alse, whether to │ │ │ │ -00087390: 2065 6e73 7572 650a 2020 2020 2020 2020 ensure. │ │ │ │ -000873a0: 636f 7272 6563 746e 6573 7320 6f66 206f correctness of o │ │ │ │ -000873b0: 7574 7075 740a 2020 2020 2020 2a20 2a6e utput. * *n │ │ │ │ -000873c0: 6f74 6520 4e75 6d44 6567 7265 6573 3a20 ote NumDegrees: │ │ │ │ -000873d0: 4e75 6d44 6567 7265 6573 2c20 3d3e 202e NumDegrees, => . │ │ │ │ -000873e0: 2e2e 2c20 6465 6661 756c 7420 7661 6c75 .., default valu │ │ │ │ -000873f0: 6520 696e 6669 6e69 7479 2c20 0a20 2020 e infinity, . │ │ │ │ -00087400: 2020 202a 202a 6e6f 7465 2056 6572 626f * *note Verbo │ │ │ │ -00087410: 7365 3a20 696e 7665 7273 654d 6170 5f6c se: inverseMap_l │ │ │ │ -00087420: 705f 7064 5f70 645f 7064 5f63 6d56 6572 p_pd_pd_pd_cmVer │ │ │ │ -00087430: 626f 7365 3d3e 5f70 645f 7064 5f70 645f bose=>_pd_pd_pd_ │ │ │ │ -00087440: 7270 2c20 3d3e 202e 2e2e 2c0a 2020 2020 rp, => ...,. │ │ │ │ -00087450: 2020 2020 6465 6661 756c 7420 7661 6c75 default valu │ │ │ │ -00087460: 6520 7472 7565 2c0a 2020 2a20 4f75 7470 e true,. * Outp │ │ │ │ -00087470: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ -00087480: 6e6f 7465 206c 6973 743a 2028 4d61 6361 note list: (Maca │ │ │ │ -00087490: 756c 6179 3244 6f63 294c 6973 742c 2c20 ulay2Doc)List,, │ │ │ │ -000874a0: 7468 6520 6c69 7374 206f 6620 7468 6520 the list of the │ │ │ │ -000874b0: 7072 6f6a 6563 7469 7665 2064 6567 7265 projective degre │ │ │ │ -000874c0: 6573 0a20 2020 2020 2020 206f 6620 245c es. of $\ │ │ │ │ -000874d0: 5068 6924 0a0a 4465 7363 7269 7074 696f Phi$..Descriptio │ │ │ │ -000874e0: 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a4c n.===========..L │ │ │ │ -000874f0: 6574 2024 5c70 6869 3a4b 5b79 5f30 2c5c et $\phi:K[y_0,\ │ │ │ │ -00087500: 6c64 6f74 732c 795f 6d5d 2f4a 205c 746f ldots,y_m]/J \to │ │ │ │ -00087510: 204b 5b78 5f30 2c5c 6c64 6f74 732c 785f K[x_0,\ldots,x_ │ │ │ │ -00087520: 6e5d 2f49 2420 6265 2061 2072 696e 6720 n]/I$ be a ring │ │ │ │ -00087530: 6d61 700a 7265 7072 6573 656e 7469 6e67 map.representing │ │ │ │ -00087540: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -00087550: 245c 5068 693a 2056 2849 2920 5c73 7562 $\Phi: V(I) \sub │ │ │ │ -00087560: 7365 7465 710a 5c6d 6174 6862 627b 507d seteq.\mathbb{P} │ │ │ │ -00087570: 5e6e 3d50 726f 6a28 4b5b 785f 302c 5c6c ^n=Proj(K[x_0,\l │ │ │ │ -00087580: 646f 7473 2c78 5f6e 5d29 205c 6461 7368 dots,x_n]) \dash │ │ │ │ -00087590: 7269 6768 7461 7272 6f77 2056 284a 2920 rightarrow V(J) │ │ │ │ -000875a0: 5c73 7562 7365 7465 710a 5c6d 6174 6862 \subseteq.\mathb │ │ │ │ -000875b0: 627b 507d 5e6d 3d50 726f 6a28 4b5b 795f b{P}^m=Proj(K[y_ │ │ │ │ -000875c0: 302c 5c6c 646f 7473 2c79 5f6d 5d29 242e 0,\ldots,y_m])$. │ │ │ │ -000875d0: 2054 6865 2024 6924 2d74 6820 7072 6f6a The $i$-th proj │ │ │ │ -000875e0: 6563 7469 7665 2064 6567 7265 6520 6f66 ective degree of │ │ │ │ -000875f0: 2024 5c50 6869 240a 6973 2064 6566 696e $\Phi$.is defin │ │ │ │ -00087600: 6564 2069 6e20 7465 726d 7320 6f66 2064 ed in terms of d │ │ │ │ -00087610: 696d 656e 7369 6f6e 2061 6e64 2064 6567 imension and deg │ │ │ │ -00087620: 7265 6520 6f66 2074 6865 2063 6c6f 7375 ree of the closu │ │ │ │ -00087630: 7265 206f 6620 245c 5068 695e 7b2d 317d re of $\Phi^{-1} │ │ │ │ -00087640: 284c 2924 2c0a 7768 6572 6520 244c 2420 (L)$,.where $L$ │ │ │ │ -00087650: 6973 2061 2067 656e 6572 616c 206c 696e is a general lin │ │ │ │ -00087660: 6561 7220 7375 6273 7061 6365 206f 6620 ear subspace of │ │ │ │ -00087670: 245c 6d61 7468 6262 7b50 7d5e 6d24 206f $\mathbb{P}^m$ o │ │ │ │ -00087680: 6620 6120 6365 7274 6169 6e0a 6469 6d65 f a certain.dime │ │ │ │ -00087690: 6e73 696f 6e3b 2066 6f72 2074 6865 2070 nsion; for the p │ │ │ │ -000876a0: 7265 6369 7365 2064 6566 696e 6974 696f recise definitio │ │ │ │ -000876b0: 6e2c 2073 6565 2048 6172 7269 7327 7320 n, see Harris's │ │ │ │ -000876c0: 626f 6f6b 2028 416c 6765 6272 6169 6320 book (Algebraic │ │ │ │ -000876d0: 6765 6f6d 6574 7279 3a20 410a 6669 7273 geometry: A.firs │ │ │ │ -000876e0: 7420 636f 7572 7365 202d 2056 6f6c 2e20 t course - Vol. │ │ │ │ -000876f0: 3133 3320 6f66 2047 7261 642e 2054 6578 133 of Grad. Tex │ │ │ │ -00087700: 7473 2069 6e20 4d61 7468 2e2c 2070 2e20 ts in Math., p. │ │ │ │ -00087710: 3234 3029 2e20 4966 2024 5c50 6869 2420 240). If $\Phi$ │ │ │ │ -00087720: 6973 2064 6566 696e 6564 0a62 7920 656c is defined.by el │ │ │ │ -00087730: 656d 656e 7473 2024 465f 3028 785f 302c ements $F_0(x_0, │ │ │ │ -00087740: 5c6c 646f 7473 2c78 5f6e 292c 5c6c 646f \ldots,x_n),\ldo │ │ │ │ -00087750: 7473 2c46 5f6d 2878 5f30 2c5c 6c64 6f74 ts,F_m(x_0,\ldot │ │ │ │ -00087760: 732c 785f 6e29 2420 616e 6420 2449 5f4c s,x_n)$ and $I_L │ │ │ │ -00087770: 2420 6465 6e6f 7465 730a 7468 6520 6964 $ denotes.the id │ │ │ │ -00087780: 6561 6c20 6f66 2074 6865 2073 7562 7370 eal of the subsp │ │ │ │ -00087790: 6163 6520 244c 5c73 7562 7365 7465 7120 ace $L\subseteq │ │ │ │ -000877a0: 5c6d 6174 6862 627b 507d 5e6d 242c 2074 \mathbb{P}^m$, t │ │ │ │ -000877b0: 6865 6e20 7468 6520 6964 6561 6c20 6f66 hen the ideal of │ │ │ │ -000877c0: 2074 6865 0a63 6c6f 7375 7265 206f 6620 the.closure of │ │ │ │ -000877d0: 245c 5068 695e 7b2d 317d 284c 2920 2420 $\Phi^{-1}(L) $ │ │ │ │ -000877e0: 6973 206e 6f74 6869 6e67 2062 7574 2074 is nothing but t │ │ │ │ -000877f0: 6865 2073 6174 7572 6174 696f 6e20 6f66 he saturation of │ │ │ │ -00087800: 2074 6865 2069 6465 616c 0a24 285c 7068 the ideal.$(\ph │ │ │ │ -00087810: 6928 495f 4c29 2924 2062 7920 2428 465f i(I_L))$ by $(F_ │ │ │ │ -00087820: 302c 2e2e 2e2e 2c46 5f6d 2924 2069 6e20 0,....,F_m)$ in │ │ │ │ -00087830: 7468 6520 7269 6e67 2024 4b5b 785f 302c the ring $K[x_0, │ │ │ │ -00087840: 5c6c 646f 7473 2c78 5f6e 5d2f 4924 2e20 \ldots,x_n]/I$. │ │ │ │ -00087850: 536f 2c0a 7265 706c 6163 696e 6720 696e So,.replacing in │ │ │ │ -00087860: 2074 6865 2064 6566 696e 6974 696f 6e2c the definition, │ │ │ │ -00087870: 2067 656e 6572 616c 206c 696e 6561 7220 general linear │ │ │ │ -00087880: 7375 6273 7061 6365 2062 7920 7261 6e64 subspace by rand │ │ │ │ -00087890: 6f6d 206c 696e 6561 7220 7375 6273 7061 om linear subspa │ │ │ │ -000878a0: 6365 2c0a 7765 2067 6574 2061 2070 726f ce,.we get a pro │ │ │ │ -000878b0: 6261 6269 6c69 7374 6963 2061 6c67 6f72 babilistic algor │ │ │ │ -000878c0: 6974 686d 2074 6f20 636f 6d70 7574 6520 ithm to compute │ │ │ │ -000878d0: 616c 6c20 7072 6f6a 6563 7469 7665 2064 all projective d │ │ │ │ -000878e0: 6567 7265 6573 2e0a 4675 7274 6865 726d egrees..Furtherm │ │ │ │ -000878f0: 6f72 652c 2077 6520 6361 6e20 636f 6e73 ore, we can cons │ │ │ │ -00087900: 6964 6572 6162 6c79 2073 7065 6564 2075 iderably speed u │ │ │ │ -00087910: 7020 7468 6973 2061 6c67 6f72 6974 686d p this algorithm │ │ │ │ -00087920: 2062 7920 7461 6b69 6e67 2069 6e74 6f20 by taking into │ │ │ │ -00087930: 6163 636f 756e 740a 7477 6f20 7369 6d70 account.two simp │ │ │ │ -00087940: 6c65 2072 656d 6172 6b73 3a20 3129 2074 le remarks: 1) t │ │ │ │ -00087950: 6865 2073 6174 7572 6174 696f 6e20 2428 he saturation $( │ │ │ │ -00087960: 5c70 6869 2849 5f4c 2929 3a7b 2846 5f30 \phi(I_L)):{(F_0 │ │ │ │ -00087970: 2c5c 6c64 6f74 732c 465f 6d29 7d5e 7b5c ,\ldots,F_m)}^{\ │ │ │ │ -00087980: 696e 6674 797d 240a 6973 2074 6865 2073 infty}$.is the s │ │ │ │ -00087990: 616d 6520 6173 2024 285c 7068 6928 495f ame as $(\phi(I_ │ │ │ │ -000879a0: 4c29 293a 7b28 5c6c 616d 6264 615f 3020 L)):{(\lambda_0 │ │ │ │ -000879b0: 465f 302b 5c63 646f 7473 2b5c 6c61 6d62 F_0+\cdots+\lamb │ │ │ │ -000879c0: 6461 5f6d 2046 5f6d 297d 5e7b 5c69 6e66 da_m F_m)}^{\inf │ │ │ │ -000879d0: 7479 7d24 2c0a 7768 6572 6520 245c 6c61 ty}$,.where $\la │ │ │ │ -000879e0: 6d62 6461 5f30 2c5c 6c64 6f74 732c 5c6c mbda_0,\ldots,\l │ │ │ │ -000879f0: 616d 6264 615f 6d5c 696e 5c6d 6174 6862 ambda_m\in\mathb │ │ │ │ -00087a00: 627b 4b7d 2420 6172 6520 6765 6e65 7261 b{K}$ are genera │ │ │ │ -00087a10: 6c20 7363 616c 6172 733b 2032 2920 7468 l scalars; 2) th │ │ │ │ -00087a20: 650a 2469 242d 7468 2070 726f 6a65 6374 e.$i$-th project │ │ │ │ -00087a30: 6976 6520 6465 6772 6565 206f 6620 245c ive degree of $\ │ │ │ │ -00087a40: 5068 6924 2063 6f69 6e63 6964 6573 2077 Phi$ coincides w │ │ │ │ -00087a50: 6974 6820 7468 6520 2428 692d 3129 242d ith the $(i-1)$- │ │ │ │ -00087a60: 7468 2070 726f 6a65 6374 6976 650a 6465 th projective.de │ │ │ │ -00087a70: 6772 6565 206f 6620 7468 6520 7265 7374 gree of the rest │ │ │ │ -00087a80: 7269 6374 696f 6e20 6f66 2024 5c50 6869 riction of $\Phi │ │ │ │ -00087a90: 2420 746f 2061 2067 656e 6572 616c 2068 $ to a general h │ │ │ │ -00087aa0: 7970 6572 706c 616e 6520 7365 6374 696f yperplane sectio │ │ │ │ -00087ab0: 6e20 6f66 2024 5824 2028 7365 650a 6c6f n of $X$ (see.lo │ │ │ │ -00087ac0: 632e 2063 6974 2e29 2e20 5468 6973 2069 c. cit.). This i │ │ │ │ -00087ad0: 7320 7768 6174 2074 6865 206d 6574 686f s what the metho │ │ │ │ -00087ae0: 6420 7573 6573 2069 6620 2a6e 6f74 6520 d uses if *note │ │ │ │ -00087af0: 4365 7274 6966 793a 2043 6572 7469 6679 Certify: Certify │ │ │ │ -00087b00: 2c20 6973 2073 6574 2074 6f0a 6661 6c73 , is set to.fals │ │ │ │ -00087b10: 652e 2049 6620 696e 7374 6561 6420 2a6e e. If instead *n │ │ │ │ -00087b20: 6f74 6520 4365 7274 6966 793a 2043 6572 ote Certify: Cer │ │ │ │ -00087b30: 7469 6679 2c20 6973 2073 6574 2074 6f20 tify, is set to │ │ │ │ -00087b40: 7472 7565 2c20 7468 656e 2074 6865 206d true, then the m │ │ │ │ -00087b50: 6574 686f 640a 7369 6d70 6c79 2063 6f6d ethod.simply com │ │ │ │ -00087b60: 7075 7465 7320 7468 6520 2a6e 6f74 6520 putes the *note │ │ │ │ -00087b70: 6d75 6c74 6964 6567 7265 653a 2028 4d61 multidegree: (Ma │ │ │ │ -00087b80: 6361 756c 6179 3244 6f63 296d 756c 7469 caulay2Doc)multi │ │ │ │ -00087b90: 6465 6772 6565 2c20 6f66 2074 6865 202a degree, of the * │ │ │ │ -00087ba0: 6e6f 7465 0a67 7261 7068 3a20 6772 6170 note.graph: grap │ │ │ │ -00087bb0: 682c 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d h,...+---------- │ │ │ │ +000871d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ +000871e0: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ +000871f0: 2020 2020 2070 726f 6a65 6374 6976 6544 projectiveD │ │ │ │ +00087200: 6567 7265 6573 2070 6869 0a20 202a 2049 egrees phi. * I │ │ │ │ +00087210: 6e70 7574 733a 0a20 2020 2020 202a 2070 nputs:. * p │ │ │ │ +00087220: 6869 2c20 6120 2a6e 6f74 6520 7269 6e67 hi, a *note ring │ │ │ │ +00087230: 206d 6170 3a20 284d 6163 6175 6c61 7932 map: (Macaulay2 │ │ │ │ +00087240: 446f 6329 5269 6e67 4d61 702c 2c20 7768 Doc)RingMap,, wh │ │ │ │ +00087250: 6963 6820 7265 7072 6573 656e 7473 2061 ich represents a │ │ │ │ +00087260: 0a20 2020 2020 2020 2072 6174 696f 6e61 . rationa │ │ │ │ +00087270: 6c20 6d61 7020 245c 5068 6924 2062 6574 l map $\Phi$ bet │ │ │ │ +00087280: 7765 656e 2070 726f 6a65 6374 6976 6520 ween projective │ │ │ │ +00087290: 7661 7269 6574 6965 730a 2020 2a20 2a6e varieties. * *n │ │ │ │ +000872a0: 6f74 6520 4f70 7469 6f6e 616c 2069 6e70 ote Optional inp │ │ │ │ +000872b0: 7574 733a 2028 4d61 6361 756c 6179 3244 uts: (Macaulay2D │ │ │ │ +000872c0: 6f63 2975 7369 6e67 2066 756e 6374 696f oc)using functio │ │ │ │ +000872d0: 6e73 2077 6974 6820 6f70 7469 6f6e 616c ns with optional │ │ │ │ +000872e0: 2069 6e70 7574 732c 3a0a 2020 2020 2020 inputs,:. │ │ │ │ +000872f0: 2a20 2a6e 6f74 6520 426c 6f77 5570 5374 * *note BlowUpSt │ │ │ │ +00087300: 7261 7465 6779 3a20 426c 6f77 5570 5374 rategy: BlowUpSt │ │ │ │ +00087310: 7261 7465 6779 2c20 3d3e 202e 2e2e 2c20 rategy, => ..., │ │ │ │ +00087320: 6465 6661 756c 7420 7661 6c75 650a 2020 default value. │ │ │ │ +00087330: 2020 2020 2020 2245 6c69 6d69 6e61 7465 "Eliminate │ │ │ │ +00087340: 222c 0a20 2020 2020 202a 202a 6e6f 7465 ",. * *note │ │ │ │ +00087350: 2043 6572 7469 6679 3a20 4365 7274 6966 Certify: Certif │ │ │ │ +00087360: 792c 203d 3e20 2e2e 2e2c 2064 6566 6175 y, => ..., defau │ │ │ │ +00087370: 6c74 2076 616c 7565 2066 616c 7365 2c20 lt value false, │ │ │ │ +00087380: 7768 6574 6865 7220 746f 2065 6e73 7572 whether to ensur │ │ │ │ +00087390: 650a 2020 2020 2020 2020 636f 7272 6563 e. correc │ │ │ │ +000873a0: 746e 6573 7320 6f66 206f 7574 7075 740a tness of output. │ │ │ │ +000873b0: 2020 2020 2020 2a20 2a6e 6f74 6520 4e75 * *note Nu │ │ │ │ +000873c0: 6d44 6567 7265 6573 3a20 4e75 6d44 6567 mDegrees: NumDeg │ │ │ │ +000873d0: 7265 6573 2c20 3d3e 202e 2e2e 2c20 6465 rees, => ..., de │ │ │ │ +000873e0: 6661 756c 7420 7661 6c75 6520 696e 6669 fault value infi │ │ │ │ +000873f0: 6e69 7479 2c20 0a20 2020 2020 202a 202a nity, . * * │ │ │ │ +00087400: 6e6f 7465 2056 6572 626f 7365 3a20 696e note Verbose: in │ │ │ │ +00087410: 7665 7273 654d 6170 5f6c 705f 7064 5f70 verseMap_lp_pd_p │ │ │ │ +00087420: 645f 7064 5f63 6d56 6572 626f 7365 3d3e d_pd_cmVerbose=> │ │ │ │ +00087430: 5f70 645f 7064 5f70 645f 7270 2c20 3d3e _pd_pd_pd_rp, => │ │ │ │ +00087440: 202e 2e2e 2c0a 2020 2020 2020 2020 6465 ...,. de │ │ │ │ +00087450: 6661 756c 7420 7661 6c75 6520 7472 7565 fault value true │ │ │ │ +00087460: 2c0a 2020 2a20 4f75 7470 7574 733a 0a20 ,. * Outputs:. │ │ │ │ +00087470: 2020 2020 202a 2061 202a 6e6f 7465 206c * a *note l │ │ │ │ +00087480: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ +00087490: 6f63 294c 6973 742c 2c20 7468 6520 6c69 oc)List,, the li │ │ │ │ +000874a0: 7374 206f 6620 7468 6520 7072 6f6a 6563 st of the projec │ │ │ │ +000874b0: 7469 7665 2064 6567 7265 6573 0a20 2020 tive degrees. │ │ │ │ +000874c0: 2020 2020 206f 6620 245c 5068 6924 0a0a of $\Phi$.. │ │ │ │ +000874d0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ +000874e0: 3d3d 3d3d 3d3d 3d0a 0a4c 6574 2024 5c70 =======..Let $\p │ │ │ │ +000874f0: 6869 3a4b 5b79 5f30 2c5c 6c64 6f74 732c hi:K[y_0,\ldots, │ │ │ │ +00087500: 795f 6d5d 2f4a 205c 746f 204b 5b78 5f30 y_m]/J \to K[x_0 │ │ │ │ +00087510: 2c5c 6c64 6f74 732c 785f 6e5d 2f49 2420 ,\ldots,x_n]/I$ │ │ │ │ +00087520: 6265 2061 2072 696e 6720 6d61 700a 7265 be a ring map.re │ │ │ │ +00087530: 7072 6573 656e 7469 6e67 2061 2072 6174 presenting a rat │ │ │ │ +00087540: 696f 6e61 6c20 6d61 7020 245c 5068 693a ional map $\Phi: │ │ │ │ +00087550: 2056 2849 2920 5c73 7562 7365 7465 710a V(I) \subseteq. │ │ │ │ +00087560: 5c6d 6174 6862 627b 507d 5e6e 3d50 726f \mathbb{P}^n=Pro │ │ │ │ +00087570: 6a28 4b5b 785f 302c 5c6c 646f 7473 2c78 j(K[x_0,\ldots,x │ │ │ │ +00087580: 5f6e 5d29 205c 6461 7368 7269 6768 7461 _n]) \dashrighta │ │ │ │ +00087590: 7272 6f77 2056 284a 2920 5c73 7562 7365 rrow V(J) \subse │ │ │ │ +000875a0: 7465 710a 5c6d 6174 6862 627b 507d 5e6d teq.\mathbb{P}^m │ │ │ │ +000875b0: 3d50 726f 6a28 4b5b 795f 302c 5c6c 646f =Proj(K[y_0,\ldo │ │ │ │ +000875c0: 7473 2c79 5f6d 5d29 242e 2054 6865 2024 ts,y_m])$. The $ │ │ │ │ +000875d0: 6924 2d74 6820 7072 6f6a 6563 7469 7665 i$-th projective │ │ │ │ +000875e0: 2064 6567 7265 6520 6f66 2024 5c50 6869 degree of $\Phi │ │ │ │ +000875f0: 240a 6973 2064 6566 696e 6564 2069 6e20 $.is defined in │ │ │ │ +00087600: 7465 726d 7320 6f66 2064 696d 656e 7369 terms of dimensi │ │ │ │ +00087610: 6f6e 2061 6e64 2064 6567 7265 6520 6f66 on and degree of │ │ │ │ +00087620: 2074 6865 2063 6c6f 7375 7265 206f 6620 the closure of │ │ │ │ +00087630: 245c 5068 695e 7b2d 317d 284c 2924 2c0a $\Phi^{-1}(L)$,. │ │ │ │ +00087640: 7768 6572 6520 244c 2420 6973 2061 2067 where $L$ is a g │ │ │ │ +00087650: 656e 6572 616c 206c 696e 6561 7220 7375 eneral linear su │ │ │ │ +00087660: 6273 7061 6365 206f 6620 245c 6d61 7468 bspace of $\math │ │ │ │ +00087670: 6262 7b50 7d5e 6d24 206f 6620 6120 6365 bb{P}^m$ of a ce │ │ │ │ +00087680: 7274 6169 6e0a 6469 6d65 6e73 696f 6e3b rtain.dimension; │ │ │ │ +00087690: 2066 6f72 2074 6865 2070 7265 6369 7365 for the precise │ │ │ │ +000876a0: 2064 6566 696e 6974 696f 6e2c 2073 6565 definition, see │ │ │ │ +000876b0: 2048 6172 7269 7327 7320 626f 6f6b 2028 Harris's book ( │ │ │ │ +000876c0: 416c 6765 6272 6169 6320 6765 6f6d 6574 Algebraic geomet │ │ │ │ +000876d0: 7279 3a20 410a 6669 7273 7420 636f 7572 ry: A.first cour │ │ │ │ +000876e0: 7365 202d 2056 6f6c 2e20 3133 3320 6f66 se - Vol. 133 of │ │ │ │ +000876f0: 2047 7261 642e 2054 6578 7473 2069 6e20 Grad. Texts in │ │ │ │ +00087700: 4d61 7468 2e2c 2070 2e20 3234 3029 2e20 Math., p. 240). │ │ │ │ +00087710: 4966 2024 5c50 6869 2420 6973 2064 6566 If $\Phi$ is def │ │ │ │ +00087720: 696e 6564 0a62 7920 656c 656d 656e 7473 ined.by elements │ │ │ │ +00087730: 2024 465f 3028 785f 302c 5c6c 646f 7473 $F_0(x_0,\ldots │ │ │ │ +00087740: 2c78 5f6e 292c 5c6c 646f 7473 2c46 5f6d ,x_n),\ldots,F_m │ │ │ │ +00087750: 2878 5f30 2c5c 6c64 6f74 732c 785f 6e29 (x_0,\ldots,x_n) │ │ │ │ +00087760: 2420 616e 6420 2449 5f4c 2420 6465 6e6f $ and $I_L$ deno │ │ │ │ +00087770: 7465 730a 7468 6520 6964 6561 6c20 6f66 tes.the ideal of │ │ │ │ +00087780: 2074 6865 2073 7562 7370 6163 6520 244c the subspace $L │ │ │ │ +00087790: 5c73 7562 7365 7465 7120 5c6d 6174 6862 \subseteq \mathb │ │ │ │ +000877a0: 627b 507d 5e6d 242c 2074 6865 6e20 7468 b{P}^m$, then th │ │ │ │ +000877b0: 6520 6964 6561 6c20 6f66 2074 6865 0a63 e ideal of the.c │ │ │ │ +000877c0: 6c6f 7375 7265 206f 6620 245c 5068 695e losure of $\Phi^ │ │ │ │ +000877d0: 7b2d 317d 284c 2920 2420 6973 206e 6f74 {-1}(L) $ is not │ │ │ │ +000877e0: 6869 6e67 2062 7574 2074 6865 2073 6174 hing but the sat │ │ │ │ +000877f0: 7572 6174 696f 6e20 6f66 2074 6865 2069 uration of the i │ │ │ │ +00087800: 6465 616c 0a24 285c 7068 6928 495f 4c29 deal.$(\phi(I_L) │ │ │ │ +00087810: 2924 2062 7920 2428 465f 302c 2e2e 2e2e )$ by $(F_0,.... │ │ │ │ +00087820: 2c46 5f6d 2924 2069 6e20 7468 6520 7269 ,F_m)$ in the ri │ │ │ │ +00087830: 6e67 2024 4b5b 785f 302c 5c6c 646f 7473 ng $K[x_0,\ldots │ │ │ │ +00087840: 2c78 5f6e 5d2f 4924 2e20 536f 2c0a 7265 ,x_n]/I$. So,.re │ │ │ │ +00087850: 706c 6163 696e 6720 696e 2074 6865 2064 placing in the d │ │ │ │ +00087860: 6566 696e 6974 696f 6e2c 2067 656e 6572 efinition, gener │ │ │ │ +00087870: 616c 206c 696e 6561 7220 7375 6273 7061 al linear subspa │ │ │ │ +00087880: 6365 2062 7920 7261 6e64 6f6d 206c 696e ce by random lin │ │ │ │ +00087890: 6561 7220 7375 6273 7061 6365 2c0a 7765 ear subspace,.we │ │ │ │ +000878a0: 2067 6574 2061 2070 726f 6261 6269 6c69 get a probabili │ │ │ │ +000878b0: 7374 6963 2061 6c67 6f72 6974 686d 2074 stic algorithm t │ │ │ │ +000878c0: 6f20 636f 6d70 7574 6520 616c 6c20 7072 o compute all pr │ │ │ │ +000878d0: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ +000878e0: 2e0a 4675 7274 6865 726d 6f72 652c 2077 ..Furthermore, w │ │ │ │ +000878f0: 6520 6361 6e20 636f 6e73 6964 6572 6162 e can considerab │ │ │ │ +00087900: 6c79 2073 7065 6564 2075 7020 7468 6973 ly speed up this │ │ │ │ +00087910: 2061 6c67 6f72 6974 686d 2062 7920 7461 algorithm by ta │ │ │ │ +00087920: 6b69 6e67 2069 6e74 6f20 6163 636f 756e king into accoun │ │ │ │ +00087930: 740a 7477 6f20 7369 6d70 6c65 2072 656d t.two simple rem │ │ │ │ +00087940: 6172 6b73 3a20 3129 2074 6865 2073 6174 arks: 1) the sat │ │ │ │ +00087950: 7572 6174 696f 6e20 2428 5c70 6869 2849 uration $(\phi(I │ │ │ │ +00087960: 5f4c 2929 3a7b 2846 5f30 2c5c 6c64 6f74 _L)):{(F_0,\ldot │ │ │ │ +00087970: 732c 465f 6d29 7d5e 7b5c 696e 6674 797d s,F_m)}^{\infty} │ │ │ │ +00087980: 240a 6973 2074 6865 2073 616d 6520 6173 $.is the same as │ │ │ │ +00087990: 2024 285c 7068 6928 495f 4c29 293a 7b28 $(\phi(I_L)):{( │ │ │ │ +000879a0: 5c6c 616d 6264 615f 3020 465f 302b 5c63 \lambda_0 F_0+\c │ │ │ │ +000879b0: 646f 7473 2b5c 6c61 6d62 6461 5f6d 2046 dots+\lambda_m F │ │ │ │ +000879c0: 5f6d 297d 5e7b 5c69 6e66 7479 7d24 2c0a _m)}^{\infty}$,. │ │ │ │ +000879d0: 7768 6572 6520 245c 6c61 6d62 6461 5f30 where $\lambda_0 │ │ │ │ +000879e0: 2c5c 6c64 6f74 732c 5c6c 616d 6264 615f ,\ldots,\lambda_ │ │ │ │ +000879f0: 6d5c 696e 5c6d 6174 6862 627b 4b7d 2420 m\in\mathbb{K}$ │ │ │ │ +00087a00: 6172 6520 6765 6e65 7261 6c20 7363 616c are general scal │ │ │ │ +00087a10: 6172 733b 2032 2920 7468 650a 2469 242d ars; 2) the.$i$- │ │ │ │ +00087a20: 7468 2070 726f 6a65 6374 6976 6520 6465 th projective de │ │ │ │ +00087a30: 6772 6565 206f 6620 245c 5068 6924 2063 gree of $\Phi$ c │ │ │ │ +00087a40: 6f69 6e63 6964 6573 2077 6974 6820 7468 oincides with th │ │ │ │ +00087a50: 6520 2428 692d 3129 242d 7468 2070 726f e $(i-1)$-th pro │ │ │ │ +00087a60: 6a65 6374 6976 650a 6465 6772 6565 206f jective.degree o │ │ │ │ +00087a70: 6620 7468 6520 7265 7374 7269 6374 696f f the restrictio │ │ │ │ +00087a80: 6e20 6f66 2024 5c50 6869 2420 746f 2061 n of $\Phi$ to a │ │ │ │ +00087a90: 2067 656e 6572 616c 2068 7970 6572 706c general hyperpl │ │ │ │ +00087aa0: 616e 6520 7365 6374 696f 6e20 6f66 2024 ane section of $ │ │ │ │ +00087ab0: 5824 2028 7365 650a 6c6f 632e 2063 6974 X$ (see.loc. cit │ │ │ │ +00087ac0: 2e29 2e20 5468 6973 2069 7320 7768 6174 .). This is what │ │ │ │ +00087ad0: 2074 6865 206d 6574 686f 6420 7573 6573 the method uses │ │ │ │ +00087ae0: 2069 6620 2a6e 6f74 6520 4365 7274 6966 if *note Certif │ │ │ │ +00087af0: 793a 2043 6572 7469 6679 2c20 6973 2073 y: Certify, is s │ │ │ │ +00087b00: 6574 2074 6f0a 6661 6c73 652e 2049 6620 et to.false. If │ │ │ │ +00087b10: 696e 7374 6561 6420 2a6e 6f74 6520 4365 instead *note Ce │ │ │ │ +00087b20: 7274 6966 793a 2043 6572 7469 6679 2c20 rtify: Certify, │ │ │ │ +00087b30: 6973 2073 6574 2074 6f20 7472 7565 2c20 is set to true, │ │ │ │ +00087b40: 7468 656e 2074 6865 206d 6574 686f 640a then the method. │ │ │ │ +00087b50: 7369 6d70 6c79 2063 6f6d 7075 7465 7320 simply computes │ │ │ │ +00087b60: 7468 6520 2a6e 6f74 6520 6d75 6c74 6964 the *note multid │ │ │ │ +00087b70: 6567 7265 653a 2028 4d61 6361 756c 6179 egree: (Macaulay │ │ │ │ +00087b80: 3244 6f63 296d 756c 7469 6465 6772 6565 2Doc)multidegree │ │ │ │ +00087b90: 2c20 6f66 2074 6865 202a 6e6f 7465 0a67 , of the *note.g │ │ │ │ +00087ba0: 7261 7068 3a20 6772 6170 682c 2e0a 0a2b raph: graph,...+ │ │ │ │ +00087bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00087bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00087c00: 2d2d 2d2b 0a7c 6931 203a 202d 2d20 6d61 ---+.|i1 : -- ma │ │ │ │ -00087c10: 7020 6672 6f6d 2050 5e34 2074 6f20 4728 p from P^4 to G( │ │ │ │ -00087c20: 312c 3329 2067 6976 656e 2062 7920 7468 1,3) given by th │ │ │ │ -00087c30: 6520 7175 6164 7269 6373 2074 6872 6f75 e quadrics throu │ │ │ │ -00087c40: 6768 2061 2072 6174 696f 6e61 6c20 2020 gh a rational │ │ │ │ -00087c50: 2020 207c 0a7c 2020 2020 2047 4628 3333 |.| GF(33 │ │ │ │ -00087c60: 315e 3229 5b74 5f30 2e2e 745f 345d 3b20 1^2)[t_0..t_4]; │ │ │ │ -00087c70: 7068 693d 746f 4d61 7020 6d69 6e6f 7273 phi=toMap minors │ │ │ │ -00087c80: 2832 2c6d 6174 7269 787b 7b74 5f30 2e2e (2,matrix{{t_0.. │ │ │ │ -00087c90: 745f 337d 2c7b 745f 312e 2e74 5f34 2020 t_3},{t_1..t_4 │ │ │ │ -00087ca0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00087bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00087c00: 6931 203a 202d 2d20 6d61 7020 6672 6f6d i1 : -- map from │ │ │ │ +00087c10: 2050 5e34 2074 6f20 4728 312c 3329 2067 P^4 to G(1,3) g │ │ │ │ +00087c20: 6976 656e 2062 7920 7468 6520 7175 6164 iven by the quad │ │ │ │ +00087c30: 7269 6373 2074 6872 6f75 6768 2061 2072 rics through a r │ │ │ │ +00087c40: 6174 696f 6e61 6c20 2020 2020 207c 0a7c ational |.| │ │ │ │ +00087c50: 2020 2020 2047 4628 3333 315e 3229 5b74 GF(331^2)[t │ │ │ │ +00087c60: 5f30 2e2e 745f 345d 3b20 7068 693d 746f _0..t_4]; phi=to │ │ │ │ +00087c70: 4d61 7020 6d69 6e6f 7273 2832 2c6d 6174 Map minors(2,mat │ │ │ │ +00087c80: 7269 787b 7b74 5f30 2e2e 745f 337d 2c7b rix{{t_0..t_3},{ │ │ │ │ +00087c90: 745f 312e 2e74 5f34 2020 2020 207c 0a7c t_1..t_4 |.| │ │ │ │ +00087ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087cf0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00087ce0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087d20: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ -00087d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087d40: 2020 207c 0a7c 6f32 203d 206d 6170 2028 |.|o2 = map ( │ │ │ │ -00087d50: 4746 2031 3039 3536 315b 7420 2e2e 7420 GF 109561[t ..t │ │ │ │ -00087d60: 5d2c 2047 4620 3130 3935 3631 5b78 202e ], GF 109561[x . │ │ │ │ -00087d70: 2e78 205d 2c20 7b2d 2074 2020 2b20 7420 .x ], {- t + t │ │ │ │ -00087d80: 7420 2c20 2d20 7420 7420 202b 2074 2020 t , - t t + t │ │ │ │ -00087d90: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00087da0: 2020 2020 2020 2020 2020 2030 2020 2034 0 4 │ │ │ │ -00087db0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00087dc0: 2020 3520 2020 2020 2020 3120 2020 2030 5 1 0 │ │ │ │ -00087dd0: 2032 2020 2020 2031 2032 2020 2020 2020 2 1 2 │ │ │ │ -00087de0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00087d20: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +00087d30: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087d40: 6f32 203d 206d 6170 2028 4746 2031 3039 o2 = map (GF 109 │ │ │ │ +00087d50: 3536 315b 7420 2e2e 7420 5d2c 2047 4620 561[t ..t ], GF │ │ │ │ +00087d60: 3130 3935 3631 5b78 202e 2e78 205d 2c20 109561[x ..x ], │ │ │ │ +00087d70: 7b2d 2074 2020 2b20 7420 7420 2c20 2d20 {- t + t t , - │ │ │ │ +00087d80: 7420 7420 202b 2074 2020 2020 207c 0a7c t t + t |.| │ │ │ │ +00087d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00087da0: 2020 2020 2030 2020 2034 2020 2020 2020 0 4 │ │ │ │ +00087db0: 2020 2020 2020 2020 3020 2020 3520 2020 0 5 │ │ │ │ +00087dc0: 2020 2020 3120 2020 2030 2032 2020 2020 1 0 2 │ │ │ │ +00087dd0: 2031 2032 2020 2020 2020 2020 207c 0a7c 1 2 |.| │ │ │ │ +00087de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087e30: 2020 207c 0a7c 6f32 203a 2052 696e 674d |.|o2 : RingM │ │ │ │ -00087e40: 6170 2047 4620 3130 3935 3631 5b74 202e ap GF 109561[t . │ │ │ │ -00087e50: 2e74 205d 203c 2d2d 2047 4620 3130 3935 .t ] <-- GF 1095 │ │ │ │ -00087e60: 3631 5b78 202e 2e78 205d 2020 2020 2020 61[x ..x ] │ │ │ │ -00087e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087e80: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00087e90: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00087ea0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00087eb0: 2020 2020 3020 2020 3520 2020 2020 2020 0 5 │ │ │ │ -00087ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087ed0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00087e20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087e30: 6f32 203a 2052 696e 674d 6170 2047 4620 o2 : RingMap GF │ │ │ │ +00087e40: 3130 3935 3631 5b74 202e 2e74 205d 203c 109561[t ..t ] < │ │ │ │ +00087e50: 2d2d 2047 4620 3130 3935 3631 5b78 202e -- GF 109561[x . │ │ │ │ +00087e60: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ +00087e70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00087e90: 2020 2020 2020 2020 3020 2020 3420 2020 0 4 │ │ │ │ +00087ea0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00087eb0: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00087ec0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00087f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00087f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00087f20: 2d2d 2d7c 0a7c 6e6f 726d 616c 2063 7572 ---|.|normal cur │ │ │ │ -00087f30: 7665 206f 6620 6465 6772 6565 2034 2020 ve of degree 4 │ │ │ │ +00087f10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00087f20: 6e6f 726d 616c 2063 7572 7665 206f 6620 normal curve of │ │ │ │ +00087f30: 6465 6772 6565 2034 2020 2020 2020 2020 degree 4 │ │ │ │ 00087f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087f70: 2020 207c 0a7c 7d7d 2920 2020 2020 2020 |.|}}) │ │ │ │ +00087f60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087f70: 7d7d 2920 2020 2020 2020 2020 2020 2020 }}) │ │ │ │ 00087f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00087fc0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00087fb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00087fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00087ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088010: 2020 207c 0a7c 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +00088000: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088010: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 00088020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088040: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00088050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088060: 2020 207c 0a7c 2074 202c 202d 2074 2020 |.| t , - t │ │ │ │ -00088070: 2b20 7420 7420 2c20 2d20 7420 7420 202b + t t , - t t + │ │ │ │ -00088080: 2074 2074 202c 202d 2074 2074 2020 2b20 t t , - t t + │ │ │ │ -00088090: 7420 7420 2c20 2d20 7420 202b 2074 2074 t t , - t + t t │ │ │ │ -000880a0: 202c 2061 7d29 2020 2020 2020 2020 2020 , a}) │ │ │ │ -000880b0: 2020 207c 0a7c 3020 3320 2020 2020 3220 |.|0 3 2 │ │ │ │ -000880c0: 2020 2031 2033 2020 2020 2031 2033 2020 1 3 1 3 │ │ │ │ -000880d0: 2020 3020 3420 2020 2020 3220 3320 2020 0 4 2 3 │ │ │ │ -000880e0: 2031 2034 2020 2020 2033 2020 2020 3220 1 4 3 2 │ │ │ │ -000880f0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00088100: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00088040: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00088050: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088060: 2074 202c 202d 2074 2020 2b20 7420 7420 t , - t + t t │ │ │ │ +00088070: 2c20 2d20 7420 7420 202b 2074 2074 202c , - t t + t t , │ │ │ │ +00088080: 202d 2074 2074 2020 2b20 7420 7420 2c20 - t t + t t , │ │ │ │ +00088090: 2d20 7420 202b 2074 2074 202c 2061 7d29 - t + t t , a}) │ │ │ │ +000880a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000880b0: 3020 3320 2020 2020 3220 2020 2031 2033 0 3 2 1 3 │ │ │ │ +000880c0: 2020 2020 2031 2033 2020 2020 3020 3420 1 3 0 4 │ │ │ │ +000880d0: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ +000880e0: 2020 2033 2020 2020 3220 3420 2020 2020 3 2 4 │ │ │ │ +000880f0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00088100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088150: 2d2d 2d2b 0a7c 6933 203a 2074 696d 6520 ---+.|i3 : time │ │ │ │ -00088160: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -00088170: 7328 7068 692c 4365 7274 6966 793d 3e74 s(phi,Certify=>t │ │ │ │ -00088180: 7275 6529 2020 2020 2020 2020 2020 2020 rue) │ │ │ │ -00088190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000881a0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ -000881b0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ +00088140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00088150: 6933 203a 2074 696d 6520 7072 6f6a 6563 i3 : time projec │ │ │ │ +00088160: 7469 7665 4465 6772 6565 7328 7068 692c tiveDegrees(phi, │ │ │ │ +00088170: 4365 7274 6966 793d 3e74 7275 6529 2020 Certify=>true) │ │ │ │ +00088180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00088190: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000881a0: 4365 7274 6966 793a 206f 7574 7075 7420 Certify: output │ │ │ │ +000881b0: 6365 7274 6966 6965 6421 2020 2020 2020 certified! │ │ │ │ 000881c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000881d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000881e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000881f0: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088200: 2e30 3135 3133 3736 7320 2863 7075 293b .0151376s (cpu); │ │ │ │ -00088210: 2030 2e30 3134 3830 3639 7320 2874 6872 0.0148069s (thr │ │ │ │ -00088220: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -00088230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088240: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000881e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000881f0: 202d 2d20 7573 6564 2030 2e30 3431 3235 -- used 0.04125 │ │ │ │ +00088200: 3734 7320 2863 7075 293b 2030 2e30 3231 74s (cpu); 0.021 │ │ │ │ +00088210: 3136 3134 7320 2874 6872 6561 6429 3b20 1614s (thread); │ │ │ │ +00088220: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00088230: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088290: 2020 207c 0a7c 6f33 203d 207b 312c 2032 |.|o3 = {1, 2 │ │ │ │ -000882a0: 2c20 342c 2034 2c20 327d 2020 2020 2020 , 4, 4, 2} │ │ │ │ +00088280: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088290: 6f33 203d 207b 312c 2032 2c20 342c 2034 o3 = {1, 2, 4, 4 │ │ │ │ +000882a0: 2c20 327d 2020 2020 2020 2020 2020 2020 , 2} │ │ │ │ 000882b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000882c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000882d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000882e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000882d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000882e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000882f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088330: 2020 207c 0a7c 6f33 203a 204c 6973 7420 |.|o3 : List │ │ │ │ +00088320: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088330: 6f33 203a 204c 6973 7420 2020 2020 2020 o3 : List │ │ │ │ 00088340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088380: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00088370: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00088380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000883a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000883b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000883c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000883d0: 2d2d 2d2b 0a7c 6934 203a 2070 7369 3d69 ---+.|i4 : psi=i │ │ │ │ -000883e0: 6e76 6572 7365 4d61 7028 746f 4d61 7028 nverseMap(toMap( │ │ │ │ -000883f0: 7068 692c 446f 6d69 6e61 6e74 3d3e 696e phi,Dominant=>in │ │ │ │ -00088400: 6669 6e69 7479 2929 2020 2020 2020 2020 finity)) │ │ │ │ -00088410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088420: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000883c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +000883d0: 6934 203a 2070 7369 3d69 6e76 6572 7365 i4 : psi=inverse │ │ │ │ +000883e0: 4d61 7028 746f 4d61 7028 7068 692c 446f Map(toMap(phi,Do │ │ │ │ +000883f0: 6d69 6e61 6e74 3d3e 696e 6669 6e69 7479 minant=>infinity │ │ │ │ +00088400: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ +00088410: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088470: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088480: 2047 4620 3130 3935 3631 5b78 202e 2e78 GF 109561[x ..x │ │ │ │ -00088490: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00088460: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088470: 2020 2020 2020 2020 2020 2047 4620 3130 GF 10 │ │ │ │ +00088480: 3935 3631 5b78 202e 2e78 205d 2020 2020 9561[x ..x ] │ │ │ │ +00088490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000884a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000884b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000884c0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000884d0: 2020 2020 2020 2020 2020 2020 3020 2020 0 │ │ │ │ -000884e0: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -000884f0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -00088500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088510: 2020 207c 0a7c 6f34 203d 206d 6170 2028 |.|o4 = map ( │ │ │ │ -00088520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088530: 2d2d 2c20 4746 2031 3039 3536 315b 7420 --, GF 109561[t │ │ │ │ -00088540: 2e2e 7420 5d2c 207b 7820 202d 2078 2078 ..t ], {x - x x │ │ │ │ -00088550: 2020 2d20 7820 7820 2c20 7820 7820 202d - x x , x x - │ │ │ │ -00088560: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088570: 7820 7820 202d 2078 2078 2020 2b20 7820 x x - x x + x │ │ │ │ -00088580: 7820 2020 2020 2020 2020 2020 2020 2030 x 0 │ │ │ │ -00088590: 2020 2034 2020 2020 2031 2020 2020 3020 4 1 0 │ │ │ │ -000885a0: 3220 2020 2030 2033 2020 2031 2032 2020 2 0 3 1 2 │ │ │ │ -000885b0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000885c0: 2032 2033 2020 2020 3120 3420 2020 2030 2 3 1 4 0 │ │ │ │ -000885d0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000884b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000884c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000884d0: 2020 2020 2020 3020 2020 3520 2020 2020 0 5 │ │ │ │ +000884e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000884f0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00088500: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088510: 6f34 203d 206d 6170 2028 2d2d 2d2d 2d2d o4 = map (------ │ │ │ │ +00088520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2c20 4746 ------------, GF │ │ │ │ +00088530: 2031 3039 3536 315b 7420 2e2e 7420 5d2c 109561[t ..t ], │ │ │ │ +00088540: 207b 7820 202d 2078 2078 2020 2d20 7820 {x - x x - x │ │ │ │ +00088550: 7820 2c20 7820 7820 202d 2020 207c 0a7c x , x x - |.| │ │ │ │ +00088560: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ +00088570: 2078 2078 2020 2b20 7820 7820 2020 2020 x x + x x │ │ │ │ +00088580: 2020 2020 2020 2020 2030 2020 2034 2020 0 4 │ │ │ │ +00088590: 2020 2031 2020 2020 3020 3220 2020 2030 1 0 2 0 │ │ │ │ +000885a0: 2033 2020 2031 2032 2020 2020 207c 0a7c 3 1 2 |.| │ │ │ │ +000885b0: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ +000885c0: 2020 3120 3420 2020 2030 2035 2020 2020 1 4 0 5 │ │ │ │ +000885d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000885e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000885f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088600: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +000885f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088650: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088660: 2020 2020 4746 2031 3039 3536 315b 7820 GF 109561[x │ │ │ │ -00088670: 2e2e 7820 5d20 2020 2020 2020 2020 2020 ..x ] │ │ │ │ +00088640: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088650: 2020 2020 2020 2020 2020 2020 2020 4746 GF │ │ │ │ +00088660: 2031 3039 3536 315b 7820 2e2e 7820 5d20 109561[x ..x ] │ │ │ │ +00088670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000886a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000886b0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -000886c0: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00088690: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000886a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000886b0: 2020 2020 2020 2020 2030 2020 2035 2020 0 5 │ │ │ │ +000886c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000886d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000886e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000886f0: 2020 207c 0a7c 6f34 203a 2052 696e 674d |.|o4 : RingM │ │ │ │ -00088700: 6170 202d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ap ------------- │ │ │ │ -00088710: 2d2d 2d2d 2d20 3c2d 2d20 4746 2031 3039 ----- <-- GF 109 │ │ │ │ -00088720: 3536 315b 7420 2e2e 7420 5d20 2020 2020 561[t ..t ] │ │ │ │ -00088730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088740: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088750: 2020 2078 2078 2020 2d20 7820 7820 202b x x - x x + │ │ │ │ -00088760: 2078 2078 2020 2020 2020 2020 2020 2020 x x │ │ │ │ -00088770: 2020 2020 2030 2020 2034 2020 2020 2020 0 4 │ │ │ │ -00088780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088790: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000887a0: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ -000887b0: 2020 3020 3520 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000886e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000886f0: 6f34 203a 2052 696e 674d 6170 202d 2d2d o4 : RingMap --- │ │ │ │ +00088700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d20 --------------- │ │ │ │ +00088710: 3c2d 2d20 4746 2031 3039 3536 315b 7420 <-- GF 109561[t │ │ │ │ +00088720: 2e2e 7420 5d20 2020 2020 2020 2020 2020 ..t ] │ │ │ │ +00088730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088740: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ +00088750: 2020 2d20 7820 7820 202b 2078 2078 2020 - x x + x x │ │ │ │ +00088760: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00088770: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00088780: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088790: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +000887a0: 3320 2020 2031 2034 2020 2020 3020 3520 3 1 4 0 5 │ │ │ │ +000887b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000887c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000887d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000887e0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000887d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000887e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000887f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088830: 2d2d 2d7c 0a7c 2020 2020 2020 2032 2020 ---|.| 2 │ │ │ │ -00088840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088850: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00088820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00088830: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +00088840: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ +00088850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088880: 2020 207c 0a7c 7820 7820 2c20 7820 202d |.|x x , x - │ │ │ │ -00088890: 2078 2078 202c 2078 2078 2020 2d20 7820 x x , x x - x │ │ │ │ -000888a0: 7820 2c20 7820 202d 2078 2078 2020 2d20 x , x - x x - │ │ │ │ -000888b0: 7820 7820 2c20 617d 2920 2020 2020 2020 x x , a}) │ │ │ │ -000888c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000888d0: 2020 207c 0a7c 2030 2034 2020 2032 2020 |.| 0 4 2 │ │ │ │ -000888e0: 2020 3020 3520 2020 3220 3420 2020 2031 0 5 2 4 1 │ │ │ │ -000888f0: 2035 2020 2034 2020 2020 3220 3520 2020 5 4 2 5 │ │ │ │ -00088900: 2033 2035 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ -00088910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088920: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00088870: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088880: 7820 7820 2c20 7820 202d 2078 2078 202c x x , x - x x , │ │ │ │ +00088890: 2078 2078 2020 2d20 7820 7820 2c20 7820 x x - x x , x │ │ │ │ +000888a0: 202d 2078 2078 2020 2d20 7820 7820 2c20 - x x - x x , │ │ │ │ +000888b0: 617d 2920 2020 2020 2020 2020 2020 2020 a}) │ │ │ │ +000888c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000888d0: 2030 2034 2020 2032 2020 2020 3020 3520 0 4 2 0 5 │ │ │ │ +000888e0: 2020 3220 3420 2020 2031 2035 2020 2034 2 4 1 5 4 │ │ │ │ +000888f0: 2020 2020 3220 3520 2020 2033 2035 2020 2 5 3 5 │ │ │ │ +00088900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00088910: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00088920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088970: 2d2d 2d2b 0a7c 6935 203a 2074 696d 6520 ---+.|i5 : time │ │ │ │ -00088980: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -00088990: 7328 7073 692c 4365 7274 6966 793d 3e74 s(psi,Certify=>t │ │ │ │ -000889a0: 7275 6529 2020 2020 2020 2020 2020 2020 rue) │ │ │ │ -000889b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000889c0: 2020 207c 0a7c 4365 7274 6966 793a 206f |.|Certify: o │ │ │ │ -000889d0: 7574 7075 7420 6365 7274 6966 6965 6421 utput certified! │ │ │ │ +00088960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00088970: 6935 203a 2074 696d 6520 7072 6f6a 6563 i5 : time projec │ │ │ │ +00088980: 7469 7665 4465 6772 6565 7328 7073 692c tiveDegrees(psi, │ │ │ │ +00088990: 4365 7274 6966 793d 3e74 7275 6529 2020 Certify=>true) │ │ │ │ +000889a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000889b0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000889c0: 4365 7274 6966 793a 206f 7574 7075 7420 Certify: output │ │ │ │ +000889d0: 6365 7274 6966 6965 6421 2020 2020 2020 certified! │ │ │ │ 000889e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000889f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088a10: 2020 207c 0a7c 202d 2d20 7573 6564 2030 |.| -- used 0 │ │ │ │ -00088a20: 2e30 3131 3634 3839 7320 2863 7075 293b .0116489s (cpu); │ │ │ │ -00088a30: 2030 2e30 3131 3336 3437 7320 2874 6872 0.0113647s (thr │ │ │ │ -00088a40: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -00088a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088a60: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00088a00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088a10: 202d 2d20 7573 6564 2030 2e30 3237 3938 -- used 0.02798 │ │ │ │ +00088a20: 3438 7320 2863 7075 293b 2030 2e30 3134 48s (cpu); 0.014 │ │ │ │ +00088a30: 3033 3032 7320 2874 6872 6561 6429 3b20 0302s (thread); │ │ │ │ +00088a40: 3073 2028 6763 2920 2020 2020 2020 2020 0s (gc) │ │ │ │ +00088a50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088ab0: 2020 207c 0a7c 6f35 203d 207b 322c 2034 |.|o5 = {2, 4 │ │ │ │ -00088ac0: 2c20 342c 2032 2c20 317d 2020 2020 2020 , 4, 2, 1} │ │ │ │ +00088aa0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088ab0: 6f35 203d 207b 322c 2034 2c20 342c 2032 o5 = {2, 4, 4, 2 │ │ │ │ +00088ac0: 2c20 317d 2020 2020 2020 2020 2020 2020 , 1} │ │ │ │ 00088ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088b00: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00088af0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088b50: 2020 207c 0a7c 6f35 203a 204c 6973 7420 |.|o5 : List │ │ │ │ +00088b40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088b50: 6f35 203a 204c 6973 7420 2020 2020 2020 o5 : List │ │ │ │ 00088b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088ba0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00088b90: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00088ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088bf0: 2d2d 2d2b 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d ---+.+---------- │ │ │ │ +00088be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a2b -------------+.+ │ │ │ │ +00088bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088c40: 2d2d 2d2b 0a7c 6936 203a 202d 2d20 4372 ---+.|i6 : -- Cr │ │ │ │ -00088c50: 656d 6f6e 6120 7472 616e 7366 6f72 6d61 emona transforma │ │ │ │ -00088c60: 7469 6f6e 206f 6620 505e 3620 6465 6669 tion of P^6 defi │ │ │ │ -00088c70: 6e65 6420 6279 2074 6865 2071 7561 6472 ned by the quadr │ │ │ │ -00088c80: 6963 7320 7468 726f 7567 6820 2020 2020 ics through │ │ │ │ -00088c90: 2020 207c 0a7c 2020 2020 2070 6869 203d |.| phi = │ │ │ │ -00088ca0: 206d 6170 2073 7065 6369 616c 4372 656d map specialCrem │ │ │ │ -00088cb0: 6f6e 6154 7261 6e73 666f 726d 6174 696f onaTransformatio │ │ │ │ -00088cc0: 6e28 372c 5a5a 2f33 3030 3030 3729 2020 n(7,ZZ/300007) │ │ │ │ -00088cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088ce0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00088c30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00088c40: 6936 203a 202d 2d20 4372 656d 6f6e 6120 i6 : -- Cremona │ │ │ │ +00088c50: 7472 616e 7366 6f72 6d61 7469 6f6e 206f transformation o │ │ │ │ +00088c60: 6620 505e 3620 6465 6669 6e65 6420 6279 f P^6 defined by │ │ │ │ +00088c70: 2074 6865 2071 7561 6472 6963 7320 7468 the quadrics th │ │ │ │ +00088c80: 726f 7567 6820 2020 2020 2020 207c 0a7c rough |.| │ │ │ │ +00088c90: 2020 2020 2070 6869 203d 206d 6170 2073 phi = map s │ │ │ │ +00088ca0: 7065 6369 616c 4372 656d 6f6e 6154 7261 pecialCremonaTra │ │ │ │ +00088cb0: 6e73 666f 726d 6174 696f 6e28 372c 5a5a nsformation(7,ZZ │ │ │ │ +00088cc0: 2f33 3030 3030 3729 2020 2020 2020 2020 /300007) │ │ │ │ +00088cd0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088d30: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088d40: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ -00088d50: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +00088d20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088d30: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +00088d40: 2020 2020 2020 2020 2020 2020 5a5a 2020 ZZ │ │ │ │ +00088d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088d80: 2020 207c 0a7c 6f36 203d 206d 6170 2028 |.|o6 = map ( │ │ │ │ -00088d90: 2d2d 2d2d 2d2d 5b78 202e 2e78 205d 2c20 ------[x ..x ], │ │ │ │ -00088da0: 2d2d 2d2d 2d2d 5b78 202e 2e78 205d 2c20 ------[x ..x ], │ │ │ │ -00088db0: 7b78 2078 2020 2d20 7820 7820 2c20 2d20 {x x - x x , - │ │ │ │ -00088dc0: 3530 3334 3178 2078 2020 2d20 2020 2020 50341x x - │ │ │ │ -00088dd0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088de0: 3330 3030 3037 2020 3020 2020 3620 2020 300007 0 6 │ │ │ │ -00088df0: 3330 3030 3037 2020 3020 2020 3620 2020 300007 0 6 │ │ │ │ -00088e00: 2020 3220 3420 2020 2031 2035 2020 2020 2 4 1 5 │ │ │ │ -00088e10: 2020 2020 2020 3020 3420 2020 2020 2020 0 4 │ │ │ │ -00088e20: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00088d70: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088d80: 6f36 203d 206d 6170 2028 2d2d 2d2d 2d2d o6 = map (------ │ │ │ │ +00088d90: 5b78 202e 2e78 205d 2c20 2d2d 2d2d 2d2d [x ..x ], ------ │ │ │ │ +00088da0: 5b78 202e 2e78 205d 2c20 7b78 2078 2020 [x ..x ], {x x │ │ │ │ +00088db0: 2d20 7820 7820 2c20 2d20 3530 3334 3178 - x x , - 50341x │ │ │ │ +00088dc0: 2078 2020 2d20 2020 2020 2020 207c 0a7c x - |.| │ │ │ │ +00088dd0: 2020 2020 2020 2020 2020 3330 3030 3037 300007 │ │ │ │ +00088de0: 2020 3020 2020 3620 2020 3330 3030 3037 0 6 300007 │ │ │ │ +00088df0: 2020 3020 2020 3620 2020 2020 3220 3420 0 6 2 4 │ │ │ │ +00088e00: 2020 2031 2035 2020 2020 2020 2020 2020 1 5 │ │ │ │ +00088e10: 3020 3420 2020 2020 2020 2020 207c 0a7c 0 4 |.| │ │ │ │ +00088e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088e70: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088e80: 2020 2020 205a 5a20 2020 2020 2020 2020 ZZ │ │ │ │ -00088e90: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +00088e60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088e70: 2020 2020 2020 2020 2020 2020 2020 205a Z │ │ │ │ +00088e80: 5a20 2020 2020 2020 2020 2020 2020 2020 Z │ │ │ │ +00088e90: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 00088ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088ec0: 2020 207c 0a7c 6f36 203a 2052 696e 674d |.|o6 : RingM │ │ │ │ -00088ed0: 6170 202d 2d2d 2d2d 2d5b 7820 2e2e 7820 ap ------[x ..x │ │ │ │ -00088ee0: 5d20 3c2d 2d20 2d2d 2d2d 2d2d 5b78 202e ] <-- ------[x . │ │ │ │ -00088ef0: 2e78 205d 2020 2020 2020 2020 2020 2020 .x ] │ │ │ │ -00088f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088f10: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -00088f20: 2020 2033 3030 3030 3720 2030 2020 2036 300007 0 6 │ │ │ │ -00088f30: 2020 2020 2020 3330 3030 3037 2020 3020 300007 0 │ │ │ │ -00088f40: 2020 3620 2020 2020 2020 2020 2020 2020 6 │ │ │ │ -00088f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088f60: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00088eb0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088ec0: 6f36 203a 2052 696e 674d 6170 202d 2d2d o6 : RingMap --- │ │ │ │ +00088ed0: 2d2d 2d5b 7820 2e2e 7820 5d20 3c2d 2d20 ---[x ..x ] <-- │ │ │ │ +00088ee0: 2d2d 2d2d 2d2d 5b78 202e 2e78 205d 2020 ------[x ..x ] │ │ │ │ +00088ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00088f00: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088f10: 2020 2020 2020 2020 2020 2020 2033 3030 300 │ │ │ │ +00088f20: 3030 3720 2030 2020 2036 2020 2020 2020 007 0 6 │ │ │ │ +00088f30: 3330 3030 3037 2020 3020 2020 3620 2020 300007 0 6 │ │ │ │ +00088f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00088f50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00088f60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00088f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00088fb0: 2d2d 2d7c 0a7c 6120 7261 7469 6f6e 616c ---|.|a rational │ │ │ │ -00088fc0: 206f 6374 6963 2073 7572 6661 6365 2020 octic surface │ │ │ │ +00088fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00088fb0: 6120 7261 7469 6f6e 616c 206f 6374 6963 a rational octic │ │ │ │ +00088fc0: 2073 7572 6661 6365 2020 2020 2020 2020 surface │ │ │ │ 00088fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00088fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00088ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089000: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00088ff0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089050: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00089040: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000890a0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ -000890b0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00089090: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000890a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000890b0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 000890c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000890d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000890e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000890f0: 2020 207c 0a7c 3131 3338 3132 7820 7820 |.|113812x x │ │ │ │ -00089100: 202b 2031 3334 3037 3278 2020 2b20 3230 + 134072x + 20 │ │ │ │ -00089110: 3437 3278 2078 2020 2b20 3132 3337 3832 472x x + 123782 │ │ │ │ -00089120: 7820 7820 202d 2035 3131 3038 7820 7820 x x - 51108x x │ │ │ │ -00089130: 202b 2031 3234 3932 3578 2078 2020 2d20 + 124925x x - │ │ │ │ -00089140: 2020 207c 0a7c 2020 2020 2020 2031 2034 |.| 1 4 │ │ │ │ -00089150: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ -00089160: 2020 2020 3020 3520 2020 2020 2020 2020 0 5 │ │ │ │ -00089170: 2031 2035 2020 2020 2020 2020 2032 2035 1 5 2 5 │ │ │ │ -00089180: 2020 2020 2020 2020 2020 3420 3520 2020 4 5 │ │ │ │ -00089190: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000890e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000890f0: 3131 3338 3132 7820 7820 202b 2031 3334 113812x x + 134 │ │ │ │ +00089100: 3037 3278 2020 2b20 3230 3437 3278 2078 072x + 20472x x │ │ │ │ +00089110: 2020 2b20 3132 3337 3832 7820 7820 202d + 123782x x - │ │ │ │ +00089120: 2035 3131 3038 7820 7820 202b 2031 3234 51108x x + 124 │ │ │ │ +00089130: 3932 3578 2078 2020 2d20 2020 207c 0a7c 925x x - |.| │ │ │ │ +00089140: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +00089150: 2020 2020 3420 2020 2020 2020 2020 3020 4 0 │ │ │ │ +00089160: 3520 2020 2020 2020 2020 2031 2035 2020 5 1 5 │ │ │ │ +00089170: 2020 2020 2020 2032 2035 2020 2020 2020 2 5 │ │ │ │ +00089180: 2020 2020 3420 3520 2020 2020 207c 0a7c 4 5 |.| │ │ │ │ +00089190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000891a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000891b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000891c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000891d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000891e0: 2d2d 2d7c 0a7c 2020 2020 2020 3220 2020 ---|.| 2 │ │ │ │ +000891d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +000891e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 000891f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089230: 2020 207c 0a7c 3234 3638 3978 2020 2b20 |.|24689x + │ │ │ │ -00089240: 3133 3035 3637 7820 7820 202b 2032 3937 130567x x + 297 │ │ │ │ -00089250: 3031 7820 7820 202d 2034 3933 3138 7820 01x x - 49318x │ │ │ │ -00089260: 7820 2c20 7820 7820 202d 2078 2078 202c x , x x - x x , │ │ │ │ -00089270: 202d 2035 3033 3431 7820 7820 202d 2020 - 50341x x - │ │ │ │ -00089280: 2020 207c 0a7c 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ -00089290: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ -000892a0: 2020 2034 2036 2020 2020 2020 2020 2035 4 6 5 │ │ │ │ -000892b0: 2036 2020 2032 2033 2020 2020 3020 3520 6 2 3 0 5 │ │ │ │ -000892c0: 2020 2020 2020 2020 2031 2033 2020 2020 1 3 │ │ │ │ -000892d0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089220: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089230: 3234 3638 3978 2020 2b20 3133 3035 3637 24689x + 130567 │ │ │ │ +00089240: 7820 7820 202b 2032 3937 3031 7820 7820 x x + 29701x x │ │ │ │ +00089250: 202d 2034 3933 3138 7820 7820 2c20 7820 - 49318x x , x │ │ │ │ +00089260: 7820 202d 2078 2078 202c 202d 2035 3033 x - x x , - 503 │ │ │ │ +00089270: 3431 7820 7820 202d 2020 2020 207c 0a7c 41x x - |.| │ │ │ │ +00089280: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +00089290: 2033 2036 2020 2020 2020 2020 2034 2036 3 6 4 6 │ │ │ │ +000892a0: 2020 2020 2020 2020 2035 2036 2020 2032 5 6 2 │ │ │ │ +000892b0: 2033 2020 2020 3020 3520 2020 2020 2020 3 0 5 │ │ │ │ +000892c0: 2020 2031 2033 2020 2020 2020 207c 0a7c 1 3 |.| │ │ │ │ +000892d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000892e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000892f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089320: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00089330: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00089310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089330: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00089340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089370: 2020 207c 0a7c 3131 3338 3132 7820 7820 |.|113812x x │ │ │ │ -00089380: 202b 2031 3334 3037 3278 2020 2b20 3230 + 134072x + 20 │ │ │ │ -00089390: 3437 3278 2078 2020 2b20 3132 3337 3832 472x x + 123782 │ │ │ │ -000893a0: 7820 7820 202d 2035 3131 3038 7820 7820 x x - 51108x x │ │ │ │ -000893b0: 202b 2031 3234 3932 3578 2078 2020 2d20 + 124925x x - │ │ │ │ -000893c0: 2020 207c 0a7c 2020 2020 2020 2031 2034 |.| 1 4 │ │ │ │ -000893d0: 2020 2020 2020 2020 2020 3420 2020 2020 4 │ │ │ │ -000893e0: 2020 2020 3020 3520 2020 2020 2020 2020 0 5 │ │ │ │ -000893f0: 2031 2035 2020 2020 2020 2020 2032 2035 1 5 2 5 │ │ │ │ -00089400: 2020 2020 2020 2020 2020 3420 3520 2020 4 5 │ │ │ │ -00089410: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089360: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089370: 3131 3338 3132 7820 7820 202b 2031 3334 113812x x + 134 │ │ │ │ +00089380: 3037 3278 2020 2b20 3230 3437 3278 2078 072x + 20472x x │ │ │ │ +00089390: 2020 2b20 3132 3337 3832 7820 7820 202d + 123782x x - │ │ │ │ +000893a0: 2035 3131 3038 7820 7820 202b 2031 3234 51108x x + 124 │ │ │ │ +000893b0: 3932 3578 2078 2020 2d20 2020 207c 0a7c 925x x - |.| │ │ │ │ +000893c0: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +000893d0: 2020 2020 3420 2020 2020 2020 2020 3020 4 0 │ │ │ │ +000893e0: 3520 2020 2020 2020 2020 2031 2035 2020 5 1 5 │ │ │ │ +000893f0: 2020 2020 2020 2032 2035 2020 2020 2020 2 5 │ │ │ │ +00089400: 2020 2020 3420 3520 2020 2020 207c 0a7c 4 5 |.| │ │ │ │ +00089410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089460: 2d2d 2d7c 0a7c 2020 2020 2020 3220 2020 ---|.| 2 │ │ │ │ +00089450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089460: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00089470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000894a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000894b0: 2020 207c 0a7c 3234 3638 3978 2020 2b20 |.|24689x + │ │ │ │ -000894c0: 3133 3035 3637 7820 7820 202b 2032 3937 130567x x + 297 │ │ │ │ -000894d0: 3031 7820 7820 202d 2034 3933 3138 7820 01x x - 49318x │ │ │ │ -000894e0: 7820 2c20 3332 3838 3178 2078 2020 2d20 x , 32881x x - │ │ │ │ -000894f0: 3835 3339 3678 2078 2020 2d20 2020 2020 85396x x - │ │ │ │ -00089500: 2020 207c 0a7c 2020 2020 2020 3520 2020 |.| 5 │ │ │ │ -00089510: 2020 2020 2020 2033 2036 2020 2020 2020 3 6 │ │ │ │ -00089520: 2020 2034 2036 2020 2020 2020 2020 2035 4 6 5 │ │ │ │ -00089530: 2036 2020 2020 2020 2020 3020 3320 2020 6 0 3 │ │ │ │ -00089540: 2020 2020 2020 3120 3420 2020 2020 2020 1 4 │ │ │ │ -00089550: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000894a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000894b0: 3234 3638 3978 2020 2b20 3133 3035 3637 24689x + 130567 │ │ │ │ +000894c0: 7820 7820 202b 2032 3937 3031 7820 7820 x x + 29701x x │ │ │ │ +000894d0: 202d 2034 3933 3138 7820 7820 2c20 3332 - 49318x x , 32 │ │ │ │ +000894e0: 3838 3178 2078 2020 2d20 3835 3339 3678 881x x - 85396x │ │ │ │ +000894f0: 2078 2020 2d20 2020 2020 2020 207c 0a7c x - |.| │ │ │ │ +00089500: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ +00089510: 2033 2036 2020 2020 2020 2020 2034 2036 3 6 4 6 │ │ │ │ +00089520: 2020 2020 2020 2020 2035 2036 2020 2020 5 6 │ │ │ │ +00089530: 2020 2020 3020 3320 2020 2020 2020 2020 0 3 │ │ │ │ +00089540: 3120 3420 2020 2020 2020 2020 207c 0a7c 1 4 |.| │ │ │ │ +00089550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000895a0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -000895b0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +00089590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +000895a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000895b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000895c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000895d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000895e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000895f0: 2020 207c 0a7c 3231 3234 3278 2078 2020 |.|21242x x │ │ │ │ -00089600: 2d20 3332 3834 3678 2020 2d20 3131 3433 - 32846x - 1143 │ │ │ │ -00089610: 3035 7820 7820 202d 2039 3938 3032 7820 05x x - 99802x │ │ │ │ -00089620: 7820 202b 2037 3432 3832 7820 7820 202b x + 74282x x + │ │ │ │ -00089630: 2031 3437 3037 3878 2078 2020 2b20 2020 147078x x + │ │ │ │ -00089640: 2020 207c 0a7c 2020 2020 2020 3320 3420 |.| 3 4 │ │ │ │ -00089650: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ -00089660: 2020 2030 2035 2020 2020 2020 2020 2031 0 5 1 │ │ │ │ -00089670: 2035 2020 2020 2020 2020 2032 2035 2020 5 2 5 │ │ │ │ -00089680: 2020 2020 2020 2020 3320 3520 2020 2020 3 5 │ │ │ │ -00089690: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +000895e0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +000895f0: 3231 3234 3278 2078 2020 2d20 3332 3834 21242x x - 3284 │ │ │ │ +00089600: 3678 2020 2d20 3131 3433 3035 7820 7820 6x - 114305x x │ │ │ │ +00089610: 202d 2039 3938 3032 7820 7820 202b 2037 - 99802x x + 7 │ │ │ │ +00089620: 3432 3832 7820 7820 202b 2031 3437 3037 4282x x + 14707 │ │ │ │ +00089630: 3878 2078 2020 2b20 2020 2020 207c 0a7c 8x x + |.| │ │ │ │ +00089640: 2020 2020 2020 3320 3420 2020 2020 2020 3 4 │ │ │ │ +00089650: 2020 3420 2020 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ +00089660: 2020 2020 2020 2020 2031 2035 2020 2020 1 5 │ │ │ │ +00089670: 2020 2020 2032 2035 2020 2020 2020 2020 2 5 │ │ │ │ +00089680: 2020 3320 3520 2020 2020 2020 207c 0a7c 3 5 |.| │ │ │ │ +00089690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000896a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000896b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000896c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000896d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000896e0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -000896f0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +000896d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +000896e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000896f0: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00089700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089730: 2020 207c 0a7c 3131 3032 3738 7820 7820 |.|110278x x │ │ │ │ -00089740: 202d 2032 3434 3431 7820 202d 2036 3034 - 24441x - 604 │ │ │ │ -00089750: 3031 7820 7820 202d 2031 3034 3033 3878 01x x - 104038x │ │ │ │ -00089760: 2078 2020 2d20 3130 3730 3478 2078 202c x - 10704x x , │ │ │ │ -00089770: 202d 2035 3033 3431 7820 7820 202d 2020 - 50341x x - │ │ │ │ -00089780: 2020 207c 0a7c 2020 2020 2020 2034 2035 |.| 4 5 │ │ │ │ -00089790: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ -000897a0: 2020 2033 2036 2020 2020 2020 2020 2020 3 6 │ │ │ │ -000897b0: 3420 3620 2020 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ -000897c0: 2020 2020 2020 2020 2030 2031 2020 2020 0 1 │ │ │ │ -000897d0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089720: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089730: 3131 3032 3738 7820 7820 202d 2032 3434 110278x x - 244 │ │ │ │ +00089740: 3431 7820 202d 2036 3034 3031 7820 7820 41x - 60401x x │ │ │ │ +00089750: 202d 2031 3034 3033 3878 2078 2020 2d20 - 104038x x - │ │ │ │ +00089760: 3130 3730 3478 2078 202c 202d 2035 3033 10704x x , - 503 │ │ │ │ +00089770: 3431 7820 7820 202d 2020 2020 207c 0a7c 41x x - |.| │ │ │ │ +00089780: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ +00089790: 2020 2035 2020 2020 2020 2020 2033 2036 5 3 6 │ │ │ │ +000897a0: 2020 2020 2020 2020 2020 3420 3620 2020 4 6 │ │ │ │ +000897b0: 2020 2020 2020 3520 3620 2020 2020 2020 5 6 │ │ │ │ +000897c0: 2020 2030 2031 2020 2020 2020 207c 0a7c 0 1 |.| │ │ │ │ +000897d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000897e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000897f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089820: 2d2d 2d7c 0a7c 2020 2020 2020 2032 2020 ---|.| 2 │ │ │ │ +00089810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089820: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 00089830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089850: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00089860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089870: 2020 207c 0a7c 3131 3338 3132 7820 202b |.|113812x + │ │ │ │ -00089880: 2032 3034 3732 7820 7820 202b 2031 3233 20472x x + 123 │ │ │ │ -00089890: 3738 3278 2078 2020 2d20 3531 3130 3878 782x x - 51108x │ │ │ │ -000898a0: 2020 2b20 3133 3430 3732 7820 7820 202b + 134072x x + │ │ │ │ -000898b0: 2031 3234 3932 3578 2078 2020 2d20 2020 124925x x - │ │ │ │ -000898c0: 2020 207c 0a7c 2020 2020 2020 2031 2020 |.| 1 │ │ │ │ -000898d0: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ -000898e0: 2020 2020 3120 3220 2020 2020 2020 2020 1 2 │ │ │ │ -000898f0: 3220 2020 2020 2020 2020 2031 2034 2020 2 1 4 │ │ │ │ -00089900: 2020 2020 2020 2020 3120 3520 2020 2020 1 5 │ │ │ │ -00089910: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089840: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00089850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089860: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089870: 3131 3338 3132 7820 202b 2032 3034 3732 113812x + 20472 │ │ │ │ +00089880: 7820 7820 202b 2031 3233 3738 3278 2078 x x + 123782x x │ │ │ │ +00089890: 2020 2d20 3531 3130 3878 2020 2b20 3133 - 51108x + 13 │ │ │ │ +000898a0: 3430 3732 7820 7820 202b 2031 3234 3932 4072x x + 12492 │ │ │ │ +000898b0: 3578 2078 2020 2d20 2020 2020 207c 0a7c 5x x - |.| │ │ │ │ +000898c0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +000898d0: 2030 2032 2020 2020 2020 2020 2020 3120 0 2 1 │ │ │ │ +000898e0: 3220 2020 2020 2020 2020 3220 2020 2020 2 2 │ │ │ │ +000898f0: 2020 2020 2031 2034 2020 2020 2020 2020 1 4 │ │ │ │ +00089900: 2020 3120 3520 2020 2020 2020 207c 0a7c 1 5 |.| │ │ │ │ +00089910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089960: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00089950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089990: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ -000899a0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -000899b0: 2020 207c 0a7c 3234 3638 3978 2078 2020 |.|24689x x │ │ │ │ -000899c0: 2b20 3133 3035 3637 7820 7820 202b 2032 + 130567x x + 2 │ │ │ │ -000899d0: 3937 3031 7820 7820 202d 2034 3933 3138 9701x x - 49318 │ │ │ │ -000899e0: 7820 7820 2c20 3131 3532 3132 7820 202d x x , 115212x - │ │ │ │ -000899f0: 2031 3135 3736 3378 2020 2d20 2020 2020 115763x - │ │ │ │ -00089a00: 2020 207c 0a7c 2020 2020 2020 3220 3520 |.| 2 5 │ │ │ │ -00089a10: 2020 2020 2020 2020 2030 2036 2020 2020 0 6 │ │ │ │ -00089a20: 2020 2020 2031 2036 2020 2020 2020 2020 1 6 │ │ │ │ -00089a30: 2032 2036 2020 2020 2020 2020 2030 2020 2 6 0 │ │ │ │ -00089a40: 2020 2020 2020 2020 3120 2020 2020 2020 1 │ │ │ │ -00089a50: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089990: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000899a0: 2020 3220 2020 2020 2020 2020 207c 0a7c 2 |.| │ │ │ │ +000899b0: 3234 3638 3978 2078 2020 2b20 3133 3035 24689x x + 1305 │ │ │ │ +000899c0: 3637 7820 7820 202b 2032 3937 3031 7820 67x x + 29701x │ │ │ │ +000899d0: 7820 202d 2034 3933 3138 7820 7820 2c20 x - 49318x x , │ │ │ │ +000899e0: 3131 3532 3132 7820 202d 2031 3135 3736 115212x - 11576 │ │ │ │ +000899f0: 3378 2020 2d20 2020 2020 2020 207c 0a7c 3x - |.| │ │ │ │ +00089a00: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ +00089a10: 2020 2030 2036 2020 2020 2020 2020 2031 0 6 1 │ │ │ │ +00089a20: 2036 2020 2020 2020 2020 2032 2036 2020 6 2 6 │ │ │ │ +00089a30: 2020 2020 2020 2030 2020 2020 2020 2020 0 │ │ │ │ +00089a40: 2020 3120 2020 2020 2020 2020 207c 0a7c 1 |.| │ │ │ │ +00089a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089aa0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ -00089ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089ac0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ -00089ad0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -00089ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089af0: 2020 207c 0a7c 3732 3039 3578 2078 2020 |.|72095x x │ │ │ │ -00089b00: 2d20 3931 3938 3978 2078 2020 2d20 3238 - 91989x x - 28 │ │ │ │ -00089b10: 3739 3078 2020 2b20 3732 3338 3378 2078 790x + 72383x x │ │ │ │ -00089b20: 2020 2b20 3133 3430 3732 7820 202d 2039 + 134072x - 9 │ │ │ │ -00089b30: 3635 3438 7820 7820 202b 2020 2020 2020 6548x x + │ │ │ │ -00089b40: 2020 207c 0a7c 2020 2020 2020 3020 3220 |.| 0 2 │ │ │ │ -00089b50: 2020 2020 2020 2020 3120 3220 2020 2020 1 2 │ │ │ │ -00089b60: 2020 2020 3220 2020 2020 2020 2020 3120 2 1 │ │ │ │ -00089b70: 3420 2020 2020 2020 2020 2034 2020 2020 4 4 │ │ │ │ -00089b80: 2020 2020 2030 2035 2020 2020 2020 2020 0 5 │ │ │ │ -00089b90: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089ab0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +00089ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089ad0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +00089ae0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089af0: 3732 3039 3578 2078 2020 2d20 3931 3938 72095x x - 9198 │ │ │ │ +00089b00: 3978 2078 2020 2d20 3238 3739 3078 2020 9x x - 28790x │ │ │ │ +00089b10: 2b20 3732 3338 3378 2078 2020 2b20 3133 + 72383x x + 13 │ │ │ │ +00089b20: 3430 3732 7820 202d 2039 3635 3438 7820 4072x - 96548x │ │ │ │ +00089b30: 7820 202b 2020 2020 2020 2020 207c 0a7c x + |.| │ │ │ │ +00089b40: 2020 2020 2020 3020 3220 2020 2020 2020 0 2 │ │ │ │ +00089b50: 2020 3120 3220 2020 2020 2020 2020 3220 1 2 2 │ │ │ │ +00089b60: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ +00089b70: 2020 2020 2034 2020 2020 2020 2020 2030 4 0 │ │ │ │ +00089b80: 2035 2020 2020 2020 2020 2020 207c 0a7c 5 |.| │ │ │ │ +00089b90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089ba0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089bb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089be0: 2d2d 2d7c 0a7c 2020 2020 2020 2020 2020 ---|.| │ │ │ │ +00089bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089c10: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00089c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089c30: 2020 207c 0a7c 3334 3739 3778 2078 2020 |.|34797x x │ │ │ │ -00089c40: 2d20 3132 3837 3237 7820 7820 202b 2031 - 128727x x + 1 │ │ │ │ -00089c50: 3234 3932 3578 2078 2020 2d20 3234 3638 24925x x - 2468 │ │ │ │ -00089c60: 3978 2020 2d20 3135 3938 3478 2078 2020 9x - 15984x x │ │ │ │ -00089c70: 2b20 3338 3537 3878 2078 2020 2d20 2020 + 38578x x - │ │ │ │ -00089c80: 2020 207c 0a7c 2020 2020 2020 3120 3520 |.| 1 5 │ │ │ │ -00089c90: 2020 2020 2020 2020 2032 2035 2020 2020 2 5 │ │ │ │ -00089ca0: 2020 2020 2020 3420 3520 2020 2020 2020 4 5 │ │ │ │ -00089cb0: 2020 3520 2020 2020 2020 2020 3020 3620 5 0 6 │ │ │ │ -00089cc0: 2020 2020 2020 2020 3120 3620 2020 2020 1 6 │ │ │ │ -00089cd0: 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d |.|---------- │ │ │ │ +00089c00: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00089c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089c20: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089c30: 3334 3739 3778 2078 2020 2d20 3132 3837 34797x x - 1287 │ │ │ │ +00089c40: 3237 7820 7820 202b 2031 3234 3932 3578 27x x + 124925x │ │ │ │ +00089c50: 2078 2020 2d20 3234 3638 3978 2020 2d20 x - 24689x - │ │ │ │ +00089c60: 3135 3938 3478 2078 2020 2b20 3338 3537 15984x x + 3857 │ │ │ │ +00089c70: 3878 2078 2020 2d20 2020 2020 207c 0a7c 8x x - |.| │ │ │ │ +00089c80: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ +00089c90: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ +00089ca0: 3420 3520 2020 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +00089cb0: 2020 2020 2020 3020 3620 2020 2020 2020 0 6 │ │ │ │ +00089cc0: 2020 3120 3620 2020 2020 2020 207c 0a7c 1 6 |.| │ │ │ │ +00089cd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089ce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089d20: 2d2d 2d7c 0a7c 3132 3831 3533 7820 7820 ---|.|128153x x │ │ │ │ -00089d30: 202b 2031 3330 3536 3778 2078 2020 2b20 + 130567x x + │ │ │ │ -00089d40: 3239 3730 3178 2078 2020 2d20 3439 3331 29701x x - 4931 │ │ │ │ -00089d50: 3878 2078 207d 2920 2020 2020 2020 2020 8x x }) │ │ │ │ -00089d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089d70: 2020 207c 0a7c 2020 2020 2020 2032 2036 |.| 2 6 │ │ │ │ -00089d80: 2020 2020 2020 2020 2020 3320 3620 2020 3 6 │ │ │ │ -00089d90: 2020 2020 2020 3420 3620 2020 2020 2020 4 6 │ │ │ │ -00089da0: 2020 3520 3620 2020 2020 2020 2020 2020 5 6 │ │ │ │ -00089db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089dc0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00089d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c -------------|.| │ │ │ │ +00089d20: 3132 3831 3533 7820 7820 202b 2031 3330 128153x x + 130 │ │ │ │ +00089d30: 3536 3778 2078 2020 2b20 3239 3730 3178 567x x + 29701x │ │ │ │ +00089d40: 2078 2020 2d20 3439 3331 3878 2078 207d x - 49318x x } │ │ │ │ +00089d50: 2920 2020 2020 2020 2020 2020 2020 2020 ) │ │ │ │ +00089d60: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089d70: 2020 2020 2020 2032 2036 2020 2020 2020 2 6 │ │ │ │ +00089d80: 2020 2020 3320 3620 2020 2020 2020 2020 3 6 │ │ │ │ +00089d90: 3420 3620 2020 2020 2020 2020 3520 3620 4 6 5 6 │ │ │ │ +00089da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00089db0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00089dc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089dd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089de0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00089df0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00089e10: 2d2d 2d2b 0a7c 6937 203a 2074 696d 6520 ---+.|i7 : time │ │ │ │ -00089e20: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -00089e30: 7320 7068 6920 2020 2020 2020 2020 2020 s phi │ │ │ │ +00089e00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +00089e10: 6937 203a 2074 696d 6520 7072 6f6a 6563 i7 : time projec │ │ │ │ +00089e20: 7469 7665 4465 6772 6565 7320 7068 6920 tiveDegrees phi │ │ │ │ +00089e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089e60: 2020 207c 0a7c 202d 2d20 7573 6564 2035 |.| -- used 5 │ │ │ │ -00089e70: 2e38 3539 652d 3035 7320 2863 7075 293b .859e-05s (cpu); │ │ │ │ -00089e80: 2035 2e33 3631 652d 3035 7320 2874 6872 5.361e-05s (thr │ │ │ │ -00089e90: 6561 6429 3b20 3073 2028 6763 2920 2020 ead); 0s (gc) │ │ │ │ -00089ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089eb0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00089e50: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089e60: 202d 2d20 7573 6564 2037 2e33 3532 3765 -- used 7.3527e │ │ │ │ +00089e70: 2d30 3573 2028 6370 7529 3b20 362e 3230 -05s (cpu); 6.20 │ │ │ │ +00089e80: 3336 652d 3035 7320 2874 6872 6561 6429 36e-05s (thread) │ │ │ │ +00089e90: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +00089ea0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089f00: 2020 207c 0a7c 6f37 203d 207b 312c 2032 |.|o7 = {1, 2 │ │ │ │ -00089f10: 2c20 342c 2038 2c20 382c 2034 2c20 317d , 4, 8, 8, 4, 1} │ │ │ │ +00089ef0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089f00: 6f37 203d 207b 312c 2032 2c20 342c 2038 o7 = {1, 2, 4, 8 │ │ │ │ +00089f10: 2c20 382c 2034 2c20 317d 2020 2020 2020 , 8, 4, 1} │ │ │ │ 00089f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089f50: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +00089f40: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089fa0: 2020 207c 0a7c 6f37 203a 204c 6973 7420 |.|o7 : List │ │ │ │ +00089f90: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +00089fa0: 6f37 203a 204c 6973 7420 2020 2020 2020 o7 : List │ │ │ │ 00089fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00089fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00089ff0: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +00089fe0: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +00089ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a040: 2d2d 2d2b 0a7c 6938 203a 2074 696d 6520 ---+.|i8 : time │ │ │ │ -0008a050: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ -0008a060: 7328 7068 692c 4e75 6d44 6567 7265 6573 s(phi,NumDegrees │ │ │ │ -0008a070: 3d3e 3129 2020 2020 2020 2020 2020 2020 =>1) │ │ │ │ -0008a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a090: 2020 207c 0a7c 202d 2d20 7573 6564 2032 |.| -- used 2 │ │ │ │ -0008a0a0: 2e36 3130 3965 2d30 3573 2028 6370 7529 .6109e-05s (cpu) │ │ │ │ -0008a0b0: 3b20 322e 3539 3339 652d 3035 7320 2874 ; 2.5939e-05s (t │ │ │ │ -0008a0c0: 6872 6561 6429 3b20 3073 2028 6763 2920 hread); 0s (gc) │ │ │ │ -0008a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a0e0: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008a030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ +0008a040: 6938 203a 2074 696d 6520 7072 6f6a 6563 i8 : time projec │ │ │ │ +0008a050: 7469 7665 4465 6772 6565 7328 7068 692c tiveDegrees(phi, │ │ │ │ +0008a060: 4e75 6d44 6567 7265 6573 3d3e 3129 2020 NumDegrees=>1) │ │ │ │ +0008a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008a080: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008a090: 202d 2d20 7573 6564 2033 2e39 3930 3465 -- used 3.9904e │ │ │ │ +0008a0a0: 2d30 3573 2028 6370 7529 3b20 332e 3734 -05s (cpu); 3.74 │ │ │ │ +0008a0b0: 3537 652d 3035 7320 2874 6872 6561 6429 57e-05s (thread) │ │ │ │ +0008a0c0: 3b20 3073 2028 6763 2920 2020 2020 2020 ; 0s (gc) │ │ │ │ +0008a0d0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008a0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a130: 2020 207c 0a7c 6f38 203d 207b 342c 2031 |.|o8 = {4, 1 │ │ │ │ -0008a140: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +0008a120: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008a130: 6f38 203d 207b 342c 2031 7d20 2020 2020 o8 = {4, 1} │ │ │ │ +0008a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a180: 2020 207c 0a7c 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008a170: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a1d0: 2020 207c 0a7c 6f38 203a 204c 6973 7420 |.|o8 : List │ │ │ │ +0008a1c0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008a1d0: 6f38 203a 204c 6973 7420 2020 2020 2020 o8 : List │ │ │ │ 0008a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008a220: 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d |.+---------- │ │ │ │ +0008a210: 2020 2020 2020 2020 2020 2020 207c 0a2b |.+ │ │ │ │ +0008a220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a270: 2d2d 2d2b 0a0a 416e 6f74 6865 7220 7761 ---+..Another wa │ │ │ │ -0008a280: 7920 746f 2075 7365 2074 6869 7320 6d65 y to use this me │ │ │ │ -0008a290: 7468 6f64 2069 7320 6279 2070 6173 7369 thod is by passi │ │ │ │ -0008a2a0: 6e67 2061 6e20 696e 7465 6765 7220 6920 ng an integer i │ │ │ │ -0008a2b0: 6173 2073 6563 6f6e 6420 6172 6775 6d65 as second argume │ │ │ │ -0008a2c0: 6e74 2e0a 486f 7765 7665 722c 2074 6869 nt..However, thi │ │ │ │ -0008a2d0: 7320 6973 2065 7175 6976 616c 656e 7420 s is equivalent │ │ │ │ -0008a2e0: 746f 2066 6972 7374 2070 726f 6a65 6374 to first project │ │ │ │ -0008a2f0: 6976 6544 6567 7265 6573 2870 6869 2c4e iveDegrees(phi,N │ │ │ │ -0008a300: 756d 4465 6772 6565 733d 3e69 2920 616e umDegrees=>i) an │ │ │ │ -0008a310: 640a 6765 6e65 7261 6c6c 7920 6974 2069 d.generally it i │ │ │ │ -0008a320: 7320 6e6f 7420 6661 7374 6572 2e0a 0a53 s not faster...S │ │ │ │ -0008a330: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -0008a340: 0a0a 2020 2a20 2a6e 6f74 6520 6465 6772 .. * *note degr │ │ │ │ -0008a350: 6565 7328 5261 7469 6f6e 616c 4d61 7029 ees(RationalMap) │ │ │ │ -0008a360: 3a20 6465 6772 6565 735f 6c70 5261 7469 : degrees_lpRati │ │ │ │ -0008a370: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2070 onalMap_rp, -- p │ │ │ │ -0008a380: 726f 6a65 6374 6976 6520 6465 6772 6565 rojective degree │ │ │ │ -0008a390: 730a 2020 2020 6f66 2061 2072 6174 696f s. of a ratio │ │ │ │ -0008a3a0: 6e61 6c20 6d61 700a 2020 2a20 2a6e 6f74 nal map. * *not │ │ │ │ -0008a3b0: 6520 6465 6772 6565 4d61 703a 2064 6567 e degreeMap: deg │ │ │ │ -0008a3c0: 7265 654d 6170 2c20 2d2d 2064 6567 7265 reeMap, -- degre │ │ │ │ -0008a3d0: 6520 6f66 2061 2072 6174 696f 6e61 6c20 e of a rational │ │ │ │ -0008a3e0: 6d61 7020 6265 7477 6565 6e20 7072 6f6a map between proj │ │ │ │ -0008a3f0: 6563 7469 7665 0a20 2020 2076 6172 6965 ective. varie │ │ │ │ -0008a400: 7469 6573 0a20 202a 202a 6e6f 7465 2053 ties. * *note S │ │ │ │ -0008a410: 6567 7265 436c 6173 733a 2053 6567 7265 egreClass: Segre │ │ │ │ -0008a420: 436c 6173 732c 202d 2d20 5365 6772 6520 Class, -- Segre │ │ │ │ -0008a430: 636c 6173 7320 6f66 2061 2063 6c6f 7365 class of a close │ │ │ │ -0008a440: 6420 7375 6273 6368 656d 6520 6f66 2061 d subscheme of a │ │ │ │ -0008a450: 0a20 2020 2070 726f 6a65 6374 6976 6520 . projective │ │ │ │ -0008a460: 7661 7269 6574 790a 0a57 6179 7320 746f variety..Ways to │ │ │ │ -0008a470: 2075 7365 2070 726f 6a65 6374 6976 6544 use projectiveD │ │ │ │ -0008a480: 6567 7265 6573 3a0a 3d3d 3d3d 3d3d 3d3d egrees:.======== │ │ │ │ +0008a260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a -------------+.. │ │ │ │ +0008a270: 416e 6f74 6865 7220 7761 7920 746f 2075 Another way to u │ │ │ │ +0008a280: 7365 2074 6869 7320 6d65 7468 6f64 2069 se this method i │ │ │ │ +0008a290: 7320 6279 2070 6173 7369 6e67 2061 6e20 s by passing an │ │ │ │ +0008a2a0: 696e 7465 6765 7220 6920 6173 2073 6563 integer i as sec │ │ │ │ +0008a2b0: 6f6e 6420 6172 6775 6d65 6e74 2e0a 486f ond argument..Ho │ │ │ │ +0008a2c0: 7765 7665 722c 2074 6869 7320 6973 2065 wever, this is e │ │ │ │ +0008a2d0: 7175 6976 616c 656e 7420 746f 2066 6972 quivalent to fir │ │ │ │ +0008a2e0: 7374 2070 726f 6a65 6374 6976 6544 6567 st projectiveDeg │ │ │ │ +0008a2f0: 7265 6573 2870 6869 2c4e 756d 4465 6772 rees(phi,NumDegr │ │ │ │ +0008a300: 6565 733d 3e69 2920 616e 640a 6765 6e65 ees=>i) and.gene │ │ │ │ +0008a310: 7261 6c6c 7920 6974 2069 7320 6e6f 7420 rally it is not │ │ │ │ +0008a320: 6661 7374 6572 2e0a 0a53 6565 2061 6c73 faster...See als │ │ │ │ +0008a330: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +0008a340: 2a6e 6f74 6520 6465 6772 6565 7328 5261 *note degrees(Ra │ │ │ │ +0008a350: 7469 6f6e 616c 4d61 7029 3a20 6465 6772 tionalMap): degr │ │ │ │ +0008a360: 6565 735f 6c70 5261 7469 6f6e 616c 4d61 ees_lpRationalMa │ │ │ │ +0008a370: 705f 7270 2c20 2d2d 2070 726f 6a65 6374 p_rp, -- project │ │ │ │ +0008a380: 6976 6520 6465 6772 6565 730a 2020 2020 ive degrees. │ │ │ │ +0008a390: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ +0008a3a0: 700a 2020 2a20 2a6e 6f74 6520 6465 6772 p. * *note degr │ │ │ │ +0008a3b0: 6565 4d61 703a 2064 6567 7265 654d 6170 eeMap: degreeMap │ │ │ │ +0008a3c0: 2c20 2d2d 2064 6567 7265 6520 6f66 2061 , -- degree of a │ │ │ │ +0008a3d0: 2072 6174 696f 6e61 6c20 6d61 7020 6265 rational map be │ │ │ │ +0008a3e0: 7477 6565 6e20 7072 6f6a 6563 7469 7665 tween projective │ │ │ │ +0008a3f0: 0a20 2020 2076 6172 6965 7469 6573 0a20 . varieties. │ │ │ │ +0008a400: 202a 202a 6e6f 7465 2053 6567 7265 436c * *note SegreCl │ │ │ │ +0008a410: 6173 733a 2053 6567 7265 436c 6173 732c ass: SegreClass, │ │ │ │ +0008a420: 202d 2d20 5365 6772 6520 636c 6173 7320 -- Segre class │ │ │ │ +0008a430: 6f66 2061 2063 6c6f 7365 6420 7375 6273 of a closed subs │ │ │ │ +0008a440: 6368 656d 6520 6f66 2061 0a20 2020 2070 cheme of a. p │ │ │ │ +0008a450: 726f 6a65 6374 6976 6520 7661 7269 6574 rojective variet │ │ │ │ +0008a460: 790a 0a57 6179 7320 746f 2075 7365 2070 y..Ways to use p │ │ │ │ +0008a470: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ +0008a480: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 0008a490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008a4a0: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2270 726f ======.. * "pro │ │ │ │ -0008a4b0: 6a65 6374 6976 6544 6567 7265 6573 2852 jectiveDegrees(R │ │ │ │ -0008a4c0: 696e 674d 6170 2922 0a20 202a 202a 6e6f ingMap)". * *no │ │ │ │ -0008a4d0: 7465 2070 726f 6a65 6374 6976 6544 6567 te projectiveDeg │ │ │ │ -0008a4e0: 7265 6573 2852 6174 696f 6e61 6c4d 6170 rees(RationalMap │ │ │ │ -0008a4f0: 293a 2070 726f 6a65 6374 6976 6544 6567 ): projectiveDeg │ │ │ │ -0008a500: 7265 6573 5f6c 7052 6174 696f 6e61 6c4d rees_lpRationalM │ │ │ │ -0008a510: 6170 5f72 702c 0a20 2020 202d 2d20 7072 ap_rp,. -- pr │ │ │ │ -0008a520: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ -0008a530: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ -0008a540: 6170 0a0a 466f 7220 7468 6520 7072 6f67 ap..For the prog │ │ │ │ -0008a550: 7261 6d6d 6572 0a3d 3d3d 3d3d 3d3d 3d3d rammer.========= │ │ │ │ -0008a560: 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6865 206f =========..The o │ │ │ │ -0008a570: 626a 6563 7420 2a6e 6f74 6520 7072 6f6a bject *note proj │ │ │ │ -0008a580: 6563 7469 7665 4465 6772 6565 733a 2070 ectiveDegrees: p │ │ │ │ -0008a590: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -0008a5a0: 2c20 6973 2061 202a 6e6f 7465 206d 6574 , is a *note met │ │ │ │ -0008a5b0: 686f 640a 6675 6e63 7469 6f6e 2077 6974 hod.function wit │ │ │ │ -0008a5c0: 6820 6f70 7469 6f6e 733a 2028 4d61 6361 h options: (Maca │ │ │ │ -0008a5d0: 756c 6179 3244 6f63 294d 6574 686f 6446 ulay2Doc)MethodF │ │ │ │ -0008a5e0: 756e 6374 696f 6e57 6974 684f 7074 696f unctionWithOptio │ │ │ │ -0008a5f0: 6e73 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d ns,...---------- │ │ │ │ +0008a4a0: 0a0a 2020 2a20 2270 726f 6a65 6374 6976 .. * "projectiv │ │ │ │ +0008a4b0: 6544 6567 7265 6573 2852 696e 674d 6170 eDegrees(RingMap │ │ │ │ +0008a4c0: 2922 0a20 202a 202a 6e6f 7465 2070 726f )". * *note pro │ │ │ │ +0008a4d0: 6a65 6374 6976 6544 6567 7265 6573 2852 jectiveDegrees(R │ │ │ │ +0008a4e0: 6174 696f 6e61 6c4d 6170 293a 2070 726f ationalMap): pro │ │ │ │ +0008a4f0: 6a65 6374 6976 6544 6567 7265 6573 5f6c jectiveDegrees_l │ │ │ │ +0008a500: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +0008a510: 0a20 2020 202d 2d20 7072 6f6a 6563 7469 . -- projecti │ │ │ │ +0008a520: 7665 2064 6567 7265 6573 206f 6620 6120 ve degrees of a │ │ │ │ +0008a530: 7261 7469 6f6e 616c 206d 6170 0a0a 466f rational map..Fo │ │ │ │ +0008a540: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ +0008a550: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +0008a560: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ +0008a570: 2a6e 6f74 6520 7072 6f6a 6563 7469 7665 *note projective │ │ │ │ +0008a580: 4465 6772 6565 733a 2070 726f 6a65 6374 Degrees: project │ │ │ │ +0008a590: 6976 6544 6567 7265 6573 2c20 6973 2061 iveDegrees, is a │ │ │ │ +0008a5a0: 202a 6e6f 7465 206d 6574 686f 640a 6675 *note method.fu │ │ │ │ +0008a5b0: 6e63 7469 6f6e 2077 6974 6820 6f70 7469 nction with opti │ │ │ │ +0008a5c0: 6f6e 733a 2028 4d61 6361 756c 6179 3244 ons: (Macaulay2D │ │ │ │ +0008a5d0: 6f63 294d 6574 686f 6446 756e 6374 696f oc)MethodFunctio │ │ │ │ +0008a5e0: 6e57 6974 684f 7074 696f 6e73 2c2e 0a0a nWithOptions,... │ │ │ │ +0008a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008a620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008a640: 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 7263 -----..The sourc │ │ │ │ -0008a650: 6520 6f66 2074 6869 7320 646f 6375 6d65 e of this docume │ │ │ │ -0008a660: 6e74 2069 7320 696e 0a2f 6275 696c 642f nt is in./build/ │ │ │ │ -0008a670: 7265 7072 6f64 7563 6962 6c65 2d70 6174 reproducible-pat │ │ │ │ -0008a680: 682f 6d61 6361 756c 6179 322d 312e 3235 h/macaulay2-1.25 │ │ │ │ -0008a690: 2e31 312b 6473 2f4d 322f 4d61 6361 756c .11+ds/M2/Macaul │ │ │ │ -0008a6a0: 6179 322f 7061 636b 6167 6573 2f43 7265 ay2/packages/Cre │ │ │ │ -0008a6b0: 6d6f 6e61 2f0a 646f 6375 6d65 6e74 6174 mona/.documentat │ │ │ │ -0008a6c0: 696f 6e2e 6d32 3a37 373a 302e 0a1f 0a46 ion.m2:77:0....F │ │ │ │ -0008a6d0: 696c 653a 2043 7265 6d6f 6e61 2e69 6e66 ile: Cremona.inf │ │ │ │ -0008a6e0: 6f2c 204e 6f64 653a 2070 726f 6a65 6374 o, Node: project │ │ │ │ -0008a6f0: 6976 6544 6567 7265 6573 5f6c 7052 6174 iveDegrees_lpRat │ │ │ │ -0008a700: 696f 6e61 6c4d 6170 5f72 702c 204e 6578 ionalMap_rp, Nex │ │ │ │ -0008a710: 743a 2071 7561 6472 6f51 7561 6472 6963 t: quadroQuadric │ │ │ │ -0008a720: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ -0008a730: 6174 696f 6e2c 2050 7265 763a 2070 726f ation, Prev: pro │ │ │ │ -0008a740: 6a65 6374 6976 6544 6567 7265 6573 2c20 jectiveDegrees, │ │ │ │ -0008a750: 5570 3a20 546f 700a 0a70 726f 6a65 6374 Up: Top..project │ │ │ │ -0008a760: 6976 6544 6567 7265 6573 2852 6174 696f iveDegrees(Ratio │ │ │ │ -0008a770: 6e61 6c4d 6170 2920 2d2d 2070 726f 6a65 nalMap) -- proje │ │ │ │ -0008a780: 6374 6976 6520 6465 6772 6565 7320 6f66 ctive degrees of │ │ │ │ -0008a790: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0008a630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ +0008a640: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ +0008a650: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ +0008a660: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ +0008a670: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ +0008a680: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ +0008a690: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ +0008a6a0: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ +0008a6b0: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ +0008a6c0: 3a37 373a 302e 0a1f 0a46 696c 653a 2043 :77:0....File: C │ │ │ │ +0008a6d0: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ +0008a6e0: 653a 2070 726f 6a65 6374 6976 6544 6567 e: projectiveDeg │ │ │ │ +0008a6f0: 7265 6573 5f6c 7052 6174 696f 6e61 6c4d rees_lpRationalM │ │ │ │ +0008a700: 6170 5f72 702c 204e 6578 743a 2071 7561 ap_rp, Next: qua │ │ │ │ +0008a710: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ +0008a720: 6154 7261 6e73 666f 726d 6174 696f 6e2c aTransformation, │ │ │ │ +0008a730: 2050 7265 763a 2070 726f 6a65 6374 6976 Prev: projectiv │ │ │ │ +0008a740: 6544 6567 7265 6573 2c20 5570 3a20 546f eDegrees, Up: To │ │ │ │ +0008a750: 700a 0a70 726f 6a65 6374 6976 6544 6567 p..projectiveDeg │ │ │ │ +0008a760: 7265 6573 2852 6174 696f 6e61 6c4d 6170 rees(RationalMap │ │ │ │ +0008a770: 2920 2d2d 2070 726f 6a65 6374 6976 6520 ) -- projective │ │ │ │ +0008a780: 6465 6772 6565 7320 6f66 2061 2072 6174 degrees of a rat │ │ │ │ +0008a790: 696f 6e61 6c20 6d61 700a 2a2a 2a2a 2a2a ional map.****** │ │ │ │ 0008a7a0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008a7b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008a7c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008a7d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0008a7e0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4675 6e63 ******.. * Func │ │ │ │ -0008a7f0: 7469 6f6e 3a20 2a6e 6f74 6520 7072 6f6a tion: *note proj │ │ │ │ -0008a800: 6563 7469 7665 4465 6772 6565 733a 2070 ectiveDegrees: p │ │ │ │ -0008a810: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -0008a820: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -0008a830: 2020 2020 2020 7072 6f6a 6563 7469 7665 projective │ │ │ │ -0008a840: 4465 6772 6565 7320 5068 690a 2020 2a20 Degrees Phi. * │ │ │ │ -0008a850: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ -0008a860: 5068 692c 2061 202a 6e6f 7465 2072 6174 Phi, a *note rat │ │ │ │ -0008a870: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -0008a880: 6e61 6c4d 6170 2c0a 2020 2a20 2a6e 6f74 nalMap,. * *not │ │ │ │ -0008a890: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -0008a8a0: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -0008a8b0: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -0008a8c0: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -0008a8d0: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -0008a8e0: 2a6e 6f74 6520 426c 6f77 5570 5374 7261 *note BlowUpStra │ │ │ │ -0008a8f0: 7465 6779 3a20 426c 6f77 5570 5374 7261 tegy: BlowUpStra │ │ │ │ -0008a900: 7465 6779 2c20 3d3e 202e 2e2e 2c20 6465 tegy, => ..., de │ │ │ │ -0008a910: 6661 756c 7420 7661 6c75 650a 2020 2020 fault value. │ │ │ │ -0008a920: 2020 2020 2245 6c69 6d69 6e61 7465 222c "Eliminate", │ │ │ │ -0008a930: 0a20 2020 2020 202a 202a 6e6f 7465 2043 . * *note C │ │ │ │ -0008a940: 6572 7469 6679 3a20 4365 7274 6966 792c ertify: Certify, │ │ │ │ -0008a950: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -0008a960: 2076 616c 7565 2066 616c 7365 2c20 7768 value false, wh │ │ │ │ -0008a970: 6574 6865 7220 746f 2065 6e73 7572 650a ether to ensure. │ │ │ │ -0008a980: 2020 2020 2020 2020 636f 7272 6563 746e correctn │ │ │ │ -0008a990: 6573 7320 6f66 206f 7574 7075 740a 2020 ess of output. │ │ │ │ -0008a9a0: 2020 2020 2a20 2a6e 6f74 6520 4e75 6d44 * *note NumD │ │ │ │ -0008a9b0: 6567 7265 6573 3a20 4e75 6d44 6567 7265 egrees: NumDegre │ │ │ │ -0008a9c0: 6573 2c20 3d3e 202e 2e2e 2c20 6465 6661 es, => ..., defa │ │ │ │ -0008a9d0: 756c 7420 7661 6c75 6520 696e 6669 6e69 ult value infini │ │ │ │ -0008a9e0: 7479 2c20 0a20 2020 2020 202a 202a 6e6f ty, . * *no │ │ │ │ -0008a9f0: 7465 2056 6572 626f 7365 3a20 696e 7665 te Verbose: inve │ │ │ │ -0008aa00: 7273 654d 6170 5f6c 705f 7064 5f70 645f rseMap_lp_pd_pd_ │ │ │ │ -0008aa10: 7064 5f63 6d56 6572 626f 7365 3d3e 5f70 pd_cmVerbose=>_p │ │ │ │ -0008aa20: 645f 7064 5f70 645f 7270 2c20 3d3e 202e d_pd_pd_rp, => . │ │ │ │ -0008aa30: 2e2e 2c0a 2020 2020 2020 2020 6465 6661 ..,. defa │ │ │ │ -0008aa40: 756c 7420 7661 6c75 6520 7472 7565 2c0a ult value true,. │ │ │ │ -0008aa50: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -0008aa60: 2020 202a 2061 202a 6e6f 7465 206c 6973 * a *note lis │ │ │ │ -0008aa70: 743a 2028 4d61 6361 756c 6179 3244 6f63 t: (Macaulay2Doc │ │ │ │ -0008aa80: 294c 6973 742c 2c20 7468 6520 6c69 7374 )List,, the list │ │ │ │ -0008aa90: 206f 6620 7072 6f6a 6563 7469 7665 2064 of projective d │ │ │ │ -0008aaa0: 6567 7265 6573 206f 660a 2020 2020 2020 egrees of. │ │ │ │ -0008aab0: 2020 5068 690a 0a44 6573 6372 6970 7469 Phi..Descripti │ │ │ │ -0008aac0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -0008aad0: 5468 6973 2063 6f6d 7075 7461 7469 6f6e This computation │ │ │ │ -0008aae0: 2069 7320 646f 6e65 2074 6872 6f75 6768 is done through │ │ │ │ -0008aaf0: 2074 6865 2063 6f72 7265 7370 6f6e 6469 the correspondi │ │ │ │ -0008ab00: 6e67 206d 6574 686f 6420 666f 7220 7269 ng method for ri │ │ │ │ -0008ab10: 6e67 206d 6170 732e 2053 6565 0a2a 6e6f ng maps. See.*no │ │ │ │ -0008ab20: 7465 2070 726f 6a65 6374 6976 6544 6567 te projectiveDeg │ │ │ │ -0008ab30: 7265 6573 2852 696e 674d 6170 293a 2070 rees(RingMap): p │ │ │ │ -0008ab40: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -0008ab50: 2c20 666f 7220 6d6f 7265 2064 6574 6169 , for more detai │ │ │ │ -0008ab60: 6c73 2061 6e64 0a65 7861 6d70 6c65 732e ls and.examples. │ │ │ │ -0008ab70: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ -0008ab80: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2070 ===.. * *note p │ │ │ │ -0008ab90: 726f 6a65 6374 6976 6544 6567 7265 6573 rojectiveDegrees │ │ │ │ -0008aba0: 2852 696e 674d 6170 293a 2070 726f 6a65 (RingMap): proje │ │ │ │ -0008abb0: 6374 6976 6544 6567 7265 6573 2c20 2d2d ctiveDegrees, -- │ │ │ │ -0008abc0: 2070 726f 6a65 6374 6976 6520 6465 6772 projective degr │ │ │ │ -0008abd0: 6565 730a 2020 2020 6f66 2061 2072 6174 ees. of a rat │ │ │ │ -0008abe0: 696f 6e61 6c20 6d61 7020 6265 7477 6565 ional map betwee │ │ │ │ -0008abf0: 6e20 7072 6f6a 6563 7469 7665 2076 6172 n projective var │ │ │ │ -0008ac00: 6965 7469 6573 0a20 202a 202a 6e6f 7465 ieties. * *note │ │ │ │ -0008ac10: 2064 6567 7265 6573 2852 6174 696f 6e61 degrees(Rationa │ │ │ │ -0008ac20: 6c4d 6170 293a 2064 6567 7265 6573 5f6c lMap): degrees_l │ │ │ │ -0008ac30: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -0008ac40: 202d 2d20 7072 6f6a 6563 7469 7665 2064 -- projective d │ │ │ │ -0008ac50: 6567 7265 6573 0a20 2020 206f 6620 6120 egrees. of a │ │ │ │ -0008ac60: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -0008ac70: 202a 6e6f 7465 2064 6567 7265 6528 5261 *note degree(Ra │ │ │ │ -0008ac80: 7469 6f6e 616c 4d61 7029 3a20 6465 6772 tionalMap): degr │ │ │ │ -0008ac90: 6565 5f6c 7052 6174 696f 6e61 6c4d 6170 ee_lpRationalMap │ │ │ │ -0008aca0: 5f72 702c 202d 2d20 6465 6772 6565 206f _rp, -- degree o │ │ │ │ -0008acb0: 6620 6120 7261 7469 6f6e 616c 0a20 2020 f a rational. │ │ │ │ -0008acc0: 206d 6170 0a0a 5761 7973 2074 6f20 7573 map..Ways to us │ │ │ │ -0008acd0: 6520 7468 6973 206d 6574 686f 643a 0a3d e this method:.= │ │ │ │ +0008a7e0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ +0008a7f0: 2a6e 6f74 6520 7072 6f6a 6563 7469 7665 *note projective │ │ │ │ +0008a800: 4465 6772 6565 733a 2070 726f 6a65 6374 Degrees: project │ │ │ │ +0008a810: 6976 6544 6567 7265 6573 2c0a 2020 2a20 iveDegrees,. * │ │ │ │ +0008a820: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0008a830: 7072 6f6a 6563 7469 7665 4465 6772 6565 projectiveDegree │ │ │ │ +0008a840: 7320 5068 690a 2020 2a20 496e 7075 7473 s Phi. * Inputs │ │ │ │ +0008a850: 3a0a 2020 2020 2020 2a20 5068 692c 2061 :. * Phi, a │ │ │ │ +0008a860: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +0008a870: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +0008a880: 2c0a 2020 2a20 2a6e 6f74 6520 4f70 7469 ,. * *note Opti │ │ │ │ +0008a890: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ +0008a8a0: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ +0008a8b0: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ +0008a8c0: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ +0008a8d0: 3a0a 2020 2020 2020 2a20 2a6e 6f74 6520 :. * *note │ │ │ │ +0008a8e0: 426c 6f77 5570 5374 7261 7465 6779 3a20 BlowUpStrategy: │ │ │ │ +0008a8f0: 426c 6f77 5570 5374 7261 7465 6779 2c20 BlowUpStrategy, │ │ │ │ +0008a900: 3d3e 202e 2e2e 2c20 6465 6661 756c 7420 => ..., default │ │ │ │ +0008a910: 7661 6c75 650a 2020 2020 2020 2020 2245 value. "E │ │ │ │ +0008a920: 6c69 6d69 6e61 7465 222c 0a20 2020 2020 liminate",. │ │ │ │ +0008a930: 202a 202a 6e6f 7465 2043 6572 7469 6679 * *note Certify │ │ │ │ +0008a940: 3a20 4365 7274 6966 792c 203d 3e20 2e2e : Certify, => .. │ │ │ │ +0008a950: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0008a960: 2066 616c 7365 2c20 7768 6574 6865 7220 false, whether │ │ │ │ +0008a970: 746f 2065 6e73 7572 650a 2020 2020 2020 to ensure. │ │ │ │ +0008a980: 2020 636f 7272 6563 746e 6573 7320 6f66 correctness of │ │ │ │ +0008a990: 206f 7574 7075 740a 2020 2020 2020 2a20 output. * │ │ │ │ +0008a9a0: 2a6e 6f74 6520 4e75 6d44 6567 7265 6573 *note NumDegrees │ │ │ │ +0008a9b0: 3a20 4e75 6d44 6567 7265 6573 2c20 3d3e : NumDegrees, => │ │ │ │ +0008a9c0: 202e 2e2e 2c20 6465 6661 756c 7420 7661 ..., default va │ │ │ │ +0008a9d0: 6c75 6520 696e 6669 6e69 7479 2c20 0a20 lue infinity, . │ │ │ │ +0008a9e0: 2020 2020 202a 202a 6e6f 7465 2056 6572 * *note Ver │ │ │ │ +0008a9f0: 626f 7365 3a20 696e 7665 7273 654d 6170 bose: inverseMap │ │ │ │ +0008aa00: 5f6c 705f 7064 5f70 645f 7064 5f63 6d56 _lp_pd_pd_pd_cmV │ │ │ │ +0008aa10: 6572 626f 7365 3d3e 5f70 645f 7064 5f70 erbose=>_pd_pd_p │ │ │ │ +0008aa20: 645f 7270 2c20 3d3e 202e 2e2e 2c0a 2020 d_rp, => ...,. │ │ │ │ +0008aa30: 2020 2020 2020 6465 6661 756c 7420 7661 default va │ │ │ │ +0008aa40: 6c75 6520 7472 7565 2c0a 2020 2a20 4f75 lue true,. * Ou │ │ │ │ +0008aa50: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0008aa60: 202a 6e6f 7465 206c 6973 743a 2028 4d61 *note list: (Ma │ │ │ │ +0008aa70: 6361 756c 6179 3244 6f63 294c 6973 742c caulay2Doc)List, │ │ │ │ +0008aa80: 2c20 7468 6520 6c69 7374 206f 6620 7072 , the list of pr │ │ │ │ +0008aa90: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ +0008aaa0: 206f 660a 2020 2020 2020 2020 5068 690a of. Phi. │ │ │ │ +0008aab0: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +0008aac0: 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 2063 ========..This c │ │ │ │ +0008aad0: 6f6d 7075 7461 7469 6f6e 2069 7320 646f omputation is do │ │ │ │ +0008aae0: 6e65 2074 6872 6f75 6768 2074 6865 2063 ne through the c │ │ │ │ +0008aaf0: 6f72 7265 7370 6f6e 6469 6e67 206d 6574 orresponding met │ │ │ │ +0008ab00: 686f 6420 666f 7220 7269 6e67 206d 6170 hod for ring map │ │ │ │ +0008ab10: 732e 2053 6565 0a2a 6e6f 7465 2070 726f s. See.*note pro │ │ │ │ +0008ab20: 6a65 6374 6976 6544 6567 7265 6573 2852 jectiveDegrees(R │ │ │ │ +0008ab30: 696e 674d 6170 293a 2070 726f 6a65 6374 ingMap): project │ │ │ │ +0008ab40: 6976 6544 6567 7265 6573 2c20 666f 7220 iveDegrees, for │ │ │ │ +0008ab50: 6d6f 7265 2064 6574 6169 6c73 2061 6e64 more details and │ │ │ │ +0008ab60: 0a65 7861 6d70 6c65 732e 0a0a 5365 6520 .examples...See │ │ │ │ +0008ab70: 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 also.========.. │ │ │ │ +0008ab80: 202a 202a 6e6f 7465 2070 726f 6a65 6374 * *note project │ │ │ │ +0008ab90: 6976 6544 6567 7265 6573 2852 696e 674d iveDegrees(RingM │ │ │ │ +0008aba0: 6170 293a 2070 726f 6a65 6374 6976 6544 ap): projectiveD │ │ │ │ +0008abb0: 6567 7265 6573 2c20 2d2d 2070 726f 6a65 egrees, -- proje │ │ │ │ +0008abc0: 6374 6976 6520 6465 6772 6565 730a 2020 ctive degrees. │ │ │ │ +0008abd0: 2020 6f66 2061 2072 6174 696f 6e61 6c20 of a rational │ │ │ │ +0008abe0: 6d61 7020 6265 7477 6565 6e20 7072 6f6a map between proj │ │ │ │ +0008abf0: 6563 7469 7665 2076 6172 6965 7469 6573 ective varieties │ │ │ │ +0008ac00: 0a20 202a 202a 6e6f 7465 2064 6567 7265 . * *note degre │ │ │ │ +0008ac10: 6573 2852 6174 696f 6e61 6c4d 6170 293a es(RationalMap): │ │ │ │ +0008ac20: 2064 6567 7265 6573 5f6c 7052 6174 696f degrees_lpRatio │ │ │ │ +0008ac30: 6e61 6c4d 6170 5f72 702c 202d 2d20 7072 nalMap_rp, -- pr │ │ │ │ +0008ac40: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ +0008ac50: 0a20 2020 206f 6620 6120 7261 7469 6f6e . of a ration │ │ │ │ +0008ac60: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +0008ac70: 2064 6567 7265 6528 5261 7469 6f6e 616c degree(Rational │ │ │ │ +0008ac80: 4d61 7029 3a20 6465 6772 6565 5f6c 7052 Map): degree_lpR │ │ │ │ +0008ac90: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0008aca0: 2d20 6465 6772 6565 206f 6620 6120 7261 - degree of a ra │ │ │ │ +0008acb0: 7469 6f6e 616c 0a20 2020 206d 6170 0a0a tional. map.. │ │ │ │ +0008acc0: 5761 7973 2074 6f20 7573 6520 7468 6973 Ways to use this │ │ │ │ +0008acd0: 206d 6574 686f 643a 0a3d 3d3d 3d3d 3d3d method:.======= │ │ │ │ 0008ace0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008acf0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -0008ad00: 7465 2070 726f 6a65 6374 6976 6544 6567 te projectiveDeg │ │ │ │ -0008ad10: 7265 6573 2852 6174 696f 6e61 6c4d 6170 rees(RationalMap │ │ │ │ -0008ad20: 293a 2070 726f 6a65 6374 6976 6544 6567 ): projectiveDeg │ │ │ │ -0008ad30: 7265 6573 5f6c 7052 6174 696f 6e61 6c4d rees_lpRationalM │ │ │ │ -0008ad40: 6170 5f72 702c 0a20 2020 202d 2d20 7072 ap_rp,. -- pr │ │ │ │ -0008ad50: 6f6a 6563 7469 7665 2064 6567 7265 6573 ojective degrees │ │ │ │ -0008ad60: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ -0008ad70: 6170 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ap.------------- │ │ │ │ +0008acf0: 3d0a 0a20 202a 202a 6e6f 7465 2070 726f =.. * *note pro │ │ │ │ +0008ad00: 6a65 6374 6976 6544 6567 7265 6573 2852 jectiveDegrees(R │ │ │ │ +0008ad10: 6174 696f 6e61 6c4d 6170 293a 2070 726f ationalMap): pro │ │ │ │ +0008ad20: 6a65 6374 6976 6544 6567 7265 6573 5f6c jectiveDegrees_l │ │ │ │ +0008ad30: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +0008ad40: 0a20 2020 202d 2d20 7072 6f6a 6563 7469 . -- projecti │ │ │ │ +0008ad50: 7665 2064 6567 7265 6573 206f 6620 6120 ve degrees of a │ │ │ │ +0008ad60: 7261 7469 6f6e 616c 206d 6170 0a2d 2d2d rational map.--- │ │ │ │ +0008ad70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008ad80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008ad90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008ada0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008adc0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -0008add0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -0008ade0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -0008adf0: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -0008ae00: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -0008ae10: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -0008ae20: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ -0008ae30: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ -0008ae40: 2e6d 323a 3630 313a 302e 0a1f 0a46 696c .m2:601:0....Fil │ │ │ │ -0008ae50: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ -0008ae60: 204e 6f64 653a 2071 7561 6472 6f51 7561 Node: quadroQua │ │ │ │ -0008ae70: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ -0008ae80: 666f 726d 6174 696f 6e2c 204e 6578 743a formation, Next: │ │ │ │ -0008ae90: 2052 6174 696f 6e61 6c4d 6170 2c20 5072 RationalMap, Pr │ │ │ │ -0008aea0: 6576 3a20 7072 6f6a 6563 7469 7665 4465 ev: projectiveDe │ │ │ │ -0008aeb0: 6772 6565 735f 6c70 5261 7469 6f6e 616c grees_lpRational │ │ │ │ -0008aec0: 4d61 705f 7270 2c20 5570 3a20 546f 700a Map_rp, Up: Top. │ │ │ │ -0008aed0: 0a71 7561 6472 6f51 7561 6472 6963 4372 .quadroQuadricCr │ │ │ │ -0008aee0: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ -0008aef0: 696f 6e20 2d2d 2071 7561 6472 6f2d 7175 ion -- quadro-qu │ │ │ │ -0008af00: 6164 7269 6320 4372 656d 6f6e 6120 7472 adric Cremona tr │ │ │ │ -0008af10: 616e 7366 6f72 6d61 7469 6f6e 730a 2a2a ansformations.** │ │ │ │ +0008adb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +0008adc0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +0008add0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +0008ade0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +0008adf0: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +0008ae00: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +0008ae10: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +0008ae20: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ +0008ae30: 756d 656e 7461 7469 6f6e 2e6d 323a 3630 umentation.m2:60 │ │ │ │ +0008ae40: 313a 302e 0a1f 0a46 696c 653a 2043 7265 1:0....File: Cre │ │ │ │ +0008ae50: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ +0008ae60: 2071 7561 6472 6f51 7561 6472 6963 4372 quadroQuadricCr │ │ │ │ +0008ae70: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ +0008ae80: 696f 6e2c 204e 6578 743a 2052 6174 696f ion, Next: Ratio │ │ │ │ +0008ae90: 6e61 6c4d 6170 2c20 5072 6576 3a20 7072 nalMap, Prev: pr │ │ │ │ +0008aea0: 6f6a 6563 7469 7665 4465 6772 6565 735f ojectiveDegrees_ │ │ │ │ +0008aeb0: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +0008aec0: 2c20 5570 3a20 546f 700a 0a71 7561 6472 , Up: Top..quadr │ │ │ │ +0008aed0: 6f51 7561 6472 6963 4372 656d 6f6e 6154 oQuadricCremonaT │ │ │ │ +0008aee0: 7261 6e73 666f 726d 6174 696f 6e20 2d2d ransformation -- │ │ │ │ +0008aef0: 2071 7561 6472 6f2d 7175 6164 7269 6320 quadro-quadric │ │ │ │ +0008af00: 4372 656d 6f6e 6120 7472 616e 7366 6f72 Cremona transfor │ │ │ │ +0008af10: 6d61 7469 6f6e 730a 2a2a 2a2a 2a2a 2a2a mations.******** │ │ │ │ 0008af20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008af30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008af40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008af50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0008af60: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ -0008af70: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ -0008af80: 7175 6164 726f 5175 6164 7269 6343 7265 quadroQuadricCre │ │ │ │ -0008af90: 6d6f 6e61 5472 616e 7366 6f72 6d61 7469 monaTransformati │ │ │ │ -0008afa0: 6f6e 286e 2c69 2920 0a20 2020 2020 2020 on(n,i) . │ │ │ │ -0008afb0: 2071 7561 6472 6f51 7561 6472 6963 4372 quadroQuadricCr │ │ │ │ -0008afc0: 656d 6f6e 6154 7261 6e73 666f 726d 6174 emonaTransformat │ │ │ │ -0008afd0: 696f 6e28 6e2c 692c 4b29 0a20 202a 2049 ion(n,i,K). * I │ │ │ │ -0008afe0: 6e70 7574 733a 0a20 2020 2020 202a 206e nputs:. * n │ │ │ │ -0008aff0: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -0008b000: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ -0008b010: 6329 5a5a 2c2c 2074 6865 2064 696d 656e c)ZZ,, the dimen │ │ │ │ -0008b020: 7369 6f6e 206f 6620 7468 6520 7072 6f6a sion of the proj │ │ │ │ -0008b030: 6563 7469 7665 0a20 2020 2020 2020 2073 ective. s │ │ │ │ -0008b040: 7061 6365 0a20 2020 2020 202a 2069 2c20 pace. * i, │ │ │ │ -0008b050: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ -0008b060: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -0008b070: 5a5a 2c2c 2074 6865 2069 2d74 6820 6361 ZZ,, the i-th ca │ │ │ │ -0008b080: 7365 2069 6e20 7468 650a 2020 2020 2020 se in the. │ │ │ │ -0008b090: 2020 636c 6173 7369 6669 6361 7469 6f6e classification │ │ │ │ -0008b0a0: 2066 6f72 2050 5e6e 2028 666f 7220 696e for P^n (for in │ │ │ │ -0008b0b0: 7374 616e 6365 2c20 6966 206e 3d35 2074 stance, if n=5 t │ │ │ │ -0008b0c0: 6865 6e20 313c 3d69 3c3d 3339 290a 2020 hen 1<=i<=39). │ │ │ │ -0008b0d0: 2020 2020 2a20 4b2c 2061 202a 6e6f 7465 * K, a *note │ │ │ │ -0008b0e0: 2072 696e 673a 2028 4d61 6361 756c 6179 ring: (Macaulay │ │ │ │ -0008b0f0: 3244 6f63 2952 696e 672c 2c20 7468 6520 2Doc)Ring,, the │ │ │ │ -0008b100: 6772 6f75 6e64 2066 6965 6c64 2028 6f70 ground field (op │ │ │ │ -0008b110: 7469 6f6e 616c 2c20 7468 650a 2020 2020 tional, the. │ │ │ │ -0008b120: 2020 2020 6465 6661 756c 7420 7661 6c75 default valu │ │ │ │ -0008b130: 6520 6973 202a 6e6f 7465 2051 513a 2028 e is *note QQ: ( │ │ │ │ -0008b140: 4d61 6361 756c 6179 3244 6f63 2951 512c Macaulay2Doc)QQ, │ │ │ │ -0008b150: 290a 2020 2a20 4f75 7470 7574 733a 0a20 ). * Outputs:. │ │ │ │ -0008b160: 2020 2020 202a 2061 202a 6e6f 7465 2072 * a *note r │ │ │ │ -0008b170: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -0008b180: 696f 6e61 6c4d 6170 2c2c 2061 6e20 6578 ionalMap,, an ex │ │ │ │ -0008b190: 616d 706c 6520 6f66 2071 7561 6472 6f2d ample of quadro- │ │ │ │ -0008b1a0: 7175 6164 7269 630a 2020 2020 2020 2020 quadric. │ │ │ │ -0008b1b0: 4372 656d 6f6e 6120 7472 616e 7366 6f72 Cremona transfor │ │ │ │ -0008b1c0: 6d61 7469 6f6e 206f 7665 7220 4b2c 2061 mation over K, a │ │ │ │ -0008b1d0: 6363 6f72 6469 6e67 2074 6f20 7468 6520 ccording to the │ │ │ │ -0008b1e0: 636c 6173 7369 6669 6361 7469 6f6e 7320 classifications │ │ │ │ -0008b1f0: 6769 7665 6e0a 2020 2020 2020 2020 696e given. in │ │ │ │ -0008b200: 2074 6865 2070 6170 6572 2051 7561 6472 the paper Quadr │ │ │ │ -0008b210: 6f2d 7175 6164 7269 6320 4372 656d 6f6e o-quadric Cremon │ │ │ │ -0008b220: 6120 7472 616e 7366 6f72 6d61 7469 6f6e a transformation │ │ │ │ -0008b230: 7320 696e 206c 6f77 2064 696d 656e 7369 s in low dimensi │ │ │ │ -0008b240: 6f6e 730a 2020 2020 2020 2020 7669 6120 ons. via │ │ │ │ -0008b250: 7468 6520 4a43 2d63 6f72 7265 7370 6f6e the JC-correspon │ │ │ │ -0008b260: 6465 6e63 6520 2873 6565 0a20 2020 2020 dence (see. │ │ │ │ -0008b270: 2020 2068 7474 7073 3a2f 2f61 6966 2e63 https://aif.c │ │ │ │ -0008b280: 656e 7472 652d 6d65 7273 656e 6e65 2e6f entre-mersenne.o │ │ │ │ -0008b290: 7267 2f69 7465 6d2f 4149 465f 3230 3134 rg/item/AIF_2014 │ │ │ │ -0008b2a0: 5f5f 3634 5f31 5f37 315f 302f 2029 2c20 __64_1_71_0/ ), │ │ │ │ -0008b2b0: 6279 2050 6972 696f 0a20 2020 2020 2020 by Pirio. │ │ │ │ -0008b2c0: 2061 6e64 2052 7573 736f 2e0a 0a44 6573 and Russo...Des │ │ │ │ -0008b2d0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0008b2e0: 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ====..+--------- │ │ │ │ +0008af60: 2a2a 2a2a 0a0a 2020 2a20 5573 6167 653a ****.. * Usage: │ │ │ │ +0008af70: 200a 2020 2020 2020 2020 7175 6164 726f . quadro │ │ │ │ +0008af80: 5175 6164 7269 6343 7265 6d6f 6e61 5472 QuadricCremonaTr │ │ │ │ +0008af90: 616e 7366 6f72 6d61 7469 6f6e 286e 2c69 ansformation(n,i │ │ │ │ +0008afa0: 2920 0a20 2020 2020 2020 2071 7561 6472 ) . quadr │ │ │ │ +0008afb0: 6f51 7561 6472 6963 4372 656d 6f6e 6154 oQuadricCremonaT │ │ │ │ +0008afc0: 7261 6e73 666f 726d 6174 696f 6e28 6e2c ransformation(n, │ │ │ │ +0008afd0: 692c 4b29 0a20 202a 2049 6e70 7574 733a i,K). * Inputs: │ │ │ │ +0008afe0: 0a20 2020 2020 202a 206e 2c20 616e 202a . * n, an * │ │ │ │ +0008aff0: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +0008b000: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +0008b010: 2074 6865 2064 696d 656e 7369 6f6e 206f the dimension o │ │ │ │ +0008b020: 6620 7468 6520 7072 6f6a 6563 7469 7665 f the projective │ │ │ │ +0008b030: 0a20 2020 2020 2020 2073 7061 6365 0a20 . space. │ │ │ │ +0008b040: 2020 2020 202a 2069 2c20 616e 202a 6e6f * i, an *no │ │ │ │ +0008b050: 7465 2069 6e74 6567 6572 3a20 284d 6163 te integer: (Mac │ │ │ │ +0008b060: 6175 6c61 7932 446f 6329 5a5a 2c2c 2074 aulay2Doc)ZZ,, t │ │ │ │ +0008b070: 6865 2069 2d74 6820 6361 7365 2069 6e20 he i-th case in │ │ │ │ +0008b080: 7468 650a 2020 2020 2020 2020 636c 6173 the. clas │ │ │ │ +0008b090: 7369 6669 6361 7469 6f6e 2066 6f72 2050 sification for P │ │ │ │ +0008b0a0: 5e6e 2028 666f 7220 696e 7374 616e 6365 ^n (for instance │ │ │ │ +0008b0b0: 2c20 6966 206e 3d35 2074 6865 6e20 313c , if n=5 then 1< │ │ │ │ +0008b0c0: 3d69 3c3d 3339 290a 2020 2020 2020 2a20 =i<=39). * │ │ │ │ +0008b0d0: 4b2c 2061 202a 6e6f 7465 2072 696e 673a K, a *note ring: │ │ │ │ +0008b0e0: 2028 4d61 6361 756c 6179 3244 6f63 2952 (Macaulay2Doc)R │ │ │ │ +0008b0f0: 696e 672c 2c20 7468 6520 6772 6f75 6e64 ing,, the ground │ │ │ │ +0008b100: 2066 6965 6c64 2028 6f70 7469 6f6e 616c field (optional │ │ │ │ +0008b110: 2c20 7468 650a 2020 2020 2020 2020 6465 , the. de │ │ │ │ +0008b120: 6661 756c 7420 7661 6c75 6520 6973 202a fault value is * │ │ │ │ +0008b130: 6e6f 7465 2051 513a 2028 4d61 6361 756c note QQ: (Macaul │ │ │ │ +0008b140: 6179 3244 6f63 2951 512c 290a 2020 2a20 ay2Doc)QQ,). * │ │ │ │ +0008b150: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +0008b160: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +0008b170: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +0008b180: 6170 2c2c 2061 6e20 6578 616d 706c 6520 ap,, an example │ │ │ │ +0008b190: 6f66 2071 7561 6472 6f2d 7175 6164 7269 of quadro-quadri │ │ │ │ +0008b1a0: 630a 2020 2020 2020 2020 4372 656d 6f6e c. Cremon │ │ │ │ +0008b1b0: 6120 7472 616e 7366 6f72 6d61 7469 6f6e a transformation │ │ │ │ +0008b1c0: 206f 7665 7220 4b2c 2061 6363 6f72 6469 over K, accordi │ │ │ │ +0008b1d0: 6e67 2074 6f20 7468 6520 636c 6173 7369 ng to the classi │ │ │ │ +0008b1e0: 6669 6361 7469 6f6e 7320 6769 7665 6e0a fications given. │ │ │ │ +0008b1f0: 2020 2020 2020 2020 696e 2074 6865 2070 in the p │ │ │ │ +0008b200: 6170 6572 2051 7561 6472 6f2d 7175 6164 aper Quadro-quad │ │ │ │ +0008b210: 7269 6320 4372 656d 6f6e 6120 7472 616e ric Cremona tran │ │ │ │ +0008b220: 7366 6f72 6d61 7469 6f6e 7320 696e 206c sformations in l │ │ │ │ +0008b230: 6f77 2064 696d 656e 7369 6f6e 730a 2020 ow dimensions. │ │ │ │ +0008b240: 2020 2020 2020 7669 6120 7468 6520 4a43 via the JC │ │ │ │ +0008b250: 2d63 6f72 7265 7370 6f6e 6465 6e63 6520 -correspondence │ │ │ │ +0008b260: 2873 6565 0a20 2020 2020 2020 2068 7474 (see. htt │ │ │ │ +0008b270: 7073 3a2f 2f61 6966 2e63 656e 7472 652d ps://aif.centre- │ │ │ │ +0008b280: 6d65 7273 656e 6e65 2e6f 7267 2f69 7465 mersenne.org/ite │ │ │ │ +0008b290: 6d2f 4149 465f 3230 3134 5f5f 3634 5f31 m/AIF_2014__64_1 │ │ │ │ +0008b2a0: 5f37 315f 302f 2029 2c20 6279 2050 6972 _71_0/ ), by Pir │ │ │ │ +0008b2b0: 696f 0a20 2020 2020 2020 2061 6e64 2052 io. and R │ │ │ │ +0008b2c0: 7573 736f 2e0a 0a44 6573 6372 6970 7469 usso...Descripti │ │ │ │ +0008b2d0: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0008b2e0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0008b2f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008b300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008b310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008b320: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 7175 ------+.|i1 : qu │ │ │ │ -0008b330: 6164 726f 5175 6164 7269 6343 7265 6d6f adroQuadricCremo │ │ │ │ -0008b340: 6e61 5472 616e 7366 6f72 6d61 7469 6f6e naTransformation │ │ │ │ -0008b350: 2835 2c32 3329 2020 2020 2020 2020 2020 (5,23) │ │ │ │ -0008b360: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008b320: 2b0a 7c69 3120 3a20 7175 6164 726f 5175 +.|i1 : quadroQu │ │ │ │ +0008b330: 6164 7269 6343 7265 6d6f 6e61 5472 616e adricCremonaTran │ │ │ │ +0008b340: 7366 6f72 6d61 7469 6f6e 2835 2c32 3329 sformation(5,23) │ │ │ │ +0008b350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b360: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b3a0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ -0008b3b0: 3d20 2d2d 2072 6174 696f 6e61 6c20 6d61 = -- rational ma │ │ │ │ -0008b3c0: 7020 2d2d 2020 2020 2020 2020 2020 2020 p -- │ │ │ │ +0008b3a0: 2020 2020 7c0a 7c6f 3120 3d20 2d2d 2072 |.|o1 = -- r │ │ │ │ +0008b3b0: 6174 696f 6e61 6c20 6d61 7020 2d2d 2020 ational map -- │ │ │ │ +0008b3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b3e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008b3f0: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -0008b400: 2851 515b 782c 2079 2c20 7a2c 2074 2c20 (QQ[x, y, z, t, │ │ │ │ -0008b410: 752c 2076 5d29 2020 2020 2020 2020 2020 u, v]) │ │ │ │ -0008b420: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008b430: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -0008b440: 6f6a 2851 515b 782c 2079 2c20 7a2c 2074 oj(QQ[x, y, z, t │ │ │ │ -0008b450: 2c20 752c 2076 5d29 2020 2020 2020 2020 , u, v]) │ │ │ │ -0008b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b470: 7c0a 7c20 2020 2020 6465 6669 6e69 6e67 |.| defining │ │ │ │ -0008b480: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ +0008b3e0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0008b3f0: 7572 6365 3a20 5072 6f6a 2851 515b 782c urce: Proj(QQ[x, │ │ │ │ +0008b400: 2079 2c20 7a2c 2074 2c20 752c 2076 5d29 y, z, t, u, v]) │ │ │ │ +0008b410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b420: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008b430: 7461 7267 6574 3a20 5072 6f6a 2851 515b target: Proj(QQ[ │ │ │ │ +0008b440: 782c 2079 2c20 7a2c 2074 2c20 752c 2076 x, y, z, t, u, v │ │ │ │ +0008b450: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0008b460: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0008b470: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ +0008b480: 3a20 7b20 2020 2020 2020 2020 2020 2020 : { │ │ │ │ 0008b490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b4b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0008b4c0: 2020 2020 2020 2020 2020 2078 2a79 2c20 x*y, │ │ │ │ +0008b4a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008b4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b4c0: 2020 2020 2078 2a79 2c20 2020 2020 2020 x*y, │ │ │ │ 0008b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b4f0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008b4e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008b4f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0008b500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b530: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0008b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b550: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0008b530: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008b540: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0008b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0008b580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b590: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0008b570: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008b580: 2020 2020 2020 2020 2020 2078 202c 2020 x , │ │ │ │ +0008b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b5b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0008b5b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 0008b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008b5f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b610: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0008b620: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -0008b630: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008b640: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0008b650: 2020 2020 2020 202d 2079 2a7a 202b 2074 - y*z + t │ │ │ │ -0008b660: 2020 2b20 7520 2c20 2020 2020 2020 2020 + u , │ │ │ │ -0008b670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b680: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008b610: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +0008b620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b630: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008b640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b650: 202d 2079 2a7a 202b 2074 2020 2b20 7520 - y*z + t + u │ │ │ │ +0008b660: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0008b670: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0008b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b6c0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -0008b6d0: 2020 2020 2020 2020 2020 202d 782a 742c -x*t, │ │ │ │ +0008b6b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008b6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008b6d0: 2020 2020 202d 782a 742c 2020 2020 2020 -x*t, │ │ │ │ 0008b6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b700: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008b6f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008b700: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0008b710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b740: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -0008b750: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ -0008b760: 782a 752c 2020 2020 2020 2020 2020 2020 x*u, │ │ │ │ +0008b740: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008b750: 2020 2020 2020 2020 202d 782a 752c 2020 -x*u, │ │ │ │ +0008b760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b780: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008b780: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b7c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0008b7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b7e0: 2020 202d 782a 7620 2020 2020 2020 2020 -x*v │ │ │ │ +0008b7c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008b7d0: 2020 2020 2020 2020 2020 2020 202d 782a -x* │ │ │ │ +0008b7e0: 7620 2020 2020 2020 2020 2020 2020 2020 v │ │ │ │ 0008b7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b800: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008b810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b820: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +0008b800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0008b810: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0008b820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008b850: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008b840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008b850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b890: 7c0a 7c6f 3120 3a20 5261 7469 6f6e 616c |.|o1 : Rational │ │ │ │ -0008b8a0: 4d61 7020 2843 7265 6d6f 6e61 2074 7261 Map (Cremona tra │ │ │ │ -0008b8b0: 6e73 666f 726d 6174 696f 6e20 6f66 2050 nsformation of P │ │ │ │ -0008b8c0: 505e 3520 6f66 2074 7970 6520 2832 2c32 P^5 of type (2,2 │ │ │ │ -0008b8d0: 2929 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d ))|.+----------- │ │ │ │ +0008b880: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +0008b890: 3a20 5261 7469 6f6e 616c 4d61 7020 2843 : RationalMap (C │ │ │ │ +0008b8a0: 7265 6d6f 6e61 2074 7261 6e73 666f 726d remona transform │ │ │ │ +0008b8b0: 6174 696f 6e20 6f66 2050 505e 3520 6f66 ation of PP^5 of │ │ │ │ +0008b8c0: 2074 7970 6520 2832 2c32 2929 7c0a 2b2d type (2,2))|.+- │ │ │ │ +0008b8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008b8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008b8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008b900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008b910: 2d2d 2d2d 2b0a 7c69 3220 3a20 6465 7363 ----+.|i2 : desc │ │ │ │ -0008b920: 7269 6265 206f 6f20 2020 2020 2020 2020 ribe oo │ │ │ │ +0008b900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0008b910: 7c69 3220 3a20 6465 7363 7269 6265 206f |i2 : describe o │ │ │ │ +0008b920: 6f20 2020 2020 2020 2020 2020 2020 2020 o │ │ │ │ 0008b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b950: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0008b950: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008b960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008b990: 2020 2020 2020 2020 7c0a 7c6f 3220 3d20 |.|o2 = │ │ │ │ -0008b9a0: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ -0008b9b0: 696e 6564 2062 7920 666f 726d 7320 6f66 ined by forms of │ │ │ │ -0008b9c0: 2064 6567 7265 6520 3220 2020 2020 2020 degree 2 │ │ │ │ -0008b9d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0008b9e0: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ -0008b9f0: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ +0008b990: 2020 7c0a 7c6f 3220 3d20 7261 7469 6f6e |.|o2 = ration │ │ │ │ +0008b9a0: 616c 206d 6170 2064 6566 696e 6564 2062 al map defined b │ │ │ │ +0008b9b0: 7920 666f 726d 7320 6f66 2064 6567 7265 y forms of degre │ │ │ │ +0008b9c0: 6520 3220 2020 2020 2020 2020 2020 2020 e 2 │ │ │ │ +0008b9d0: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ +0008b9e0: 6365 2076 6172 6965 7479 3a20 5050 5e35 ce variety: PP^5 │ │ │ │ +0008b9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ba00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ba10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008ba20: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -0008ba30: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ +0008ba10: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0008ba20: 7267 6574 2076 6172 6965 7479 3a20 5050 rget variety: PP │ │ │ │ +0008ba30: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ 0008ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ba50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008ba60: 7c20 2020 2020 646f 6d69 6e61 6e63 653a | dominance: │ │ │ │ -0008ba70: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ +0008ba50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008ba60: 646f 6d69 6e61 6e63 653a 2074 7275 6520 dominance: true │ │ │ │ +0008ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ba80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008baa0: 7c0a 7c20 2020 2020 6269 7261 7469 6f6e |.| biration │ │ │ │ -0008bab0: 616c 6974 793a 2074 7275 6520 2020 2020 ality: true │ │ │ │ +0008ba90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0008baa0: 2020 6269 7261 7469 6f6e 616c 6974 793a birationality: │ │ │ │ +0008bab0: 2074 7275 6520 2020 2020 2020 2020 2020 true │ │ │ │ 0008bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bae0: 2020 7c0a 7c20 2020 2020 7072 6f6a 6563 |.| projec │ │ │ │ -0008baf0: 7469 7665 2064 6567 7265 6573 3a20 7b31 tive degrees: {1 │ │ │ │ -0008bb00: 2c20 322c 2032 2c20 322c 2032 2c20 317d , 2, 2, 2, 2, 1} │ │ │ │ -0008bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bb20: 2020 2020 7c0a 7c20 2020 2020 6e75 6d62 |.| numb │ │ │ │ -0008bb30: 6572 206f 6620 6d69 6e69 6d61 6c20 7265 er of minimal re │ │ │ │ -0008bb40: 7072 6573 656e 7461 7469 7665 733a 2031 presentatives: 1 │ │ │ │ +0008bad0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008bae0: 2020 2020 7072 6f6a 6563 7469 7665 2064 projective d │ │ │ │ +0008baf0: 6567 7265 6573 3a20 7b31 2c20 322c 2032 egrees: {1, 2, 2 │ │ │ │ +0008bb00: 2c20 322c 2032 2c20 317d 2020 2020 2020 , 2, 2, 1} │ │ │ │ +0008bb10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008bb20: 7c20 2020 2020 6e75 6d62 6572 206f 6620 | number of │ │ │ │ +0008bb30: 6d69 6e69 6d61 6c20 7265 7072 6573 656e minimal represen │ │ │ │ +0008bb40: 7461 7469 7665 733a 2031 2020 2020 2020 tatives: 1 │ │ │ │ 0008bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bb60: 2020 2020 2020 7c0a 7c20 2020 2020 6469 |.| di │ │ │ │ -0008bb70: 6d65 6e73 696f 6e20 6261 7365 206c 6f63 mension base loc │ │ │ │ -0008bb80: 7573 3a20 3320 2020 2020 2020 2020 2020 us: 3 │ │ │ │ +0008bb60: 7c0a 7c20 2020 2020 6469 6d65 6e73 696f |.| dimensio │ │ │ │ +0008bb70: 6e20 6261 7365 206c 6f63 7573 3a20 3320 n base locus: 3 │ │ │ │ +0008bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008bb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bba0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0008bbb0: 6465 6772 6565 2062 6173 6520 6c6f 6375 degree base locu │ │ │ │ -0008bbc0: 733a 2032 2020 2020 2020 2020 2020 2020 s: 2 │ │ │ │ +0008bba0: 2020 7c0a 7c20 2020 2020 6465 6772 6565 |.| degree │ │ │ │ +0008bbb0: 2062 6173 6520 6c6f 6375 733a 2032 2020 base locus: 2 │ │ │ │ +0008bbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bbe0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0008bbf0: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ -0008bc00: 6e67 3a20 5151 2020 2020 2020 2020 2020 ng: QQ │ │ │ │ +0008bbe0: 2020 2020 7c0a 7c20 2020 2020 636f 6566 |.| coef │ │ │ │ +0008bbf0: 6669 6369 656e 7420 7269 6e67 3a20 5151 ficient ring: QQ │ │ │ │ +0008bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008bc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bc20: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0008bc20: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0008bc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008bc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008bc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008bc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0008bc70: 0a49 6e20 6164 6469 7469 6f6e 2c20 7468 .In addition, th │ │ │ │ -0008bc80: 6520 666f 7572 2070 6169 7273 2028 6e2c e four pairs (n, │ │ │ │ -0008bc90: 6929 3d28 352c 3129 2c28 382c 3129 2c28 i)=(5,1),(8,1),( │ │ │ │ -0008bca0: 3134 2c31 292c 2832 362c 3129 2063 6f72 14,1),(26,1) cor │ │ │ │ -0008bcb0: 7265 7370 6f6e 6420 746f 2074 6865 0a66 respond to the.f │ │ │ │ -0008bcc0: 6f75 7220 6578 616d 706c 6573 206f 6620 our examples of │ │ │ │ -0008bcd0: 7370 6563 6961 6c20 7175 6164 726f 2d71 special quadro-q │ │ │ │ -0008bce0: 7561 6472 6963 2043 7265 6d6f 6e61 2074 uadric Cremona t │ │ │ │ -0008bcf0: 7261 6e73 666f 726d 6174 696f 6e73 3a0a ransformations:. │ │ │ │ -0008bd00: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ +0008bc60: 2d2d 2d2d 2d2d 2d2d 2b0a 0a49 6e20 6164 --------+..In ad │ │ │ │ +0008bc70: 6469 7469 6f6e 2c20 7468 6520 666f 7572 dition, the four │ │ │ │ +0008bc80: 2070 6169 7273 2028 6e2c 6929 3d28 352c pairs (n,i)=(5, │ │ │ │ +0008bc90: 3129 2c28 382c 3129 2c28 3134 2c31 292c 1),(8,1),(14,1), │ │ │ │ +0008bca0: 2832 362c 3129 2063 6f72 7265 7370 6f6e (26,1) correspon │ │ │ │ +0008bcb0: 6420 746f 2074 6865 0a66 6f75 7220 6578 d to the.four ex │ │ │ │ +0008bcc0: 616d 706c 6573 206f 6620 7370 6563 6961 amples of specia │ │ │ │ +0008bcd0: 6c20 7175 6164 726f 2d71 7561 6472 6963 l quadro-quadric │ │ │ │ +0008bce0: 2043 7265 6d6f 6e61 2074 7261 6e73 666f Cremona transfo │ │ │ │ +0008bcf0: 726d 6174 696f 6e73 3a0a 0a2b 2d2d 2d2d rmations:..+---- │ │ │ │ +0008bd00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008bd10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008bd20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008bd30: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 --------+.|i3 : │ │ │ │ -0008bd40: 6465 7363 7269 6265 2071 7561 6472 6f51 describe quadroQ │ │ │ │ -0008bd50: 7561 6472 6963 4372 656d 6f6e 6154 7261 uadricCremonaTra │ │ │ │ -0008bd60: 6e73 666f 726d 6174 696f 6e28 352c 3129 nsformation(5,1) │ │ │ │ -0008bd70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0008bd30: 2d2d 2b0a 7c69 3320 3a20 6465 7363 7269 --+.|i3 : descri │ │ │ │ +0008bd40: 6265 2071 7561 6472 6f51 7561 6472 6963 be quadroQuadric │ │ │ │ +0008bd50: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ +0008bd60: 6174 696f 6e28 352c 3129 207c 0a7c 2020 ation(5,1) |.| │ │ │ │ +0008bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bda0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ -0008bdb0: 3d20 7261 7469 6f6e 616c 206d 6170 2064 = rational map d │ │ │ │ -0008bdc0: 6566 696e 6564 2062 7920 666f 726d 7320 efined by forms │ │ │ │ -0008bdd0: 6f66 2064 6567 7265 6520 3220 2020 2020 of degree 2 │ │ │ │ -0008bde0: 2020 207c 0a7c 2020 2020 2073 6f75 7263 |.| sourc │ │ │ │ -0008bdf0: 6520 7661 7269 6574 793a 2050 505e 3520 e variety: PP^5 │ │ │ │ +0008bda0: 2020 2020 7c0a 7c6f 3320 3d20 7261 7469 |.|o3 = rati │ │ │ │ +0008bdb0: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ +0008bdc0: 2062 7920 666f 726d 7320 6f66 2064 6567 by forms of deg │ │ │ │ +0008bdd0: 7265 6520 3220 2020 2020 2020 207c 0a7c ree 2 |.| │ │ │ │ +0008bde0: 2020 2020 2073 6f75 7263 6520 7661 7269 source vari │ │ │ │ +0008bdf0: 6574 793a 2050 505e 3520 2020 2020 2020 ety: PP^5 │ │ │ │ 0008be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008be10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008be20: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -0008be30: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ -0008be40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008be50: 2020 2020 207c 0a7c 2020 2020 2064 6f6d |.| dom │ │ │ │ -0008be60: 696e 616e 6365 3a20 7472 7565 2020 2020 inance: true │ │ │ │ +0008be10: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0008be20: 7267 6574 2076 6172 6965 7479 3a20 5050 rget variety: PP │ │ │ │ +0008be30: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ +0008be40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +0008be50: 0a7c 2020 2020 2064 6f6d 696e 616e 6365 .| dominance │ │ │ │ +0008be60: 3a20 7472 7565 2020 2020 2020 2020 2020 : true │ │ │ │ 0008be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008be80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008be90: 7c20 2020 2020 6269 7261 7469 6f6e 616c | birational │ │ │ │ -0008bea0: 6974 793a 2074 7275 6520 2020 2020 2020 ity: true │ │ │ │ +0008be80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008be90: 6269 7261 7469 6f6e 616c 6974 793a 2074 birationality: t │ │ │ │ +0008bea0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ 0008beb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bec0: 2020 2020 2020 207c 0a7c 2020 2020 2070 |.| p │ │ │ │ -0008bed0: 726f 6a65 6374 6976 6520 6465 6772 6565 rojective degree │ │ │ │ -0008bee0: 733a 207b 312c 2032 2c20 342c 2034 2c20 s: {1, 2, 4, 4, │ │ │ │ -0008bef0: 322c 2031 7d20 2020 2020 2020 2020 2020 2, 1} │ │ │ │ -0008bf00: 7c0a 7c20 2020 2020 6e75 6d62 6572 206f |.| number o │ │ │ │ -0008bf10: 6620 6d69 6e69 6d61 6c20 7265 7072 6573 f minimal repres │ │ │ │ -0008bf20: 656e 7461 7469 7665 733a 2031 2020 2020 entatives: 1 │ │ │ │ -0008bf30: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0008bf40: 2064 696d 656e 7369 6f6e 2062 6173 6520 dimension base │ │ │ │ -0008bf50: 6c6f 6375 733a 2032 2020 2020 2020 2020 locus: 2 │ │ │ │ -0008bf60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bf70: 2020 7c0a 7c20 2020 2020 6465 6772 6565 |.| degree │ │ │ │ -0008bf80: 2062 6173 6520 6c6f 6375 733a 2034 2020 base locus: 4 │ │ │ │ +0008bec0: 207c 0a7c 2020 2020 2070 726f 6a65 6374 |.| project │ │ │ │ +0008bed0: 6976 6520 6465 6772 6565 733a 207b 312c ive degrees: {1, │ │ │ │ +0008bee0: 2032 2c20 342c 2034 2c20 322c 2031 7d20 2, 4, 4, 2, 1} │ │ │ │ +0008bef0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0008bf00: 2020 6e75 6d62 6572 206f 6620 6d69 6e69 number of mini │ │ │ │ +0008bf10: 6d61 6c20 7265 7072 6573 656e 7461 7469 mal representati │ │ │ │ +0008bf20: 7665 733a 2031 2020 2020 2020 2020 2020 ves: 1 │ │ │ │ +0008bf30: 2020 207c 0a7c 2020 2020 2064 696d 656e |.| dimen │ │ │ │ +0008bf40: 7369 6f6e 2062 6173 6520 6c6f 6375 733a sion base locus: │ │ │ │ +0008bf50: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0008bf60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008bf70: 2020 2020 6465 6772 6565 2062 6173 6520 degree base │ │ │ │ +0008bf80: 6c6f 6375 733a 2034 2020 2020 2020 2020 locus: 4 │ │ │ │ 0008bf90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bfa0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0008bfb0: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -0008bfc0: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ -0008bfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008bfe0: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +0008bfa0: 2020 2020 207c 0a7c 2020 2020 2063 6f65 |.| coe │ │ │ │ +0008bfb0: 6666 6963 6965 6e74 2072 696e 673a 2051 fficient ring: Q │ │ │ │ +0008bfc0: 5120 2020 2020 2020 2020 2020 2020 2020 Q │ │ │ │ +0008bfd0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008bfe0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0008bff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008c000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c -------------+.| │ │ │ │ -0008c020: 6934 203a 2064 6573 6372 6962 6520 7175 i4 : describe qu │ │ │ │ -0008c030: 6164 726f 5175 6164 7269 6343 7265 6d6f adroQuadricCremo │ │ │ │ -0008c040: 6e61 5472 616e 7366 6f72 6d61 7469 6f6e naTransformation │ │ │ │ -0008c050: 2838 2c31 2920 7c0a 7c20 2020 2020 2020 (8,1) |.| │ │ │ │ +0008c010: 2d2d 2d2d 2d2d 2d2b 0a7c 6934 203a 2064 -------+.|i4 : d │ │ │ │ +0008c020: 6573 6372 6962 6520 7175 6164 726f 5175 escribe quadroQu │ │ │ │ +0008c030: 6164 7269 6343 7265 6d6f 6e61 5472 616e adricCremonaTran │ │ │ │ +0008c040: 7366 6f72 6d61 7469 6f6e 2838 2c31 2920 sformation(8,1) │ │ │ │ +0008c050: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 0008c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008c070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0008c090: 0a7c 6f34 203d 2072 6174 696f 6e61 6c20 .|o4 = rational │ │ │ │ -0008c0a0: 6d61 7020 6465 6669 6e65 6420 6279 2066 map defined by f │ │ │ │ -0008c0b0: 6f72 6d73 206f 6620 6465 6772 6565 2032 orms of degree 2 │ │ │ │ -0008c0c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0008c0d0: 736f 7572 6365 2076 6172 6965 7479 3a20 source variety: │ │ │ │ -0008c0e0: 5050 5e38 2020 2020 2020 2020 2020 2020 PP^8 │ │ │ │ -0008c0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c100: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ -0008c110: 7661 7269 6574 793a 2050 505e 3820 2020 variety: PP^8 │ │ │ │ +0008c080: 2020 2020 2020 2020 207c 0a7c 6f34 203d |.|o4 = │ │ │ │ +0008c090: 2072 6174 696f 6e61 6c20 6d61 7020 6465 rational map de │ │ │ │ +0008c0a0: 6669 6e65 6420 6279 2066 6f72 6d73 206f fined by forms o │ │ │ │ +0008c0b0: 6620 6465 6772 6565 2032 2020 2020 2020 f degree 2 │ │ │ │ +0008c0c0: 2020 7c0a 7c20 2020 2020 736f 7572 6365 |.| source │ │ │ │ +0008c0d0: 2076 6172 6965 7479 3a20 5050 5e38 2020 variety: PP^8 │ │ │ │ +0008c0e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c0f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0008c100: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +0008c110: 793a 2050 505e 3820 2020 2020 2020 2020 y: PP^8 │ │ │ │ 0008c120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c130: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0008c140: 2020 646f 6d69 6e61 6e63 653a 2074 7275 dominance: tru │ │ │ │ -0008c150: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ -0008c160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c170: 2020 207c 0a7c 2020 2020 2062 6972 6174 |.| birat │ │ │ │ -0008c180: 696f 6e61 6c69 7479 3a20 7472 7565 2020 ionality: true │ │ │ │ +0008c130: 2020 2020 7c0a 7c20 2020 2020 646f 6d69 |.| domi │ │ │ │ +0008c140: 6e61 6e63 653a 2074 7275 6520 2020 2020 nance: true │ │ │ │ +0008c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c160: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008c170: 2020 2020 2062 6972 6174 696f 6e61 6c69 birationali │ │ │ │ +0008c180: 7479 3a20 7472 7565 2020 2020 2020 2020 ty: true │ │ │ │ 0008c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c1a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008c1b0: 2020 2020 6e75 6d62 6572 206f 6620 6d69 number of mi │ │ │ │ -0008c1c0: 6e69 6d61 6c20 7265 7072 6573 656e 7461 nimal representa │ │ │ │ -0008c1d0: 7469 7665 733a 2031 2020 2020 2020 2020 tives: 1 │ │ │ │ -0008c1e0: 2020 2020 207c 0a7c 2020 2020 2064 696d |.| dim │ │ │ │ -0008c1f0: 656e 7369 6f6e 2062 6173 6520 6c6f 6375 ension base locu │ │ │ │ -0008c200: 733a 2034 2020 2020 2020 2020 2020 2020 s: 4 │ │ │ │ -0008c210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0008c220: 7c20 2020 2020 6465 6772 6565 2062 6173 | degree bas │ │ │ │ -0008c230: 6520 6c6f 6375 733a 2036 2020 2020 2020 e locus: 6 │ │ │ │ +0008c1a0: 2020 2020 2020 7c0a 7c20 2020 2020 6e75 |.| nu │ │ │ │ +0008c1b0: 6d62 6572 206f 6620 6d69 6e69 6d61 6c20 mber of minimal │ │ │ │ +0008c1c0: 7265 7072 6573 656e 7461 7469 7665 733a representatives: │ │ │ │ +0008c1d0: 2031 2020 2020 2020 2020 2020 2020 207c 1 | │ │ │ │ +0008c1e0: 0a7c 2020 2020 2064 696d 656e 7369 6f6e .| dimension │ │ │ │ +0008c1f0: 2062 6173 6520 6c6f 6375 733a 2034 2020 base locus: 4 │ │ │ │ +0008c200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0008c220: 6465 6772 6565 2062 6173 6520 6c6f 6375 degree base locu │ │ │ │ +0008c230: 733a 2036 2020 2020 2020 2020 2020 2020 s: 6 │ │ │ │ 0008c240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c250: 2020 2020 2020 207c 0a7c 2020 2020 2063 |.| c │ │ │ │ -0008c260: 6f65 6666 6963 6965 6e74 2072 696e 673a oefficient ring: │ │ │ │ -0008c270: 2051 5120 2020 2020 2020 2020 2020 2020 QQ │ │ │ │ -0008c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c290: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0008c250: 207c 0a7c 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ +0008c260: 6965 6e74 2072 696e 673a 2051 5120 2020 ient ring: QQ │ │ │ │ +0008c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c280: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0008c290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008c2a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008c2b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c2c0: 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 203a ---------+.|i5 : │ │ │ │ -0008c2d0: 2064 6573 6372 6962 6520 7175 6164 726f describe quadro │ │ │ │ -0008c2e0: 5175 6164 7269 6343 7265 6d6f 6e61 5472 QuadricCremonaTr │ │ │ │ -0008c2f0: 616e 7366 6f72 6d61 7469 6f6e 2831 342c ansformation(14, │ │ │ │ -0008c300: 3129 7c0a 7c20 2020 2020 2020 2020 2020 1)|.| │ │ │ │ +0008c2c0: 2d2d 2d2b 0a7c 6935 203a 2064 6573 6372 ---+.|i5 : descr │ │ │ │ +0008c2d0: 6962 6520 7175 6164 726f 5175 6164 7269 ibe quadroQuadri │ │ │ │ +0008c2e0: 6343 7265 6d6f 6e61 5472 616e 7366 6f72 cCremonaTransfor │ │ │ │ +0008c2f0: 6d61 7469 6f6e 2831 342c 3129 7c0a 7c20 mation(14,1)|.| │ │ │ │ +0008c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c330: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ -0008c340: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ -0008c350: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ -0008c360: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ -0008c370: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ -0008c380: 6365 2076 6172 6965 7479 3a20 5050 5e31 ce variety: PP^1 │ │ │ │ -0008c390: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0008c3a0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0008c3b0: 2020 2020 2074 6172 6765 7420 7661 7269 target vari │ │ │ │ -0008c3c0: 6574 793a 2050 505e 3134 2020 2020 2020 ety: PP^14 │ │ │ │ +0008c330: 2020 2020 207c 0a7c 6f35 203d 2072 6174 |.|o5 = rat │ │ │ │ +0008c340: 696f 6e61 6c20 6d61 7020 6465 6669 6e65 ional map define │ │ │ │ +0008c350: 6420 6279 2066 6f72 6d73 206f 6620 6465 d by forms of de │ │ │ │ +0008c360: 6772 6565 2032 2020 2020 2020 2020 7c0a gree 2 |. │ │ │ │ +0008c370: 7c20 2020 2020 736f 7572 6365 2076 6172 | source var │ │ │ │ +0008c380: 6965 7479 3a20 5050 5e31 3420 2020 2020 iety: PP^14 │ │ │ │ +0008c390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c3a0: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ +0008c3b0: 6172 6765 7420 7661 7269 6574 793a 2050 arget variety: P │ │ │ │ +0008c3c0: 505e 3134 2020 2020 2020 2020 2020 2020 P^14 │ │ │ │ 0008c3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c3e0: 2020 2020 2020 7c0a 7c20 2020 2020 646f |.| do │ │ │ │ -0008c3f0: 6d69 6e61 6e63 653a 2074 7275 6520 2020 minance: true │ │ │ │ +0008c3e0: 7c0a 7c20 2020 2020 646f 6d69 6e61 6e63 |.| dominanc │ │ │ │ +0008c3f0: 653a 2074 7275 6520 2020 2020 2020 2020 e: true │ │ │ │ 0008c400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c410: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0008c420: 0a7c 2020 2020 2062 6972 6174 696f 6e61 .| birationa │ │ │ │ -0008c430: 6c69 7479 3a20 7472 7565 2020 2020 2020 lity: true │ │ │ │ +0008c410: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0008c420: 2062 6972 6174 696f 6e61 6c69 7479 3a20 birationality: │ │ │ │ +0008c430: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ 0008c440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c450: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -0008c460: 6e75 6d62 6572 206f 6620 6d69 6e69 6d61 number of minima │ │ │ │ -0008c470: 6c20 7265 7072 6573 656e 7461 7469 7665 l representative │ │ │ │ -0008c480: 733a 2031 2020 2020 2020 2020 2020 2020 s: 1 │ │ │ │ -0008c490: 207c 0a7c 2020 2020 2064 696d 656e 7369 |.| dimensi │ │ │ │ -0008c4a0: 6f6e 2062 6173 6520 6c6f 6375 733a 2038 on base locus: 8 │ │ │ │ +0008c450: 2020 7c0a 7c20 2020 2020 6e75 6d62 6572 |.| number │ │ │ │ +0008c460: 206f 6620 6d69 6e69 6d61 6c20 7265 7072 of minimal repr │ │ │ │ +0008c470: 6573 656e 7461 7469 7665 733a 2031 2020 esentatives: 1 │ │ │ │ +0008c480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +0008c490: 2020 2064 696d 656e 7369 6f6e 2062 6173 dimension bas │ │ │ │ +0008c4a0: 6520 6c6f 6375 733a 2038 2020 2020 2020 e locus: 8 │ │ │ │ 0008c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c4c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -0008c4d0: 2020 6465 6772 6565 2062 6173 6520 6c6f degree base lo │ │ │ │ -0008c4e0: 6375 733a 2031 3420 2020 2020 2020 2020 cus: 14 │ │ │ │ -0008c4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c500: 2020 207c 0a7c 2020 2020 2063 6f65 6666 |.| coeff │ │ │ │ -0008c510: 6963 6965 6e74 2072 696e 673a 2051 5120 icient ring: QQ │ │ │ │ +0008c4c0: 2020 2020 7c0a 7c20 2020 2020 6465 6772 |.| degr │ │ │ │ +0008c4d0: 6565 2062 6173 6520 6c6f 6375 733a 2031 ee base locus: 1 │ │ │ │ +0008c4e0: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +0008c4f0: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ +0008c500: 2020 2020 2063 6f65 6666 6963 6965 6e74 coefficient │ │ │ │ +0008c510: 2072 696e 673a 2051 5120 2020 2020 2020 ring: QQ │ │ │ │ 0008c520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c530: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0008c530: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0008c540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008c550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c570: 2d2d 2d2d 2d2b 0a7c 6936 203a 2064 6573 -----+.|i6 : des │ │ │ │ -0008c580: 6372 6962 6520 7175 6164 726f 5175 6164 cribe quadroQuad │ │ │ │ -0008c590: 7269 6343 7265 6d6f 6e61 5472 616e 7366 ricCremonaTransf │ │ │ │ -0008c5a0: 6f72 6d61 7469 6f6e 2832 362c 3129 7c0a ormation(26,1)|. │ │ │ │ -0008c5b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008c560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +0008c570: 0a7c 6936 203a 2064 6573 6372 6962 6520 .|i6 : describe │ │ │ │ +0008c580: 7175 6164 726f 5175 6164 7269 6343 7265 quadroQuadricCre │ │ │ │ +0008c590: 6d6f 6e61 5472 616e 7366 6f72 6d61 7469 monaTransformati │ │ │ │ +0008c5a0: 6f6e 2832 362c 3129 7c0a 7c20 2020 2020 on(26,1)|.| │ │ │ │ +0008c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008c5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c5e0: 2020 2020 2020 207c 0a7c 6f36 203d 2072 |.|o6 = r │ │ │ │ -0008c5f0: 6174 696f 6e61 6c20 6d61 7020 6465 6669 ational map defi │ │ │ │ -0008c600: 6e65 6420 6279 2066 6f72 6d73 206f 6620 ned by forms of │ │ │ │ -0008c610: 6465 6772 6565 2032 2020 2020 2020 2020 degree 2 │ │ │ │ -0008c620: 7c0a 7c20 2020 2020 736f 7572 6365 2076 |.| source v │ │ │ │ -0008c630: 6172 6965 7479 3a20 5050 5e32 3620 2020 ariety: PP^26 │ │ │ │ +0008c5e0: 207c 0a7c 6f36 203d 2072 6174 696f 6e61 |.|o6 = rationa │ │ │ │ +0008c5f0: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ +0008c600: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ +0008c610: 2032 2020 2020 2020 2020 7c0a 7c20 2020 2 |.| │ │ │ │ +0008c620: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ +0008c630: 3a20 5050 5e32 3620 2020 2020 2020 2020 : PP^26 │ │ │ │ 0008c640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c650: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ -0008c660: 2074 6172 6765 7420 7661 7269 6574 793a target variety: │ │ │ │ -0008c670: 2050 505e 3236 2020 2020 2020 2020 2020 PP^26 │ │ │ │ -0008c680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c690: 2020 7c0a 7c20 2020 2020 646f 6d69 6e61 |.| domina │ │ │ │ -0008c6a0: 6e63 653a 2074 7275 6520 2020 2020 2020 nce: true │ │ │ │ +0008c650: 2020 207c 0a7c 2020 2020 2074 6172 6765 |.| targe │ │ │ │ +0008c660: 7420 7661 7269 6574 793a 2050 505e 3236 t variety: PP^26 │ │ │ │ +0008c670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c680: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008c690: 2020 2020 646f 6d69 6e61 6e63 653a 2074 dominance: t │ │ │ │ +0008c6a0: 7275 6520 2020 2020 2020 2020 2020 2020 rue │ │ │ │ 0008c6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c6c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ -0008c6d0: 2020 2062 6972 6174 696f 6e61 6c69 7479 birationality │ │ │ │ -0008c6e0: 3a20 7472 7565 2020 2020 2020 2020 2020 : true │ │ │ │ -0008c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c700: 2020 2020 7c0a 7c20 2020 2020 6e75 6d62 |.| numb │ │ │ │ -0008c710: 6572 206f 6620 6d69 6e69 6d61 6c20 7265 er of minimal re │ │ │ │ -0008c720: 7072 6573 656e 7461 7469 7665 733a 2031 presentatives: 1 │ │ │ │ -0008c730: 2020 2020 2020 2020 2020 2020 207c 0a7c |.| │ │ │ │ -0008c740: 2020 2020 2064 696d 656e 7369 6f6e 2062 dimension b │ │ │ │ -0008c750: 6173 6520 6c6f 6375 733a 2031 3620 2020 ase locus: 16 │ │ │ │ +0008c6c0: 2020 2020 207c 0a7c 2020 2020 2062 6972 |.| bir │ │ │ │ +0008c6d0: 6174 696f 6e61 6c69 7479 3a20 7472 7565 ationality: true │ │ │ │ +0008c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c6f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008c700: 7c20 2020 2020 6e75 6d62 6572 206f 6620 | number of │ │ │ │ +0008c710: 6d69 6e69 6d61 6c20 7265 7072 6573 656e minimal represen │ │ │ │ +0008c720: 7461 7469 7665 733a 2031 2020 2020 2020 tatives: 1 │ │ │ │ +0008c730: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ +0008c740: 696d 656e 7369 6f6e 2062 6173 6520 6c6f imension base lo │ │ │ │ +0008c750: 6375 733a 2031 3620 2020 2020 2020 2020 cus: 16 │ │ │ │ 0008c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c770: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ -0008c780: 6772 6565 2062 6173 6520 6c6f 6375 733a gree base locus: │ │ │ │ -0008c790: 2037 3820 2020 2020 2020 2020 2020 2020 78 │ │ │ │ -0008c7a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ -0008c7b0: 0a7c 2020 2020 2063 6f65 6666 6963 6965 .| coefficie │ │ │ │ -0008c7c0: 6e74 2072 696e 673a 2051 5120 2020 2020 nt ring: QQ │ │ │ │ +0008c770: 7c0a 7c20 2020 2020 6465 6772 6565 2062 |.| degree b │ │ │ │ +0008c780: 6173 6520 6c6f 6375 733a 2037 3820 2020 ase locus: 78 │ │ │ │ +0008c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008c7a0: 2020 2020 2020 2020 207c 0a7c 2020 2020 |.| │ │ │ │ +0008c7b0: 2063 6f65 6666 6963 6965 6e74 2072 696e coefficient rin │ │ │ │ +0008c7c0: 673a 2051 5120 2020 2020 2020 2020 2020 g: QQ │ │ │ │ 0008c7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008c7e0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0008c7e0: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ 0008c7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008c800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008c820: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -0008c830: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -0008c840: 2073 7065 6369 616c 4372 656d 6f6e 6154 specialCremonaT │ │ │ │ -0008c850: 7261 6e73 666f 726d 6174 696f 6e3a 2073 ransformation: s │ │ │ │ -0008c860: 7065 6369 616c 4372 656d 6f6e 6154 7261 pecialCremonaTra │ │ │ │ -0008c870: 6e73 666f 726d 6174 696f 6e2c 202d 2d0a nsformation, --. │ │ │ │ -0008c880: 2020 2020 7370 6563 6961 6c20 4372 656d special Crem │ │ │ │ -0008c890: 6f6e 6120 7472 616e 7366 6f72 6d61 7469 ona transformati │ │ │ │ -0008c8a0: 6f6e 7320 7768 6f73 6520 6261 7365 206c ons whose base l │ │ │ │ -0008c8b0: 6f63 7573 2068 6173 2064 696d 656e 7369 ocus has dimensi │ │ │ │ -0008c8c0: 6f6e 2061 7420 6d6f 7374 0a20 2020 2074 on at most. t │ │ │ │ -0008c8d0: 6872 6565 0a20 202a 202a 6e6f 7465 2073 hree. * *note s │ │ │ │ -0008c8e0: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ -0008c8f0: 7261 6e73 666f 726d 6174 696f 6e3a 2073 ransformation: s │ │ │ │ -0008c900: 7065 6369 616c 5175 6164 7261 7469 6354 pecialQuadraticT │ │ │ │ -0008c910: 7261 6e73 666f 726d 6174 696f 6e2c 202d ransformation, - │ │ │ │ -0008c920: 2d0a 2020 2020 7370 6563 6961 6c20 7175 -. special qu │ │ │ │ -0008c930: 6164 7261 7469 6320 7472 616e 7366 6f72 adratic transfor │ │ │ │ -0008c940: 6d61 7469 6f6e 7320 7768 6f73 6520 6261 mations whose ba │ │ │ │ -0008c950: 7365 206c 6f63 7573 2068 6173 2064 696d se locus has dim │ │ │ │ -0008c960: 656e 7369 6f6e 2074 6872 6565 0a20 202a ension three. * │ │ │ │ -0008c970: 202a 6e6f 7465 2073 7065 6369 616c 4375 *note specialCu │ │ │ │ -0008c980: 6269 6354 7261 6e73 666f 726d 6174 696f bicTransformatio │ │ │ │ -0008c990: 6e3a 2073 7065 6369 616c 4375 6269 6354 n: specialCubicT │ │ │ │ -0008c9a0: 7261 6e73 666f 726d 6174 696f 6e2c 202d ransformation, - │ │ │ │ -0008c9b0: 2d20 7370 6563 6961 6c0a 2020 2020 6375 - special. cu │ │ │ │ -0008c9c0: 6269 6320 7472 616e 7366 6f72 6d61 7469 bic transformati │ │ │ │ -0008c9d0: 6f6e 7320 7768 6f73 6520 6261 7365 206c ons whose base l │ │ │ │ -0008c9e0: 6f63 7573 2068 6173 2064 696d 656e 7369 ocus has dimensi │ │ │ │ -0008c9f0: 6f6e 2061 7420 6d6f 7374 2074 6872 6565 on at most three │ │ │ │ -0008ca00: 0a0a 5761 7973 2074 6f20 7573 6520 7175 ..Ways to use qu │ │ │ │ -0008ca10: 6164 726f 5175 6164 7269 6343 7265 6d6f adroQuadricCremo │ │ │ │ -0008ca20: 6e61 5472 616e 7366 6f72 6d61 7469 6f6e naTransformation │ │ │ │ -0008ca30: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0008c810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +0008c820: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +0008c830: 0a20 202a 202a 6e6f 7465 2073 7065 6369 . * *note speci │ │ │ │ +0008c840: 616c 4372 656d 6f6e 6154 7261 6e73 666f alCremonaTransfo │ │ │ │ +0008c850: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ +0008c860: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ +0008c870: 6174 696f 6e2c 202d 2d0a 2020 2020 7370 ation, --. sp │ │ │ │ +0008c880: 6563 6961 6c20 4372 656d 6f6e 6120 7472 ecial Cremona tr │ │ │ │ +0008c890: 616e 7366 6f72 6d61 7469 6f6e 7320 7768 ansformations wh │ │ │ │ +0008c8a0: 6f73 6520 6261 7365 206c 6f63 7573 2068 ose base locus h │ │ │ │ +0008c8b0: 6173 2064 696d 656e 7369 6f6e 2061 7420 as dimension at │ │ │ │ +0008c8c0: 6d6f 7374 0a20 2020 2074 6872 6565 0a20 most. three. │ │ │ │ +0008c8d0: 202a 202a 6e6f 7465 2073 7065 6369 616c * *note special │ │ │ │ +0008c8e0: 5175 6164 7261 7469 6354 7261 6e73 666f QuadraticTransfo │ │ │ │ +0008c8f0: 726d 6174 696f 6e3a 2073 7065 6369 616c rmation: special │ │ │ │ +0008c900: 5175 6164 7261 7469 6354 7261 6e73 666f QuadraticTransfo │ │ │ │ +0008c910: 726d 6174 696f 6e2c 202d 2d0a 2020 2020 rmation, --. │ │ │ │ +0008c920: 7370 6563 6961 6c20 7175 6164 7261 7469 special quadrati │ │ │ │ +0008c930: 6320 7472 616e 7366 6f72 6d61 7469 6f6e c transformation │ │ │ │ +0008c940: 7320 7768 6f73 6520 6261 7365 206c 6f63 s whose base loc │ │ │ │ +0008c950: 7573 2068 6173 2064 696d 656e 7369 6f6e us has dimension │ │ │ │ +0008c960: 2074 6872 6565 0a20 202a 202a 6e6f 7465 three. * *note │ │ │ │ +0008c970: 2073 7065 6369 616c 4375 6269 6354 7261 specialCubicTra │ │ │ │ +0008c980: 6e73 666f 726d 6174 696f 6e3a 2073 7065 nsformation: spe │ │ │ │ +0008c990: 6369 616c 4375 6269 6354 7261 6e73 666f cialCubicTransfo │ │ │ │ +0008c9a0: 726d 6174 696f 6e2c 202d 2d20 7370 6563 rmation, -- spec │ │ │ │ +0008c9b0: 6961 6c0a 2020 2020 6375 6269 6320 7472 ial. cubic tr │ │ │ │ +0008c9c0: 616e 7366 6f72 6d61 7469 6f6e 7320 7768 ansformations wh │ │ │ │ +0008c9d0: 6f73 6520 6261 7365 206c 6f63 7573 2068 ose base locus h │ │ │ │ +0008c9e0: 6173 2064 696d 656e 7369 6f6e 2061 7420 as dimension at │ │ │ │ +0008c9f0: 6d6f 7374 2074 6872 6565 0a0a 5761 7973 most three..Ways │ │ │ │ +0008ca00: 2074 6f20 7573 6520 7175 6164 726f 5175 to use quadroQu │ │ │ │ +0008ca10: 6164 7269 6343 7265 6d6f 6e61 5472 616e adricCremonaTran │ │ │ │ +0008ca20: 7366 6f72 6d61 7469 6f6e 3a0a 3d3d 3d3d sformation:.==== │ │ │ │ +0008ca30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0008ca40: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008ca50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008ca60: 3d0a 0a20 202a 2022 7175 6164 726f 5175 =.. * "quadroQu │ │ │ │ -0008ca70: 6164 7269 6343 7265 6d6f 6e61 5472 616e adricCremonaTran │ │ │ │ -0008ca80: 7366 6f72 6d61 7469 6f6e 2852 696e 672c sformation(Ring, │ │ │ │ -0008ca90: 5a5a 2c5a 5a29 220a 2020 2a20 2271 7561 ZZ,ZZ)". * "qua │ │ │ │ -0008caa0: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ -0008cab0: 6154 7261 6e73 666f 726d 6174 696f 6e28 aTransformation( │ │ │ │ -0008cac0: 5a5a 2c5a 5a29 220a 2020 2a20 2271 7561 ZZ,ZZ)". * "qua │ │ │ │ -0008cad0: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ -0008cae0: 6154 7261 6e73 666f 726d 6174 696f 6e28 aTransformation( │ │ │ │ -0008caf0: 5a5a 2c5a 5a2c 5269 6e67 2922 0a0a 466f ZZ,ZZ,Ring)"..Fo │ │ │ │ -0008cb00: 7220 7468 6520 7072 6f67 7261 6d6d 6572 r the programmer │ │ │ │ -0008cb10: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0008cb20: 3d3d 3d0a 0a54 6865 206f 626a 6563 7420 ===..The object │ │ │ │ -0008cb30: 2a6e 6f74 6520 7175 6164 726f 5175 6164 *note quadroQuad │ │ │ │ -0008cb40: 7269 6343 7265 6d6f 6e61 5472 616e 7366 ricCremonaTransf │ │ │ │ -0008cb50: 6f72 6d61 7469 6f6e 3a0a 7175 6164 726f ormation:.quadro │ │ │ │ -0008cb60: 5175 6164 7269 6343 7265 6d6f 6e61 5472 QuadricCremonaTr │ │ │ │ -0008cb70: 616e 7366 6f72 6d61 7469 6f6e 2c20 6973 ansformation, is │ │ │ │ -0008cb80: 2061 202a 6e6f 7465 206d 6574 686f 6420 a *note method │ │ │ │ -0008cb90: 6675 6e63 7469 6f6e 3a0a 284d 6163 6175 function:.(Macau │ │ │ │ -0008cba0: 6c61 7932 446f 6329 4d65 7468 6f64 4675 lay2Doc)MethodFu │ │ │ │ -0008cbb0: 6e63 7469 6f6e 2c2e 0a0a 2d2d 2d2d 2d2d nction,...------ │ │ │ │ +0008ca50: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ +0008ca60: 2022 7175 6164 726f 5175 6164 7269 6343 "quadroQuadricC │ │ │ │ +0008ca70: 7265 6d6f 6e61 5472 616e 7366 6f72 6d61 remonaTransforma │ │ │ │ +0008ca80: 7469 6f6e 2852 696e 672c 5a5a 2c5a 5a29 tion(Ring,ZZ,ZZ) │ │ │ │ +0008ca90: 220a 2020 2a20 2271 7561 6472 6f51 7561 ". * "quadroQua │ │ │ │ +0008caa0: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ +0008cab0: 666f 726d 6174 696f 6e28 5a5a 2c5a 5a29 formation(ZZ,ZZ) │ │ │ │ +0008cac0: 220a 2020 2a20 2271 7561 6472 6f51 7561 ". * "quadroQua │ │ │ │ +0008cad0: 6472 6963 4372 656d 6f6e 6154 7261 6e73 dricCremonaTrans │ │ │ │ +0008cae0: 666f 726d 6174 696f 6e28 5a5a 2c5a 5a2c formation(ZZ,ZZ, │ │ │ │ +0008caf0: 5269 6e67 2922 0a0a 466f 7220 7468 6520 Ring)"..For the │ │ │ │ +0008cb00: 7072 6f67 7261 6d6d 6572 0a3d 3d3d 3d3d programmer.===== │ │ │ │ +0008cb10: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 =============..T │ │ │ │ +0008cb20: 6865 206f 626a 6563 7420 2a6e 6f74 6520 he object *note │ │ │ │ +0008cb30: 7175 6164 726f 5175 6164 7269 6343 7265 quadroQuadricCre │ │ │ │ +0008cb40: 6d6f 6e61 5472 616e 7366 6f72 6d61 7469 monaTransformati │ │ │ │ +0008cb50: 6f6e 3a0a 7175 6164 726f 5175 6164 7269 on:.quadroQuadri │ │ │ │ +0008cb60: 6343 7265 6d6f 6e61 5472 616e 7366 6f72 cCremonaTransfor │ │ │ │ +0008cb70: 6d61 7469 6f6e 2c20 6973 2061 202a 6e6f mation, is a *no │ │ │ │ +0008cb80: 7465 206d 6574 686f 6420 6675 6e63 7469 te method functi │ │ │ │ +0008cb90: 6f6e 3a0a 284d 6163 6175 6c61 7932 446f on:.(Macaulay2Do │ │ │ │ +0008cba0: 6329 4d65 7468 6f64 4675 6e63 7469 6f6e c)MethodFunction │ │ │ │ +0008cbb0: 2c2e 0a0a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ,...------------ │ │ │ │ 0008cbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008cbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008cbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008cbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008cc00: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -0008cc10: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -0008cc20: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -0008cc30: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -0008cc40: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -0008cc50: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -0008cc60: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -0008cc70: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ -0008cc80: 6e74 6174 696f 6e2e 6d32 3a39 3139 3a30 ntation.m2:919:0 │ │ │ │ -0008cc90: 2e0a 1f0a 4669 6c65 3a20 4372 656d 6f6e ....File: Cremon │ │ │ │ -0008cca0: 612e 696e 666f 2c20 4e6f 6465 3a20 5261 a.info, Node: Ra │ │ │ │ -0008ccb0: 7469 6f6e 616c 4d61 702c 204e 6578 743a tionalMap, Next: │ │ │ │ -0008ccc0: 2072 6174 696f 6e61 6c4d 6170 2c20 5072 rationalMap, Pr │ │ │ │ -0008ccd0: 6576 3a20 7175 6164 726f 5175 6164 7269 ev: quadroQuadri │ │ │ │ -0008cce0: 6343 7265 6d6f 6e61 5472 616e 7366 6f72 cCremonaTransfor │ │ │ │ -0008ccf0: 6d61 7469 6f6e 2c20 5570 3a20 546f 700a mation, Up: Top. │ │ │ │ -0008cd00: 0a52 6174 696f 6e61 6c4d 6170 202d 2d20 .RationalMap -- │ │ │ │ -0008cd10: 7468 6520 636c 6173 7320 6f66 2061 6c6c the class of all │ │ │ │ -0008cd20: 2072 6174 696f 6e61 6c20 6d61 7073 2062 rational maps b │ │ │ │ -0008cd30: 6574 7765 656e 2061 6273 6f6c 7574 656c etween absolutel │ │ │ │ -0008cd40: 7920 6972 7265 6475 6369 626c 6520 7072 y irreducible pr │ │ │ │ -0008cd50: 6f6a 6563 7469 7665 2076 6172 6965 7469 ojective varieti │ │ │ │ -0008cd60: 6573 206f 7665 7220 6120 6669 656c 640a es over a field. │ │ │ │ +0008cc00: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +0008cc10: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +0008cc20: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +0008cc30: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +0008cc40: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +0008cc50: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +0008cc60: 322f 7061 636b 6167 6573 2f43 7265 6d6f 2/packages/Cremo │ │ │ │ +0008cc70: 6e61 2f0a 646f 6375 6d65 6e74 6174 696f na/.documentatio │ │ │ │ +0008cc80: 6e2e 6d32 3a39 3139 3a30 2e0a 1f0a 4669 n.m2:919:0....Fi │ │ │ │ +0008cc90: 6c65 3a20 4372 656d 6f6e 612e 696e 666f le: Cremona.info │ │ │ │ +0008cca0: 2c20 4e6f 6465 3a20 5261 7469 6f6e 616c , Node: Rational │ │ │ │ +0008ccb0: 4d61 702c 204e 6578 743a 2072 6174 696f Map, Next: ratio │ │ │ │ +0008ccc0: 6e61 6c4d 6170 2c20 5072 6576 3a20 7175 nalMap, Prev: qu │ │ │ │ +0008ccd0: 6164 726f 5175 6164 7269 6343 7265 6d6f adroQuadricCremo │ │ │ │ +0008cce0: 6e61 5472 616e 7366 6f72 6d61 7469 6f6e naTransformation │ │ │ │ +0008ccf0: 2c20 5570 3a20 546f 700a 0a52 6174 696f , Up: Top..Ratio │ │ │ │ +0008cd00: 6e61 6c4d 6170 202d 2d20 7468 6520 636c nalMap -- the cl │ │ │ │ +0008cd10: 6173 7320 6f66 2061 6c6c 2072 6174 696f ass of all ratio │ │ │ │ +0008cd20: 6e61 6c20 6d61 7073 2062 6574 7765 656e nal maps between │ │ │ │ +0008cd30: 2061 6273 6f6c 7574 656c 7920 6972 7265 absolutely irre │ │ │ │ +0008cd40: 6475 6369 626c 6520 7072 6f6a 6563 7469 ducible projecti │ │ │ │ +0008cd50: 7665 2076 6172 6965 7469 6573 206f 7665 ve varieties ove │ │ │ │ +0008cd60: 7220 6120 6669 656c 640a 2a2a 2a2a 2a2a r a field.****** │ │ │ │ 0008cd70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008cd80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008cd90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008cda0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008cdb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008cdc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0008cdd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0008cde0: 4465 7363 7269 7074 696f 6e0a 3d3d 3d3d Description.==== │ │ │ │ -0008cdf0: 3d3d 3d3d 3d3d 3d0a 0a41 6e20 6f62 6a65 =======..An obje │ │ │ │ -0008ce00: 6374 206f 6620 7468 6520 636c 6173 7320 ct of the class │ │ │ │ -0008ce10: 5261 7469 6f6e 616c 4d61 7020 6361 6e20 RationalMap can │ │ │ │ -0008ce20: 6265 2062 6173 6963 616c 6c79 2072 6570 be basically rep │ │ │ │ -0008ce30: 6c61 6365 6420 6279 2061 2068 6f6d 6f67 laced by a homog │ │ │ │ -0008ce40: 656e 656f 7573 0a72 696e 6720 6d61 7020 eneous.ring map │ │ │ │ -0008ce50: 6f66 2071 756f 7469 656e 7473 206f 6620 of quotients of │ │ │ │ -0008ce60: 706f 6c79 6e6f 6d69 616c 2072 696e 6773 polynomial rings │ │ │ │ -0008ce70: 2062 7920 686f 6d6f 6765 6e65 6f75 7320 by homogeneous │ │ │ │ -0008ce80: 6964 6561 6c73 2e20 4f6e 6520 6d61 696e ideals. One main │ │ │ │ -0008ce90: 0a61 6476 616e 7461 6765 2074 6f20 7573 .advantage to us │ │ │ │ -0008cea0: 696e 6720 7468 6973 2063 6c61 7373 2069 ing this class i │ │ │ │ -0008ceb0: 7320 7468 6174 2074 6869 6e67 7320 636f s that things co │ │ │ │ -0008cec0: 6d70 7574 6564 2075 7369 6e67 206e 6f6e mputed using non │ │ │ │ -0008ced0: 2d70 726f 6261 6269 6c69 7374 6963 0a61 -probabilistic.a │ │ │ │ -0008cee0: 6c67 6f72 6974 686d 7320 6172 6520 7374 lgorithms are st │ │ │ │ -0008cef0: 6f72 6564 2069 6e74 6572 6e61 6c6c 7920 ored internally │ │ │ │ -0008cf00: 286f 7220 7061 7274 6961 6c6c 7920 7374 (or partially st │ │ │ │ -0008cf10: 6f72 6564 292e 0a0a 5468 6520 636f 6e73 ored)...The cons │ │ │ │ -0008cf20: 7472 7563 746f 7220 666f 7220 7468 6520 tructor for the │ │ │ │ -0008cf30: 636c 6173 7320 6973 202a 6e6f 7465 2072 class is *note r │ │ │ │ -0008cf40: 6174 696f 6e61 6c4d 6170 3a20 7261 7469 ationalMap: rati │ │ │ │ -0008cf50: 6f6e 616c 4d61 702c 2c20 7768 6963 6820 onalMap,, which │ │ │ │ -0008cf60: 776f 726b 730a 7175 6974 6520 7369 6d69 works.quite simi │ │ │ │ -0008cf70: 6c61 7220 746f 202a 6e6f 7465 2074 6f4d lar to *note toM │ │ │ │ -0008cf80: 6170 3a20 746f 4d61 702c 2e20 5365 6520 ap: toMap,. See │ │ │ │ -0008cf90: 696e 2070 6172 7469 6375 6c61 7220 7468 in particular th │ │ │ │ -0008cfa0: 6520 6d65 7468 6f64 733a 202a 6e6f 7465 e methods: *note │ │ │ │ -0008cfb0: 0a72 6174 696f 6e61 6c4d 6170 2852 696e .rationalMap(Rin │ │ │ │ -0008cfc0: 674d 6170 293a 2072 6174 696f 6e61 6c4d gMap): rationalM │ │ │ │ -0008cfd0: 6170 2c2c 202a 6e6f 7465 2072 6174 696f ap,, *note ratio │ │ │ │ -0008cfe0: 6e61 6c4d 6170 2849 6465 616c 2c5a 5a2c nalMap(Ideal,ZZ, │ │ │ │ -0008cff0: 5a5a 293a 0a72 6174 696f 6e61 6c4d 6170 ZZ):.rationalMap │ │ │ │ -0008d000: 5f6c 7049 6465 616c 5f63 6d5a 5a5f 636d _lpIdeal_cmZZ_cm │ │ │ │ -0008d010: 5a5a 5f72 702c 2c20 2a6e 6f74 6520 7261 ZZ_rp,, *note ra │ │ │ │ -0008d020: 7469 6f6e 616c 4d61 7028 5461 6c6c 7929 tionalMap(Tally) │ │ │ │ -0008d030: 3a0a 7261 7469 6f6e 616c 4d61 705f 6c70 :.rationalMap_lp │ │ │ │ -0008d040: 5269 6e67 5f63 6d54 616c 6c79 5f72 702c Ring_cmTally_rp, │ │ │ │ -0008d050: 2c20 616e 6420 2a6e 6f74 6520 7261 7469 , and *note rati │ │ │ │ -0008d060: 6f6e 616c 4d61 7028 506f 6c79 6e6f 6d69 onalMap(Polynomi │ │ │ │ -0008d070: 616c 5269 6e67 2c4c 6973 7429 3a0a 7261 alRing,List):.ra │ │ │ │ -0008d080: 7469 6f6e 616c 4d61 705f 6c70 506f 6c79 tionalMap_lpPoly │ │ │ │ -0008d090: 6e6f 6d69 616c 5269 6e67 5f63 6d4c 6973 nomialRing_cmLis │ │ │ │ -0008d0a0: 745f 7270 2c2e 0a0a 496e 2074 6865 2070 t_rp,...In the p │ │ │ │ -0008d0b0: 6163 6b61 6765 204d 756c 7469 7072 6f6a ackage Multiproj │ │ │ │ -0008d0c0: 6563 7469 7665 5661 7269 6574 6965 7320 ectiveVarieties │ │ │ │ -0008d0d0: 286d 6973 7369 6e67 2064 6f63 756d 656e (missing documen │ │ │ │ -0008d0e0: 7461 7469 6f6e 292c 2074 6869 7320 636c tation), this cl │ │ │ │ -0008d0f0: 6173 7320 6861 730a 6265 656e 2065 7874 ass has.been ext │ │ │ │ -0008d100: 656e 6465 6420 746f 2070 726f 7669 6465 ended to provide │ │ │ │ -0008d110: 2073 7570 706f 7274 2074 6f20 7261 7469 support to rati │ │ │ │ -0008d120: 6f6e 616c 206d 6170 7320 6265 7477 6565 onal maps betwee │ │ │ │ -0008d130: 6e20 6d75 6c74 692d 7072 6f6a 6563 7469 n multi-projecti │ │ │ │ -0008d140: 7665 0a76 6172 6965 7469 6573 2c20 7365 ve.varieties, se │ │ │ │ -0008d150: 6520 2a6e 6f74 6520 4d75 6c74 6972 6174 e *note Multirat │ │ │ │ -0008d160: 696f 6e61 6c4d 6170 3a0a 284d 756c 7469 ionalMap:.(Multi │ │ │ │ -0008d170: 7072 6f6a 6563 7469 7665 5661 7269 6574 projectiveVariet │ │ │ │ -0008d180: 6965 7329 4d75 6c74 6972 6174 696f 6e61 ies)Multirationa │ │ │ │ -0008d190: 6c4d 6170 2c2e 0a0a 4675 6e63 7469 6f6e lMap,...Function │ │ │ │ -0008d1a0: 7320 616e 6420 6d65 7468 6f64 7320 7265 s and methods re │ │ │ │ -0008d1b0: 7475 726e 696e 6720 6120 7261 7469 6f6e turning a ration │ │ │ │ -0008d1c0: 616c 206d 6170 3a0a 3d3d 3d3d 3d3d 3d3d al map:.======== │ │ │ │ +0008cdd0: 2a2a 2a2a 2a2a 2a2a 0a0a 4465 7363 7269 ********..Descri │ │ │ │ +0008cde0: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ +0008cdf0: 3d0a 0a41 6e20 6f62 6a65 6374 206f 6620 =..An object of │ │ │ │ +0008ce00: 7468 6520 636c 6173 7320 5261 7469 6f6e the class Ration │ │ │ │ +0008ce10: 616c 4d61 7020 6361 6e20 6265 2062 6173 alMap can be bas │ │ │ │ +0008ce20: 6963 616c 6c79 2072 6570 6c61 6365 6420 ically replaced │ │ │ │ +0008ce30: 6279 2061 2068 6f6d 6f67 656e 656f 7573 by a homogeneous │ │ │ │ +0008ce40: 0a72 696e 6720 6d61 7020 6f66 2071 756f .ring map of quo │ │ │ │ +0008ce50: 7469 656e 7473 206f 6620 706f 6c79 6e6f tients of polyno │ │ │ │ +0008ce60: 6d69 616c 2072 696e 6773 2062 7920 686f mial rings by ho │ │ │ │ +0008ce70: 6d6f 6765 6e65 6f75 7320 6964 6561 6c73 mogeneous ideals │ │ │ │ +0008ce80: 2e20 4f6e 6520 6d61 696e 0a61 6476 616e . One main.advan │ │ │ │ +0008ce90: 7461 6765 2074 6f20 7573 696e 6720 7468 tage to using th │ │ │ │ +0008cea0: 6973 2063 6c61 7373 2069 7320 7468 6174 is class is that │ │ │ │ +0008ceb0: 2074 6869 6e67 7320 636f 6d70 7574 6564 things computed │ │ │ │ +0008cec0: 2075 7369 6e67 206e 6f6e 2d70 726f 6261 using non-proba │ │ │ │ +0008ced0: 6269 6c69 7374 6963 0a61 6c67 6f72 6974 bilistic.algorit │ │ │ │ +0008cee0: 686d 7320 6172 6520 7374 6f72 6564 2069 hms are stored i │ │ │ │ +0008cef0: 6e74 6572 6e61 6c6c 7920 286f 7220 7061 nternally (or pa │ │ │ │ +0008cf00: 7274 6961 6c6c 7920 7374 6f72 6564 292e rtially stored). │ │ │ │ +0008cf10: 0a0a 5468 6520 636f 6e73 7472 7563 746f ..The constructo │ │ │ │ +0008cf20: 7220 666f 7220 7468 6520 636c 6173 7320 r for the class │ │ │ │ +0008cf30: 6973 202a 6e6f 7465 2072 6174 696f 6e61 is *note rationa │ │ │ │ +0008cf40: 6c4d 6170 3a20 7261 7469 6f6e 616c 4d61 lMap: rationalMa │ │ │ │ +0008cf50: 702c 2c20 7768 6963 6820 776f 726b 730a p,, which works. │ │ │ │ +0008cf60: 7175 6974 6520 7369 6d69 6c61 7220 746f quite similar to │ │ │ │ +0008cf70: 202a 6e6f 7465 2074 6f4d 6170 3a20 746f *note toMap: to │ │ │ │ +0008cf80: 4d61 702c 2e20 5365 6520 696e 2070 6172 Map,. See in par │ │ │ │ +0008cf90: 7469 6375 6c61 7220 7468 6520 6d65 7468 ticular the meth │ │ │ │ +0008cfa0: 6f64 733a 202a 6e6f 7465 0a72 6174 696f ods: *note.ratio │ │ │ │ +0008cfb0: 6e61 6c4d 6170 2852 696e 674d 6170 293a nalMap(RingMap): │ │ │ │ +0008cfc0: 2072 6174 696f 6e61 6c4d 6170 2c2c 202a rationalMap,, * │ │ │ │ +0008cfd0: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +0008cfe0: 2849 6465 616c 2c5a 5a2c 5a5a 293a 0a72 (Ideal,ZZ,ZZ):.r │ │ │ │ +0008cff0: 6174 696f 6e61 6c4d 6170 5f6c 7049 6465 ationalMap_lpIde │ │ │ │ +0008d000: 616c 5f63 6d5a 5a5f 636d 5a5a 5f72 702c al_cmZZ_cmZZ_rp, │ │ │ │ +0008d010: 2c20 2a6e 6f74 6520 7261 7469 6f6e 616c , *note rational │ │ │ │ +0008d020: 4d61 7028 5461 6c6c 7929 3a0a 7261 7469 Map(Tally):.rati │ │ │ │ +0008d030: 6f6e 616c 4d61 705f 6c70 5269 6e67 5f63 onalMap_lpRing_c │ │ │ │ +0008d040: 6d54 616c 6c79 5f72 702c 2c20 616e 6420 mTally_rp,, and │ │ │ │ +0008d050: 2a6e 6f74 6520 7261 7469 6f6e 616c 4d61 *note rationalMa │ │ │ │ +0008d060: 7028 506f 6c79 6e6f 6d69 616c 5269 6e67 p(PolynomialRing │ │ │ │ +0008d070: 2c4c 6973 7429 3a0a 7261 7469 6f6e 616c ,List):.rational │ │ │ │ +0008d080: 4d61 705f 6c70 506f 6c79 6e6f 6d69 616c Map_lpPolynomial │ │ │ │ +0008d090: 5269 6e67 5f63 6d4c 6973 745f 7270 2c2e Ring_cmList_rp,. │ │ │ │ +0008d0a0: 0a0a 496e 2074 6865 2070 6163 6b61 6765 ..In the package │ │ │ │ +0008d0b0: 204d 756c 7469 7072 6f6a 6563 7469 7665 Multiprojective │ │ │ │ +0008d0c0: 5661 7269 6574 6965 7320 286d 6973 7369 Varieties (missi │ │ │ │ +0008d0d0: 6e67 2064 6f63 756d 656e 7461 7469 6f6e ng documentation │ │ │ │ +0008d0e0: 292c 2074 6869 7320 636c 6173 7320 6861 ), this class ha │ │ │ │ +0008d0f0: 730a 6265 656e 2065 7874 656e 6465 6420 s.been extended │ │ │ │ +0008d100: 746f 2070 726f 7669 6465 2073 7570 706f to provide suppo │ │ │ │ +0008d110: 7274 2074 6f20 7261 7469 6f6e 616c 206d rt to rational m │ │ │ │ +0008d120: 6170 7320 6265 7477 6565 6e20 6d75 6c74 aps between mult │ │ │ │ +0008d130: 692d 7072 6f6a 6563 7469 7665 0a76 6172 i-projective.var │ │ │ │ +0008d140: 6965 7469 6573 2c20 7365 6520 2a6e 6f74 ieties, see *not │ │ │ │ +0008d150: 6520 4d75 6c74 6972 6174 696f 6e61 6c4d e MultirationalM │ │ │ │ +0008d160: 6170 3a0a 284d 756c 7469 7072 6f6a 6563 ap:.(Multiprojec │ │ │ │ +0008d170: 7469 7665 5661 7269 6574 6965 7329 4d75 tiveVarieties)Mu │ │ │ │ +0008d180: 6c74 6972 6174 696f 6e61 6c4d 6170 2c2e ltirationalMap,. │ │ │ │ +0008d190: 0a0a 4675 6e63 7469 6f6e 7320 616e 6420 ..Functions and │ │ │ │ +0008d1a0: 6d65 7468 6f64 7320 7265 7475 726e 696e methods returnin │ │ │ │ +0008d1b0: 6720 6120 7261 7469 6f6e 616c 206d 6170 g a rational map │ │ │ │ +0008d1c0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ 0008d1d0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ 0008d1e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008d1f0: 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f =======.. * *no │ │ │ │ -0008d200: 7465 2071 7561 6472 6f51 7561 6472 6963 te quadroQuadric │ │ │ │ -0008d210: 4372 656d 6f6e 6154 7261 6e73 666f 726d CremonaTransform │ │ │ │ -0008d220: 6174 696f 6e3a 0a20 2020 2071 7561 6472 ation:. quadr │ │ │ │ -0008d230: 6f51 7561 6472 6963 4372 656d 6f6e 6154 oQuadricCremonaT │ │ │ │ -0008d240: 7261 6e73 666f 726d 6174 696f 6e2c 202d ransformation, - │ │ │ │ -0008d250: 2d20 7175 6164 726f 2d71 7561 6472 6963 - quadro-quadric │ │ │ │ -0008d260: 2043 7265 6d6f 6e61 0a20 2020 2074 7261 Cremona. tra │ │ │ │ -0008d270: 6e73 666f 726d 6174 696f 6e73 0a20 202a nsformations. * │ │ │ │ -0008d280: 202a 6e6f 7465 2073 6567 7265 3a20 7365 *note segre: se │ │ │ │ -0008d290: 6772 652c 202d 2d20 5365 6772 6520 656d gre, -- Segre em │ │ │ │ -0008d2a0: 6265 6464 696e 670a 2020 2a20 2a6e 6f74 bedding. * *not │ │ │ │ -0008d2b0: 6520 7370 6563 6961 6c43 7265 6d6f 6e61 e specialCremona │ │ │ │ -0008d2c0: 5472 616e 7366 6f72 6d61 7469 6f6e 3a20 Transformation: │ │ │ │ -0008d2d0: 7370 6563 6961 6c43 7265 6d6f 6e61 5472 specialCremonaTr │ │ │ │ -0008d2e0: 616e 7366 6f72 6d61 7469 6f6e 2c20 2d2d ansformation, -- │ │ │ │ -0008d2f0: 0a20 2020 2073 7065 6369 616c 2043 7265 . special Cre │ │ │ │ -0008d300: 6d6f 6e61 2074 7261 6e73 666f 726d 6174 mona transformat │ │ │ │ -0008d310: 696f 6e73 2077 686f 7365 2062 6173 6520 ions whose base │ │ │ │ -0008d320: 6c6f 6375 7320 6861 7320 6469 6d65 6e73 locus has dimens │ │ │ │ -0008d330: 696f 6e20 6174 206d 6f73 740a 2020 2020 ion at most. │ │ │ │ -0008d340: 7468 7265 650a 2020 2a20 2a6e 6f74 6520 three. * *note │ │ │ │ -0008d350: 7370 6563 6961 6c43 7562 6963 5472 616e specialCubicTran │ │ │ │ -0008d360: 7366 6f72 6d61 7469 6f6e 3a20 7370 6563 sformation: spec │ │ │ │ -0008d370: 6961 6c43 7562 6963 5472 616e 7366 6f72 ialCubicTransfor │ │ │ │ -0008d380: 6d61 7469 6f6e 2c20 2d2d 2073 7065 6369 mation, -- speci │ │ │ │ -0008d390: 616c 0a20 2020 2063 7562 6963 2074 7261 al. cubic tra │ │ │ │ -0008d3a0: 6e73 666f 726d 6174 696f 6e73 2077 686f nsformations who │ │ │ │ -0008d3b0: 7365 2062 6173 6520 6c6f 6375 7320 6861 se base locus ha │ │ │ │ -0008d3c0: 7320 6469 6d65 6e73 696f 6e20 6174 206d s dimension at m │ │ │ │ -0008d3d0: 6f73 7420 7468 7265 650a 2020 2a20 2a6e ost three. * *n │ │ │ │ -0008d3e0: 6f74 6520 7370 6563 6961 6c51 7561 6472 ote specialQuadr │ │ │ │ -0008d3f0: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ -0008d400: 6f6e 3a20 7370 6563 6961 6c51 7561 6472 on: specialQuadr │ │ │ │ -0008d410: 6174 6963 5472 616e 7366 6f72 6d61 7469 aticTransformati │ │ │ │ -0008d420: 6f6e 2c20 2d2d 0a20 2020 2073 7065 6369 on, --. speci │ │ │ │ -0008d430: 616c 2071 7561 6472 6174 6963 2074 7261 al quadratic tra │ │ │ │ -0008d440: 6e73 666f 726d 6174 696f 6e73 2077 686f nsformations who │ │ │ │ -0008d450: 7365 2062 6173 6520 6c6f 6375 7320 6861 se base locus ha │ │ │ │ -0008d460: 7320 6469 6d65 6e73 696f 6e20 7468 7265 s dimension thre │ │ │ │ -0008d470: 650a 0a4d 6574 686f 6473 2074 6861 7420 e..Methods that │ │ │ │ -0008d480: 7573 6520 6120 7261 7469 6f6e 616c 206d use a rational m │ │ │ │ -0008d490: 6170 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ap:.============ │ │ │ │ -0008d4a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0008d4b0: 3d3d 3d3d 0a0a 2020 2a20 2261 6273 7472 ====.. * "abstr │ │ │ │ -0008d4c0: 6163 7452 6174 696f 6e61 6c4d 6170 2852 actRationalMap(R │ │ │ │ -0008d4d0: 6174 696f 6e61 6c4d 6170 2922 202d 2d20 ationalMap)" -- │ │ │ │ -0008d4e0: 7365 6520 2a6e 6f74 6520 6162 7374 7261 see *note abstra │ │ │ │ -0008d4f0: 6374 5261 7469 6f6e 616c 4d61 703a 0a20 ctRationalMap:. │ │ │ │ -0008d500: 2020 2061 6273 7472 6163 7452 6174 696f abstractRatio │ │ │ │ -0008d510: 6e61 6c4d 6170 2c20 2d2d 206d 616b 6520 nalMap, -- make │ │ │ │ -0008d520: 616e 2061 6273 7472 6163 7420 7261 7469 an abstract rati │ │ │ │ -0008d530: 6f6e 616c 206d 6170 0a20 202a 2022 6170 onal map. * "ap │ │ │ │ -0008d540: 7072 6f78 696d 6174 6549 6e76 6572 7365 proximateInverse │ │ │ │ -0008d550: 4d61 7028 5261 7469 6f6e 616c 4d61 7029 Map(RationalMap) │ │ │ │ -0008d560: 2220 2d2d 2073 6565 202a 6e6f 7465 2061 " -- see *note a │ │ │ │ -0008d570: 7070 726f 7869 6d61 7465 496e 7665 7273 pproximateInvers │ │ │ │ -0008d580: 654d 6170 3a0a 2020 2020 6170 7072 6f78 eMap:. approx │ │ │ │ -0008d590: 696d 6174 6549 6e76 6572 7365 4d61 702c imateInverseMap, │ │ │ │ -0008d5a0: 202d 2d20 7261 6e64 6f6d 206d 6170 2072 -- random map r │ │ │ │ -0008d5b0: 656c 6174 6564 2074 6f20 7468 6520 696e elated to the in │ │ │ │ -0008d5c0: 7665 7273 6520 6f66 2061 2062 6972 6174 verse of a birat │ │ │ │ -0008d5d0: 696f 6e61 6c0a 2020 2020 6d61 700a 2020 ional. map. │ │ │ │ -0008d5e0: 2a20 2261 7070 726f 7869 6d61 7465 496e * "approximateIn │ │ │ │ -0008d5f0: 7665 7273 654d 6170 2852 6174 696f 6e61 verseMap(Rationa │ │ │ │ -0008d600: 6c4d 6170 2c5a 5a29 2220 2d2d 2073 6565 lMap,ZZ)" -- see │ │ │ │ -0008d610: 202a 6e6f 7465 2061 7070 726f 7869 6d61 *note approxima │ │ │ │ -0008d620: 7465 496e 7665 7273 654d 6170 3a0a 2020 teInverseMap:. │ │ │ │ -0008d630: 2020 6170 7072 6f78 696d 6174 6549 6e76 approximateInv │ │ │ │ -0008d640: 6572 7365 4d61 702c 202d 2d20 7261 6e64 erseMap, -- rand │ │ │ │ -0008d650: 6f6d 206d 6170 2072 656c 6174 6564 2074 om map related t │ │ │ │ -0008d660: 6f20 7468 6520 696e 7665 7273 6520 6f66 o the inverse of │ │ │ │ -0008d670: 2061 2062 6972 6174 696f 6e61 6c0a 2020 a birational. │ │ │ │ -0008d680: 2020 6d61 700a 2020 2a20 2a6e 6f74 6520 map. * *note │ │ │ │ -0008d690: 636f 6566 6669 6369 656e 7452 696e 6728 coefficientRing( │ │ │ │ -0008d6a0: 5261 7469 6f6e 616c 4d61 7029 3a20 636f RationalMap): co │ │ │ │ -0008d6b0: 6566 6669 6369 656e 7452 696e 675f 6c70 efficientRing_lp │ │ │ │ -0008d6c0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -0008d6d0: 2d2d 0a20 2020 2063 6f65 6666 6963 6965 --. coefficie │ │ │ │ -0008d6e0: 6e74 2072 696e 6720 6f66 2061 2072 6174 nt ring of a rat │ │ │ │ -0008d6f0: 696f 6e61 6c20 6d61 700a 2020 2a20 2a6e ional map. * *n │ │ │ │ -0008d700: 6f74 6520 636f 6566 6669 6369 656e 7473 ote coefficients │ │ │ │ -0008d710: 2852 6174 696f 6e61 6c4d 6170 293a 2063 (RationalMap): c │ │ │ │ -0008d720: 6f65 6666 6963 6965 6e74 735f 6c70 5261 oefficients_lpRa │ │ │ │ -0008d730: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -0008d740: 0a20 2020 2063 6f65 6666 6963 6965 6e74 . coefficient │ │ │ │ -0008d750: 206d 6174 7269 7820 6f66 2061 2072 6174 matrix of a rat │ │ │ │ -0008d760: 696f 6e61 6c20 6d61 700a 2020 2a20 2a6e ional map. * *n │ │ │ │ -0008d770: 6f74 6520 6465 6772 6565 2852 6174 696f ote degree(Ratio │ │ │ │ -0008d780: 6e61 6c4d 6170 293a 2064 6567 7265 655f nalMap): degree_ │ │ │ │ -0008d790: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -0008d7a0: 2c20 2d2d 2064 6567 7265 6520 6f66 2061 , -- degree of a │ │ │ │ -0008d7b0: 2072 6174 696f 6e61 6c0a 2020 2020 6d61 rational. ma │ │ │ │ -0008d7c0: 700a 2020 2a20 2a6e 6f74 6520 6465 6772 p. * *note degr │ │ │ │ -0008d7d0: 6565 4d61 7028 5261 7469 6f6e 616c 4d61 eeMap(RationalMa │ │ │ │ -0008d7e0: 7029 3a20 6465 6772 6565 4d61 705f 6c70 p): degreeMap_lp │ │ │ │ -0008d7f0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ -0008d800: 2d2d 2064 6567 7265 6520 6f66 2061 0a20 -- degree of a. │ │ │ │ -0008d810: 2020 2072 6174 696f 6e61 6c20 6d61 700a rational map. │ │ │ │ -0008d820: 2020 2a20 2a6e 6f74 6520 6465 6772 6565 * *note degree │ │ │ │ -0008d830: 7328 5261 7469 6f6e 616c 4d61 7029 3a20 s(RationalMap): │ │ │ │ -0008d840: 6465 6772 6565 735f 6c70 5261 7469 6f6e degrees_lpRation │ │ │ │ -0008d850: 616c 4d61 705f 7270 2c20 2d2d 2070 726f alMap_rp, -- pro │ │ │ │ -0008d860: 6a65 6374 6976 6520 6465 6772 6565 730a jective degrees. │ │ │ │ -0008d870: 2020 2020 6f66 2061 2072 6174 696f 6e61 of a rationa │ │ │ │ -0008d880: 6c20 6d61 700a 2020 2a20 226d 756c 7469 l map. * "multi │ │ │ │ -0008d890: 6465 6772 6565 2852 6174 696f 6e61 6c4d degree(RationalM │ │ │ │ -0008d8a0: 6170 2922 202d 2d20 7365 6520 2a6e 6f74 ap)" -- see *not │ │ │ │ -0008d8b0: 6520 6465 6772 6565 7328 5261 7469 6f6e e degrees(Ration │ │ │ │ -0008d8c0: 616c 4d61 7029 3a0a 2020 2020 6465 6772 alMap):. degr │ │ │ │ -0008d8d0: 6565 735f 6c70 5261 7469 6f6e 616c 4d61 ees_lpRationalMa │ │ │ │ -0008d8e0: 705f 7270 2c20 2d2d 2070 726f 6a65 6374 p_rp, -- project │ │ │ │ -0008d8f0: 6976 6520 6465 6772 6565 7320 6f66 2061 ive degrees of a │ │ │ │ -0008d900: 2072 6174 696f 6e61 6c20 6d61 700a 2020 rational map. │ │ │ │ -0008d910: 2a20 2a6e 6f74 6520 6465 7363 7269 6265 * *note describe │ │ │ │ -0008d920: 2852 6174 696f 6e61 6c4d 6170 293a 2064 (RationalMap): d │ │ │ │ -0008d930: 6573 6372 6962 655f 6c70 5261 7469 6f6e escribe_lpRation │ │ │ │ -0008d940: 616c 4d61 705f 7270 2c20 2d2d 2064 6573 alMap_rp, -- des │ │ │ │ -0008d950: 6372 6962 6520 610a 2020 2020 7261 7469 cribe a. rati │ │ │ │ -0008d960: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ -0008d970: 7465 2065 6e74 7269 6573 2852 6174 696f te entries(Ratio │ │ │ │ -0008d980: 6e61 6c4d 6170 293a 2065 6e74 7269 6573 nalMap): entries │ │ │ │ -0008d990: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -0008d9a0: 702c 202d 2d20 7468 6520 656e 7472 6965 p, -- the entrie │ │ │ │ -0008d9b0: 7320 6f66 2074 6865 0a20 2020 206d 6174 s of the. mat │ │ │ │ -0008d9c0: 7269 7820 6173 736f 6369 6174 6564 2074 rix associated t │ │ │ │ -0008d9d0: 6f20 6120 7261 7469 6f6e 616c 206d 6170 o a rational map │ │ │ │ -0008d9e0: 0a20 202a 2022 6578 6365 7074 696f 6e61 . * "exceptiona │ │ │ │ -0008d9f0: 6c4c 6f63 7573 2852 6174 696f 6e61 6c4d lLocus(RationalM │ │ │ │ -0008da00: 6170 2922 202d 2d20 7365 6520 2a6e 6f74 ap)" -- see *not │ │ │ │ -0008da10: 6520 6578 6365 7074 696f 6e61 6c4c 6f63 e exceptionalLoc │ │ │ │ -0008da20: 7573 3a0a 2020 2020 6578 6365 7074 696f us:. exceptio │ │ │ │ -0008da30: 6e61 6c4c 6f63 7573 2c20 2d2d 2065 7863 nalLocus, -- exc │ │ │ │ -0008da40: 6570 7469 6f6e 616c 206c 6f63 7573 206f eptional locus o │ │ │ │ -0008da50: 6620 6120 6269 7261 7469 6f6e 616c 206d f a birational m │ │ │ │ -0008da60: 6170 0a20 202a 202a 6e6f 7465 2066 6c61 ap. * *note fla │ │ │ │ -0008da70: 7474 656e 2852 6174 696f 6e61 6c4d 6170 tten(RationalMap │ │ │ │ -0008da80: 293a 2066 6c61 7474 656e 5f6c 7052 6174 ): flatten_lpRat │ │ │ │ -0008da90: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ -0008daa0: 7772 6974 6520 736f 7572 6365 2061 6e64 write source and │ │ │ │ -0008dab0: 0a20 2020 2074 6172 6765 7420 6173 206e . target as n │ │ │ │ -0008dac0: 6f6e 6465 6765 6e65 7261 7465 2076 6172 ondegenerate var │ │ │ │ -0008dad0: 6965 7469 6573 0a20 202a 2022 666f 7263 ieties. * "forc │ │ │ │ -0008dae0: 6549 6d61 6765 2852 6174 696f 6e61 6c4d eImage(RationalM │ │ │ │ -0008daf0: 6170 2c49 6465 616c 2922 202d 2d20 7365 ap,Ideal)" -- se │ │ │ │ -0008db00: 6520 2a6e 6f74 6520 666f 7263 6549 6d61 e *note forceIma │ │ │ │ -0008db10: 6765 3a20 666f 7263 6549 6d61 6765 2c20 ge: forceImage, │ │ │ │ -0008db20: 2d2d 0a20 2020 2064 6563 6c61 7265 2077 --. declare w │ │ │ │ -0008db30: 6869 6368 2069 7320 7468 6520 696d 6167 hich is the imag │ │ │ │ -0008db40: 6520 6f66 2061 2072 6174 696f 6e61 6c20 e of a rational │ │ │ │ -0008db50: 6d61 700a 2020 2a20 2266 6f72 6365 496e map. * "forceIn │ │ │ │ -0008db60: 7665 7273 654d 6170 2852 6174 696f 6e61 verseMap(Rationa │ │ │ │ -0008db70: 6c4d 6170 2c52 6174 696f 6e61 6c4d 6170 lMap,RationalMap │ │ │ │ -0008db80: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -0008db90: 666f 7263 6549 6e76 6572 7365 4d61 703a forceInverseMap: │ │ │ │ -0008dba0: 0a20 2020 2066 6f72 6365 496e 7665 7273 . forceInvers │ │ │ │ -0008dbb0: 654d 6170 2c20 2d2d 2064 6563 6c61 7265 eMap, -- declare │ │ │ │ -0008dbc0: 2074 6861 7420 7477 6f20 7261 7469 6f6e that two ration │ │ │ │ -0008dbd0: 616c 206d 6170 7320 6172 6520 6f6e 6520 al maps are one │ │ │ │ -0008dbe0: 7468 6520 696e 7665 7273 6520 6f66 0a20 the inverse of. │ │ │ │ -0008dbf0: 2020 2074 6865 206f 7468 6572 0a20 202a the other. * │ │ │ │ -0008dc00: 2022 6772 6170 6828 5261 7469 6f6e 616c "graph(Rational │ │ │ │ -0008dc10: 4d61 7029 2220 2d2d 2073 6565 202a 6e6f Map)" -- see *no │ │ │ │ -0008dc20: 7465 2067 7261 7068 3a20 6772 6170 682c te graph: graph, │ │ │ │ -0008dc30: 202d 2d20 636c 6f73 7572 6520 6f66 2074 -- closure of t │ │ │ │ -0008dc40: 6865 2067 7261 7068 206f 660a 2020 2020 he graph of. │ │ │ │ -0008dc50: 6120 7261 7469 6f6e 616c 206d 6170 0a20 a rational map. │ │ │ │ -0008dc60: 202a 202a 6e6f 7465 2069 6465 616c 2852 * *note ideal(R │ │ │ │ -0008dc70: 6174 696f 6e61 6c4d 6170 293a 2069 6465 ationalMap): ide │ │ │ │ -0008dc80: 616c 5f6c 7052 6174 696f 6e61 6c4d 6170 al_lpRationalMap │ │ │ │ -0008dc90: 5f72 702c 202d 2d20 6261 7365 206c 6f63 _rp, -- base loc │ │ │ │ -0008dca0: 7573 206f 6620 610a 2020 2020 7261 7469 us of a. rati │ │ │ │ -0008dcb0: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ -0008dcc0: 7465 2069 6d61 6765 2852 6174 696f 6e61 te image(Rationa │ │ │ │ -0008dcd0: 6c4d 6170 2c53 7472 696e 6729 3a20 696d lMap,String): im │ │ │ │ -0008dce0: 6167 655f 6c70 5261 7469 6f6e 616c 4d61 age_lpRationalMa │ │ │ │ -0008dcf0: 705f 636d 5374 7269 6e67 5f72 702c 202d p_cmString_rp, - │ │ │ │ -0008dd00: 2d0a 2020 2020 636c 6f73 7572 6520 6f66 -. closure of │ │ │ │ -0008dd10: 2074 6865 2069 6d61 6765 206f 6620 6120 the image of a │ │ │ │ -0008dd20: 7261 7469 6f6e 616c 206d 6170 2075 7369 rational map usi │ │ │ │ -0008dd30: 6e67 2074 6865 2046 3420 616c 676f 7269 ng the F4 algori │ │ │ │ -0008dd40: 7468 6d0a 2020 2020 2865 7870 6572 696d thm. (experim │ │ │ │ -0008dd50: 656e 7461 6c29 0a20 202a 2022 696d 6167 ental). * "imag │ │ │ │ -0008dd60: 6528 5261 7469 6f6e 616c 4d61 7029 2220 e(RationalMap)" │ │ │ │ -0008dd70: 2d2d 2073 6565 202a 6e6f 7465 2069 6d61 -- see *note ima │ │ │ │ -0008dd80: 6765 2852 6174 696f 6e61 6c4d 6170 2c5a ge(RationalMap,Z │ │ │ │ -0008dd90: 5a29 3a0a 2020 2020 696d 6167 655f 6c70 Z):. image_lp │ │ │ │ -0008dda0: 5261 7469 6f6e 616c 4d61 705f 636d 5a5a RationalMap_cmZZ │ │ │ │ -0008ddb0: 5f72 702c 202d 2d20 636c 6f73 7572 6520 _rp, -- closure │ │ │ │ -0008ddc0: 6f66 2074 6865 2069 6d61 6765 206f 6620 of the image of │ │ │ │ -0008ddd0: 6120 7261 7469 6f6e 616c 206d 6170 0a20 a rational map. │ │ │ │ -0008dde0: 202a 202a 6e6f 7465 2069 6d61 6765 2852 * *note image(R │ │ │ │ -0008ddf0: 6174 696f 6e61 6c4d 6170 2c5a 5a29 3a20 ationalMap,ZZ): │ │ │ │ -0008de00: 696d 6167 655f 6c70 5261 7469 6f6e 616c image_lpRational │ │ │ │ -0008de10: 4d61 705f 636d 5a5a 5f72 702c 202d 2d20 Map_cmZZ_rp, -- │ │ │ │ -0008de20: 636c 6f73 7572 6520 6f66 2074 6865 0a20 closure of the. │ │ │ │ -0008de30: 2020 2069 6d61 6765 206f 6620 6120 7261 image of a ra │ │ │ │ -0008de40: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ -0008de50: 6e6f 7465 2069 6e76 6572 7365 2852 6174 note inverse(Rat │ │ │ │ -0008de60: 696f 6e61 6c4d 6170 293a 2069 6e76 6572 ionalMap): inver │ │ │ │ -0008de70: 7365 5f6c 7052 6174 696f 6e61 6c4d 6170 se_lpRationalMap │ │ │ │ -0008de80: 5f72 702c 202d 2d20 696e 7665 7273 6520 _rp, -- inverse │ │ │ │ -0008de90: 6f66 2061 0a20 2020 2062 6972 6174 696f of a. biratio │ │ │ │ -0008dea0: 6e61 6c20 6d61 700a 2020 2a20 2269 6e76 nal map. * "inv │ │ │ │ -0008deb0: 6572 7365 2852 6174 696f 6e61 6c4d 6170 erse(RationalMap │ │ │ │ -0008dec0: 2c4f 7074 696f 6e29 2220 2d2d 2073 6565 ,Option)" -- see │ │ │ │ -0008ded0: 202a 6e6f 7465 2069 6e76 6572 7365 2852 *note inverse(R │ │ │ │ -0008dee0: 6174 696f 6e61 6c4d 6170 293a 0a20 2020 ationalMap):. │ │ │ │ -0008def0: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ -0008df00: 6e61 6c4d 6170 5f72 702c 202d 2d20 696e nalMap_rp, -- in │ │ │ │ -0008df10: 7665 7273 6520 6f66 2061 2062 6972 6174 verse of a birat │ │ │ │ -0008df20: 696f 6e61 6c20 6d61 700a 2020 2a20 2269 ional map. * "i │ │ │ │ -0008df30: 6e76 6572 7365 4d61 7028 5261 7469 6f6e nverseMap(Ration │ │ │ │ -0008df40: 616c 4d61 7029 2220 2d2d 2073 6565 202a alMap)" -- see * │ │ │ │ -0008df50: 6e6f 7465 2069 6e76 6572 7365 4d61 703a note inverseMap: │ │ │ │ -0008df60: 2069 6e76 6572 7365 4d61 702c 202d 2d20 inverseMap, -- │ │ │ │ -0008df70: 696e 7665 7273 650a 2020 2020 6f66 2061 inverse. of a │ │ │ │ -0008df80: 2062 6972 6174 696f 6e61 6c20 6d61 700a birational map. │ │ │ │ -0008df90: 2020 2a20 2269 7342 6972 6174 696f 6e61 * "isBirationa │ │ │ │ -0008dfa0: 6c28 5261 7469 6f6e 616c 4d61 7029 2220 l(RationalMap)" │ │ │ │ -0008dfb0: 2d2d 2073 6565 202a 6e6f 7465 2069 7342 -- see *note isB │ │ │ │ -0008dfc0: 6972 6174 696f 6e61 6c3a 2069 7342 6972 irational: isBir │ │ │ │ -0008dfd0: 6174 696f 6e61 6c2c 202d 2d0a 2020 2020 ational, --. │ │ │ │ -0008dfe0: 7768 6574 6865 7220 6120 7261 7469 6f6e whether a ration │ │ │ │ -0008dff0: 616c 206d 6170 2069 7320 6269 7261 7469 al map is birati │ │ │ │ -0008e000: 6f6e 616c 0a20 202a 2022 6973 446f 6d69 onal. * "isDomi │ │ │ │ -0008e010: 6e61 6e74 2852 6174 696f 6e61 6c4d 6170 nant(RationalMap │ │ │ │ -0008e020: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -0008e030: 6973 446f 6d69 6e61 6e74 3a20 6973 446f isDominant: isDo │ │ │ │ -0008e040: 6d69 6e61 6e74 2c20 2d2d 2077 6865 7468 minant, -- wheth │ │ │ │ -0008e050: 6572 2061 0a20 2020 2072 6174 696f 6e61 er a. rationa │ │ │ │ -0008e060: 6c20 6d61 7020 6973 2064 6f6d 696e 616e l map is dominan │ │ │ │ -0008e070: 740a 2020 2a20 2a6e 6f74 6520 6973 496e t. * *note isIn │ │ │ │ -0008e080: 7665 7273 654d 6170 2852 6174 696f 6e61 verseMap(Rationa │ │ │ │ -0008e090: 6c4d 6170 2c52 6174 696f 6e61 6c4d 6170 lMap,RationalMap │ │ │ │ -0008e0a0: 293a 0a20 2020 2069 7349 6e76 6572 7365 ):. isInverse │ │ │ │ -0008e0b0: 4d61 705f 6c70 5261 7469 6f6e 616c 4d61 Map_lpRationalMa │ │ │ │ -0008e0c0: 705f 636d 5261 7469 6f6e 616c 4d61 705f p_cmRationalMap_ │ │ │ │ -0008e0d0: 7270 2c20 2d2d 2063 6865 636b 7320 7768 rp, -- checks wh │ │ │ │ -0008e0e0: 6574 6865 7220 7477 6f20 7261 7469 6f6e ether two ration │ │ │ │ -0008e0f0: 616c 0a20 2020 206d 6170 7320 6172 6520 al. maps are │ │ │ │ -0008e100: 6f6e 6520 7468 6520 696e 7665 7273 6520 one the inverse │ │ │ │ -0008e110: 6f66 2074 6865 206f 7468 6572 0a20 202a of the other. * │ │ │ │ -0008e120: 202a 6e6f 7465 2069 7349 736f 6d6f 7270 *note isIsomorp │ │ │ │ -0008e130: 6869 736d 2852 6174 696f 6e61 6c4d 6170 hism(RationalMap │ │ │ │ -0008e140: 293a 2069 7349 736f 6d6f 7270 6869 736d ): isIsomorphism │ │ │ │ -0008e150: 5f6c 7052 6174 696f 6e61 6c4d 6170 5f72 _lpRationalMap_r │ │ │ │ -0008e160: 702c 202d 2d0a 2020 2020 7768 6574 6865 p, --. whethe │ │ │ │ -0008e170: 7220 6120 6269 7261 7469 6f6e 616c 206d r a birational m │ │ │ │ -0008e180: 6170 2069 7320 616e 2069 736f 6d6f 7270 ap is an isomorp │ │ │ │ -0008e190: 6869 736d 0a20 202a 2022 6973 4d6f 7270 hism. * "isMorp │ │ │ │ -0008e1a0: 6869 736d 2852 6174 696f 6e61 6c4d 6170 hism(RationalMap │ │ │ │ -0008e1b0: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ -0008e1c0: 6973 4d6f 7270 6869 736d 3a20 6973 4d6f isMorphism: isMo │ │ │ │ -0008e1d0: 7270 6869 736d 2c20 2d2d 2077 6865 7468 rphism, -- wheth │ │ │ │ -0008e1e0: 6572 2061 0a20 2020 2072 6174 696f 6e61 er a. rationa │ │ │ │ -0008e1f0: 6c20 6d61 7020 6973 2061 206d 6f72 7068 l map is a morph │ │ │ │ -0008e200: 6973 6d0a 2020 2a20 2a6e 6f74 6520 6d61 ism. * *note ma │ │ │ │ -0008e210: 7028 5261 7469 6f6e 616c 4d61 7029 3a20 p(RationalMap): │ │ │ │ -0008e220: 6d61 705f 6c70 5261 7469 6f6e 616c 4d61 map_lpRationalMa │ │ │ │ -0008e230: 705f 7270 2c20 2d2d 2067 6574 2074 6865 p_rp, -- get the │ │ │ │ -0008e240: 2072 696e 6720 6d61 7020 6465 6669 6e69 ring map defini │ │ │ │ -0008e250: 6e67 0a20 2020 2061 2072 6174 696f 6e61 ng. a rationa │ │ │ │ -0008e260: 6c20 6d61 700a 2020 2a20 226d 6170 285a l map. * "map(Z │ │ │ │ -0008e270: 5a2c 5261 7469 6f6e 616c 4d61 7029 2220 Z,RationalMap)" │ │ │ │ -0008e280: 2d2d 2073 6565 202a 6e6f 7465 206d 6170 -- see *note map │ │ │ │ -0008e290: 2852 6174 696f 6e61 6c4d 6170 293a 206d (RationalMap): m │ │ │ │ -0008e2a0: 6170 5f6c 7052 6174 696f 6e61 6c4d 6170 ap_lpRationalMap │ │ │ │ -0008e2b0: 5f72 702c 0a20 2020 202d 2d20 6765 7420 _rp,. -- get │ │ │ │ -0008e2c0: 7468 6520 7269 6e67 206d 6170 2064 6566 the ring map def │ │ │ │ -0008e2d0: 696e 696e 6720 6120 7261 7469 6f6e 616c ining a rational │ │ │ │ -0008e2e0: 206d 6170 0a20 202a 202a 6e6f 7465 206d map. * *note m │ │ │ │ -0008e2f0: 6174 7269 7828 5261 7469 6f6e 616c 4d61 atrix(RationalMa │ │ │ │ -0008e300: 7029 3a20 6d61 7472 6978 5f6c 7052 6174 p): matrix_lpRat │ │ │ │ -0008e310: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ -0008e320: 7468 6520 6d61 7472 6978 0a20 2020 2061 the matrix. a │ │ │ │ -0008e330: 7373 6f63 6961 7465 6420 746f 2061 2072 ssociated to a r │ │ │ │ -0008e340: 6174 696f 6e61 6c20 6d61 700a 2020 2a20 ational map. * │ │ │ │ -0008e350: 226d 6174 7269 7828 5a5a 2c52 6174 696f "matrix(ZZ,Ratio │ │ │ │ -0008e360: 6e61 6c4d 6170 2922 202d 2d20 7365 6520 nalMap)" -- see │ │ │ │ -0008e370: 2a6e 6f74 6520 6d61 7472 6978 2852 6174 *note matrix(Rat │ │ │ │ -0008e380: 696f 6e61 6c4d 6170 293a 0a20 2020 206d ionalMap):. m │ │ │ │ -0008e390: 6174 7269 785f 6c70 5261 7469 6f6e 616c atrix_lpRational │ │ │ │ -0008e3a0: 4d61 705f 7270 2c20 2d2d 2074 6865 206d Map_rp, -- the m │ │ │ │ -0008e3b0: 6174 7269 7820 6173 736f 6369 6174 6564 atrix associated │ │ │ │ -0008e3c0: 2074 6f20 6120 7261 7469 6f6e 616c 206d to a rational m │ │ │ │ -0008e3d0: 6170 0a20 202a 202a 6e6f 7465 2070 726f ap. * *note pro │ │ │ │ -0008e3e0: 6a65 6374 6976 6544 6567 7265 6573 2852 jectiveDegrees(R │ │ │ │ -0008e3f0: 6174 696f 6e61 6c4d 6170 293a 2070 726f ationalMap): pro │ │ │ │ -0008e400: 6a65 6374 6976 6544 6567 7265 6573 5f6c jectiveDegrees_l │ │ │ │ -0008e410: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -0008e420: 0a20 2020 202d 2d20 7072 6f6a 6563 7469 . -- projecti │ │ │ │ -0008e430: 7665 2064 6567 7265 6573 206f 6620 6120 ve degrees of a │ │ │ │ -0008e440: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -0008e450: 202a 6e6f 7465 2052 6174 696f 6e61 6c4d *note RationalM │ │ │ │ -0008e460: 6170 2021 3a20 5261 7469 6f6e 616c 4d61 ap !: RationalMa │ │ │ │ -0008e470: 7020 212c 202d 2d20 6361 6c63 756c 6174 p !, -- calculat │ │ │ │ -0008e480: 6573 2065 7665 7279 2070 6f73 7369 626c es every possibl │ │ │ │ -0008e490: 6520 7468 696e 670a 2020 2a20 2263 6f6d e thing. * "com │ │ │ │ -0008e4a0: 706f 7365 2852 6174 696f 6e61 6c4d 6170 pose(RationalMap │ │ │ │ -0008e4b0: 2c52 6174 696f 6e61 6c4d 6170 2922 202d ,RationalMap)" - │ │ │ │ -0008e4c0: 2d20 7365 6520 2a6e 6f74 6520 5261 7469 - see *note Rati │ │ │ │ -0008e4d0: 6f6e 616c 4d61 7020 2a20 5261 7469 6f6e onalMap * Ration │ │ │ │ -0008e4e0: 616c 4d61 703a 0a20 2020 2052 6174 696f alMap:. Ratio │ │ │ │ -0008e4f0: 6e61 6c4d 6170 205f 7374 2052 6174 696f nalMap _st Ratio │ │ │ │ -0008e500: 6e61 6c4d 6170 2c20 2d2d 2063 6f6d 706f nalMap, -- compo │ │ │ │ -0008e510: 7369 7469 6f6e 206f 6620 7261 7469 6f6e sition of ration │ │ │ │ -0008e520: 616c 206d 6170 730a 2020 2a20 2a6e 6f74 al maps. * *not │ │ │ │ -0008e530: 6520 5261 7469 6f6e 616c 4d61 7020 2a20 e RationalMap * │ │ │ │ -0008e540: 5261 7469 6f6e 616c 4d61 703a 2052 6174 RationalMap: Rat │ │ │ │ -0008e550: 696f 6e61 6c4d 6170 205f 7374 2052 6174 ionalMap _st Rat │ │ │ │ -0008e560: 696f 6e61 6c4d 6170 2c20 2d2d 0a20 2020 ionalMap, --. │ │ │ │ -0008e570: 2063 6f6d 706f 7369 7469 6f6e 206f 6620 composition of │ │ │ │ -0008e580: 7261 7469 6f6e 616c 206d 6170 730a 2020 rational maps. │ │ │ │ -0008e590: 2a20 2a6e 6f74 6520 5261 7469 6f6e 616c * *note Rational │ │ │ │ -0008e5a0: 4d61 7020 2a2a 2052 696e 673a 2052 6174 Map ** Ring: Rat │ │ │ │ -0008e5b0: 696f 6e61 6c4d 6170 205f 7374 5f73 7420 ionalMap _st_st │ │ │ │ -0008e5c0: 5269 6e67 2c20 2d2d 2063 6861 6e67 6520 Ring, -- change │ │ │ │ -0008e5d0: 7468 650a 2020 2020 636f 6566 6669 6369 the. coeffici │ │ │ │ -0008e5e0: 656e 7420 7269 6e67 206f 6620 6120 7261 ent ring of a ra │ │ │ │ -0008e5f0: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ -0008e600: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ -0008e610: 203d 3d20 5261 7469 6f6e 616c 4d61 703a == RationalMap: │ │ │ │ -0008e620: 2052 6174 696f 6e61 6c4d 6170 203d 3d20 RationalMap == │ │ │ │ -0008e630: 5261 7469 6f6e 616c 4d61 702c 202d 2d20 RationalMap, -- │ │ │ │ -0008e640: 6571 7561 6c69 7479 0a20 2020 206f 6620 equality. of │ │ │ │ -0008e650: 7261 7469 6f6e 616c 206d 6170 730a 2020 rational maps. │ │ │ │ -0008e660: 2a20 2252 6174 696f 6e61 6c4d 6170 203d * "RationalMap = │ │ │ │ -0008e670: 3d20 5a5a 2220 2d2d 2073 6565 202a 6e6f = ZZ" -- see *no │ │ │ │ -0008e680: 7465 2052 6174 696f 6e61 6c4d 6170 203d te RationalMap = │ │ │ │ -0008e690: 3d20 5261 7469 6f6e 616c 4d61 703a 2052 = RationalMap: R │ │ │ │ -0008e6a0: 6174 696f 6e61 6c4d 6170 203d 3d0a 2020 ationalMap ==. │ │ │ │ -0008e6b0: 2020 5261 7469 6f6e 616c 4d61 702c 202d RationalMap, - │ │ │ │ -0008e6c0: 2d20 6571 7561 6c69 7479 206f 6620 7261 - equality of ra │ │ │ │ -0008e6d0: 7469 6f6e 616c 206d 6170 730a 2020 2a20 tional maps. * │ │ │ │ -0008e6e0: 225a 5a20 3d3d 2052 6174 696f 6e61 6c4d "ZZ == RationalM │ │ │ │ -0008e6f0: 6170 2220 2d2d 2073 6565 202a 6e6f 7465 ap" -- see *note │ │ │ │ -0008e700: 2052 6174 696f 6e61 6c4d 6170 203d 3d20 RationalMap == │ │ │ │ -0008e710: 5261 7469 6f6e 616c 4d61 703a 2052 6174 RationalMap: Rat │ │ │ │ -0008e720: 696f 6e61 6c4d 6170 203d 3d0a 2020 2020 ionalMap ==. │ │ │ │ -0008e730: 5261 7469 6f6e 616c 4d61 702c 202d 2d20 RationalMap, -- │ │ │ │ -0008e740: 6571 7561 6c69 7479 206f 6620 7261 7469 equality of rati │ │ │ │ -0008e750: 6f6e 616c 206d 6170 730a 2020 2a20 2a6e onal maps. * *n │ │ │ │ -0008e760: 6f74 6520 5261 7469 6f6e 616c 4d61 7020 ote RationalMap │ │ │ │ -0008e770: 5e20 5a5a 3a20 5261 7469 6f6e 616c 4d61 ^ ZZ: RationalMa │ │ │ │ -0008e780: 7020 5e20 5a5a 2c20 2d2d 2070 6f77 6572 p ^ ZZ, -- power │ │ │ │ -0008e790: 0a20 202a 2022 5261 7469 6f6e 616c 4d61 . * "RationalMa │ │ │ │ -0008e7a0: 7020 5e2a 2220 2d2d 2073 6565 202a 6e6f p ^*" -- see *no │ │ │ │ -0008e7b0: 7465 2052 6174 696f 6e61 6c4d 6170 205e te RationalMap ^ │ │ │ │ -0008e7c0: 2a2a 2049 6465 616c 3a20 5261 7469 6f6e ** Ideal: Ration │ │ │ │ -0008e7d0: 616c 4d61 7020 5e5f 7374 5f73 740a 2020 alMap ^_st_st. │ │ │ │ -0008e7e0: 2020 4964 6561 6c2c 202d 2d20 696e 7665 Ideal, -- inve │ │ │ │ -0008e7f0: 7273 6520 696d 6167 6520 7669 6120 6120 rse image via a │ │ │ │ -0008e800: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -0008e810: 202a 6e6f 7465 2052 6174 696f 6e61 6c4d *note RationalM │ │ │ │ -0008e820: 6170 205e 2a2a 2049 6465 616c 3a20 5261 ap ^** Ideal: Ra │ │ │ │ -0008e830: 7469 6f6e 616c 4d61 7020 5e5f 7374 5f73 tionalMap ^_st_s │ │ │ │ -0008e840: 7420 4964 6561 6c2c 202d 2d20 696e 7665 t Ideal, -- inve │ │ │ │ -0008e850: 7273 6520 696d 6167 650a 2020 2020 7669 rse image. vi │ │ │ │ -0008e860: 6120 6120 7261 7469 6f6e 616c 206d 6170 a a rational map │ │ │ │ -0008e870: 0a20 202a 202a 6e6f 7465 2052 6174 696f . * *note Ratio │ │ │ │ -0008e880: 6e61 6c4d 6170 205f 2a3a 2052 6174 696f nalMap _*: Ratio │ │ │ │ -0008e890: 6e61 6c4d 6170 205f 7573 5f73 742c 202d nalMap _us_st, - │ │ │ │ -0008e8a0: 2d20 6469 7265 6374 2069 6d61 6765 2076 - direct image v │ │ │ │ -0008e8b0: 6961 2061 2072 6174 696f 6e61 6c0a 2020 ia a rational. │ │ │ │ -0008e8c0: 2020 6d61 700a 2020 2a20 2252 6174 696f map. * "Ratio │ │ │ │ -0008e8d0: 6e61 6c4d 6170 2049 6465 616c 2220 2d2d nalMap Ideal" -- │ │ │ │ -0008e8e0: 2073 6565 202a 6e6f 7465 2052 6174 696f see *note Ratio │ │ │ │ -0008e8f0: 6e61 6c4d 6170 205f 2a3a 2052 6174 696f nalMap _*: Ratio │ │ │ │ -0008e900: 6e61 6c4d 6170 205f 7573 5f73 742c 202d nalMap _us_st, - │ │ │ │ -0008e910: 2d0a 2020 2020 6469 7265 6374 2069 6d61 -. direct ima │ │ │ │ -0008e920: 6765 2076 6961 2061 2072 6174 696f 6e61 ge via a rationa │ │ │ │ -0008e930: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -0008e940: 5261 7469 6f6e 616c 4d61 7020 7c20 4964 RationalMap | Id │ │ │ │ -0008e950: 6561 6c3a 2052 6174 696f 6e61 6c4d 6170 eal: RationalMap │ │ │ │ -0008e960: 207c 2049 6465 616c 2c20 2d2d 2072 6573 | Ideal, -- res │ │ │ │ -0008e970: 7472 6963 7469 6f6e 206f 6620 610a 2020 triction of a. │ │ │ │ -0008e980: 2020 7261 7469 6f6e 616c 206d 6170 0a20 rational map. │ │ │ │ -0008e990: 202a 2022 5261 7469 6f6e 616c 4d61 7020 * "RationalMap │ │ │ │ -0008e9a0: 7c20 5269 6e67 2220 2d2d 2073 6565 202a | Ring" -- see * │ │ │ │ -0008e9b0: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ -0008e9c0: 207c 2049 6465 616c 3a20 5261 7469 6f6e | Ideal: Ration │ │ │ │ -0008e9d0: 616c 4d61 7020 7c20 4964 6561 6c2c 0a20 alMap | Ideal,. │ │ │ │ -0008e9e0: 2020 202d 2d20 7265 7374 7269 6374 696f -- restrictio │ │ │ │ -0008e9f0: 6e20 6f66 2061 2072 6174 696f 6e61 6c20 n of a rational │ │ │ │ -0008ea00: 6d61 700a 2020 2a20 2252 6174 696f 6e61 map. * "Rationa │ │ │ │ -0008ea10: 6c4d 6170 207c 2052 696e 6745 6c65 6d65 lMap | RingEleme │ │ │ │ -0008ea20: 6e74 2220 2d2d 2073 6565 202a 6e6f 7465 nt" -- see *note │ │ │ │ -0008ea30: 2052 6174 696f 6e61 6c4d 6170 207c 2049 RationalMap | I │ │ │ │ -0008ea40: 6465 616c 3a20 5261 7469 6f6e 616c 4d61 deal: RationalMa │ │ │ │ -0008ea50: 7020 7c0a 2020 2020 4964 6561 6c2c 202d p |. Ideal, - │ │ │ │ -0008ea60: 2d20 7265 7374 7269 6374 696f 6e20 6f66 - restriction of │ │ │ │ -0008ea70: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ -0008ea80: 2020 2a20 2a6e 6f74 6520 5261 7469 6f6e * *note Ration │ │ │ │ -0008ea90: 616c 4d61 7020 7c7c 2049 6465 616c 3a20 alMap || Ideal: │ │ │ │ -0008eaa0: 5261 7469 6f6e 616c 4d61 7020 7c7c 2049 RationalMap || I │ │ │ │ -0008eab0: 6465 616c 2c20 2d2d 2072 6573 7472 6963 deal, -- restric │ │ │ │ -0008eac0: 7469 6f6e 206f 6620 610a 2020 2020 7261 tion of a. ra │ │ │ │ -0008ead0: 7469 6f6e 616c 206d 6170 0a20 202a 2022 tional map. * " │ │ │ │ -0008eae0: 5261 7469 6f6e 616c 4d61 7020 7c7c 2052 RationalMap || R │ │ │ │ -0008eaf0: 696e 6722 202d 2d20 7365 6520 2a6e 6f74 ing" -- see *not │ │ │ │ -0008eb00: 6520 5261 7469 6f6e 616c 4d61 7020 7c7c e RationalMap || │ │ │ │ -0008eb10: 2049 6465 616c 3a20 5261 7469 6f6e 616c Ideal: Rational │ │ │ │ -0008eb20: 4d61 7020 7c7c 0a20 2020 2049 6465 616c Map ||. Ideal │ │ │ │ -0008eb30: 2c20 2d2d 2072 6573 7472 6963 7469 6f6e , -- restriction │ │ │ │ -0008eb40: 206f 6620 6120 7261 7469 6f6e 616c 206d of a rational m │ │ │ │ -0008eb50: 6170 0a20 202a 2022 5261 7469 6f6e 616c ap. * "Rational │ │ │ │ -0008eb60: 4d61 7020 7c7c 2052 696e 6745 6c65 6d65 Map || RingEleme │ │ │ │ -0008eb70: 6e74 2220 2d2d 2073 6565 202a 6e6f 7465 nt" -- see *note │ │ │ │ -0008eb80: 2052 6174 696f 6e61 6c4d 6170 207c 7c20 RationalMap || │ │ │ │ -0008eb90: 4964 6561 6c3a 2052 6174 696f 6e61 6c4d Ideal: RationalM │ │ │ │ -0008eba0: 6170 0a20 2020 207c 7c20 4964 6561 6c2c ap. || Ideal, │ │ │ │ -0008ebb0: 202d 2d20 7265 7374 7269 6374 696f 6e20 -- restriction │ │ │ │ -0008ebc0: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ -0008ebd0: 700a 2020 2a20 2273 6567 7265 2852 6174 p. * "segre(Rat │ │ │ │ -0008ebe0: 696f 6e61 6c4d 6170 2922 202d 2d20 7365 ionalMap)" -- se │ │ │ │ -0008ebf0: 6520 2a6e 6f74 6520 7365 6772 653a 2073 e *note segre: s │ │ │ │ -0008ec00: 6567 7265 2c20 2d2d 2053 6567 7265 2065 egre, -- Segre e │ │ │ │ -0008ec10: 6d62 6564 6469 6e67 0a20 202a 2022 5365 mbedding. * "Se │ │ │ │ -0008ec20: 6772 6543 6c61 7373 2852 6174 696f 6e61 greClass(Rationa │ │ │ │ -0008ec30: 6c4d 6170 2922 202d 2d20 7365 6520 2a6e lMap)" -- see *n │ │ │ │ -0008ec40: 6f74 6520 5365 6772 6543 6c61 7373 3a20 ote SegreClass: │ │ │ │ -0008ec50: 5365 6772 6543 6c61 7373 2c20 2d2d 2053 SegreClass, -- S │ │ │ │ -0008ec60: 6567 7265 0a20 2020 2063 6c61 7373 206f egre. class o │ │ │ │ -0008ec70: 6620 6120 636c 6f73 6564 2073 7562 7363 f a closed subsc │ │ │ │ -0008ec80: 6865 6d65 206f 6620 6120 7072 6f6a 6563 heme of a projec │ │ │ │ -0008ec90: 7469 7665 2076 6172 6965 7479 0a20 202a tive variety. * │ │ │ │ -0008eca0: 202a 6e6f 7465 2073 6f75 7263 6528 5261 *note source(Ra │ │ │ │ -0008ecb0: 7469 6f6e 616c 4d61 7029 3a20 736f 7572 tionalMap): sour │ │ │ │ -0008ecc0: 6365 5f6c 7052 6174 696f 6e61 6c4d 6170 ce_lpRationalMap │ │ │ │ -0008ecd0: 5f72 702c 202d 2d20 636f 6f72 6469 6e61 _rp, -- coordina │ │ │ │ -0008ece0: 7465 2072 696e 6720 6f66 0a20 2020 2074 te ring of. t │ │ │ │ -0008ecf0: 6865 2073 6f75 7263 6520 666f 7220 6120 he source for a │ │ │ │ -0008ed00: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ -0008ed10: 202a 6e6f 7465 2073 7562 7374 6974 7574 *note substitut │ │ │ │ -0008ed20: 6528 5261 7469 6f6e 616c 4d61 702c 506f e(RationalMap,Po │ │ │ │ -0008ed30: 6c79 6e6f 6d69 616c 5269 6e67 2c50 6f6c lynomialRing,Pol │ │ │ │ -0008ed40: 796e 6f6d 6961 6c52 696e 6729 3a0a 2020 ynomialRing):. │ │ │ │ -0008ed50: 2020 7375 6273 7469 7475 7465 5f6c 7052 substitute_lpR │ │ │ │ -0008ed60: 6174 696f 6e61 6c4d 6170 5f63 6d50 6f6c ationalMap_cmPol │ │ │ │ -0008ed70: 796e 6f6d 6961 6c52 696e 675f 636d 506f ynomialRing_cmPo │ │ │ │ -0008ed80: 6c79 6e6f 6d69 616c 5269 6e67 5f72 702c lynomialRing_rp, │ │ │ │ -0008ed90: 202d 2d0a 2020 2020 7375 6273 7469 7475 --. substitu │ │ │ │ -0008eda0: 7465 2074 6865 2061 6d62 6965 6e74 2070 te the ambient p │ │ │ │ -0008edb0: 726f 6a65 6374 6976 6520 7370 6163 6573 rojective spaces │ │ │ │ -0008edc0: 206f 6620 736f 7572 6365 2061 6e64 2074 of source and t │ │ │ │ -0008edd0: 6172 6765 740a 2020 2a20 2272 6174 696f arget. * "ratio │ │ │ │ -0008ede0: 6e61 6c4d 6170 2852 6174 696f 6e61 6c4d nalMap(RationalM │ │ │ │ -0008edf0: 6170 2922 202d 2d20 7365 6520 2a6e 6f74 ap)" -- see *not │ │ │ │ -0008ee00: 6520 7375 7065 7228 5261 7469 6f6e 616c e super(Rational │ │ │ │ -0008ee10: 4d61 7029 3a0a 2020 2020 7375 7065 725f Map):. super_ │ │ │ │ -0008ee20: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -0008ee30: 2c20 2d2d 2067 6574 2074 6865 2072 6174 , -- get the rat │ │ │ │ -0008ee40: 696f 6e61 6c20 6d61 7020 7768 6f73 6520 ional map whose │ │ │ │ -0008ee50: 7461 7267 6574 2069 7320 610a 2020 2020 target is a. │ │ │ │ -0008ee60: 7072 6f6a 6563 7469 7665 2073 7061 6365 projective space │ │ │ │ -0008ee70: 0a20 202a 202a 6e6f 7465 2073 7570 6572 . * *note super │ │ │ │ -0008ee80: 2852 6174 696f 6e61 6c4d 6170 293a 2073 (RationalMap): s │ │ │ │ -0008ee90: 7570 6572 5f6c 7052 6174 696f 6e61 6c4d uper_lpRationalM │ │ │ │ -0008eea0: 6170 5f72 702c 202d 2d20 6765 7420 7468 ap_rp, -- get th │ │ │ │ -0008eeb0: 6520 7261 7469 6f6e 616c 206d 6170 0a20 e rational map. │ │ │ │ -0008eec0: 2020 2077 686f 7365 2074 6172 6765 7420 whose target │ │ │ │ -0008eed0: 6973 2061 2070 726f 6a65 6374 6976 6520 is a projective │ │ │ │ -0008eee0: 7370 6163 650a 2020 2a20 2a6e 6f74 6520 space. * *note │ │ │ │ -0008eef0: 7461 7267 6574 2852 6174 696f 6e61 6c4d target(RationalM │ │ │ │ -0008ef00: 6170 293a 2074 6172 6765 745f 6c70 5261 ap): target_lpRa │ │ │ │ -0008ef10: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -0008ef20: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ -0008ef30: 206f 660a 2020 2020 7468 6520 7461 7267 of. the targ │ │ │ │ -0008ef40: 6574 2066 6f72 2061 2072 6174 696f 6e61 et for a rationa │ │ │ │ -0008ef50: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -0008ef60: 746f 4578 7465 726e 616c 5374 7269 6e67 toExternalString │ │ │ │ -0008ef70: 2852 6174 696f 6e61 6c4d 6170 293a 2074 (RationalMap): t │ │ │ │ -0008ef80: 6f45 7874 6572 6e61 6c53 7472 696e 675f oExternalString_ │ │ │ │ -0008ef90: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -0008efa0: 2c20 2d2d 0a20 2020 2063 6f6e 7665 7274 , --. convert │ │ │ │ -0008efb0: 2074 6f20 6120 7265 6164 6162 6c65 2073 to a readable s │ │ │ │ -0008efc0: 7472 696e 670a 0a46 6f72 2074 6865 2070 tring..For the p │ │ │ │ -0008efd0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -0008efe0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -0008eff0: 6520 6f62 6a65 6374 202a 6e6f 7465 2052 e object *note R │ │ │ │ -0008f000: 6174 696f 6e61 6c4d 6170 3a20 5261 7469 ationalMap: Rati │ │ │ │ -0008f010: 6f6e 616c 4d61 702c 2069 7320 6120 2a6e onalMap, is a *n │ │ │ │ -0008f020: 6f74 6520 7479 7065 3a0a 284d 6163 6175 ote type:.(Macau │ │ │ │ -0008f030: 6c61 7932 446f 6329 5479 7065 2c2c 2077 lay2Doc)Type,, w │ │ │ │ -0008f040: 6974 6820 616e 6365 7374 6f72 2063 6c61 ith ancestor cla │ │ │ │ -0008f050: 7373 6573 202a 6e6f 7465 204d 7574 6162 sses *note Mutab │ │ │ │ -0008f060: 6c65 4861 7368 5461 626c 653a 0a28 4d61 leHashTable:.(Ma │ │ │ │ -0008f070: 6361 756c 6179 3244 6f63 294d 7574 6162 caulay2Doc)Mutab │ │ │ │ -0008f080: 6c65 4861 7368 5461 626c 652c 203c 202a leHashTable, < * │ │ │ │ -0008f090: 6e6f 7465 2048 6173 6854 6162 6c65 3a20 note HashTable: │ │ │ │ -0008f0a0: 284d 6163 6175 6c61 7932 446f 6329 4861 (Macaulay2Doc)Ha │ │ │ │ -0008f0b0: 7368 5461 626c 652c 203c 0a2a 6e6f 7465 shTable, <.*note │ │ │ │ -0008f0c0: 2054 6869 6e67 3a20 284d 6163 6175 6c61 Thing: (Macaula │ │ │ │ -0008f0d0: 7932 446f 6329 5468 696e 672c 2e0a 0a2d y2Doc)Thing,...- │ │ │ │ +0008d1f0: 3d0a 0a20 202a 202a 6e6f 7465 2071 7561 =.. * *note qua │ │ │ │ +0008d200: 6472 6f51 7561 6472 6963 4372 656d 6f6e droQuadricCremon │ │ │ │ +0008d210: 6154 7261 6e73 666f 726d 6174 696f 6e3a aTransformation: │ │ │ │ +0008d220: 0a20 2020 2071 7561 6472 6f51 7561 6472 . quadroQuadr │ │ │ │ +0008d230: 6963 4372 656d 6f6e 6154 7261 6e73 666f icCremonaTransfo │ │ │ │ +0008d240: 726d 6174 696f 6e2c 202d 2d20 7175 6164 rmation, -- quad │ │ │ │ +0008d250: 726f 2d71 7561 6472 6963 2043 7265 6d6f ro-quadric Cremo │ │ │ │ +0008d260: 6e61 0a20 2020 2074 7261 6e73 666f 726d na. transform │ │ │ │ +0008d270: 6174 696f 6e73 0a20 202a 202a 6e6f 7465 ations. * *note │ │ │ │ +0008d280: 2073 6567 7265 3a20 7365 6772 652c 202d segre: segre, - │ │ │ │ +0008d290: 2d20 5365 6772 6520 656d 6265 6464 696e - Segre embeddin │ │ │ │ +0008d2a0: 670a 2020 2a20 2a6e 6f74 6520 7370 6563 g. * *note spec │ │ │ │ +0008d2b0: 6961 6c43 7265 6d6f 6e61 5472 616e 7366 ialCremonaTransf │ │ │ │ +0008d2c0: 6f72 6d61 7469 6f6e 3a20 7370 6563 6961 ormation: specia │ │ │ │ +0008d2d0: 6c43 7265 6d6f 6e61 5472 616e 7366 6f72 lCremonaTransfor │ │ │ │ +0008d2e0: 6d61 7469 6f6e 2c20 2d2d 0a20 2020 2073 mation, --. s │ │ │ │ +0008d2f0: 7065 6369 616c 2043 7265 6d6f 6e61 2074 pecial Cremona t │ │ │ │ +0008d300: 7261 6e73 666f 726d 6174 696f 6e73 2077 ransformations w │ │ │ │ +0008d310: 686f 7365 2062 6173 6520 6c6f 6375 7320 hose base locus │ │ │ │ +0008d320: 6861 7320 6469 6d65 6e73 696f 6e20 6174 has dimension at │ │ │ │ +0008d330: 206d 6f73 740a 2020 2020 7468 7265 650a most. three. │ │ │ │ +0008d340: 2020 2a20 2a6e 6f74 6520 7370 6563 6961 * *note specia │ │ │ │ +0008d350: 6c43 7562 6963 5472 616e 7366 6f72 6d61 lCubicTransforma │ │ │ │ +0008d360: 7469 6f6e 3a20 7370 6563 6961 6c43 7562 tion: specialCub │ │ │ │ +0008d370: 6963 5472 616e 7366 6f72 6d61 7469 6f6e icTransformation │ │ │ │ +0008d380: 2c20 2d2d 2073 7065 6369 616c 0a20 2020 , -- special. │ │ │ │ +0008d390: 2063 7562 6963 2074 7261 6e73 666f 726d cubic transform │ │ │ │ +0008d3a0: 6174 696f 6e73 2077 686f 7365 2062 6173 ations whose bas │ │ │ │ +0008d3b0: 6520 6c6f 6375 7320 6861 7320 6469 6d65 e locus has dime │ │ │ │ +0008d3c0: 6e73 696f 6e20 6174 206d 6f73 7420 7468 nsion at most th │ │ │ │ +0008d3d0: 7265 650a 2020 2a20 2a6e 6f74 6520 7370 ree. * *note sp │ │ │ │ +0008d3e0: 6563 6961 6c51 7561 6472 6174 6963 5472 ecialQuadraticTr │ │ │ │ +0008d3f0: 616e 7366 6f72 6d61 7469 6f6e 3a20 7370 ansformation: sp │ │ │ │ +0008d400: 6563 6961 6c51 7561 6472 6174 6963 5472 ecialQuadraticTr │ │ │ │ +0008d410: 616e 7366 6f72 6d61 7469 6f6e 2c20 2d2d ansformation, -- │ │ │ │ +0008d420: 0a20 2020 2073 7065 6369 616c 2071 7561 . special qua │ │ │ │ +0008d430: 6472 6174 6963 2074 7261 6e73 666f 726d dratic transform │ │ │ │ +0008d440: 6174 696f 6e73 2077 686f 7365 2062 6173 ations whose bas │ │ │ │ +0008d450: 6520 6c6f 6375 7320 6861 7320 6469 6d65 e locus has dime │ │ │ │ +0008d460: 6e73 696f 6e20 7468 7265 650a 0a4d 6574 nsion three..Met │ │ │ │ +0008d470: 686f 6473 2074 6861 7420 7573 6520 6120 hods that use a │ │ │ │ +0008d480: 7261 7469 6f6e 616c 206d 6170 3a0a 3d3d rational map:.== │ │ │ │ +0008d490: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0008d4a0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0008d4b0: 2020 2a20 2261 6273 7472 6163 7452 6174 * "abstractRat │ │ │ │ +0008d4c0: 696f 6e61 6c4d 6170 2852 6174 696f 6e61 ionalMap(Rationa │ │ │ │ +0008d4d0: 6c4d 6170 2922 202d 2d20 7365 6520 2a6e lMap)" -- see *n │ │ │ │ +0008d4e0: 6f74 6520 6162 7374 7261 6374 5261 7469 ote abstractRati │ │ │ │ +0008d4f0: 6f6e 616c 4d61 703a 0a20 2020 2061 6273 onalMap:. abs │ │ │ │ +0008d500: 7472 6163 7452 6174 696f 6e61 6c4d 6170 tractRationalMap │ │ │ │ +0008d510: 2c20 2d2d 206d 616b 6520 616e 2061 6273 , -- make an abs │ │ │ │ +0008d520: 7472 6163 7420 7261 7469 6f6e 616c 206d tract rational m │ │ │ │ +0008d530: 6170 0a20 202a 2022 6170 7072 6f78 696d ap. * "approxim │ │ │ │ +0008d540: 6174 6549 6e76 6572 7365 4d61 7028 5261 ateInverseMap(Ra │ │ │ │ +0008d550: 7469 6f6e 616c 4d61 7029 2220 2d2d 2073 tionalMap)" -- s │ │ │ │ +0008d560: 6565 202a 6e6f 7465 2061 7070 726f 7869 ee *note approxi │ │ │ │ +0008d570: 6d61 7465 496e 7665 7273 654d 6170 3a0a mateInverseMap:. │ │ │ │ +0008d580: 2020 2020 6170 7072 6f78 696d 6174 6549 approximateI │ │ │ │ +0008d590: 6e76 6572 7365 4d61 702c 202d 2d20 7261 nverseMap, -- ra │ │ │ │ +0008d5a0: 6e64 6f6d 206d 6170 2072 656c 6174 6564 ndom map related │ │ │ │ +0008d5b0: 2074 6f20 7468 6520 696e 7665 7273 6520 to the inverse │ │ │ │ +0008d5c0: 6f66 2061 2062 6972 6174 696f 6e61 6c0a of a birational. │ │ │ │ +0008d5d0: 2020 2020 6d61 700a 2020 2a20 2261 7070 map. * "app │ │ │ │ +0008d5e0: 726f 7869 6d61 7465 496e 7665 7273 654d roximateInverseM │ │ │ │ +0008d5f0: 6170 2852 6174 696f 6e61 6c4d 6170 2c5a ap(RationalMap,Z │ │ │ │ +0008d600: 5a29 2220 2d2d 2073 6565 202a 6e6f 7465 Z)" -- see *note │ │ │ │ +0008d610: 2061 7070 726f 7869 6d61 7465 496e 7665 approximateInve │ │ │ │ +0008d620: 7273 654d 6170 3a0a 2020 2020 6170 7072 rseMap:. appr │ │ │ │ +0008d630: 6f78 696d 6174 6549 6e76 6572 7365 4d61 oximateInverseMa │ │ │ │ +0008d640: 702c 202d 2d20 7261 6e64 6f6d 206d 6170 p, -- random map │ │ │ │ +0008d650: 2072 656c 6174 6564 2074 6f20 7468 6520 related to the │ │ │ │ +0008d660: 696e 7665 7273 6520 6f66 2061 2062 6972 inverse of a bir │ │ │ │ +0008d670: 6174 696f 6e61 6c0a 2020 2020 6d61 700a ational. map. │ │ │ │ +0008d680: 2020 2a20 2a6e 6f74 6520 636f 6566 6669 * *note coeffi │ │ │ │ +0008d690: 6369 656e 7452 696e 6728 5261 7469 6f6e cientRing(Ration │ │ │ │ +0008d6a0: 616c 4d61 7029 3a20 636f 6566 6669 6369 alMap): coeffici │ │ │ │ +0008d6b0: 656e 7452 696e 675f 6c70 5261 7469 6f6e entRing_lpRation │ │ │ │ +0008d6c0: 616c 4d61 705f 7270 2c20 2d2d 0a20 2020 alMap_rp, --. │ │ │ │ +0008d6d0: 2063 6f65 6666 6963 6965 6e74 2072 696e coefficient rin │ │ │ │ +0008d6e0: 6720 6f66 2061 2072 6174 696f 6e61 6c20 g of a rational │ │ │ │ +0008d6f0: 6d61 700a 2020 2a20 2a6e 6f74 6520 636f map. * *note co │ │ │ │ +0008d700: 6566 6669 6369 656e 7473 2852 6174 696f efficients(Ratio │ │ │ │ +0008d710: 6e61 6c4d 6170 293a 2063 6f65 6666 6963 nalMap): coeffic │ │ │ │ +0008d720: 6965 6e74 735f 6c70 5261 7469 6f6e 616c ients_lpRational │ │ │ │ +0008d730: 4d61 705f 7270 2c20 2d2d 0a20 2020 2063 Map_rp, --. c │ │ │ │ +0008d740: 6f65 6666 6963 6965 6e74 206d 6174 7269 oefficient matri │ │ │ │ +0008d750: 7820 6f66 2061 2072 6174 696f 6e61 6c20 x of a rational │ │ │ │ +0008d760: 6d61 700a 2020 2a20 2a6e 6f74 6520 6465 map. * *note de │ │ │ │ +0008d770: 6772 6565 2852 6174 696f 6e61 6c4d 6170 gree(RationalMap │ │ │ │ +0008d780: 293a 2064 6567 7265 655f 6c70 5261 7469 ): degree_lpRati │ │ │ │ +0008d790: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2064 onalMap_rp, -- d │ │ │ │ +0008d7a0: 6567 7265 6520 6f66 2061 2072 6174 696f egree of a ratio │ │ │ │ +0008d7b0: 6e61 6c0a 2020 2020 6d61 700a 2020 2a20 nal. map. * │ │ │ │ +0008d7c0: 2a6e 6f74 6520 6465 6772 6565 4d61 7028 *note degreeMap( │ │ │ │ +0008d7d0: 5261 7469 6f6e 616c 4d61 7029 3a20 6465 RationalMap): de │ │ │ │ +0008d7e0: 6772 6565 4d61 705f 6c70 5261 7469 6f6e greeMap_lpRation │ │ │ │ +0008d7f0: 616c 4d61 705f 7270 2c20 2d2d 2064 6567 alMap_rp, -- deg │ │ │ │ +0008d800: 7265 6520 6f66 2061 0a20 2020 2072 6174 ree of a. rat │ │ │ │ +0008d810: 696f 6e61 6c20 6d61 700a 2020 2a20 2a6e ional map. * *n │ │ │ │ +0008d820: 6f74 6520 6465 6772 6565 7328 5261 7469 ote degrees(Rati │ │ │ │ +0008d830: 6f6e 616c 4d61 7029 3a20 6465 6772 6565 onalMap): degree │ │ │ │ +0008d840: 735f 6c70 5261 7469 6f6e 616c 4d61 705f s_lpRationalMap_ │ │ │ │ +0008d850: 7270 2c20 2d2d 2070 726f 6a65 6374 6976 rp, -- projectiv │ │ │ │ +0008d860: 6520 6465 6772 6565 730a 2020 2020 6f66 e degrees. of │ │ │ │ +0008d870: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0008d880: 2020 2a20 226d 756c 7469 6465 6772 6565 * "multidegree │ │ │ │ +0008d890: 2852 6174 696f 6e61 6c4d 6170 2922 202d (RationalMap)" - │ │ │ │ +0008d8a0: 2d20 7365 6520 2a6e 6f74 6520 6465 6772 - see *note degr │ │ │ │ +0008d8b0: 6565 7328 5261 7469 6f6e 616c 4d61 7029 ees(RationalMap) │ │ │ │ +0008d8c0: 3a0a 2020 2020 6465 6772 6565 735f 6c70 :. degrees_lp │ │ │ │ +0008d8d0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +0008d8e0: 2d2d 2070 726f 6a65 6374 6976 6520 6465 -- projective de │ │ │ │ +0008d8f0: 6772 6565 7320 6f66 2061 2072 6174 696f grees of a ratio │ │ │ │ +0008d900: 6e61 6c20 6d61 700a 2020 2a20 2a6e 6f74 nal map. * *not │ │ │ │ +0008d910: 6520 6465 7363 7269 6265 2852 6174 696f e describe(Ratio │ │ │ │ +0008d920: 6e61 6c4d 6170 293a 2064 6573 6372 6962 nalMap): describ │ │ │ │ +0008d930: 655f 6c70 5261 7469 6f6e 616c 4d61 705f e_lpRationalMap_ │ │ │ │ +0008d940: 7270 2c20 2d2d 2064 6573 6372 6962 6520 rp, -- describe │ │ │ │ +0008d950: 610a 2020 2020 7261 7469 6f6e 616c 206d a. rational m │ │ │ │ +0008d960: 6170 0a20 202a 202a 6e6f 7465 2065 6e74 ap. * *note ent │ │ │ │ +0008d970: 7269 6573 2852 6174 696f 6e61 6c4d 6170 ries(RationalMap │ │ │ │ +0008d980: 293a 2065 6e74 7269 6573 5f6c 7052 6174 ): entries_lpRat │ │ │ │ +0008d990: 696f 6e61 6c4d 6170 5f72 702c 202d 2d20 ionalMap_rp, -- │ │ │ │ +0008d9a0: 7468 6520 656e 7472 6965 7320 6f66 2074 the entries of t │ │ │ │ +0008d9b0: 6865 0a20 2020 206d 6174 7269 7820 6173 he. matrix as │ │ │ │ +0008d9c0: 736f 6369 6174 6564 2074 6f20 6120 7261 sociated to a ra │ │ │ │ +0008d9d0: 7469 6f6e 616c 206d 6170 0a20 202a 2022 tional map. * " │ │ │ │ +0008d9e0: 6578 6365 7074 696f 6e61 6c4c 6f63 7573 exceptionalLocus │ │ │ │ +0008d9f0: 2852 6174 696f 6e61 6c4d 6170 2922 202d (RationalMap)" - │ │ │ │ +0008da00: 2d20 7365 6520 2a6e 6f74 6520 6578 6365 - see *note exce │ │ │ │ +0008da10: 7074 696f 6e61 6c4c 6f63 7573 3a0a 2020 ptionalLocus:. │ │ │ │ +0008da20: 2020 6578 6365 7074 696f 6e61 6c4c 6f63 exceptionalLoc │ │ │ │ +0008da30: 7573 2c20 2d2d 2065 7863 6570 7469 6f6e us, -- exception │ │ │ │ +0008da40: 616c 206c 6f63 7573 206f 6620 6120 6269 al locus of a bi │ │ │ │ +0008da50: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ +0008da60: 202a 6e6f 7465 2066 6c61 7474 656e 2852 *note flatten(R │ │ │ │ +0008da70: 6174 696f 6e61 6c4d 6170 293a 2066 6c61 ationalMap): fla │ │ │ │ +0008da80: 7474 656e 5f6c 7052 6174 696f 6e61 6c4d tten_lpRationalM │ │ │ │ +0008da90: 6170 5f72 702c 202d 2d20 7772 6974 6520 ap_rp, -- write │ │ │ │ +0008daa0: 736f 7572 6365 2061 6e64 0a20 2020 2074 source and. t │ │ │ │ +0008dab0: 6172 6765 7420 6173 206e 6f6e 6465 6765 arget as nondege │ │ │ │ +0008dac0: 6e65 7261 7465 2076 6172 6965 7469 6573 nerate varieties │ │ │ │ +0008dad0: 0a20 202a 2022 666f 7263 6549 6d61 6765 . * "forceImage │ │ │ │ +0008dae0: 2852 6174 696f 6e61 6c4d 6170 2c49 6465 (RationalMap,Ide │ │ │ │ +0008daf0: 616c 2922 202d 2d20 7365 6520 2a6e 6f74 al)" -- see *not │ │ │ │ +0008db00: 6520 666f 7263 6549 6d61 6765 3a20 666f e forceImage: fo │ │ │ │ +0008db10: 7263 6549 6d61 6765 2c20 2d2d 0a20 2020 rceImage, --. │ │ │ │ +0008db20: 2064 6563 6c61 7265 2077 6869 6368 2069 declare which i │ │ │ │ +0008db30: 7320 7468 6520 696d 6167 6520 6f66 2061 s the image of a │ │ │ │ +0008db40: 2072 6174 696f 6e61 6c20 6d61 700a 2020 rational map. │ │ │ │ +0008db50: 2a20 2266 6f72 6365 496e 7665 7273 654d * "forceInverseM │ │ │ │ +0008db60: 6170 2852 6174 696f 6e61 6c4d 6170 2c52 ap(RationalMap,R │ │ │ │ +0008db70: 6174 696f 6e61 6c4d 6170 2922 202d 2d20 ationalMap)" -- │ │ │ │ +0008db80: 7365 6520 2a6e 6f74 6520 666f 7263 6549 see *note forceI │ │ │ │ +0008db90: 6e76 6572 7365 4d61 703a 0a20 2020 2066 nverseMap:. f │ │ │ │ +0008dba0: 6f72 6365 496e 7665 7273 654d 6170 2c20 orceInverseMap, │ │ │ │ +0008dbb0: 2d2d 2064 6563 6c61 7265 2074 6861 7420 -- declare that │ │ │ │ +0008dbc0: 7477 6f20 7261 7469 6f6e 616c 206d 6170 two rational map │ │ │ │ +0008dbd0: 7320 6172 6520 6f6e 6520 7468 6520 696e s are one the in │ │ │ │ +0008dbe0: 7665 7273 6520 6f66 0a20 2020 2074 6865 verse of. the │ │ │ │ +0008dbf0: 206f 7468 6572 0a20 202a 2022 6772 6170 other. * "grap │ │ │ │ +0008dc00: 6828 5261 7469 6f6e 616c 4d61 7029 2220 h(RationalMap)" │ │ │ │ +0008dc10: 2d2d 2073 6565 202a 6e6f 7465 2067 7261 -- see *note gra │ │ │ │ +0008dc20: 7068 3a20 6772 6170 682c 202d 2d20 636c ph: graph, -- cl │ │ │ │ +0008dc30: 6f73 7572 6520 6f66 2074 6865 2067 7261 osure of the gra │ │ │ │ +0008dc40: 7068 206f 660a 2020 2020 6120 7261 7469 ph of. a rati │ │ │ │ +0008dc50: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ +0008dc60: 7465 2069 6465 616c 2852 6174 696f 6e61 te ideal(Rationa │ │ │ │ +0008dc70: 6c4d 6170 293a 2069 6465 616c 5f6c 7052 lMap): ideal_lpR │ │ │ │ +0008dc80: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0008dc90: 2d20 6261 7365 206c 6f63 7573 206f 6620 - base locus of │ │ │ │ +0008dca0: 610a 2020 2020 7261 7469 6f6e 616c 206d a. rational m │ │ │ │ +0008dcb0: 6170 0a20 202a 202a 6e6f 7465 2069 6d61 ap. * *note ima │ │ │ │ +0008dcc0: 6765 2852 6174 696f 6e61 6c4d 6170 2c53 ge(RationalMap,S │ │ │ │ +0008dcd0: 7472 696e 6729 3a20 696d 6167 655f 6c70 tring): image_lp │ │ │ │ +0008dce0: 5261 7469 6f6e 616c 4d61 705f 636d 5374 RationalMap_cmSt │ │ │ │ +0008dcf0: 7269 6e67 5f72 702c 202d 2d0a 2020 2020 ring_rp, --. │ │ │ │ +0008dd00: 636c 6f73 7572 6520 6f66 2074 6865 2069 closure of the i │ │ │ │ +0008dd10: 6d61 6765 206f 6620 6120 7261 7469 6f6e mage of a ration │ │ │ │ +0008dd20: 616c 206d 6170 2075 7369 6e67 2074 6865 al map using the │ │ │ │ +0008dd30: 2046 3420 616c 676f 7269 7468 6d0a 2020 F4 algorithm. │ │ │ │ +0008dd40: 2020 2865 7870 6572 696d 656e 7461 6c29 (experimental) │ │ │ │ +0008dd50: 0a20 202a 2022 696d 6167 6528 5261 7469 . * "image(Rati │ │ │ │ +0008dd60: 6f6e 616c 4d61 7029 2220 2d2d 2073 6565 onalMap)" -- see │ │ │ │ +0008dd70: 202a 6e6f 7465 2069 6d61 6765 2852 6174 *note image(Rat │ │ │ │ +0008dd80: 696f 6e61 6c4d 6170 2c5a 5a29 3a0a 2020 ionalMap,ZZ):. │ │ │ │ +0008dd90: 2020 696d 6167 655f 6c70 5261 7469 6f6e image_lpRation │ │ │ │ +0008dda0: 616c 4d61 705f 636d 5a5a 5f72 702c 202d alMap_cmZZ_rp, - │ │ │ │ +0008ddb0: 2d20 636c 6f73 7572 6520 6f66 2074 6865 - closure of the │ │ │ │ +0008ddc0: 2069 6d61 6765 206f 6620 6120 7261 7469 image of a rati │ │ │ │ +0008ddd0: 6f6e 616c 206d 6170 0a20 202a 202a 6e6f onal map. * *no │ │ │ │ +0008dde0: 7465 2069 6d61 6765 2852 6174 696f 6e61 te image(Rationa │ │ │ │ +0008ddf0: 6c4d 6170 2c5a 5a29 3a20 696d 6167 655f lMap,ZZ): image_ │ │ │ │ +0008de00: 6c70 5261 7469 6f6e 616c 4d61 705f 636d lpRationalMap_cm │ │ │ │ +0008de10: 5a5a 5f72 702c 202d 2d20 636c 6f73 7572 ZZ_rp, -- closur │ │ │ │ +0008de20: 6520 6f66 2074 6865 0a20 2020 2069 6d61 e of the. ima │ │ │ │ +0008de30: 6765 206f 6620 6120 7261 7469 6f6e 616c ge of a rational │ │ │ │ +0008de40: 206d 6170 0a20 202a 202a 6e6f 7465 2069 map. * *note i │ │ │ │ +0008de50: 6e76 6572 7365 2852 6174 696f 6e61 6c4d nverse(RationalM │ │ │ │ +0008de60: 6170 293a 2069 6e76 6572 7365 5f6c 7052 ap): inverse_lpR │ │ │ │ +0008de70: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0008de80: 2d20 696e 7665 7273 6520 6f66 2061 0a20 - inverse of a. │ │ │ │ +0008de90: 2020 2062 6972 6174 696f 6e61 6c20 6d61 birational ma │ │ │ │ +0008dea0: 700a 2020 2a20 2269 6e76 6572 7365 2852 p. * "inverse(R │ │ │ │ +0008deb0: 6174 696f 6e61 6c4d 6170 2c4f 7074 696f ationalMap,Optio │ │ │ │ +0008dec0: 6e29 2220 2d2d 2073 6565 202a 6e6f 7465 n)" -- see *note │ │ │ │ +0008ded0: 2069 6e76 6572 7365 2852 6174 696f 6e61 inverse(Rationa │ │ │ │ +0008dee0: 6c4d 6170 293a 0a20 2020 2069 6e76 6572 lMap):. inver │ │ │ │ +0008def0: 7365 5f6c 7052 6174 696f 6e61 6c4d 6170 se_lpRationalMap │ │ │ │ +0008df00: 5f72 702c 202d 2d20 696e 7665 7273 6520 _rp, -- inverse │ │ │ │ +0008df10: 6f66 2061 2062 6972 6174 696f 6e61 6c20 of a birational │ │ │ │ +0008df20: 6d61 700a 2020 2a20 2269 6e76 6572 7365 map. * "inverse │ │ │ │ +0008df30: 4d61 7028 5261 7469 6f6e 616c 4d61 7029 Map(RationalMap) │ │ │ │ +0008df40: 2220 2d2d 2073 6565 202a 6e6f 7465 2069 " -- see *note i │ │ │ │ +0008df50: 6e76 6572 7365 4d61 703a 2069 6e76 6572 nverseMap: inver │ │ │ │ +0008df60: 7365 4d61 702c 202d 2d20 696e 7665 7273 seMap, -- invers │ │ │ │ +0008df70: 650a 2020 2020 6f66 2061 2062 6972 6174 e. of a birat │ │ │ │ +0008df80: 696f 6e61 6c20 6d61 700a 2020 2a20 2269 ional map. * "i │ │ │ │ +0008df90: 7342 6972 6174 696f 6e61 6c28 5261 7469 sBirational(Rati │ │ │ │ +0008dfa0: 6f6e 616c 4d61 7029 2220 2d2d 2073 6565 onalMap)" -- see │ │ │ │ +0008dfb0: 202a 6e6f 7465 2069 7342 6972 6174 696f *note isBiratio │ │ │ │ +0008dfc0: 6e61 6c3a 2069 7342 6972 6174 696f 6e61 nal: isBirationa │ │ │ │ +0008dfd0: 6c2c 202d 2d0a 2020 2020 7768 6574 6865 l, --. whethe │ │ │ │ +0008dfe0: 7220 6120 7261 7469 6f6e 616c 206d 6170 r a rational map │ │ │ │ +0008dff0: 2069 7320 6269 7261 7469 6f6e 616c 0a20 is birational. │ │ │ │ +0008e000: 202a 2022 6973 446f 6d69 6e61 6e74 2852 * "isDominant(R │ │ │ │ +0008e010: 6174 696f 6e61 6c4d 6170 2922 202d 2d20 ationalMap)" -- │ │ │ │ +0008e020: 7365 6520 2a6e 6f74 6520 6973 446f 6d69 see *note isDomi │ │ │ │ +0008e030: 6e61 6e74 3a20 6973 446f 6d69 6e61 6e74 nant: isDominant │ │ │ │ +0008e040: 2c20 2d2d 2077 6865 7468 6572 2061 0a20 , -- whether a. │ │ │ │ +0008e050: 2020 2072 6174 696f 6e61 6c20 6d61 7020 rational map │ │ │ │ +0008e060: 6973 2064 6f6d 696e 616e 740a 2020 2a20 is dominant. * │ │ │ │ +0008e070: 2a6e 6f74 6520 6973 496e 7665 7273 654d *note isInverseM │ │ │ │ +0008e080: 6170 2852 6174 696f 6e61 6c4d 6170 2c52 ap(RationalMap,R │ │ │ │ +0008e090: 6174 696f 6e61 6c4d 6170 293a 0a20 2020 ationalMap):. │ │ │ │ +0008e0a0: 2069 7349 6e76 6572 7365 4d61 705f 6c70 isInverseMap_lp │ │ │ │ +0008e0b0: 5261 7469 6f6e 616c 4d61 705f 636d 5261 RationalMap_cmRa │ │ │ │ +0008e0c0: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ +0008e0d0: 2063 6865 636b 7320 7768 6574 6865 7220 checks whether │ │ │ │ +0008e0e0: 7477 6f20 7261 7469 6f6e 616c 0a20 2020 two rational. │ │ │ │ +0008e0f0: 206d 6170 7320 6172 6520 6f6e 6520 7468 maps are one th │ │ │ │ +0008e100: 6520 696e 7665 7273 6520 6f66 2074 6865 e inverse of the │ │ │ │ +0008e110: 206f 7468 6572 0a20 202a 202a 6e6f 7465 other. * *note │ │ │ │ +0008e120: 2069 7349 736f 6d6f 7270 6869 736d 2852 isIsomorphism(R │ │ │ │ +0008e130: 6174 696f 6e61 6c4d 6170 293a 2069 7349 ationalMap): isI │ │ │ │ +0008e140: 736f 6d6f 7270 6869 736d 5f6c 7052 6174 somorphism_lpRat │ │ │ │ +0008e150: 696f 6e61 6c4d 6170 5f72 702c 202d 2d0a ionalMap_rp, --. │ │ │ │ +0008e160: 2020 2020 7768 6574 6865 7220 6120 6269 whether a bi │ │ │ │ +0008e170: 7261 7469 6f6e 616c 206d 6170 2069 7320 rational map is │ │ │ │ +0008e180: 616e 2069 736f 6d6f 7270 6869 736d 0a20 an isomorphism. │ │ │ │ +0008e190: 202a 2022 6973 4d6f 7270 6869 736d 2852 * "isMorphism(R │ │ │ │ +0008e1a0: 6174 696f 6e61 6c4d 6170 2922 202d 2d20 ationalMap)" -- │ │ │ │ +0008e1b0: 7365 6520 2a6e 6f74 6520 6973 4d6f 7270 see *note isMorp │ │ │ │ +0008e1c0: 6869 736d 3a20 6973 4d6f 7270 6869 736d hism: isMorphism │ │ │ │ +0008e1d0: 2c20 2d2d 2077 6865 7468 6572 2061 0a20 , -- whether a. │ │ │ │ +0008e1e0: 2020 2072 6174 696f 6e61 6c20 6d61 7020 rational map │ │ │ │ +0008e1f0: 6973 2061 206d 6f72 7068 6973 6d0a 2020 is a morphism. │ │ │ │ +0008e200: 2a20 2a6e 6f74 6520 6d61 7028 5261 7469 * *note map(Rati │ │ │ │ +0008e210: 6f6e 616c 4d61 7029 3a20 6d61 705f 6c70 onalMap): map_lp │ │ │ │ +0008e220: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +0008e230: 2d2d 2067 6574 2074 6865 2072 696e 6720 -- get the ring │ │ │ │ +0008e240: 6d61 7020 6465 6669 6e69 6e67 0a20 2020 map defining. │ │ │ │ +0008e250: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0008e260: 2020 2a20 226d 6170 285a 5a2c 5261 7469 * "map(ZZ,Rati │ │ │ │ +0008e270: 6f6e 616c 4d61 7029 2220 2d2d 2073 6565 onalMap)" -- see │ │ │ │ +0008e280: 202a 6e6f 7465 206d 6170 2852 6174 696f *note map(Ratio │ │ │ │ +0008e290: 6e61 6c4d 6170 293a 206d 6170 5f6c 7052 nalMap): map_lpR │ │ │ │ +0008e2a0: 6174 696f 6e61 6c4d 6170 5f72 702c 0a20 ationalMap_rp,. │ │ │ │ +0008e2b0: 2020 202d 2d20 6765 7420 7468 6520 7269 -- get the ri │ │ │ │ +0008e2c0: 6e67 206d 6170 2064 6566 696e 696e 6720 ng map defining │ │ │ │ +0008e2d0: 6120 7261 7469 6f6e 616c 206d 6170 0a20 a rational map. │ │ │ │ +0008e2e0: 202a 202a 6e6f 7465 206d 6174 7269 7828 * *note matrix( │ │ │ │ +0008e2f0: 5261 7469 6f6e 616c 4d61 7029 3a20 6d61 RationalMap): ma │ │ │ │ +0008e300: 7472 6978 5f6c 7052 6174 696f 6e61 6c4d trix_lpRationalM │ │ │ │ +0008e310: 6170 5f72 702c 202d 2d20 7468 6520 6d61 ap_rp, -- the ma │ │ │ │ +0008e320: 7472 6978 0a20 2020 2061 7373 6f63 6961 trix. associa │ │ │ │ +0008e330: 7465 6420 746f 2061 2072 6174 696f 6e61 ted to a rationa │ │ │ │ +0008e340: 6c20 6d61 700a 2020 2a20 226d 6174 7269 l map. * "matri │ │ │ │ +0008e350: 7828 5a5a 2c52 6174 696f 6e61 6c4d 6170 x(ZZ,RationalMap │ │ │ │ +0008e360: 2922 202d 2d20 7365 6520 2a6e 6f74 6520 )" -- see *note │ │ │ │ +0008e370: 6d61 7472 6978 2852 6174 696f 6e61 6c4d matrix(RationalM │ │ │ │ +0008e380: 6170 293a 0a20 2020 206d 6174 7269 785f ap):. matrix_ │ │ │ │ +0008e390: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ +0008e3a0: 2c20 2d2d 2074 6865 206d 6174 7269 7820 , -- the matrix │ │ │ │ +0008e3b0: 6173 736f 6369 6174 6564 2074 6f20 6120 associated to a │ │ │ │ +0008e3c0: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ +0008e3d0: 202a 6e6f 7465 2070 726f 6a65 6374 6976 *note projectiv │ │ │ │ +0008e3e0: 6544 6567 7265 6573 2852 6174 696f 6e61 eDegrees(Rationa │ │ │ │ +0008e3f0: 6c4d 6170 293a 2070 726f 6a65 6374 6976 lMap): projectiv │ │ │ │ +0008e400: 6544 6567 7265 6573 5f6c 7052 6174 696f eDegrees_lpRatio │ │ │ │ +0008e410: 6e61 6c4d 6170 5f72 702c 0a20 2020 202d nalMap_rp,. - │ │ │ │ +0008e420: 2d20 7072 6f6a 6563 7469 7665 2064 6567 - projective deg │ │ │ │ +0008e430: 7265 6573 206f 6620 6120 7261 7469 6f6e rees of a ration │ │ │ │ +0008e440: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +0008e450: 2052 6174 696f 6e61 6c4d 6170 2021 3a20 RationalMap !: │ │ │ │ +0008e460: 5261 7469 6f6e 616c 4d61 7020 212c 202d RationalMap !, - │ │ │ │ +0008e470: 2d20 6361 6c63 756c 6174 6573 2065 7665 - calculates eve │ │ │ │ +0008e480: 7279 2070 6f73 7369 626c 6520 7468 696e ry possible thin │ │ │ │ +0008e490: 670a 2020 2a20 2263 6f6d 706f 7365 2852 g. * "compose(R │ │ │ │ +0008e4a0: 6174 696f 6e61 6c4d 6170 2c52 6174 696f ationalMap,Ratio │ │ │ │ +0008e4b0: 6e61 6c4d 6170 2922 202d 2d20 7365 6520 nalMap)" -- see │ │ │ │ +0008e4c0: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ +0008e4d0: 7020 2a20 5261 7469 6f6e 616c 4d61 703a p * RationalMap: │ │ │ │ +0008e4e0: 0a20 2020 2052 6174 696f 6e61 6c4d 6170 . RationalMap │ │ │ │ +0008e4f0: 205f 7374 2052 6174 696f 6e61 6c4d 6170 _st RationalMap │ │ │ │ +0008e500: 2c20 2d2d 2063 6f6d 706f 7369 7469 6f6e , -- composition │ │ │ │ +0008e510: 206f 6620 7261 7469 6f6e 616c 206d 6170 of rational map │ │ │ │ +0008e520: 730a 2020 2a20 2a6e 6f74 6520 5261 7469 s. * *note Rati │ │ │ │ +0008e530: 6f6e 616c 4d61 7020 2a20 5261 7469 6f6e onalMap * Ration │ │ │ │ +0008e540: 616c 4d61 703a 2052 6174 696f 6e61 6c4d alMap: RationalM │ │ │ │ +0008e550: 6170 205f 7374 2052 6174 696f 6e61 6c4d ap _st RationalM │ │ │ │ +0008e560: 6170 2c20 2d2d 0a20 2020 2063 6f6d 706f ap, --. compo │ │ │ │ +0008e570: 7369 7469 6f6e 206f 6620 7261 7469 6f6e sition of ration │ │ │ │ +0008e580: 616c 206d 6170 730a 2020 2a20 2a6e 6f74 al maps. * *not │ │ │ │ +0008e590: 6520 5261 7469 6f6e 616c 4d61 7020 2a2a e RationalMap ** │ │ │ │ +0008e5a0: 2052 696e 673a 2052 6174 696f 6e61 6c4d Ring: RationalM │ │ │ │ +0008e5b0: 6170 205f 7374 5f73 7420 5269 6e67 2c20 ap _st_st Ring, │ │ │ │ +0008e5c0: 2d2d 2063 6861 6e67 6520 7468 650a 2020 -- change the. │ │ │ │ +0008e5d0: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +0008e5e0: 6e67 206f 6620 6120 7261 7469 6f6e 616c ng of a rational │ │ │ │ +0008e5f0: 206d 6170 0a20 202a 202a 6e6f 7465 2052 map. * *note R │ │ │ │ +0008e600: 6174 696f 6e61 6c4d 6170 203d 3d20 5261 ationalMap == Ra │ │ │ │ +0008e610: 7469 6f6e 616c 4d61 703a 2052 6174 696f tionalMap: Ratio │ │ │ │ +0008e620: 6e61 6c4d 6170 203d 3d20 5261 7469 6f6e nalMap == Ration │ │ │ │ +0008e630: 616c 4d61 702c 202d 2d20 6571 7561 6c69 alMap, -- equali │ │ │ │ +0008e640: 7479 0a20 2020 206f 6620 7261 7469 6f6e ty. of ration │ │ │ │ +0008e650: 616c 206d 6170 730a 2020 2a20 2252 6174 al maps. * "Rat │ │ │ │ +0008e660: 696f 6e61 6c4d 6170 203d 3d20 5a5a 2220 ionalMap == ZZ" │ │ │ │ +0008e670: 2d2d 2073 6565 202a 6e6f 7465 2052 6174 -- see *note Rat │ │ │ │ +0008e680: 696f 6e61 6c4d 6170 203d 3d20 5261 7469 ionalMap == Rati │ │ │ │ +0008e690: 6f6e 616c 4d61 703a 2052 6174 696f 6e61 onalMap: Rationa │ │ │ │ +0008e6a0: 6c4d 6170 203d 3d0a 2020 2020 5261 7469 lMap ==. Rati │ │ │ │ +0008e6b0: 6f6e 616c 4d61 702c 202d 2d20 6571 7561 onalMap, -- equa │ │ │ │ +0008e6c0: 6c69 7479 206f 6620 7261 7469 6f6e 616c lity of rational │ │ │ │ +0008e6d0: 206d 6170 730a 2020 2a20 225a 5a20 3d3d maps. * "ZZ == │ │ │ │ +0008e6e0: 2052 6174 696f 6e61 6c4d 6170 2220 2d2d RationalMap" -- │ │ │ │ +0008e6f0: 2073 6565 202a 6e6f 7465 2052 6174 696f see *note Ratio │ │ │ │ +0008e700: 6e61 6c4d 6170 203d 3d20 5261 7469 6f6e nalMap == Ration │ │ │ │ +0008e710: 616c 4d61 703a 2052 6174 696f 6e61 6c4d alMap: RationalM │ │ │ │ +0008e720: 6170 203d 3d0a 2020 2020 5261 7469 6f6e ap ==. Ration │ │ │ │ +0008e730: 616c 4d61 702c 202d 2d20 6571 7561 6c69 alMap, -- equali │ │ │ │ +0008e740: 7479 206f 6620 7261 7469 6f6e 616c 206d ty of rational m │ │ │ │ +0008e750: 6170 730a 2020 2a20 2a6e 6f74 6520 5261 aps. * *note Ra │ │ │ │ +0008e760: 7469 6f6e 616c 4d61 7020 5e20 5a5a 3a20 tionalMap ^ ZZ: │ │ │ │ +0008e770: 5261 7469 6f6e 616c 4d61 7020 5e20 5a5a RationalMap ^ ZZ │ │ │ │ +0008e780: 2c20 2d2d 2070 6f77 6572 0a20 202a 2022 , -- power. * " │ │ │ │ +0008e790: 5261 7469 6f6e 616c 4d61 7020 5e2a 2220 RationalMap ^*" │ │ │ │ +0008e7a0: 2d2d 2073 6565 202a 6e6f 7465 2052 6174 -- see *note Rat │ │ │ │ +0008e7b0: 696f 6e61 6c4d 6170 205e 2a2a 2049 6465 ionalMap ^** Ide │ │ │ │ +0008e7c0: 616c 3a20 5261 7469 6f6e 616c 4d61 7020 al: RationalMap │ │ │ │ +0008e7d0: 5e5f 7374 5f73 740a 2020 2020 4964 6561 ^_st_st. Idea │ │ │ │ +0008e7e0: 6c2c 202d 2d20 696e 7665 7273 6520 696d l, -- inverse im │ │ │ │ +0008e7f0: 6167 6520 7669 6120 6120 7261 7469 6f6e age via a ration │ │ │ │ +0008e800: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +0008e810: 2052 6174 696f 6e61 6c4d 6170 205e 2a2a RationalMap ^** │ │ │ │ +0008e820: 2049 6465 616c 3a20 5261 7469 6f6e 616c Ideal: Rational │ │ │ │ +0008e830: 4d61 7020 5e5f 7374 5f73 7420 4964 6561 Map ^_st_st Idea │ │ │ │ +0008e840: 6c2c 202d 2d20 696e 7665 7273 6520 696d l, -- inverse im │ │ │ │ +0008e850: 6167 650a 2020 2020 7669 6120 6120 7261 age. via a ra │ │ │ │ +0008e860: 7469 6f6e 616c 206d 6170 0a20 202a 202a tional map. * * │ │ │ │ +0008e870: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ +0008e880: 205f 2a3a 2052 6174 696f 6e61 6c4d 6170 _*: RationalMap │ │ │ │ +0008e890: 205f 7573 5f73 742c 202d 2d20 6469 7265 _us_st, -- dire │ │ │ │ +0008e8a0: 6374 2069 6d61 6765 2076 6961 2061 2072 ct image via a r │ │ │ │ +0008e8b0: 6174 696f 6e61 6c0a 2020 2020 6d61 700a ational. map. │ │ │ │ +0008e8c0: 2020 2a20 2252 6174 696f 6e61 6c4d 6170 * "RationalMap │ │ │ │ +0008e8d0: 2049 6465 616c 2220 2d2d 2073 6565 202a Ideal" -- see * │ │ │ │ +0008e8e0: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ +0008e8f0: 205f 2a3a 2052 6174 696f 6e61 6c4d 6170 _*: RationalMap │ │ │ │ +0008e900: 205f 7573 5f73 742c 202d 2d0a 2020 2020 _us_st, --. │ │ │ │ +0008e910: 6469 7265 6374 2069 6d61 6765 2076 6961 direct image via │ │ │ │ +0008e920: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0008e930: 2020 2a20 2a6e 6f74 6520 5261 7469 6f6e * *note Ration │ │ │ │ +0008e940: 616c 4d61 7020 7c20 4964 6561 6c3a 2052 alMap | Ideal: R │ │ │ │ +0008e950: 6174 696f 6e61 6c4d 6170 207c 2049 6465 ationalMap | Ide │ │ │ │ +0008e960: 616c 2c20 2d2d 2072 6573 7472 6963 7469 al, -- restricti │ │ │ │ +0008e970: 6f6e 206f 6620 610a 2020 2020 7261 7469 on of a. rati │ │ │ │ +0008e980: 6f6e 616c 206d 6170 0a20 202a 2022 5261 onal map. * "Ra │ │ │ │ +0008e990: 7469 6f6e 616c 4d61 7020 7c20 5269 6e67 tionalMap | Ring │ │ │ │ +0008e9a0: 2220 2d2d 2073 6565 202a 6e6f 7465 2052 " -- see *note R │ │ │ │ +0008e9b0: 6174 696f 6e61 6c4d 6170 207c 2049 6465 ationalMap | Ide │ │ │ │ +0008e9c0: 616c 3a20 5261 7469 6f6e 616c 4d61 7020 al: RationalMap │ │ │ │ +0008e9d0: 7c20 4964 6561 6c2c 0a20 2020 202d 2d20 | Ideal,. -- │ │ │ │ +0008e9e0: 7265 7374 7269 6374 696f 6e20 6f66 2061 restriction of a │ │ │ │ +0008e9f0: 2072 6174 696f 6e61 6c20 6d61 700a 2020 rational map. │ │ │ │ +0008ea00: 2a20 2252 6174 696f 6e61 6c4d 6170 207c * "RationalMap | │ │ │ │ +0008ea10: 2052 696e 6745 6c65 6d65 6e74 2220 2d2d RingElement" -- │ │ │ │ +0008ea20: 2073 6565 202a 6e6f 7465 2052 6174 696f see *note Ratio │ │ │ │ +0008ea30: 6e61 6c4d 6170 207c 2049 6465 616c 3a20 nalMap | Ideal: │ │ │ │ +0008ea40: 5261 7469 6f6e 616c 4d61 7020 7c0a 2020 RationalMap |. │ │ │ │ +0008ea50: 2020 4964 6561 6c2c 202d 2d20 7265 7374 Ideal, -- rest │ │ │ │ +0008ea60: 7269 6374 696f 6e20 6f66 2061 2072 6174 riction of a rat │ │ │ │ +0008ea70: 696f 6e61 6c20 6d61 700a 2020 2a20 2a6e ional map. * *n │ │ │ │ +0008ea80: 6f74 6520 5261 7469 6f6e 616c 4d61 7020 ote RationalMap │ │ │ │ +0008ea90: 7c7c 2049 6465 616c 3a20 5261 7469 6f6e || Ideal: Ration │ │ │ │ +0008eaa0: 616c 4d61 7020 7c7c 2049 6465 616c 2c20 alMap || Ideal, │ │ │ │ +0008eab0: 2d2d 2072 6573 7472 6963 7469 6f6e 206f -- restriction o │ │ │ │ +0008eac0: 6620 610a 2020 2020 7261 7469 6f6e 616c f a. rational │ │ │ │ +0008ead0: 206d 6170 0a20 202a 2022 5261 7469 6f6e map. * "Ration │ │ │ │ +0008eae0: 616c 4d61 7020 7c7c 2052 696e 6722 202d alMap || Ring" - │ │ │ │ +0008eaf0: 2d20 7365 6520 2a6e 6f74 6520 5261 7469 - see *note Rati │ │ │ │ +0008eb00: 6f6e 616c 4d61 7020 7c7c 2049 6465 616c onalMap || Ideal │ │ │ │ +0008eb10: 3a20 5261 7469 6f6e 616c 4d61 7020 7c7c : RationalMap || │ │ │ │ +0008eb20: 0a20 2020 2049 6465 616c 2c20 2d2d 2072 . Ideal, -- r │ │ │ │ +0008eb30: 6573 7472 6963 7469 6f6e 206f 6620 6120 estriction of a │ │ │ │ +0008eb40: 7261 7469 6f6e 616c 206d 6170 0a20 202a rational map. * │ │ │ │ +0008eb50: 2022 5261 7469 6f6e 616c 4d61 7020 7c7c "RationalMap || │ │ │ │ +0008eb60: 2052 696e 6745 6c65 6d65 6e74 2220 2d2d RingElement" -- │ │ │ │ +0008eb70: 2073 6565 202a 6e6f 7465 2052 6174 696f see *note Ratio │ │ │ │ +0008eb80: 6e61 6c4d 6170 207c 7c20 4964 6561 6c3a nalMap || Ideal: │ │ │ │ +0008eb90: 2052 6174 696f 6e61 6c4d 6170 0a20 2020 RationalMap. │ │ │ │ +0008eba0: 207c 7c20 4964 6561 6c2c 202d 2d20 7265 || Ideal, -- re │ │ │ │ +0008ebb0: 7374 7269 6374 696f 6e20 6f66 2061 2072 striction of a r │ │ │ │ +0008ebc0: 6174 696f 6e61 6c20 6d61 700a 2020 2a20 ational map. * │ │ │ │ +0008ebd0: 2273 6567 7265 2852 6174 696f 6e61 6c4d "segre(RationalM │ │ │ │ +0008ebe0: 6170 2922 202d 2d20 7365 6520 2a6e 6f74 ap)" -- see *not │ │ │ │ +0008ebf0: 6520 7365 6772 653a 2073 6567 7265 2c20 e segre: segre, │ │ │ │ +0008ec00: 2d2d 2053 6567 7265 2065 6d62 6564 6469 -- Segre embeddi │ │ │ │ +0008ec10: 6e67 0a20 202a 2022 5365 6772 6543 6c61 ng. * "SegreCla │ │ │ │ +0008ec20: 7373 2852 6174 696f 6e61 6c4d 6170 2922 ss(RationalMap)" │ │ │ │ +0008ec30: 202d 2d20 7365 6520 2a6e 6f74 6520 5365 -- see *note Se │ │ │ │ +0008ec40: 6772 6543 6c61 7373 3a20 5365 6772 6543 greClass: SegreC │ │ │ │ +0008ec50: 6c61 7373 2c20 2d2d 2053 6567 7265 0a20 lass, -- Segre. │ │ │ │ +0008ec60: 2020 2063 6c61 7373 206f 6620 6120 636c class of a cl │ │ │ │ +0008ec70: 6f73 6564 2073 7562 7363 6865 6d65 206f osed subscheme o │ │ │ │ +0008ec80: 6620 6120 7072 6f6a 6563 7469 7665 2076 f a projective v │ │ │ │ +0008ec90: 6172 6965 7479 0a20 202a 202a 6e6f 7465 ariety. * *note │ │ │ │ +0008eca0: 2073 6f75 7263 6528 5261 7469 6f6e 616c source(Rational │ │ │ │ +0008ecb0: 4d61 7029 3a20 736f 7572 6365 5f6c 7052 Map): source_lpR │ │ │ │ +0008ecc0: 6174 696f 6e61 6c4d 6170 5f72 702c 202d ationalMap_rp, - │ │ │ │ +0008ecd0: 2d20 636f 6f72 6469 6e61 7465 2072 696e - coordinate rin │ │ │ │ +0008ece0: 6720 6f66 0a20 2020 2074 6865 2073 6f75 g of. the sou │ │ │ │ +0008ecf0: 7263 6520 666f 7220 6120 7261 7469 6f6e rce for a ration │ │ │ │ +0008ed00: 616c 206d 6170 0a20 202a 202a 6e6f 7465 al map. * *note │ │ │ │ +0008ed10: 2073 7562 7374 6974 7574 6528 5261 7469 substitute(Rati │ │ │ │ +0008ed20: 6f6e 616c 4d61 702c 506f 6c79 6e6f 6d69 onalMap,Polynomi │ │ │ │ +0008ed30: 616c 5269 6e67 2c50 6f6c 796e 6f6d 6961 alRing,Polynomia │ │ │ │ +0008ed40: 6c52 696e 6729 3a0a 2020 2020 7375 6273 lRing):. subs │ │ │ │ +0008ed50: 7469 7475 7465 5f6c 7052 6174 696f 6e61 titute_lpRationa │ │ │ │ +0008ed60: 6c4d 6170 5f63 6d50 6f6c 796e 6f6d 6961 lMap_cmPolynomia │ │ │ │ +0008ed70: 6c52 696e 675f 636d 506f 6c79 6e6f 6d69 lRing_cmPolynomi │ │ │ │ +0008ed80: 616c 5269 6e67 5f72 702c 202d 2d0a 2020 alRing_rp, --. │ │ │ │ +0008ed90: 2020 7375 6273 7469 7475 7465 2074 6865 substitute the │ │ │ │ +0008eda0: 2061 6d62 6965 6e74 2070 726f 6a65 6374 ambient project │ │ │ │ +0008edb0: 6976 6520 7370 6163 6573 206f 6620 736f ive spaces of so │ │ │ │ +0008edc0: 7572 6365 2061 6e64 2074 6172 6765 740a urce and target. │ │ │ │ +0008edd0: 2020 2a20 2272 6174 696f 6e61 6c4d 6170 * "rationalMap │ │ │ │ +0008ede0: 2852 6174 696f 6e61 6c4d 6170 2922 202d (RationalMap)" - │ │ │ │ +0008edf0: 2d20 7365 6520 2a6e 6f74 6520 7375 7065 - see *note supe │ │ │ │ +0008ee00: 7228 5261 7469 6f6e 616c 4d61 7029 3a0a r(RationalMap):. │ │ │ │ +0008ee10: 2020 2020 7375 7065 725f 6c70 5261 7469 super_lpRati │ │ │ │ +0008ee20: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2067 onalMap_rp, -- g │ │ │ │ +0008ee30: 6574 2074 6865 2072 6174 696f 6e61 6c20 et the rational │ │ │ │ +0008ee40: 6d61 7020 7768 6f73 6520 7461 7267 6574 map whose target │ │ │ │ +0008ee50: 2069 7320 610a 2020 2020 7072 6f6a 6563 is a. projec │ │ │ │ +0008ee60: 7469 7665 2073 7061 6365 0a20 202a 202a tive space. * * │ │ │ │ +0008ee70: 6e6f 7465 2073 7570 6572 2852 6174 696f note super(Ratio │ │ │ │ +0008ee80: 6e61 6c4d 6170 293a 2073 7570 6572 5f6c nalMap): super_l │ │ │ │ +0008ee90: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +0008eea0: 202d 2d20 6765 7420 7468 6520 7261 7469 -- get the rati │ │ │ │ +0008eeb0: 6f6e 616c 206d 6170 0a20 2020 2077 686f onal map. who │ │ │ │ +0008eec0: 7365 2074 6172 6765 7420 6973 2061 2070 se target is a p │ │ │ │ +0008eed0: 726f 6a65 6374 6976 6520 7370 6163 650a rojective space. │ │ │ │ +0008eee0: 2020 2a20 2a6e 6f74 6520 7461 7267 6574 * *note target │ │ │ │ +0008eef0: 2852 6174 696f 6e61 6c4d 6170 293a 2074 (RationalMap): t │ │ │ │ +0008ef00: 6172 6765 745f 6c70 5261 7469 6f6e 616c arget_lpRational │ │ │ │ +0008ef10: 4d61 705f 7270 2c20 2d2d 2063 6f6f 7264 Map_rp, -- coord │ │ │ │ +0008ef20: 696e 6174 6520 7269 6e67 206f 660a 2020 inate ring of. │ │ │ │ +0008ef30: 2020 7468 6520 7461 7267 6574 2066 6f72 the target for │ │ │ │ +0008ef40: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0008ef50: 2020 2a20 2a6e 6f74 6520 746f 4578 7465 * *note toExte │ │ │ │ +0008ef60: 726e 616c 5374 7269 6e67 2852 6174 696f rnalString(Ratio │ │ │ │ +0008ef70: 6e61 6c4d 6170 293a 2074 6f45 7874 6572 nalMap): toExter │ │ │ │ +0008ef80: 6e61 6c53 7472 696e 675f 6c70 5261 7469 nalString_lpRati │ │ │ │ +0008ef90: 6f6e 616c 4d61 705f 7270 2c20 2d2d 0a20 onalMap_rp, --. │ │ │ │ +0008efa0: 2020 2063 6f6e 7665 7274 2074 6f20 6120 convert to a │ │ │ │ +0008efb0: 7265 6164 6162 6c65 2073 7472 696e 670a readable string. │ │ │ │ +0008efc0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +0008efd0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +0008efe0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +0008eff0: 6374 202a 6e6f 7465 2052 6174 696f 6e61 ct *note Rationa │ │ │ │ +0008f000: 6c4d 6170 3a20 5261 7469 6f6e 616c 4d61 lMap: RationalMa │ │ │ │ +0008f010: 702c 2069 7320 6120 2a6e 6f74 6520 7479 p, is a *note ty │ │ │ │ +0008f020: 7065 3a0a 284d 6163 6175 6c61 7932 446f pe:.(Macaulay2Do │ │ │ │ +0008f030: 6329 5479 7065 2c2c 2077 6974 6820 616e c)Type,, with an │ │ │ │ +0008f040: 6365 7374 6f72 2063 6c61 7373 6573 202a cestor classes * │ │ │ │ +0008f050: 6e6f 7465 204d 7574 6162 6c65 4861 7368 note MutableHash │ │ │ │ +0008f060: 5461 626c 653a 0a28 4d61 6361 756c 6179 Table:.(Macaulay │ │ │ │ +0008f070: 3244 6f63 294d 7574 6162 6c65 4861 7368 2Doc)MutableHash │ │ │ │ +0008f080: 5461 626c 652c 203c 202a 6e6f 7465 2048 Table, < *note H │ │ │ │ +0008f090: 6173 6854 6162 6c65 3a20 284d 6163 6175 ashTable: (Macau │ │ │ │ +0008f0a0: 6c61 7932 446f 6329 4861 7368 5461 626c lay2Doc)HashTabl │ │ │ │ +0008f0b0: 652c 203c 0a2a 6e6f 7465 2054 6869 6e67 e, <.*note Thing │ │ │ │ +0008f0c0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0008f0d0: 5468 696e 672c 2e0a 0a2d 2d2d 2d2d 2d2d Thing,...------- │ │ │ │ 0008f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a --------------.. │ │ │ │ -0008f130: 5468 6520 736f 7572 6365 206f 6620 7468 The source of th │ │ │ │ -0008f140: 6973 2064 6f63 756d 656e 7420 6973 2069 is document is i │ │ │ │ -0008f150: 6e0a 2f62 7569 6c64 2f72 6570 726f 6475 n./build/reprodu │ │ │ │ -0008f160: 6369 626c 652d 7061 7468 2f6d 6163 6175 cible-path/macau │ │ │ │ -0008f170: 6c61 7932 2d31 2e32 352e 3131 2b64 732f lay2-1.25.11+ds/ │ │ │ │ -0008f180: 4d32 2f4d 6163 6175 6c61 7932 2f70 6163 M2/Macaulay2/pac │ │ │ │ -0008f190: 6b61 6765 732f 4372 656d 6f6e 612f 0a64 kages/Cremona/.d │ │ │ │ -0008f1a0: 6f63 756d 656e 7461 7469 6f6e 2e6d 323a ocumentation.m2: │ │ │ │ -0008f1b0: 3335 323a 302e 0a1f 0a46 696c 653a 2043 352:0....File: C │ │ │ │ -0008f1c0: 7265 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 remona.info, Nod │ │ │ │ -0008f1d0: 653a 2072 6174 696f 6e61 6c4d 6170 2c20 e: rationalMap, │ │ │ │ -0008f1e0: 4e65 7874 3a20 5261 7469 6f6e 616c 4d61 Next: RationalMa │ │ │ │ -0008f1f0: 7020 212c 2050 7265 763a 2052 6174 696f p !, Prev: Ratio │ │ │ │ -0008f200: 6e61 6c4d 6170 2c20 5570 3a20 546f 700a nalMap, Up: Top. │ │ │ │ -0008f210: 0a72 6174 696f 6e61 6c4d 6170 202d 2d20 .rationalMap -- │ │ │ │ -0008f220: 6d61 6b65 7320 6120 7261 7469 6f6e 616c makes a rational │ │ │ │ -0008f230: 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a map.*********** │ │ │ │ +0008f120: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ +0008f130: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ +0008f140: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ +0008f150: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ +0008f160: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ +0008f170: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ +0008f180: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ +0008f190: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ +0008f1a0: 7461 7469 6f6e 2e6d 323a 3335 323a 302e tation.m2:352:0. │ │ │ │ +0008f1b0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ +0008f1c0: 2e69 6e66 6f2c 204e 6f64 653a 2072 6174 .info, Node: rat │ │ │ │ +0008f1d0: 696f 6e61 6c4d 6170 2c20 4e65 7874 3a20 ionalMap, Next: │ │ │ │ +0008f1e0: 5261 7469 6f6e 616c 4d61 7020 212c 2050 RationalMap !, P │ │ │ │ +0008f1f0: 7265 763a 2052 6174 696f 6e61 6c4d 6170 rev: RationalMap │ │ │ │ +0008f200: 2c20 5570 3a20 546f 700a 0a72 6174 696f , Up: Top..ratio │ │ │ │ +0008f210: 6e61 6c4d 6170 202d 2d20 6d61 6b65 7320 nalMap -- makes │ │ │ │ +0008f220: 6120 7261 7469 6f6e 616c 206d 6170 0a2a a rational map.* │ │ │ │ +0008f230: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0008f240: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0008f250: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 5573 ********.. * Us │ │ │ │ -0008f260: 6167 653a 200a 2020 2020 2020 2020 7261 age: . ra │ │ │ │ -0008f270: 7469 6f6e 616c 4d61 7020 7068 6920 0a20 tionalMap phi . │ │ │ │ -0008f280: 2020 2020 2020 2072 6174 696f 6e61 6c4d rationalM │ │ │ │ -0008f290: 6170 2046 0a20 202a 2049 6e70 7574 733a ap F. * Inputs: │ │ │ │ -0008f2a0: 0a20 2020 2020 202a 2061 202a 6e6f 7465 . * a *note │ │ │ │ -0008f2b0: 2072 696e 6720 6d61 703a 2028 4d61 6361 ring map: (Maca │ │ │ │ -0008f2c0: 756c 6179 3244 6f63 2952 696e 674d 6170 ulay2Doc)RingMap │ │ │ │ -0008f2d0: 2c2c 206f 7220 6120 2a6e 6f74 6520 6d61 ,, or a *note ma │ │ │ │ -0008f2e0: 7472 6978 3a0a 2020 2020 2020 2020 284d trix:. (M │ │ │ │ -0008f2f0: 6163 6175 6c61 7932 446f 6329 4d61 7472 acaulay2Doc)Matr │ │ │ │ -0008f300: 6978 2c20 6f72 2061 202a 6e6f 7465 206c ix, or a *note l │ │ │ │ -0008f310: 6973 743a 2028 4d61 6361 756c 6179 3244 ist: (Macaulay2D │ │ │ │ -0008f320: 6f63 294c 6973 742c 2c20 6574 632e 0a20 oc)List,, etc.. │ │ │ │ -0008f330: 202a 202a 6e6f 7465 204f 7074 696f 6e61 * *note Optiona │ │ │ │ -0008f340: 6c20 696e 7075 7473 3a20 284d 6163 6175 l inputs: (Macau │ │ │ │ -0008f350: 6c61 7932 446f 6329 7573 696e 6720 6675 lay2Doc)using fu │ │ │ │ -0008f360: 6e63 7469 6f6e 7320 7769 7468 206f 7074 nctions with opt │ │ │ │ -0008f370: 696f 6e61 6c20 696e 7075 7473 2c3a 0a20 ional inputs,:. │ │ │ │ -0008f380: 2020 2020 202a 202a 6e6f 7465 2044 6f6d * *note Dom │ │ │ │ -0008f390: 696e 616e 743a 2044 6f6d 696e 616e 742c inant: Dominant, │ │ │ │ -0008f3a0: 203d 3e20 2e2e 2e2c 2064 6566 6175 6c74 => ..., default │ │ │ │ -0008f3b0: 2076 616c 7565 206e 756c 6c2c 200a 2020 value null, . │ │ │ │ -0008f3c0: 2a20 4f75 7470 7574 733a 0a20 2020 2020 * Outputs:. │ │ │ │ -0008f3d0: 202a 2061 202a 6e6f 7465 2072 6174 696f * a *note ratio │ │ │ │ -0008f3e0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ -0008f3f0: 6c4d 6170 2c2c 2074 6865 2072 6174 696f lMap,, the ratio │ │ │ │ -0008f400: 6e61 6c20 6d61 7020 7265 7072 6573 656e nal map represen │ │ │ │ -0008f410: 7465 6420 6279 2070 6869 0a20 2020 2020 ted by phi. │ │ │ │ -0008f420: 2020 206f 7220 6279 2074 6865 2072 696e or by the rin │ │ │ │ -0008f430: 6720 6d61 7020 6465 6669 6e65 6420 6279 g map defined by │ │ │ │ -0008f440: 2046 0a0a 4465 7363 7269 7074 696f 6e0a F..Description. │ │ │ │ -0008f450: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a54 6869 ===========..Thi │ │ │ │ -0008f460: 7320 6973 2074 6865 2062 6173 6963 2063 s is the basic c │ │ │ │ -0008f470: 6f6e 7374 7275 6374 696f 6e20 666f 7220 onstruction for │ │ │ │ -0008f480: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ -0008f490: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ -0008f4a0: 702c 2e20 5468 650a 6d65 7468 6f64 2069 p,. The.method i │ │ │ │ -0008f4b0: 7320 7175 6974 6520 7369 6d69 6c61 7220 s quite similar │ │ │ │ -0008f4c0: 746f 202a 6e6f 7465 2074 6f4d 6170 3a20 to *note toMap: │ │ │ │ -0008f4d0: 746f 4d61 702c 2c20 6578 6365 7074 2074 toMap,, except t │ │ │ │ -0008f4e0: 6861 7420 6974 2072 6574 7572 6e73 2061 hat it returns a │ │ │ │ -0008f4f0: 202a 6e6f 7465 0a52 6174 696f 6e61 6c4d *note.RationalM │ │ │ │ -0008f500: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ -0008f510: 2069 6e73 7465 6164 206f 6620 6120 2a6e instead of a *n │ │ │ │ -0008f520: 6f74 6520 5269 6e67 4d61 703a 2028 4d61 ote RingMap: (Ma │ │ │ │ -0008f530: 6361 756c 6179 3244 6f63 2952 696e 674d caulay2Doc)RingM │ │ │ │ -0008f540: 6170 2c2e 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d ap,...+--------- │ │ │ │ +0008f250: 2a2a 0a0a 2020 2a20 5573 6167 653a 200a **.. * Usage: . │ │ │ │ +0008f260: 2020 2020 2020 2020 7261 7469 6f6e 616c rational │ │ │ │ +0008f270: 4d61 7020 7068 6920 0a20 2020 2020 2020 Map phi . │ │ │ │ +0008f280: 2072 6174 696f 6e61 6c4d 6170 2046 0a20 rationalMap F. │ │ │ │ +0008f290: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +0008f2a0: 202a 2061 202a 6e6f 7465 2072 696e 6720 * a *note ring │ │ │ │ +0008f2b0: 6d61 703a 2028 4d61 6361 756c 6179 3244 map: (Macaulay2D │ │ │ │ +0008f2c0: 6f63 2952 696e 674d 6170 2c2c 206f 7220 oc)RingMap,, or │ │ │ │ +0008f2d0: 6120 2a6e 6f74 6520 6d61 7472 6978 3a0a a *note matrix:. │ │ │ │ +0008f2e0: 2020 2020 2020 2020 284d 6163 6175 6c61 (Macaula │ │ │ │ +0008f2f0: 7932 446f 6329 4d61 7472 6978 2c20 6f72 y2Doc)Matrix, or │ │ │ │ +0008f300: 2061 202a 6e6f 7465 206c 6973 743a 2028 a *note list: ( │ │ │ │ +0008f310: 4d61 6361 756c 6179 3244 6f63 294c 6973 Macaulay2Doc)Lis │ │ │ │ +0008f320: 742c 2c20 6574 632e 0a20 202a 202a 6e6f t,, etc.. * *no │ │ │ │ +0008f330: 7465 204f 7074 696f 6e61 6c20 696e 7075 te Optional inpu │ │ │ │ +0008f340: 7473 3a20 284d 6163 6175 6c61 7932 446f ts: (Macaulay2Do │ │ │ │ +0008f350: 6329 7573 696e 6720 6675 6e63 7469 6f6e c)using function │ │ │ │ +0008f360: 7320 7769 7468 206f 7074 696f 6e61 6c20 s with optional │ │ │ │ +0008f370: 696e 7075 7473 2c3a 0a20 2020 2020 202a inputs,:. * │ │ │ │ +0008f380: 202a 6e6f 7465 2044 6f6d 696e 616e 743a *note Dominant: │ │ │ │ +0008f390: 2044 6f6d 696e 616e 742c 203d 3e20 2e2e Dominant, => .. │ │ │ │ +0008f3a0: 2e2c 2064 6566 6175 6c74 2076 616c 7565 ., default value │ │ │ │ +0008f3b0: 206e 756c 6c2c 200a 2020 2a20 4f75 7470 null, . * Outp │ │ │ │ +0008f3c0: 7574 733a 0a20 2020 2020 202a 2061 202a uts:. * a * │ │ │ │ +0008f3d0: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ +0008f3e0: 703a 2052 6174 696f 6e61 6c4d 6170 2c2c p: RationalMap,, │ │ │ │ +0008f3f0: 2074 6865 2072 6174 696f 6e61 6c20 6d61 the rational ma │ │ │ │ +0008f400: 7020 7265 7072 6573 656e 7465 6420 6279 p represented by │ │ │ │ +0008f410: 2070 6869 0a20 2020 2020 2020 206f 7220 phi. or │ │ │ │ +0008f420: 6279 2074 6865 2072 696e 6720 6d61 7020 by the ring map │ │ │ │ +0008f430: 6465 6669 6e65 6420 6279 2046 0a0a 4465 defined by F..De │ │ │ │ +0008f440: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ +0008f450: 3d3d 3d3d 3d0a 0a54 6869 7320 6973 2074 =====..This is t │ │ │ │ +0008f460: 6865 2062 6173 6963 2063 6f6e 7374 7275 he basic constru │ │ │ │ +0008f470: 6374 696f 6e20 666f 7220 6120 2a6e 6f74 ction for a *not │ │ │ │ +0008f480: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ +0008f490: 5261 7469 6f6e 616c 4d61 702c 2e20 5468 RationalMap,. Th │ │ │ │ +0008f4a0: 650a 6d65 7468 6f64 2069 7320 7175 6974 e.method is quit │ │ │ │ +0008f4b0: 6520 7369 6d69 6c61 7220 746f 202a 6e6f e similar to *no │ │ │ │ +0008f4c0: 7465 2074 6f4d 6170 3a20 746f 4d61 702c te toMap: toMap, │ │ │ │ +0008f4d0: 2c20 6578 6365 7074 2074 6861 7420 6974 , except that it │ │ │ │ +0008f4e0: 2072 6574 7572 6e73 2061 202a 6e6f 7465 returns a *note │ │ │ │ +0008f4f0: 0a52 6174 696f 6e61 6c4d 6170 3a20 5261 .RationalMap: Ra │ │ │ │ +0008f500: 7469 6f6e 616c 4d61 702c 2069 6e73 7465 tionalMap, inste │ │ │ │ +0008f510: 6164 206f 6620 6120 2a6e 6f74 6520 5269 ad of a *note Ri │ │ │ │ +0008f520: 6e67 4d61 703a 2028 4d61 6361 756c 6179 ngMap: (Macaulay │ │ │ │ +0008f530: 3244 6f63 2952 696e 674d 6170 2c2e 0a0a 2Doc)RingMap,... │ │ │ │ +0008f540: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 0008f550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0008f590: 3120 3a20 5220 3a3d 2051 515b 745f 302e 1 : R := QQ[t_0. │ │ │ │ -0008f5a0: 2e74 5f38 5d20 2020 2020 2020 2020 2020 .t_8] │ │ │ │ +0008f580: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5220 ------+.|i1 : R │ │ │ │ +0008f590: 3a3d 2051 515b 745f 302e 2e74 5f38 5d20 := QQ[t_0..t_8] │ │ │ │ +0008f5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f5d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008f5c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f5d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0008f5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f610: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0008f620: 3120 3d20 5151 5b74 202e 2e74 205d 2020 1 = QQ[t ..t ] │ │ │ │ +0008f610: 2020 2020 2020 7c0a 7c6f 3120 3d20 5151 |.|o1 = QQ │ │ │ │ +0008f620: 5b74 202e 2e74 205d 2020 2020 2020 2020 [t ..t ] │ │ │ │ 0008f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f660: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008f670: 3020 2020 3820 2020 2020 2020 2020 2020 0 8 │ │ │ │ +0008f650: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f660: 7c20 2020 2020 2020 2020 3020 2020 3820 | 0 8 │ │ │ │ +0008f670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f6a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008f6a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f6f0: 2020 2020 7c0a 7c6f 3120 3a20 506f 6c79 |.|o1 : Poly │ │ │ │ -0008f700: 6e6f 6d69 616c 5269 6e67 2020 2020 2020 nomialRing │ │ │ │ +0008f6e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f6f0: 7c6f 3120 3a20 506f 6c79 6e6f 6d69 616c |o1 : Polynomial │ │ │ │ +0008f700: 5269 6e67 2020 2020 2020 2020 2020 2020 Ring │ │ │ │ 0008f710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f730: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0008f730: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0008f740: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f750: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f760: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f780: 2d2d 2d2d 2b0a 7c69 3220 3a20 4620 3d20 ----+.|i2 : F = │ │ │ │ -0008f790: 6d61 7472 6978 7b7b 745f 302a 745f 332a matrix{{t_0*t_3* │ │ │ │ -0008f7a0: 745f 352c 2074 5f31 2a74 5f33 2a74 5f36 t_5, t_1*t_3*t_6 │ │ │ │ -0008f7b0: 2c20 745f 322a 745f 342a 745f 372c 2074 , t_2*t_4*t_7, t │ │ │ │ -0008f7c0: 5f32 2a74 5f34 2a74 5f38 7d7d 7c0a 7c20 _2*t_4*t_8}}|.| │ │ │ │ +0008f770: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0008f780: 7c69 3220 3a20 4620 3d20 6d61 7472 6978 |i2 : F = matrix │ │ │ │ +0008f790: 7b7b 745f 302a 745f 332a 745f 352c 2074 {{t_0*t_3*t_5, t │ │ │ │ +0008f7a0: 5f31 2a74 5f33 2a74 5f36 2c20 745f 322a _1*t_3*t_6, t_2* │ │ │ │ +0008f7b0: 745f 342a 745f 372c 2074 5f32 2a74 5f34 t_4*t_7, t_2*t_4 │ │ │ │ +0008f7c0: 2a74 5f38 7d7d 7c0a 7c20 2020 2020 2020 *t_8}}|.| │ │ │ │ 0008f7d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f810: 2020 2020 7c0a 7c6f 3220 3d20 7c20 745f |.|o2 = | t_ │ │ │ │ -0008f820: 3074 5f33 745f 3520 745f 3174 5f33 745f 0t_3t_5 t_1t_3t_ │ │ │ │ -0008f830: 3620 745f 3274 5f34 745f 3720 745f 3274 6 t_2t_4t_7 t_2t │ │ │ │ -0008f840: 5f34 745f 3820 7c20 2020 2020 2020 2020 _4t_8 | │ │ │ │ -0008f850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008f800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f810: 7c6f 3220 3d20 7c20 745f 3074 5f33 745f |o2 = | t_0t_3t_ │ │ │ │ +0008f820: 3520 745f 3174 5f33 745f 3620 745f 3274 5 t_1t_3t_6 t_2t │ │ │ │ +0008f830: 5f34 745f 3720 745f 3274 5f34 745f 3820 _4t_7 t_2t_4t_8 │ │ │ │ +0008f840: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008f850: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008f860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f8a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008f8b0: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -0008f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f8d0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -0008f8e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0008f8f0: 3220 3a20 4d61 7472 6978 2028 5151 5b74 2 : Matrix (QQ[t │ │ │ │ -0008f900: 202e 2e74 205d 2920 203c 2d2d 2028 5151 ..t ]) <-- (QQ │ │ │ │ -0008f910: 5b74 202e 2e74 205d 2920 2020 2020 2020 [t ..t ]) │ │ │ │ -0008f920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f930: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008f940: 2020 2020 2020 2020 3020 2020 3820 2020 0 8 │ │ │ │ -0008f950: 2020 2020 2020 2020 2020 3020 2020 3820 0 8 │ │ │ │ +0008f890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f8a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008f8b0: 2020 2020 2020 2020 2031 2020 2020 2020 1 │ │ │ │ +0008f8c0: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ +0008f8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008f8e0: 2020 2020 2020 7c0a 7c6f 3220 3a20 4d61 |.|o2 : Ma │ │ │ │ +0008f8f0: 7472 6978 2028 5151 5b74 202e 2e74 205d trix (QQ[t ..t ] │ │ │ │ +0008f900: 2920 203c 2d2d 2028 5151 5b74 202e 2e74 ) <-- (QQ[t ..t │ │ │ │ +0008f910: 205d 2920 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +0008f920: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008f930: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008f940: 2020 3020 2020 3820 2020 2020 2020 2020 0 8 │ │ │ │ +0008f950: 2020 2020 3020 2020 3820 2020 2020 2020 0 8 │ │ │ │ 0008f960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008f970: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0008f970: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0008f980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008f9c0: 2d2d 2d2d 2b0a 7c69 3320 3a20 7068 6920 ----+.|i3 : phi │ │ │ │ -0008f9d0: 3d20 746f 4d61 7020 4620 2020 2020 2020 = toMap F │ │ │ │ +0008f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0008f9c0: 7c69 3320 3a20 7068 6920 3d20 746f 4d61 |i3 : phi = toMa │ │ │ │ +0008f9d0: 7020 4620 2020 2020 2020 2020 2020 2020 p F │ │ │ │ 0008f9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008f9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fa00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008fa00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008fa10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fa30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fa40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fa50: 2020 2020 7c0a 7c6f 3320 3d20 6d61 7020 |.|o3 = map │ │ │ │ -0008fa60: 2851 515b 7420 2e2e 7420 5d2c 2051 515b (QQ[t ..t ], QQ[ │ │ │ │ -0008fa70: 7820 2e2e 7820 5d2c 207b 7420 7420 7420 x ..x ], {t t t │ │ │ │ -0008fa80: 2c20 7420 7420 7420 2c20 7420 7420 7420 , t t t , t t t │ │ │ │ -0008fa90: 2c20 7420 7420 7420 7d29 2020 7c0a 7c20 , t t t }) |.| │ │ │ │ -0008faa0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -0008fab0: 2038 2020 2020 2020 2030 2020 2033 2020 8 0 3 │ │ │ │ -0008fac0: 2020 2030 2033 2035 2020 2031 2033 2036 0 3 5 1 3 6 │ │ │ │ -0008fad0: 2020 2032 2034 2037 2020 2032 2034 2038 2 4 7 2 4 8 │ │ │ │ -0008fae0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008fa40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fa50: 7c6f 3320 3d20 6d61 7020 2851 515b 7420 |o3 = map (QQ[t │ │ │ │ +0008fa60: 2e2e 7420 5d2c 2051 515b 7820 2e2e 7820 ..t ], QQ[x ..x │ │ │ │ +0008fa70: 5d2c 207b 7420 7420 7420 2c20 7420 7420 ], {t t t , t t │ │ │ │ +0008fa80: 7420 2c20 7420 7420 7420 2c20 7420 7420 t , t t t , t t │ │ │ │ +0008fa90: 7420 7d29 2020 7c0a 7c20 2020 2020 2020 t }) |.| │ │ │ │ +0008faa0: 2020 2020 2020 2030 2020 2038 2020 2020 0 8 │ │ │ │ +0008fab0: 2020 2030 2020 2033 2020 2020 2030 2033 0 3 0 3 │ │ │ │ +0008fac0: 2035 2020 2031 2033 2036 2020 2032 2034 5 1 3 6 2 4 │ │ │ │ +0008fad0: 2037 2020 2032 2034 2038 2020 2020 7c0a 7 2 4 8 |. │ │ │ │ +0008fae0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0008faf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fb20: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0008fb30: 3320 3a20 5269 6e67 4d61 7020 5151 5b74 3 : RingMap QQ[t │ │ │ │ -0008fb40: 202e 2e74 205d 203c 2d2d 2051 515b 7820 ..t ] <-- QQ[x │ │ │ │ -0008fb50: 2e2e 7820 5d20 2020 2020 2020 2020 2020 ..x ] │ │ │ │ -0008fb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fb70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008fb80: 2020 2020 2020 2020 3020 2020 3820 2020 0 8 │ │ │ │ -0008fb90: 2020 2020 2020 2030 2020 2033 2020 2020 0 3 │ │ │ │ +0008fb20: 2020 2020 2020 7c0a 7c6f 3320 3a20 5269 |.|o3 : Ri │ │ │ │ +0008fb30: 6e67 4d61 7020 5151 5b74 202e 2e74 205d ngMap QQ[t ..t ] │ │ │ │ +0008fb40: 203c 2d2d 2051 515b 7820 2e2e 7820 5d20 <-- QQ[x ..x ] │ │ │ │ +0008fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008fb60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fb70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008fb80: 2020 3020 2020 3820 2020 2020 2020 2020 0 8 │ │ │ │ +0008fb90: 2030 2020 2033 2020 2020 2020 2020 2020 0 3 │ │ │ │ 0008fba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fbb0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0008fbb0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0008fbc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008fbd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0008fbe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008fbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0008fc00: 2d2d 2d2d 2b0a 7c69 3420 3a20 7261 7469 ----+.|i4 : rati │ │ │ │ -0008fc10: 6f6e 616c 4d61 7020 7068 6920 2020 2020 onalMap phi │ │ │ │ +0008fbf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +0008fc00: 7c69 3420 3a20 7261 7469 6f6e 616c 4d61 |i4 : rationalMa │ │ │ │ +0008fc10: 7020 7068 6920 2020 2020 2020 2020 2020 p phi │ │ │ │ 0008fc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fc30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fc40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008fc40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008fc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fc90: 2020 2020 7c0a 7c6f 3420 3d20 2d2d 2072 |.|o4 = -- r │ │ │ │ -0008fca0: 6174 696f 6e61 6c20 6d61 7020 2d2d 2020 ational map -- │ │ │ │ +0008fc80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fc90: 7c6f 3420 3d20 2d2d 2072 6174 696f 6e61 |o4 = -- rationa │ │ │ │ +0008fca0: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ 0008fcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fcd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008fce0: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -0008fcf0: 2851 515b 7420 2c20 7420 2c20 7420 2c20 (QQ[t , t , t , │ │ │ │ -0008fd00: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -0008fd10: 7420 2c20 7420 5d29 2020 2020 2020 2020 t , t ]) │ │ │ │ -0008fd20: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008fd30: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -0008fd40: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -0008fd50: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ -0008fd60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008fd70: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -0008fd80: 2851 515b 7820 2c20 7820 2c20 7820 2c20 (QQ[x , x , x , │ │ │ │ -0008fd90: 7820 5d29 2020 2020 2020 2020 2020 2020 x ]) │ │ │ │ -0008fda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fdb0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008fdc0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -0008fdd0: 2031 2020 2032 2020 2033 2020 2020 2020 1 2 3 │ │ │ │ +0008fcd0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0008fce0: 7572 6365 3a20 5072 6f6a 2851 515b 7420 urce: Proj(QQ[t │ │ │ │ +0008fcf0: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +0008fd00: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +0008fd10: 5d29 2020 2020 2020 2020 2020 2020 7c0a ]) |. │ │ │ │ +0008fd20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008fd30: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ +0008fd40: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +0008fd50: 2020 2037 2020 2038 2020 2020 2020 2020 7 8 │ │ │ │ +0008fd60: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0008fd70: 7267 6574 3a20 5072 6f6a 2851 515b 7820 rget: Proj(QQ[x │ │ │ │ +0008fd80: 2c20 7820 2c20 7820 2c20 7820 5d29 2020 , x , x , x ]) │ │ │ │ +0008fd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0008fda0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fdb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008fdc0: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ +0008fdd0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0008fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fdf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008fe00: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -0008fe10: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +0008fdf0: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +0008fe00: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +0008fe10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fe20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fe40: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008fe50: 2020 2020 2020 2020 2020 2020 2074 2074 t t │ │ │ │ -0008fe60: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +0008fe30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fe40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008fe50: 2020 2020 2020 2074 2074 2074 202c 2020 t t t , │ │ │ │ +0008fe60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fe70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fe80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008fe80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008fe90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fea0: 2020 2020 2020 3020 3320 3520 2020 2020 0 3 5 │ │ │ │ +0008fea0: 3020 3320 3520 2020 2020 2020 2020 2020 0 3 5 │ │ │ │ 0008feb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fed0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +0008fec0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fed0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 0008fee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008fef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ff10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0008ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ff30: 2020 2020 2074 2074 2074 202c 2020 2020 t t t , │ │ │ │ +0008ff10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0008ff20: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +0008ff30: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 0008ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ff60: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -0008ff70: 2020 2020 2020 2020 2020 2020 2020 3120 1 │ │ │ │ -0008ff80: 3320 3620 2020 2020 2020 2020 2020 2020 3 6 │ │ │ │ +0008ff50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008ff60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0008ff70: 2020 2020 2020 2020 3120 3320 3620 2020 1 3 6 │ │ │ │ +0008ff80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ff90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ffa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0008ffa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0008ffb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0008ffd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008ffe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0008fff0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00090000: 2020 2020 2020 2020 2020 2020 2074 2074 t t │ │ │ │ -00090010: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +0008ffe0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +0008fff0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00090000: 2020 2020 2020 2074 2074 2074 202c 2020 t t t , │ │ │ │ +00090010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00090030: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00090040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090050: 2020 2020 2020 3220 3420 3720 2020 2020 2 4 7 │ │ │ │ +00090050: 3220 3420 3720 2020 2020 2020 2020 2020 2 4 7 │ │ │ │ 00090060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090080: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00090070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00090090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000900a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000900b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000900c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000900d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000900e0: 2020 2020 2074 2074 2074 2020 2020 2020 t t t │ │ │ │ +000900c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000900d0: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +000900e0: 2074 2074 2020 2020 2020 2020 2020 2020 t t │ │ │ │ 000900f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090110: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00090120: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00090130: 3420 3820 2020 2020 2020 2020 2020 2020 4 8 │ │ │ │ +00090100: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090110: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00090120: 2020 2020 2020 2020 3220 3420 3820 2020 2 4 8 │ │ │ │ +00090130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090150: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00090160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090170: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00090150: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00090160: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00090170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000901a0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00090190: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000901a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000901b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000901c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000901d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000901e0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000901f0: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ -00090200: 2863 7562 6963 2072 6174 696f 6e61 6c20 (cubic rational │ │ │ │ -00090210: 6d61 7020 6672 6f6d 2050 505e 3820 746f map from PP^8 to │ │ │ │ -00090220: 2050 505e 3329 2020 2020 2020 2020 2020 PP^3) │ │ │ │ -00090230: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ +000901e0: 2020 2020 2020 7c0a 7c6f 3420 3a20 5261 |.|o4 : Ra │ │ │ │ +000901f0: 7469 6f6e 616c 4d61 7020 2863 7562 6963 tionalMap (cubic │ │ │ │ +00090200: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +00090210: 6f6d 2050 505e 3820 746f 2050 505e 3329 om PP^8 to PP^3) │ │ │ │ +00090220: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090230: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ 00090240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00090280: 3520 3a20 7261 7469 6f6e 616c 4d61 7020 5 : rationalMap │ │ │ │ -00090290: 4620 2020 2020 2020 2020 2020 2020 2020 F │ │ │ │ +00090270: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7261 ------+.|i5 : ra │ │ │ │ +00090280: 7469 6f6e 616c 4d61 7020 4620 2020 2020 tionalMap F │ │ │ │ +00090290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000902a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000902b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000902c0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000902b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000902c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 000902d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000902e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000902f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090300: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00090310: 3520 3d20 2d2d 2072 6174 696f 6e61 6c20 5 = -- rational │ │ │ │ -00090320: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +00090300: 2020 2020 2020 7c0a 7c6f 3520 3d20 2d2d |.|o5 = -- │ │ │ │ +00090310: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00090320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090350: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ -00090360: 6365 3a20 5072 6f6a 2851 515b 7420 2c20 ce: Proj(QQ[t , │ │ │ │ -00090370: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ -00090380: 7420 2c20 7420 2c20 7420 2c20 7420 5d29 t , t , t , t ]) │ │ │ │ -00090390: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000903a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000903b0: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ -000903c0: 2033 2020 2034 2020 2035 2020 2036 2020 3 4 5 6 │ │ │ │ -000903d0: 2037 2020 2038 2020 2020 2020 2020 2020 7 8 │ │ │ │ -000903e0: 2020 2020 7c0a 7c20 2020 2020 7461 7267 |.| targ │ │ │ │ -000903f0: 6574 3a20 5072 6f6a 2851 515b 7820 2c20 et: Proj(QQ[x , │ │ │ │ -00090400: 7820 2c20 7820 2c20 7820 5d29 2020 2020 x , x , x ]) │ │ │ │ +00090340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090350: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ +00090360: 6f6a 2851 515b 7420 2c20 7420 2c20 7420 oj(QQ[t , t , t │ │ │ │ +00090370: 2c20 7420 2c20 7420 2c20 7420 2c20 7420 , t , t , t , t │ │ │ │ +00090380: 2c20 7420 2c20 7420 5d29 2020 2020 2020 , t , t ]) │ │ │ │ +00090390: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000903a0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000903b0: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ +000903c0: 2020 2035 2020 2036 2020 2037 2020 2038 5 6 7 8 │ │ │ │ +000903d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000903e0: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ +000903f0: 6f6a 2851 515b 7820 2c20 7820 2c20 7820 oj(QQ[x , x , x │ │ │ │ +00090400: 2c20 7820 5d29 2020 2020 2020 2020 2020 , x ]) │ │ │ │ 00090410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090420: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00090430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090440: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ -00090450: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -00090460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090470: 2020 2020 7c0a 7c20 2020 2020 6465 6669 |.| defi │ │ │ │ -00090480: 6e69 6e67 2066 6f72 6d73 3a20 7b20 2020 ning forms: { │ │ │ │ +00090420: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00090430: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00090440: 2020 2031 2020 2032 2020 2033 2020 2020 1 2 3 │ │ │ │ +00090450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00090460: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090470: 7c20 2020 2020 6465 6669 6e69 6e67 2066 | defining f │ │ │ │ +00090480: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ 00090490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000904a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000904b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000904c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000904d0: 2020 2020 2074 2074 2074 202c 2020 2020 t t t , │ │ │ │ +000904b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000904c0: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +000904d0: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 000904e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000904f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090500: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00090510: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00090520: 3320 3520 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ +000904f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090500: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00090510: 2020 2020 2020 2020 3020 3320 3520 2020 0 3 5 │ │ │ │ +00090520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090540: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00090540: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00090550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090590: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000905a0: 2020 2020 2020 2020 2020 2020 2074 2074 t t │ │ │ │ -000905b0: 2074 202c 2020 2020 2020 2020 2020 2020 t , │ │ │ │ +00090580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000905a0: 2020 2020 2020 2074 2074 2074 202c 2020 t t t , │ │ │ │ +000905b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000905c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000905d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000905d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000905e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000905f0: 2020 2020 2020 3120 3320 3620 2020 2020 1 3 6 │ │ │ │ +000905f0: 3120 3320 3620 2020 2020 2020 2020 2020 1 3 6 │ │ │ │ 00090600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090620: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00090610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00090630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090660: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00090670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090680: 2020 2020 2074 2074 2074 202c 2020 2020 t t t , │ │ │ │ +00090660: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00090670: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ +00090680: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ 00090690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000906a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000906b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000906c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000906d0: 3420 3720 2020 2020 2020 2020 2020 2020 4 7 │ │ │ │ +000906a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000906b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000906c0: 2020 2020 2020 2020 3220 3420 3720 2020 2 4 7 │ │ │ │ +000906d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000906e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000906f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000906f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00090700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090740: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00090750: 2020 2020 2020 2020 2020 2020 2074 2074 t t │ │ │ │ -00090760: 2074 2020 2020 2020 2020 2020 2020 2020 t │ │ │ │ +00090730: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090740: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00090750: 2020 2020 2020 2074 2074 2074 2020 2020 t t t │ │ │ │ +00090760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090780: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00090780: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00090790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000907a0: 2020 2020 2020 3220 3420 3820 2020 2020 2 4 8 │ │ │ │ +000907a0: 3220 3420 3820 2020 2020 2020 2020 2020 2 4 8 │ │ │ │ 000907b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000907c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000907d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000907e0: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +000907c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000907d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000907e0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ 000907f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090810: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00090810: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00090820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090860: 2020 2020 7c0a 7c6f 3520 3a20 5261 7469 |.|o5 : Rati │ │ │ │ -00090870: 6f6e 616c 4d61 7020 2863 7562 6963 2072 onalMap (cubic r │ │ │ │ -00090880: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -00090890: 2050 505e 3820 746f 2050 505e 3329 2020 PP^8 to PP^3) │ │ │ │ -000908a0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00090850: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00090860: 7c6f 3520 3a20 5261 7469 6f6e 616c 4d61 |o5 : RationalMa │ │ │ │ +00090870: 7020 2863 7562 6963 2072 6174 696f 6e61 p (cubic rationa │ │ │ │ +00090880: 6c20 6d61 7020 6672 6f6d 2050 505e 3820 l map from PP^8 │ │ │ │ +00090890: 746f 2050 505e 3329 2020 2020 2020 2020 to PP^3) │ │ │ │ +000908a0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000908b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000908c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000908d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000908e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000908f0: 2d2d 2d2d 2b0a 0a4d 756c 7469 6772 6164 ----+..Multigrad │ │ │ │ -00090900: 6564 2072 696e 6773 2061 7265 2061 6c73 ed rings are als │ │ │ │ -00090910: 6f20 7065 726d 6974 7465 6420 6275 7420 o permitted but │ │ │ │ -00090920: 696e 2074 6869 7320 6361 7365 2074 6865 in this case the │ │ │ │ -00090930: 206d 6574 686f 6420 7265 7475 726e 7320 method returns │ │ │ │ -00090940: 616e 0a6f 626a 6563 7420 6f66 2074 6865 an.object of the │ │ │ │ -00090950: 2063 6c61 7373 204d 756c 7469 686f 6d6f class Multihomo │ │ │ │ -00090960: 6765 6e65 6f75 7352 6174 696f 6e61 6c4d geneousRationalM │ │ │ │ -00090970: 6170 2c20 7768 6963 6820 6361 6e20 6265 ap, which can be │ │ │ │ -00090980: 2063 6f6e 7369 6465 7265 6420 6173 2061 considered as a │ │ │ │ -00090990: 6e0a 6578 7465 6e73 696f 6e20 6f66 2074 n.extension of t │ │ │ │ -000909a0: 6865 2063 6c61 7373 2052 6174 696f 6e61 he class Rationa │ │ │ │ -000909b0: 6c4d 6170 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d lMap...+-------- │ │ │ │ +000908e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +000908f0: 0a4d 756c 7469 6772 6164 6564 2072 696e .Multigraded rin │ │ │ │ +00090900: 6773 2061 7265 2061 6c73 6f20 7065 726d gs are also perm │ │ │ │ +00090910: 6974 7465 6420 6275 7420 696e 2074 6869 itted but in thi │ │ │ │ +00090920: 7320 6361 7365 2074 6865 206d 6574 686f s case the metho │ │ │ │ +00090930: 6420 7265 7475 726e 7320 616e 0a6f 626a d returns an.obj │ │ │ │ +00090940: 6563 7420 6f66 2074 6865 2063 6c61 7373 ect of the class │ │ │ │ +00090950: 204d 756c 7469 686f 6d6f 6765 6e65 6f75 Multihomogeneou │ │ │ │ +00090960: 7352 6174 696f 6e61 6c4d 6170 2c20 7768 sRationalMap, wh │ │ │ │ +00090970: 6963 6820 6361 6e20 6265 2063 6f6e 7369 ich can be consi │ │ │ │ +00090980: 6465 7265 6420 6173 2061 6e0a 6578 7465 dered as an.exte │ │ │ │ +00090990: 6e73 696f 6e20 6f66 2074 6865 2063 6c61 nsion of the cla │ │ │ │ +000909a0: 7373 2052 6174 696f 6e61 6c4d 6170 2e0a ss RationalMap.. │ │ │ │ +000909b0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000909c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000909d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000909e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000909f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090a00: 2d2d 2d2d 2d2b 0a7c 6936 203a 2052 2720 -----+.|i6 : R' │ │ │ │ -00090a10: 3a3d 206e 6577 5269 6e67 2852 2c44 6567 := newRing(R,Deg │ │ │ │ -00090a20: 7265 6573 3d3e 7b33 3a7b 312c 302c 307d rees=>{3:{1,0,0} │ │ │ │ -00090a30: 2c32 3a7b 302c 312c 307d 2c34 3a7b 302c ,2:{0,1,0},4:{0, │ │ │ │ -00090a40: 302c 317d 7d29 2020 2020 2020 2020 2020 0,1}}) │ │ │ │ -00090a50: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000909f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00090a00: 0a7c 6936 203a 2052 2720 3a3d 206e 6577 .|i6 : R' := new │ │ │ │ +00090a10: 5269 6e67 2852 2c44 6567 7265 6573 3d3e Ring(R,Degrees=> │ │ │ │ +00090a20: 7b33 3a7b 312c 302c 307d 2c32 3a7b 302c {3:{1,0,0},2:{0, │ │ │ │ +00090a30: 312c 307d 2c34 3a7b 302c 302c 317d 7d29 1,0},4:{0,0,1}}) │ │ │ │ +00090a40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090a50: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00090a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090aa0: 2020 2020 207c 0a7c 6f36 203d 2051 515b |.|o6 = QQ[ │ │ │ │ -00090ab0: 7420 2e2e 7420 5d20 2020 2020 2020 2020 t ..t ] │ │ │ │ +00090a90: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090aa0: 0a7c 6f36 203d 2051 515b 7420 2e2e 7420 .|o6 = QQ[t ..t │ │ │ │ +00090ab0: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ 00090ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090af0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00090b00: 2030 2020 2038 2020 2020 2020 2020 2020 0 8 │ │ │ │ +00090ae0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090af0: 0a7c 2020 2020 2020 2020 2030 2020 2038 .| 0 8 │ │ │ │ +00090b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090b40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00090b30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090b40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00090b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090b90: 2020 2020 207c 0a7c 6f36 203a 2050 6f6c |.|o6 : Pol │ │ │ │ -00090ba0: 796e 6f6d 6961 6c52 696e 6720 2020 2020 ynomialRing │ │ │ │ +00090b80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090b90: 0a7c 6f36 203a 2050 6f6c 796e 6f6d 6961 .|o6 : Polynomia │ │ │ │ +00090ba0: 6c52 696e 6720 2020 2020 2020 2020 2020 lRing │ │ │ │ 00090bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090be0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00090bd0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090be0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00090bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090c30: 2d2d 2d2d 2d2b 0a7c 6937 203a 2046 2720 -----+.|i7 : F' │ │ │ │ -00090c40: 3d20 7375 6228 462c 5227 2920 2020 2020 = sub(F,R') │ │ │ │ +00090c20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00090c30: 0a7c 6937 203a 2046 2720 3d20 7375 6228 .|i7 : F' = sub( │ │ │ │ +00090c40: 462c 5227 2920 2020 2020 2020 2020 2020 F,R') │ │ │ │ 00090c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090c80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00090c70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090c80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00090c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090cd0: 2020 2020 207c 0a7c 6f37 203d 207c 2074 |.|o7 = | t │ │ │ │ -00090ce0: 5f30 745f 3374 5f35 2074 5f31 745f 3374 _0t_3t_5 t_1t_3t │ │ │ │ -00090cf0: 5f36 2074 5f32 745f 3474 5f37 2074 5f32 _6 t_2t_4t_7 t_2 │ │ │ │ -00090d00: 745f 3474 5f38 207c 2020 2020 2020 2020 t_4t_8 | │ │ │ │ -00090d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090d20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00090cc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090cd0: 0a7c 6f37 203d 207c 2074 5f30 745f 3374 .|o7 = | t_0t_3t │ │ │ │ +00090ce0: 5f35 2074 5f31 745f 3374 5f36 2074 5f32 _5 t_1t_3t_6 t_2 │ │ │ │ +00090cf0: 745f 3474 5f37 2074 5f32 745f 3474 5f38 t_4t_7 t_2t_4t_8 │ │ │ │ +00090d00: 207c 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00090d10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090d20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00090d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090d70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00090d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090d90: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -00090da0: 2020 3420 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00090db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090dc0: 2020 2020 207c 0a7c 6f37 203a 204d 6174 |.|o7 : Mat │ │ │ │ -00090dd0: 7269 7820 2851 515b 7420 2e2e 7420 5d29 rix (QQ[t ..t ]) │ │ │ │ -00090de0: 2020 3c2d 2d20 2851 515b 7420 2e2e 7420 <-- (QQ[t ..t │ │ │ │ -00090df0: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ -00090e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090e10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00090e20: 2020 2020 2020 2020 2030 2020 2038 2020 0 8 │ │ │ │ -00090e30: 2020 2020 2020 2020 2020 2030 2020 2038 0 8 │ │ │ │ +00090d60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090d70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00090d80: 2020 2020 2020 2020 2020 3120 2020 2020 1 │ │ │ │ +00090d90: 2020 2020 2020 2020 2020 2020 3420 2020 4 │ │ │ │ +00090da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00090db0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090dc0: 0a7c 6f37 203a 204d 6174 7269 7820 2851 .|o7 : Matrix (Q │ │ │ │ +00090dd0: 515b 7420 2e2e 7420 5d29 2020 3c2d 2d20 Q[t ..t ]) <-- │ │ │ │ +00090de0: 2851 515b 7420 2e2e 7420 5d29 2020 2020 (QQ[t ..t ]) │ │ │ │ +00090df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00090e00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090e10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00090e20: 2020 2030 2020 2038 2020 2020 2020 2020 0 8 │ │ │ │ +00090e30: 2020 2020 2030 2020 2038 2020 2020 2020 0 8 │ │ │ │ 00090e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090e60: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00090e50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090e60: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00090e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00090e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00090eb0: 2d2d 2d2d 2d2b 0a7c 6938 203a 2070 6869 -----+.|i8 : phi │ │ │ │ -00090ec0: 2720 3d20 746f 4d61 7020 4627 2020 2020 ' = toMap F' │ │ │ │ +00090ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00090eb0: 0a7c 6938 203a 2070 6869 2720 3d20 746f .|i8 : phi' = to │ │ │ │ +00090ec0: 4d61 7020 4627 2020 2020 2020 2020 2020 Map F' │ │ │ │ 00090ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090f00: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00090ef0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090f00: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00090f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00090f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00090f50: 2020 2020 207c 0a7c 6f38 203d 206d 6170 |.|o8 = map │ │ │ │ -00090f60: 2028 5151 5b74 202e 2e74 205d 2c20 5151 (QQ[t ..t ], QQ │ │ │ │ -00090f70: 5b78 202e 2e78 205d 2c20 7b74 2074 2074 [x ..x ], {t t t │ │ │ │ -00090f80: 202c 2074 2074 2074 202c 2074 2074 2074 , t t t , t t t │ │ │ │ -00090f90: 202c 2074 2074 2074 207d 2920 2020 2020 , t t t }) │ │ │ │ -00090fa0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00090fb0: 2020 2020 2020 3020 2020 3820 2020 2020 0 8 │ │ │ │ -00090fc0: 2020 3020 2020 3320 2020 2020 3020 3320 0 3 0 3 │ │ │ │ -00090fd0: 3520 2020 3120 3320 3620 2020 3220 3420 5 1 3 6 2 4 │ │ │ │ -00090fe0: 3720 2020 3220 3420 3820 2020 2020 2020 7 2 4 8 │ │ │ │ -00090ff0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00090f40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00090f50: 0a7c 6f38 203d 206d 6170 2028 5151 5b74 .|o8 = map (QQ[t │ │ │ │ +00090f60: 202e 2e74 205d 2c20 5151 5b78 202e 2e78 ..t ], QQ[x ..x │ │ │ │ +00090f70: 205d 2c20 7b74 2074 2074 202c 2074 2074 ], {t t t , t t │ │ │ │ +00090f80: 2074 202c 2074 2074 2074 202c 2074 2074 t , t t t , t t │ │ │ │ +00090f90: 2074 207d 2920 2020 2020 2020 2020 207c t }) | │ │ │ │ +00090fa0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00090fb0: 3020 2020 3820 2020 2020 2020 3020 2020 0 8 0 │ │ │ │ +00090fc0: 3320 2020 2020 3020 3320 3520 2020 3120 3 0 3 5 1 │ │ │ │ +00090fd0: 3320 3620 2020 3220 3420 3720 2020 3220 3 6 2 4 7 2 │ │ │ │ +00090fe0: 3420 3820 2020 2020 2020 2020 2020 207c 4 8 | │ │ │ │ +00090ff0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091040: 2020 2020 207c 0a7c 6f38 203a 2052 696e |.|o8 : Rin │ │ │ │ -00091050: 674d 6170 2051 515b 7420 2e2e 7420 5d20 gMap QQ[t ..t ] │ │ │ │ -00091060: 3c2d 2d20 5151 5b78 202e 2e78 205d 2020 <-- QQ[x ..x ] │ │ │ │ +00091030: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091040: 0a7c 6f38 203a 2052 696e 674d 6170 2051 .|o8 : RingMap Q │ │ │ │ +00091050: 515b 7420 2e2e 7420 5d20 3c2d 2d20 5151 Q[t ..t ] <-- QQ │ │ │ │ +00091060: 5b78 202e 2e78 205d 2020 2020 2020 2020 [x ..x ] │ │ │ │ 00091070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091090: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000910a0: 2020 2020 2020 2020 2030 2020 2038 2020 0 8 │ │ │ │ -000910b0: 2020 2020 2020 2020 3020 2020 3320 2020 0 3 │ │ │ │ +00091080: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091090: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000910a0: 2020 2030 2020 2038 2020 2020 2020 2020 0 8 │ │ │ │ +000910b0: 2020 3020 2020 3320 2020 2020 2020 2020 0 3 │ │ │ │ 000910c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000910d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000910e0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +000910d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000910e0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 000910f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091130: 2d2d 2d2d 2d2b 0a7c 6939 203a 2072 6174 -----+.|i9 : rat │ │ │ │ -00091140: 696f 6e61 6c4d 6170 2070 6869 2720 2020 ionalMap phi' │ │ │ │ +00091120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00091130: 0a7c 6939 203a 2072 6174 696f 6e61 6c4d .|i9 : rationalM │ │ │ │ +00091140: 6170 2070 6869 2720 2020 2020 2020 2020 ap phi' │ │ │ │ 00091150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091180: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091170: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091180: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000911a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000911b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000911c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000911d0: 2020 2020 207c 0a7c 6f39 203d 202d 2d20 |.|o9 = -- │ │ │ │ -000911e0: 7261 7469 6f6e 616c 206d 6170 202d 2d20 rational map -- │ │ │ │ +000911c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000911d0: 0a7c 6f39 203d 202d 2d20 7261 7469 6f6e .|o9 = -- ration │ │ │ │ +000911e0: 616c 206d 6170 202d 2d20 2020 2020 2020 al map -- │ │ │ │ 000911f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091220: 2020 2020 207c 0a7c 2020 2020 2073 6f75 |.| sou │ │ │ │ -00091230: 7263 653a 2050 726f 6a28 5151 5b74 202c rce: Proj(QQ[t , │ │ │ │ -00091240: 2074 202c 2074 205d 2920 7820 5072 6f6a t , t ]) x Proj │ │ │ │ -00091250: 2851 515b 7420 2c20 7420 5d29 2078 2050 (QQ[t , t ]) x P │ │ │ │ -00091260: 726f 6a28 5151 5b74 202c 2074 202c 2020 roj(QQ[t , t , │ │ │ │ -00091270: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091280: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00091290: 2020 3120 2020 3220 2020 2020 2020 2020 1 2 │ │ │ │ -000912a0: 2020 2020 2033 2020 2034 2020 2020 2020 3 4 │ │ │ │ -000912b0: 2020 2020 2020 2020 3520 2020 3620 2020 5 6 │ │ │ │ -000912c0: 2020 2020 207c 0a7c 2020 2020 2074 6172 |.| tar │ │ │ │ -000912d0: 6765 743a 2050 726f 6a28 5151 5b78 202c get: Proj(QQ[x , │ │ │ │ -000912e0: 2078 202c 2078 202c 2078 205d 2920 2020 x , x , x ]) │ │ │ │ +00091210: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091220: 0a7c 2020 2020 2073 6f75 7263 653a 2050 .| source: P │ │ │ │ +00091230: 726f 6a28 5151 5b74 202c 2074 202c 2074 roj(QQ[t , t , t │ │ │ │ +00091240: 205d 2920 7820 5072 6f6a 2851 515b 7420 ]) x Proj(QQ[t │ │ │ │ +00091250: 2c20 7420 5d29 2078 2050 726f 6a28 5151 , t ]) x Proj(QQ │ │ │ │ +00091260: 5b74 202c 2074 202c 2020 2020 2020 207c [t , t , | │ │ │ │ +00091270: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091280: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00091290: 3220 2020 2020 2020 2020 2020 2020 2033 2 3 │ │ │ │ +000912a0: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +000912b0: 2020 3520 2020 3620 2020 2020 2020 207c 5 6 | │ │ │ │ +000912c0: 0a7c 2020 2020 2074 6172 6765 743a 2050 .| target: P │ │ │ │ +000912d0: 726f 6a28 5151 5b78 202c 2078 202c 2078 roj(QQ[x , x , x │ │ │ │ +000912e0: 202c 2078 205d 2920 2020 2020 2020 2020 , x ]) │ │ │ │ 000912f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091310: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091320: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -00091330: 2020 3120 2020 3220 2020 3320 2020 2020 1 2 3 │ │ │ │ +00091300: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091310: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091320: 2020 2020 2020 2020 3020 2020 3120 2020 0 1 │ │ │ │ +00091330: 3220 2020 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ 00091340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091360: 2020 2020 207c 0a7c 2020 2020 2064 6566 |.| def │ │ │ │ -00091370: 696e 696e 6720 666f 726d 733a 207b 2020 ining forms: { │ │ │ │ +00091350: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091360: 0a7c 2020 2020 2064 6566 696e 696e 6720 .| defining │ │ │ │ +00091370: 666f 726d 733a 207b 2020 2020 2020 2020 forms: { │ │ │ │ 00091380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000913a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000913b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000913c0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000913d0: 7420 7420 2c20 2020 2020 2020 2020 2020 t t , │ │ │ │ +000913a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000913b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000913c0: 2020 2020 2020 2020 7420 7420 7420 2c20 t t t , │ │ │ │ +000913d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000913e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000913f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091400: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091410: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00091420: 2033 2035 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ +000913f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091400: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091410: 2020 2020 2020 2020 2030 2033 2035 2020 0 3 5 │ │ │ │ +00091420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091450: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091440: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091450: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000914a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000914b0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000914c0: 7420 7420 2c20 2020 2020 2020 2020 2020 t t , │ │ │ │ +00091490: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000914a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000914b0: 2020 2020 2020 2020 7420 7420 7420 2c20 t t t , │ │ │ │ +000914c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000914d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000914e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000914f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091500: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -00091510: 2033 2036 2020 2020 2020 2020 2020 2020 3 6 │ │ │ │ +000914e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000914f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091500: 2020 2020 2020 2020 2031 2033 2036 2020 1 3 6 │ │ │ │ +00091510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091540: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091530: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091540: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091590: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000915a0: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000915b0: 7420 7420 2c20 2020 2020 2020 2020 2020 t t , │ │ │ │ +00091580: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091590: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000915a0: 2020 2020 2020 2020 7420 7420 7420 2c20 t t t , │ │ │ │ +000915b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000915c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000915d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000915e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000915f0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -00091600: 2034 2037 2020 2020 2020 2020 2020 2020 4 7 │ │ │ │ +000915d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000915e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000915f0: 2020 2020 2020 2020 2032 2034 2037 2020 2 4 7 │ │ │ │ +00091600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091630: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091620: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091630: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091680: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091690: 2020 2020 2020 2020 2020 2020 2020 7420 t │ │ │ │ -000916a0: 7420 7420 2020 2020 2020 2020 2020 2020 t t │ │ │ │ +00091670: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091680: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091690: 2020 2020 2020 2020 7420 7420 7420 2020 t t t │ │ │ │ +000916a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000916b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000916c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000916d0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000916e0: 2020 2020 2020 2020 2020 2020 2020 2032 2 │ │ │ │ -000916f0: 2034 2038 2020 2020 2020 2020 2020 2020 4 8 │ │ │ │ +000916c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000916d0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000916e0: 2020 2020 2020 2020 2032 2034 2038 2020 2 4 8 │ │ │ │ +000916f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091720: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091730: 2020 2020 2020 2020 2020 2020 207d 2020 } │ │ │ │ +00091710: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091720: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091730: 2020 2020 2020 207d 2020 2020 2020 2020 } │ │ │ │ 00091740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091770: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091760: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091770: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000917a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000917b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000917c0: 2020 2020 207c 0a7c 6f39 203a 204d 756c |.|o9 : Mul │ │ │ │ -000917d0: 7469 686f 6d6f 6765 6e65 6f75 7352 6174 tihomogeneousRat │ │ │ │ -000917e0: 696f 6e61 6c4d 6170 2028 7261 7469 6f6e ionalMap (ration │ │ │ │ -000917f0: 616c 206d 6170 2066 726f 6d20 5050 5e32 al map from PP^2 │ │ │ │ -00091800: 2078 2050 505e 3120 7820 5050 5e33 2020 x PP^1 x PP^3 │ │ │ │ -00091810: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +000917b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000917c0: 0a7c 6f39 203a 204d 756c 7469 686f 6d6f .|o9 : Multihomo │ │ │ │ +000917d0: 6765 6e65 6f75 7352 6174 696f 6e61 6c4d geneousRationalM │ │ │ │ +000917e0: 6170 2028 7261 7469 6f6e 616c 206d 6170 ap (rational map │ │ │ │ +000917f0: 2066 726f 6d20 5050 5e32 2078 2050 505e from PP^2 x PP^ │ │ │ │ +00091800: 3120 7820 5050 5e33 2020 2020 2020 207c 1 x PP^3 | │ │ │ │ +00091810: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00091820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091860: 2d2d 2d2d 2d7c 0a7c 7420 2c20 7420 5d29 -----|.|t , t ]) │ │ │ │ +00091850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +00091860: 0a7c 7420 2c20 7420 5d29 2020 2020 2020 .|t , t ]) │ │ │ │ 00091870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000918a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000918b0: 2020 2020 207c 0a7c 2037 2020 2038 2020 |.| 7 8 │ │ │ │ +000918a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000918b0: 0a7c 2037 2020 2038 2020 2020 2020 2020 .| 7 8 │ │ │ │ 000918c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000918d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000918e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000918f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091900: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000918f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091900: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091950: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091940: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091950: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000919a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091990: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000919a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000919b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000919c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000919d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000919e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000919f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000919e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000919f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091a40: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091a30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091a40: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091a90: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091a80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091a90: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091ae0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091ad0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091ae0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091b30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091b20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091b30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091b80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091b70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091b80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091bd0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091bc0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091bd0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091c20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091c10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091c20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091c70: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091c60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091c70: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091cc0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091cb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091cc0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091d10: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091d00: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091d10: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091d60: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091d50: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091d60: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091db0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091da0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091db0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091e00: 2020 2020 207c 0a7c 746f 2050 505e 3329 |.|to PP^3) │ │ │ │ +00091df0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091e00: 0a7c 746f 2050 505e 3329 2020 2020 2020 .|to PP^3) │ │ │ │ 00091e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091e50: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00091e40: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091e50: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00091e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00091e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00091ea0: 2d2d 2d2d 2d2b 0a7c 6931 3020 3a20 7261 -----+.|i10 : ra │ │ │ │ -00091eb0: 7469 6f6e 616c 4d61 7020 4627 2020 2020 tionalMap F' │ │ │ │ +00091e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00091ea0: 0a7c 6931 3020 3a20 7261 7469 6f6e 616c .|i10 : rational │ │ │ │ +00091eb0: 4d61 7020 4627 2020 2020 2020 2020 2020 Map F' │ │ │ │ 00091ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091ef0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00091ee0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091ef0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00091f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091f40: 2020 2020 207c 0a7c 6f31 3020 3d20 2d2d |.|o10 = -- │ │ │ │ -00091f50: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00091f30: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091f40: 0a7c 6f31 3020 3d20 2d2d 2072 6174 696f .|o10 = -- ratio │ │ │ │ +00091f50: 6e61 6c20 6d61 7020 2d2d 2020 2020 2020 nal map -- │ │ │ │ 00091f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00091f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00091f90: 2020 2020 207c 0a7c 2020 2020 2020 736f |.| so │ │ │ │ -00091fa0: 7572 6365 3a20 5072 6f6a 2851 515b 7420 urce: Proj(QQ[t │ │ │ │ -00091fb0: 2c20 7420 2c20 7420 5d29 2078 2050 726f , t , t ]) x Pro │ │ │ │ -00091fc0: 6a28 5151 5b74 202c 2074 205d 2920 7820 j(QQ[t , t ]) x │ │ │ │ -00091fd0: 5072 6f6a 2851 515b 7420 2c20 7420 2c20 Proj(QQ[t , t , │ │ │ │ -00091fe0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00091ff0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -00092000: 2020 2031 2020 2032 2020 2020 2020 2020 1 2 │ │ │ │ -00092010: 2020 2020 2020 3320 2020 3420 2020 2020 3 4 │ │ │ │ -00092020: 2020 2020 2020 2020 2035 2020 2036 2020 5 6 │ │ │ │ -00092030: 2020 2020 207c 0a7c 2020 2020 2020 7461 |.| ta │ │ │ │ -00092040: 7267 6574 3a20 5072 6f6a 2851 515b 7820 rget: Proj(QQ[x │ │ │ │ -00092050: 2c20 7820 2c20 7820 2c20 7820 5d29 2020 , x , x , x ]) │ │ │ │ +00091f80: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00091f90: 0a7c 2020 2020 2020 736f 7572 6365 3a20 .| source: │ │ │ │ +00091fa0: 5072 6f6a 2851 515b 7420 2c20 7420 2c20 Proj(QQ[t , t , │ │ │ │ +00091fb0: 7420 5d29 2078 2050 726f 6a28 5151 5b74 t ]) x Proj(QQ[t │ │ │ │ +00091fc0: 202c 2074 205d 2920 7820 5072 6f6a 2851 , t ]) x Proj(Q │ │ │ │ +00091fd0: 515b 7420 2c20 7420 2c20 2020 2020 207c Q[t , t , | │ │ │ │ +00091fe0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00091ff0: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +00092000: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00092010: 3320 2020 3420 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00092020: 2020 2035 2020 2036 2020 2020 2020 207c 5 6 | │ │ │ │ +00092030: 0a7c 2020 2020 2020 7461 7267 6574 3a20 .| target: │ │ │ │ +00092040: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ +00092050: 7820 2c20 7820 5d29 2020 2020 2020 2020 x , x ]) │ │ │ │ 00092060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092080: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092090: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ -000920a0: 2020 2031 2020 2032 2020 2033 2020 2020 1 2 3 │ │ │ │ +00092070: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092080: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092090: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ +000920a0: 2032 2020 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ 000920b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000920c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000920d0: 2020 2020 207c 0a7c 2020 2020 2020 6465 |.| de │ │ │ │ -000920e0: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +000920c0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000920d0: 0a7c 2020 2020 2020 6465 6669 6e69 6e67 .| defining │ │ │ │ +000920e0: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ 000920f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092120: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092130: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00092140: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ +00092110: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092120: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092130: 2020 2020 2020 2020 2074 2074 2074 202c t t t , │ │ │ │ +00092140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092170: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092190: 3020 3320 3520 2020 2020 2020 2020 2020 0 3 5 │ │ │ │ +00092160: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092170: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092180: 2020 2020 2020 2020 2020 3020 3320 3520 0 3 5 │ │ │ │ +00092190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000921a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000921b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000921c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000921b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000921c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000921d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000921e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000921f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092210: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092220: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00092230: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ +00092200: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092210: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092220: 2020 2020 2020 2020 2074 2074 2074 202c t t t , │ │ │ │ +00092230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092260: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092280: 3120 3320 3620 2020 2020 2020 2020 2020 1 3 6 │ │ │ │ +00092250: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092260: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092270: 2020 2020 2020 2020 2020 3120 3320 3620 1 3 6 │ │ │ │ +00092280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000922a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000922b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000922a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000922b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000922c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000922d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000922e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000922f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092300: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092310: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00092320: 2074 2074 202c 2020 2020 2020 2020 2020 t t , │ │ │ │ +000922f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092300: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092310: 2020 2020 2020 2020 2074 2074 2074 202c t t t , │ │ │ │ +00092320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092350: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092370: 3220 3420 3720 2020 2020 2020 2020 2020 2 4 7 │ │ │ │ +00092340: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092350: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092360: 2020 2020 2020 2020 2020 3220 3420 3720 2 4 7 │ │ │ │ +00092370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000923a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092390: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000923a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000923b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000923c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000923d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000923e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000923f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092400: 2020 2020 2020 2020 2020 2020 2020 2074 t │ │ │ │ -00092410: 2074 2074 2020 2020 2020 2020 2020 2020 t t │ │ │ │ +000923e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000923f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092400: 2020 2020 2020 2020 2074 2074 2074 2020 t t t │ │ │ │ +00092410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092440: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -00092450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092460: 3220 3420 3820 2020 2020 2020 2020 2020 2 4 8 │ │ │ │ +00092430: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092440: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +00092450: 2020 2020 2020 2020 2020 3220 3420 3820 2 4 8 │ │ │ │ +00092460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092490: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ -000924a0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00092480: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092490: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ +000924a0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ 000924b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000924c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000924d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000924e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000924d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000924e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000924f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092530: 2020 2020 207c 0a7c 6f31 3020 3a20 4d75 |.|o10 : Mu │ │ │ │ -00092540: 6c74 6968 6f6d 6f67 656e 656f 7573 5261 ltihomogeneousRa │ │ │ │ -00092550: 7469 6f6e 616c 4d61 7020 2872 6174 696f tionalMap (ratio │ │ │ │ -00092560: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -00092570: 3220 7820 5050 5e31 2078 2050 505e 3320 2 x PP^1 x PP^3 │ │ │ │ -00092580: 2020 2020 207c 0a7c 2d2d 2d2d 2d2d 2d2d |.|-------- │ │ │ │ +00092520: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092530: 0a7c 6f31 3020 3a20 4d75 6c74 6968 6f6d .|o10 : Multihom │ │ │ │ +00092540: 6f67 656e 656f 7573 5261 7469 6f6e 616c ogeneousRational │ │ │ │ +00092550: 4d61 7020 2872 6174 696f 6e61 6c20 6d61 Map (rational ma │ │ │ │ +00092560: 7020 6672 6f6d 2050 505e 3220 7820 5050 p from PP^2 x PP │ │ │ │ +00092570: 5e31 2078 2050 505e 3320 2020 2020 207c ^1 x PP^3 | │ │ │ │ +00092580: 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .|-------------- │ │ │ │ 00092590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000925a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000925b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000925c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000925d0: 2d2d 2d2d 2d7c 0a7c 7420 2c20 7420 5d29 -----|.|t , t ]) │ │ │ │ +000925c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c ---------------| │ │ │ │ +000925d0: 0a7c 7420 2c20 7420 5d29 2020 2020 2020 .|t , t ]) │ │ │ │ 000925e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000925f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092620: 2020 2020 207c 0a7c 2037 2020 2038 2020 |.| 7 8 │ │ │ │ +00092610: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092620: 0a7c 2037 2020 2038 2020 2020 2020 2020 .| 7 8 │ │ │ │ 00092630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092670: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092660: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092670: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000926a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000926b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000926c0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000926b0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000926c0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000926d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000926e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000926f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092710: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092700: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092710: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092760: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092750: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092760: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000927a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000927b0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000927a0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000927b0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000927c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000927d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000927e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000927f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092800: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000927f0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092800: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092850: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092840: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092850: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000928a0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092890: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000928a0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000928b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000928c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000928d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000928e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000928f0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000928e0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000928f0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092940: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092930: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092940: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092990: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092980: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092990: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000929a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000929b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000929c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000929d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000929e0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +000929d0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +000929e0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 000929f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092a30: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092a20: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092a30: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092a80: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092a70: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092a80: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092ad0: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092ac0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092ad0: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092b20: 2020 2020 207c 0a7c 2020 2020 2020 2020 |.| │ │ │ │ +00092b10: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092b20: 0a7c 2020 2020 2020 2020 2020 2020 2020 .| │ │ │ │ 00092b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092b70: 2020 2020 207c 0a7c 746f 2050 505e 3329 |.|to PP^3) │ │ │ │ +00092b60: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092b70: 0a7c 746f 2050 505e 3329 2020 2020 2020 .|to PP^3) │ │ │ │ 00092b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00092ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00092bc0: 2020 2020 207c 0a2b 2d2d 2d2d 2d2d 2d2d |.+-------- │ │ │ │ +00092bb0: 2020 2020 2020 2020 2020 2020 2020 207c | │ │ │ │ +00092bc0: 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .+-------------- │ │ │ │ 00092bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00092be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00092bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00092c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00092c10: 2d2d 2d2d 2d2b 0a0a 5365 6520 616c 736f -----+..See also │ │ │ │ -00092c20: 0a3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a .========.. * * │ │ │ │ -00092c30: 6e6f 7465 2074 6f4d 6170 3a20 746f 4d61 note toMap: toMa │ │ │ │ -00092c40: 702c 202d 2d20 7261 7469 6f6e 616c 206d p, -- rational m │ │ │ │ -00092c50: 6170 2064 6566 696e 6564 2062 7920 6120 ap defined by a │ │ │ │ -00092c60: 6c69 6e65 6172 2073 7973 7465 6d0a 2020 linear system. │ │ │ │ -00092c70: 2a20 2a6e 6f74 6520 7261 7469 6f6e 616c * *note rational │ │ │ │ -00092c80: 4d61 7028 4964 6561 6c29 3a20 7261 7469 Map(Ideal): rati │ │ │ │ -00092c90: 6f6e 616c 4d61 705f 6c70 4964 6561 6c5f onalMap_lpIdeal_ │ │ │ │ -00092ca0: 636d 5a5a 5f63 6d5a 5a5f 7270 2c20 2d2d cmZZ_cmZZ_rp, -- │ │ │ │ -00092cb0: 206d 616b 6573 2061 0a20 2020 2072 6174 makes a. rat │ │ │ │ -00092cc0: 696f 6e61 6c20 6d61 7020 6672 6f6d 2061 ional map from a │ │ │ │ -00092cd0: 6e20 6964 6561 6c0a 2020 2a20 2a6e 6f74 n ideal. * *not │ │ │ │ -00092ce0: 6520 7261 7469 6f6e 616c 4d61 7028 5461 e rationalMap(Ta │ │ │ │ -00092cf0: 6c6c 7929 3a20 7261 7469 6f6e 616c 4d61 lly): rationalMa │ │ │ │ -00092d00: 705f 6c70 5269 6e67 5f63 6d54 616c 6c79 p_lpRing_cmTally │ │ │ │ -00092d10: 5f72 702c 202d 2d20 7261 7469 6f6e 616c _rp, -- rational │ │ │ │ -00092d20: 206d 6170 0a20 2020 2064 6566 696e 6564 map. defined │ │ │ │ -00092d30: 2062 7920 616e 2065 6666 6563 7469 7665 by an effective │ │ │ │ -00092d40: 2064 6976 6973 6f72 0a0a 5761 7973 2074 divisor..Ways t │ │ │ │ -00092d50: 6f20 7573 6520 7261 7469 6f6e 616c 4d61 o use rationalMa │ │ │ │ -00092d60: 703a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d p:.============= │ │ │ │ -00092d70: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a ===========.. * │ │ │ │ -00092d80: 2022 7261 7469 6f6e 616c 4d61 7028 4c69 "rationalMap(Li │ │ │ │ -00092d90: 7374 2922 0a20 202a 2022 7261 7469 6f6e st)". * "ration │ │ │ │ -00092da0: 616c 4d61 7028 4d61 7472 6978 2922 0a20 alMap(Matrix)". │ │ │ │ -00092db0: 202a 2022 7261 7469 6f6e 616c 4d61 7028 * "rationalMap( │ │ │ │ -00092dc0: 5269 6e67 2922 0a20 202a 2022 7261 7469 Ring)". * "rati │ │ │ │ -00092dd0: 6f6e 616c 4d61 7028 5269 6e67 2c52 696e onalMap(Ring,Rin │ │ │ │ -00092de0: 6729 220a 2020 2a20 2272 6174 696f 6e61 g)". * "rationa │ │ │ │ -00092df0: 6c4d 6170 2852 696e 672c 5269 6e67 2c4c lMap(Ring,Ring,L │ │ │ │ -00092e00: 6973 7429 220a 2020 2a20 2272 6174 696f ist)". * "ratio │ │ │ │ -00092e10: 6e61 6c4d 6170 2852 696e 672c 5269 6e67 nalMap(Ring,Ring │ │ │ │ -00092e20: 2c4d 6174 7269 7829 220a 2020 2a20 2272 ,Matrix)". * "r │ │ │ │ -00092e30: 6174 696f 6e61 6c4d 6170 2852 696e 674d ationalMap(RingM │ │ │ │ -00092e40: 6170 2922 0a20 202a 2022 7261 7469 6f6e ap)". * "ration │ │ │ │ -00092e50: 616c 4d61 7028 4964 6561 6c29 2220 2d2d alMap(Ideal)" -- │ │ │ │ -00092e60: 2073 6565 202a 6e6f 7465 2072 6174 696f see *note ratio │ │ │ │ -00092e70: 6e61 6c4d 6170 2849 6465 616c 2c5a 5a2c nalMap(Ideal,ZZ, │ │ │ │ -00092e80: 5a5a 293a 0a20 2020 2072 6174 696f 6e61 ZZ):. rationa │ │ │ │ -00092e90: 6c4d 6170 5f6c 7049 6465 616c 5f63 6d5a lMap_lpIdeal_cmZ │ │ │ │ -00092ea0: 5a5f 636d 5a5a 5f72 702c 202d 2d20 6d61 Z_cmZZ_rp, -- ma │ │ │ │ -00092eb0: 6b65 7320 6120 7261 7469 6f6e 616c 206d kes a rational m │ │ │ │ -00092ec0: 6170 2066 726f 6d20 616e 2069 6465 616c ap from an ideal │ │ │ │ -00092ed0: 0a20 202a 2022 7261 7469 6f6e 616c 4d61 . * "rationalMa │ │ │ │ -00092ee0: 7028 4964 6561 6c2c 4c69 7374 2922 202d p(Ideal,List)" - │ │ │ │ -00092ef0: 2d20 7365 6520 2a6e 6f74 6520 7261 7469 - see *note rati │ │ │ │ -00092f00: 6f6e 616c 4d61 7028 4964 6561 6c2c 5a5a onalMap(Ideal,ZZ │ │ │ │ -00092f10: 2c5a 5a29 3a0a 2020 2020 7261 7469 6f6e ,ZZ):. ration │ │ │ │ -00092f20: 616c 4d61 705f 6c70 4964 6561 6c5f 636d alMap_lpIdeal_cm │ │ │ │ -00092f30: 5a5a 5f63 6d5a 5a5f 7270 2c20 2d2d 206d ZZ_cmZZ_rp, -- m │ │ │ │ -00092f40: 616b 6573 2061 2072 6174 696f 6e61 6c20 akes a rational │ │ │ │ -00092f50: 6d61 7020 6672 6f6d 2061 6e20 6964 6561 map from an idea │ │ │ │ -00092f60: 6c0a 2020 2a20 2272 6174 696f 6e61 6c4d l. * "rationalM │ │ │ │ -00092f70: 6170 2849 6465 616c 2c5a 5a29 2220 2d2d ap(Ideal,ZZ)" -- │ │ │ │ -00092f80: 2073 6565 202a 6e6f 7465 2072 6174 696f see *note ratio │ │ │ │ -00092f90: 6e61 6c4d 6170 2849 6465 616c 2c5a 5a2c nalMap(Ideal,ZZ, │ │ │ │ -00092fa0: 5a5a 293a 0a20 2020 2072 6174 696f 6e61 ZZ):. rationa │ │ │ │ -00092fb0: 6c4d 6170 5f6c 7049 6465 616c 5f63 6d5a lMap_lpIdeal_cmZ │ │ │ │ -00092fc0: 5a5f 636d 5a5a 5f72 702c 202d 2d20 6d61 Z_cmZZ_rp, -- ma │ │ │ │ -00092fd0: 6b65 7320 6120 7261 7469 6f6e 616c 206d kes a rational m │ │ │ │ -00092fe0: 6170 2066 726f 6d20 616e 2069 6465 616c ap from an ideal │ │ │ │ -00092ff0: 0a20 202a 202a 6e6f 7465 2072 6174 696f . * *note ratio │ │ │ │ -00093000: 6e61 6c4d 6170 2849 6465 616c 2c5a 5a2c nalMap(Ideal,ZZ, │ │ │ │ -00093010: 5a5a 293a 2072 6174 696f 6e61 6c4d 6170 ZZ): rationalMap │ │ │ │ -00093020: 5f6c 7049 6465 616c 5f63 6d5a 5a5f 636d _lpIdeal_cmZZ_cm │ │ │ │ -00093030: 5a5a 5f72 702c 202d 2d20 6d61 6b65 730a ZZ_rp, -- makes. │ │ │ │ -00093040: 2020 2020 6120 7261 7469 6f6e 616c 206d a rational m │ │ │ │ -00093050: 6170 2066 726f 6d20 616e 2069 6465 616c ap from an ideal │ │ │ │ -00093060: 0a20 202a 202a 6e6f 7465 2072 6174 696f . * *note ratio │ │ │ │ -00093070: 6e61 6c4d 6170 2850 6f6c 796e 6f6d 6961 nalMap(Polynomia │ │ │ │ -00093080: 6c52 696e 672c 4c69 7374 293a 0a20 2020 lRing,List):. │ │ │ │ -00093090: 2072 6174 696f 6e61 6c4d 6170 5f6c 7050 rationalMap_lpP │ │ │ │ -000930a0: 6f6c 796e 6f6d 6961 6c52 696e 675f 636d olynomialRing_cm │ │ │ │ -000930b0: 4c69 7374 5f72 702c 202d 2d20 7261 7469 List_rp, -- rati │ │ │ │ -000930c0: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ -000930d0: 2062 7920 7468 650a 2020 2020 6c69 6e65 by the. line │ │ │ │ -000930e0: 6172 2073 7973 7465 6d20 6f66 2068 7970 ar system of hyp │ │ │ │ -000930f0: 6572 7375 7266 6163 6573 2070 6173 7369 ersurfaces passi │ │ │ │ -00093100: 6e67 2074 6872 6f75 6768 2072 616e 646f ng through rando │ │ │ │ -00093110: 6d20 706f 696e 7473 2077 6974 680a 2020 m points with. │ │ │ │ -00093120: 2020 6d75 6c74 6970 6c69 6369 7479 0a20 multiplicity. │ │ │ │ -00093130: 202a 202a 6e6f 7465 2072 6174 696f 6e61 * *note rationa │ │ │ │ -00093140: 6c4d 6170 2852 696e 672c 5461 6c6c 7929 lMap(Ring,Tally) │ │ │ │ -00093150: 3a20 7261 7469 6f6e 616c 4d61 705f 6c70 : rationalMap_lp │ │ │ │ -00093160: 5269 6e67 5f63 6d54 616c 6c79 5f72 702c Ring_cmTally_rp, │ │ │ │ -00093170: 202d 2d20 7261 7469 6f6e 616c 0a20 2020 -- rational. │ │ │ │ -00093180: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ -00093190: 616e 2065 6666 6563 7469 7665 2064 6976 an effective div │ │ │ │ -000931a0: 6973 6f72 0a20 202a 2022 7261 7469 6f6e isor. * "ration │ │ │ │ -000931b0: 616c 4d61 7028 5461 6c6c 7929 2220 2d2d alMap(Tally)" -- │ │ │ │ -000931c0: 2073 6565 202a 6e6f 7465 2072 6174 696f see *note ratio │ │ │ │ -000931d0: 6e61 6c4d 6170 2852 696e 672c 5461 6c6c nalMap(Ring,Tall │ │ │ │ -000931e0: 7929 3a0a 2020 2020 7261 7469 6f6e 616c y):. rational │ │ │ │ -000931f0: 4d61 705f 6c70 5269 6e67 5f63 6d54 616c Map_lpRing_cmTal │ │ │ │ -00093200: 6c79 5f72 702c 202d 2d20 7261 7469 6f6e ly_rp, -- ration │ │ │ │ -00093210: 616c 206d 6170 2064 6566 696e 6564 2062 al map defined b │ │ │ │ -00093220: 7920 616e 2065 6666 6563 7469 7665 0a20 y an effective. │ │ │ │ -00093230: 2020 2064 6976 6973 6f72 0a20 202a 2022 divisor. * " │ │ │ │ -00093240: 7261 7469 6f6e 616c 4d61 7028 5261 7469 rationalMap(Rati │ │ │ │ -00093250: 6f6e 616c 4d61 7029 2220 2d2d 2073 6565 onalMap)" -- see │ │ │ │ -00093260: 202a 6e6f 7465 2073 7570 6572 2852 6174 *note super(Rat │ │ │ │ -00093270: 696f 6e61 6c4d 6170 293a 0a20 2020 2073 ionalMap):. s │ │ │ │ -00093280: 7570 6572 5f6c 7052 6174 696f 6e61 6c4d uper_lpRationalM │ │ │ │ -00093290: 6170 5f72 702c 202d 2d20 6765 7420 7468 ap_rp, -- get th │ │ │ │ -000932a0: 6520 7261 7469 6f6e 616c 206d 6170 2077 e rational map w │ │ │ │ -000932b0: 686f 7365 2074 6172 6765 7420 6973 2061 hose target is a │ │ │ │ -000932c0: 0a20 2020 2070 726f 6a65 6374 6976 6520 . projective │ │ │ │ -000932d0: 7370 6163 650a 0a46 6f72 2074 6865 2070 space..For the p │ │ │ │ -000932e0: 726f 6772 616d 6d65 720a 3d3d 3d3d 3d3d rogrammer.====== │ │ │ │ -000932f0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 ============..Th │ │ │ │ -00093300: 6520 6f62 6a65 6374 202a 6e6f 7465 2072 e object *note r │ │ │ │ -00093310: 6174 696f 6e61 6c4d 6170 3a20 7261 7469 ationalMap: rati │ │ │ │ -00093320: 6f6e 616c 4d61 702c 2069 7320 6120 2a6e onalMap, is a *n │ │ │ │ -00093330: 6f74 6520 6d65 7468 6f64 2066 756e 6374 ote method funct │ │ │ │ -00093340: 696f 6e20 7769 7468 0a6f 7074 696f 6e73 ion with.options │ │ │ │ -00093350: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -00093360: 4d65 7468 6f64 4675 6e63 7469 6f6e 5769 MethodFunctionWi │ │ │ │ -00093370: 7468 4f70 7469 6f6e 732c 2e0a 0a2d 2d2d thOptions,...--- │ │ │ │ +00092c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b ---------------+ │ │ │ │ +00092c10: 0a0a 5365 6520 616c 736f 0a3d 3d3d 3d3d ..See also.===== │ │ │ │ +00092c20: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2074 ===.. * *note t │ │ │ │ +00092c30: 6f4d 6170 3a20 746f 4d61 702c 202d 2d20 oMap: toMap, -- │ │ │ │ +00092c40: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ +00092c50: 696e 6564 2062 7920 6120 6c69 6e65 6172 ined by a linear │ │ │ │ +00092c60: 2073 7973 7465 6d0a 2020 2a20 2a6e 6f74 system. * *not │ │ │ │ +00092c70: 6520 7261 7469 6f6e 616c 4d61 7028 4964 e rationalMap(Id │ │ │ │ +00092c80: 6561 6c29 3a20 7261 7469 6f6e 616c 4d61 eal): rationalMa │ │ │ │ +00092c90: 705f 6c70 4964 6561 6c5f 636d 5a5a 5f63 p_lpIdeal_cmZZ_c │ │ │ │ +00092ca0: 6d5a 5a5f 7270 2c20 2d2d 206d 616b 6573 mZZ_rp, -- makes │ │ │ │ +00092cb0: 2061 0a20 2020 2072 6174 696f 6e61 6c20 a. rational │ │ │ │ +00092cc0: 6d61 7020 6672 6f6d 2061 6e20 6964 6561 map from an idea │ │ │ │ +00092cd0: 6c0a 2020 2a20 2a6e 6f74 6520 7261 7469 l. * *note rati │ │ │ │ +00092ce0: 6f6e 616c 4d61 7028 5461 6c6c 7929 3a20 onalMap(Tally): │ │ │ │ +00092cf0: 7261 7469 6f6e 616c 4d61 705f 6c70 5269 rationalMap_lpRi │ │ │ │ +00092d00: 6e67 5f63 6d54 616c 6c79 5f72 702c 202d ng_cmTally_rp, - │ │ │ │ +00092d10: 2d20 7261 7469 6f6e 616c 206d 6170 0a20 - rational map. │ │ │ │ +00092d20: 2020 2064 6566 696e 6564 2062 7920 616e defined by an │ │ │ │ +00092d30: 2065 6666 6563 7469 7665 2064 6976 6973 effective divis │ │ │ │ +00092d40: 6f72 0a0a 5761 7973 2074 6f20 7573 6520 or..Ways to use │ │ │ │ +00092d50: 7261 7469 6f6e 616c 4d61 703a 0a3d 3d3d rationalMap:.=== │ │ │ │ +00092d60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00092d70: 3d3d 3d3d 3d0a 0a20 202a 2022 7261 7469 =====.. * "rati │ │ │ │ +00092d80: 6f6e 616c 4d61 7028 4c69 7374 2922 0a20 onalMap(List)". │ │ │ │ +00092d90: 202a 2022 7261 7469 6f6e 616c 4d61 7028 * "rationalMap( │ │ │ │ +00092da0: 4d61 7472 6978 2922 0a20 202a 2022 7261 Matrix)". * "ra │ │ │ │ +00092db0: 7469 6f6e 616c 4d61 7028 5269 6e67 2922 tionalMap(Ring)" │ │ │ │ +00092dc0: 0a20 202a 2022 7261 7469 6f6e 616c 4d61 . * "rationalMa │ │ │ │ +00092dd0: 7028 5269 6e67 2c52 696e 6729 220a 2020 p(Ring,Ring)". │ │ │ │ +00092de0: 2a20 2272 6174 696f 6e61 6c4d 6170 2852 * "rationalMap(R │ │ │ │ +00092df0: 696e 672c 5269 6e67 2c4c 6973 7429 220a ing,Ring,List)". │ │ │ │ +00092e00: 2020 2a20 2272 6174 696f 6e61 6c4d 6170 * "rationalMap │ │ │ │ +00092e10: 2852 696e 672c 5269 6e67 2c4d 6174 7269 (Ring,Ring,Matri │ │ │ │ +00092e20: 7829 220a 2020 2a20 2272 6174 696f 6e61 x)". * "rationa │ │ │ │ +00092e30: 6c4d 6170 2852 696e 674d 6170 2922 0a20 lMap(RingMap)". │ │ │ │ +00092e40: 202a 2022 7261 7469 6f6e 616c 4d61 7028 * "rationalMap( │ │ │ │ +00092e50: 4964 6561 6c29 2220 2d2d 2073 6565 202a Ideal)" -- see * │ │ │ │ +00092e60: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +00092e70: 2849 6465 616c 2c5a 5a2c 5a5a 293a 0a20 (Ideal,ZZ,ZZ):. │ │ │ │ +00092e80: 2020 2072 6174 696f 6e61 6c4d 6170 5f6c rationalMap_l │ │ │ │ +00092e90: 7049 6465 616c 5f63 6d5a 5a5f 636d 5a5a pIdeal_cmZZ_cmZZ │ │ │ │ +00092ea0: 5f72 702c 202d 2d20 6d61 6b65 7320 6120 _rp, -- makes a │ │ │ │ +00092eb0: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ +00092ec0: 6d20 616e 2069 6465 616c 0a20 202a 2022 m an ideal. * " │ │ │ │ +00092ed0: 7261 7469 6f6e 616c 4d61 7028 4964 6561 rationalMap(Idea │ │ │ │ +00092ee0: 6c2c 4c69 7374 2922 202d 2d20 7365 6520 l,List)" -- see │ │ │ │ +00092ef0: 2a6e 6f74 6520 7261 7469 6f6e 616c 4d61 *note rationalMa │ │ │ │ +00092f00: 7028 4964 6561 6c2c 5a5a 2c5a 5a29 3a0a p(Ideal,ZZ,ZZ):. │ │ │ │ +00092f10: 2020 2020 7261 7469 6f6e 616c 4d61 705f rationalMap_ │ │ │ │ +00092f20: 6c70 4964 6561 6c5f 636d 5a5a 5f63 6d5a lpIdeal_cmZZ_cmZ │ │ │ │ +00092f30: 5a5f 7270 2c20 2d2d 206d 616b 6573 2061 Z_rp, -- makes a │ │ │ │ +00092f40: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +00092f50: 6f6d 2061 6e20 6964 6561 6c0a 2020 2a20 om an ideal. * │ │ │ │ +00092f60: 2272 6174 696f 6e61 6c4d 6170 2849 6465 "rationalMap(Ide │ │ │ │ +00092f70: 616c 2c5a 5a29 2220 2d2d 2073 6565 202a al,ZZ)" -- see * │ │ │ │ +00092f80: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +00092f90: 2849 6465 616c 2c5a 5a2c 5a5a 293a 0a20 (Ideal,ZZ,ZZ):. │ │ │ │ +00092fa0: 2020 2072 6174 696f 6e61 6c4d 6170 5f6c rationalMap_l │ │ │ │ +00092fb0: 7049 6465 616c 5f63 6d5a 5a5f 636d 5a5a pIdeal_cmZZ_cmZZ │ │ │ │ +00092fc0: 5f72 702c 202d 2d20 6d61 6b65 7320 6120 _rp, -- makes a │ │ │ │ +00092fd0: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ +00092fe0: 6d20 616e 2069 6465 616c 0a20 202a 202a m an ideal. * * │ │ │ │ +00092ff0: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +00093000: 2849 6465 616c 2c5a 5a2c 5a5a 293a 2072 (Ideal,ZZ,ZZ): r │ │ │ │ +00093010: 6174 696f 6e61 6c4d 6170 5f6c 7049 6465 ationalMap_lpIde │ │ │ │ +00093020: 616c 5f63 6d5a 5a5f 636d 5a5a 5f72 702c al_cmZZ_cmZZ_rp, │ │ │ │ +00093030: 202d 2d20 6d61 6b65 730a 2020 2020 6120 -- makes. a │ │ │ │ +00093040: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ +00093050: 6d20 616e 2069 6465 616c 0a20 202a 202a m an ideal. * * │ │ │ │ +00093060: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +00093070: 2850 6f6c 796e 6f6d 6961 6c52 696e 672c (PolynomialRing, │ │ │ │ +00093080: 4c69 7374 293a 0a20 2020 2072 6174 696f List):. ratio │ │ │ │ +00093090: 6e61 6c4d 6170 5f6c 7050 6f6c 796e 6f6d nalMap_lpPolynom │ │ │ │ +000930a0: 6961 6c52 696e 675f 636d 4c69 7374 5f72 ialRing_cmList_r │ │ │ │ +000930b0: 702c 202d 2d20 7261 7469 6f6e 616c 206d p, -- rational m │ │ │ │ +000930c0: 6170 2064 6566 696e 6564 2062 7920 7468 ap defined by th │ │ │ │ +000930d0: 650a 2020 2020 6c69 6e65 6172 2073 7973 e. linear sys │ │ │ │ +000930e0: 7465 6d20 6f66 2068 7970 6572 7375 7266 tem of hypersurf │ │ │ │ +000930f0: 6163 6573 2070 6173 7369 6e67 2074 6872 aces passing thr │ │ │ │ +00093100: 6f75 6768 2072 616e 646f 6d20 706f 696e ough random poin │ │ │ │ +00093110: 7473 2077 6974 680a 2020 2020 6d75 6c74 ts with. mult │ │ │ │ +00093120: 6970 6c69 6369 7479 0a20 202a 202a 6e6f iplicity. * *no │ │ │ │ +00093130: 7465 2072 6174 696f 6e61 6c4d 6170 2852 te rationalMap(R │ │ │ │ +00093140: 696e 672c 5461 6c6c 7929 3a20 7261 7469 ing,Tally): rati │ │ │ │ +00093150: 6f6e 616c 4d61 705f 6c70 5269 6e67 5f63 onalMap_lpRing_c │ │ │ │ +00093160: 6d54 616c 6c79 5f72 702c 202d 2d20 7261 mTally_rp, -- ra │ │ │ │ +00093170: 7469 6f6e 616c 0a20 2020 206d 6170 2064 tional. map d │ │ │ │ +00093180: 6566 696e 6564 2062 7920 616e 2065 6666 efined by an eff │ │ │ │ +00093190: 6563 7469 7665 2064 6976 6973 6f72 0a20 ective divisor. │ │ │ │ +000931a0: 202a 2022 7261 7469 6f6e 616c 4d61 7028 * "rationalMap( │ │ │ │ +000931b0: 5461 6c6c 7929 2220 2d2d 2073 6565 202a Tally)" -- see * │ │ │ │ +000931c0: 6e6f 7465 2072 6174 696f 6e61 6c4d 6170 note rationalMap │ │ │ │ +000931d0: 2852 696e 672c 5461 6c6c 7929 3a0a 2020 (Ring,Tally):. │ │ │ │ +000931e0: 2020 7261 7469 6f6e 616c 4d61 705f 6c70 rationalMap_lp │ │ │ │ +000931f0: 5269 6e67 5f63 6d54 616c 6c79 5f72 702c Ring_cmTally_rp, │ │ │ │ +00093200: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ +00093210: 2064 6566 696e 6564 2062 7920 616e 2065 defined by an e │ │ │ │ +00093220: 6666 6563 7469 7665 0a20 2020 2064 6976 ffective. div │ │ │ │ +00093230: 6973 6f72 0a20 202a 2022 7261 7469 6f6e isor. * "ration │ │ │ │ +00093240: 616c 4d61 7028 5261 7469 6f6e 616c 4d61 alMap(RationalMa │ │ │ │ +00093250: 7029 2220 2d2d 2073 6565 202a 6e6f 7465 p)" -- see *note │ │ │ │ +00093260: 2073 7570 6572 2852 6174 696f 6e61 6c4d super(RationalM │ │ │ │ +00093270: 6170 293a 0a20 2020 2073 7570 6572 5f6c ap):. super_l │ │ │ │ +00093280: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ +00093290: 202d 2d20 6765 7420 7468 6520 7261 7469 -- get the rati │ │ │ │ +000932a0: 6f6e 616c 206d 6170 2077 686f 7365 2074 onal map whose t │ │ │ │ +000932b0: 6172 6765 7420 6973 2061 0a20 2020 2070 arget is a. p │ │ │ │ +000932c0: 726f 6a65 6374 6976 6520 7370 6163 650a rojective space. │ │ │ │ +000932d0: 0a46 6f72 2074 6865 2070 726f 6772 616d .For the program │ │ │ │ +000932e0: 6d65 720a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d mer.============ │ │ │ │ +000932f0: 3d3d 3d3d 3d3d 0a0a 5468 6520 6f62 6a65 ======..The obje │ │ │ │ +00093300: 6374 202a 6e6f 7465 2072 6174 696f 6e61 ct *note rationa │ │ │ │ +00093310: 6c4d 6170 3a20 7261 7469 6f6e 616c 4d61 lMap: rationalMa │ │ │ │ +00093320: 702c 2069 7320 6120 2a6e 6f74 6520 6d65 p, is a *note me │ │ │ │ +00093330: 7468 6f64 2066 756e 6374 696f 6e20 7769 thod function wi │ │ │ │ +00093340: 7468 0a6f 7074 696f 6e73 3a20 284d 6163 th.options: (Mac │ │ │ │ +00093350: 6175 6c61 7932 446f 6329 4d65 7468 6f64 aulay2Doc)Method │ │ │ │ +00093360: 4675 6e63 7469 6f6e 5769 7468 4f70 7469 FunctionWithOpti │ │ │ │ +00093370: 6f6e 732c 2e0a 0a2d 2d2d 2d2d 2d2d 2d2d ons,...--------- │ │ │ │ 00093380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000933a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000933b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000933c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ -000933d0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ -000933e0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ -000933f0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ -00093400: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ -00093410: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ -00093420: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ -00093430: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ -00093440: 756d 656e 7461 7469 6f6e 2e6d 323a 3830 umentation.m2:80 │ │ │ │ -00093450: 303a 302e 0a1f 0a46 696c 653a 2043 7265 0:0....File: Cre │ │ │ │ -00093460: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ -00093470: 2052 6174 696f 6e61 6c4d 6170 2021 2c20 RationalMap !, │ │ │ │ -00093480: 4e65 7874 3a20 5261 7469 6f6e 616c 4d61 Next: RationalMa │ │ │ │ -00093490: 7020 5f73 7420 5261 7469 6f6e 616c 4d61 p _st RationalMa │ │ │ │ -000934a0: 702c 2050 7265 763a 2072 6174 696f 6e61 p, Prev: rationa │ │ │ │ -000934b0: 6c4d 6170 2c20 5570 3a20 546f 700a 0a52 lMap, Up: Top..R │ │ │ │ -000934c0: 6174 696f 6e61 6c4d 6170 2021 202d 2d20 ationalMap ! -- │ │ │ │ -000934d0: 6361 6c63 756c 6174 6573 2065 7665 7279 calculates every │ │ │ │ -000934e0: 2070 6f73 7369 626c 6520 7468 696e 670a possible thing. │ │ │ │ +000933c0: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ +000933d0: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ +000933e0: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ +000933f0: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ +00093400: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ +00093410: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ +00093420: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ +00093430: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ +00093440: 7469 6f6e 2e6d 323a 3830 303a 302e 0a1f tion.m2:800:0... │ │ │ │ +00093450: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ +00093460: 6e66 6f2c 204e 6f64 653a 2052 6174 696f nfo, Node: Ratio │ │ │ │ +00093470: 6e61 6c4d 6170 2021 2c20 4e65 7874 3a20 nalMap !, Next: │ │ │ │ +00093480: 5261 7469 6f6e 616c 4d61 7020 5f73 7420 RationalMap _st │ │ │ │ +00093490: 5261 7469 6f6e 616c 4d61 702c 2050 7265 RationalMap, Pre │ │ │ │ +000934a0: 763a 2072 6174 696f 6e61 6c4d 6170 2c20 v: rationalMap, │ │ │ │ +000934b0: 5570 3a20 546f 700a 0a52 6174 696f 6e61 Up: Top..Rationa │ │ │ │ +000934c0: 6c4d 6170 2021 202d 2d20 6361 6c63 756c lMap ! -- calcul │ │ │ │ +000934d0: 6174 6573 2065 7665 7279 2070 6f73 7369 ates every possi │ │ │ │ +000934e0: 626c 6520 7468 696e 670a 2a2a 2a2a 2a2a ble thing.****** │ │ │ │ 000934f0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00093500: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00093510: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00093520: 0a0a 2020 2a20 4f70 6572 6174 6f72 3a20 .. * Operator: │ │ │ │ -00093530: 2a6e 6f74 6520 213a 2028 4d61 6361 756c *note !: (Macaul │ │ │ │ -00093540: 6179 3244 6f63 2921 2c0a 2020 2a20 5573 ay2Doc)!,. * Us │ │ │ │ -00093550: 6167 653a 200a 2020 2020 2020 2020 7068 age: . ph │ │ │ │ -00093560: 6921 0a20 202a 2049 6e70 7574 733a 0a20 i!. * Inputs:. │ │ │ │ -00093570: 2020 2020 202a 2070 6869 2c20 6120 2a6e * phi, a *n │ │ │ │ -00093580: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ -00093590: 3a20 5261 7469 6f6e 616c 4d61 702c 0a20 : RationalMap,. │ │ │ │ -000935a0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -000935b0: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ -000935c0: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -000935d0: 616c 4d61 702c 2c20 7468 6520 7361 6d65 alMap,, the same │ │ │ │ -000935e0: 2072 6174 696f 6e61 6c20 6d61 7020 7068 rational map ph │ │ │ │ -000935f0: 690a 0a44 6573 6372 6970 7469 6f6e 0a3d i..Description.= │ │ │ │ -00093600: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 5468 6973 ==========..This │ │ │ │ -00093610: 206d 6574 686f 6420 286d 6169 6e6c 7920 method (mainly │ │ │ │ -00093620: 7573 6564 2066 6f72 2074 6573 7473 2920 used for tests) │ │ │ │ -00093630: 6170 706c 6965 7320 616c 6d6f 7374 2061 applies almost a │ │ │ │ -00093640: 6c6c 2074 6865 2064 6574 6572 6d69 6e69 ll the determini │ │ │ │ -00093650: 7374 6963 0a6d 6574 686f 6473 2074 6861 stic.methods tha │ │ │ │ -00093660: 7420 6172 6520 6176 6169 6c61 626c 652e t are available. │ │ │ │ -00093670: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00093510: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +00093520: 4f70 6572 6174 6f72 3a20 2a6e 6f74 6520 Operator: *note │ │ │ │ +00093530: 213a 2028 4d61 6361 756c 6179 3244 6f63 !: (Macaulay2Doc │ │ │ │ +00093540: 2921 2c0a 2020 2a20 5573 6167 653a 200a )!,. * Usage: . │ │ │ │ +00093550: 2020 2020 2020 2020 7068 6921 0a20 202a phi!. * │ │ │ │ +00093560: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00093570: 2070 6869 2c20 6120 2a6e 6f74 6520 7261 phi, a *note ra │ │ │ │ +00093580: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ +00093590: 6f6e 616c 4d61 702c 0a20 202a 204f 7574 onalMap,. * Out │ │ │ │ +000935a0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ +000935b0: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +000935c0: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +000935d0: 2c20 7468 6520 7361 6d65 2072 6174 696f , the same ratio │ │ │ │ +000935e0: 6e61 6c20 6d61 7020 7068 690a 0a44 6573 nal map phi..Des │ │ │ │ +000935f0: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ +00093600: 3d3d 3d3d 0a0a 5468 6973 206d 6574 686f ====..This metho │ │ │ │ +00093610: 6420 286d 6169 6e6c 7920 7573 6564 2066 d (mainly used f │ │ │ │ +00093620: 6f72 2074 6573 7473 2920 6170 706c 6965 or tests) applie │ │ │ │ +00093630: 7320 616c 6d6f 7374 2061 6c6c 2074 6865 s almost all the │ │ │ │ +00093640: 2064 6574 6572 6d69 6e69 7374 6963 0a6d deterministic.m │ │ │ │ +00093650: 6574 686f 6473 2074 6861 7420 6172 6520 ethods that are │ │ │ │ +00093660: 6176 6169 6c61 626c 652e 0a0a 2b2d 2d2d available...+--- │ │ │ │ +00093670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000936a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000936b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000936c0: 2b0a 7c69 3120 3a20 5151 5b78 5f30 2e2e +.|i1 : QQ[x_0.. │ │ │ │ -000936d0: 785f 355d 3b20 7068 6920 3d20 7261 7469 x_5]; phi = rati │ │ │ │ -000936e0: 6f6e 616c 4d61 7020 2020 2020 2020 2020 onalMap │ │ │ │ +000936b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +000936c0: 3a20 5151 5b78 5f30 2e2e 785f 355d 3b20 : QQ[x_0..x_5]; │ │ │ │ +000936d0: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +000936e0: 7020 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ 000936f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093710: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00093700: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093760: 7c0a 7c6f 3220 3a20 5261 7469 6f6e 616c |.|o2 : Rational │ │ │ │ -00093770: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -00093780: 6174 696f 6e61 6c20 2020 2020 2020 2020 ational │ │ │ │ +00093750: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00093760: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +00093770: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +00093780: 6c20 2020 2020 2020 2020 2020 2020 2020 l │ │ │ │ 00093790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000937a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000937b0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000937a0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000937b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000937c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000937d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000937e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000937f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093800: 7c0a 7c7b 785f 345e 322d 785f 332a 785f |.|{x_4^2-x_3*x_ │ │ │ │ -00093810: 352c 785f 322a 785f 342d 785f 312a 785f 5,x_2*x_4-x_1*x_ │ │ │ │ -00093820: 352c 785f 322a 785f 332d 785f 312a 785f 5,x_2*x_3-x_1*x_ │ │ │ │ -00093830: 342c 785f 325e 322d 785f 302a 785f 352c 4,x_2^2-x_0*x_5, │ │ │ │ -00093840: 785f 312a 785f 322d 785f 302a 785f 342c x_1*x_2-x_0*x_4, │ │ │ │ -00093850: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000937f0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c7b 785f ----------|.|{x_ │ │ │ │ +00093800: 345e 322d 785f 332a 785f 352c 785f 322a 4^2-x_3*x_5,x_2* │ │ │ │ +00093810: 785f 342d 785f 312a 785f 352c 785f 322a x_4-x_1*x_5,x_2* │ │ │ │ +00093820: 785f 332d 785f 312a 785f 342c 785f 325e x_3-x_1*x_4,x_2^ │ │ │ │ +00093830: 322d 785f 302a 785f 352c 785f 312a 785f 2-x_0*x_5,x_1*x_ │ │ │ │ +00093840: 322d 785f 302a 785f 342c 7c0a 7c20 2020 2-x_0*x_4,|.| │ │ │ │ +00093850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000938a0: 7c0a 7c6d 6170 2066 726f 6d20 5050 5e35 |.|map from PP^5 │ │ │ │ -000938b0: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ +00093890: 2020 2020 2020 2020 2020 7c0a 7c6d 6170 |.|map │ │ │ │ +000938a0: 2066 726f 6d20 5050 5e35 2074 6f20 5050 from PP^5 to PP │ │ │ │ +000938b0: 5e35 2920 2020 2020 2020 2020 2020 2020 ^5) │ │ │ │ 000938c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000938d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000938e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000938f0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000938e0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000938f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093910: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093940: 7c0a 7c78 5f31 5e32 2d78 5f30 2a78 5f33 |.|x_1^2-x_0*x_3 │ │ │ │ -00093950: 7d3b 2020 2020 2020 2020 2020 2020 2020 }; │ │ │ │ +00093930: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c78 5f31 ----------|.|x_1 │ │ │ │ +00093940: 5e32 2d78 5f30 2a78 5f33 7d3b 2020 2020 ^2-x_0*x_3}; │ │ │ │ +00093950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093990: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00093980: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00093990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000939a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000939b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000939c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000939d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000939e0: 2b0a 7c69 3320 3a20 6465 7363 7269 6265 +.|i3 : describe │ │ │ │ -000939f0: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ +000939d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +000939e0: 3a20 6465 7363 7269 6265 2070 6869 2020 : describe phi │ │ │ │ +000939f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093a30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00093a20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093a80: 7c0a 7c6f 3320 3d20 7261 7469 6f6e 616c |.|o3 = rational │ │ │ │ -00093a90: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ -00093aa0: 666f 726d 7320 6f66 2064 6567 7265 6520 forms of degree │ │ │ │ -00093ab0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00093ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093ad0: 7c0a 7c20 2020 2020 736f 7572 6365 2076 |.| source v │ │ │ │ -00093ae0: 6172 6965 7479 3a20 5050 5e35 2020 2020 ariety: PP^5 │ │ │ │ +00093a70: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +00093a80: 3d20 7261 7469 6f6e 616c 206d 6170 2064 = rational map d │ │ │ │ +00093a90: 6566 696e 6564 2062 7920 666f 726d 7320 efined by forms │ │ │ │ +00093aa0: 6f66 2064 6567 7265 6520 3220 2020 2020 of degree 2 │ │ │ │ +00093ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00093ac0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093ad0: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ +00093ae0: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ 00093af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093b20: 7c0a 7c20 2020 2020 7461 7267 6574 2076 |.| target v │ │ │ │ -00093b30: 6172 6965 7479 3a20 5050 5e35 2020 2020 ariety: PP^5 │ │ │ │ +00093b10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093b20: 2020 7461 7267 6574 2076 6172 6965 7479 target variety │ │ │ │ +00093b30: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ 00093b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093b70: 7c0a 7c20 2020 2020 636f 6566 6669 6369 |.| coeffici │ │ │ │ -00093b80: 656e 7420 7269 6e67 3a20 5151 2020 2020 ent ring: QQ │ │ │ │ +00093b60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093b70: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00093b80: 6e67 3a20 5151 2020 2020 2020 2020 2020 ng: QQ │ │ │ │ 00093b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093bc0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00093bb0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00093bc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093c10: 2b0a 7c69 3420 3a20 7469 6d65 2070 6869 +.|i4 : time phi │ │ │ │ -00093c20: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ +00093c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +00093c10: 3a20 7469 6d65 2070 6869 2120 3b20 2020 : time phi! ; │ │ │ │ +00093c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093c60: 7c0a 7c20 2d2d 2075 7365 6420 302e 3035 |.| -- used 0.05 │ │ │ │ -00093c70: 3332 3432 3973 2028 6370 7529 3b20 302e 32429s (cpu); 0. │ │ │ │ -00093c80: 3035 3238 3939 3273 2028 7468 7265 6164 0528992s (thread │ │ │ │ -00093c90: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00093ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093cb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00093c50: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +00093c60: 2075 7365 6420 302e 3131 3836 3338 7320 used 0.118638s │ │ │ │ +00093c70: 2863 7075 293b 2030 2e30 3730 3939 3037 (cpu); 0.0709907 │ │ │ │ +00093c80: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00093c90: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00093ca0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093d00: 7c0a 7c6f 3420 3a20 5261 7469 6f6e 616c |.|o4 : Rational │ │ │ │ -00093d10: 4d61 7020 2843 7265 6d6f 6e61 2074 7261 Map (Cremona tra │ │ │ │ -00093d20: 6e73 666f 726d 6174 696f 6e20 6f66 2050 nsformation of P │ │ │ │ -00093d30: 505e 3520 6f66 2074 7970 6520 2832 2c32 P^5 of type (2,2 │ │ │ │ -00093d40: 2929 2020 2020 2020 2020 2020 2020 2020 )) │ │ │ │ -00093d50: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00093cf0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +00093d00: 3a20 5261 7469 6f6e 616c 4d61 7020 2843 : RationalMap (C │ │ │ │ +00093d10: 7265 6d6f 6e61 2074 7261 6e73 666f 726d remona transform │ │ │ │ +00093d20: 6174 696f 6e20 6f66 2050 505e 3520 6f66 ation of PP^5 of │ │ │ │ +00093d30: 2074 7970 6520 2832 2c32 2929 2020 2020 type (2,2)) │ │ │ │ +00093d40: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00093d50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093d60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093d70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00093d80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00093da0: 2b0a 7c69 3520 3a20 6465 7363 7269 6265 +.|i5 : describe │ │ │ │ -00093db0: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ +00093d90: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +00093da0: 3a20 6465 7363 7269 6265 2070 6869 2020 : describe phi │ │ │ │ +00093db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093df0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00093de0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093e40: 7c0a 7c6f 3520 3d20 7261 7469 6f6e 616c |.|o5 = rational │ │ │ │ -00093e50: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ -00093e60: 666f 726d 7320 6f66 2064 6567 7265 6520 forms of degree │ │ │ │ -00093e70: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00093e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093e90: 7c0a 7c20 2020 2020 736f 7572 6365 2076 |.| source v │ │ │ │ -00093ea0: 6172 6965 7479 3a20 5050 5e35 2020 2020 ariety: PP^5 │ │ │ │ +00093e30: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +00093e40: 3d20 7261 7469 6f6e 616c 206d 6170 2064 = rational map d │ │ │ │ +00093e50: 6566 696e 6564 2062 7920 666f 726d 7320 efined by forms │ │ │ │ +00093e60: 6f66 2064 6567 7265 6520 3220 2020 2020 of degree 2 │ │ │ │ +00093e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00093e80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093e90: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ +00093ea0: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ 00093eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093ee0: 7c0a 7c20 2020 2020 7461 7267 6574 2076 |.| target v │ │ │ │ -00093ef0: 6172 6965 7479 3a20 5050 5e35 2020 2020 ariety: PP^5 │ │ │ │ +00093ed0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093ee0: 2020 7461 7267 6574 2076 6172 6965 7479 target variety │ │ │ │ +00093ef0: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ 00093f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093f30: 7c0a 7c20 2020 2020 646f 6d69 6e61 6e63 |.| dominanc │ │ │ │ -00093f40: 653a 2074 7275 6520 2020 2020 2020 2020 e: true │ │ │ │ +00093f20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093f30: 2020 646f 6d69 6e61 6e63 653a 2074 7275 dominance: tru │ │ │ │ +00093f40: 6520 2020 2020 2020 2020 2020 2020 2020 e │ │ │ │ 00093f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00093f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00093f80: 7c0a 7c20 2020 2020 6269 7261 7469 6f6e |.| biration │ │ │ │ -00093f90: 616c 6974 793a 2074 7275 6520 2874 6865 ality: true (the │ │ │ │ -00093fa0: 2069 6e76 6572 7365 206d 6170 2069 7320 inverse map is │ │ │ │ -00093fb0: 616c 7265 6164 7920 6361 6c63 756c 6174 already calculat │ │ │ │ -00093fc0: 6564 2920 2020 2020 2020 2020 2020 2020 ed) │ │ │ │ -00093fd0: 7c0a 7c20 2020 2020 7072 6f6a 6563 7469 |.| projecti │ │ │ │ -00093fe0: 7665 2064 6567 7265 6573 3a20 7b31 2c20 ve degrees: {1, │ │ │ │ -00093ff0: 322c 2034 2c20 342c 2032 2c20 317d 2020 2, 4, 4, 2, 1} │ │ │ │ +00093f70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093f80: 2020 6269 7261 7469 6f6e 616c 6974 793a birationality: │ │ │ │ +00093f90: 2074 7275 6520 2874 6865 2069 6e76 6572 true (the inver │ │ │ │ +00093fa0: 7365 206d 6170 2069 7320 616c 7265 6164 se map is alread │ │ │ │ +00093fb0: 7920 6361 6c63 756c 6174 6564 2920 2020 y calculated) │ │ │ │ +00093fc0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00093fd0: 2020 7072 6f6a 6563 7469 7665 2064 6567 projective deg │ │ │ │ +00093fe0: 7265 6573 3a20 7b31 2c20 322c 2034 2c20 rees: {1, 2, 4, │ │ │ │ +00093ff0: 342c 2032 2c20 317d 2020 2020 2020 2020 4, 2, 1} │ │ │ │ 00094000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094020: 7c0a 7c20 2020 2020 6e75 6d62 6572 206f |.| number o │ │ │ │ -00094030: 6620 6d69 6e69 6d61 6c20 7265 7072 6573 f minimal repres │ │ │ │ -00094040: 656e 7461 7469 7665 733a 2031 2020 2020 entatives: 1 │ │ │ │ +00094010: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094020: 2020 6e75 6d62 6572 206f 6620 6d69 6e69 number of mini │ │ │ │ +00094030: 6d61 6c20 7265 7072 6573 656e 7461 7469 mal representati │ │ │ │ +00094040: 7665 733a 2031 2020 2020 2020 2020 2020 ves: 1 │ │ │ │ 00094050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094070: 7c0a 7c20 2020 2020 6469 6d65 6e73 696f |.| dimensio │ │ │ │ -00094080: 6e20 6261 7365 206c 6f63 7573 3a20 3220 n base locus: 2 │ │ │ │ +00094060: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094070: 2020 6469 6d65 6e73 696f 6e20 6261 7365 dimension base │ │ │ │ +00094080: 206c 6f63 7573 3a20 3220 2020 2020 2020 locus: 2 │ │ │ │ 00094090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000940a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000940b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000940c0: 7c0a 7c20 2020 2020 6465 6772 6565 2062 |.| degree b │ │ │ │ -000940d0: 6173 6520 6c6f 6375 733a 2034 2020 2020 ase locus: 4 │ │ │ │ +000940b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000940c0: 2020 6465 6772 6565 2062 6173 6520 6c6f degree base lo │ │ │ │ +000940d0: 6375 733a 2034 2020 2020 2020 2020 2020 cus: 4 │ │ │ │ 000940e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000940f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094110: 7c0a 7c20 2020 2020 636f 6566 6669 6369 |.| coeffici │ │ │ │ -00094120: 656e 7420 7269 6e67 3a20 5151 2020 2020 ent ring: QQ │ │ │ │ +00094100: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094110: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00094120: 6e67 3a20 5151 2020 2020 2020 2020 2020 ng: QQ │ │ │ │ 00094130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094160: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00094150: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00094160: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094170: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000941a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000941b0: 2b0a 7c69 3620 3a20 5151 5b78 5f30 2e2e +.|i6 : QQ[x_0.. │ │ │ │ -000941c0: 785f 345d 3b20 7068 6920 3d20 7261 7469 x_4]; phi = rati │ │ │ │ -000941d0: 6f6e 616c 4d61 7020 2020 2020 2020 2020 onalMap │ │ │ │ +000941a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 ----------+.|i6 │ │ │ │ +000941b0: 3a20 5151 5b78 5f30 2e2e 785f 345d 3b20 : QQ[x_0..x_4]; │ │ │ │ +000941c0: 7068 6920 3d20 7261 7469 6f6e 616c 4d61 phi = rationalMa │ │ │ │ +000941d0: 7020 2020 2020 2020 2020 2020 2020 2020 p │ │ │ │ 000941e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000941f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094200: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000941f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094250: 7c0a 7c6f 3720 3a20 5261 7469 6f6e 616c |.|o7 : Rational │ │ │ │ -00094260: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -00094270: 6174 696f 6e61 6c20 2020 2020 2020 2020 ational │ │ │ │ +00094240: 2020 2020 2020 2020 2020 7c0a 7c6f 3720 |.|o7 │ │ │ │ +00094250: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +00094260: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +00094270: 6c20 2020 2020 2020 2020 2020 2020 2020 l │ │ │ │ 00094280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000942a0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +00094290: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000942a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000942b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000942c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000942d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000942e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000942f0: 7c0a 7c7b 2d78 5f31 5e32 2b78 5f30 2a78 |.|{-x_1^2+x_0*x │ │ │ │ -00094300: 5f32 2c2d 785f 312a 785f 322b 785f 302a _2,-x_1*x_2+x_0* │ │ │ │ -00094310: 785f 332c 2d78 5f32 5e32 2b78 5f31 2a78 x_3,-x_2^2+x_1*x │ │ │ │ -00094320: 5f33 2c2d 785f 312a 785f 332b 785f 302a _3,-x_1*x_3+x_0* │ │ │ │ -00094330: 785f 342c 2d78 5f32 2a78 5f33 2b78 5f31 x_4,-x_2*x_3+x_1 │ │ │ │ -00094340: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000942e0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c7b 2d78 ----------|.|{-x │ │ │ │ +000942f0: 5f31 5e32 2b78 5f30 2a78 5f32 2c2d 785f _1^2+x_0*x_2,-x_ │ │ │ │ +00094300: 312a 785f 322b 785f 302a 785f 332c 2d78 1*x_2+x_0*x_3,-x │ │ │ │ +00094310: 5f32 5e32 2b78 5f31 2a78 5f33 2c2d 785f _2^2+x_1*x_3,-x_ │ │ │ │ +00094320: 312a 785f 332b 785f 302a 785f 342c 2d78 1*x_3+x_0*x_4,-x │ │ │ │ +00094330: 5f32 2a78 5f33 2b78 5f31 7c0a 7c20 2020 _2*x_3+x_1|.| │ │ │ │ +00094340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094390: 7c0a 7c6d 6170 2066 726f 6d20 5050 5e34 |.|map from PP^4 │ │ │ │ -000943a0: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ +00094380: 2020 2020 2020 2020 2020 7c0a 7c6d 6170 |.|map │ │ │ │ +00094390: 2066 726f 6d20 5050 5e34 2074 6f20 5050 from PP^4 to PP │ │ │ │ +000943a0: 5e35 2920 2020 2020 2020 2020 2020 2020 ^5) │ │ │ │ 000943b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000943c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000943d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000943e0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +000943d0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +000943e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000943f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094430: 7c0a 7c2a 785f 342c 2d78 5f33 5e32 2b78 |.|*x_4,-x_3^2+x │ │ │ │ -00094440: 5f32 2a78 5f34 7d3b 2020 2020 2020 2020 _2*x_4}; │ │ │ │ +00094420: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2a 785f ----------|.|*x_ │ │ │ │ +00094430: 342c 2d78 5f33 5e32 2b78 5f32 2a78 5f34 4,-x_3^2+x_2*x_4 │ │ │ │ +00094440: 7d3b 2020 2020 2020 2020 2020 2020 2020 }; │ │ │ │ 00094450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094480: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00094470: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00094480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000944a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000944b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000944c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000944d0: 2b0a 7c69 3820 3a20 6465 7363 7269 6265 +.|i8 : describe │ │ │ │ -000944e0: 2070 6869 2020 2020 2020 2020 2020 2020 phi │ │ │ │ +000944c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3820 ----------+.|i8 │ │ │ │ +000944d0: 3a20 6465 7363 7269 6265 2070 6869 2020 : describe phi │ │ │ │ +000944e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000944f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094520: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00094510: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094570: 7c0a 7c6f 3820 3d20 7261 7469 6f6e 616c |.|o8 = rational │ │ │ │ -00094580: 206d 6170 2064 6566 696e 6564 2062 7920 map defined by │ │ │ │ -00094590: 666f 726d 7320 6f66 2064 6567 7265 6520 forms of degree │ │ │ │ -000945a0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000945b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000945c0: 7c0a 7c20 2020 2020 736f 7572 6365 2076 |.| source v │ │ │ │ -000945d0: 6172 6965 7479 3a20 5050 5e34 2020 2020 ariety: PP^4 │ │ │ │ +00094560: 2020 2020 2020 2020 2020 7c0a 7c6f 3820 |.|o8 │ │ │ │ +00094570: 3d20 7261 7469 6f6e 616c 206d 6170 2064 = rational map d │ │ │ │ +00094580: 6566 696e 6564 2062 7920 666f 726d 7320 efined by forms │ │ │ │ +00094590: 6f66 2064 6567 7265 6520 3220 2020 2020 of degree 2 │ │ │ │ +000945a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000945b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000945c0: 2020 736f 7572 6365 2076 6172 6965 7479 source variety │ │ │ │ +000945d0: 3a20 5050 5e34 2020 2020 2020 2020 2020 : PP^4 │ │ │ │ 000945e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000945f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094610: 7c0a 7c20 2020 2020 7461 7267 6574 2076 |.| target v │ │ │ │ -00094620: 6172 6965 7479 3a20 5050 5e35 2020 2020 ariety: PP^5 │ │ │ │ +00094600: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094610: 2020 7461 7267 6574 2076 6172 6965 7479 target variety │ │ │ │ +00094620: 3a20 5050 5e35 2020 2020 2020 2020 2020 : PP^5 │ │ │ │ 00094630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094660: 7c0a 7c20 2020 2020 636f 6566 6669 6369 |.| coeffici │ │ │ │ -00094670: 656e 7420 7269 6e67 3a20 5151 2020 2020 ent ring: QQ │ │ │ │ +00094650: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094660: 2020 636f 6566 6669 6369 656e 7420 7269 coefficient ri │ │ │ │ +00094670: 6e67 3a20 5151 2020 2020 2020 2020 2020 ng: QQ │ │ │ │ 00094680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000946a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000946b0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000946a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000946b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000946c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000946d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000946e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000946f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094700: 2b0a 7c69 3920 3a20 7469 6d65 2070 6869 +.|i9 : time phi │ │ │ │ -00094710: 2120 3b20 2020 2020 2020 2020 2020 2020 ! ; │ │ │ │ +000946f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3920 ----------+.|i9 │ │ │ │ +00094700: 3a20 7469 6d65 2070 6869 2120 3b20 2020 : time phi! ; │ │ │ │ +00094710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094750: 7c0a 7c20 2d2d 2075 7365 6420 302e 3033 |.| -- used 0.03 │ │ │ │ -00094760: 3630 3632 3773 2028 6370 7529 3b20 302e 60627s (cpu); 0. │ │ │ │ -00094770: 3033 3537 3034 3973 2028 7468 7265 6164 0357049s (thread │ │ │ │ -00094780: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -00094790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000947a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00094740: 2020 2020 2020 2020 2020 7c0a 7c20 2d2d |.| -- │ │ │ │ +00094750: 2075 7365 6420 302e 3035 3830 3535 3373 used 0.0580553s │ │ │ │ +00094760: 2028 6370 7529 3b20 302e 3034 3439 3735 (cpu); 0.044975 │ │ │ │ +00094770: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +00094780: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +00094790: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000947a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000947d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000947e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000947f0: 7c0a 7c6f 3920 3a20 5261 7469 6f6e 616c |.|o9 : Rational │ │ │ │ -00094800: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -00094810: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -00094820: 2050 505e 3420 746f 2050 505e 3529 2020 PP^4 to PP^5) │ │ │ │ -00094830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094840: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +000947e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3920 |.|o9 │ │ │ │ +000947f0: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +00094800: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +00094810: 6c20 6d61 7020 6672 6f6d 2050 505e 3420 l map from PP^4 │ │ │ │ +00094820: 746f 2050 505e 3529 2020 2020 2020 2020 to PP^5) │ │ │ │ +00094830: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00094840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094890: 2b0a 7c69 3130 203a 2064 6573 6372 6962 +.|i10 : describ │ │ │ │ -000948a0: 6520 7068 6920 2020 2020 2020 2020 2020 e phi │ │ │ │ +00094880: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3130 ----------+.|i10 │ │ │ │ +00094890: 203a 2064 6573 6372 6962 6520 7068 6920 : describe phi │ │ │ │ +000948a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000948b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000948c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000948d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000948e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000948d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000948e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000948f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094930: 7c0a 7c6f 3130 203d 2072 6174 696f 6e61 |.|o10 = rationa │ │ │ │ -00094940: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ -00094950: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ -00094960: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -00094970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094980: 7c0a 7c20 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ -00094990: 7661 7269 6574 793a 2050 505e 3420 2020 variety: PP^4 │ │ │ │ +00094920: 2020 2020 2020 2020 2020 7c0a 7c6f 3130 |.|o10 │ │ │ │ +00094930: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ +00094940: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ +00094950: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ +00094960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00094970: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094980: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ +00094990: 793a 2050 505e 3420 2020 2020 2020 2020 y: PP^4 │ │ │ │ 000949a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000949b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000949c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000949d0: 7c0a 7c20 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ -000949e0: 7661 7269 6574 793a 2050 505e 3520 2020 variety: PP^5 │ │ │ │ +000949c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000949d0: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +000949e0: 793a 2050 505e 3520 2020 2020 2020 2020 y: PP^5 │ │ │ │ 000949f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094a20: 7c0a 7c20 2020 2020 2069 6d61 6765 3a20 |.| image: │ │ │ │ -00094a30: 736d 6f6f 7468 2071 7561 6472 6963 2068 smooth quadric h │ │ │ │ -00094a40: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ -00094a50: 505e 3520 2020 2020 2020 2020 2020 2020 P^5 │ │ │ │ -00094a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094a70: 7c0a 7c20 2020 2020 2064 6f6d 696e 616e |.| dominan │ │ │ │ -00094a80: 6365 3a20 6661 6c73 6520 2020 2020 2020 ce: false │ │ │ │ +00094a10: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094a20: 2020 2069 6d61 6765 3a20 736d 6f6f 7468 image: smooth │ │ │ │ +00094a30: 2071 7561 6472 6963 2068 7970 6572 7375 quadric hypersu │ │ │ │ +00094a40: 7266 6163 6520 696e 2050 505e 3520 2020 rface in PP^5 │ │ │ │ +00094a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00094a60: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094a70: 2020 2064 6f6d 696e 616e 6365 3a20 6661 dominance: fa │ │ │ │ +00094a80: 6c73 6520 2020 2020 2020 2020 2020 2020 lse │ │ │ │ 00094a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094ac0: 7c0a 7c20 2020 2020 2062 6972 6174 696f |.| biratio │ │ │ │ -00094ad0: 6e61 6c69 7479 3a20 6661 6c73 6520 2020 nality: false │ │ │ │ +00094ab0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094ac0: 2020 2062 6972 6174 696f 6e61 6c69 7479 birationality │ │ │ │ +00094ad0: 3a20 6661 6c73 6520 2020 2020 2020 2020 : false │ │ │ │ 00094ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094b10: 7c0a 7c20 2020 2020 2064 6567 7265 6520 |.| degree │ │ │ │ -00094b20: 6f66 206d 6170 3a20 3120 2020 2020 2020 of map: 1 │ │ │ │ +00094b00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094b10: 2020 2064 6567 7265 6520 6f66 206d 6170 degree of map │ │ │ │ +00094b20: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ 00094b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094b60: 7c0a 7c20 2020 2020 2070 726f 6a65 6374 |.| project │ │ │ │ -00094b70: 6976 6520 6465 6772 6565 733a 207b 312c ive degrees: {1, │ │ │ │ -00094b80: 2032 2c20 342c 2034 2c20 327d 2020 2020 2, 4, 4, 2} │ │ │ │ +00094b50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094b60: 2020 2070 726f 6a65 6374 6976 6520 6465 projective de │ │ │ │ +00094b70: 6772 6565 733a 207b 312c 2032 2c20 342c grees: {1, 2, 4, │ │ │ │ +00094b80: 2034 2c20 327d 2020 2020 2020 2020 2020 4, 2} │ │ │ │ 00094b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094bb0: 7c0a 7c20 2020 2020 206e 756d 6265 7220 |.| number │ │ │ │ -00094bc0: 6f66 206d 696e 696d 616c 2072 6570 7265 of minimal repre │ │ │ │ -00094bd0: 7365 6e74 6174 6976 6573 3a20 3120 2020 sentatives: 1 │ │ │ │ +00094ba0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094bb0: 2020 206e 756d 6265 7220 6f66 206d 696e number of min │ │ │ │ +00094bc0: 696d 616c 2072 6570 7265 7365 6e74 6174 imal representat │ │ │ │ +00094bd0: 6976 6573 3a20 3120 2020 2020 2020 2020 ives: 1 │ │ │ │ 00094be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094c00: 7c0a 7c20 2020 2020 2064 696d 656e 7369 |.| dimensi │ │ │ │ -00094c10: 6f6e 2062 6173 6520 6c6f 6375 733a 2031 on base locus: 1 │ │ │ │ +00094bf0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094c00: 2020 2064 696d 656e 7369 6f6e 2062 6173 dimension bas │ │ │ │ +00094c10: 6520 6c6f 6375 733a 2031 2020 2020 2020 e locus: 1 │ │ │ │ 00094c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094c50: 7c0a 7c20 2020 2020 2064 6567 7265 6520 |.| degree │ │ │ │ -00094c60: 6261 7365 206c 6f63 7573 3a20 3420 2020 base locus: 4 │ │ │ │ +00094c40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094c50: 2020 2064 6567 7265 6520 6261 7365 206c degree base l │ │ │ │ +00094c60: 6f63 7573 3a20 3420 2020 2020 2020 2020 ocus: 4 │ │ │ │ 00094c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094ca0: 7c0a 7c20 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ -00094cb0: 6965 6e74 2072 696e 673a 2051 5120 2020 ient ring: QQ │ │ │ │ +00094c90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00094ca0: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ +00094cb0: 696e 673a 2051 5120 2020 2020 2020 2020 ing: QQ │ │ │ │ 00094cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00094cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00094cf0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00094ce0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00094cf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094d00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094d10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094d20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094d40: 2b0a 0a53 6565 2061 6c73 6f0a 3d3d 3d3d +..See also.==== │ │ │ │ -00094d50: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -00094d60: 6465 7363 7269 6265 2852 6174 696f 6e61 describe(Rationa │ │ │ │ -00094d70: 6c4d 6170 293a 2064 6573 6372 6962 655f lMap): describe_ │ │ │ │ -00094d80: 6c70 5261 7469 6f6e 616c 4d61 705f 7270 lpRationalMap_rp │ │ │ │ -00094d90: 2c20 2d2d 2064 6573 6372 6962 6520 610a , -- describe a. │ │ │ │ -00094da0: 2020 2020 7261 7469 6f6e 616c 206d 6170 rational map │ │ │ │ -00094db0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ -00094dc0: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ -00094dd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00094de0: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2052 ===.. * *note R │ │ │ │ -00094df0: 6174 696f 6e61 6c4d 6170 2021 3a20 5261 ationalMap !: Ra │ │ │ │ -00094e00: 7469 6f6e 616c 4d61 7020 212c 202d 2d20 tionalMap !, -- │ │ │ │ -00094e10: 6361 6c63 756c 6174 6573 2065 7665 7279 calculates every │ │ │ │ -00094e20: 2070 6f73 7369 626c 6520 7468 696e 670a possible thing. │ │ │ │ +00094d30: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 ----------+..See │ │ │ │ +00094d40: 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a also.========.. │ │ │ │ +00094d50: 2020 2a20 2a6e 6f74 6520 6465 7363 7269 * *note descri │ │ │ │ +00094d60: 6265 2852 6174 696f 6e61 6c4d 6170 293a be(RationalMap): │ │ │ │ +00094d70: 2064 6573 6372 6962 655f 6c70 5261 7469 describe_lpRati │ │ │ │ +00094d80: 6f6e 616c 4d61 705f 7270 2c20 2d2d 2064 onalMap_rp, -- d │ │ │ │ +00094d90: 6573 6372 6962 6520 610a 2020 2020 7261 escribe a. ra │ │ │ │ +00094da0: 7469 6f6e 616c 206d 6170 0a0a 5761 7973 tional map..Ways │ │ │ │ +00094db0: 2074 6f20 7573 6520 7468 6973 206d 6574 to use this met │ │ │ │ +00094dc0: 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d hod:.=========== │ │ │ │ +00094dd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 =============.. │ │ │ │ +00094de0: 202a 202a 6e6f 7465 2052 6174 696f 6e61 * *note Rationa │ │ │ │ +00094df0: 6c4d 6170 2021 3a20 5261 7469 6f6e 616c lMap !: Rational │ │ │ │ +00094e00: 4d61 7020 212c 202d 2d20 6361 6c63 756c Map !, -- calcul │ │ │ │ +00094e10: 6174 6573 2065 7665 7279 2070 6f73 7369 ates every possi │ │ │ │ +00094e20: 626c 6520 7468 696e 670a 2d2d 2d2d 2d2d ble thing.------ │ │ │ │ 00094e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00094e60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00094e70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a ---------------. │ │ │ │ -00094e80: 0a54 6865 2073 6f75 7263 6520 6f66 2074 .The source of t │ │ │ │ -00094e90: 6869 7320 646f 6375 6d65 6e74 2069 7320 his document is │ │ │ │ -00094ea0: 696e 0a2f 6275 696c 642f 7265 7072 6f64 in./build/reprod │ │ │ │ -00094eb0: 7563 6962 6c65 2d70 6174 682f 6d61 6361 ucible-path/maca │ │ │ │ -00094ec0: 756c 6179 322d 312e 3235 2e31 312b 6473 ulay2-1.25.11+ds │ │ │ │ -00094ed0: 2f4d 322f 4d61 6361 756c 6179 322f 7061 /M2/Macaulay2/pa │ │ │ │ -00094ee0: 636b 6167 6573 2f43 7265 6d6f 6e61 2f0a ckages/Cremona/. │ │ │ │ -00094ef0: 646f 6375 6d65 6e74 6174 696f 6e2e 6d32 documentation.m2 │ │ │ │ -00094f00: 3a35 3132 3a30 2e0a 1f0a 4669 6c65 3a20 :512:0....File: │ │ │ │ -00094f10: 4372 656d 6f6e 612e 696e 666f 2c20 4e6f Cremona.info, No │ │ │ │ -00094f20: 6465 3a20 5261 7469 6f6e 616c 4d61 7020 de: RationalMap │ │ │ │ -00094f30: 5f73 7420 5261 7469 6f6e 616c 4d61 702c _st RationalMap, │ │ │ │ -00094f40: 204e 6578 743a 2052 6174 696f 6e61 6c4d Next: RationalM │ │ │ │ -00094f50: 6170 205f 7374 5f73 7420 5269 6e67 2c20 ap _st_st Ring, │ │ │ │ -00094f60: 5072 6576 3a20 5261 7469 6f6e 616c 4d61 Prev: RationalMa │ │ │ │ -00094f70: 7020 212c 2055 703a 2054 6f70 0a0a 5261 p !, Up: Top..Ra │ │ │ │ -00094f80: 7469 6f6e 616c 4d61 7020 2a20 5261 7469 tionalMap * Rati │ │ │ │ -00094f90: 6f6e 616c 4d61 7020 2d2d 2063 6f6d 706f onalMap -- compo │ │ │ │ -00094fa0: 7369 7469 6f6e 206f 6620 7261 7469 6f6e sition of ration │ │ │ │ -00094fb0: 616c 206d 6170 730a 2a2a 2a2a 2a2a 2a2a al maps.******** │ │ │ │ +00094e70: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ +00094e80: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ +00094e90: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ +00094ea0: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ +00094eb0: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ +00094ec0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ +00094ed0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ +00094ee0: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ +00094ef0: 6e74 6174 696f 6e2e 6d32 3a35 3132 3a30 ntation.m2:512:0 │ │ │ │ +00094f00: 2e0a 1f0a 4669 6c65 3a20 4372 656d 6f6e ....File: Cremon │ │ │ │ +00094f10: 612e 696e 666f 2c20 4e6f 6465 3a20 5261 a.info, Node: Ra │ │ │ │ +00094f20: 7469 6f6e 616c 4d61 7020 5f73 7420 5261 tionalMap _st Ra │ │ │ │ +00094f30: 7469 6f6e 616c 4d61 702c 204e 6578 743a tionalMap, Next: │ │ │ │ +00094f40: 2052 6174 696f 6e61 6c4d 6170 205f 7374 RationalMap _st │ │ │ │ +00094f50: 5f73 7420 5269 6e67 2c20 5072 6576 3a20 _st Ring, Prev: │ │ │ │ +00094f60: 5261 7469 6f6e 616c 4d61 7020 212c 2055 RationalMap !, U │ │ │ │ +00094f70: 703a 2054 6f70 0a0a 5261 7469 6f6e 616c p: Top..Rational │ │ │ │ +00094f80: 4d61 7020 2a20 5261 7469 6f6e 616c 4d61 Map * RationalMa │ │ │ │ +00094f90: 7020 2d2d 2063 6f6d 706f 7369 7469 6f6e p -- composition │ │ │ │ +00094fa0: 206f 6620 7261 7469 6f6e 616c 206d 6170 of rational map │ │ │ │ +00094fb0: 730a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a s.************** │ │ │ │ 00094fc0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00094fd0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00094fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00094ff0: 2a0a 0a20 202a 204f 7065 7261 746f 723a *.. * Operator: │ │ │ │ -00095000: 202a 6e6f 7465 202a 3a20 284d 6163 6175 *note *: (Macau │ │ │ │ -00095010: 6c61 7932 446f 6329 5f73 742c 0a20 202a lay2Doc)_st,. * │ │ │ │ -00095020: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -00095030: 2070 6869 202a 2070 7369 200a 2020 2020 phi * psi . │ │ │ │ -00095040: 2020 2020 636f 6d70 6f73 6528 7068 692c compose(phi, │ │ │ │ -00095050: 7073 6929 0a20 202a 2049 6e70 7574 733a psi). * Inputs: │ │ │ │ -00095060: 0a20 2020 2020 202a 2070 6869 2c20 6120 . * phi, a │ │ │ │ -00095070: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ -00095080: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ -00095090: 2c20 2458 205c 6461 7368 7269 6768 7461 , $X \dashrighta │ │ │ │ -000950a0: 7272 6f77 2059 240a 2020 2020 2020 2a20 rrow Y$. * │ │ │ │ -000950b0: 7073 692c 2061 202a 6e6f 7465 2072 6174 psi, a *note rat │ │ │ │ -000950c0: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -000950d0: 6e61 6c4d 6170 2c2c 2024 5920 5c64 6173 nalMap,, $Y \das │ │ │ │ -000950e0: 6872 6967 6874 6172 726f 7720 5a24 0a20 hrightarrow Z$. │ │ │ │ -000950f0: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -00095100: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ -00095110: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -00095120: 616c 4d61 702c 2c20 2458 205c 6461 7368 alMap,, $X \dash │ │ │ │ -00095130: 7269 6768 7461 7272 6f77 205a 242c 2074 rightarrow Z$, t │ │ │ │ -00095140: 6865 0a20 2020 2020 2020 2063 6f6d 706f he. compo │ │ │ │ -00095150: 7369 7469 6f6e 206f 6620 7068 6920 616e sition of phi an │ │ │ │ -00095160: 6420 7073 690a 0a44 6573 6372 6970 7469 d psi..Descripti │ │ │ │ -00095170: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ -00095180: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00094fe0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a ***********.. * │ │ │ │ +00094ff0: 204f 7065 7261 746f 723a 202a 6e6f 7465 Operator: *note │ │ │ │ +00095000: 202a 3a20 284d 6163 6175 6c61 7932 446f *: (Macaulay2Do │ │ │ │ +00095010: 6329 5f73 742c 0a20 202a 2055 7361 6765 c)_st,. * Usage │ │ │ │ +00095020: 3a20 0a20 2020 2020 2020 2070 6869 202a : . phi * │ │ │ │ +00095030: 2070 7369 200a 2020 2020 2020 2020 636f psi . co │ │ │ │ +00095040: 6d70 6f73 6528 7068 692c 7073 6929 0a20 mpose(phi,psi). │ │ │ │ +00095050: 202a 2049 6e70 7574 733a 0a20 2020 2020 * Inputs:. │ │ │ │ +00095060: 202a 2070 6869 2c20 6120 2a6e 6f74 6520 * phi, a *note │ │ │ │ +00095070: 7261 7469 6f6e 616c 206d 6170 3a20 5261 rational map: Ra │ │ │ │ +00095080: 7469 6f6e 616c 4d61 702c 2c20 2458 205c tionalMap,, $X \ │ │ │ │ +00095090: 6461 7368 7269 6768 7461 7272 6f77 2059 dashrightarrow Y │ │ │ │ +000950a0: 240a 2020 2020 2020 2a20 7073 692c 2061 $. * psi, a │ │ │ │ +000950b0: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +000950c0: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +000950d0: 2c2c 2024 5920 5c64 6173 6872 6967 6874 ,, $Y \dashright │ │ │ │ +000950e0: 6172 726f 7720 5a24 0a20 202a 204f 7574 arrow Z$. * Out │ │ │ │ +000950f0: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ +00095100: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +00095110: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +00095120: 2c20 2458 205c 6461 7368 7269 6768 7461 , $X \dashrighta │ │ │ │ +00095130: 7272 6f77 205a 242c 2074 6865 0a20 2020 rrow Z$, the. │ │ │ │ +00095140: 2020 2020 2063 6f6d 706f 7369 7469 6f6e composition │ │ │ │ +00095150: 206f 6620 7068 6920 616e 6420 7073 690a of phi and psi. │ │ │ │ +00095160: 0a44 6573 6372 6970 7469 6f6e 0a3d 3d3d .Description.=== │ │ │ │ +00095170: 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d ========..+----- │ │ │ │ +00095180: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00095190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000951a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000951b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000951c0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ -000951d0: 5220 3d20 5151 5b78 5f30 2e2e 785f 335d R = QQ[x_0..x_3] │ │ │ │ -000951e0: 3b20 5320 3d20 5151 5b79 5f30 2e2e 795f ; S = QQ[y_0..y_ │ │ │ │ -000951f0: 345d 3b20 5420 3d20 5151 5b7a 5f30 2e2e 4]; T = QQ[z_0.. │ │ │ │ -00095200: 7a5f 345d 3b20 2020 2020 2020 2020 2020 z_4]; │ │ │ │ -00095210: 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+----------- │ │ │ │ +000951c0: 2d2d 2b0a 7c69 3120 3a20 5220 3d20 5151 --+.|i1 : R = QQ │ │ │ │ +000951d0: 5b78 5f30 2e2e 785f 335d 3b20 5320 3d20 [x_0..x_3]; S = │ │ │ │ +000951e0: 5151 5b79 5f30 2e2e 795f 345d 3b20 5420 QQ[y_0..y_4]; T │ │ │ │ +000951f0: 3d20 5151 5b7a 5f30 2e2e 7a5f 345d 3b20 = QQ[z_0..z_4]; │ │ │ │ +00095200: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00095210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00095220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00095230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00095240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00095250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00095260: 3420 3a20 7068 6920 3d20 7261 7469 6f6e 4 : phi = ration │ │ │ │ -00095270: 616c 4d61 7028 522c 532c 7b78 5f30 2a78 alMap(R,S,{x_0*x │ │ │ │ -00095280: 5f32 2c78 5f30 2a78 5f33 2c78 5f31 2a78 _2,x_0*x_3,x_1*x │ │ │ │ -00095290: 5f32 2c78 5f31 2a78 5f33 2c78 5f32 2a78 _2,x_1*x_3,x_2*x │ │ │ │ -000952a0: 5f33 7d29 2020 7c0a 7c20 2020 2020 2020 _3}) |.| │ │ │ │ +00095250: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7068 ------+.|i4 : ph │ │ │ │ +00095260: 6920 3d20 7261 7469 6f6e 616c 4d61 7028 i = rationalMap( │ │ │ │ +00095270: 522c 532c 7b78 5f30 2a78 5f32 2c78 5f30 R,S,{x_0*x_2,x_0 │ │ │ │ +00095280: 2a78 5f33 2c78 5f31 2a78 5f32 2c78 5f31 *x_3,x_1*x_2,x_1 │ │ │ │ +00095290: 2a78 5f33 2c78 5f32 2a78 5f33 7d29 2020 *x_3,x_2*x_3}) │ │ │ │ +000952a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000952b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000952c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000952d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000952e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000952f0: 7c0a 7c6f 3420 3d20 2d2d 2072 6174 696f |.|o4 = -- ratio │ │ │ │ -00095300: 6e61 6c20 6d61 7020 2d2d 2020 2020 2020 nal map -- │ │ │ │ +000952e0: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +000952f0: 3d20 2d2d 2072 6174 696f 6e61 6c20 6d61 = -- rational ma │ │ │ │ +00095300: 7020 2d2d 2020 2020 2020 2020 2020 2020 p -- │ │ │ │ 00095310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095330: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00095340: 2020 736f 7572 6365 3a20 5072 6f6a 2851 source: Proj(Q │ │ │ │ -00095350: 515b 7820 2c20 7820 2c20 7820 2c20 7820 Q[x , x , x , x │ │ │ │ -00095360: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ -00095370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095380: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00095390: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ -000953a0: 2031 2020 2032 2020 2033 2020 2020 2020 1 2 3 │ │ │ │ +00095330: 2020 2020 7c0a 7c20 2020 2020 736f 7572 |.| sour │ │ │ │ +00095340: 6365 3a20 5072 6f6a 2851 515b 7820 2c20 ce: Proj(QQ[x , │ │ │ │ +00095350: 7820 2c20 7820 2c20 7820 5d29 2020 2020 x , x , x ]) │ │ │ │ +00095360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095370: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00095380: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00095390: 2020 2020 2020 2030 2020 2031 2020 2032 0 1 2 │ │ │ │ +000953a0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 000953b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000953c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000953d0: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -000953e0: 6f6a 2851 515b 7920 2c20 7920 2c20 7920 oj(QQ[y , y , y │ │ │ │ -000953f0: 2c20 7920 2c20 7920 5d29 2020 2020 2020 , y , y ]) │ │ │ │ +000953c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000953d0: 7461 7267 6574 3a20 5072 6f6a 2851 515b target: Proj(QQ[ │ │ │ │ +000953e0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ +000953f0: 7920 5d29 2020 2020 2020 2020 2020 2020 y ]) │ │ │ │ 00095400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095410: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00095420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095430: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -00095440: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00095450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095460: 2020 7c0a 7c20 2020 2020 6465 6669 6e69 |.| defini │ │ │ │ -00095470: 6e67 2066 6f72 6d73 3a20 7b20 2020 2020 ng forms: { │ │ │ │ +00095410: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095420: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ +00095430: 2020 2032 2020 2033 2020 2034 2020 2020 2 3 4 │ │ │ │ +00095440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095450: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00095460: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ +00095470: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ 00095480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000954a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000954b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000954c0: 2020 2020 2078 2078 202c 2020 2020 2020 x x , │ │ │ │ +000954a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000954b0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +000954c0: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 000954d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000954e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000954f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00095500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095510: 3020 3220 2020 2020 2020 2020 2020 2020 0 2 │ │ │ │ +000954f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095500: 2020 2020 2020 2020 2020 3020 3220 2020 0 2 │ │ │ │ +00095510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095540: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095530: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00095540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095580: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00095590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000955a0: 2020 2078 2078 202c 2020 2020 2020 2020 x x , │ │ │ │ +00095580: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00095590: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ +000955a0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000955b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000955c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000955d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000955e0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -000955f0: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +000955c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000955d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000955e0: 2020 2020 2020 2020 3020 3320 2020 2020 0 3 │ │ │ │ +000955f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00095620: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00095610: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00095620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095660: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00095670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095680: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +00095660: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095670: 2020 2020 2020 2020 2020 2078 2078 202c x x , │ │ │ │ +00095680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000956a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000956b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000956c0: 2020 2020 2020 2020 2020 2020 3120 3220 1 2 │ │ │ │ +000956a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000956b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000956c0: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ 000956d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000956e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000956f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000956f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00095700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095740: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00095750: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ -00095760: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +00095740: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095750: 2020 2020 2020 2020 2078 2078 202c 2020 x x , │ │ │ │ +00095760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095790: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000957a0: 2020 2020 2020 2020 2020 3120 3320 2020 1 3 │ │ │ │ +00095780: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00095790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000957a0: 2020 2020 3120 3320 2020 2020 2020 2020 1 3 │ │ │ │ 000957b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000957c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000957d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000957d0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 000957e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000957f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095820: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00095830: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ +00095810: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00095820: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00095830: 2020 2020 2020 2078 2078 2020 2020 2020 x x │ │ │ │ 00095840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095860: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00095870: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00095880: 2020 2020 2020 2020 3220 3320 2020 2020 2 3 │ │ │ │ +00095860: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00095870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095880: 2020 3220 3320 2020 2020 2020 2020 2020 2 3 │ │ │ │ 00095890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000958a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000958b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000958c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000958d0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000958b0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000958c0: 2020 2020 2020 2020 2020 7d20 2020 2020 } │ │ │ │ +000958d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000958e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000958f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095900: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000958f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00095900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095940: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00095950: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ -00095960: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -00095970: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -00095980: 3320 746f 2050 505e 3429 2020 2020 2020 3 to PP^4) │ │ │ │ -00095990: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ +00095940: 2020 2020 2020 7c0a 7c6f 3420 3a20 5261 |.|o4 : Ra │ │ │ │ +00095950: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +00095960: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +00095970: 7020 6672 6f6d 2050 505e 3320 746f 2050 p from PP^3 to P │ │ │ │ +00095980: 505e 3429 2020 2020 2020 2020 2020 2020 P^4) │ │ │ │ +00095990: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ 000959a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000959b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000959c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000959d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000959e0: 2b0a 7c69 3520 3a20 7073 6920 3d20 7261 +.|i5 : psi = ra │ │ │ │ -000959f0: 7469 6f6e 616c 4d61 7028 532c 542c 7b79 tionalMap(S,T,{y │ │ │ │ -00095a00: 5f30 2a79 5f33 2c2d 795f 322a 795f 332c _0*y_3,-y_2*y_3, │ │ │ │ -00095a10: 795f 312a 795f 322c 795f 322a 795f 342c y_1*y_2,y_2*y_4, │ │ │ │ -00095a20: 2d79 5f33 2a79 5f34 7d29 7c0a 7c20 2020 -y_3*y_4})|.| │ │ │ │ +000959d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 ----------+.|i5 │ │ │ │ +000959e0: 3a20 7073 6920 3d20 7261 7469 6f6e 616c : psi = rational │ │ │ │ +000959f0: 4d61 7028 532c 542c 7b79 5f30 2a79 5f33 Map(S,T,{y_0*y_3 │ │ │ │ +00095a00: 2c2d 795f 322a 795f 332c 795f 312a 795f ,-y_2*y_3,y_1*y_ │ │ │ │ +00095a10: 322c 795f 322a 795f 342c 2d79 5f33 2a79 2,y_2*y_4,-y_3*y │ │ │ │ +00095a20: 5f34 7d29 7c0a 7c20 2020 2020 2020 2020 _4})|.| │ │ │ │ 00095a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095a70: 2020 2020 7c0a 7c6f 3520 3d20 2d2d 2072 |.|o5 = -- r │ │ │ │ -00095a80: 6174 696f 6e61 6c20 6d61 7020 2d2d 2020 ational map -- │ │ │ │ +00095a60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00095a70: 7c6f 3520 3d20 2d2d 2072 6174 696f 6e61 |o5 = -- rationa │ │ │ │ +00095a80: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ 00095a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095ab0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00095ac0: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ -00095ad0: 6f6a 2851 515b 7920 2c20 7920 2c20 7920 oj(QQ[y , y , y │ │ │ │ -00095ae0: 2c20 7920 2c20 7920 5d29 2020 2020 2020 , y , y ]) │ │ │ │ +00095ab0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00095ac0: 736f 7572 6365 3a20 5072 6f6a 2851 515b source: Proj(QQ[ │ │ │ │ +00095ad0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ +00095ae0: 7920 5d29 2020 2020 2020 2020 2020 2020 y ]) │ │ │ │ 00095af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095b00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00095b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095b20: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ -00095b30: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ -00095b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095b50: 2020 7c0a 7c20 2020 2020 7461 7267 6574 |.| target │ │ │ │ -00095b60: 3a20 5072 6f6a 2851 515b 7a20 2c20 7a20 : Proj(QQ[z , z │ │ │ │ -00095b70: 2c20 7a20 2c20 7a20 2c20 7a20 5d29 2020 , z , z , z ]) │ │ │ │ +00095b00: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095b10: 2020 2020 2020 2020 2020 2030 2020 2031 0 1 │ │ │ │ +00095b20: 2020 2032 2020 2033 2020 2034 2020 2020 2 3 4 │ │ │ │ +00095b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095b40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00095b50: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ +00095b60: 2851 515b 7a20 2c20 7a20 2c20 7a20 2c20 (QQ[z , z , z , │ │ │ │ +00095b70: 7a20 2c20 7a20 5d29 2020 2020 2020 2020 z , z ]) │ │ │ │ 00095b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095b90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00095ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095bb0: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ -00095bc0: 2033 2020 2034 2020 2020 2020 2020 2020 3 4 │ │ │ │ +00095b90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00095ba0: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00095bb0: 2020 2031 2020 2032 2020 2033 2020 2034 1 2 3 4 │ │ │ │ +00095bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095be0: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ -00095bf0: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00095be0: 7c0a 7c20 2020 2020 6465 6669 6e69 6e67 |.| defining │ │ │ │ +00095bf0: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ 00095c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095c30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00095c40: 2020 2020 2020 2020 2079 2079 202c 2020 y y , │ │ │ │ +00095c20: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00095c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095c40: 2020 2079 2079 202c 2020 2020 2020 2020 y y , │ │ │ │ 00095c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095c70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00095c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095c90: 2020 2020 3020 3320 2020 2020 2020 2020 0 3 │ │ │ │ +00095c70: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00095c80: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +00095c90: 3320 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 00095ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095cc0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00095cb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00095cc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00095cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095d00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00095d10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00095d20: 2020 2020 2020 202d 7920 7920 2c20 2020 -y y , │ │ │ │ +00095d00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00095d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00095d20: 202d 7920 7920 2c20 2020 2020 2020 2020 -y y , │ │ │ │ 00095d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095d50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00095d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095d70: 2020 2032 2033 2020 2020 2020 2020 2020 2 3 │ │ │ │ +00095d50: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095d60: 2020 2020 2020 2020 2020 2020 2032 2033 2 3 │ │ │ │ +00095d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095da0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095d90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00095da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095de0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00095df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095e00: 2020 2020 2079 2079 202c 2020 2020 2020 y y , │ │ │ │ +00095de0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00095df0: 2020 2020 2020 2020 2020 2020 2020 2079 y │ │ │ │ +00095e00: 2079 202c 2020 2020 2020 2020 2020 2020 y , │ │ │ │ 00095e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095e30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00095e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095e50: 3120 3220 2020 2020 2020 2020 2020 2020 1 2 │ │ │ │ +00095e30: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095e40: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ +00095e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095e80: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095e70: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00095e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095ec0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00095ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095ee0: 2020 2079 2079 202c 2020 2020 2020 2020 y y , │ │ │ │ +00095ec0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +00095ed0: 2020 2020 2020 2020 2020 2020 2079 2079 y y │ │ │ │ +00095ee0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 00095ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095f10: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -00095f20: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -00095f30: 3420 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ +00095f00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00095f10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00095f20: 2020 2020 2020 2020 3220 3420 2020 2020 2 4 │ │ │ │ +00095f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095f50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00095f60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +00095f50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00095f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095fa0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -00095fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095fc0: 202d 7920 7920 2020 2020 2020 2020 2020 -y y │ │ │ │ +00095fa0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00095fb0: 2020 2020 2020 2020 2020 202d 7920 7920 -y y │ │ │ │ +00095fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00095fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00095ff0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -00096000: 2020 2020 2020 2020 2020 2020 2033 2034 3 4 │ │ │ │ +00095fe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00095ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096000: 2020 2020 2020 2033 2034 2020 2020 2020 3 4 │ │ │ │ 00096010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00096040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096050: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00096030: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00096040: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00096050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096080: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00096080: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00096090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000960a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000960b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000960c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000960d0: 7c0a 7c6f 3520 3a20 5261 7469 6f6e 616c |.|o5 : Rational │ │ │ │ -000960e0: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -000960f0: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -00096100: 2050 505e 3420 746f 2050 505e 3429 2020 PP^4 to PP^4) │ │ │ │ -00096110: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +000960c0: 2020 2020 2020 2020 2020 7c0a 7c6f 3520 |.|o5 │ │ │ │ +000960d0: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +000960e0: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +000960f0: 6c20 6d61 7020 6672 6f6d 2050 505e 3420 l map from PP^4 │ │ │ │ +00096100: 746f 2050 505e 3429 2020 2020 2020 2020 to PP^4) │ │ │ │ +00096110: 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d |.+--------- │ │ │ │ 00096120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096130: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096140: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00096150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00096160: 2d2d 2d2d 2b0a 7c69 3620 3a20 7068 6920 ----+.|i6 : phi │ │ │ │ -00096170: 2a20 7073 6920 2020 2020 2020 2020 2020 * psi │ │ │ │ +00096150: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ +00096160: 7c69 3620 3a20 7068 6920 2a20 7073 6920 |i6 : phi * psi │ │ │ │ +00096170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000961a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000961b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000961a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +000961b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000961c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000961d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000961e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000961f0: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ -00096200: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ -00096210: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ +000961f0: 2020 7c0a 7c6f 3620 3d20 2d2d 2072 6174 |.|o6 = -- rat │ │ │ │ +00096200: 696f 6e61 6c20 6d61 7020 2d2d 2020 2020 ional map -- │ │ │ │ +00096210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096240: 2020 7c0a 7c20 2020 2020 736f 7572 6365 |.| source │ │ │ │ -00096250: 3a20 5072 6f6a 2851 515b 7820 2c20 7820 : Proj(QQ[x , x │ │ │ │ -00096260: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ +00096230: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00096240: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ +00096250: 2851 515b 7820 2c20 7820 2c20 7820 2c20 (QQ[x , x , x , │ │ │ │ +00096260: 7820 5d29 2020 2020 2020 2020 2020 2020 x ]) │ │ │ │ 00096270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096280: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00096290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000962a0: 2020 2020 2030 2020 2031 2020 2032 2020 0 1 2 │ │ │ │ -000962b0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00096280: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00096290: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +000962a0: 2020 2031 2020 2032 2020 2033 2020 2020 1 2 3 │ │ │ │ +000962b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000962c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000962d0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ -000962e0: 7267 6574 3a20 5072 6f6a 2851 515b 7a20 rget: Proj(QQ[z │ │ │ │ -000962f0: 2c20 7a20 2c20 7a20 2c20 7a20 2c20 7a20 , z , z , z , z │ │ │ │ -00096300: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ -00096310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096320: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00096330: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -00096340: 2032 2020 2033 2020 2034 2020 2020 2020 2 3 4 │ │ │ │ +000962d0: 7c0a 7c20 2020 2020 7461 7267 6574 3a20 |.| target: │ │ │ │ +000962e0: 5072 6f6a 2851 515b 7a20 2c20 7a20 2c20 Proj(QQ[z , z , │ │ │ │ +000962f0: 7a20 2c20 7a20 2c20 7a20 5d29 2020 2020 z , z , z ]) │ │ │ │ +00096300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096310: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00096320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096330: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ +00096340: 2020 2034 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 00096350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096360: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -00096370: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ -00096380: 3a20 7b20 2020 2020 2020 2020 2020 2020 : { │ │ │ │ +00096360: 2020 2020 7c0a 7c20 2020 2020 6465 6669 |.| defi │ │ │ │ +00096370: 6e69 6e67 2066 6f72 6d73 3a20 7b20 2020 ning forms: { │ │ │ │ +00096380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000963a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000963b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ -000963c0: 2020 2020 2020 2020 2020 2020 2078 202c x , │ │ │ │ +000963a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +000963b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +000963c0: 2020 2020 2020 2078 202c 2020 2020 2020 x , │ │ │ │ 000963d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000963e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000963f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00096400: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00096410: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +000963f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00096400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096410: 2020 3020 2020 2020 2020 2020 2020 2020 0 │ │ │ │ 00096420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00096440: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ 00096450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096490: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ -000964a0: 2020 2020 2020 2020 2020 202d 7820 2c20 -x , │ │ │ │ +00096480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00096490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000964a0: 2020 2020 202d 7820 2c20 2020 2020 2020 -x , │ │ │ │ 000964b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000964c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000964d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000964d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000964e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000964f0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +000964f0: 2031 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ 00096500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096520: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00096520: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 00096530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096570: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00096580: 2020 2020 2020 2020 2078 202c 2020 2020 x , │ │ │ │ +00096560: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00096570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096580: 2020 2078 202c 2020 2020 2020 2020 2020 x , │ │ │ │ 00096590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000965a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000965b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ -000965c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000965d0: 2020 2020 3020 2020 2020 2020 2020 2020 0 │ │ │ │ +000965b0: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000965c0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ +000965d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000965e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000965f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096600: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ +000965f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00096600: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ 00096610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096640: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00096650: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -00096660: 2020 2020 2020 2078 202c 2020 2020 2020 x , │ │ │ │ +00096640: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +00096650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00096660: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00096670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096690: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ -000966a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000966b0: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00096690: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000966a0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +000966b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000966c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000966d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000966e0: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +000966d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000966e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000966f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00096730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096740: 2020 2020 202d 7820 2020 2020 2020 2020 -x │ │ │ │ +00096720: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00096730: 2020 2020 2020 2020 2020 2020 2020 202d - │ │ │ │ +00096740: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 00096750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ -00096780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096790: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +00096770: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00096780: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +00096790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000967a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000967b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000967c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000967d0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +000967b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000967c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000967d0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000967e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000967f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096800: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00096800: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00096810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096850: 2020 2020 7c0a 7c6f 3620 3a20 5261 7469 |.|o6 : Rati │ │ │ │ -00096860: 6f6e 616c 4d61 7020 286c 696e 6561 7220 onalMap (linear │ │ │ │ -00096870: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -00096880: 6d20 5050 5e33 2074 6f20 5050 5e34 2920 m PP^3 to PP^4) │ │ │ │ -00096890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -000968a0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00096840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00096850: 7c6f 3620 3a20 5261 7469 6f6e 616c 4d61 |o6 : RationalMa │ │ │ │ +00096860: 7020 286c 696e 6561 7220 7261 7469 6f6e p (linear ration │ │ │ │ +00096870: 616c 206d 6170 2066 726f 6d20 5050 5e33 al map from PP^3 │ │ │ │ +00096880: 2074 6f20 5050 5e34 2920 2020 2020 2020 to PP^4) │ │ │ │ +00096890: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +000968a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000968b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000968c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000968d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000968e0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ -000968f0: 286d 6170 2070 6869 2920 2a20 286d 6170 (map phi) * (map │ │ │ │ -00096900: 2070 7369 2920 2020 2020 2020 2020 2020 psi) │ │ │ │ +000968e0: 2d2d 2b0a 7c69 3720 3a20 286d 6170 2070 --+.|i7 : (map p │ │ │ │ +000968f0: 6869 2920 2a20 286d 6170 2070 7369 2920 hi) * (map psi) │ │ │ │ +00096900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096930: 2020 7c0a 7c20 2020 2020 2020 2020 2020 |.| │ │ │ │ +00096920: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00096930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096970: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00096970: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00096980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096990: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000969a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000969b0: 3220 2020 2020 2020 2020 2032 2020 2020 2 2 │ │ │ │ -000969c0: 2020 2020 2020 7c0a 7c6f 3720 3d20 6d61 |.|o7 = ma │ │ │ │ -000969d0: 7020 2852 2c20 542c 207b 7820 7820 7820 p (R, T, {x x x │ │ │ │ -000969e0: 7820 2c20 2d78 2078 2078 202c 2078 2078 x , -x x x , x x │ │ │ │ -000969f0: 2078 2078 202c 2078 2078 2078 202c 202d x x , x x x , - │ │ │ │ -00096a00: 7820 7820 7820 7d29 2020 2020 2020 2020 x x x }) │ │ │ │ -00096a10: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00096a20: 2020 2020 2030 2031 2032 2033 2020 2020 0 1 2 3 │ │ │ │ -00096a30: 3120 3220 3320 2020 3020 3120 3220 3320 1 2 3 0 1 2 3 │ │ │ │ -00096a40: 2020 3120 3220 3320 2020 2031 2032 2033 1 2 3 1 2 3 │ │ │ │ -00096a50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00096990: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000969a0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +000969b0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000969c0: 7c0a 7c6f 3720 3d20 6d61 7020 2852 2c20 |.|o7 = map (R, │ │ │ │ +000969d0: 542c 207b 7820 7820 7820 7820 2c20 2d78 T, {x x x x , -x │ │ │ │ +000969e0: 2078 2078 202c 2078 2078 2078 2078 202c x x , x x x x , │ │ │ │ +000969f0: 2078 2078 2078 202c 202d 7820 7820 7820 x x x , -x x x │ │ │ │ +00096a00: 7d29 2020 2020 2020 2020 7c0a 7c20 2020 }) |.| │ │ │ │ +00096a10: 2020 2020 2020 2020 2020 2020 2020 2030 0 │ │ │ │ +00096a20: 2031 2032 2033 2020 2020 3120 3220 3320 1 2 3 1 2 3 │ │ │ │ +00096a30: 2020 3020 3120 3220 3320 2020 3120 3220 0 1 2 3 1 2 │ │ │ │ +00096a40: 3320 2020 2031 2032 2033 2020 2020 2020 3 1 2 3 │ │ │ │ +00096a50: 2020 2020 7c0a 7c20 2020 2020 2020 2020 |.| │ │ │ │ 00096a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096aa0: 2020 2020 7c0a 7c6f 3720 3a20 5269 6e67 |.|o7 : Ring │ │ │ │ -00096ab0: 4d61 7020 5220 3c2d 2d20 5420 2020 2020 Map R <-- T │ │ │ │ +00096a90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ +00096aa0: 7c6f 3720 3a20 5269 6e67 4d61 7020 5220 |o7 : RingMap R │ │ │ │ +00096ab0: 3c2d 2d20 5420 2020 2020 2020 2020 2020 <-- T │ │ │ │ 00096ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00096ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00096ae0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -00096af0: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +00096ae0: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +00096af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00096b30: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ -00096b40: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ -00096b50: 2a20 2a6e 6f74 6520 5269 6e67 4d61 7020 * *note RingMap │ │ │ │ -00096b60: 2a20 5269 6e67 4d61 703a 2028 4d61 6361 * RingMap: (Maca │ │ │ │ -00096b70: 756c 6179 3244 6f63 295f 7374 2c20 2d2d ulay2Doc)_st, -- │ │ │ │ -00096b80: 2061 2062 696e 6172 7920 6f70 6572 6174 a binary operat │ │ │ │ -00096b90: 6f72 2c20 7573 7561 6c6c 790a 2020 2020 or, usually. │ │ │ │ -00096ba0: 7573 6564 2066 6f72 206d 756c 7469 706c used for multipl │ │ │ │ -00096bb0: 6963 6174 696f 6e0a 0a57 6179 7320 746f ication..Ways to │ │ │ │ -00096bc0: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ -00096bd0: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ -00096be0: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ -00096bf0: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ -00096c00: 7020 2a20 5261 7469 6f6e 616c 4d61 703a p * RationalMap: │ │ │ │ -00096c10: 2052 6174 696f 6e61 6c4d 6170 205f 7374 RationalMap _st │ │ │ │ -00096c20: 2052 6174 696f 6e61 6c4d 6170 2c20 2d2d RationalMap, -- │ │ │ │ -00096c30: 0a20 2020 2063 6f6d 706f 7369 7469 6f6e . composition │ │ │ │ -00096c40: 206f 6620 7261 7469 6f6e 616c 206d 6170 of rational map │ │ │ │ -00096c50: 730a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d s.-------------- │ │ │ │ +00096b30: 2d2d 2b0a 0a53 6565 2061 6c73 6f0a 3d3d --+..See also.== │ │ │ │ +00096b40: 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 ======.. * *not │ │ │ │ +00096b50: 6520 5269 6e67 4d61 7020 2a20 5269 6e67 e RingMap * Ring │ │ │ │ +00096b60: 4d61 703a 2028 4d61 6361 756c 6179 3244 Map: (Macaulay2D │ │ │ │ +00096b70: 6f63 295f 7374 2c20 2d2d 2061 2062 696e oc)_st, -- a bin │ │ │ │ +00096b80: 6172 7920 6f70 6572 6174 6f72 2c20 7573 ary operator, us │ │ │ │ +00096b90: 7561 6c6c 790a 2020 2020 7573 6564 2066 ually. used f │ │ │ │ +00096ba0: 6f72 206d 756c 7469 706c 6963 6174 696f or multiplicatio │ │ │ │ +00096bb0: 6e0a 0a57 6179 7320 746f 2075 7365 2074 n..Ways to use t │ │ │ │ +00096bc0: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ +00096bd0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +00096be0: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ +00096bf0: 5261 7469 6f6e 616c 4d61 7020 2a20 5261 RationalMap * Ra │ │ │ │ +00096c00: 7469 6f6e 616c 4d61 703a 2052 6174 696f tionalMap: Ratio │ │ │ │ +00096c10: 6e61 6c4d 6170 205f 7374 2052 6174 696f nalMap _st Ratio │ │ │ │ +00096c20: 6e61 6c4d 6170 2c20 2d2d 0a20 2020 2063 nalMap, --. c │ │ │ │ +00096c30: 6f6d 706f 7369 7469 6f6e 206f 6620 7261 omposition of ra │ │ │ │ +00096c40: 7469 6f6e 616c 206d 6170 730a 2d2d 2d2d tional maps.---- │ │ │ │ +00096c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00096c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00096c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00096ca0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -00096cb0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -00096cc0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -00096cd0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -00096ce0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -00096cf0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -00096d00: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -00096d10: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -00096d20: 6d32 3a36 3330 3a30 2e0a 1f0a 4669 6c65 m2:630:0....File │ │ │ │ -00096d30: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -00096d40: 4e6f 6465 3a20 5261 7469 6f6e 616c 4d61 Node: RationalMa │ │ │ │ -00096d50: 7020 5f73 745f 7374 2052 696e 672c 204e p _st_st Ring, N │ │ │ │ -00096d60: 6578 743a 2052 6174 696f 6e61 6c4d 6170 ext: RationalMap │ │ │ │ -00096d70: 203d 3d20 5261 7469 6f6e 616c 4d61 702c == RationalMap, │ │ │ │ -00096d80: 2050 7265 763a 2052 6174 696f 6e61 6c4d Prev: RationalM │ │ │ │ -00096d90: 6170 205f 7374 2052 6174 696f 6e61 6c4d ap _st RationalM │ │ │ │ -00096da0: 6170 2c20 5570 3a20 546f 700a 0a52 6174 ap, Up: Top..Rat │ │ │ │ -00096db0: 696f 6e61 6c4d 6170 202a 2a20 5269 6e67 ionalMap ** Ring │ │ │ │ -00096dc0: 202d 2d20 6368 616e 6765 2074 6865 2063 -- change the c │ │ │ │ -00096dd0: 6f65 6666 6963 6965 6e74 2072 696e 6720 oefficient ring │ │ │ │ -00096de0: 6f66 2061 2072 6174 696f 6e61 6c20 6d61 of a rational ma │ │ │ │ -00096df0: 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a p.************** │ │ │ │ +00096c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +00096ca0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +00096cb0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +00096cc0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +00096cd0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +00096ce0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +00096cf0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +00096d00: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ +00096d10: 6d65 6e74 6174 696f 6e2e 6d32 3a36 3330 mentation.m2:630 │ │ │ │ +00096d20: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ +00096d30: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ +00096d40: 5261 7469 6f6e 616c 4d61 7020 5f73 745f RationalMap _st_ │ │ │ │ +00096d50: 7374 2052 696e 672c 204e 6578 743a 2052 st Ring, Next: R │ │ │ │ +00096d60: 6174 696f 6e61 6c4d 6170 203d 3d20 5261 ationalMap == Ra │ │ │ │ +00096d70: 7469 6f6e 616c 4d61 702c 2050 7265 763a tionalMap, Prev: │ │ │ │ +00096d80: 2052 6174 696f 6e61 6c4d 6170 205f 7374 RationalMap _st │ │ │ │ +00096d90: 2052 6174 696f 6e61 6c4d 6170 2c20 5570 RationalMap, Up │ │ │ │ +00096da0: 3a20 546f 700a 0a52 6174 696f 6e61 6c4d : Top..RationalM │ │ │ │ +00096db0: 6170 202a 2a20 5269 6e67 202d 2d20 6368 ap ** Ring -- ch │ │ │ │ +00096dc0: 616e 6765 2074 6865 2063 6f65 6666 6963 ange the coeffic │ │ │ │ +00096dd0: 6965 6e74 2072 696e 6720 6f66 2061 2072 ient ring of a r │ │ │ │ +00096de0: 6174 696f 6e61 6c20 6d61 700a 2a2a 2a2a ational map.**** │ │ │ │ +00096df0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00096e00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00096e10: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00096e20: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00096e30: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4f70 6572 ******.. * Oper │ │ │ │ -00096e40: 6174 6f72 3a20 2a6e 6f74 6520 2a2a 3a20 ator: *note **: │ │ │ │ -00096e50: 284d 6163 6175 6c61 7932 446f 6329 5f73 (Macaulay2Doc)_s │ │ │ │ -00096e60: 745f 7374 2c0a 2020 2a20 5573 6167 653a t_st,. * Usage: │ │ │ │ -00096e70: 200a 2020 2020 2020 2020 7068 6920 2a2a . phi ** │ │ │ │ -00096e80: 204b 0a20 202a 2049 6e70 7574 733a 0a20 K. * Inputs:. │ │ │ │ -00096e90: 2020 2020 202a 2070 6869 2c20 6120 2a6e * phi, a *n │ │ │ │ -00096ea0: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ -00096eb0: 3a20 5261 7469 6f6e 616c 4d61 702c 2c20 : RationalMap,, │ │ │ │ -00096ec0: 6465 6669 6e65 6420 6f76 6572 2061 2063 defined over a c │ │ │ │ -00096ed0: 6f65 6666 6963 6965 6e74 0a20 2020 2020 oefficient. │ │ │ │ -00096ee0: 2020 2072 696e 6720 460a 2020 2020 2020 ring F. │ │ │ │ -00096ef0: 2a20 4b2c 2061 202a 6e6f 7465 2072 696e * K, a *note rin │ │ │ │ -00096f00: 673a 2028 4d61 6361 756c 6179 3244 6f63 g: (Macaulay2Doc │ │ │ │ -00096f10: 2952 696e 672c 2c20 7468 6520 6e65 7720 )Ring,, the new │ │ │ │ -00096f20: 636f 6566 6669 6369 656e 7420 7269 6e67 coefficient ring │ │ │ │ -00096f30: 2028 7768 6963 680a 2020 2020 2020 2020 (which. │ │ │ │ -00096f40: 6d75 7374 2062 6520 6120 6669 656c 6429 must be a field) │ │ │ │ -00096f50: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -00096f60: 2020 2020 2a20 6120 2a6e 6f74 6520 7261 * a *note ra │ │ │ │ -00096f70: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ -00096f80: 6f6e 616c 4d61 702c 2c20 6120 7261 7469 onalMap,, a rati │ │ │ │ -00096f90: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ -00096fa0: 206f 7665 7220 4b2c 0a20 2020 2020 2020 over K,. │ │ │ │ -00096fb0: 206f 6274 6169 6e65 6420 6279 2063 6f65 obtained by coe │ │ │ │ -00096fc0: 7263 696e 6720 7468 6520 636f 6566 6669 rcing the coeffi │ │ │ │ -00096fd0: 6369 656e 7473 206f 6620 7468 6520 666f cients of the fo │ │ │ │ -00096fe0: 726d 7320 6465 6669 6e69 6e67 2070 6869 rms defining phi │ │ │ │ -00096ff0: 2069 6e74 6f20 4b0a 0a44 6573 6372 6970 into K..Descrip │ │ │ │ -00097000: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00097010: 0a0a 4974 2069 7320 6e65 6365 7373 6172 ..It is necessar │ │ │ │ -00097020: 7920 7468 6174 2061 6c6c 2066 6f72 6d73 y that all forms │ │ │ │ -00097030: 2069 6e20 7468 6520 6f6c 6420 636f 6566 in the old coef │ │ │ │ -00097040: 6669 6369 656e 7420 7269 6e67 2046 2063 ficient ring F c │ │ │ │ -00097050: 616e 2062 650a 6175 746f 6d61 7469 6361 an be.automatica │ │ │ │ -00097060: 6c6c 7920 636f 6572 6365 6420 696e 746f lly coerced into │ │ │ │ -00097070: 2074 6865 206e 6577 2063 6f65 6666 6963 the new coeffic │ │ │ │ -00097080: 6965 6e74 2072 696e 6720 4b2e 0a0a 2b2d ient ring K...+- │ │ │ │ +00096e30: 0a0a 2020 2a20 4f70 6572 6174 6f72 3a20 .. * Operator: │ │ │ │ +00096e40: 2a6e 6f74 6520 2a2a 3a20 284d 6163 6175 *note **: (Macau │ │ │ │ +00096e50: 6c61 7932 446f 6329 5f73 745f 7374 2c0a lay2Doc)_st_st,. │ │ │ │ +00096e60: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ +00096e70: 2020 2020 7068 6920 2a2a 204b 0a20 202a phi ** K. * │ │ │ │ +00096e80: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ +00096e90: 2070 6869 2c20 6120 2a6e 6f74 6520 7261 phi, a *note ra │ │ │ │ +00096ea0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ +00096eb0: 6f6e 616c 4d61 702c 2c20 6465 6669 6e65 onalMap,, define │ │ │ │ +00096ec0: 6420 6f76 6572 2061 2063 6f65 6666 6963 d over a coeffic │ │ │ │ +00096ed0: 6965 6e74 0a20 2020 2020 2020 2072 696e ient. rin │ │ │ │ +00096ee0: 6720 460a 2020 2020 2020 2a20 4b2c 2061 g F. * K, a │ │ │ │ +00096ef0: 202a 6e6f 7465 2072 696e 673a 2028 4d61 *note ring: (Ma │ │ │ │ +00096f00: 6361 756c 6179 3244 6f63 2952 696e 672c caulay2Doc)Ring, │ │ │ │ +00096f10: 2c20 7468 6520 6e65 7720 636f 6566 6669 , the new coeffi │ │ │ │ +00096f20: 6369 656e 7420 7269 6e67 2028 7768 6963 cient ring (whic │ │ │ │ +00096f30: 680a 2020 2020 2020 2020 6d75 7374 2062 h. must b │ │ │ │ +00096f40: 6520 6120 6669 656c 6429 0a20 202a 204f e a field). * O │ │ │ │ +00096f50: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +00096f60: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ +00096f70: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ +00096f80: 702c 2c20 6120 7261 7469 6f6e 616c 206d p,, a rational m │ │ │ │ +00096f90: 6170 2064 6566 696e 6564 206f 7665 7220 ap defined over │ │ │ │ +00096fa0: 4b2c 0a20 2020 2020 2020 206f 6274 6169 K,. obtai │ │ │ │ +00096fb0: 6e65 6420 6279 2063 6f65 7263 696e 6720 ned by coercing │ │ │ │ +00096fc0: 7468 6520 636f 6566 6669 6369 656e 7473 the coefficients │ │ │ │ +00096fd0: 206f 6620 7468 6520 666f 726d 7320 6465 of the forms de │ │ │ │ +00096fe0: 6669 6e69 6e67 2070 6869 2069 6e74 6f20 fining phi into │ │ │ │ +00096ff0: 4b0a 0a44 6573 6372 6970 7469 6f6e 0a3d K..Description.= │ │ │ │ +00097000: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 4974 2069 ==========..It i │ │ │ │ +00097010: 7320 6e65 6365 7373 6172 7920 7468 6174 s necessary that │ │ │ │ +00097020: 2061 6c6c 2066 6f72 6d73 2069 6e20 7468 all forms in th │ │ │ │ +00097030: 6520 6f6c 6420 636f 6566 6669 6369 656e e old coefficien │ │ │ │ +00097040: 7420 7269 6e67 2046 2063 616e 2062 650a t ring F can be. │ │ │ │ +00097050: 6175 746f 6d61 7469 6361 6c6c 7920 636f automatically co │ │ │ │ +00097060: 6572 6365 6420 696e 746f 2074 6865 206e erced into the n │ │ │ │ +00097070: 6577 2063 6f65 6666 6963 6965 6e74 2072 ew coefficient r │ │ │ │ +00097080: 696e 6720 4b2e 0a0a 2b2d 2d2d 2d2d 2d2d ing K...+------- │ │ │ │ 00097090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000970a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000970b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000970c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000970d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000970e0: 3120 3a20 5151 5b76 6172 7328 302e 2e35 1 : QQ[vars(0..5 │ │ │ │ -000970f0: 295d 2020 2020 2020 2020 2020 2020 2020 )] │ │ │ │ +000970d0: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5151 ------+.|i1 : QQ │ │ │ │ +000970e0: 5b76 6172 7328 302e 2e35 295d 2020 2020 [vars(0..5)] │ │ │ │ +000970f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097120: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097120: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097170: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00097180: 3120 3d20 5151 5b61 2e2e 665d 2020 2020 1 = QQ[a..f] │ │ │ │ +00097170: 2020 2020 2020 7c0a 7c6f 3120 3d20 5151 |.|o1 = QQ │ │ │ │ +00097180: 5b61 2e2e 665d 2020 2020 2020 2020 2020 [a..f] │ │ │ │ 00097190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000971a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000971b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000971c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000971c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000971d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000971e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000971f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097210: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00097220: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ -00097230: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +00097210: 2020 2020 2020 7c0a 7c6f 3120 3a20 506f |.|o1 : Po │ │ │ │ +00097220: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +00097230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097260: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00097260: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00097270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097280: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097290: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000972a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000972b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000972c0: 3220 3a20 7068 6920 3d20 7261 7469 6f6e 2 : phi = ration │ │ │ │ -000972d0: 616c 4d61 7020 7b65 5e32 2d64 2a66 2c20 alMap {e^2-d*f, │ │ │ │ -000972e0: 632a 652d 622a 662c 2063 2a64 2d62 2a65 c*e-b*f, c*d-b*e │ │ │ │ -000972f0: 2c20 635e 322d 612a 662c 2062 2a63 2d61 , c^2-a*f, b*c-a │ │ │ │ -00097300: 2a65 2c20 625e 322d 612a 647d 7c0a 7c20 *e, b^2-a*d}|.| │ │ │ │ +000972b0: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 7068 ------+.|i2 : ph │ │ │ │ +000972c0: 6920 3d20 7261 7469 6f6e 616c 4d61 7020 i = rationalMap │ │ │ │ +000972d0: 7b65 5e32 2d64 2a66 2c20 632a 652d 622a {e^2-d*f, c*e-b* │ │ │ │ +000972e0: 662c 2063 2a64 2d62 2a65 2c20 635e 322d f, c*d-b*e, c^2- │ │ │ │ +000972f0: 612a 662c 2062 2a63 2d61 2a65 2c20 625e a*f, b*c-a*e, b^ │ │ │ │ +00097300: 322d 612a 647d 7c0a 7c20 2020 2020 2020 2-a*d}|.| │ │ │ │ 00097310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097350: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00097360: 3220 3d20 2d2d 2072 6174 696f 6e61 6c20 2 = -- rational │ │ │ │ -00097370: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +00097350: 2020 2020 2020 7c0a 7c6f 3220 3d20 2d2d |.|o2 = -- │ │ │ │ +00097360: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00097370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000973a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000973b0: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -000973c0: 2851 515b 612c 2062 2c20 632c 2064 2c20 (QQ[a, b, c, d, │ │ │ │ -000973d0: 652c 2066 5d29 2020 2020 2020 2020 2020 e, f]) │ │ │ │ +000973a0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +000973b0: 7572 6365 3a20 5072 6f6a 2851 515b 612c urce: Proj(QQ[a, │ │ │ │ +000973c0: 2062 2c20 632c 2064 2c20 652c 2066 5d29 b, c, d, e, f]) │ │ │ │ +000973d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000973e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000973f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097400: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -00097410: 2851 515b 612c 2062 2c20 632c 2064 2c20 (QQ[a, b, c, d, │ │ │ │ -00097420: 652c 2066 5d29 2020 2020 2020 2020 2020 e, f]) │ │ │ │ +000973f0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +00097400: 7267 6574 3a20 5072 6f6a 2851 515b 612c rget: Proj(QQ[a, │ │ │ │ +00097410: 2062 2c20 632c 2064 2c20 652c 2066 5d29 b, c, d, e, f]) │ │ │ │ +00097420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097440: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097450: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -00097460: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +00097440: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +00097450: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00097460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097490: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097490: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000974a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000974b0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000974b0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000974c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000974d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000974e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000974f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097500: 2020 2020 2065 2020 2d20 642a 662c 2020 e - d*f, │ │ │ │ +000974e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000974f0: 2020 2020 2020 2020 2020 2020 2020 2065 e │ │ │ │ +00097500: 2020 2d20 642a 662c 2020 2020 2020 2020 - d*f, │ │ │ │ 00097510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097530: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097530: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097580: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000975a0: 2020 2020 2063 2a65 202d 2062 2a66 2c20 c*e - b*f, │ │ │ │ +00097580: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097590: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +000975a0: 2a65 202d 2062 2a66 2c20 2020 2020 2020 *e - b*f, │ │ │ │ 000975b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000975c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000975d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000975d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000975e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000975f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097620: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097640: 2020 2020 2063 2a64 202d 2062 2a65 2c20 c*d - b*e, │ │ │ │ +00097620: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097630: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00097640: 2a64 202d 2062 2a65 2c20 2020 2020 2020 *d - b*e, │ │ │ │ 00097650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097670: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097670: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000976a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000976b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000976c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000976c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000976d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000976e0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +000976e0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000976f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097730: 2020 2020 2063 2020 2d20 612a 662c 2020 c - a*f, │ │ │ │ +00097710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097720: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00097730: 2020 2d20 612a 662c 2020 2020 2020 2020 - a*f, │ │ │ │ 00097740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097760: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097760: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000977a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000977b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000977c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000977d0: 2020 2020 2062 2a63 202d 2061 2a65 2c20 b*c - a*e, │ │ │ │ +000977b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000977c0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +000977d0: 2a63 202d 2061 2a65 2c20 2020 2020 2020 *c - a*e, │ │ │ │ 000977e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000977f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097800: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097850: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097850: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097870: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00097870: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00097880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000978a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000978b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000978c0: 2020 2020 2062 2020 2d20 612a 6420 2020 b - a*d │ │ │ │ +000978a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000978b0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +000978c0: 2020 2d20 612a 6420 2020 2020 2020 2020 - a*d │ │ │ │ 000978d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000978e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000978f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097910: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +000978f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097900: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00097910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097940: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097940: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097990: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000979a0: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ -000979b0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -000979c0: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -000979d0: 3520 746f 2050 505e 3529 2020 2020 2020 5 to PP^5) │ │ │ │ -000979e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00097990: 2020 2020 2020 7c0a 7c6f 3220 3a20 5261 |.|o2 : Ra │ │ │ │ +000979a0: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +000979b0: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +000979c0: 7020 6672 6f6d 2050 505e 3520 746f 2050 p from PP^5 to P │ │ │ │ +000979d0: 505e 3529 2020 2020 2020 2020 2020 2020 P^5) │ │ │ │ +000979e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000979f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00097a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00097a40: 3320 3a20 4b20 3d20 5a5a 2f36 3535 3231 3 : K = ZZ/65521 │ │ │ │ -00097a50: 3b20 2020 2020 2020 2020 2020 2020 2020 ; │ │ │ │ +00097a30: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 4b20 ------+.|i3 : K │ │ │ │ +00097a40: 3d20 5a5a 2f36 3535 3231 3b20 2020 2020 = ZZ/65521; │ │ │ │ +00097a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097a80: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00097a80: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00097a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00097ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00097ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00097ae0: 3420 3a20 7068 6920 2a2a 204b 2020 2020 4 : phi ** K │ │ │ │ +00097ad0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 7068 ------+.|i4 : ph │ │ │ │ +00097ae0: 6920 2a2a 204b 2020 2020 2020 2020 2020 i ** K │ │ │ │ 00097af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097b20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097b20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097b70: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00097b80: 3420 3d20 2d2d 2072 6174 696f 6e61 6c20 4 = -- rational │ │ │ │ -00097b90: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +00097b70: 2020 2020 2020 7c0a 7c6f 3420 3d20 2d2d |.|o4 = -- │ │ │ │ +00097b80: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00097b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097bc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097bd0: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -00097be0: 284b 5b61 2c20 622c 2063 2c20 642c 2065 (K[a, b, c, d, e │ │ │ │ -00097bf0: 2c20 665d 2920 2020 2020 2020 2020 2020 , f]) │ │ │ │ +00097bc0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +00097bd0: 7572 6365 3a20 5072 6f6a 284b 5b61 2c20 urce: Proj(K[a, │ │ │ │ +00097be0: 622c 2063 2c20 642c 2065 2c20 665d 2920 b, c, d, e, f]) │ │ │ │ +00097bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097c10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097c20: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -00097c30: 284b 5b61 2c20 622c 2063 2c20 642c 2065 (K[a, b, c, d, e │ │ │ │ -00097c40: 2c20 665d 2920 2020 2020 2020 2020 2020 , f]) │ │ │ │ +00097c10: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +00097c20: 7267 6574 3a20 5072 6f6a 284b 5b61 2c20 rget: Proj(K[a, │ │ │ │ +00097c30: 622c 2063 2c20 642c 2065 2c20 665d 2920 b, c, d, e, f]) │ │ │ │ +00097c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097c60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097c70: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -00097c80: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +00097c60: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +00097c70: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00097c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097cb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097cb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097cd0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00097cd0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00097ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097d00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097d20: 2020 2020 2065 2020 2d20 642a 662c 2020 e - d*f, │ │ │ │ +00097d00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097d10: 2020 2020 2020 2020 2020 2020 2020 2065 e │ │ │ │ +00097d20: 2020 2d20 642a 662c 2020 2020 2020 2020 - d*f, │ │ │ │ 00097d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097d50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097d50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097da0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097dc0: 2020 2020 2063 2a65 202d 2062 2a66 2c20 c*e - b*f, │ │ │ │ +00097da0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097db0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00097dc0: 2a65 202d 2062 2a66 2c20 2020 2020 2020 *e - b*f, │ │ │ │ 00097dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097df0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097df0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097e40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097e60: 2020 2020 2063 2a64 202d 2062 2a65 2c20 c*d - b*e, │ │ │ │ +00097e40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097e50: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00097e60: 2a64 202d 2062 2a65 2c20 2020 2020 2020 *d - b*e, │ │ │ │ 00097e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097e90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097e90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097ee0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097ee0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097f00: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00097f00: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00097f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097f30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097f50: 2020 2020 2063 2020 2d20 612a 662c 2020 c - a*f, │ │ │ │ +00097f30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097f40: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00097f50: 2020 2d20 612a 662c 2020 2020 2020 2020 - a*f, │ │ │ │ 00097f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097f80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00097f80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00097f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00097fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097fd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00097fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00097ff0: 2020 2020 2062 2a63 202d 2061 2a65 2c20 b*c - a*e, │ │ │ │ +00097fd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00097fe0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +00097ff0: 2a63 202d 2061 2a65 2c20 2020 2020 2020 *c - a*e, │ │ │ │ 00098000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098020: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098020: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098070: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098070: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098090: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00098090: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000980a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000980b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000980c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000980d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000980e0: 2020 2020 2062 2020 2d20 612a 6420 2020 b - a*d │ │ │ │ +000980c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000980d0: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +000980e0: 2020 2d20 612a 6420 2020 2020 2020 2020 - a*d │ │ │ │ 000980f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098110: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098130: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00098110: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00098120: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +00098130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098160: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098160: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000981a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000981b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000981c0: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ -000981d0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -000981e0: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -000981f0: 3520 746f 2050 505e 3529 2020 2020 2020 5 to PP^5) │ │ │ │ -00098200: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000981b0: 2020 2020 2020 7c0a 7c6f 3420 3a20 5261 |.|o4 : Ra │ │ │ │ +000981c0: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +000981d0: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +000981e0: 7020 6672 6f6d 2050 505e 3520 746f 2050 p from PP^5 to P │ │ │ │ +000981f0: 505e 3529 2020 2020 2020 2020 2020 2020 P^5) │ │ │ │ +00098200: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00098210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00098250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -00098260: 3520 3a20 7068 6920 2a2a 2066 7261 6328 5 : phi ** frac( │ │ │ │ -00098270: 4b5b 745d 2920 2020 2020 2020 2020 2020 K[t]) │ │ │ │ +00098250: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 7068 ------+.|i5 : ph │ │ │ │ +00098260: 6920 2a2a 2066 7261 6328 4b5b 745d 2920 i ** frac(K[t]) │ │ │ │ +00098270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000982a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000982a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000982b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000982c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000982d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000982e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000982f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00098300: 3520 3d20 2d2d 2072 6174 696f 6e61 6c20 5 = -- rational │ │ │ │ -00098310: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +000982f0: 2020 2020 2020 7c0a 7c6f 3520 3d20 2d2d |.|o5 = -- │ │ │ │ +00098300: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +00098310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098340: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098350: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -00098360: 2866 7261 6328 4b5b 745d 295b 612c 2062 (frac(K[t])[a, b │ │ │ │ -00098370: 2c20 632c 2064 2c20 652c 2066 5d29 2020 , c, d, e, f]) │ │ │ │ +00098340: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +00098350: 7572 6365 3a20 5072 6f6a 2866 7261 6328 urce: Proj(frac( │ │ │ │ +00098360: 4b5b 745d 295b 612c 2062 2c20 632c 2064 K[t])[a, b, c, d │ │ │ │ +00098370: 2c20 652c 2066 5d29 2020 2020 2020 2020 , e, f]) │ │ │ │ 00098380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098390: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000983a0: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -000983b0: 2866 7261 6328 4b5b 745d 295b 612c 2062 (frac(K[t])[a, b │ │ │ │ -000983c0: 2c20 632c 2064 2c20 652c 2066 5d29 2020 , c, d, e, f]) │ │ │ │ +00098390: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +000983a0: 7267 6574 3a20 5072 6f6a 2866 7261 6328 rget: Proj(frac( │ │ │ │ +000983b0: 4b5b 745d 295b 612c 2062 2c20 632c 2064 K[t])[a, b, c, d │ │ │ │ +000983c0: 2c20 652c 2066 5d29 2020 2020 2020 2020 , e, f]) │ │ │ │ 000983d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000983e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000983f0: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -00098400: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +000983e0: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +000983f0: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +00098400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098430: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098430: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098450: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00098450: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00098460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098480: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000984a0: 2020 2020 2065 2020 2d20 642a 662c 2020 e - d*f, │ │ │ │ +00098480: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00098490: 2020 2020 2020 2020 2020 2020 2020 2065 e │ │ │ │ +000984a0: 2020 2d20 642a 662c 2020 2020 2020 2020 - d*f, │ │ │ │ 000984b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000984c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000984d0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000984d0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000984e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000984f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098520: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098540: 2020 2020 2063 2a65 202d 2062 2a66 2c20 c*e - b*f, │ │ │ │ +00098520: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00098530: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +00098540: 2a65 202d 2062 2a66 2c20 2020 2020 2020 *e - b*f, │ │ │ │ 00098550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098570: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098570: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000985a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000985b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000985c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000985d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000985e0: 2020 2020 2063 2a64 202d 2062 2a65 2c20 c*d - b*e, │ │ │ │ +000985c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000985d0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +000985e0: 2a64 202d 2062 2a65 2c20 2020 2020 2020 *d - b*e, │ │ │ │ 000985f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098610: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098610: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098660: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098660: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098680: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00098680: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00098690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000986a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000986b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000986c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000986d0: 2020 2020 2063 2020 2d20 612a 662c 2020 c - a*f, │ │ │ │ +000986b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000986c0: 2020 2020 2020 2020 2020 2020 2020 2063 c │ │ │ │ +000986d0: 2020 2d20 612a 662c 2020 2020 2020 2020 - a*f, │ │ │ │ 000986e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000986f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098700: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +00098700: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098750: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098770: 2020 2020 2062 2a63 202d 2061 2a65 2c20 b*c - a*e, │ │ │ │ +00098750: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00098760: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +00098770: 2a63 202d 2061 2a65 2c20 2020 2020 2020 *c - a*e, │ │ │ │ 00098780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000987a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000987a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000987b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000987c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000987d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000987e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000987f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000987f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 00098800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098810: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +00098810: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 00098820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098840: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -00098850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098860: 2020 2020 2062 2020 2d20 612a 6420 2020 b - a*d │ │ │ │ +00098840: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +00098850: 2020 2020 2020 2020 2020 2020 2020 2062 b │ │ │ │ +00098860: 2020 2d20 612a 6420 2020 2020 2020 2020 - a*d │ │ │ │ 00098870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098890: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000988a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000988b0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +00098890: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +000988a0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +000988b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000988c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000988d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000988e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000988e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000988f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098930: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -00098940: 3520 3a20 5261 7469 6f6e 616c 4d61 7020 5 : RationalMap │ │ │ │ -00098950: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -00098960: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -00098970: 3520 746f 2050 505e 3529 2020 2020 2020 5 to PP^5) │ │ │ │ -00098980: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +00098930: 2020 2020 2020 7c0a 7c6f 3520 3a20 5261 |.|o5 : Ra │ │ │ │ +00098940: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +00098950: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +00098960: 7020 6672 6f6d 2050 505e 3520 746f 2050 p from PP^5 to P │ │ │ │ +00098970: 505e 3529 2020 2020 2020 2020 2020 2020 P^5) │ │ │ │ +00098980: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 00098990: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000989a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000989b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000989c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000989d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -000989e0: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -000989f0: 0a0a 2020 2a20 2a6e 6f74 6520 636f 6566 .. * *note coef │ │ │ │ -00098a00: 6669 6369 656e 7452 696e 6728 5261 7469 ficientRing(Rati │ │ │ │ -00098a10: 6f6e 616c 4d61 7029 3a20 636f 6566 6669 onalMap): coeffi │ │ │ │ -00098a20: 6369 656e 7452 696e 675f 6c70 5261 7469 cientRing_lpRati │ │ │ │ -00098a30: 6f6e 616c 4d61 705f 7270 2c20 2d2d 0a20 onalMap_rp, --. │ │ │ │ -00098a40: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -00098a50: 696e 6720 6f66 2061 2072 6174 696f 6e61 ing of a rationa │ │ │ │ -00098a60: 6c20 6d61 700a 0a57 6179 7320 746f 2075 l map..Ways to u │ │ │ │ -00098a70: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +000989d0: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +000989e0: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +000989f0: 2a6e 6f74 6520 636f 6566 6669 6369 656e *note coefficien │ │ │ │ +00098a00: 7452 696e 6728 5261 7469 6f6e 616c 4d61 tRing(RationalMa │ │ │ │ +00098a10: 7029 3a20 636f 6566 6669 6369 656e 7452 p): coefficientR │ │ │ │ +00098a20: 696e 675f 6c70 5261 7469 6f6e 616c 4d61 ing_lpRationalMa │ │ │ │ +00098a30: 705f 7270 2c20 2d2d 0a20 2020 2063 6f65 p_rp, --. coe │ │ │ │ +00098a40: 6666 6963 6965 6e74 2072 696e 6720 6f66 fficient ring of │ │ │ │ +00098a50: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +00098a60: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +00098a70: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ 00098a80: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -00098a90: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -00098aa0: 6f74 6520 5261 7469 6f6e 616c 4d61 7020 ote RationalMap │ │ │ │ -00098ab0: 2a2a 2052 696e 673a 2052 6174 696f 6e61 ** Ring: Rationa │ │ │ │ -00098ac0: 6c4d 6170 205f 7374 5f73 7420 5269 6e67 lMap _st_st Ring │ │ │ │ -00098ad0: 2c20 2d2d 2063 6861 6e67 6520 7468 650a , -- change the. │ │ │ │ -00098ae0: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -00098af0: 7269 6e67 206f 6620 6120 7261 7469 6f6e ring of a ration │ │ │ │ -00098b00: 616c 206d 6170 0a2d 2d2d 2d2d 2d2d 2d2d al map.--------- │ │ │ │ +00098a90: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5261 ==.. * *note Ra │ │ │ │ +00098aa0: 7469 6f6e 616c 4d61 7020 2a2a 2052 696e tionalMap ** Rin │ │ │ │ +00098ab0: 673a 2052 6174 696f 6e61 6c4d 6170 205f g: RationalMap _ │ │ │ │ +00098ac0: 7374 5f73 7420 5269 6e67 2c20 2d2d 2063 st_st Ring, -- c │ │ │ │ +00098ad0: 6861 6e67 6520 7468 650a 2020 2020 636f hange the. co │ │ │ │ +00098ae0: 6566 6669 6369 656e 7420 7269 6e67 206f efficient ring o │ │ │ │ +00098af0: 6620 6120 7261 7469 6f6e 616c 206d 6170 f a rational map │ │ │ │ +00098b00: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 00098b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00098b50: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -00098b60: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -00098b70: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -00098b80: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -00098b90: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -00098ba0: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -00098bb0: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -00098bc0: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -00098bd0: 7469 6f6e 2e6d 323a 3836 353a 302e 0a1f tion.m2:865:0... │ │ │ │ -00098be0: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -00098bf0: 6e66 6f2c 204e 6f64 653a 2052 6174 696f nfo, Node: Ratio │ │ │ │ -00098c00: 6e61 6c4d 6170 203d 3d20 5261 7469 6f6e nalMap == Ration │ │ │ │ -00098c10: 616c 4d61 702c 204e 6578 743a 2052 6174 alMap, Next: Rat │ │ │ │ -00098c20: 696f 6e61 6c4d 6170 205e 205a 5a2c 2050 ionalMap ^ ZZ, P │ │ │ │ -00098c30: 7265 763a 2052 6174 696f 6e61 6c4d 6170 rev: RationalMap │ │ │ │ -00098c40: 205f 7374 5f73 7420 5269 6e67 2c20 5570 _st_st Ring, Up │ │ │ │ -00098c50: 3a20 546f 700a 0a52 6174 696f 6e61 6c4d : Top..RationalM │ │ │ │ -00098c60: 6170 203d 3d20 5261 7469 6f6e 616c 4d61 ap == RationalMa │ │ │ │ -00098c70: 7020 2d2d 2065 7175 616c 6974 7920 6f66 p -- equality of │ │ │ │ -00098c80: 2072 6174 696f 6e61 6c20 6d61 7073 0a2a rational maps.* │ │ │ │ +00098b50: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +00098b60: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +00098b70: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +00098b80: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +00098b90: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +00098ba0: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +00098bb0: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +00098bc0: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +00098bd0: 323a 3836 353a 302e 0a1f 0a46 696c 653a 2:865:0....File: │ │ │ │ +00098be0: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +00098bf0: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ +00098c00: 203d 3d20 5261 7469 6f6e 616c 4d61 702c == RationalMap, │ │ │ │ +00098c10: 204e 6578 743a 2052 6174 696f 6e61 6c4d Next: RationalM │ │ │ │ +00098c20: 6170 205e 205a 5a2c 2050 7265 763a 2052 ap ^ ZZ, Prev: R │ │ │ │ +00098c30: 6174 696f 6e61 6c4d 6170 205f 7374 5f73 ationalMap _st_s │ │ │ │ +00098c40: 7420 5269 6e67 2c20 5570 3a20 546f 700a t Ring, Up: Top. │ │ │ │ +00098c50: 0a52 6174 696f 6e61 6c4d 6170 203d 3d20 .RationalMap == │ │ │ │ +00098c60: 5261 7469 6f6e 616c 4d61 7020 2d2d 2065 RationalMap -- e │ │ │ │ +00098c70: 7175 616c 6974 7920 6f66 2072 6174 696f quality of ratio │ │ │ │ +00098c80: 6e61 6c20 6d61 7073 0a2a 2a2a 2a2a 2a2a nal maps.******* │ │ │ │ 00098c90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00098ca0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 00098cb0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -00098cc0: 2a2a 2a2a 2a2a 0a0a 2020 2a20 4f70 6572 ******.. * Oper │ │ │ │ -00098cd0: 6174 6f72 3a20 2a6e 6f74 6520 3d3d 3a20 ator: *note ==: │ │ │ │ -00098ce0: 284d 6163 6175 6c61 7932 446f 6329 3d3d (Macaulay2Doc)== │ │ │ │ -00098cf0: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -00098d00: 2020 2020 2020 7068 6920 3d3d 2070 7369 phi == psi │ │ │ │ -00098d10: 0a20 202a 2049 6e70 7574 733a 0a20 2020 . * Inputs:. │ │ │ │ -00098d20: 2020 202a 2070 6869 2c20 6120 2a6e 6f74 * phi, a *not │ │ │ │ -00098d30: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ -00098d40: 5261 7469 6f6e 616c 4d61 702c 0a20 2020 RationalMap,. │ │ │ │ -00098d50: 2020 202a 2070 7369 2c20 6120 2a6e 6f74 * psi, a *not │ │ │ │ -00098d60: 6520 7261 7469 6f6e 616c 206d 6170 3a20 e rational map: │ │ │ │ -00098d70: 5261 7469 6f6e 616c 4d61 702c 0a20 202a RationalMap,. * │ │ │ │ -00098d80: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -00098d90: 2a20 6120 2a6e 6f74 6520 426f 6f6c 6561 * a *note Boolea │ │ │ │ -00098da0: 6e20 7661 6c75 653a 2028 4d61 6361 756c n value: (Macaul │ │ │ │ -00098db0: 6179 3244 6f63 2942 6f6f 6c65 616e 2c2c ay2Doc)Boolean,, │ │ │ │ -00098dc0: 2020 7768 6574 6865 7220 7068 6920 616e whether phi an │ │ │ │ -00098dd0: 6420 7073 6920 6172 650a 2020 2020 2020 d psi are. │ │ │ │ -00098de0: 2020 7468 6520 7361 6d65 2072 6174 696f the same ratio │ │ │ │ -00098df0: 6e61 6c20 6d61 700a 0a44 6573 6372 6970 nal map..Descrip │ │ │ │ -00098e00: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ -00098e10: 0a0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ..+------------- │ │ │ │ +00098cc0: 0a0a 2020 2a20 4f70 6572 6174 6f72 3a20 .. * Operator: │ │ │ │ +00098cd0: 2a6e 6f74 6520 3d3d 3a20 284d 6163 6175 *note ==: (Macau │ │ │ │ +00098ce0: 6c61 7932 446f 6329 3d3d 2c0a 2020 2a20 lay2Doc)==,. * │ │ │ │ +00098cf0: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +00098d00: 7068 6920 3d3d 2070 7369 0a20 202a 2049 phi == psi. * I │ │ │ │ +00098d10: 6e70 7574 733a 0a20 2020 2020 202a 2070 nputs:. * p │ │ │ │ +00098d20: 6869 2c20 6120 2a6e 6f74 6520 7261 7469 hi, a *note rati │ │ │ │ +00098d30: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ +00098d40: 616c 4d61 702c 0a20 2020 2020 202a 2070 alMap,. * p │ │ │ │ +00098d50: 7369 2c20 6120 2a6e 6f74 6520 7261 7469 si, a *note rati │ │ │ │ +00098d60: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ +00098d70: 616c 4d61 702c 0a20 202a 204f 7574 7075 alMap,. * Outpu │ │ │ │ +00098d80: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ +00098d90: 6f74 6520 426f 6f6c 6561 6e20 7661 6c75 ote Boolean valu │ │ │ │ +00098da0: 653a 2028 4d61 6361 756c 6179 3244 6f63 e: (Macaulay2Doc │ │ │ │ +00098db0: 2942 6f6f 6c65 616e 2c2c 2020 7768 6574 )Boolean,, whet │ │ │ │ +00098dc0: 6865 7220 7068 6920 616e 6420 7073 6920 her phi and psi │ │ │ │ +00098dd0: 6172 650a 2020 2020 2020 2020 7468 6520 are. the │ │ │ │ +00098de0: 7361 6d65 2072 6174 696f 6e61 6c20 6d61 same rational ma │ │ │ │ +00098df0: 700a 0a44 6573 6372 6970 7469 6f6e 0a3d p..Description.= │ │ │ │ +00098e00: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d ==========..+--- │ │ │ │ +00098e10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098e20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098e30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00098e40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00098e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00098e60: 2b0a 7c69 3120 3a20 5151 5b78 5f30 2e2e +.|i1 : QQ[x_0.. │ │ │ │ -00098e70: 785f 355d 2020 2020 2020 2020 2020 2020 x_5] │ │ │ │ +00098e50: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 ----------+.|i1 │ │ │ │ +00098e60: 3a20 5151 5b78 5f30 2e2e 785f 355d 2020 : QQ[x_0..x_5] │ │ │ │ +00098e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098eb0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00098ea0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00098eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098f00: 7c0a 7c6f 3120 3d20 5151 5b78 202e 2e78 |.|o1 = QQ[x ..x │ │ │ │ -00098f10: 205d 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +00098ef0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00098f00: 3d20 5151 5b78 202e 2e78 205d 2020 2020 = QQ[x ..x ] │ │ │ │ +00098f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098f50: 7c0a 7c20 2020 2020 2020 2020 3020 2020 |.| 0 │ │ │ │ -00098f60: 3520 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00098f40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00098f50: 2020 2020 2020 3020 2020 3520 2020 2020 0 5 │ │ │ │ +00098f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098fa0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00098f90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00098fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00098fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00098ff0: 7c0a 7c6f 3120 3a20 506f 6c79 6e6f 6d69 |.|o1 : Polynomi │ │ │ │ -00099000: 616c 5269 6e67 2020 2020 2020 2020 2020 alRing │ │ │ │ +00098fe0: 2020 2020 2020 2020 2020 7c0a 7c6f 3120 |.|o1 │ │ │ │ +00098ff0: 3a20 506f 6c79 6e6f 6d69 616c 5269 6e67 : PolynomialRing │ │ │ │ +00099000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099040: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00099030: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00099040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099070: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099080: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099090: 2b0a 7c69 3220 3a20 7068 6920 3d20 7261 +.|i2 : phi = ra │ │ │ │ -000990a0: 7469 6f6e 616c 4d61 7020 7b78 5f30 2a78 tionalMap {x_0*x │ │ │ │ -000990b0: 5f34 5e32 2d78 5f30 2a78 5f33 2a78 5f35 _4^2-x_0*x_3*x_5 │ │ │ │ -000990c0: 2c78 5f30 2a78 5f32 2a78 5f34 2d78 5f30 ,x_0*x_2*x_4-x_0 │ │ │ │ -000990d0: 2a78 5f31 2a78 5f35 2c78 5f30 2a78 5f32 *x_1*x_5,x_0*x_2 │ │ │ │ -000990e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00099080: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 ----------+.|i2 │ │ │ │ +00099090: 3a20 7068 6920 3d20 7261 7469 6f6e 616c : phi = rational │ │ │ │ +000990a0: 4d61 7020 7b78 5f30 2a78 5f34 5e32 2d78 Map {x_0*x_4^2-x │ │ │ │ +000990b0: 5f30 2a78 5f33 2a78 5f35 2c78 5f30 2a78 _0*x_3*x_5,x_0*x │ │ │ │ +000990c0: 5f32 2a78 5f34 2d78 5f30 2a78 5f31 2a78 _2*x_4-x_0*x_1*x │ │ │ │ +000990d0: 5f35 2c78 5f30 2a78 5f32 7c0a 7c20 2020 _5,x_0*x_2|.| │ │ │ │ +000990e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000990f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099130: 7c0a 7c6f 3220 3d20 2d2d 2072 6174 696f |.|o2 = -- ratio │ │ │ │ -00099140: 6e61 6c20 6d61 7020 2d2d 2020 2020 2020 nal map -- │ │ │ │ +00099120: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00099130: 3d20 2d2d 2072 6174 696f 6e61 6c20 6d61 = -- rational ma │ │ │ │ +00099140: 7020 2d2d 2020 2020 2020 2020 2020 2020 p -- │ │ │ │ 00099150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099180: 7c0a 7c20 2020 2020 736f 7572 6365 3a20 |.| source: │ │ │ │ -00099190: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ -000991a0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +00099170: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099180: 2020 736f 7572 6365 3a20 5072 6f6a 2851 source: Proj(Q │ │ │ │ +00099190: 515b 7820 2c20 7820 2c20 7820 2c20 7820 Q[x , x , x , x │ │ │ │ +000991a0: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 000991b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000991c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000991d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000991e0: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -000991f0: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +000991c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000991d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000991e0: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ +000991f0: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 00099200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099220: 7c0a 7c20 2020 2020 7461 7267 6574 3a20 |.| target: │ │ │ │ -00099230: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ -00099240: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +00099210: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099220: 2020 7461 7267 6574 3a20 5072 6f6a 2851 target: Proj(Q │ │ │ │ +00099230: 515b 7820 2c20 7820 2c20 7820 2c20 7820 Q[x , x , x , x │ │ │ │ +00099240: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 00099250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099270: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099280: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -00099290: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +00099260: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099280: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ +00099290: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 000992a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000992b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000992c0: 7c0a 7c20 2020 2020 6465 6669 6e69 6e67 |.| defining │ │ │ │ -000992d0: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ +000992b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000992c0: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ +000992d0: 3a20 7b20 2020 2020 2020 2020 2020 2020 : { │ │ │ │ 000992e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000992f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099310: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099320: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +00099300: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099320: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 00099330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099360: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099370: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -00099380: 7820 7820 7820 2c20 2020 2020 2020 2020 x x x , │ │ │ │ +00099350: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099370: 2020 2078 2078 2020 2d20 7820 7820 7820 x x - x x x │ │ │ │ +00099380: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 00099390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000993a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000993b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000993c0: 2020 2020 2020 2020 2020 3020 3420 2020 0 4 │ │ │ │ -000993d0: 2030 2033 2035 2020 2020 2020 2020 2020 0 3 5 │ │ │ │ +000993a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000993b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000993c0: 2020 2020 3020 3420 2020 2030 2033 2035 0 4 0 3 5 │ │ │ │ +000993d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000993e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000993f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099400: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000993f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099450: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099460: 2020 2020 2020 2020 2078 2078 2078 2020 x x x │ │ │ │ -00099470: 2d20 7820 7820 7820 2c20 2020 2020 2020 - x x x , │ │ │ │ +00099440: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099460: 2020 2078 2078 2078 2020 2d20 7820 7820 x x x - x x │ │ │ │ +00099470: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00099480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000994a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000994b0: 2020 2020 2020 2020 2020 3020 3220 3420 0 2 4 │ │ │ │ -000994c0: 2020 2030 2031 2035 2020 2020 2020 2020 0 1 5 │ │ │ │ +00099490: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000994a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000994b0: 2020 2020 3020 3220 3420 2020 2030 2031 0 2 4 0 1 │ │ │ │ +000994c0: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 000994d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000994e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000994f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000994e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000994f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099540: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099550: 2020 2020 2020 2020 2078 2078 2078 2020 x x x │ │ │ │ -00099560: 2d20 7820 7820 7820 2c20 2020 2020 2020 - x x x , │ │ │ │ +00099530: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099550: 2020 2078 2078 2078 2020 2d20 7820 7820 x x x - x x │ │ │ │ +00099560: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 00099570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099590: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000995a0: 2020 2020 2020 2020 2020 3020 3220 3320 0 2 3 │ │ │ │ -000995b0: 2020 2030 2031 2034 2020 2020 2020 2020 0 1 4 │ │ │ │ +00099580: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000995a0: 2020 2020 3020 3220 3320 2020 2030 2031 0 2 3 0 1 │ │ │ │ +000995b0: 2034 2020 2020 2020 2020 2020 2020 2020 4 │ │ │ │ 000995c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000995d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000995e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000995d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000995e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000995f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099630: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099640: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -00099650: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00099620: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099640: 2020 2020 2020 3220 2020 2032 2020 2020 2 2 │ │ │ │ +00099650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099680: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099690: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -000996a0: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +00099670: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099690: 2020 2078 2078 2020 2d20 7820 7820 2c20 x x - x x , │ │ │ │ +000996a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000996b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000996c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000996d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000996e0: 2020 2020 2020 2020 2020 3020 3220 2020 0 2 │ │ │ │ -000996f0: 2030 2035 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000996c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000996d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000996e0: 2020 2020 3020 3220 2020 2030 2035 2020 0 2 0 5 │ │ │ │ +000996f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099720: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00099710: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099770: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099790: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +00099760: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099780: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +00099790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000997a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000997b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000997c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000997d0: 2020 2020 2020 2020 2078 2078 2078 2020 x x x │ │ │ │ -000997e0: 2d20 7820 7820 2c20 2020 2020 2020 2020 - x x , │ │ │ │ +000997b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000997c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000997d0: 2020 2078 2078 2078 2020 2d20 7820 7820 x x x - x x │ │ │ │ +000997e0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000997f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099810: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099820: 2020 2020 2020 2020 2020 3020 3120 3220 0 1 2 │ │ │ │ -00099830: 2020 2030 2034 2020 2020 2020 2020 2020 0 4 │ │ │ │ +00099800: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099820: 2020 2020 3020 3120 3220 2020 2030 2034 0 1 2 0 4 │ │ │ │ +00099830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099860: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00099850: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000998a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000998b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000998c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -000998d0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000998a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000998b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000998c0: 2020 2020 2020 3220 2020 2032 2020 2020 2 2 │ │ │ │ +000998d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000998e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000998f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099900: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099910: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -00099920: 7820 7820 2020 2020 2020 2020 2020 2020 x x │ │ │ │ +000998f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099910: 2020 2078 2078 2020 2d20 7820 7820 2020 x x - x x │ │ │ │ +00099920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099950: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099960: 2020 2020 2020 2020 2020 3020 3120 2020 0 1 │ │ │ │ -00099970: 2030 2033 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ +00099940: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099960: 2020 2020 3020 3120 2020 2030 2033 2020 0 1 0 3 │ │ │ │ +00099970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000999a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000999b0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +00099990: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000999a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000999b0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000999c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000999d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000999e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000999f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000999e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +000999f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099a40: 7c0a 7c6f 3220 3a20 5261 7469 6f6e 616c |.|o2 : Rational │ │ │ │ -00099a50: 4d61 7020 2863 7562 6963 2072 6174 696f Map (cubic ratio │ │ │ │ -00099a60: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -00099a70: 3520 746f 2050 505e 3529 2020 2020 2020 5 to PP^5) │ │ │ │ -00099a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099a90: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +00099a30: 2020 2020 2020 2020 2020 7c0a 7c6f 3220 |.|o2 │ │ │ │ +00099a40: 3a20 5261 7469 6f6e 616c 4d61 7020 2863 : RationalMap (c │ │ │ │ +00099a50: 7562 6963 2072 6174 696f 6e61 6c20 6d61 ubic rational ma │ │ │ │ +00099a60: 7020 6672 6f6d 2050 505e 3520 746f 2050 p from PP^5 to P │ │ │ │ +00099a70: 505e 3529 2020 2020 2020 2020 2020 2020 P^5) │ │ │ │ +00099a80: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +00099a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099aa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099ab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099ac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099ae0: 7c0a 7c2a 785f 332d 785f 302a 785f 312a |.|*x_3-x_0*x_1* │ │ │ │ -00099af0: 785f 342c 785f 302a 785f 325e 322d 785f x_4,x_0*x_2^2-x_ │ │ │ │ -00099b00: 305e 322a 785f 352c 785f 302a 785f 312a 0^2*x_5,x_0*x_1* │ │ │ │ -00099b10: 785f 322d 785f 305e 322a 785f 342c 785f x_2-x_0^2*x_4,x_ │ │ │ │ -00099b20: 302a 785f 315e 322d 785f 305e 322a 785f 0*x_1^2-x_0^2*x_ │ │ │ │ -00099b30: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +00099ad0: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c2a 785f ----------|.|*x_ │ │ │ │ +00099ae0: 332d 785f 302a 785f 312a 785f 342c 785f 3-x_0*x_1*x_4,x_ │ │ │ │ +00099af0: 302a 785f 325e 322d 785f 305e 322a 785f 0*x_2^2-x_0^2*x_ │ │ │ │ +00099b00: 352c 785f 302a 785f 312a 785f 322d 785f 5,x_0*x_1*x_2-x_ │ │ │ │ +00099b10: 305e 322a 785f 342c 785f 302a 785f 315e 0^2*x_4,x_0*x_1^ │ │ │ │ +00099b20: 322d 785f 305e 322a 785f 7c0a 7c2d 2d2d 2-x_0^2*x_|.|--- │ │ │ │ +00099b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099b40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099b50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099b60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099b70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099b80: 7c0a 7c33 7d20 2020 2020 2020 2020 2020 |.|3} │ │ │ │ +00099b70: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c33 7d20 ----------|.|3} │ │ │ │ +00099b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099bd0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +00099bc0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +00099bd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099be0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099bf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 00099c00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -00099c20: 2b0a 7c69 3320 3a20 7073 6920 3d20 7261 +.|i3 : psi = ra │ │ │ │ -00099c30: 7469 6f6e 616c 4d61 7020 7b78 5f34 5e32 tionalMap {x_4^2 │ │ │ │ -00099c40: 2d78 5f33 2a78 5f35 2c78 5f32 2a78 5f34 -x_3*x_5,x_2*x_4 │ │ │ │ -00099c50: 2d78 5f31 2a78 5f35 2c78 5f32 2a78 5f33 -x_1*x_5,x_2*x_3 │ │ │ │ -00099c60: 2d78 5f31 2a78 5f34 2c78 5f32 5e32 2d78 -x_1*x_4,x_2^2-x │ │ │ │ -00099c70: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00099c10: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3320 ----------+.|i3 │ │ │ │ +00099c20: 3a20 7073 6920 3d20 7261 7469 6f6e 616c : psi = rational │ │ │ │ +00099c30: 4d61 7020 7b78 5f34 5e32 2d78 5f33 2a78 Map {x_4^2-x_3*x │ │ │ │ +00099c40: 5f35 2c78 5f32 2a78 5f34 2d78 5f31 2a78 _5,x_2*x_4-x_1*x │ │ │ │ +00099c50: 5f35 2c78 5f32 2a78 5f33 2d78 5f31 2a78 _5,x_2*x_3-x_1*x │ │ │ │ +00099c60: 5f34 2c78 5f32 5e32 2d78 7c0a 7c20 2020 _4,x_2^2-x|.| │ │ │ │ +00099c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099cc0: 7c0a 7c6f 3320 3d20 2d2d 2072 6174 696f |.|o3 = -- ratio │ │ │ │ -00099cd0: 6e61 6c20 6d61 7020 2d2d 2020 2020 2020 nal map -- │ │ │ │ +00099cb0: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +00099cc0: 3d20 2d2d 2072 6174 696f 6e61 6c20 6d61 = -- rational ma │ │ │ │ +00099cd0: 7020 2d2d 2020 2020 2020 2020 2020 2020 p -- │ │ │ │ 00099ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099d10: 7c0a 7c20 2020 2020 736f 7572 6365 3a20 |.| source: │ │ │ │ -00099d20: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ -00099d30: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +00099d00: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099d10: 2020 736f 7572 6365 3a20 5072 6f6a 2851 source: Proj(Q │ │ │ │ +00099d20: 515b 7820 2c20 7820 2c20 7820 2c20 7820 Q[x , x , x , x │ │ │ │ +00099d30: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 00099d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099d60: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099d70: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -00099d80: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +00099d50: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099d70: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ +00099d80: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 00099d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099db0: 7c0a 7c20 2020 2020 7461 7267 6574 3a20 |.| target: │ │ │ │ -00099dc0: 5072 6f6a 2851 515b 7820 2c20 7820 2c20 Proj(QQ[x , x , │ │ │ │ -00099dd0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +00099da0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099db0: 2020 7461 7267 6574 3a20 5072 6f6a 2851 target: Proj(Q │ │ │ │ +00099dc0: 515b 7820 2c20 7820 2c20 7820 2c20 7820 Q[x , x , x , x │ │ │ │ +00099dd0: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 00099de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099e00: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099e10: 2020 2020 2020 2020 2030 2020 2031 2020 0 1 │ │ │ │ -00099e20: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +00099df0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099e10: 2020 2030 2020 2031 2020 2032 2020 2033 0 1 2 3 │ │ │ │ +00099e20: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 00099e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099e50: 7c0a 7c20 2020 2020 6465 6669 6e69 6e67 |.| defining │ │ │ │ -00099e60: 2066 6f72 6d73 3a20 7b20 2020 2020 2020 forms: { │ │ │ │ +00099e40: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099e50: 2020 6465 6669 6e69 6e67 2066 6f72 6d73 defining forms │ │ │ │ +00099e60: 3a20 7b20 2020 2020 2020 2020 2020 2020 : { │ │ │ │ 00099e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099ea0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099eb0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +00099e90: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099eb0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 00099ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099ef0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099f00: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -00099f10: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +00099ee0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099f00: 2020 2078 2020 2d20 7820 7820 2c20 2020 x - x x , │ │ │ │ +00099f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099f40: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099f50: 2020 2020 2020 2020 2020 3420 2020 2033 4 3 │ │ │ │ -00099f60: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +00099f30: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099f50: 2020 2020 3420 2020 2033 2035 2020 2020 4 3 5 │ │ │ │ +00099f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099f90: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +00099f80: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 00099fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -00099fe0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -00099ff0: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -0009a000: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +00099fd0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +00099fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +00099ff0: 2020 2078 2078 2020 2d20 7820 7820 2c20 x x - x x , │ │ │ │ +0009a000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a030: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a040: 2020 2020 2020 2020 2020 3220 3420 2020 2 4 │ │ │ │ -0009a050: 2031 2035 2020 2020 2020 2020 2020 2020 1 5 │ │ │ │ +0009a020: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a040: 2020 2020 3220 3420 2020 2031 2035 2020 2 4 1 5 │ │ │ │ +0009a050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a080: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a070: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a0d0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a0e0: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -0009a0f0: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +0009a0c0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a0e0: 2020 2078 2078 2020 2d20 7820 7820 2c20 x x - x x , │ │ │ │ +0009a0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a120: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a130: 2020 2020 2020 2020 2020 3220 3320 2020 2 3 │ │ │ │ -0009a140: 2031 2034 2020 2020 2020 2020 2020 2020 1 4 │ │ │ │ +0009a110: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a130: 2020 2020 3220 3320 2020 2031 2034 2020 2 3 1 4 │ │ │ │ +0009a140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a170: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a160: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a1c0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a1d0: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0009a1b0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a1c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a1d0: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0009a1e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a210: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a220: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -0009a230: 7820 2c20 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +0009a200: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a220: 2020 2078 2020 2d20 7820 7820 2c20 2020 x - x x , │ │ │ │ +0009a230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a260: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a270: 2020 2020 2020 2020 2020 3220 2020 2030 2 0 │ │ │ │ -0009a280: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +0009a250: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a270: 2020 2020 3220 2020 2030 2035 2020 2020 2 0 5 │ │ │ │ +0009a280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a2b0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a2a0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a300: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a310: 2020 2020 2020 2020 2078 2078 2020 2d20 x x - │ │ │ │ -0009a320: 7820 7820 2c20 2020 2020 2020 2020 2020 x x , │ │ │ │ +0009a2f0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a310: 2020 2078 2078 2020 2d20 7820 7820 2c20 x x - x x , │ │ │ │ +0009a320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a350: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a360: 2020 2020 2020 2020 2020 3120 3220 2020 1 2 │ │ │ │ -0009a370: 2030 2034 2020 2020 2020 2020 2020 2020 0 4 │ │ │ │ +0009a340: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a360: 2020 2020 3120 3220 2020 2030 2034 2020 1 2 0 4 │ │ │ │ +0009a370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a3a0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a390: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a3a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a3c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a3f0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a400: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0009a3e0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a400: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ 0009a410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a440: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a450: 2020 2020 2020 2020 2078 2020 2d20 7820 x - x │ │ │ │ -0009a460: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +0009a430: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a450: 2020 2078 2020 2d20 7820 7820 2020 2020 x - x x │ │ │ │ +0009a460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a490: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a4a0: 2020 2020 2020 2020 2020 3120 2020 2030 1 0 │ │ │ │ -0009a4b0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0009a480: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a4a0: 2020 2020 3120 2020 2030 2033 2020 2020 1 0 3 │ │ │ │ +0009a4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a4e0: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -0009a4f0: 2020 2020 2020 2020 7d20 2020 2020 2020 } │ │ │ │ +0009a4d0: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009a4f0: 2020 7d20 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0009a500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a530: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a520: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a580: 7c0a 7c6f 3320 3a20 5261 7469 6f6e 616c |.|o3 : Rational │ │ │ │ -0009a590: 4d61 7020 2871 7561 6472 6174 6963 2072 Map (quadratic r │ │ │ │ -0009a5a0: 6174 696f 6e61 6c20 6d61 7020 6672 6f6d ational map from │ │ │ │ -0009a5b0: 2050 505e 3520 746f 2050 505e 3529 2020 PP^5 to PP^5) │ │ │ │ -0009a5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a5d0: 7c0a 7c2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------- │ │ │ │ +0009a570: 2020 2020 2020 2020 2020 7c0a 7c6f 3320 |.|o3 │ │ │ │ +0009a580: 3a20 5261 7469 6f6e 616c 4d61 7020 2871 : RationalMap (q │ │ │ │ +0009a590: 7561 6472 6174 6963 2072 6174 696f 6e61 uadratic rationa │ │ │ │ +0009a5a0: 6c20 6d61 7020 6672 6f6d 2050 505e 3520 l map from PP^5 │ │ │ │ +0009a5b0: 746f 2050 505e 3529 2020 2020 2020 2020 to PP^5) │ │ │ │ +0009a5c0: 2020 2020 2020 2020 2020 7c0a 7c2d 2d2d |.|--- │ │ │ │ +0009a5d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a620: 7c0a 7c5f 302a 785f 352c 785f 312a 785f |.|_0*x_5,x_1*x_ │ │ │ │ -0009a630: 322d 785f 302a 785f 342c 785f 315e 322d 2-x_0*x_4,x_1^2- │ │ │ │ -0009a640: 785f 302a 785f 337d 2020 2020 2020 2020 x_0*x_3} │ │ │ │ +0009a610: 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c5f 302a ----------|.|_0* │ │ │ │ +0009a620: 785f 352c 785f 312a 785f 322d 785f 302a x_5,x_1*x_2-x_0* │ │ │ │ +0009a630: 785f 342c 785f 315e 322d 785f 302a 785f x_4,x_1^2-x_0*x_ │ │ │ │ +0009a640: 337d 2020 2020 2020 2020 2020 2020 2020 3} │ │ │ │ 0009a650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a670: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0009a660: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0009a670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a6c0: 2b0a 7c69 3420 3a20 7068 6920 3d3d 2070 +.|i4 : phi == p │ │ │ │ -0009a6d0: 7369 2020 2020 2020 2020 2020 2020 2020 si │ │ │ │ +0009a6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 ----------+.|i4 │ │ │ │ +0009a6c0: 3a20 7068 6920 3d3d 2070 7369 2020 2020 : phi == psi │ │ │ │ +0009a6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a710: 7c0a 7c20 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +0009a700: 2020 2020 2020 2020 2020 7c0a 7c20 2020 |.| │ │ │ │ +0009a710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a760: 7c0a 7c6f 3420 3d20 7472 7565 2020 2020 |.|o4 = true │ │ │ │ +0009a750: 2020 2020 2020 2020 2020 7c0a 7c6f 3420 |.|o4 │ │ │ │ +0009a760: 3d20 7472 7565 2020 2020 2020 2020 2020 = true │ │ │ │ 0009a770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009a790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009a7b0: 7c0a 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------- │ │ │ │ +0009a7a0: 2020 2020 2020 2020 2020 7c0a 2b2d 2d2d |.+--- │ │ │ │ +0009a7b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a7c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a7d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a7e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a800: 2b0a 0a57 6179 7320 746f 2075 7365 2074 +..Ways to use t │ │ │ │ -0009a810: 6869 7320 6d65 7468 6f64 3a0a 3d3d 3d3d his method:.==== │ │ │ │ -0009a820: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0009a830: 3d3d 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 ====.. * *note │ │ │ │ -0009a840: 5261 7469 6f6e 616c 4d61 7020 3d3d 2052 RationalMap == R │ │ │ │ -0009a850: 6174 696f 6e61 6c4d 6170 3a20 5261 7469 ationalMap: Rati │ │ │ │ -0009a860: 6f6e 616c 4d61 7020 3d3d 2052 6174 696f onalMap == Ratio │ │ │ │ -0009a870: 6e61 6c4d 6170 2c20 2d2d 2065 7175 616c nalMap, -- equal │ │ │ │ -0009a880: 6974 790a 2020 2020 6f66 2072 6174 696f ity. of ratio │ │ │ │ -0009a890: 6e61 6c20 6d61 7073 0a20 202a 2022 5261 nal maps. * "Ra │ │ │ │ -0009a8a0: 7469 6f6e 616c 4d61 7020 3d3d 205a 5a22 tionalMap == ZZ" │ │ │ │ -0009a8b0: 0a20 202a 2022 5a5a 203d 3d20 5261 7469 . * "ZZ == Rati │ │ │ │ -0009a8c0: 6f6e 616c 4d61 7022 0a2d 2d2d 2d2d 2d2d onalMap".------- │ │ │ │ +0009a7f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a57 6179 ----------+..Way │ │ │ │ +0009a800: 7320 746f 2075 7365 2074 6869 7320 6d65 s to use this me │ │ │ │ +0009a810: 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d thod:.========== │ │ │ │ +0009a820: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a ==============.. │ │ │ │ +0009a830: 2020 2a20 2a6e 6f74 6520 5261 7469 6f6e * *note Ration │ │ │ │ +0009a840: 616c 4d61 7020 3d3d 2052 6174 696f 6e61 alMap == Rationa │ │ │ │ +0009a850: 6c4d 6170 3a20 5261 7469 6f6e 616c 4d61 lMap: RationalMa │ │ │ │ +0009a860: 7020 3d3d 2052 6174 696f 6e61 6c4d 6170 p == RationalMap │ │ │ │ +0009a870: 2c20 2d2d 2065 7175 616c 6974 790a 2020 , -- equality. │ │ │ │ +0009a880: 2020 6f66 2072 6174 696f 6e61 6c20 6d61 of rational ma │ │ │ │ +0009a890: 7073 0a20 202a 2022 5261 7469 6f6e 616c ps. * "Rational │ │ │ │ +0009a8a0: 4d61 7020 3d3d 205a 5a22 0a20 202a 2022 Map == ZZ". * " │ │ │ │ +0009a8b0: 5a5a 203d 3d20 5261 7469 6f6e 616c 4d61 ZZ == RationalMa │ │ │ │ +0009a8c0: 7022 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d p".------------- │ │ │ │ 0009a8d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a8e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a8f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009a900: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009a910: 2d2d 2d2d 2d2d 2d2d 0a0a 5468 6520 736f --------..The so │ │ │ │ -0009a920: 7572 6365 206f 6620 7468 6973 2064 6f63 urce of this doc │ │ │ │ -0009a930: 756d 656e 7420 6973 2069 6e0a 2f62 7569 ument is in./bui │ │ │ │ -0009a940: 6c64 2f72 6570 726f 6475 6369 626c 652d ld/reproducible- │ │ │ │ -0009a950: 7061 7468 2f6d 6163 6175 6c61 7932 2d31 path/macaulay2-1 │ │ │ │ -0009a960: 2e32 352e 3131 2b64 732f 4d32 2f4d 6163 .25.11+ds/M2/Mac │ │ │ │ -0009a970: 6175 6c61 7932 2f70 6163 6b61 6765 732f aulay2/packages/ │ │ │ │ -0009a980: 4372 656d 6f6e 612f 0a64 6f63 756d 656e Cremona/.documen │ │ │ │ -0009a990: 7461 7469 6f6e 2e6d 323a 3634 353a 302e tation.m2:645:0. │ │ │ │ -0009a9a0: 0a1f 0a46 696c 653a 2043 7265 6d6f 6e61 ...File: Cremona │ │ │ │ -0009a9b0: 2e69 6e66 6f2c 204e 6f64 653a 2052 6174 .info, Node: Rat │ │ │ │ -0009a9c0: 696f 6e61 6c4d 6170 205e 205a 5a2c 204e ionalMap ^ ZZ, N │ │ │ │ -0009a9d0: 6578 743a 2052 6174 696f 6e61 6c4d 6170 ext: RationalMap │ │ │ │ -0009a9e0: 205e 5f73 745f 7374 2049 6465 616c 2c20 ^_st_st Ideal, │ │ │ │ -0009a9f0: 5072 6576 3a20 5261 7469 6f6e 616c 4d61 Prev: RationalMa │ │ │ │ -0009aa00: 7020 3d3d 2052 6174 696f 6e61 6c4d 6170 p == RationalMap │ │ │ │ -0009aa10: 2c20 5570 3a20 546f 700a 0a52 6174 696f , Up: Top..Ratio │ │ │ │ -0009aa20: 6e61 6c4d 6170 205e 205a 5a20 2d2d 2070 nalMap ^ ZZ -- p │ │ │ │ -0009aa30: 6f77 6572 0a2a 2a2a 2a2a 2a2a 2a2a 2a2a ower.*********** │ │ │ │ -0009aa40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0009aa50: 2020 2a20 4f70 6572 6174 6f72 3a20 2a6e * Operator: *n │ │ │ │ -0009aa60: 6f74 6520 5e3a 2028 4d61 6361 756c 6179 ote ^: (Macaulay │ │ │ │ -0009aa70: 3244 6f63 295e 2c0a 2020 2a20 5573 6167 2Doc)^,. * Usag │ │ │ │ -0009aa80: 653a 200a 2020 2020 2020 2020 7068 695e e: . phi^ │ │ │ │ -0009aa90: 6e0a 2020 2a20 496e 7075 7473 3a0a 2020 n. * Inputs:. │ │ │ │ -0009aaa0: 2020 2020 2a20 7068 692c 2061 202a 6e6f * phi, a *no │ │ │ │ -0009aab0: 7465 2072 6174 696f 6e61 6c20 6d61 703a te rational map: │ │ │ │ -0009aac0: 2052 6174 696f 6e61 6c4d 6170 2c0a 2020 RationalMap,. │ │ │ │ -0009aad0: 2020 2020 2a20 6e2c 2061 6e20 2a6e 6f74 * n, an *not │ │ │ │ -0009aae0: 6520 696e 7465 6765 723a 2028 4d61 6361 e integer: (Maca │ │ │ │ -0009aaf0: 756c 6179 3244 6f63 295a 5a2c 0a20 202a ulay2Doc)ZZ,. * │ │ │ │ -0009ab00: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ -0009ab10: 2a20 6120 2a6e 6f74 6520 7261 7469 6f6e * a *note ration │ │ │ │ -0009ab20: 616c 206d 6170 3a20 5261 7469 6f6e 616c al map: Rational │ │ │ │ -0009ab30: 4d61 702c 2c20 7068 695e 6e0a 0a44 6573 Map,, phi^n..Des │ │ │ │ -0009ab40: 6372 6970 7469 6f6e 0a3d 3d3d 3d3d 3d3d cription.======= │ │ │ │ -0009ab50: 3d3d 3d3d 0a0a 4966 2074 6865 206d 6170 ====..If the map │ │ │ │ -0009ab60: 2069 7320 6269 7261 7469 6f6e 616c 2c20 is birational, │ │ │ │ -0009ab70: 7468 656e 206e 6567 6174 6976 6520 7661 then negative va │ │ │ │ -0009ab80: 6c75 6573 206d 6179 2062 6520 7573 6564 lues may be used │ │ │ │ -0009ab90: 2061 6e64 2074 6865 2069 6e76 6572 7365 and the inverse │ │ │ │ -0009aba0: 2077 696c 6c0a 6265 2063 6f6d 7075 7465 will.be compute │ │ │ │ -0009abb0: 6420 7573 696e 6720 2a6e 6f74 6520 696e d using *note in │ │ │ │ -0009abc0: 7665 7273 653a 2069 6e76 6572 7365 5f6c verse: inverse_l │ │ │ │ -0009abd0: 7052 6174 696f 6e61 6c4d 6170 5f72 702c pRationalMap_rp, │ │ │ │ -0009abe0: 2870 6869 292e 0a0a 5761 7973 2074 6f20 (phi)...Ways to │ │ │ │ -0009abf0: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ -0009ac00: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -0009ac10: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ -0009ac20: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ -0009ac30: 205e 205a 5a3a 2052 6174 696f 6e61 6c4d ^ ZZ: RationalM │ │ │ │ -0009ac40: 6170 205e 205a 5a2c 202d 2d20 706f 7765 ap ^ ZZ, -- powe │ │ │ │ -0009ac50: 720a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d r.-------------- │ │ │ │ +0009a910: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ +0009a920: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ +0009a930: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ +0009a940: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ +0009a950: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ +0009a960: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ +0009a970: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ +0009a980: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ +0009a990: 2e6d 323a 3634 353a 302e 0a1f 0a46 696c .m2:645:0....Fil │ │ │ │ +0009a9a0: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ +0009a9b0: 204e 6f64 653a 2052 6174 696f 6e61 6c4d Node: RationalM │ │ │ │ +0009a9c0: 6170 205e 205a 5a2c 204e 6578 743a 2052 ap ^ ZZ, Next: R │ │ │ │ +0009a9d0: 6174 696f 6e61 6c4d 6170 205e 5f73 745f ationalMap ^_st_ │ │ │ │ +0009a9e0: 7374 2049 6465 616c 2c20 5072 6576 3a20 st Ideal, Prev: │ │ │ │ +0009a9f0: 5261 7469 6f6e 616c 4d61 7020 3d3d 2052 RationalMap == R │ │ │ │ +0009aa00: 6174 696f 6e61 6c4d 6170 2c20 5570 3a20 ationalMap, Up: │ │ │ │ +0009aa10: 546f 700a 0a52 6174 696f 6e61 6c4d 6170 Top..RationalMap │ │ │ │ +0009aa20: 205e 205a 5a20 2d2d 2070 6f77 6572 0a2a ^ ZZ -- power.* │ │ │ │ +0009aa30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ +0009aa40: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4f70 ********.. * Op │ │ │ │ +0009aa50: 6572 6174 6f72 3a20 2a6e 6f74 6520 5e3a erator: *note ^: │ │ │ │ +0009aa60: 2028 4d61 6361 756c 6179 3244 6f63 295e (Macaulay2Doc)^ │ │ │ │ +0009aa70: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ +0009aa80: 2020 2020 2020 7068 695e 6e0a 2020 2a20 phi^n. * │ │ │ │ +0009aa90: 496e 7075 7473 3a0a 2020 2020 2020 2a20 Inputs:. * │ │ │ │ +0009aaa0: 7068 692c 2061 202a 6e6f 7465 2072 6174 phi, a *note rat │ │ │ │ +0009aab0: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ +0009aac0: 6e61 6c4d 6170 2c0a 2020 2020 2020 2a20 nalMap,. * │ │ │ │ +0009aad0: 6e2c 2061 6e20 2a6e 6f74 6520 696e 7465 n, an *note inte │ │ │ │ +0009aae0: 6765 723a 2028 4d61 6361 756c 6179 3244 ger: (Macaulay2D │ │ │ │ +0009aaf0: 6f63 295a 5a2c 0a20 202a 204f 7574 7075 oc)ZZ,. * Outpu │ │ │ │ +0009ab00: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ +0009ab10: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ +0009ab20: 3a20 5261 7469 6f6e 616c 4d61 702c 2c20 : RationalMap,, │ │ │ │ +0009ab30: 7068 695e 6e0a 0a44 6573 6372 6970 7469 phi^n..Descripti │ │ │ │ +0009ab40: 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a on.===========.. │ │ │ │ +0009ab50: 4966 2074 6865 206d 6170 2069 7320 6269 If the map is bi │ │ │ │ +0009ab60: 7261 7469 6f6e 616c 2c20 7468 656e 206e rational, then n │ │ │ │ +0009ab70: 6567 6174 6976 6520 7661 6c75 6573 206d egative values m │ │ │ │ +0009ab80: 6179 2062 6520 7573 6564 2061 6e64 2074 ay be used and t │ │ │ │ +0009ab90: 6865 2069 6e76 6572 7365 2077 696c 6c0a he inverse will. │ │ │ │ +0009aba0: 6265 2063 6f6d 7075 7465 6420 7573 696e be computed usin │ │ │ │ +0009abb0: 6720 2a6e 6f74 6520 696e 7665 7273 653a g *note inverse: │ │ │ │ +0009abc0: 2069 6e76 6572 7365 5f6c 7052 6174 696f inverse_lpRatio │ │ │ │ +0009abd0: 6e61 6c4d 6170 5f72 702c 2870 6869 292e nalMap_rp,(phi). │ │ │ │ +0009abe0: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ +0009abf0: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ +0009ac00: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +0009ac10: 3d3d 3d0a 0a20 202a 202a 6e6f 7465 2052 ===.. * *note R │ │ │ │ +0009ac20: 6174 696f 6e61 6c4d 6170 205e 205a 5a3a ationalMap ^ ZZ: │ │ │ │ +0009ac30: 2052 6174 696f 6e61 6c4d 6170 205e 205a RationalMap ^ Z │ │ │ │ +0009ac40: 5a2c 202d 2d20 706f 7765 720a 2d2d 2d2d Z, -- power.---- │ │ │ │ +0009ac50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ac60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ac70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ac80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009aca0: 2d0a 0a54 6865 2073 6f75 7263 6520 6f66 -..The source of │ │ │ │ -0009acb0: 2074 6869 7320 646f 6375 6d65 6e74 2069 this document i │ │ │ │ -0009acc0: 7320 696e 0a2f 6275 696c 642f 7265 7072 s in./build/repr │ │ │ │ -0009acd0: 6f64 7563 6962 6c65 2d70 6174 682f 6d61 oducible-path/ma │ │ │ │ -0009ace0: 6361 756c 6179 322d 312e 3235 2e31 312b caulay2-1.25.11+ │ │ │ │ -0009acf0: 6473 2f4d 322f 4d61 6361 756c 6179 322f ds/M2/Macaulay2/ │ │ │ │ -0009ad00: 7061 636b 6167 6573 2f43 7265 6d6f 6e61 packages/Cremona │ │ │ │ -0009ad10: 2f0a 646f 6375 6d65 6e74 6174 696f 6e2e /.documentation. │ │ │ │ -0009ad20: 6d32 3a33 3934 3a30 2e0a 1f0a 4669 6c65 m2:394:0....File │ │ │ │ -0009ad30: 3a20 4372 656d 6f6e 612e 696e 666f 2c20 : Cremona.info, │ │ │ │ -0009ad40: 4e6f 6465 3a20 5261 7469 6f6e 616c 4d61 Node: RationalMa │ │ │ │ -0009ad50: 7020 5e5f 7374 5f73 7420 4964 6561 6c2c p ^_st_st Ideal, │ │ │ │ -0009ad60: 204e 6578 743a 2052 6174 696f 6e61 6c4d Next: RationalM │ │ │ │ -0009ad70: 6170 205f 7573 5f73 742c 2050 7265 763a ap _us_st, Prev: │ │ │ │ -0009ad80: 2052 6174 696f 6e61 6c4d 6170 205e 205a RationalMap ^ Z │ │ │ │ -0009ad90: 5a2c 2055 703a 2054 6f70 0a0a 5261 7469 Z, Up: Top..Rati │ │ │ │ -0009ada0: 6f6e 616c 4d61 7020 5e2a 2a20 4964 6561 onalMap ^** Idea │ │ │ │ -0009adb0: 6c20 2d2d 2069 6e76 6572 7365 2069 6d61 l -- inverse ima │ │ │ │ -0009adc0: 6765 2076 6961 2061 2072 6174 696f 6e61 ge via a rationa │ │ │ │ -0009add0: 6c20 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a l map.********** │ │ │ │ +0009ac90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 -----------..The │ │ │ │ +0009aca0: 2073 6f75 7263 6520 6f66 2074 6869 7320 source of this │ │ │ │ +0009acb0: 646f 6375 6d65 6e74 2069 7320 696e 0a2f document is in./ │ │ │ │ +0009acc0: 6275 696c 642f 7265 7072 6f64 7563 6962 build/reproducib │ │ │ │ +0009acd0: 6c65 2d70 6174 682f 6d61 6361 756c 6179 le-path/macaulay │ │ │ │ +0009ace0: 322d 312e 3235 2e31 312b 6473 2f4d 322f 2-1.25.11+ds/M2/ │ │ │ │ +0009acf0: 4d61 6361 756c 6179 322f 7061 636b 6167 Macaulay2/packag │ │ │ │ +0009ad00: 6573 2f43 7265 6d6f 6e61 2f0a 646f 6375 es/Cremona/.docu │ │ │ │ +0009ad10: 6d65 6e74 6174 696f 6e2e 6d32 3a33 3934 mentation.m2:394 │ │ │ │ +0009ad20: 3a30 2e0a 1f0a 4669 6c65 3a20 4372 656d :0....File: Crem │ │ │ │ +0009ad30: 6f6e 612e 696e 666f 2c20 4e6f 6465 3a20 ona.info, Node: │ │ │ │ +0009ad40: 5261 7469 6f6e 616c 4d61 7020 5e5f 7374 RationalMap ^_st │ │ │ │ +0009ad50: 5f73 7420 4964 6561 6c2c 204e 6578 743a _st Ideal, Next: │ │ │ │ +0009ad60: 2052 6174 696f 6e61 6c4d 6170 205f 7573 RationalMap _us │ │ │ │ +0009ad70: 5f73 742c 2050 7265 763a 2052 6174 696f _st, Prev: Ratio │ │ │ │ +0009ad80: 6e61 6c4d 6170 205e 205a 5a2c 2055 703a nalMap ^ ZZ, Up: │ │ │ │ +0009ad90: 2054 6f70 0a0a 5261 7469 6f6e 616c 4d61 Top..RationalMa │ │ │ │ +0009ada0: 7020 5e2a 2a20 4964 6561 6c20 2d2d 2069 p ^** Ideal -- i │ │ │ │ +0009adb0: 6e76 6572 7365 2069 6d61 6765 2076 6961 nverse image via │ │ │ │ +0009adc0: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0009add0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0009ade0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0009adf0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0009ae00: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a ***************. │ │ │ │ -0009ae10: 0a20 202a 204f 7065 7261 746f 723a 202a . * Operator: * │ │ │ │ -0009ae20: 6e6f 7465 205e 2a2a 3a20 284d 6163 6175 note ^**: (Macau │ │ │ │ -0009ae30: 6c61 7932 446f 6329 5e5f 7374 5f73 742c lay2Doc)^_st_st, │ │ │ │ -0009ae40: 0a20 202a 2055 7361 6765 3a20 0a20 2020 . * Usage: . │ │ │ │ -0009ae50: 2020 2020 2070 6869 5e2a 2a20 490a 2020 phi^** I. │ │ │ │ -0009ae60: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0009ae70: 2a20 7068 692c 2061 202a 6e6f 7465 2072 * phi, a *note r │ │ │ │ -0009ae80: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -0009ae90: 696f 6e61 6c4d 6170 2c0a 2020 2020 2020 ionalMap,. │ │ │ │ -0009aea0: 2a20 492c 2061 6e20 2a6e 6f74 6520 6964 * I, an *note id │ │ │ │ -0009aeb0: 6561 6c3a 2028 4d61 6361 756c 6179 3244 eal: (Macaulay2D │ │ │ │ -0009aec0: 6f63 2949 6465 616c 2c2c 2061 2068 6f6d oc)Ideal,, a hom │ │ │ │ -0009aed0: 6f67 656e 656f 7573 2069 6465 616c 2069 ogeneous ideal i │ │ │ │ -0009aee0: 6e20 7468 650a 2020 2020 2020 2020 636f n the. co │ │ │ │ -0009aef0: 6f72 6469 6e61 7465 2072 696e 6720 6f66 ordinate ring of │ │ │ │ -0009af00: 2074 6865 2074 6172 6765 7420 6f66 2070 the target of p │ │ │ │ -0009af10: 6869 0a20 202a 204f 7574 7075 7473 3a0a hi. * Outputs:. │ │ │ │ -0009af20: 2020 2020 2020 2a20 616e 202a 6e6f 7465 * an *note │ │ │ │ -0009af30: 2069 6465 616c 3a20 284d 6163 6175 6c61 ideal: (Macaula │ │ │ │ -0009af40: 7932 446f 6329 4964 6561 6c2c 2c20 7468 y2Doc)Ideal,, th │ │ │ │ -0009af50: 6520 6964 6561 6c20 6f66 2074 6865 2063 e ideal of the c │ │ │ │ -0009af60: 6c6f 7375 7265 206f 6620 7468 650a 2020 losure of the. │ │ │ │ -0009af70: 2020 2020 2020 696e 7665 7273 6520 696d inverse im │ │ │ │ -0009af80: 6167 6520 6f66 2056 2849 2920 7669 6120 age of V(I) via │ │ │ │ -0009af90: 7068 690a 0a44 6573 6372 6970 7469 6f6e phi..Description │ │ │ │ -0009afa0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 496e .===========..In │ │ │ │ -0009afb0: 206d 6f73 7420 6361 7365 7320 7468 6973 most cases this │ │ │ │ -0009afc0: 2069 7320 6571 7569 7661 6c65 6e74 2074 is equivalent t │ │ │ │ -0009afd0: 6f20 7068 695e 2a20 492c 2077 6869 6368 o phi^* I, which │ │ │ │ -0009afe0: 2069 7320 6661 7374 6572 2062 7574 206d is faster but m │ │ │ │ -0009aff0: 6179 206e 6f74 2074 616b 650a 696e 746f ay not take.into │ │ │ │ -0009b000: 2061 6363 6f75 6e74 206f 7468 6572 2072 account other r │ │ │ │ -0009b010: 6570 7265 7365 6e74 6174 696f 6e73 206f epresentations o │ │ │ │ -0009b020: 6620 7468 6520 6d61 702e 0a0a 496e 2074 f the map...In t │ │ │ │ -0009b030: 6865 2065 7861 6d70 6c65 2062 656c 6f77 he example below │ │ │ │ -0009b040: 2c20 7765 2061 7070 6c79 2074 6865 206d , we apply the m │ │ │ │ -0009b050: 6574 686f 6420 746f 2063 6865 636b 2074 ethod to check t │ │ │ │ -0009b060: 6865 2062 6972 6174 696f 6e61 6c69 7479 he birationality │ │ │ │ -0009b070: 206f 6620 6120 6d61 700a 2864 6574 6572 of a map.(deter │ │ │ │ -0009b080: 6d69 6e69 7374 6963 616c 6c79 292e 0a0a ministically)... │ │ │ │ -0009b090: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009ae00: 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 202a 204f *********.. * O │ │ │ │ +0009ae10: 7065 7261 746f 723a 202a 6e6f 7465 205e perator: *note ^ │ │ │ │ +0009ae20: 2a2a 3a20 284d 6163 6175 6c61 7932 446f **: (Macaulay2Do │ │ │ │ +0009ae30: 6329 5e5f 7374 5f73 742c 0a20 202a 2055 c)^_st_st,. * U │ │ │ │ +0009ae40: 7361 6765 3a20 0a20 2020 2020 2020 2070 sage: . p │ │ │ │ +0009ae50: 6869 5e2a 2a20 490a 2020 2a20 496e 7075 hi^** I. * Inpu │ │ │ │ +0009ae60: 7473 3a0a 2020 2020 2020 2a20 7068 692c ts:. * phi, │ │ │ │ +0009ae70: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +0009ae80: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +0009ae90: 6170 2c0a 2020 2020 2020 2a20 492c 2061 ap,. * I, a │ │ │ │ +0009aea0: 6e20 2a6e 6f74 6520 6964 6561 6c3a 2028 n *note ideal: ( │ │ │ │ +0009aeb0: 4d61 6361 756c 6179 3244 6f63 2949 6465 Macaulay2Doc)Ide │ │ │ │ +0009aec0: 616c 2c2c 2061 2068 6f6d 6f67 656e 656f al,, a homogeneo │ │ │ │ +0009aed0: 7573 2069 6465 616c 2069 6e20 7468 650a us ideal in the. │ │ │ │ +0009aee0: 2020 2020 2020 2020 636f 6f72 6469 6e61 coordina │ │ │ │ +0009aef0: 7465 2072 696e 6720 6f66 2074 6865 2074 te ring of the t │ │ │ │ +0009af00: 6172 6765 7420 6f66 2070 6869 0a20 202a arget of phi. * │ │ │ │ +0009af10: 204f 7574 7075 7473 3a0a 2020 2020 2020 Outputs:. │ │ │ │ +0009af20: 2a20 616e 202a 6e6f 7465 2069 6465 616c * an *note ideal │ │ │ │ +0009af30: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0009af40: 4964 6561 6c2c 2c20 7468 6520 6964 6561 Ideal,, the idea │ │ │ │ +0009af50: 6c20 6f66 2074 6865 2063 6c6f 7375 7265 l of the closure │ │ │ │ +0009af60: 206f 6620 7468 650a 2020 2020 2020 2020 of the. │ │ │ │ +0009af70: 696e 7665 7273 6520 696d 6167 6520 6f66 inverse image of │ │ │ │ +0009af80: 2056 2849 2920 7669 6120 7068 690a 0a44 V(I) via phi..D │ │ │ │ +0009af90: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0009afa0: 3d3d 3d3d 3d3d 0a0a 496e 206d 6f73 7420 ======..In most │ │ │ │ +0009afb0: 6361 7365 7320 7468 6973 2069 7320 6571 cases this is eq │ │ │ │ +0009afc0: 7569 7661 6c65 6e74 2074 6f20 7068 695e uivalent to phi^ │ │ │ │ +0009afd0: 2a20 492c 2077 6869 6368 2069 7320 6661 * I, which is fa │ │ │ │ +0009afe0: 7374 6572 2062 7574 206d 6179 206e 6f74 ster but may not │ │ │ │ +0009aff0: 2074 616b 650a 696e 746f 2061 6363 6f75 take.into accou │ │ │ │ +0009b000: 6e74 206f 7468 6572 2072 6570 7265 7365 nt other represe │ │ │ │ +0009b010: 6e74 6174 696f 6e73 206f 6620 7468 6520 ntations of the │ │ │ │ +0009b020: 6d61 702e 0a0a 496e 2074 6865 2065 7861 map...In the exa │ │ │ │ +0009b030: 6d70 6c65 2062 656c 6f77 2c20 7765 2061 mple below, we a │ │ │ │ +0009b040: 7070 6c79 2074 6865 206d 6574 686f 6420 pply the method │ │ │ │ +0009b050: 746f 2063 6865 636b 2074 6865 2062 6972 to check the bir │ │ │ │ +0009b060: 6174 696f 6e61 6c69 7479 206f 6620 6120 ationality of a │ │ │ │ +0009b070: 6d61 700a 2864 6574 6572 6d69 6e69 7374 map.(determinist │ │ │ │ +0009b080: 6963 616c 6c79 292e 0a0a 2b2d 2d2d 2d2d ically)...+----- │ │ │ │ +0009b090: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b0a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b0b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b0c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009b0d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009b0e0: 7c69 3120 3a20 7068 6920 3d20 7175 6164 |i1 : phi = quad │ │ │ │ -0009b0f0: 726f 5175 6164 7269 6343 7265 6d6f 6e61 roQuadricCremona │ │ │ │ -0009b100: 5472 616e 7366 6f72 6d61 7469 6f6e 2835 Transformation(5 │ │ │ │ -0009b110: 2c31 2920 2020 2020 2020 2020 2020 2020 ,1) │ │ │ │ -0009b120: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b130: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b0d0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 --------+.|i1 : │ │ │ │ +0009b0e0: 7068 6920 3d20 7175 6164 726f 5175 6164 phi = quadroQuad │ │ │ │ +0009b0f0: 7269 6343 7265 6d6f 6e61 5472 616e 7366 ricCremonaTransf │ │ │ │ +0009b100: 6f72 6d61 7469 6f6e 2835 2c31 2920 2020 ormation(5,1) │ │ │ │ +0009b110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b120: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b170: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b180: 7c6f 3120 3d20 2d2d 2072 6174 696f 6e61 |o1 = -- rationa │ │ │ │ -0009b190: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ +0009b170: 2020 2020 2020 2020 7c0a 7c6f 3120 3d20 |.|o1 = │ │ │ │ +0009b180: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ +0009b190: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 0009b1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b1b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b1c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b1d0: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ -0009b1e0: 6f6a 2851 515b 782c 2079 2c20 7a2c 2074 oj(QQ[x, y, z, t │ │ │ │ -0009b1f0: 2c20 752c 2076 5d29 2020 2020 2020 2020 , u, v]) │ │ │ │ +0009b1c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b1d0: 736f 7572 6365 3a20 5072 6f6a 2851 515b source: Proj(QQ[ │ │ │ │ +0009b1e0: 782c 2079 2c20 7a2c 2074 2c20 752c 2076 x, y, z, t, u, v │ │ │ │ +0009b1f0: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ 0009b200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b210: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b220: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -0009b230: 6f6a 2851 515b 782c 2079 2c20 7a2c 2074 oj(QQ[x, y, z, t │ │ │ │ -0009b240: 2c20 752c 2076 5d29 2020 2020 2020 2020 , u, v]) │ │ │ │ +0009b210: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b220: 7461 7267 6574 3a20 5072 6f6a 2851 515b target: Proj(QQ[ │ │ │ │ +0009b230: 782c 2079 2c20 7a2c 2074 2c20 752c 2076 x, y, z, t, u, v │ │ │ │ +0009b240: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ 0009b250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b260: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b270: 7c20 2020 2020 6465 6669 6e69 6e67 2066 | defining f │ │ │ │ -0009b280: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ +0009b260: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b270: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ +0009b280: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0009b290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b2b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b2c0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b2d0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009b2b0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b2d0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009b2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b300: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b310: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b320: 2020 2020 2020 2079 2a7a 202d 2076 202c y*z - v , │ │ │ │ +0009b300: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b320: 2079 2a7a 202d 2076 202c 2020 2020 2020 y*z - v , │ │ │ │ 0009b330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b350: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b360: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b350: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b3a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b3b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b3c0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009b3a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b3c0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009b3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b3f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b400: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b410: 2020 2020 2020 2078 2a7a 202d 2075 202c x*z - u , │ │ │ │ +0009b3f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b410: 2078 2a7a 202d 2075 202c 2020 2020 2020 x*z - u , │ │ │ │ 0009b420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b440: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b450: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b440: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b490: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b4a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b4b0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009b490: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b4b0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009b4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b4e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b4f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b500: 2020 2020 2020 2078 2a79 202d 2074 202c x*y - t , │ │ │ │ +0009b4e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b4f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b500: 2078 2a79 202d 2074 202c 2020 2020 2020 x*y - t , │ │ │ │ 0009b510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b530: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b540: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b530: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b580: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b590: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b5a0: 2020 2020 2020 202d 207a 2a74 202b 2075 - z*t + u │ │ │ │ -0009b5b0: 2a76 2c20 2020 2020 2020 2020 2020 2020 *v, │ │ │ │ +0009b580: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b5a0: 202d 207a 2a74 202b 2075 2a76 2c20 2020 - z*t + u*v, │ │ │ │ +0009b5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b5d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b5e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b5d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b620: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b630: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b640: 2020 2020 2020 202d 2079 2a75 202b 2074 - y*u + t │ │ │ │ -0009b650: 2a76 2c20 2020 2020 2020 2020 2020 2020 *v, │ │ │ │ +0009b620: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b640: 202d 2079 2a75 202b 2074 2a76 2c20 2020 - y*u + t*v, │ │ │ │ +0009b650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b670: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b680: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b670: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b6c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b6d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b6e0: 2020 2020 2020 2074 2a75 202d 2078 2a76 t*u - x*v │ │ │ │ +0009b6c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b6e0: 2074 2a75 202d 2078 2a76 2020 2020 2020 t*u - x*v │ │ │ │ 0009b6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b710: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b720: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009b730: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0009b710: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b730: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0009b740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b760: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b770: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b760: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b7b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b7c0: 7c6f 3120 3a20 5261 7469 6f6e 616c 4d61 |o1 : RationalMa │ │ │ │ -0009b7d0: 7020 2843 7265 6d6f 6e61 2074 7261 6e73 p (Cremona trans │ │ │ │ -0009b7e0: 666f 726d 6174 696f 6e20 6f66 2050 505e formation of PP^ │ │ │ │ -0009b7f0: 3520 6f66 2074 7970 6520 2832 2c32 2929 5 of type (2,2)) │ │ │ │ -0009b800: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b810: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009b7b0: 2020 2020 2020 2020 7c0a 7c6f 3120 3a20 |.|o1 : │ │ │ │ +0009b7c0: 5261 7469 6f6e 616c 4d61 7020 2843 7265 RationalMap (Cre │ │ │ │ +0009b7d0: 6d6f 6e61 2074 7261 6e73 666f 726d 6174 mona transformat │ │ │ │ +0009b7e0: 696f 6e20 6f66 2050 505e 3520 6f66 2074 ion of PP^5 of t │ │ │ │ +0009b7f0: 7970 6520 2832 2c32 2929 2020 2020 2020 ype (2,2)) │ │ │ │ +0009b800: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009b810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009b840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009b850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009b860: 7c69 3220 3a20 4b20 3a3d 2066 7261 6328 |i2 : K := frac( │ │ │ │ -0009b870: 5151 5b76 6172 7328 302e 2e35 295d 293b QQ[vars(0..5)]); │ │ │ │ -0009b880: 2070 6869 203d 2070 6869 202a 2a20 4b20 phi = phi ** K │ │ │ │ +0009b850: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 --------+.|i2 : │ │ │ │ +0009b860: 4b20 3a3d 2066 7261 6328 5151 5b76 6172 K := frac(QQ[var │ │ │ │ +0009b870: 7328 302e 2e35 295d 293b 2070 6869 203d s(0..5)]); phi = │ │ │ │ +0009b880: 2070 6869 202a 2a20 4b20 2020 2020 2020 phi ** K │ │ │ │ 0009b890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b8a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b8b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009b8a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b8e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b8f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b900: 7c6f 3320 3d20 2d2d 2072 6174 696f 6e61 |o3 = -- rationa │ │ │ │ -0009b910: 6c20 6d61 7020 2d2d 2020 2020 2020 2020 l map -- │ │ │ │ +0009b8f0: 2020 2020 2020 2020 7c0a 7c6f 3320 3d20 |.|o3 = │ │ │ │ +0009b900: 2d2d 2072 6174 696f 6e61 6c20 6d61 7020 -- rational map │ │ │ │ +0009b910: 2d2d 2020 2020 2020 2020 2020 2020 2020 -- │ │ │ │ 0009b920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009b930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009b940: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b950: 7c20 2020 2020 736f 7572 6365 3a20 5072 | source: Pr │ │ │ │ -0009b960: 6f6a 2866 7261 6328 5151 5b61 2e2e 665d oj(frac(QQ[a..f] │ │ │ │ -0009b970: 295b 782c 2079 2c20 7a2c 2074 2c20 752c )[x, y, z, t, u, │ │ │ │ -0009b980: 2076 5d29 2020 2020 2020 2020 2020 2020 v]) │ │ │ │ -0009b990: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b9a0: 7c20 2020 2020 7461 7267 6574 3a20 5072 | target: Pr │ │ │ │ -0009b9b0: 6f6a 2866 7261 6328 5151 5b61 2e2e 665d oj(frac(QQ[a..f] │ │ │ │ -0009b9c0: 295b 782c 2079 2c20 7a2c 2074 2c20 752c )[x, y, z, t, u, │ │ │ │ -0009b9d0: 2076 5d29 2020 2020 2020 2020 2020 2020 v]) │ │ │ │ -0009b9e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009b9f0: 7c20 2020 2020 6465 6669 6e69 6e67 2066 | defining f │ │ │ │ -0009ba00: 6f72 6d73 3a20 7b20 2020 2020 2020 2020 orms: { │ │ │ │ +0009b940: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b950: 736f 7572 6365 3a20 5072 6f6a 2866 7261 source: Proj(fra │ │ │ │ +0009b960: 6328 5151 5b61 2e2e 665d 295b 782c 2079 c(QQ[a..f])[x, y │ │ │ │ +0009b970: 2c20 7a2c 2074 2c20 752c 2076 5d29 2020 , z, t, u, v]) │ │ │ │ +0009b980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b990: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b9a0: 7461 7267 6574 3a20 5072 6f6a 2866 7261 target: Proj(fra │ │ │ │ +0009b9b0: 6328 5151 5b61 2e2e 665d 295b 782c 2079 c(QQ[a..f])[x, y │ │ │ │ +0009b9c0: 2c20 7a2c 2074 2c20 752c 2076 5d29 2020 , z, t, u, v]) │ │ │ │ +0009b9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009b9e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009b9f0: 6465 6669 6e69 6e67 2066 6f72 6d73 3a20 defining forms: │ │ │ │ +0009ba00: 7b20 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ 0009ba10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ba20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ba30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009ba40: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009ba50: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009ba30: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009ba40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009ba50: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009ba60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ba70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ba80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009ba90: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009baa0: 2020 2020 2020 2079 2a7a 202d 2076 202c y*z - v , │ │ │ │ +0009ba80: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009ba90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009baa0: 2079 2a7a 202d 2076 202c 2020 2020 2020 y*z - v , │ │ │ │ 0009bab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bad0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bae0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bad0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009baf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bb00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bb20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bb30: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bb40: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009bb20: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bb40: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009bb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bb70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bb80: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bb90: 2020 2020 2020 2078 2a7a 202d 2075 202c x*z - u , │ │ │ │ +0009bb70: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bb80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bb90: 2078 2a7a 202d 2075 202c 2020 2020 2020 x*z - u , │ │ │ │ 0009bba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bbb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bbc0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bbd0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bbc0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bbe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bc00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bc10: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bc20: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bc30: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009bc10: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bc30: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009bc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bc60: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bc70: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bc80: 2020 2020 2020 2078 2a79 202d 2074 202c x*y - t , │ │ │ │ +0009bc60: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bc80: 2078 2a79 202d 2074 202c 2020 2020 2020 x*y - t , │ │ │ │ 0009bc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bcb0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bcc0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bcb0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bcd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bcf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bd00: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bd10: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bd20: 2020 2020 2020 202d 207a 2a74 202b 2075 - z*t + u │ │ │ │ -0009bd30: 2a76 2c20 2020 2020 2020 2020 2020 2020 *v, │ │ │ │ +0009bd00: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bd20: 202d 207a 2a74 202b 2075 2a76 2c20 2020 - z*t + u*v, │ │ │ │ +0009bd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bd50: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bd60: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bd50: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bd70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bd90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bda0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bdb0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009bdc0: 2020 2020 2020 202d 2079 2a75 202b 2074 - y*u + t │ │ │ │ -0009bdd0: 2a76 2c20 2020 2020 2020 2020 2020 2020 *v, │ │ │ │ +0009bda0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bdb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009bdc0: 202d 2079 2a75 202b 2074 2a76 2c20 2020 - y*u + t*v, │ │ │ │ +0009bdd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bdf0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009be00: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bdf0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009be00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009be10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009be20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009be30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009be40: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009be50: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009be60: 2020 2020 2020 2074 2a75 202d 2078 2a76 t*u - x*v │ │ │ │ +0009be40: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009be50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009be60: 2074 2a75 202d 2078 2a76 2020 2020 2020 t*u - x*v │ │ │ │ 0009be70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009be80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009be90: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bea0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009beb0: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ +0009be90: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009beb0: 7d20 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ 0009bec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bee0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bef0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bee0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009bef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bf00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bf10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009bf20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009bf30: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bf40: 7c6f 3320 3a20 5261 7469 6f6e 616c 4d61 |o3 : RationalMa │ │ │ │ -0009bf50: 7020 2871 7561 6472 6174 6963 2072 6174 p (quadratic rat │ │ │ │ -0009bf60: 696f 6e61 6c20 6d61 7020 6672 6f6d 2050 ional map from P │ │ │ │ -0009bf70: 505e 3520 746f 2050 505e 3529 2020 2020 P^5 to PP^5) │ │ │ │ -0009bf80: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009bf90: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009bf30: 2020 2020 2020 2020 7c0a 7c6f 3320 3a20 |.|o3 : │ │ │ │ +0009bf40: 5261 7469 6f6e 616c 4d61 7020 2871 7561 RationalMap (qua │ │ │ │ +0009bf50: 6472 6174 6963 2072 6174 696f 6e61 6c20 dratic rational │ │ │ │ +0009bf60: 6d61 7020 6672 6f6d 2050 505e 3520 746f map from PP^5 to │ │ │ │ +0009bf70: 2050 505e 3529 2020 2020 2020 2020 2020 PP^5) │ │ │ │ +0009bf80: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009bf90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009bfa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009bfb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009bfc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009bfd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009bfe0: 7c69 3420 3a20 7020 3d20 7472 696d 206d |i4 : p = trim m │ │ │ │ -0009bff0: 696e 6f72 7328 322c 2876 6172 7320 4b29 inors(2,(vars K) │ │ │ │ -0009c000: 7c7c 2876 6172 7320 736f 7572 6365 2070 ||(vars source p │ │ │ │ -0009c010: 6869 2929 2020 2020 2020 2020 2020 2020 hi)) │ │ │ │ -0009c020: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c030: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009bfd0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 --------+.|i4 : │ │ │ │ +0009bfe0: 7020 3d20 7472 696d 206d 696e 6f72 7328 p = trim minors( │ │ │ │ +0009bff0: 322c 2876 6172 7320 4b29 7c7c 2876 6172 2,(vars K)||(var │ │ │ │ +0009c000: 7320 736f 7572 6365 2070 6869 2929 2020 s source phi)) │ │ │ │ +0009c010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c020: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c070: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c080: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c090: 2065 2020 2020 2020 2020 6420 2020 2020 e d │ │ │ │ -0009c0a0: 2020 2063 2020 2020 2020 2020 6220 2020 c b │ │ │ │ -0009c0b0: 2020 2020 2061 2020 2020 2020 2020 2020 a │ │ │ │ -0009c0c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c0d0: 7c6f 3420 3d20 6964 6561 6c20 2875 202d |o4 = ideal (u - │ │ │ │ -0009c0e0: 202d 2a76 2c20 7420 2d20 2d2a 762c 207a -*v, t - -*v, z │ │ │ │ -0009c0f0: 202d 202d 2a76 2c20 7920 2d20 2d2a 762c - -*v, y - -*v, │ │ │ │ -0009c100: 2078 202d 202d 2a76 2920 2020 2020 2020 x - -*v) │ │ │ │ -0009c110: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c120: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c130: 2066 2020 2020 2020 2020 6620 2020 2020 f f │ │ │ │ -0009c140: 2020 2066 2020 2020 2020 2020 6620 2020 f f │ │ │ │ -0009c150: 2020 2020 2066 2020 2020 2020 2020 2020 f │ │ │ │ -0009c160: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c170: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c070: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c080: 2020 2020 2020 2020 2020 2065 2020 2020 e │ │ │ │ +0009c090: 2020 2020 6420 2020 2020 2020 2063 2020 d c │ │ │ │ +0009c0a0: 2020 2020 2020 6220 2020 2020 2020 2061 b a │ │ │ │ +0009c0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c0c0: 2020 2020 2020 2020 7c0a 7c6f 3420 3d20 |.|o4 = │ │ │ │ +0009c0d0: 6964 6561 6c20 2875 202d 202d 2a76 2c20 ideal (u - -*v, │ │ │ │ +0009c0e0: 7420 2d20 2d2a 762c 207a 202d 202d 2a76 t - -*v, z - -*v │ │ │ │ +0009c0f0: 2c20 7920 2d20 2d2a 762c 2078 202d 202d , y - -*v, x - - │ │ │ │ +0009c100: 2a76 2920 2020 2020 2020 2020 2020 2020 *v) │ │ │ │ +0009c110: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c120: 2020 2020 2020 2020 2020 2066 2020 2020 f │ │ │ │ +0009c130: 2020 2020 6620 2020 2020 2020 2066 2020 f f │ │ │ │ +0009c140: 2020 2020 2020 6620 2020 2020 2020 2066 f f │ │ │ │ +0009c150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c160: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c1a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c1b0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c1c0: 7c6f 3420 3a20 4964 6561 6c20 6f66 2066 |o4 : Ideal of f │ │ │ │ -0009c1d0: 7261 6328 5151 5b61 2e2e 665d 295b 782c rac(QQ[a..f])[x, │ │ │ │ -0009c1e0: 2079 2c20 7a2c 2074 2c20 752c 2076 5d20 y, z, t, u, v] │ │ │ │ +0009c1b0: 2020 2020 2020 2020 7c0a 7c6f 3420 3a20 |.|o4 : │ │ │ │ +0009c1c0: 4964 6561 6c20 6f66 2066 7261 6328 5151 Ideal of frac(QQ │ │ │ │ +0009c1d0: 5b61 2e2e 665d 295b 782c 2079 2c20 7a2c [a..f])[x, y, z, │ │ │ │ +0009c1e0: 2074 2c20 752c 2076 5d20 2020 2020 2020 t, u, v] │ │ │ │ 0009c1f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c200: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c210: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009c200: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009c210: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c220: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009c250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009c260: 7c69 3520 3a20 7120 3d20 7068 6920 7020 |i5 : q = phi p │ │ │ │ +0009c250: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 --------+.|i5 : │ │ │ │ +0009c260: 7120 3d20 7068 6920 7020 2020 2020 2020 q = phi p │ │ │ │ 0009c270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c2a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c2b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c2a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c2c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c2f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c300: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c2f0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c330: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ -0009c340: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c350: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c360: 2062 2a65 202d 2064 2a66 2020 2020 2020 b*e - d*f │ │ │ │ -0009c370: 2020 632a 6420 2d20 652a 6620 2020 2020 c*d - e*f │ │ │ │ -0009c380: 2020 202d 2061 2a62 202b 2064 2020 2020 - a*b + d │ │ │ │ -0009c390: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c3a0: 7c6f 3520 3d20 6964 6561 6c20 2875 202b |o5 = ideal (u + │ │ │ │ -0009c3b0: 202d 2d2d 2d2d 2d2d 2d2d 2a76 2c20 7420 ---------*v, t │ │ │ │ -0009c3c0: 2b20 2d2d 2d2d 2d2d 2d2d 2d2a 762c 207a + ---------*v, z │ │ │ │ -0009c3d0: 202b 202d 2d2d 2d2d 2d2d 2d2d 2d2a 762c + ----------*v, │ │ │ │ -0009c3e0: 2079 202b 2020 2020 2020 2020 2020 7c0a y + |. │ │ │ │ -0009c3f0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c400: 2064 2a65 202d 2061 2a66 2020 2020 2020 d*e - a*f │ │ │ │ -0009c410: 2020 642a 6520 2d20 612a 6620 2020 2020 d*e - a*f │ │ │ │ -0009c420: 2020 2020 642a 6520 2d20 612a 6620 2020 d*e - a*f │ │ │ │ -0009c430: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c440: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ +0009c330: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009c340: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c350: 2020 2020 2020 2020 2020 2062 2a65 202d b*e - │ │ │ │ +0009c360: 2064 2a66 2020 2020 2020 2020 632a 6420 d*f c*d │ │ │ │ +0009c370: 2d20 652a 6620 2020 2020 2020 202d 2061 - e*f - a │ │ │ │ +0009c380: 2a62 202b 2064 2020 2020 2020 2020 2020 *b + d │ │ │ │ +0009c390: 2020 2020 2020 2020 7c0a 7c6f 3520 3d20 |.|o5 = │ │ │ │ +0009c3a0: 6964 6561 6c20 2875 202b 202d 2d2d 2d2d ideal (u + ----- │ │ │ │ +0009c3b0: 2d2d 2d2d 2a76 2c20 7420 2b20 2d2d 2d2d ----*v, t + ---- │ │ │ │ +0009c3c0: 2d2d 2d2d 2d2a 762c 207a 202b 202d 2d2d -----*v, z + --- │ │ │ │ +0009c3d0: 2d2d 2d2d 2d2d 2d2a 762c 2079 202b 2020 -------*v, y + │ │ │ │ +0009c3e0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c3f0: 2020 2020 2020 2020 2020 2064 2a65 202d d*e - │ │ │ │ +0009c400: 2061 2a66 2020 2020 2020 2020 642a 6520 a*f d*e │ │ │ │ +0009c410: 2d20 612a 6620 2020 2020 2020 2020 642a - a*f d* │ │ │ │ +0009c420: 6520 2d20 612a 6620 2020 2020 2020 2020 e - a*f │ │ │ │ +0009c430: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c440: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c450: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009c480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a --------------|. │ │ │ │ -0009c490: 7c20 2020 2020 2020 2020 2020 2020 2032 | 2 │ │ │ │ -0009c4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c4b0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0009c480: 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 --------|.| │ │ │ │ +0009c490: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009c4a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0009c4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c4d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c4e0: 7c20 2020 2020 2d20 612a 6320 2b20 6520 | - a*c + e │ │ │ │ -0009c4f0: 2020 2020 2020 2020 2d20 622a 6320 2b20 - b*c + │ │ │ │ -0009c500: 6620 2020 2020 2020 2020 2020 2020 2020 f │ │ │ │ +0009c4d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c4e0: 2d20 612a 6320 2b20 6520 2020 2020 2020 - a*c + e │ │ │ │ +0009c4f0: 2020 2d20 622a 6320 2b20 6620 2020 2020 - b*c + f │ │ │ │ +0009c500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c520: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c530: 7c20 2020 2020 2d2d 2d2d 2d2d 2d2d 2d2d | ---------- │ │ │ │ -0009c540: 2a76 2c20 7820 2b20 2d2d 2d2d 2d2d 2d2d *v, x + -------- │ │ │ │ -0009c550: 2d2d 2a76 2920 2020 2020 2020 2020 2020 --*v) │ │ │ │ +0009c520: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c530: 2d2d 2d2d 2d2d 2d2d 2d2d 2a76 2c20 7820 ----------*v, x │ │ │ │ +0009c540: 2b20 2d2d 2d2d 2d2d 2d2d 2d2d 2a76 2920 + ----------*v) │ │ │ │ +0009c550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c570: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c580: 7c20 2020 2020 2064 2a65 202d 2061 2a66 | d*e - a*f │ │ │ │ -0009c590: 2020 2020 2020 2020 2064 2a65 202d 2061 d*e - a │ │ │ │ -0009c5a0: 2a66 2020 2020 2020 2020 2020 2020 2020 *f │ │ │ │ +0009c570: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c580: 2064 2a65 202d 2061 2a66 2020 2020 2020 d*e - a*f │ │ │ │ +0009c590: 2020 2064 2a65 202d 2061 2a66 2020 2020 d*e - a*f │ │ │ │ +0009c5a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c5c0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c5d0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c5c0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c5f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c610: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c620: 7c6f 3520 3a20 4964 6561 6c20 6f66 2066 |o5 : Ideal of f │ │ │ │ -0009c630: 7261 6328 5151 5b61 2e2e 665d 295b 782c rac(QQ[a..f])[x, │ │ │ │ -0009c640: 2079 2c20 7a2c 2074 2c20 752c 2076 5d20 y, z, t, u, v] │ │ │ │ +0009c610: 2020 2020 2020 2020 7c0a 7c6f 3520 3a20 |.|o5 : │ │ │ │ +0009c620: 4964 6561 6c20 6f66 2066 7261 6328 5151 Ideal of frac(QQ │ │ │ │ +0009c630: 5b61 2e2e 665d 295b 782c 2079 2c20 7a2c [a..f])[x, y, z, │ │ │ │ +0009c640: 2074 2c20 752c 2076 5d20 2020 2020 2020 t, u, v] │ │ │ │ 0009c650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c660: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c670: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009c660: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009c670: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c6a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009c6b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009c6c0: 7c69 3620 3a20 7469 6d65 2070 6869 5e2a |i6 : time phi^* │ │ │ │ -0009c6d0: 2a20 7120 2020 2020 2020 2020 2020 2020 * q │ │ │ │ +0009c6b0: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 --------+.|i6 : │ │ │ │ +0009c6c0: 7469 6d65 2070 6869 5e2a 2a20 7120 2020 time phi^** q │ │ │ │ +0009c6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c700: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c710: 7c20 2d2d 2075 7365 6420 302e 3135 3735 | -- used 0.1575 │ │ │ │ -0009c720: 3331 7320 2863 7075 293b 2030 2e31 3537 31s (cpu); 0.157 │ │ │ │ -0009c730: 3532 3773 2028 7468 7265 6164 293b 2030 527s (thread); 0 │ │ │ │ -0009c740: 7320 2867 6329 2020 2020 2020 2020 2020 s (gc) │ │ │ │ -0009c750: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c760: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c700: 2020 2020 2020 2020 7c0a 7c20 2d2d 2075 |.| -- u │ │ │ │ +0009c710: 7365 6420 302e 3138 3433 3637 7320 2863 sed 0.184367s (c │ │ │ │ +0009c720: 7075 293b 2030 2e31 3834 3336 3673 2028 pu); 0.184366s ( │ │ │ │ +0009c730: 7468 7265 6164 293b 2030 7320 2867 6329 thread); 0s (gc) │ │ │ │ +0009c740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c750: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c7a0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c7b0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c7c0: 2065 2020 2020 2020 2020 6420 2020 2020 e d │ │ │ │ -0009c7d0: 2020 2063 2020 2020 2020 2020 6220 2020 c b │ │ │ │ -0009c7e0: 2020 2020 2061 2020 2020 2020 2020 2020 a │ │ │ │ -0009c7f0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c800: 7c6f 3620 3d20 6964 6561 6c20 2875 202d |o6 = ideal (u - │ │ │ │ -0009c810: 202d 2a76 2c20 7420 2d20 2d2a 762c 207a -*v, t - -*v, z │ │ │ │ -0009c820: 202d 202d 2a76 2c20 7920 2d20 2d2a 762c - -*v, y - -*v, │ │ │ │ -0009c830: 2078 202d 202d 2a76 2920 2020 2020 2020 x - -*v) │ │ │ │ -0009c840: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c850: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ -0009c860: 2066 2020 2020 2020 2020 6620 2020 2020 f f │ │ │ │ -0009c870: 2020 2066 2020 2020 2020 2020 6620 2020 f f │ │ │ │ -0009c880: 2020 2020 2066 2020 2020 2020 2020 2020 f │ │ │ │ -0009c890: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c8a0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c7a0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c7b0: 2020 2020 2020 2020 2020 2065 2020 2020 e │ │ │ │ +0009c7c0: 2020 2020 6420 2020 2020 2020 2063 2020 d c │ │ │ │ +0009c7d0: 2020 2020 2020 6220 2020 2020 2020 2061 b a │ │ │ │ +0009c7e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c7f0: 2020 2020 2020 2020 7c0a 7c6f 3620 3d20 |.|o6 = │ │ │ │ +0009c800: 6964 6561 6c20 2875 202d 202d 2a76 2c20 ideal (u - -*v, │ │ │ │ +0009c810: 7420 2d20 2d2a 762c 207a 202d 202d 2a76 t - -*v, z - -*v │ │ │ │ +0009c820: 2c20 7920 2d20 2d2a 762c 2078 202d 202d , y - -*v, x - - │ │ │ │ +0009c830: 2a76 2920 2020 2020 2020 2020 2020 2020 *v) │ │ │ │ +0009c840: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c850: 2020 2020 2020 2020 2020 2066 2020 2020 f │ │ │ │ +0009c860: 2020 2020 6620 2020 2020 2020 2066 2020 f f │ │ │ │ +0009c870: 2020 2020 2020 6620 2020 2020 2020 2066 f f │ │ │ │ +0009c880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009c890: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c8e0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c8f0: 7c6f 3620 3a20 4964 6561 6c20 6f66 2066 |o6 : Ideal of f │ │ │ │ -0009c900: 7261 6328 5151 5b61 2e2e 665d 295b 782c rac(QQ[a..f])[x, │ │ │ │ -0009c910: 2079 2c20 7a2c 2074 2c20 752c 2076 5d20 y, z, t, u, v] │ │ │ │ +0009c8e0: 2020 2020 2020 2020 7c0a 7c6f 3620 3a20 |.|o6 : │ │ │ │ +0009c8f0: 4964 6561 6c20 6f66 2066 7261 6328 5151 Ideal of frac(QQ │ │ │ │ +0009c900: 5b61 2e2e 665d 295b 782c 2079 2c20 7a2c [a..f])[x, y, z, │ │ │ │ +0009c910: 2074 2c20 752c 2076 5d20 2020 2020 2020 t, u, v] │ │ │ │ 0009c920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c930: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c940: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009c930: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009c940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c960: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009c970: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009c980: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009c990: 7c69 3720 3a20 6f6f 203d 3d20 7020 2020 |i7 : oo == p │ │ │ │ +0009c980: 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 3720 3a20 --------+.|i7 : │ │ │ │ +0009c990: 6f6f 203d 3d20 7020 2020 2020 2020 2020 oo == p │ │ │ │ 0009c9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009c9d0: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009c9e0: 7c20 2020 2020 2020 2020 2020 2020 2020 | │ │ │ │ +0009c9d0: 2020 2020 2020 2020 7c0a 7c20 2020 2020 |.| │ │ │ │ +0009c9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009c9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ca00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ca10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ca20: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009ca30: 7c6f 3720 3d20 7472 7565 2020 2020 2020 |o7 = true │ │ │ │ +0009ca20: 2020 2020 2020 2020 7c0a 7c6f 3720 3d20 |.|o7 = │ │ │ │ +0009ca30: 7472 7565 2020 2020 2020 2020 2020 2020 true │ │ │ │ 0009ca40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ca50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ca60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ca70: 2020 2020 2020 2020 2020 2020 2020 7c0a |. │ │ │ │ -0009ca80: 2b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d +--------------- │ │ │ │ +0009ca70: 2020 2020 2020 2020 7c0a 2b2d 2d2d 2d2d |.+----- │ │ │ │ +0009ca80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ca90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009caa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009cab0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009cac0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a --------------+. │ │ │ │ -0009cad0: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ -0009cae0: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5261 ==.. * *note Ra │ │ │ │ -0009caf0: 7469 6f6e 616c 4d61 7020 5f2a 3a20 5261 tionalMap _*: Ra │ │ │ │ -0009cb00: 7469 6f6e 616c 4d61 7020 5f75 735f 7374 tionalMap _us_st │ │ │ │ -0009cb10: 2c20 2d2d 2064 6972 6563 7420 696d 6167 , -- direct imag │ │ │ │ -0009cb20: 6520 7669 6120 6120 7261 7469 6f6e 616c e via a rational │ │ │ │ -0009cb30: 0a20 2020 206d 6170 0a20 202a 202a 6e6f . map. * *no │ │ │ │ -0009cb40: 7465 2052 6174 696f 6e61 6c4d 6170 202a te RationalMap * │ │ │ │ -0009cb50: 2a20 5269 6e67 3a20 5261 7469 6f6e 616c * Ring: Rational │ │ │ │ -0009cb60: 4d61 7020 5f73 745f 7374 2052 696e 672c Map _st_st Ring, │ │ │ │ -0009cb70: 202d 2d20 6368 616e 6765 2074 6865 0a20 -- change the. │ │ │ │ -0009cb80: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ -0009cb90: 696e 6720 6f66 2061 2072 6174 696f 6e61 ing of a rationa │ │ │ │ -0009cba0: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -0009cbb0: 7461 7267 6574 2852 6174 696f 6e61 6c4d target(RationalM │ │ │ │ -0009cbc0: 6170 293a 2074 6172 6765 745f 6c70 5261 ap): target_lpRa │ │ │ │ -0009cbd0: 7469 6f6e 616c 4d61 705f 7270 2c20 2d2d tionalMap_rp, -- │ │ │ │ -0009cbe0: 2063 6f6f 7264 696e 6174 6520 7269 6e67 coordinate ring │ │ │ │ -0009cbf0: 206f 660a 2020 2020 7468 6520 7461 7267 of. the targ │ │ │ │ -0009cc00: 6574 2066 6f72 2061 2072 6174 696f 6e61 et for a rationa │ │ │ │ -0009cc10: 6c20 6d61 700a 0a57 6179 7320 746f 2075 l map..Ways to u │ │ │ │ -0009cc20: 7365 2074 6869 7320 6d65 7468 6f64 3a0a se this method:. │ │ │ │ +0009cac0: 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 --------+..See a │ │ │ │ +0009cad0: 6c73 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 lso.========.. │ │ │ │ +0009cae0: 2a20 2a6e 6f74 6520 5261 7469 6f6e 616c * *note Rational │ │ │ │ +0009caf0: 4d61 7020 5f2a 3a20 5261 7469 6f6e 616c Map _*: Rational │ │ │ │ +0009cb00: 4d61 7020 5f75 735f 7374 2c20 2d2d 2064 Map _us_st, -- d │ │ │ │ +0009cb10: 6972 6563 7420 696d 6167 6520 7669 6120 irect image via │ │ │ │ +0009cb20: 6120 7261 7469 6f6e 616c 0a20 2020 206d a rational. m │ │ │ │ +0009cb30: 6170 0a20 202a 202a 6e6f 7465 2052 6174 ap. * *note Rat │ │ │ │ +0009cb40: 696f 6e61 6c4d 6170 202a 2a20 5269 6e67 ionalMap ** Ring │ │ │ │ +0009cb50: 3a20 5261 7469 6f6e 616c 4d61 7020 5f73 : RationalMap _s │ │ │ │ +0009cb60: 745f 7374 2052 696e 672c 202d 2d20 6368 t_st Ring, -- ch │ │ │ │ +0009cb70: 616e 6765 2074 6865 0a20 2020 2063 6f65 ange the. coe │ │ │ │ +0009cb80: 6666 6963 6965 6e74 2072 696e 6720 6f66 fficient ring of │ │ │ │ +0009cb90: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0009cba0: 2020 2a20 2a6e 6f74 6520 7461 7267 6574 * *note target │ │ │ │ +0009cbb0: 2852 6174 696f 6e61 6c4d 6170 293a 2074 (RationalMap): t │ │ │ │ +0009cbc0: 6172 6765 745f 6c70 5261 7469 6f6e 616c arget_lpRational │ │ │ │ +0009cbd0: 4d61 705f 7270 2c20 2d2d 2063 6f6f 7264 Map_rp, -- coord │ │ │ │ +0009cbe0: 696e 6174 6520 7269 6e67 206f 660a 2020 inate ring of. │ │ │ │ +0009cbf0: 2020 7468 6520 7461 7267 6574 2066 6f72 the target for │ │ │ │ +0009cc00: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +0009cc10: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ +0009cc20: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ 0009cc30: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0009cc40: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0009cc50: 6f74 6520 5261 7469 6f6e 616c 4d61 7020 ote RationalMap │ │ │ │ -0009cc60: 5e2a 2a20 4964 6561 6c3a 2052 6174 696f ^** Ideal: Ratio │ │ │ │ -0009cc70: 6e61 6c4d 6170 205e 5f73 745f 7374 2049 nalMap ^_st_st I │ │ │ │ -0009cc80: 6465 616c 2c20 2d2d 2069 6e76 6572 7365 deal, -- inverse │ │ │ │ -0009cc90: 2069 6d61 6765 0a20 2020 2076 6961 2061 image. via a │ │ │ │ -0009cca0: 2072 6174 696f 6e61 6c20 6d61 700a 2d2d rational map.-- │ │ │ │ +0009cc40: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5261 ==.. * *note Ra │ │ │ │ +0009cc50: 7469 6f6e 616c 4d61 7020 5e2a 2a20 4964 tionalMap ^** Id │ │ │ │ +0009cc60: 6561 6c3a 2052 6174 696f 6e61 6c4d 6170 eal: RationalMap │ │ │ │ +0009cc70: 205e 5f73 745f 7374 2049 6465 616c 2c20 ^_st_st Ideal, │ │ │ │ +0009cc80: 2d2d 2069 6e76 6572 7365 2069 6d61 6765 -- inverse image │ │ │ │ +0009cc90: 0a20 2020 2076 6961 2061 2072 6174 696f . via a ratio │ │ │ │ +0009cca0: 6e61 6c20 6d61 700a 2d2d 2d2d 2d2d 2d2d nal map.-------- │ │ │ │ 0009ccb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ccc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009ccd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009cce0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009ccf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -0009cd00: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -0009cd10: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -0009cd20: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -0009cd30: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -0009cd40: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -0009cd50: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -0009cd60: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -0009cd70: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a33 cumentation.m2:3 │ │ │ │ -0009cd80: 3732 3a30 2e0a 1f0a 4669 6c65 3a20 4372 72:0....File: Cr │ │ │ │ -0009cd90: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -0009cda0: 3a20 5261 7469 6f6e 616c 4d61 7020 5f75 : RationalMap _u │ │ │ │ -0009cdb0: 735f 7374 2c20 4e65 7874 3a20 5261 7469 s_st, Next: Rati │ │ │ │ -0009cdc0: 6f6e 616c 4d61 7020 7c20 4964 6561 6c2c onalMap | Ideal, │ │ │ │ -0009cdd0: 2050 7265 763a 2052 6174 696f 6e61 6c4d Prev: RationalM │ │ │ │ -0009cde0: 6170 205e 5f73 745f 7374 2049 6465 616c ap ^_st_st Ideal │ │ │ │ -0009cdf0: 2c20 5570 3a20 546f 700a 0a52 6174 696f , Up: Top..Ratio │ │ │ │ -0009ce00: 6e61 6c4d 6170 205f 2a20 2d2d 2064 6972 nalMap _* -- dir │ │ │ │ -0009ce10: 6563 7420 696d 6167 6520 7669 6120 6120 ect image via a │ │ │ │ -0009ce20: 7261 7469 6f6e 616c 206d 6170 0a2a 2a2a rational map.*** │ │ │ │ +0009ccf0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +0009cd00: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +0009cd10: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +0009cd20: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +0009cd30: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +0009cd40: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +0009cd50: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +0009cd60: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +0009cd70: 6174 696f 6e2e 6d32 3a33 3732 3a30 2e0a ation.m2:372:0.. │ │ │ │ +0009cd80: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ +0009cd90: 696e 666f 2c20 4e6f 6465 3a20 5261 7469 info, Node: Rati │ │ │ │ +0009cda0: 6f6e 616c 4d61 7020 5f75 735f 7374 2c20 onalMap _us_st, │ │ │ │ +0009cdb0: 4e65 7874 3a20 5261 7469 6f6e 616c 4d61 Next: RationalMa │ │ │ │ +0009cdc0: 7020 7c20 4964 6561 6c2c 2050 7265 763a p | Ideal, Prev: │ │ │ │ +0009cdd0: 2052 6174 696f 6e61 6c4d 6170 205e 5f73 RationalMap ^_s │ │ │ │ +0009cde0: 745f 7374 2049 6465 616c 2c20 5570 3a20 t_st Ideal, Up: │ │ │ │ +0009cdf0: 546f 700a 0a52 6174 696f 6e61 6c4d 6170 Top..RationalMap │ │ │ │ +0009ce00: 205f 2a20 2d2d 2064 6972 6563 7420 696d _* -- direct im │ │ │ │ +0009ce10: 6167 6520 7669 6120 6120 7261 7469 6f6e age via a ration │ │ │ │ +0009ce20: 616c 206d 6170 0a2a 2a2a 2a2a 2a2a 2a2a al map.********* │ │ │ │ 0009ce30: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0009ce40: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0009ce50: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ -0009ce60: 2020 2a20 4f70 6572 6174 6f72 3a20 2a6e * Operator: *n │ │ │ │ -0009ce70: 6f74 6520 5f2a 3a20 284d 6163 6175 6c61 ote _*: (Macaula │ │ │ │ -0009ce80: 7932 446f 6329 5f75 735f 7374 2c0a 2020 y2Doc)_us_st,. │ │ │ │ -0009ce90: 2a20 5573 6167 653a 200a 2020 2020 2020 * Usage: . │ │ │ │ -0009cea0: 2020 7068 695f 2a20 490a 2020 2a20 496e phi_* I. * In │ │ │ │ -0009ceb0: 7075 7473 3a0a 2020 2020 2020 2a20 7068 puts:. * ph │ │ │ │ -0009cec0: 692c 2061 202a 6e6f 7465 2072 6174 696f i, a *note ratio │ │ │ │ -0009ced0: 6e61 6c20 6d61 703a 2052 6174 696f 6e61 nal map: Rationa │ │ │ │ -0009cee0: 6c4d 6170 2c2c 2049 2061 2068 6f6d 6f67 lMap,, I a homog │ │ │ │ -0009cef0: 656e 656f 7573 2069 6465 616c 2069 6e20 eneous ideal in │ │ │ │ -0009cf00: 7468 650a 2020 2020 2020 2020 636f 6f72 the. coor │ │ │ │ -0009cf10: 6469 6e61 7465 2072 696e 6720 6f66 2074 dinate ring of t │ │ │ │ -0009cf20: 6865 2073 6f75 7263 6520 6f66 2070 6869 he source of phi │ │ │ │ -0009cf30: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ -0009cf40: 2020 2020 2a20 616e 202a 6e6f 7465 2069 * an *note i │ │ │ │ -0009cf50: 6465 616c 3a20 284d 6163 6175 6c61 7932 deal: (Macaulay2 │ │ │ │ -0009cf60: 446f 6329 4964 6561 6c2c 2c20 7468 6520 Doc)Ideal,, the │ │ │ │ -0009cf70: 6964 6561 6c20 6f66 2074 6865 2063 6c6f ideal of the clo │ │ │ │ -0009cf80: 7375 7265 206f 6620 7468 650a 2020 2020 sure of the. │ │ │ │ -0009cf90: 2020 2020 6469 7265 6374 2069 6d61 6765 direct image │ │ │ │ -0009cfa0: 206f 6620 5628 4929 2076 6961 2070 6869 of V(I) via phi │ │ │ │ -0009cfb0: 0a0a 4465 7363 7269 7074 696f 6e0a 3d3d ..Description.== │ │ │ │ -0009cfc0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a49 6e20 6d6f =========..In mo │ │ │ │ -0009cfd0: 7374 2063 6173 6573 2074 6869 7320 6973 st cases this is │ │ │ │ -0009cfe0: 2065 7175 6976 616c 656e 7420 746f 2070 equivalent to p │ │ │ │ -0009cff0: 6869 2049 2c20 7768 6963 6820 6973 2066 hi I, which is f │ │ │ │ -0009d000: 6173 7465 7220 6275 7420 6d61 7920 6e6f aster but may no │ │ │ │ -0009d010: 7420 7461 6b65 0a69 6e74 6f20 6163 636f t take.into acco │ │ │ │ -0009d020: 756e 7420 6f74 6865 7220 7265 7072 6573 unt other repres │ │ │ │ -0009d030: 656e 7461 7469 6f6e 7320 6f66 2074 6865 entations of the │ │ │ │ -0009d040: 206d 6170 2e0a 0a53 6565 2061 6c73 6f0a map...See also. │ │ │ │ -0009d050: 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 2a6e ========.. * *n │ │ │ │ -0009d060: 6f74 6520 5261 7469 6f6e 616c 4d61 7020 ote RationalMap │ │ │ │ -0009d070: 5e2a 2a20 4964 6561 6c3a 2052 6174 696f ^** Ideal: Ratio │ │ │ │ -0009d080: 6e61 6c4d 6170 205e 5f73 745f 7374 2049 nalMap ^_st_st I │ │ │ │ -0009d090: 6465 616c 2c20 2d2d 2069 6e76 6572 7365 deal, -- inverse │ │ │ │ -0009d0a0: 2069 6d61 6765 0a20 2020 2076 6961 2061 image. via a │ │ │ │ -0009d0b0: 2072 6174 696f 6e61 6c20 6d61 700a 2020 rational map. │ │ │ │ -0009d0c0: 2a20 2a6e 6f74 6520 736f 7572 6365 2852 * *note source(R │ │ │ │ -0009d0d0: 6174 696f 6e61 6c4d 6170 293a 2073 6f75 ationalMap): sou │ │ │ │ -0009d0e0: 7263 655f 6c70 5261 7469 6f6e 616c 4d61 rce_lpRationalMa │ │ │ │ -0009d0f0: 705f 7270 2c20 2d2d 2063 6f6f 7264 696e p_rp, -- coordin │ │ │ │ -0009d100: 6174 6520 7269 6e67 206f 660a 2020 2020 ate ring of. │ │ │ │ -0009d110: 7468 6520 736f 7572 6365 2066 6f72 2061 the source for a │ │ │ │ -0009d120: 2072 6174 696f 6e61 6c20 6d61 700a 0a57 rational map..W │ │ │ │ -0009d130: 6179 7320 746f 2075 7365 2074 6869 7320 ays to use this │ │ │ │ -0009d140: 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d 3d3d method:.======== │ │ │ │ -0009d150: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -0009d160: 0a0a 2020 2a20 2a6e 6f74 6520 5261 7469 .. * *note Rati │ │ │ │ -0009d170: 6f6e 616c 4d61 7020 5f2a 3a20 5261 7469 onalMap _*: Rati │ │ │ │ -0009d180: 6f6e 616c 4d61 7020 5f75 735f 7374 2c20 onalMap _us_st, │ │ │ │ -0009d190: 2d2d 2064 6972 6563 7420 696d 6167 6520 -- direct image │ │ │ │ -0009d1a0: 7669 6120 6120 7261 7469 6f6e 616c 0a20 via a rational. │ │ │ │ -0009d1b0: 2020 206d 6170 0a2d 2d2d 2d2d 2d2d 2d2d map.--------- │ │ │ │ +0009ce50: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4f70 ********.. * Op │ │ │ │ +0009ce60: 6572 6174 6f72 3a20 2a6e 6f74 6520 5f2a erator: *note _* │ │ │ │ +0009ce70: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +0009ce80: 5f75 735f 7374 2c0a 2020 2a20 5573 6167 _us_st,. * Usag │ │ │ │ +0009ce90: 653a 200a 2020 2020 2020 2020 7068 695f e: . phi_ │ │ │ │ +0009cea0: 2a20 490a 2020 2a20 496e 7075 7473 3a0a * I. * Inputs:. │ │ │ │ +0009ceb0: 2020 2020 2020 2a20 7068 692c 2061 202a * phi, a * │ │ │ │ +0009cec0: 6e6f 7465 2072 6174 696f 6e61 6c20 6d61 note rational ma │ │ │ │ +0009ced0: 703a 2052 6174 696f 6e61 6c4d 6170 2c2c p: RationalMap,, │ │ │ │ +0009cee0: 2049 2061 2068 6f6d 6f67 656e 656f 7573 I a homogeneous │ │ │ │ +0009cef0: 2069 6465 616c 2069 6e20 7468 650a 2020 ideal in the. │ │ │ │ +0009cf00: 2020 2020 2020 636f 6f72 6469 6e61 7465 coordinate │ │ │ │ +0009cf10: 2072 696e 6720 6f66 2074 6865 2073 6f75 ring of the sou │ │ │ │ +0009cf20: 7263 6520 6f66 2070 6869 0a20 202a 204f rce of phi. * O │ │ │ │ +0009cf30: 7574 7075 7473 3a0a 2020 2020 2020 2a20 utputs:. * │ │ │ │ +0009cf40: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ +0009cf50: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ +0009cf60: 6561 6c2c 2c20 7468 6520 6964 6561 6c20 eal,, the ideal │ │ │ │ +0009cf70: 6f66 2074 6865 2063 6c6f 7375 7265 206f of the closure o │ │ │ │ +0009cf80: 6620 7468 650a 2020 2020 2020 2020 6469 f the. di │ │ │ │ +0009cf90: 7265 6374 2069 6d61 6765 206f 6620 5628 rect image of V( │ │ │ │ +0009cfa0: 4929 2076 6961 2070 6869 0a0a 4465 7363 I) via phi..Desc │ │ │ │ +0009cfb0: 7269 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d ription.======== │ │ │ │ +0009cfc0: 3d3d 3d0a 0a49 6e20 6d6f 7374 2063 6173 ===..In most cas │ │ │ │ +0009cfd0: 6573 2074 6869 7320 6973 2065 7175 6976 es this is equiv │ │ │ │ +0009cfe0: 616c 656e 7420 746f 2070 6869 2049 2c20 alent to phi I, │ │ │ │ +0009cff0: 7768 6963 6820 6973 2066 6173 7465 7220 which is faster │ │ │ │ +0009d000: 6275 7420 6d61 7920 6e6f 7420 7461 6b65 but may not take │ │ │ │ +0009d010: 0a69 6e74 6f20 6163 636f 756e 7420 6f74 .into account ot │ │ │ │ +0009d020: 6865 7220 7265 7072 6573 656e 7461 7469 her representati │ │ │ │ +0009d030: 6f6e 7320 6f66 2074 6865 206d 6170 2e0a ons of the map.. │ │ │ │ +0009d040: 0a53 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d .See also.====== │ │ │ │ +0009d050: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5261 ==.. * *note Ra │ │ │ │ +0009d060: 7469 6f6e 616c 4d61 7020 5e2a 2a20 4964 tionalMap ^** Id │ │ │ │ +0009d070: 6561 6c3a 2052 6174 696f 6e61 6c4d 6170 eal: RationalMap │ │ │ │ +0009d080: 205e 5f73 745f 7374 2049 6465 616c 2c20 ^_st_st Ideal, │ │ │ │ +0009d090: 2d2d 2069 6e76 6572 7365 2069 6d61 6765 -- inverse image │ │ │ │ +0009d0a0: 0a20 2020 2076 6961 2061 2072 6174 696f . via a ratio │ │ │ │ +0009d0b0: 6e61 6c20 6d61 700a 2020 2a20 2a6e 6f74 nal map. * *not │ │ │ │ +0009d0c0: 6520 736f 7572 6365 2852 6174 696f 6e61 e source(Rationa │ │ │ │ +0009d0d0: 6c4d 6170 293a 2073 6f75 7263 655f 6c70 lMap): source_lp │ │ │ │ +0009d0e0: 5261 7469 6f6e 616c 4d61 705f 7270 2c20 RationalMap_rp, │ │ │ │ +0009d0f0: 2d2d 2063 6f6f 7264 696e 6174 6520 7269 -- coordinate ri │ │ │ │ +0009d100: 6e67 206f 660a 2020 2020 7468 6520 736f ng of. the so │ │ │ │ +0009d110: 7572 6365 2066 6f72 2061 2072 6174 696f urce for a ratio │ │ │ │ +0009d120: 6e61 6c20 6d61 700a 0a57 6179 7320 746f nal map..Ways to │ │ │ │ +0009d130: 2075 7365 2074 6869 7320 6d65 7468 6f64 use this method │ │ │ │ +0009d140: 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d :.============== │ │ │ │ +0009d150: 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 ==========.. * │ │ │ │ +0009d160: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ +0009d170: 7020 5f2a 3a20 5261 7469 6f6e 616c 4d61 p _*: RationalMa │ │ │ │ +0009d180: 7020 5f75 735f 7374 2c20 2d2d 2064 6972 p _us_st, -- dir │ │ │ │ +0009d190: 6563 7420 696d 6167 6520 7669 6120 6120 ect image via a │ │ │ │ +0009d1a0: 7261 7469 6f6e 616c 0a20 2020 206d 6170 rational. map │ │ │ │ +0009d1b0: 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .--------------- │ │ │ │ 0009d1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d1e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d1f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009d200: 2d2d 2d2d 2d2d 0a0a 5468 6520 736f 7572 ------..The sour │ │ │ │ -0009d210: 6365 206f 6620 7468 6973 2064 6f63 756d ce of this docum │ │ │ │ -0009d220: 656e 7420 6973 2069 6e0a 2f62 7569 6c64 ent is in./build │ │ │ │ -0009d230: 2f72 6570 726f 6475 6369 626c 652d 7061 /reproducible-pa │ │ │ │ -0009d240: 7468 2f6d 6163 6175 6c61 7932 2d31 2e32 th/macaulay2-1.2 │ │ │ │ -0009d250: 352e 3131 2b64 732f 4d32 2f4d 6163 6175 5.11+ds/M2/Macau │ │ │ │ -0009d260: 6c61 7932 2f70 6163 6b61 6765 732f 4372 lay2/packages/Cr │ │ │ │ -0009d270: 656d 6f6e 612f 0a64 6f63 756d 656e 7461 emona/.documenta │ │ │ │ -0009d280: 7469 6f6e 2e6d 323a 3338 333a 302e 0a1f tion.m2:383:0... │ │ │ │ -0009d290: 0a46 696c 653a 2043 7265 6d6f 6e61 2e69 .File: Cremona.i │ │ │ │ -0009d2a0: 6e66 6f2c 204e 6f64 653a 2052 6174 696f nfo, Node: Ratio │ │ │ │ -0009d2b0: 6e61 6c4d 6170 207c 2049 6465 616c 2c20 nalMap | Ideal, │ │ │ │ -0009d2c0: 4e65 7874 3a20 5261 7469 6f6e 616c 4d61 Next: RationalMa │ │ │ │ -0009d2d0: 7020 7c7c 2049 6465 616c 2c20 5072 6576 p || Ideal, Prev │ │ │ │ -0009d2e0: 3a20 5261 7469 6f6e 616c 4d61 7020 5f75 : RationalMap _u │ │ │ │ -0009d2f0: 735f 7374 2c20 5570 3a20 546f 700a 0a52 s_st, Up: Top..R │ │ │ │ -0009d300: 6174 696f 6e61 6c4d 6170 207c 2049 6465 ationalMap | Ide │ │ │ │ -0009d310: 616c 202d 2d20 7265 7374 7269 6374 696f al -- restrictio │ │ │ │ -0009d320: 6e20 6f66 2061 2072 6174 696f 6e61 6c20 n of a rational │ │ │ │ -0009d330: 6d61 700a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a map.************ │ │ │ │ +0009d200: 0a0a 5468 6520 736f 7572 6365 206f 6620 ..The source of │ │ │ │ +0009d210: 7468 6973 2064 6f63 756d 656e 7420 6973 this document is │ │ │ │ +0009d220: 2069 6e0a 2f62 7569 6c64 2f72 6570 726f in./build/repro │ │ │ │ +0009d230: 6475 6369 626c 652d 7061 7468 2f6d 6163 ducible-path/mac │ │ │ │ +0009d240: 6175 6c61 7932 2d31 2e32 352e 3131 2b64 aulay2-1.25.11+d │ │ │ │ +0009d250: 732f 4d32 2f4d 6163 6175 6c61 7932 2f70 s/M2/Macaulay2/p │ │ │ │ +0009d260: 6163 6b61 6765 732f 4372 656d 6f6e 612f ackages/Cremona/ │ │ │ │ +0009d270: 0a64 6f63 756d 656e 7461 7469 6f6e 2e6d .documentation.m │ │ │ │ +0009d280: 323a 3338 333a 302e 0a1f 0a46 696c 653a 2:383:0....File: │ │ │ │ +0009d290: 2043 7265 6d6f 6e61 2e69 6e66 6f2c 204e Cremona.info, N │ │ │ │ +0009d2a0: 6f64 653a 2052 6174 696f 6e61 6c4d 6170 ode: RationalMap │ │ │ │ +0009d2b0: 207c 2049 6465 616c 2c20 4e65 7874 3a20 | Ideal, Next: │ │ │ │ +0009d2c0: 5261 7469 6f6e 616c 4d61 7020 7c7c 2049 RationalMap || I │ │ │ │ +0009d2d0: 6465 616c 2c20 5072 6576 3a20 5261 7469 deal, Prev: Rati │ │ │ │ +0009d2e0: 6f6e 616c 4d61 7020 5f75 735f 7374 2c20 onalMap _us_st, │ │ │ │ +0009d2f0: 5570 3a20 546f 700a 0a52 6174 696f 6e61 Up: Top..Rationa │ │ │ │ +0009d300: 6c4d 6170 207c 2049 6465 616c 202d 2d20 lMap | Ideal -- │ │ │ │ +0009d310: 7265 7374 7269 6374 696f 6e20 6f66 2061 restriction of a │ │ │ │ +0009d320: 2072 6174 696f 6e61 6c20 6d61 700a 2a2a rational map.** │ │ │ │ +0009d330: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0009d340: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 0009d350: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -0009d360: 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 4f70 ********.. * Op │ │ │ │ -0009d370: 6572 6174 6f72 3a20 2a6e 6f74 6520 7c3a erator: *note |: │ │ │ │ -0009d380: 2028 4d61 6361 756c 6179 3244 6f63 297c (Macaulay2Doc)| │ │ │ │ -0009d390: 2c0a 2020 2a20 5573 6167 653a 200a 2020 ,. * Usage: . │ │ │ │ -0009d3a0: 2020 2020 2020 5068 6920 7c20 490a 2020 Phi | I. │ │ │ │ -0009d3b0: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -0009d3c0: 2a20 5068 692c 2061 202a 6e6f 7465 2072 * Phi, a *note r │ │ │ │ -0009d3d0: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -0009d3e0: 696f 6e61 6c4d 6170 2c2c 2024 5c70 6869 ionalMap,, $\phi │ │ │ │ -0009d3f0: 3a58 205c 6461 7368 7269 6768 7461 7272 :X \dashrightarr │ │ │ │ -0009d400: 6f77 2059 240a 2020 2020 2020 2a20 492c ow Y$. * I, │ │ │ │ -0009d410: 2061 6e20 2a6e 6f74 6520 6964 6561 6c3a an *note ideal: │ │ │ │ -0009d420: 2028 4d61 6361 756c 6179 3244 6f63 2949 (Macaulay2Doc)I │ │ │ │ -0009d430: 6465 616c 2c2c 2061 2068 6f6d 6f67 656e deal,, a homogen │ │ │ │ -0009d440: 656f 7573 2069 6465 616c 206f 6620 610a eous ideal of a. │ │ │ │ -0009d450: 2020 2020 2020 2020 7375 6276 6172 6965 subvarie │ │ │ │ -0009d460: 7479 2024 5a5c 7375 6273 6574 2058 240a ty $Z\subset X$. │ │ │ │ -0009d470: 2020 2a20 4f75 7470 7574 733a 0a20 2020 * Outputs:. │ │ │ │ -0009d480: 2020 202a 2061 202a 6e6f 7465 2072 6174 * a *note rat │ │ │ │ -0009d490: 696f 6e61 6c20 6d61 703a 2052 6174 696f ional map: Ratio │ │ │ │ -0009d4a0: 6e61 6c4d 6170 2c2c 2074 6865 2072 6573 nalMap,, the res │ │ │ │ -0009d4b0: 7472 6963 7469 6f6e 206f 6620 245c 7068 triction of $\ph │ │ │ │ -0009d4c0: 6924 2074 6f20 245a 242c 0a20 2020 2020 i$ to $Z$,. │ │ │ │ -0009d4d0: 2020 2024 5c70 6869 7c5f 7b5a 7d3a 205a $\phi|_{Z}: Z │ │ │ │ -0009d4e0: 205c 6461 7368 7269 6768 7461 7272 6f77 \dashrightarrow │ │ │ │ -0009d4f0: 2059 240a 0a44 6573 6372 6970 7469 6f6e Y$..Description │ │ │ │ -0009d500: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2b2d .===========..+- │ │ │ │ +0009d360: 2a2a 0a0a 2020 2a20 4f70 6572 6174 6f72 **.. * Operator │ │ │ │ +0009d370: 3a20 2a6e 6f74 6520 7c3a 2028 4d61 6361 : *note |: (Maca │ │ │ │ +0009d380: 756c 6179 3244 6f63 297c 2c0a 2020 2a20 ulay2Doc)|,. * │ │ │ │ +0009d390: 5573 6167 653a 200a 2020 2020 2020 2020 Usage: . │ │ │ │ +0009d3a0: 5068 6920 7c20 490a 2020 2a20 496e 7075 Phi | I. * Inpu │ │ │ │ +0009d3b0: 7473 3a0a 2020 2020 2020 2a20 5068 692c ts:. * Phi, │ │ │ │ +0009d3c0: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +0009d3d0: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +0009d3e0: 6170 2c2c 2024 5c70 6869 3a58 205c 6461 ap,, $\phi:X \da │ │ │ │ +0009d3f0: 7368 7269 6768 7461 7272 6f77 2059 240a shrightarrow Y$. │ │ │ │ +0009d400: 2020 2020 2020 2a20 492c 2061 6e20 2a6e * I, an *n │ │ │ │ +0009d410: 6f74 6520 6964 6561 6c3a 2028 4d61 6361 ote ideal: (Maca │ │ │ │ +0009d420: 756c 6179 3244 6f63 2949 6465 616c 2c2c ulay2Doc)Ideal,, │ │ │ │ +0009d430: 2061 2068 6f6d 6f67 656e 656f 7573 2069 a homogeneous i │ │ │ │ +0009d440: 6465 616c 206f 6620 610a 2020 2020 2020 deal of a. │ │ │ │ +0009d450: 2020 7375 6276 6172 6965 7479 2024 5a5c subvariety $Z\ │ │ │ │ +0009d460: 7375 6273 6574 2058 240a 2020 2a20 4f75 subset X$. * Ou │ │ │ │ +0009d470: 7470 7574 733a 0a20 2020 2020 202a 2061 tputs:. * a │ │ │ │ +0009d480: 202a 6e6f 7465 2072 6174 696f 6e61 6c20 *note rational │ │ │ │ +0009d490: 6d61 703a 2052 6174 696f 6e61 6c4d 6170 map: RationalMap │ │ │ │ +0009d4a0: 2c2c 2074 6865 2072 6573 7472 6963 7469 ,, the restricti │ │ │ │ +0009d4b0: 6f6e 206f 6620 245c 7068 6924 2074 6f20 on of $\phi$ to │ │ │ │ +0009d4c0: 245a 242c 0a20 2020 2020 2020 2024 5c70 $Z$,. $\p │ │ │ │ +0009d4d0: 6869 7c5f 7b5a 7d3a 205a 205c 6461 7368 hi|_{Z}: Z \dash │ │ │ │ +0009d4e0: 7269 6768 7461 7272 6f77 2059 240a 0a44 rightarrow Y$..D │ │ │ │ +0009d4f0: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ +0009d500: 3d3d 3d3d 3d3d 0a0a 2b2d 2d2d 2d2d 2d2d ======..+------- │ │ │ │ 0009d510: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d520: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d530: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009d550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0009d560: 3120 3a20 5035 203d 205a 5a2f 3139 3031 1 : P5 = ZZ/1901 │ │ │ │ -0009d570: 3831 5b78 5f30 2e2e 785f 355d 2020 2020 81[x_0..x_5] │ │ │ │ +0009d550: 2d2d 2d2d 2d2d 2b0a 7c69 3120 3a20 5035 ------+.|i1 : P5 │ │ │ │ +0009d560: 203d 205a 5a2f 3139 3031 3831 5b78 5f30 = ZZ/190181[x_0 │ │ │ │ +0009d570: 2e2e 785f 355d 2020 2020 2020 2020 2020 ..x_5] │ │ │ │ 0009d580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d5a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009d5a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009d5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d5e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d5f0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009d600: 3120 3d20 5035 2020 2020 2020 2020 2020 1 = P5 │ │ │ │ +0009d5f0: 2020 2020 2020 7c0a 7c6f 3120 3d20 5035 |.|o1 = P5 │ │ │ │ +0009d600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d640: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009d640: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009d650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d690: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009d6a0: 3120 3a20 506f 6c79 6e6f 6d69 616c 5269 1 : PolynomialRi │ │ │ │ -0009d6b0: 6e67 2020 2020 2020 2020 2020 2020 2020 ng │ │ │ │ +0009d690: 2020 2020 2020 7c0a 7c6f 3120 3a20 506f |.|o1 : Po │ │ │ │ +0009d6a0: 6c79 6e6f 6d69 616c 5269 6e67 2020 2020 lynomialRing │ │ │ │ +0009d6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d6c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d6d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d6e0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0009d6e0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0009d6f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d700: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d710: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009d720: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009d730: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0009d740: 3220 3a20 5068 6920 3d20 7261 7469 6f6e 2 : Phi = ration │ │ │ │ -0009d750: 616c 4d61 7020 7b78 5f34 5e32 2d78 5f33 alMap {x_4^2-x_3 │ │ │ │ -0009d760: 2a78 5f35 2c78 5f32 2a78 5f34 2d78 5f31 *x_5,x_2*x_4-x_1 │ │ │ │ -0009d770: 2a78 5f35 2c78 5f32 2a78 5f33 2d78 5f31 *x_5,x_2*x_3-x_1 │ │ │ │ -0009d780: 2a78 5f34 2c78 5f32 5e32 2d78 7c0a 7c20 *x_4,x_2^2-x|.| │ │ │ │ +0009d730: 2d2d 2d2d 2d2d 2b0a 7c69 3220 3a20 5068 ------+.|i2 : Ph │ │ │ │ +0009d740: 6920 3d20 7261 7469 6f6e 616c 4d61 7020 i = rationalMap │ │ │ │ +0009d750: 7b78 5f34 5e32 2d78 5f33 2a78 5f35 2c78 {x_4^2-x_3*x_5,x │ │ │ │ +0009d760: 5f32 2a78 5f34 2d78 5f31 2a78 5f35 2c78 _2*x_4-x_1*x_5,x │ │ │ │ +0009d770: 5f32 2a78 5f33 2d78 5f31 2a78 5f34 2c78 _2*x_3-x_1*x_4,x │ │ │ │ +0009d780: 5f32 5e32 2d78 7c0a 7c20 2020 2020 2020 _2^2-x|.| │ │ │ │ 0009d790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d7b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d7c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d7d0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009d7e0: 3220 3d20 2d2d 2072 6174 696f 6e61 6c20 2 = -- rational │ │ │ │ -0009d7f0: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +0009d7d0: 2020 2020 2020 7c0a 7c6f 3220 3d20 2d2d |.|o2 = -- │ │ │ │ +0009d7e0: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +0009d7f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d820: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d840: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0009d820: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009d830: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +0009d840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d870: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d880: 2020 2020 736f 7572 6365 3a20 5072 6f6a source: Proj │ │ │ │ -0009d890: 282d 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 (------[x , x , │ │ │ │ -0009d8a0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +0009d870: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0009d880: 7572 6365 3a20 5072 6f6a 282d 2d2d 2d2d urce: Proj(----- │ │ │ │ +0009d890: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ +0009d8a0: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 0009d8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d8c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d8d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d8e0: 2031 3930 3138 3120 2030 2020 2031 2020 190181 0 1 │ │ │ │ -0009d8f0: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +0009d8c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009d8d0: 2020 2020 2020 2020 2020 2031 3930 3138 19018 │ │ │ │ +0009d8e0: 3120 2030 2020 2031 2020 2032 2020 2033 1 0 1 2 3 │ │ │ │ +0009d8f0: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 0009d900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d910: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d930: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0009d910: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009d920: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +0009d930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009d950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d960: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d970: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -0009d980: 282d 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 (------[x , x , │ │ │ │ -0009d990: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +0009d960: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0009d970: 7267 6574 3a20 5072 6f6a 282d 2d2d 2d2d rget: Proj(----- │ │ │ │ +0009d980: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ +0009d990: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 0009d9a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d9b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009d9c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009d9d0: 2031 3930 3138 3120 2030 2020 2031 2020 190181 0 1 │ │ │ │ -0009d9e0: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +0009d9b0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009d9c0: 2020 2020 2020 2020 2020 2031 3930 3138 19018 │ │ │ │ +0009d9d0: 3120 2030 2020 2031 2020 2032 2020 2033 1 0 1 2 3 │ │ │ │ +0009d9e0: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 0009d9f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009da00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009da10: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -0009da20: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +0009da00: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +0009da10: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +0009da20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009da30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009da40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009da50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009da50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009da60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009da70: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009da70: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009da80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009da90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009daa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009dab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dac0: 2020 2020 2078 2020 2d20 7820 7820 2c20 x - x x , │ │ │ │ +0009daa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009dab0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009dac0: 2020 2d20 7820 7820 2c20 2020 2020 2020 - x x , │ │ │ │ 0009dad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009daf0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009daf0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009db00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009db10: 2020 2020 2020 3420 2020 2033 2035 2020 4 3 5 │ │ │ │ +0009db10: 3420 2020 2033 2035 2020 2020 2020 2020 4 3 5 │ │ │ │ 0009db20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009db30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009db40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009db40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009db50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009db60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009db70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009db80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009db90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009dba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dbb0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009dbc0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009db90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009dba0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009dbb0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009dbc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dbd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dbe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dbe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dbf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dc00: 2020 2020 2020 3220 3420 2020 2031 2035 2 4 1 5 │ │ │ │ +0009dc00: 3220 3420 2020 2031 2035 2020 2020 2020 2 4 1 5 │ │ │ │ 0009dc10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dc20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dc30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dc30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dc40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dc50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dc60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dc80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009dc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dca0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009dcb0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009dc80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009dc90: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009dca0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009dcb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dcc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dcd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dcd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dcf0: 2020 2020 2020 3220 3320 2020 2031 2034 2 3 1 4 │ │ │ │ +0009dcf0: 3220 3320 2020 2031 2034 2020 2020 2020 2 3 1 4 │ │ │ │ 0009dd00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dd10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dd20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dd20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dd30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dd40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dd50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dd60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dd70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dd70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dd80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dd90: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009dd90: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009dda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ddb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ddc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ddd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dde0: 2020 2020 2078 2020 2d20 7820 7820 2c20 x - x x , │ │ │ │ +0009ddc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ddd0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009dde0: 2020 2d20 7820 7820 2c20 2020 2020 2020 - x x , │ │ │ │ 0009ddf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009de00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009de10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009de10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009de20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009de30: 2020 2020 2020 3220 2020 2030 2035 2020 2 0 5 │ │ │ │ +0009de30: 3220 2020 2030 2035 2020 2020 2020 2020 2 0 5 │ │ │ │ 0009de40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009de50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009de60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009de60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009de70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009de80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009de90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009deb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009dec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ded0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009dee0: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009deb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009dec0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ded0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009dee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009def0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009df00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009df00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009df10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009df20: 2020 2020 2020 3120 3220 2020 2030 2034 1 2 0 4 │ │ │ │ +0009df20: 3120 3220 2020 2030 2034 2020 2020 2020 1 2 0 4 │ │ │ │ 0009df30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009df40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009df50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009df50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009df60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009df70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009df80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009df90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dfa0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009dfa0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009dfb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dfc0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009dfc0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009dfd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009dfe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009dff0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e010: 2020 2020 2078 2020 2d20 7820 7820 2020 x - x x │ │ │ │ +0009dff0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e000: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009e010: 2020 2d20 7820 7820 2020 2020 2020 2020 - x x │ │ │ │ 0009e020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e040: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e040: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e060: 2020 2020 2020 3120 2020 2030 2033 2020 1 0 3 │ │ │ │ +0009e060: 3120 2020 2030 2033 2020 2020 2020 2020 1 0 3 │ │ │ │ 0009e070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e090: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e0a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e0b0: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +0009e090: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e0a0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0009e0b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e0c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e0d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e0e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e0e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e0f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e130: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009e140: 3220 3a20 5261 7469 6f6e 616c 4d61 7020 2 : RationalMap │ │ │ │ -0009e150: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -0009e160: 6e61 6c20 6d61 7020 6672 6f6d 2050 505e nal map from PP^ │ │ │ │ -0009e170: 3520 746f 2050 505e 3529 2020 2020 2020 5 to PP^5) │ │ │ │ -0009e180: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0009e130: 2020 2020 2020 7c0a 7c6f 3220 3a20 5261 |.|o2 : Ra │ │ │ │ +0009e140: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +0009e150: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +0009e160: 7020 6672 6f6d 2050 505e 3520 746f 2050 p from PP^5 to P │ │ │ │ +0009e170: 505e 3529 2020 2020 2020 2020 2020 2020 P^5) │ │ │ │ +0009e180: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0009e190: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e1a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e1b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e1c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009e1d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c5f ------------|.|_ │ │ │ │ -0009e1e0: 302a 785f 352c 785f 312a 785f 322d 785f 0*x_5,x_1*x_2-x_ │ │ │ │ -0009e1f0: 302a 785f 342c 785f 315e 322d 785f 302a 0*x_4,x_1^2-x_0* │ │ │ │ -0009e200: 785f 337d 2020 2020 2020 2020 2020 2020 x_3} │ │ │ │ +0009e1d0: 2d2d 2d2d 2d2d 7c0a 7c5f 302a 785f 352c ------|.|_0*x_5, │ │ │ │ +0009e1e0: 785f 312a 785f 322d 785f 302a 785f 342c x_1*x_2-x_0*x_4, │ │ │ │ +0009e1f0: 785f 315e 322d 785f 302a 785f 337d 2020 x_1^2-x_0*x_3} │ │ │ │ +0009e200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e220: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0009e220: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0009e230: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e240: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e250: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e260: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009e270: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0009e280: 3320 3a20 4920 3d20 6964 6561 6c28 7261 3 : I = ideal(ra │ │ │ │ -0009e290: 6e64 6f6d 2832 2c50 3529 2c72 616e 646f ndom(2,P5),rando │ │ │ │ -0009e2a0: 6d28 332c 5035 2929 3b20 2020 2020 2020 m(3,P5)); │ │ │ │ +0009e270: 2d2d 2d2d 2d2d 2b0a 7c69 3320 3a20 4920 ------+.|i3 : I │ │ │ │ +0009e280: 3d20 6964 6561 6c28 7261 6e64 6f6d 2832 = ideal(random(2 │ │ │ │ +0009e290: 2c50 3529 2c72 616e 646f 6d28 332c 5035 ,P5),random(3,P5 │ │ │ │ +0009e2a0: 2929 3b20 2020 2020 2020 2020 2020 2020 )); │ │ │ │ 0009e2b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e2c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e2c0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e2d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e2e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e2f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e310: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009e320: 3320 3a20 4964 6561 6c20 6f66 2050 3520 3 : Ideal of P5 │ │ │ │ +0009e310: 2020 2020 2020 7c0a 7c6f 3320 3a20 4964 |.|o3 : Id │ │ │ │ +0009e320: 6561 6c20 6f66 2050 3520 2020 2020 2020 eal of P5 │ │ │ │ 0009e330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e360: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0009e360: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0009e370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009e3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009e3b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0009e3c0: 3420 3a20 5068 6927 203d 2050 6869 7c49 4 : Phi' = Phi|I │ │ │ │ +0009e3b0: 2d2d 2d2d 2d2d 2b0a 7c69 3420 3a20 5068 ------+.|i4 : Ph │ │ │ │ +0009e3c0: 6927 203d 2050 6869 7c49 2020 2020 2020 i' = Phi|I │ │ │ │ 0009e3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e3f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e400: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e400: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e450: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009e460: 3420 3d20 2d2d 2072 6174 696f 6e61 6c20 4 = -- rational │ │ │ │ -0009e470: 6d61 7020 2d2d 2020 2020 2020 2020 2020 map -- │ │ │ │ +0009e450: 2020 2020 2020 7c0a 7c6f 3420 3d20 2d2d |.|o4 = -- │ │ │ │ +0009e460: 2072 6174 696f 6e61 6c20 6d61 7020 2d2d rational map -- │ │ │ │ +0009e470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e4a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e4a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e4d0: 205a 5a20 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0009e4c0: 2020 2020 2020 2020 2020 205a 5a20 2020 ZZ │ │ │ │ +0009e4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e4e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e4f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e500: 2020 2020 736f 7572 6365 3a20 7375 6276 source: subv │ │ │ │ -0009e510: 6172 6965 7479 206f 6620 5072 6f6a 282d ariety of Proj(- │ │ │ │ -0009e520: 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 7820 -----[x , x , x │ │ │ │ -0009e530: 2c20 7820 2c20 7820 2c20 7820 5d29 2064 , x , x , x ]) d │ │ │ │ -0009e540: 6566 696e 6564 2062 7920 2020 7c0a 7c20 efined by |.| │ │ │ │ +0009e4f0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0009e500: 7572 6365 3a20 7375 6276 6172 6965 7479 urce: subvariety │ │ │ │ +0009e510: 206f 6620 5072 6f6a 282d 2d2d 2d2d 2d5b of Proj(------[ │ │ │ │ +0009e520: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ +0009e530: 7820 2c20 7820 5d29 2064 6566 696e 6564 x , x ]) defined │ │ │ │ +0009e540: 2062 7920 2020 7c0a 7c20 2020 2020 2020 by |.| │ │ │ │ 0009e550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e560: 2020 2020 2020 2020 2020 2020 2020 2031 1 │ │ │ │ -0009e570: 3930 3138 3120 2030 2020 2031 2020 2032 90181 0 1 2 │ │ │ │ -0009e580: 2020 2033 2020 2034 2020 2035 2020 2020 3 4 5 │ │ │ │ -0009e590: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e5a0: 2020 2020 2020 2020 2020 2020 7b20 2020 { │ │ │ │ +0009e560: 2020 2020 2020 2020 2031 3930 3138 3120 190181 │ │ │ │ +0009e570: 2030 2020 2031 2020 2032 2020 2033 2020 0 1 2 3 │ │ │ │ +0009e580: 2034 2020 2035 2020 2020 2020 2020 2020 4 5 │ │ │ │ +0009e590: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e5a0: 2020 2020 2020 7b20 2020 2020 2020 2020 { │ │ │ │ 0009e5b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e5c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e5d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e5e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e5f0: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -0009e600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e610: 2020 2020 3220 2020 2020 2020 2020 2020 2 │ │ │ │ +0009e5e0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e5f0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0009e600: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009e610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e630: 2020 2020 2020 3220 2020 2020 7c0a 7c20 2 |.| │ │ │ │ -0009e640: 2020 2020 2020 2020 2020 2020 2078 2020 x │ │ │ │ -0009e650: 2b20 3136 3536 3678 2078 2020 2d20 3437 + 16566x x - 47 │ │ │ │ -0009e660: 3436 3878 2020 2d20 3730 3135 3878 2078 468x - 70158x x │ │ │ │ -0009e670: 2020 2b20 3930 3632 3678 2078 2020 2d20 + 90626x x - │ │ │ │ -0009e680: 3234 3231 3278 2020 2d20 2020 7c0a 7c20 24212x - |.| │ │ │ │ -0009e690: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0009e6a0: 2020 2020 2020 2020 3020 3120 2020 2020 0 1 │ │ │ │ -0009e6b0: 2020 2020 3120 2020 2020 2020 2020 3020 1 0 │ │ │ │ -0009e6c0: 3220 2020 2020 2020 2020 3120 3220 2020 2 1 2 │ │ │ │ -0009e6d0: 2020 2020 2020 3220 2020 2020 7c0a 7c20 2 |.| │ │ │ │ +0009e630: 3220 2020 2020 7c0a 7c20 2020 2020 2020 2 |.| │ │ │ │ +0009e640: 2020 2020 2020 2078 2020 2b20 3136 3536 x + 1656 │ │ │ │ +0009e650: 3678 2078 2020 2d20 3437 3436 3878 2020 6x x - 47468x │ │ │ │ +0009e660: 2d20 3730 3135 3878 2078 2020 2b20 3930 - 70158x x + 90 │ │ │ │ +0009e670: 3632 3678 2078 2020 2d20 3234 3231 3278 626x x - 24212x │ │ │ │ +0009e680: 2020 2d20 2020 7c0a 7c20 2020 2020 2020 - |.| │ │ │ │ +0009e690: 2020 2020 2020 2020 3020 2020 2020 2020 0 │ │ │ │ +0009e6a0: 2020 3020 3120 2020 2020 2020 2020 3120 0 1 1 │ │ │ │ +0009e6b0: 2020 2020 2020 2020 3020 3220 2020 2020 0 2 │ │ │ │ +0009e6c0: 2020 2020 3120 3220 2020 2020 2020 2020 1 2 │ │ │ │ +0009e6d0: 3220 2020 2020 7c0a 7c20 2020 2020 2020 2 |.| │ │ │ │ 0009e6e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e720: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e740: 3220 2020 2020 2020 2020 3320 2020 2020 2 3 │ │ │ │ -0009e750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e760: 2020 3220 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -0009e770: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e780: 2020 2020 2020 2020 2020 2020 2078 2078 x x │ │ │ │ -0009e790: 2020 2d20 3531 3631 3078 2020 2d20 3830 - 51610x - 80 │ │ │ │ -0009e7a0: 3531 3778 2078 2078 2020 2b20 3231 3132 517x x x + 2112 │ │ │ │ -0009e7b0: 3378 2078 2020 2d20 3334 3932 7820 7820 3x x - 3492x x │ │ │ │ -0009e7c0: 202b 2038 3534 3234 7820 2020 7c0a 7c20 + 85424x |.| │ │ │ │ -0009e7d0: 2020 2020 2020 2020 2020 2020 2020 3020 0 │ │ │ │ -0009e7e0: 3120 2020 2020 2020 2020 3120 2020 2020 1 1 │ │ │ │ -0009e7f0: 2020 2020 3020 3120 3220 2020 2020 2020 0 1 2 │ │ │ │ -0009e800: 2020 3120 3220 2020 2020 2020 2030 2032 1 2 0 2 │ │ │ │ -0009e810: 2020 2020 2020 2020 2031 2020 7c0a 7c20 1 |.| │ │ │ │ -0009e820: 2020 2020 2020 2020 2020 2020 7d20 2020 } │ │ │ │ +0009e720: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e730: 2020 2020 2020 2020 2020 3220 2020 2020 2 │ │ │ │ +0009e740: 2020 2020 3320 2020 2020 2020 2020 2020 3 │ │ │ │ +0009e750: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0009e760: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009e770: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e780: 2020 2020 2020 2078 2078 2020 2d20 3531 x x - 51 │ │ │ │ +0009e790: 3631 3078 2020 2d20 3830 3531 3778 2078 610x - 80517x x │ │ │ │ +0009e7a0: 2078 2020 2b20 3231 3132 3378 2078 2020 x + 21123x x │ │ │ │ +0009e7b0: 2d20 3334 3932 7820 7820 202b 2038 3534 - 3492x x + 854 │ │ │ │ +0009e7c0: 3234 7820 2020 7c0a 7c20 2020 2020 2020 24x |.| │ │ │ │ +0009e7d0: 2020 2020 2020 2020 3020 3120 2020 2020 0 1 │ │ │ │ +0009e7e0: 2020 2020 3120 2020 2020 2020 2020 3020 1 0 │ │ │ │ +0009e7f0: 3120 3220 2020 2020 2020 2020 3120 3220 1 2 1 2 │ │ │ │ +0009e800: 2020 2020 2020 2030 2032 2020 2020 2020 0 2 │ │ │ │ +0009e810: 2020 2031 2020 7c0a 7c20 2020 2020 2020 1 |.| │ │ │ │ +0009e820: 2020 2020 2020 7d20 2020 2020 2020 2020 } │ │ │ │ 0009e830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e860: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e880: 2020 205a 5a20 2020 2020 2020 2020 2020 ZZ │ │ │ │ +0009e860: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e870: 2020 2020 2020 2020 2020 2020 205a 5a20 ZZ │ │ │ │ +0009e880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e8a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e8b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e8c0: 2020 2020 7461 7267 6574 3a20 5072 6f6a target: Proj │ │ │ │ -0009e8d0: 282d 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 (------[x , x , │ │ │ │ -0009e8e0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +0009e8b0: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +0009e8c0: 7267 6574 3a20 5072 6f6a 282d 2d2d 2d2d rget: Proj(----- │ │ │ │ +0009e8d0: 2d5b 7820 2c20 7820 2c20 7820 2c20 7820 -[x , x , x , x │ │ │ │ +0009e8e0: 2c20 7820 2c20 7820 5d29 2020 2020 2020 , x , x ]) │ │ │ │ 0009e8f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e900: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e920: 2031 3930 3138 3120 2030 2020 2031 2020 190181 0 1 │ │ │ │ -0009e930: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +0009e900: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009e910: 2020 2020 2020 2020 2020 2031 3930 3138 19018 │ │ │ │ +0009e920: 3120 2030 2020 2031 2020 2032 2020 2033 1 0 1 2 3 │ │ │ │ +0009e930: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ 0009e940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e950: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009e960: 2020 2020 6465 6669 6e69 6e67 2066 6f72 defining for │ │ │ │ -0009e970: 6d73 3a20 7b20 2020 2020 2020 2020 2020 ms: { │ │ │ │ +0009e950: 2020 2020 2020 7c0a 7c20 2020 2020 6465 |.| de │ │ │ │ +0009e960: 6669 6e69 6e67 2066 6f72 6d73 3a20 7b20 fining forms: { │ │ │ │ +0009e970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e9a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009e9a0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009e9b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e9c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009e9c0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009e9d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009e9e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009e9f0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ea00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ea10: 2020 2020 2078 2020 2d20 7820 7820 2c20 x - x x , │ │ │ │ +0009e9f0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ea00: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ea10: 2020 2d20 7820 7820 2c20 2020 2020 2020 - x x , │ │ │ │ 0009ea20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ea30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ea40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ea40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ea50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ea60: 2020 2020 2020 3420 2020 2033 2035 2020 4 3 5 │ │ │ │ +0009ea60: 3420 2020 2033 2035 2020 2020 2020 2020 4 3 5 │ │ │ │ 0009ea70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ea80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ea90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ea90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009eaa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ead0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eae0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009eaf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eb00: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009eb10: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009eae0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009eaf0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009eb00: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009eb10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eb20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eb30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009eb30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009eb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eb50: 2020 2020 2020 3220 3420 2020 2031 2035 2 4 1 5 │ │ │ │ +0009eb50: 3220 3420 2020 2031 2035 2020 2020 2020 2 4 1 5 │ │ │ │ 0009eb60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eb70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eb80: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009eb80: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009eb90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ebb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ebc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ebd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ebe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ebf0: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009ec00: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009ebd0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ebe0: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ebf0: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009ec00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ec10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ec20: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ec20: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ec30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ec40: 2020 2020 2020 3220 3320 2020 2031 2034 2 3 1 4 │ │ │ │ +0009ec40: 3220 3320 2020 2031 2034 2020 2020 2020 2 3 1 4 │ │ │ │ 0009ec50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ec60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ec70: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ec70: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ec80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ec90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ecb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ecc0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ecc0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ecd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ece0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009ece0: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009ecf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ed00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ed10: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ed20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ed30: 2020 2020 2078 2020 2d20 7820 7820 2c20 x - x x , │ │ │ │ +0009ed10: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ed20: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ed30: 2020 2d20 7820 7820 2c20 2020 2020 2020 - x x , │ │ │ │ 0009ed40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ed50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ed60: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ed60: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ed70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ed80: 2020 2020 2020 3220 2020 2030 2035 2020 2 0 5 │ │ │ │ +0009ed80: 3220 2020 2030 2035 2020 2020 2020 2020 2 0 5 │ │ │ │ 0009ed90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eda0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009edb0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009edb0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009edc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009edd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ede0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009edf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ee00: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ee10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ee20: 2020 2020 2078 2078 2020 2d20 7820 7820 x x - x x │ │ │ │ -0009ee30: 2c20 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +0009ee00: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ee10: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ee20: 2078 2020 2d20 7820 7820 2c20 2020 2020 x - x x , │ │ │ │ +0009ee30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ee40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ee50: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ee50: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ee60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ee70: 2020 2020 2020 3120 3220 2020 2030 2034 1 2 0 4 │ │ │ │ +0009ee70: 3120 3220 2020 2030 2034 2020 2020 2020 1 2 0 4 │ │ │ │ 0009ee80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ee90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eea0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009eea0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009eeb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009eee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009eef0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009eef0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ef00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ef10: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ +0009ef10: 3220 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009ef20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ef30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ef40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ef50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ef60: 2020 2020 2078 2020 2d20 7820 7820 2020 x - x x │ │ │ │ +0009ef40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009ef50: 2020 2020 2020 2020 2020 2020 2020 2078 x │ │ │ │ +0009ef60: 2020 2d20 7820 7820 2020 2020 2020 2020 - x x │ │ │ │ 0009ef70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ef80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ef90: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ef90: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009efa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009efb0: 2020 2020 2020 3120 2020 2030 2033 2020 1 0 3 │ │ │ │ +0009efb0: 3120 2020 2030 2033 2020 2020 2020 2020 1 0 3 │ │ │ │ 0009efc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009efd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009efe0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009eff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f000: 2020 2020 7d20 2020 2020 2020 2020 2020 } │ │ │ │ +0009efe0: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009eff0: 2020 2020 2020 2020 2020 2020 2020 7d20 } │ │ │ │ +0009f000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f030: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009f030: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009f040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f080: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009f090: 3420 3a20 5261 7469 6f6e 616c 4d61 7020 4 : RationalMap │ │ │ │ -0009f0a0: 2871 7561 6472 6174 6963 2072 6174 696f (quadratic ratio │ │ │ │ -0009f0b0: 6e61 6c20 6d61 7020 6672 6f6d 2074 6872 nal map from thr │ │ │ │ -0009f0c0: 6565 666f 6c64 2069 6e20 5050 5e35 2074 eefold in PP^5 t │ │ │ │ -0009f0d0: 6f20 5050 5e35 2920 2020 2020 7c0a 7c2d o PP^5) |.|- │ │ │ │ +0009f080: 2020 2020 2020 7c0a 7c6f 3420 3a20 5261 |.|o4 : Ra │ │ │ │ +0009f090: 7469 6f6e 616c 4d61 7020 2871 7561 6472 tionalMap (quadr │ │ │ │ +0009f0a0: 6174 6963 2072 6174 696f 6e61 6c20 6d61 atic rational ma │ │ │ │ +0009f0b0: 7020 6672 6f6d 2074 6872 6565 666f 6c64 p from threefold │ │ │ │ +0009f0c0: 2069 6e20 5050 5e35 2074 6f20 5050 5e35 in PP^5 to PP^5 │ │ │ │ +0009f0d0: 2920 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d ) |.|------- │ │ │ │ 0009f0e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f0f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009f120: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0009f120: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0009f130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f150: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +0009f150: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009f160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f170: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0009f180: 3831 3438 7820 7820 202d 2033 3137 3739 8148x x - 31779 │ │ │ │ -0009f190: 7820 7820 202b 2031 3936 3035 7820 7820 x x + 19605x x │ │ │ │ -0009f1a0: 202d 2037 3639 7820 202d 2037 3738 3634 - 769x - 77864 │ │ │ │ -0009f1b0: 7820 7820 202b 2031 3036 3630 7820 7820 x x + 10660x x │ │ │ │ -0009f1c0: 202b 2020 2020 2020 2020 2020 7c0a 7c20 + |.| │ │ │ │ -0009f1d0: 2020 2020 2030 2033 2020 2020 2020 2020 0 3 │ │ │ │ -0009f1e0: 2031 2033 2020 2020 2020 2020 2032 2033 1 3 2 3 │ │ │ │ -0009f1f0: 2020 2020 2020 2033 2020 2020 2020 2020 3 │ │ │ │ -0009f200: 2030 2034 2020 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ -0009f210: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009f170: 2020 2020 2020 7c0a 7c33 3831 3438 7820 |.|38148x │ │ │ │ +0009f180: 7820 202d 2033 3137 3739 7820 7820 202b x - 31779x x + │ │ │ │ +0009f190: 2031 3936 3035 7820 7820 202d 2037 3639 19605x x - 769 │ │ │ │ +0009f1a0: 7820 202d 2037 3738 3634 7820 7820 202b x - 77864x x + │ │ │ │ +0009f1b0: 2031 3036 3630 7820 7820 202b 2020 2020 10660x x + │ │ │ │ +0009f1c0: 2020 2020 2020 7c0a 7c20 2020 2020 2030 |.| 0 │ │ │ │ +0009f1d0: 2033 2020 2020 2020 2020 2031 2033 2020 3 1 3 │ │ │ │ +0009f1e0: 2020 2020 2020 2032 2033 2020 2020 2020 2 3 │ │ │ │ +0009f1f0: 2033 2020 2020 2020 2020 2030 2034 2020 3 0 4 │ │ │ │ +0009f200: 2020 2020 2020 2031 2034 2020 2020 2020 1 4 │ │ │ │ +0009f210: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009f220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f260: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009f270: 3220 2020 2020 2020 2033 2020 2020 2020 2 3 │ │ │ │ -0009f280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f290: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +0009f260: 2020 2020 2020 7c0a 7c20 3220 2020 2020 |.| 2 │ │ │ │ +0009f270: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ +0009f280: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0009f290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f2a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f2b0: 2020 2020 2020 2020 2020 2020 7c0a 7c78 |.|x │ │ │ │ -0009f2c0: 2020 2b20 3336 3035 7820 202b 2031 3231 + 3605x + 121 │ │ │ │ -0009f2d0: 3234 7820 7820 7820 202d 2033 3035 3438 24x x x - 30548 │ │ │ │ -0009f2e0: 7820 7820 202d 2035 3737 3433 7820 7820 x x - 57743x x │ │ │ │ -0009f2f0: 7820 202d 2031 3235 3930 7820 7820 7820 x - 12590x x x │ │ │ │ -0009f300: 202d 2020 2020 2020 2020 2020 7c0a 7c20 - |.| │ │ │ │ -0009f310: 3220 2020 2020 2020 2032 2020 2020 2020 2 2 │ │ │ │ -0009f320: 2020 2030 2031 2033 2020 2020 2020 2020 0 1 3 │ │ │ │ -0009f330: 2031 2033 2020 2020 2020 2020 2030 2032 1 3 0 2 │ │ │ │ -0009f340: 2033 2020 2020 2020 2020 2031 2032 2033 3 1 2 3 │ │ │ │ -0009f350: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0009f2b0: 2020 2020 2020 7c0a 7c78 2020 2b20 3336 |.|x + 36 │ │ │ │ +0009f2c0: 3035 7820 202b 2031 3231 3234 7820 7820 05x + 12124x x │ │ │ │ +0009f2d0: 7820 202d 2033 3035 3438 7820 7820 202d x - 30548x x - │ │ │ │ +0009f2e0: 2035 3737 3433 7820 7820 7820 202d 2031 57743x x x - 1 │ │ │ │ +0009f2f0: 3235 3930 7820 7820 7820 202d 2020 2020 2590x x x - │ │ │ │ +0009f300: 2020 2020 2020 7c0a 7c20 3220 2020 2020 |.| 2 │ │ │ │ +0009f310: 2020 2032 2020 2020 2020 2020 2030 2031 2 0 1 │ │ │ │ +0009f320: 2033 2020 2020 2020 2020 2031 2033 2020 3 1 3 │ │ │ │ +0009f330: 2020 2020 2020 2030 2032 2033 2020 2020 0 2 3 │ │ │ │ +0009f340: 2020 2020 2031 2032 2033 2020 2020 2020 1 2 3 │ │ │ │ +0009f350: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0009f360: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f370: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f380: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f390: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009f3a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0009f3a0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0009f3b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f3c0: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0009f3c0: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0009f3d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f3e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f3f0: 2020 2020 2020 2020 2020 2020 7c0a 7c37 |.|7 │ │ │ │ -0009f400: 3431 3078 2078 2020 2d20 3636 3536 3578 410x x - 66565x │ │ │ │ -0009f410: 2078 2020 2d20 3439 3139 3278 2020 2d20 x - 49192x - │ │ │ │ -0009f420: 3731 3332 3178 2078 2020 2b20 3138 3433 71321x x + 1843 │ │ │ │ -0009f430: 3378 2078 2020 2d20 3436 3436 3078 2078 3x x - 46460x x │ │ │ │ -0009f440: 2020 2b20 2020 2020 2020 2020 7c0a 7c20 + |.| │ │ │ │ -0009f450: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -0009f460: 3320 3420 2020 2020 2020 2020 3420 2020 3 4 4 │ │ │ │ -0009f470: 2020 2020 2020 3020 3520 2020 2020 2020 0 5 │ │ │ │ -0009f480: 2020 3120 3520 2020 2020 2020 2020 3220 1 5 2 │ │ │ │ -0009f490: 3520 2020 2020 2020 2020 2020 7c0a 7c20 5 |.| │ │ │ │ +0009f3f0: 2020 2020 2020 7c0a 7c37 3431 3078 2078 |.|7410x x │ │ │ │ +0009f400: 2020 2d20 3636 3536 3578 2078 2020 2d20 - 66565x x - │ │ │ │ +0009f410: 3439 3139 3278 2020 2d20 3731 3332 3178 49192x - 71321x │ │ │ │ +0009f420: 2078 2020 2b20 3138 3433 3378 2078 2020 x + 18433x x │ │ │ │ +0009f430: 2d20 3436 3436 3078 2078 2020 2b20 2020 - 46460x x + │ │ │ │ +0009f440: 2020 2020 2020 7c0a 7c20 2020 2020 3220 |.| 2 │ │ │ │ +0009f450: 3420 2020 2020 2020 2020 3320 3420 2020 4 3 4 │ │ │ │ +0009f460: 2020 2020 2020 3420 2020 2020 2020 2020 4 │ │ │ │ +0009f470: 3020 3520 2020 2020 2020 2020 3120 3520 0 5 1 5 │ │ │ │ +0009f480: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ +0009f490: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009f4a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f4b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f4c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f4d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f4e0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009f4f0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ -0009f500: 2020 2032 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -0009f510: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0009f520: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ -0009f530: 2020 2020 2020 2020 2020 2020 7c0a 7c31 |.|1 │ │ │ │ -0009f540: 3933 3537 7820 7820 202d 2032 3535 3035 9357x x - 25505 │ │ │ │ -0009f550: 7820 7820 202b 2031 3135 3038 7820 7820 x x + 11508x x │ │ │ │ -0009f560: 202b 2033 3530 3236 7820 7820 202d 2037 + 35026x x - 7 │ │ │ │ -0009f570: 3930 3838 7820 202b 2032 3636 3135 7820 9088x + 26615x │ │ │ │ -0009f580: 7820 7820 2020 2020 2020 2020 7c0a 7c20 x x |.| │ │ │ │ -0009f590: 2020 2020 2032 2033 2020 2020 2020 2020 2 3 │ │ │ │ -0009f5a0: 2030 2033 2020 2020 2020 2020 2031 2033 0 3 1 3 │ │ │ │ -0009f5b0: 2020 2020 2020 2020 2032 2033 2020 2020 2 3 │ │ │ │ -0009f5c0: 2020 2020 2033 2020 2020 2020 2020 2030 3 0 │ │ │ │ -0009f5d0: 2031 2034 2020 2020 2020 2020 7c0a 7c2d 1 4 |.|- │ │ │ │ +0009f4e0: 2020 2020 2020 7c0a 7c20 2020 2020 2032 |.| 2 │ │ │ │ +0009f4f0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +0009f500: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009f510: 2020 2020 2032 2020 2020 2020 2020 2033 2 3 │ │ │ │ +0009f520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009f530: 2020 2020 2020 7c0a 7c31 3933 3537 7820 |.|19357x │ │ │ │ +0009f540: 7820 202d 2032 3535 3035 7820 7820 202b x - 25505x x + │ │ │ │ +0009f550: 2031 3135 3038 7820 7820 202b 2033 3530 11508x x + 350 │ │ │ │ +0009f560: 3236 7820 7820 202d 2037 3930 3838 7820 26x x - 79088x │ │ │ │ +0009f570: 202b 2032 3636 3135 7820 7820 7820 2020 + 26615x x x │ │ │ │ +0009f580: 2020 2020 2020 7c0a 7c20 2020 2020 2032 |.| 2 │ │ │ │ +0009f590: 2033 2020 2020 2020 2020 2030 2033 2020 3 0 3 │ │ │ │ +0009f5a0: 2020 2020 2020 2031 2033 2020 2020 2020 1 3 │ │ │ │ +0009f5b0: 2020 2032 2033 2020 2020 2020 2020 2033 2 3 3 │ │ │ │ +0009f5c0: 2020 2020 2020 2020 2030 2031 2034 2020 0 1 4 │ │ │ │ +0009f5d0: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0009f5e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f5f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f600: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f610: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009f620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0009f620: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0009f630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f640: 2020 2020 2020 2020 2020 2020 3220 2020 2 │ │ │ │ +0009f640: 2020 2020 2020 3220 2020 2020 2020 2020 2 │ │ │ │ 0009f650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f670: 2020 2020 2020 2020 2020 2020 7c0a 7c34 |.|4 │ │ │ │ -0009f680: 3639 3878 2078 2020 2d20 3736 3839 3078 698x x - 76890x │ │ │ │ -0009f690: 2078 2020 2d20 3535 3537 3478 202c 2020 x - 55574x , │ │ │ │ +0009f670: 2020 2020 2020 7c0a 7c34 3639 3878 2078 |.|4698x x │ │ │ │ +0009f680: 2020 2d20 3736 3839 3078 2078 2020 2d20 - 76890x x - │ │ │ │ +0009f690: 3535 3537 3478 202c 2020 2020 2020 2020 55574x , │ │ │ │ 0009f6a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f6b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f6c0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009f6d0: 2020 2020 3320 3520 2020 2020 2020 2020 3 5 │ │ │ │ -0009f6e0: 3420 3520 2020 2020 2020 2020 3520 2020 4 5 5 │ │ │ │ +0009f6c0: 2020 2020 2020 7c0a 7c20 2020 2020 3320 |.| 3 │ │ │ │ +0009f6d0: 3520 2020 2020 2020 2020 3420 3520 2020 5 4 5 │ │ │ │ +0009f6e0: 2020 2020 2020 3520 2020 2020 2020 2020 5 │ │ │ │ 0009f6f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f710: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009f710: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009f720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009f750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f760: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009f770: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +0009f760: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009f770: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009f780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f790: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ +0009f790: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ 0009f7a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f7b0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009f7c0: 2d20 3130 3033 3678 2078 2020 2b20 3339 - 10036x x + 39 │ │ │ │ -0009f7d0: 3435 3778 2078 2078 2020 2b20 3837 3978 457x x x + 879x │ │ │ │ -0009f7e0: 2078 2078 2020 2b20 3738 3536 3078 2078 x x + 78560x x │ │ │ │ -0009f7f0: 2020 2b20 3833 3939 3778 2078 2078 2020 + 83997x x x │ │ │ │ -0009f800: 2d20 2020 2020 2020 2020 2020 7c0a 7c20 - |.| │ │ │ │ -0009f810: 2020 2020 2020 2020 3120 3420 2020 2020 1 4 │ │ │ │ -0009f820: 2020 2020 3020 3220 3420 2020 2020 2020 0 2 4 │ │ │ │ -0009f830: 3120 3220 3420 2020 2020 2020 2020 3220 1 2 4 2 │ │ │ │ -0009f840: 3420 2020 2020 2020 2020 3020 3320 3420 4 0 3 4 │ │ │ │ -0009f850: 2020 2020 2020 2020 2020 2020 7c0a 7c2d |.|- │ │ │ │ +0009f7b0: 2020 2020 2020 7c0a 7c20 2d20 3130 3033 |.| - 1003 │ │ │ │ +0009f7c0: 3678 2078 2020 2b20 3339 3435 3778 2078 6x x + 39457x x │ │ │ │ +0009f7d0: 2078 2020 2b20 3837 3978 2078 2078 2020 x + 879x x x │ │ │ │ +0009f7e0: 2b20 3738 3536 3078 2078 2020 2b20 3833 + 78560x x + 83 │ │ │ │ +0009f7f0: 3939 3778 2078 2078 2020 2d20 2020 2020 997x x x - │ │ │ │ +0009f800: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009f810: 2020 3120 3420 2020 2020 2020 2020 3020 1 4 0 │ │ │ │ +0009f820: 3220 3420 2020 2020 2020 3120 3220 3420 2 4 1 2 4 │ │ │ │ +0009f830: 2020 2020 2020 2020 3220 3420 2020 2020 2 4 │ │ │ │ +0009f840: 2020 2020 3020 3320 3420 2020 2020 2020 0 3 4 │ │ │ │ +0009f850: 2020 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d |.|------- │ │ │ │ 0009f860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009f8a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0009f8a0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0009f8b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f8c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009f8d0: 2032 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -0009f8e0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0009f8f0: 2020 2020 2020 2032 2020 2020 7c0a 7c34 2 |.|4 │ │ │ │ -0009f900: 3235 3532 7820 7820 7820 202b 2036 3937 2552x x x + 697 │ │ │ │ -0009f910: 3532 7820 7820 7820 202d 2037 3837 3133 52x x x - 78713 │ │ │ │ -0009f920: 7820 7820 202b 2035 3236 3938 7820 7820 x x + 52698x x │ │ │ │ -0009f930: 202d 2034 3635 3937 7820 7820 202d 2034 - 46597x x - 4 │ │ │ │ -0009f940: 3236 3636 7820 7820 202b 2020 7c0a 7c20 2666x x + |.| │ │ │ │ -0009f950: 2020 2020 2031 2033 2034 2020 2020 2020 1 3 4 │ │ │ │ -0009f960: 2020 2032 2033 2034 2020 2020 2020 2020 2 3 4 │ │ │ │ -0009f970: 2033 2034 2020 2020 2020 2020 2030 2034 3 4 0 4 │ │ │ │ -0009f980: 2020 2020 2020 2020 2031 2034 2020 2020 1 4 │ │ │ │ -0009f990: 2020 2020 2032 2034 2020 2020 7c0a 7c2d 2 4 |.|- │ │ │ │ +0009f8c0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0009f8d0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009f8e0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0009f8f0: 2032 2020 2020 7c0a 7c34 3235 3532 7820 2 |.|42552x │ │ │ │ +0009f900: 7820 7820 202b 2036 3937 3532 7820 7820 x x + 69752x x │ │ │ │ +0009f910: 7820 202d 2037 3837 3133 7820 7820 202b x - 78713x x + │ │ │ │ +0009f920: 2035 3236 3938 7820 7820 202d 2034 3635 52698x x - 465 │ │ │ │ +0009f930: 3937 7820 7820 202d 2034 3236 3636 7820 97x x - 42666x │ │ │ │ +0009f940: 7820 202b 2020 7c0a 7c20 2020 2020 2031 x + |.| 1 │ │ │ │ +0009f950: 2033 2034 2020 2020 2020 2020 2032 2033 3 4 2 3 │ │ │ │ +0009f960: 2034 2020 2020 2020 2020 2033 2034 2020 4 3 4 │ │ │ │ +0009f970: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ +0009f980: 2020 2031 2034 2020 2020 2020 2020 2032 1 4 2 │ │ │ │ +0009f990: 2034 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 4 |.|------- │ │ │ │ 0009f9a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f9b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f9c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009f9d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009f9e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0009f9f0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ -0009fa00: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -0009fa10: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009f9e0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0009f9f0: 2032 2020 2020 2020 2020 2033 2020 2020 2 3 │ │ │ │ +0009fa00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +0009fa10: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 0009fa20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fa30: 2020 2020 2020 2020 2020 2020 7c0a 7c33 |.|3 │ │ │ │ -0009fa40: 3431 3430 7820 7820 202d 2032 3932 3036 4140x x - 29206 │ │ │ │ -0009fa50: 7820 202d 2038 3834 3035 7820 7820 7820 x - 88405x x x │ │ │ │ -0009fa60: 202d 2031 3537 3730 7820 7820 202b 2031 - 15770x x + 1 │ │ │ │ -0009fa70: 3830 3539 7820 7820 7820 202d 2031 3433 8059x x x - 143 │ │ │ │ -0009fa80: 3632 7820 7820 7820 202b 2020 7c0a 7c20 62x x x + |.| │ │ │ │ -0009fa90: 2020 2020 2033 2034 2020 2020 2020 2020 3 4 │ │ │ │ -0009faa0: 2034 2020 2020 2020 2020 2030 2031 2035 4 0 1 5 │ │ │ │ -0009fab0: 2020 2020 2020 2020 2031 2035 2020 2020 1 5 │ │ │ │ -0009fac0: 2020 2020 2030 2032 2035 2020 2020 2020 0 2 5 │ │ │ │ -0009fad0: 2020 2031 2032 2035 2020 2020 7c0a 7c2d 1 2 5 |.|- │ │ │ │ +0009fa30: 2020 2020 2020 7c0a 7c33 3431 3430 7820 |.|34140x │ │ │ │ +0009fa40: 7820 202d 2032 3932 3036 7820 202d 2038 x - 29206x - 8 │ │ │ │ +0009fa50: 3834 3035 7820 7820 7820 202d 2031 3537 8405x x x - 157 │ │ │ │ +0009fa60: 3730 7820 7820 202b 2031 3830 3539 7820 70x x + 18059x │ │ │ │ +0009fa70: 7820 7820 202d 2031 3433 3632 7820 7820 x x - 14362x x │ │ │ │ +0009fa80: 7820 202b 2020 7c0a 7c20 2020 2020 2033 x + |.| 3 │ │ │ │ +0009fa90: 2034 2020 2020 2020 2020 2034 2020 2020 4 4 │ │ │ │ +0009faa0: 2020 2020 2030 2031 2035 2020 2020 2020 0 1 5 │ │ │ │ +0009fab0: 2020 2031 2035 2020 2020 2020 2020 2030 1 5 0 │ │ │ │ +0009fac0: 2032 2035 2020 2020 2020 2020 2031 2032 2 5 1 2 │ │ │ │ +0009fad0: 2035 2020 2020 7c0a 7c2d 2d2d 2d2d 2d2d 5 |.|------- │ │ │ │ 0009fae0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009faf0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fb00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fb10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009fb20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0009fb30: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0009fb20: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2032 ------|.| 2 │ │ │ │ +0009fb30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009fb40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009fb50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fb60: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -0009fb70: 2020 2020 2020 2020 2020 2020 7c0a 7c38 |.|8 │ │ │ │ -0009fb80: 3739 3335 7820 7820 202b 2036 3733 3731 7935x x + 67371 │ │ │ │ -0009fb90: 7820 7820 7820 202d 2036 3035 3834 7820 x x x - 60584x │ │ │ │ -0009fba0: 7820 7820 202d 2038 3134 3831 7820 7820 x x - 81481x x │ │ │ │ -0009fbb0: 7820 202d 2036 3132 3836 7820 7820 202b x - 61286x x + │ │ │ │ -0009fbc0: 2036 3338 3738 7820 7820 7820 7c0a 7c20 63878x x x |.| │ │ │ │ -0009fbd0: 2020 2020 2032 2035 2020 2020 2020 2020 2 5 │ │ │ │ -0009fbe0: 2030 2033 2035 2020 2020 2020 2020 2031 0 3 5 1 │ │ │ │ -0009fbf0: 2033 2035 2020 2020 2020 2020 2032 2033 3 5 2 3 │ │ │ │ -0009fc00: 2035 2020 2020 2020 2020 2033 2035 2020 5 3 5 │ │ │ │ -0009fc10: 2020 2020 2020 2030 2034 2035 7c0a 7c2d 0 4 5|.|- │ │ │ │ +0009fb60: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +0009fb70: 2020 2020 2020 7c0a 7c38 3739 3335 7820 |.|87935x │ │ │ │ +0009fb80: 7820 202b 2036 3733 3731 7820 7820 7820 x + 67371x x x │ │ │ │ +0009fb90: 202d 2036 3035 3834 7820 7820 7820 202d - 60584x x x - │ │ │ │ +0009fba0: 2038 3134 3831 7820 7820 7820 202d 2036 81481x x x - 6 │ │ │ │ +0009fbb0: 3132 3836 7820 7820 202b 2036 3338 3738 1286x x + 63878 │ │ │ │ +0009fbc0: 7820 7820 7820 7c0a 7c20 2020 2020 2032 x x x |.| 2 │ │ │ │ +0009fbd0: 2035 2020 2020 2020 2020 2030 2033 2035 5 0 3 5 │ │ │ │ +0009fbe0: 2020 2020 2020 2020 2031 2033 2035 2020 1 3 5 │ │ │ │ +0009fbf0: 2020 2020 2020 2032 2033 2035 2020 2020 2 3 5 │ │ │ │ +0009fc00: 2020 2020 2033 2035 2020 2020 2020 2020 3 5 │ │ │ │ +0009fc10: 2030 2034 2035 7c0a 7c2d 2d2d 2d2d 2d2d 0 4 5|.|------- │ │ │ │ 0009fc20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fc30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fc40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fc50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009fc60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ +0009fc60: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ 0009fc70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009fc80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fc90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fca0: 2032 2020 2020 2020 2020 2020 2020 2032 2 2 │ │ │ │ -0009fcb0: 2020 2020 2020 2020 2020 2032 7c0a 7c2d 2|.|- │ │ │ │ -0009fcc0: 2033 3330 3437 7820 7820 7820 202b 2035 33047x x x + 5 │ │ │ │ -0009fcd0: 3336 3733 7820 7820 7820 202b 2038 3836 3673x x x + 886 │ │ │ │ -0009fce0: 3033 7820 7820 7820 202d 2037 3132 3330 03x x x - 71230 │ │ │ │ -0009fcf0: 7820 7820 202d 2034 3538 3539 7820 7820 x x - 45859x x │ │ │ │ -0009fd00: 202b 2031 3031 3637 7820 7820 7c0a 7c20 + 10167x x |.| │ │ │ │ -0009fd10: 2020 2020 2020 2031 2034 2035 2020 2020 1 4 5 │ │ │ │ -0009fd20: 2020 2020 2032 2034 2035 2020 2020 2020 2 4 5 │ │ │ │ -0009fd30: 2020 2033 2034 2035 2020 2020 2020 2020 3 4 5 │ │ │ │ -0009fd40: 2034 2035 2020 2020 2020 2020 2030 2035 4 5 0 5 │ │ │ │ -0009fd50: 2020 2020 2020 2020 2031 2035 7c0a 7c2d 1 5|.|- │ │ │ │ +0009fc90: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +0009fca0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009fcb0: 2020 2020 2032 7c0a 7c2d 2033 3330 3437 2|.|- 33047 │ │ │ │ +0009fcc0: 7820 7820 7820 202b 2035 3336 3733 7820 x x x + 53673x │ │ │ │ +0009fcd0: 7820 7820 202b 2038 3836 3033 7820 7820 x x + 88603x x │ │ │ │ +0009fce0: 7820 202d 2037 3132 3330 7820 7820 202d x - 71230x x - │ │ │ │ +0009fcf0: 2034 3538 3539 7820 7820 202b 2031 3031 45859x x + 101 │ │ │ │ +0009fd00: 3637 7820 7820 7c0a 7c20 2020 2020 2020 67x x |.| │ │ │ │ +0009fd10: 2031 2034 2035 2020 2020 2020 2020 2032 1 4 5 2 │ │ │ │ +0009fd20: 2034 2035 2020 2020 2020 2020 2033 2034 4 5 3 4 │ │ │ │ +0009fd30: 2035 2020 2020 2020 2020 2034 2035 2020 5 4 5 │ │ │ │ +0009fd40: 2020 2020 2020 2030 2035 2020 2020 2020 0 5 │ │ │ │ +0009fd50: 2020 2031 2035 7c0a 7c2d 2d2d 2d2d 2d2d 1 5|.|------- │ │ │ │ 0009fd60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fd70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fd80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fd90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009fda0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 7c0a 7c20 ------------|.| │ │ │ │ -0009fdb0: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ -0009fdc0: 2020 2020 3220 2020 2020 2020 2020 2032 2 2 │ │ │ │ -0009fdd0: 2020 2020 2020 2020 2033 2020 2020 2020 3 │ │ │ │ +0009fda0: 2d2d 2d2d 2d2d 7c0a 7c20 2020 2020 2020 ------|.| │ │ │ │ +0009fdb0: 2020 3220 2020 2020 2020 2020 2020 3220 2 2 │ │ │ │ +0009fdc0: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ +0009fdd0: 2020 2033 2020 2020 2020 2020 2020 2020 3 │ │ │ │ 0009fde0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fdf0: 2020 2020 2020 2020 2020 2020 7c0a 7c2b |.|+ │ │ │ │ -0009fe00: 2038 3939 3378 2078 2020 2d20 3737 3232 8993x x - 7722 │ │ │ │ -0009fe10: 3278 2078 2020 2d20 3431 3039 7820 7820 2x x - 4109x x │ │ │ │ -0009fe20: 202d 2031 3630 3238 7820 2020 2020 2020 - 16028x │ │ │ │ +0009fdf0: 2020 2020 2020 7c0a 7c2b 2038 3939 3378 |.|+ 8993x │ │ │ │ +0009fe00: 2078 2020 2d20 3737 3232 3278 2078 2020 x - 77222x x │ │ │ │ +0009fe10: 2d20 3431 3039 7820 7820 202d 2031 3630 - 4109x x - 160 │ │ │ │ +0009fe20: 3238 7820 2020 2020 2020 2020 2020 2020 28x │ │ │ │ 0009fe30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fe40: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009fe50: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ -0009fe60: 2020 3320 3520 2020 2020 2020 2034 2035 3 5 4 5 │ │ │ │ -0009fe70: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ +0009fe40: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ +0009fe50: 3220 3520 2020 2020 2020 2020 3320 3520 2 5 3 5 │ │ │ │ +0009fe60: 2020 2020 2020 2034 2035 2020 2020 2020 4 5 │ │ │ │ +0009fe70: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 0009fe80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009fe90: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +0009fe90: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 0009fea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009feb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 0009fed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -0009fee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -0009fef0: 3520 3a20 6465 7363 7269 6265 2050 6869 5 : describe Phi │ │ │ │ +0009fee0: 2d2d 2d2d 2d2d 2b0a 7c69 3520 3a20 6465 ------+.|i5 : de │ │ │ │ +0009fef0: 7363 7269 6265 2050 6869 2020 2020 2020 scribe Phi │ │ │ │ 0009ff00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ff10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ff20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ff30: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +0009ff30: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 0009ff40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ff50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ff60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 0009ff70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ff80: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -0009ff90: 3520 3d20 7261 7469 6f6e 616c 206d 6170 5 = rational map │ │ │ │ -0009ffa0: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -0009ffb0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ +0009ff80: 2020 2020 2020 7c0a 7c6f 3520 3d20 7261 |.|o5 = ra │ │ │ │ +0009ff90: 7469 6f6e 616c 206d 6170 2064 6566 696e tional map defin │ │ │ │ +0009ffa0: 6564 2062 7920 666f 726d 7320 6f66 2064 ed by forms of d │ │ │ │ +0009ffb0: 6567 7265 6520 3220 2020 2020 2020 2020 egree 2 │ │ │ │ 0009ffc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -0009ffd0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -0009ffe0: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -0009fff0: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ +0009ffd0: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +0009ffe0: 7572 6365 2076 6172 6965 7479 3a20 5050 urce variety: PP │ │ │ │ +0009fff0: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ 000a0000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0020: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000a0030: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000a0040: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ +000a0020: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +000a0030: 7267 6574 2076 6172 6965 7479 3a20 5050 rget variety: PP │ │ │ │ +000a0040: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ 000a0050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0070: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000a0080: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000a0090: 7269 6e67 3a20 5a5a 2f31 3930 3138 3120 ring: ZZ/190181 │ │ │ │ +000a0070: 2020 2020 2020 7c0a 7c20 2020 2020 636f |.| co │ │ │ │ +000a0080: 6566 6669 6369 656e 7420 7269 6e67 3a20 efficient ring: │ │ │ │ +000a0090: 5a5a 2f31 3930 3138 3120 2020 2020 2020 ZZ/190181 │ │ │ │ 000a00a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a00b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a00c0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000a00c0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000a00d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a00e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a00f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 7c69 ------------+.|i │ │ │ │ -000a0120: 3620 3a20 6465 7363 7269 6265 2050 6869 6 : describe Phi │ │ │ │ -000a0130: 2720 2020 2020 2020 2020 2020 2020 2020 ' │ │ │ │ +000a0110: 2d2d 2d2d 2d2d 2b0a 7c69 3620 3a20 6465 ------+.|i6 : de │ │ │ │ +000a0120: 7363 7269 6265 2050 6869 2720 2020 2020 scribe Phi' │ │ │ │ +000a0130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0160: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ +000a0160: 2020 2020 2020 7c0a 7c20 2020 2020 2020 |.| │ │ │ │ 000a0170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a01a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a01b0: 2020 2020 2020 2020 2020 2020 7c0a 7c6f |.|o │ │ │ │ -000a01c0: 3620 3d20 7261 7469 6f6e 616c 206d 6170 6 = rational map │ │ │ │ -000a01d0: 2064 6566 696e 6564 2062 7920 666f 726d defined by form │ │ │ │ -000a01e0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ +000a01b0: 2020 2020 2020 7c0a 7c6f 3620 3d20 7261 |.|o6 = ra │ │ │ │ +000a01c0: 7469 6f6e 616c 206d 6170 2064 6566 696e tional map defin │ │ │ │ +000a01d0: 6564 2062 7920 666f 726d 7320 6f66 2064 ed by forms of d │ │ │ │ +000a01e0: 6567 7265 6520 3220 2020 2020 2020 2020 egree 2 │ │ │ │ 000a01f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0200: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000a0210: 2020 2020 736f 7572 6365 2076 6172 6965 source varie │ │ │ │ -000a0220: 7479 3a20 636f 6d70 6c65 7465 2069 6e74 ty: complete int │ │ │ │ -000a0230: 6572 7365 6374 696f 6e20 6f66 2074 7970 ersection of typ │ │ │ │ -000a0240: 6520 2832 2c33 2920 696e 2050 505e 3520 e (2,3) in PP^5 │ │ │ │ -000a0250: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000a0260: 2020 2020 7461 7267 6574 2076 6172 6965 target varie │ │ │ │ -000a0270: 7479 3a20 5050 5e35 2020 2020 2020 2020 ty: PP^5 │ │ │ │ +000a0200: 2020 2020 2020 7c0a 7c20 2020 2020 736f |.| so │ │ │ │ +000a0210: 7572 6365 2076 6172 6965 7479 3a20 636f urce variety: co │ │ │ │ +000a0220: 6d70 6c65 7465 2069 6e74 6572 7365 6374 mplete intersect │ │ │ │ +000a0230: 696f 6e20 6f66 2074 7970 6520 2832 2c33 ion of type (2,3 │ │ │ │ +000a0240: 2920 696e 2050 505e 3520 2020 2020 2020 ) in PP^5 │ │ │ │ +000a0250: 2020 2020 2020 7c0a 7c20 2020 2020 7461 |.| ta │ │ │ │ +000a0260: 7267 6574 2076 6172 6965 7479 3a20 5050 rget variety: PP │ │ │ │ +000a0270: 5e35 2020 2020 2020 2020 2020 2020 2020 ^5 │ │ │ │ 000a0280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a02a0: 2020 2020 2020 2020 2020 2020 7c0a 7c20 |.| │ │ │ │ -000a02b0: 2020 2020 636f 6566 6669 6369 656e 7420 coefficient │ │ │ │ -000a02c0: 7269 6e67 3a20 5a5a 2f31 3930 3138 3120 ring: ZZ/190181 │ │ │ │ +000a02a0: 2020 2020 2020 7c0a 7c20 2020 2020 636f |.| co │ │ │ │ +000a02b0: 6566 6669 6369 656e 7420 7269 6e67 3a20 efficient ring: │ │ │ │ +000a02c0: 5a5a 2f31 3930 3138 3120 2020 2020 2020 ZZ/190181 │ │ │ │ 000a02d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a02e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a02f0: 2020 2020 2020 2020 2020 2020 7c0a 2b2d |.+- │ │ │ │ +000a02f0: 2020 2020 2020 7c0a 2b2d 2d2d 2d2d 2d2d |.+------- │ │ │ │ 000a0300: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0310: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0320: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0330: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0340: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2b0a 0a53 ------------+..S │ │ │ │ -000a0350: 6565 2061 6c73 6f0a 3d3d 3d3d 3d3d 3d3d ee also.======== │ │ │ │ -000a0360: 0a0a 2020 2a20 2a6e 6f74 6520 5261 7469 .. * *note Rati │ │ │ │ -000a0370: 6f6e 616c 4d61 7020 7c7c 2049 6465 616c onalMap || Ideal │ │ │ │ -000a0380: 3a20 5261 7469 6f6e 616c 4d61 7020 7c7c : RationalMap || │ │ │ │ -000a0390: 2049 6465 616c 2c20 2d2d 2072 6573 7472 Ideal, -- restr │ │ │ │ -000a03a0: 6963 7469 6f6e 206f 6620 610a 2020 2020 iction of a. │ │ │ │ -000a03b0: 7261 7469 6f6e 616c 206d 6170 0a0a 5761 rational map..Wa │ │ │ │ -000a03c0: 7973 2074 6f20 7573 6520 7468 6973 206d ys to use this m │ │ │ │ -000a03d0: 6574 686f 643a 0a3d 3d3d 3d3d 3d3d 3d3d ethod:.========= │ │ │ │ -000a03e0: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ===============. │ │ │ │ -000a03f0: 0a20 202a 202a 6e6f 7465 2052 6174 696f . * *note Ratio │ │ │ │ -000a0400: 6e61 6c4d 6170 207c 2049 6465 616c 3a20 nalMap | Ideal: │ │ │ │ -000a0410: 5261 7469 6f6e 616c 4d61 7020 7c20 4964 RationalMap | Id │ │ │ │ -000a0420: 6561 6c2c 202d 2d20 7265 7374 7269 6374 eal, -- restrict │ │ │ │ -000a0430: 696f 6e20 6f66 2061 0a20 2020 2072 6174 ion of a. rat │ │ │ │ -000a0440: 696f 6e61 6c20 6d61 700a 2020 2a20 2252 ional map. * "R │ │ │ │ -000a0450: 6174 696f 6e61 6c4d 6170 207c 2052 696e ationalMap | Rin │ │ │ │ -000a0460: 6722 0a20 202a 2022 5261 7469 6f6e 616c g". * "Rational │ │ │ │ -000a0470: 4d61 7020 7c20 5269 6e67 456c 656d 656e Map | RingElemen │ │ │ │ -000a0480: 7422 0a2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d t".------------- │ │ │ │ +000a0340: 2d2d 2d2d 2d2d 2b0a 0a53 6565 2061 6c73 ------+..See als │ │ │ │ +000a0350: 6f0a 3d3d 3d3d 3d3d 3d3d 0a0a 2020 2a20 o.========.. * │ │ │ │ +000a0360: 2a6e 6f74 6520 5261 7469 6f6e 616c 4d61 *note RationalMa │ │ │ │ +000a0370: 7020 7c7c 2049 6465 616c 3a20 5261 7469 p || Ideal: Rati │ │ │ │ +000a0380: 6f6e 616c 4d61 7020 7c7c 2049 6465 616c onalMap || Ideal │ │ │ │ +000a0390: 2c20 2d2d 2072 6573 7472 6963 7469 6f6e , -- restriction │ │ │ │ +000a03a0: 206f 6620 610a 2020 2020 7261 7469 6f6e of a. ration │ │ │ │ +000a03b0: 616c 206d 6170 0a0a 5761 7973 2074 6f20 al map..Ways to │ │ │ │ +000a03c0: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ +000a03d0: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ +000a03e0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 202a =========.. * * │ │ │ │ +000a03f0: 6e6f 7465 2052 6174 696f 6e61 6c4d 6170 note RationalMap │ │ │ │ +000a0400: 207c 2049 6465 616c 3a20 5261 7469 6f6e | Ideal: Ration │ │ │ │ +000a0410: 616c 4d61 7020 7c20 4964 6561 6c2c 202d alMap | Ideal, - │ │ │ │ +000a0420: 2d20 7265 7374 7269 6374 696f 6e20 6f66 - restriction of │ │ │ │ +000a0430: 2061 0a20 2020 2072 6174 696f 6e61 6c20 a. rational │ │ │ │ +000a0440: 6d61 700a 2020 2a20 2252 6174 696f 6e61 map. * "Rationa │ │ │ │ +000a0450: 6c4d 6170 207c 2052 696e 6722 0a20 202a lMap | Ring". * │ │ │ │ +000a0460: 2022 5261 7469 6f6e 616c 4d61 7020 7c20 "RationalMap | │ │ │ │ +000a0470: 5269 6e67 456c 656d 656e 7422 0a2d 2d2d RingElement".--- │ │ │ │ +000a0480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a04a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a04b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a04c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a04d0: 2d2d 0a0a 5468 6520 736f 7572 6365 206f --..The source o │ │ │ │ -000a04e0: 6620 7468 6973 2064 6f63 756d 656e 7420 f this document │ │ │ │ -000a04f0: 6973 2069 6e0a 2f62 7569 6c64 2f72 6570 is in./build/rep │ │ │ │ -000a0500: 726f 6475 6369 626c 652d 7061 7468 2f6d roducible-path/m │ │ │ │ -000a0510: 6163 6175 6c61 7932 2d31 2e32 352e 3131 acaulay2-1.25.11 │ │ │ │ -000a0520: 2b64 732f 4d32 2f4d 6163 6175 6c61 7932 +ds/M2/Macaulay2 │ │ │ │ -000a0530: 2f70 6163 6b61 6765 732f 4372 656d 6f6e /packages/Cremon │ │ │ │ -000a0540: 612f 0a64 6f63 756d 656e 7461 7469 6f6e a/.documentation │ │ │ │ -000a0550: 2e6d 323a 3735 383a 302e 0a1f 0a46 696c .m2:758:0....Fil │ │ │ │ -000a0560: 653a 2043 7265 6d6f 6e61 2e69 6e66 6f2c e: Cremona.info, │ │ │ │ -000a0570: 204e 6f64 653a 2052 6174 696f 6e61 6c4d Node: RationalM │ │ │ │ -000a0580: 6170 207c 7c20 4964 6561 6c2c 204e 6578 ap || Ideal, Nex │ │ │ │ -000a0590: 743a 2072 6174 696f 6e61 6c4d 6170 5f6c t: rationalMap_l │ │ │ │ -000a05a0: 7049 6465 616c 5f63 6d5a 5a5f 636d 5a5a pIdeal_cmZZ_cmZZ │ │ │ │ -000a05b0: 5f72 702c 2050 7265 763a 2052 6174 696f _rp, Prev: Ratio │ │ │ │ -000a05c0: 6e61 6c4d 6170 207c 2049 6465 616c 2c20 nalMap | Ideal, │ │ │ │ -000a05d0: 5570 3a20 546f 700a 0a52 6174 696f 6e61 Up: Top..Rationa │ │ │ │ -000a05e0: 6c4d 6170 207c 7c20 4964 6561 6c20 2d2d lMap || Ideal -- │ │ │ │ -000a05f0: 2072 6573 7472 6963 7469 6f6e 206f 6620 restriction of │ │ │ │ -000a0600: 6120 7261 7469 6f6e 616c 206d 6170 0a2a a rational map.* │ │ │ │ +000a04c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0a0a 5468 ------------..Th │ │ │ │ +000a04d0: 6520 736f 7572 6365 206f 6620 7468 6973 e source of this │ │ │ │ +000a04e0: 2064 6f63 756d 656e 7420 6973 2069 6e0a document is in. │ │ │ │ +000a04f0: 2f62 7569 6c64 2f72 6570 726f 6475 6369 /build/reproduci │ │ │ │ +000a0500: 626c 652d 7061 7468 2f6d 6163 6175 6c61 ble-path/macaula │ │ │ │ +000a0510: 7932 2d31 2e32 352e 3131 2b64 732f 4d32 y2-1.25.11+ds/M2 │ │ │ │ +000a0520: 2f4d 6163 6175 6c61 7932 2f70 6163 6b61 /Macaulay2/packa │ │ │ │ +000a0530: 6765 732f 4372 656d 6f6e 612f 0a64 6f63 ges/Cremona/.doc │ │ │ │ +000a0540: 756d 656e 7461 7469 6f6e 2e6d 323a 3735 umentation.m2:75 │ │ │ │ +000a0550: 383a 302e 0a1f 0a46 696c 653a 2043 7265 8:0....File: Cre │ │ │ │ +000a0560: 6d6f 6e61 2e69 6e66 6f2c 204e 6f64 653a mona.info, Node: │ │ │ │ +000a0570: 2052 6174 696f 6e61 6c4d 6170 207c 7c20 RationalMap || │ │ │ │ +000a0580: 4964 6561 6c2c 204e 6578 743a 2072 6174 Ideal, Next: rat │ │ │ │ +000a0590: 696f 6e61 6c4d 6170 5f6c 7049 6465 616c ionalMap_lpIdeal │ │ │ │ +000a05a0: 5f63 6d5a 5a5f 636d 5a5a 5f72 702c 2050 _cmZZ_cmZZ_rp, P │ │ │ │ +000a05b0: 7265 763a 2052 6174 696f 6e61 6c4d 6170 rev: RationalMap │ │ │ │ +000a05c0: 207c 2049 6465 616c 2c20 5570 3a20 546f | Ideal, Up: To │ │ │ │ +000a05d0: 700a 0a52 6174 696f 6e61 6c4d 6170 207c p..RationalMap | │ │ │ │ +000a05e0: 7c20 4964 6561 6c20 2d2d 2072 6573 7472 | Ideal -- restr │ │ │ │ +000a05f0: 6963 7469 6f6e 206f 6620 6120 7261 7469 iction of a rati │ │ │ │ +000a0600: 6f6e 616c 206d 6170 0a2a 2a2a 2a2a 2a2a onal map.******* │ │ │ │ 000a0610: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a0620: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000a0630: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000a0640: 2a2a 2a2a 0a0a 2020 2a20 4f70 6572 6174 ****.. * Operat │ │ │ │ -000a0650: 6f72 3a20 2a6e 6f74 6520 7c7c 3a20 284d or: *note ||: (M │ │ │ │ -000a0660: 6163 6175 6c61 7932 446f 6329 7c7c 2c0a acaulay2Doc)||,. │ │ │ │ -000a0670: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -000a0680: 2020 2020 5068 6920 7c7c 204a 0a20 202a Phi || J. * │ │ │ │ -000a0690: 2049 6e70 7574 733a 0a20 2020 2020 202a Inputs:. * │ │ │ │ -000a06a0: 2050 6869 2c20 6120 2a6e 6f74 6520 7261 Phi, a *note ra │ │ │ │ -000a06b0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ -000a06c0: 6f6e 616c 4d61 702c 2c20 245c 7068 693a onalMap,, $\phi: │ │ │ │ -000a06d0: 5820 5c64 6173 6872 6967 6874 6172 726f X \dashrightarro │ │ │ │ -000a06e0: 7720 5924 0a20 2020 2020 202a 204a 2c20 w Y$. * J, │ │ │ │ -000a06f0: 616e 202a 6e6f 7465 2069 6465 616c 3a20 an *note ideal: │ │ │ │ -000a0700: 284d 6163 6175 6c61 7932 446f 6329 4964 (Macaulay2Doc)Id │ │ │ │ -000a0710: 6561 6c2c 2c20 6120 686f 6d6f 6765 6e65 eal,, a homogene │ │ │ │ -000a0720: 6f75 7320 6964 6561 6c20 6f66 2061 0a20 ous ideal of a. │ │ │ │ -000a0730: 2020 2020 2020 2073 7562 7661 7269 6574 subvariet │ │ │ │ -000a0740: 7920 245a 5c73 7562 7365 7420 5924 0a20 y $Z\subset Y$. │ │ │ │ -000a0750: 202a 204f 7574 7075 7473 3a0a 2020 2020 * Outputs:. │ │ │ │ -000a0760: 2020 2a20 6120 2a6e 6f74 6520 7261 7469 * a *note rati │ │ │ │ -000a0770: 6f6e 616c 206d 6170 3a20 5261 7469 6f6e onal map: Ration │ │ │ │ -000a0780: 616c 4d61 702c 2c20 7468 6520 7265 7374 alMap,, the rest │ │ │ │ -000a0790: 7269 6374 696f 6e20 6f66 2024 5c70 6869 riction of $\phi │ │ │ │ -000a07a0: 2420 746f 0a20 2020 2020 2020 2024 7b5c $ to. ${\ │ │ │ │ -000a07b0: 7068 697d 5e7b 282d 3129 7d20 5a24 2c20 phi}^{(-1)} Z$, │ │ │ │ -000a07c0: 247b 7b5c 7068 697d 7c7d 5f7b 7b5c 7068 ${{\phi}|}_{{\ph │ │ │ │ -000a07d0: 697d 5e7b 282d 3129 7d20 5a7d 3a20 7b5c i}^{(-1)} Z}: {\ │ │ │ │ -000a07e0: 7068 697d 5e7b 282d 3129 7d20 5a0a 2020 phi}^{(-1)} Z. │ │ │ │ -000a07f0: 2020 2020 2020 5c64 6173 6872 6967 6874 \dashright │ │ │ │ -000a0800: 6172 726f 7720 5a24 0a0a 4465 7363 7269 arrow Z$..Descri │ │ │ │ -000a0810: 7074 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d ption.========== │ │ │ │ -000a0820: 3d0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d =..+------------ │ │ │ │ +000a0630: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a **************.. │ │ │ │ +000a0640: 2020 2a20 4f70 6572 6174 6f72 3a20 2a6e * Operator: *n │ │ │ │ +000a0650: 6f74 6520 7c7c 3a20 284d 6163 6175 6c61 ote ||: (Macaula │ │ │ │ +000a0660: 7932 446f 6329 7c7c 2c0a 2020 2a20 5573 y2Doc)||,. * Us │ │ │ │ +000a0670: 6167 653a 200a 2020 2020 2020 2020 5068 age: . Ph │ │ │ │ +000a0680: 6920 7c7c 204a 0a20 202a 2049 6e70 7574 i || J. * Input │ │ │ │ +000a0690: 733a 0a20 2020 2020 202a 2050 6869 2c20 s:. * Phi, │ │ │ │ +000a06a0: 6120 2a6e 6f74 6520 7261 7469 6f6e 616c a *note rational │ │ │ │ +000a06b0: 206d 6170 3a20 5261 7469 6f6e 616c 4d61 map: RationalMa │ │ │ │ +000a06c0: 702c 2c20 245c 7068 693a 5820 5c64 6173 p,, $\phi:X \das │ │ │ │ +000a06d0: 6872 6967 6874 6172 726f 7720 5924 0a20 hrightarrow Y$. │ │ │ │ +000a06e0: 2020 2020 202a 204a 2c20 616e 202a 6e6f * J, an *no │ │ │ │ +000a06f0: 7465 2069 6465 616c 3a20 284d 6163 6175 te ideal: (Macau │ │ │ │ +000a0700: 6c61 7932 446f 6329 4964 6561 6c2c 2c20 lay2Doc)Ideal,, │ │ │ │ +000a0710: 6120 686f 6d6f 6765 6e65 6f75 7320 6964 a homogeneous id │ │ │ │ +000a0720: 6561 6c20 6f66 2061 0a20 2020 2020 2020 eal of a. │ │ │ │ +000a0730: 2073 7562 7661 7269 6574 7920 245a 5c73 subvariety $Z\s │ │ │ │ +000a0740: 7562 7365 7420 5924 0a20 202a 204f 7574 ubset Y$. * Out │ │ │ │ +000a0750: 7075 7473 3a0a 2020 2020 2020 2a20 6120 puts:. * a │ │ │ │ +000a0760: 2a6e 6f74 6520 7261 7469 6f6e 616c 206d *note rational m │ │ │ │ +000a0770: 6170 3a20 5261 7469 6f6e 616c 4d61 702c ap: RationalMap, │ │ │ │ +000a0780: 2c20 7468 6520 7265 7374 7269 6374 696f , the restrictio │ │ │ │ +000a0790: 6e20 6f66 2024 5c70 6869 2420 746f 0a20 n of $\phi$ to. │ │ │ │ +000a07a0: 2020 2020 2020 2024 7b5c 7068 697d 5e7b ${\phi}^{ │ │ │ │ +000a07b0: 282d 3129 7d20 5a24 2c20 247b 7b5c 7068 (-1)} Z$, ${{\ph │ │ │ │ +000a07c0: 697d 7c7d 5f7b 7b5c 7068 697d 5e7b 282d i}|}_{{\phi}^{(- │ │ │ │ +000a07d0: 3129 7d20 5a7d 3a20 7b5c 7068 697d 5e7b 1)} Z}: {\phi}^{ │ │ │ │ +000a07e0: 282d 3129 7d20 5a0a 2020 2020 2020 2020 (-1)} Z. │ │ │ │ +000a07f0: 5c64 6173 6872 6967 6874 6172 726f 7720 \dashrightarrow │ │ │ │ +000a0800: 5a24 0a0a 4465 7363 7269 7074 696f 6e0a Z$..Description. │ │ │ │ +000a0810: 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a 0a2b 2d2d ===========..+-- │ │ │ │ +000a0820: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0830: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0840: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0850: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0870: 2d2b 0a7c 6931 203a 2050 3520 3d20 5a5a -+.|i1 : P5 = ZZ │ │ │ │ -000a0880: 2f31 3930 3138 315b 785f 302e 2e78 5f35 /190181[x_0..x_5 │ │ │ │ -000a0890: 5d20 2020 2020 2020 2020 2020 2020 2020 ] │ │ │ │ +000a0860: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000a0870: 203a 2050 3520 3d20 5a5a 2f31 3930 3138 : P5 = ZZ/19018 │ │ │ │ +000a0880: 315b 785f 302e 2e78 5f35 5d20 2020 2020 1[x_0..x_5] │ │ │ │ +000a0890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a08a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a08b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a08c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a08b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a08c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a08d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a08e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a08f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0910: 207c 0a7c 6f31 203d 2050 3520 2020 2020 |.|o1 = P5 │ │ │ │ +000a0900: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000a0910: 203d 2050 3520 2020 2020 2020 2020 2020 = P5 │ │ │ │ 000a0920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a0950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a09a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a09b0: 207c 0a7c 6f31 203a 2050 6f6c 796e 6f6d |.|o1 : Polynom │ │ │ │ -000a09c0: 6961 6c52 696e 6720 2020 2020 2020 2020 ialRing │ │ │ │ +000a09a0: 2020 2020 2020 2020 2020 207c 0a7c 6f31 |.|o1 │ │ │ │ +000a09b0: 203a 2050 6f6c 796e 6f6d 6961 6c52 696e : PolynomialRin │ │ │ │ +000a09c0: 6720 2020 2020 2020 2020 2020 2020 2020 g │ │ │ │ 000a09d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a09e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a09f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0a00: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a09f0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a0a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a0a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a0a50: 2d2b 0a7c 6932 203a 2050 6869 203d 2072 -+.|i2 : Phi = r │ │ │ │ -000a0a60: 6174 696f 6e61 6c4d 6170 207b 785f 345e ationalMap {x_4^ │ │ │ │ -000a0a70: 322d 785f 332a 785f 352c 785f 322a 785f 2-x_3*x_5,x_2*x_ │ │ │ │ -000a0a80: 342d 785f 312a 785f 352c 785f 322a 785f 4-x_1*x_5,x_2*x_ │ │ │ │ -000a0a90: 332d 785f 312a 785f 342c 785f 325e 322d 3-x_1*x_4,x_2^2- │ │ │ │ -000a0aa0: 787c 0a7c 2020 2020 2020 2020 2020 2020 x|.| │ │ │ │ +000a0a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6932 -----------+.|i2 │ │ │ │ +000a0a50: 203a 2050 6869 203d 2072 6174 696f 6e61 : Phi = rationa │ │ │ │ +000a0a60: 6c4d 6170 207b 785f 345e 322d 785f 332a lMap {x_4^2-x_3* │ │ │ │ +000a0a70: 785f 352c 785f 322a 785f 342d 785f 312a x_5,x_2*x_4-x_1* │ │ │ │ +000a0a80: 785f 352c 785f 322a 785f 332d 785f 312a x_5,x_2*x_3-x_1* │ │ │ │ +000a0a90: 785f 342c 785f 325e 322d 787c 0a7c 2020 x_4,x_2^2-x|.| │ │ │ │ +000a0aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0af0: 207c 0a7c 6f32 203d 202d 2d20 7261 7469 |.|o2 = -- rati │ │ │ │ -000a0b00: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +000a0ae0: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000a0af0: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000a0b00: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ 000a0b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0b40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0b50: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +000a0b30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0b50: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a0b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0b90: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ -000a0ba0: 2050 726f 6a28 2d2d 2d2d 2d2d 5b78 202c Proj(------[x , │ │ │ │ -000a0bb0: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -000a0bc0: 2078 205d 2920 2020 2020 2020 2020 2020 x ]) │ │ │ │ -000a0bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0bf0: 2020 2020 2020 3139 3031 3831 2020 3020 190181 0 │ │ │ │ -000a0c00: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -000a0c10: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -000a0c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0c30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0c40: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +000a0b80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0b90: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ +000a0ba0: 2d2d 2d2d 2d2d 5b78 202c 2078 202c 2078 ------[x , x , x │ │ │ │ +000a0bb0: 202c 2078 202c 2078 202c 2078 205d 2920 , x , x , x ]) │ │ │ │ +000a0bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0bd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0bf0: 3139 3031 3831 2020 3020 2020 3120 2020 190181 0 1 │ │ │ │ +000a0c00: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +000a0c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0c20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0c40: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a0c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0c80: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ -000a0c90: 2050 726f 6a28 2d2d 2d2d 2d2d 5b78 202c Proj(------[x , │ │ │ │ -000a0ca0: 2078 202c 2078 202c 2078 202c 2078 202c x , x , x , x , │ │ │ │ -000a0cb0: 2078 205d 2920 2020 2020 2020 2020 2020 x ]) │ │ │ │ -000a0cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0cd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0ce0: 2020 2020 2020 3139 3031 3831 2020 3020 190181 0 │ │ │ │ -000a0cf0: 2020 3120 2020 3220 2020 3320 2020 3420 1 2 3 4 │ │ │ │ -000a0d00: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ -000a0d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0d20: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ -000a0d30: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ +000a0c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0c80: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ +000a0c90: 2d2d 2d2d 2d2d 5b78 202c 2078 202c 2078 ------[x , x , x │ │ │ │ +000a0ca0: 202c 2078 202c 2078 202c 2078 205d 2920 , x , x , x ]) │ │ │ │ +000a0cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0ce0: 3139 3031 3831 2020 3020 2020 3120 2020 190181 0 1 │ │ │ │ +000a0cf0: 3220 2020 3320 2020 3420 2020 3520 2020 2 3 4 5 │ │ │ │ +000a0d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0d10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0d20: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000a0d30: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ 000a0d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0d70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0d80: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a0d60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0d80: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a0d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0dc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0dd0: 2020 2020 2020 2020 2020 7820 202d 2078 x - x │ │ │ │ -000a0de0: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +000a0db0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0dd0: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000a0de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0e10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0e20: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -000a0e30: 3320 3520 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ +000a0e00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0e20: 2020 2020 2034 2020 2020 3320 3520 2020 4 3 5 │ │ │ │ +000a0e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0e60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a0e50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0eb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0ec0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a0ed0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a0ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0ec0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a0ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0f00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0f10: 2020 2020 2020 2020 2020 2032 2034 2020 2 4 │ │ │ │ -000a0f20: 2020 3120 3520 2020 2020 2020 2020 2020 1 5 │ │ │ │ +000a0ef0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0f10: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ +000a0f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0f50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a0f40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0fa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a0fb0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a0fc0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a0f90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a0fb0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a0fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a0fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a0ff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1000: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ -000a1010: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ +000a0fe0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a0ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1000: 2020 2020 2032 2033 2020 2020 3120 3420 2 3 1 4 │ │ │ │ +000a1010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1040: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1030: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1090: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a10a0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a1080: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a10a0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a10b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a10c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a10d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a10e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a10f0: 2020 2020 2020 2020 2020 7820 202d 2078 x - x │ │ │ │ -000a1100: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +000a10d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a10e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a10f0: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000a1100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1140: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000a1150: 3020 3520 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000a1120: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1140: 2020 2020 2032 2020 2020 3020 3520 2020 2 0 5 │ │ │ │ +000a1150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1170: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a11a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a11b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a11c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a11d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a11e0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a11f0: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a11c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a11d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a11e0: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a11f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1220: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1230: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ -000a1240: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ +000a1210: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1230: 2020 2020 2031 2032 2020 2020 3020 3420 1 2 0 4 │ │ │ │ +000a1240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1260: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a12a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a12b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a12c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a12d0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a12b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a12c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a12d0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a12e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a12f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1320: 2020 2020 2020 2020 2020 7820 202d 2078 x - x │ │ │ │ -000a1330: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ +000a1300: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1320: 2020 2020 7820 202d 2078 2078 2020 2020 x - x x │ │ │ │ +000a1330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1370: 2020 2020 2020 2020 2020 2031 2020 2020 1 │ │ │ │ -000a1380: 3020 3320 2020 2020 2020 2020 2020 2020 0 3 │ │ │ │ +000a1350: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1370: 2020 2020 2031 2020 2020 3020 3320 2020 1 0 3 │ │ │ │ +000a1380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a13a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a13b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a13c0: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +000a13a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a13b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a13c0: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000a13d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a13e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a13f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1400: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a13f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1450: 207c 0a7c 6f32 203a 2052 6174 696f 6e61 |.|o2 : Rationa │ │ │ │ -000a1460: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ -000a1470: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -000a1480: 6d20 5050 5e35 2074 6f20 5050 5e35 2920 m PP^5 to PP^5) │ │ │ │ -000a1490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a14a0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a1440: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000a1450: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000a1460: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ +000a1470: 616c 206d 6170 2066 726f 6d20 5050 5e35 al map from PP^5 │ │ │ │ +000a1480: 2074 6f20 5050 5e35 2920 2020 2020 2020 to PP^5) │ │ │ │ +000a1490: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a14a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a14b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a14c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a14d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a14e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a14f0: 2d7c 0a7c 5f30 2a78 5f35 2c78 5f31 2a78 -|.|_0*x_5,x_1*x │ │ │ │ -000a1500: 5f32 2d78 5f30 2a78 5f34 2c78 5f31 5e32 _2-x_0*x_4,x_1^2 │ │ │ │ -000a1510: 2d78 5f30 2a78 5f33 7d20 2020 2020 2020 -x_0*x_3} │ │ │ │ +000a14e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 5f30 -----------|.|_0 │ │ │ │ +000a14f0: 2a78 5f35 2c78 5f31 2a78 5f32 2d78 5f30 *x_5,x_1*x_2-x_0 │ │ │ │ +000a1500: 2a78 5f34 2c78 5f31 5e32 2d78 5f30 2a78 *x_4,x_1^2-x_0*x │ │ │ │ +000a1510: 5f33 7d20 2020 2020 2020 2020 2020 2020 _3} │ │ │ │ 000a1520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1540: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a1530: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a1540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a1550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a1560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a1570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a1580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a1590: 2d2b 0a7c 6933 203a 204a 203d 2069 6465 -+.|i3 : J = ide │ │ │ │ -000a15a0: 616c 2072 616e 646f 6d28 312c 5035 293b al random(1,P5); │ │ │ │ +000a1580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000a1590: 203a 204a 203d 2069 6465 616c 2072 616e : J = ideal ran │ │ │ │ +000a15a0: 646f 6d28 312c 5035 293b 2020 2020 2020 dom(1,P5); │ │ │ │ 000a15b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a15c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a15d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a15e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a15d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a15e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a15f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1630: 207c 0a7c 6f33 203a 2049 6465 616c 206f |.|o3 : Ideal o │ │ │ │ -000a1640: 6620 5035 2020 2020 2020 2020 2020 2020 f P5 │ │ │ │ +000a1620: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +000a1630: 203a 2049 6465 616c 206f 6620 5035 2020 : Ideal of P5 │ │ │ │ +000a1640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1680: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a1670: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a1680: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a1690: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a16a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a16b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a16c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a16d0: 2d2b 0a7c 6934 203a 2050 6869 2720 3d20 -+.|i4 : Phi' = │ │ │ │ -000a16e0: 5068 697c 7c4a 2020 2020 2020 2020 2020 Phi||J │ │ │ │ +000a16c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +000a16d0: 203a 2050 6869 2720 3d20 5068 697c 7c4a : Phi' = Phi||J │ │ │ │ +000a16e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a16f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1710: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1770: 207c 0a7c 6f34 203d 202d 2d20 7261 7469 |.|o4 = -- rati │ │ │ │ -000a1780: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +000a1760: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000a1770: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000a1780: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ 000a1790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a17a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a17b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a17c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a17b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a17c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a17d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a17e0: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +000a17e0: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a17f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1810: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ -000a1820: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ -000a1830: 726f 6a28 2d2d 2d2d 2d2d 5b78 202c 2078 roj(------[x , x │ │ │ │ +000a1800: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1810: 2020 2073 6f75 7263 653a 2073 7562 7661 source: subva │ │ │ │ +000a1820: 7269 6574 7920 6f66 2050 726f 6a28 2d2d riety of Proj(-- │ │ │ │ +000a1830: 2d2d 2d2d 5b78 202c 2078 2020 2020 2020 ----[x , x │ │ │ │ 000a1840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1880: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ -000a1890: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000a18a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a18b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a18c0: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +000a1850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1870: 2020 2020 2020 2020 2020 2020 2020 3139 19 │ │ │ │ +000a1880: 3031 3831 2020 3020 2020 3120 2020 2020 0181 0 1 │ │ │ │ +000a1890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a18a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a18b0: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ +000a18c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a18d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a18e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a18f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1910: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000a1920: 2020 2020 2020 2020 3220 2020 2020 2020 2 │ │ │ │ +000a18f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1900: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a1910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1920: 2020 3220 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000a1930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1960: 2020 7820 202b 2039 3730 3278 2078 2020 x + 9702x x │ │ │ │ -000a1970: 2d20 3934 3239 3478 2020 2d20 7820 7820 - 94294x - x x │ │ │ │ +000a1940: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1950: 2020 2020 2020 2020 2020 2020 7820 202b x + │ │ │ │ +000a1960: 2039 3730 3278 2078 2020 2d20 3934 3239 9702x x - 9429 │ │ │ │ +000a1970: 3478 2020 2d20 7820 7820 2020 2020 2020 4x - x x │ │ │ │ 000a1980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a19a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a19b0: 2020 2031 2020 2020 2020 2020 3120 3220 1 1 2 │ │ │ │ -000a19c0: 2020 2020 2020 2020 3220 2020 2030 2033 2 0 3 │ │ │ │ +000a1990: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a19a0: 2020 2020 2020 2020 2020 2020 2031 2020 1 │ │ │ │ +000a19b0: 2020 2020 2020 3120 3220 2020 2020 2020 1 2 │ │ │ │ +000a19c0: 2020 3220 2020 2030 2033 2020 2020 2020 2 0 3 │ │ │ │ 000a19d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a19e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a19f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1a00: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000a19e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a19f0: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +000a1a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1a40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1a30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1a60: 2020 2020 2020 5a5a 2020 2020 2020 2020 ZZ │ │ │ │ +000a1a60: 5a5a 2020 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a1a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1a90: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ -000a1aa0: 2073 7562 7661 7269 6574 7920 6f66 2050 subvariety of P │ │ │ │ -000a1ab0: 726f 6a28 2d2d 2d2d 2d2d 5b78 202c 2078 roj(------[x , x │ │ │ │ +000a1a80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1a90: 2020 2074 6172 6765 743a 2073 7562 7661 target: subva │ │ │ │ +000a1aa0: 7269 6574 7920 6f66 2050 726f 6a28 2d2d riety of Proj(-- │ │ │ │ +000a1ab0: 2d2d 2d2d 5b78 202c 2078 2020 2020 2020 ----[x , x │ │ │ │ 000a1ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1ae0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1b00: 2020 2020 3139 3031 3831 2020 3020 2020 190181 0 │ │ │ │ -000a1b10: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ -000a1b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1b30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1b40: 207b 2020 2020 2020 2020 2020 2020 2020 { │ │ │ │ +000a1ad0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1af0: 2020 2020 2020 2020 2020 2020 2020 3139 19 │ │ │ │ +000a1b00: 3031 3831 2020 3020 2020 3120 2020 2020 0181 0 1 │ │ │ │ +000a1b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1b20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1b30: 2020 2020 2020 2020 2020 207b 2020 2020 { │ │ │ │ +000a1b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1b80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1b90: 2020 7820 202b 2031 3635 3636 7820 202d x + 16566x - │ │ │ │ -000a1ba0: 2037 3031 3538 7820 202d 2033 3831 3438 70158x - 38148 │ │ │ │ -000a1bb0: 7820 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ -000a1bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1bd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1be0: 2020 2030 2020 2020 2020 2020 2031 2020 0 1 │ │ │ │ -000a1bf0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ +000a1b70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1b80: 2020 2020 2020 2020 2020 2020 7820 202b x + │ │ │ │ +000a1b90: 2031 3635 3636 7820 202d 2037 3031 3538 16566x - 70158 │ │ │ │ +000a1ba0: 7820 202d 2033 3831 3438 7820 2020 2020 x - 38148x │ │ │ │ +000a1bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1bc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1bd0: 2020 2020 2020 2020 2020 2020 2030 2020 0 │ │ │ │ +000a1be0: 2020 2020 2020 2031 2020 2020 2020 2020 1 │ │ │ │ +000a1bf0: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ 000a1c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1c20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1c30: 207d 2020 2020 2020 2020 2020 2020 2020 } │ │ │ │ +000a1c10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1c20: 2020 2020 2020 2020 2020 207d 2020 2020 } │ │ │ │ +000a1c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1c70: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ -000a1c80: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ +000a1c60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1c70: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000a1c80: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ 000a1c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1cc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1cd0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a1cb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1cd0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a1ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1d10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1d20: 2020 2020 2020 2020 2020 7820 202d 2078 x - x │ │ │ │ -000a1d30: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +000a1d00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1d20: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000a1d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1d60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1d70: 2020 2020 2020 2020 2020 2034 2020 2020 4 │ │ │ │ -000a1d80: 3320 3520 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ +000a1d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1d70: 2020 2020 2034 2020 2020 3320 3520 2020 4 3 5 │ │ │ │ +000a1d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1db0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1e00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1e10: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a1e20: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a1df0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1e10: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a1e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1e50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1e60: 2020 2020 2020 2020 2020 2032 2034 2020 2 4 │ │ │ │ -000a1e70: 2020 3120 3520 2020 2020 2020 2020 2020 1 5 │ │ │ │ +000a1e40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1e60: 2020 2020 2032 2034 2020 2020 3120 3520 2 4 1 5 │ │ │ │ +000a1e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1ea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1e90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1f00: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a1f10: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a1ee0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1f00: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a1f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1f40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1f50: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ -000a1f60: 2020 3120 3420 2020 2020 2020 2020 2020 1 4 │ │ │ │ +000a1f30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1f50: 2020 2020 2032 2033 2020 2020 3120 3420 2 3 1 4 │ │ │ │ +000a1f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1f90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a1f80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a1fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a1fe0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a1ff0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a1fd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a1fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a1ff0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a2000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2030: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2040: 2020 2020 2020 2020 2020 7820 202d 2078 x - x │ │ │ │ -000a2050: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ +000a2020: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2040: 2020 2020 7820 202d 2078 2078 202c 2020 x - x x , │ │ │ │ +000a2050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2080: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2090: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000a20a0: 3020 3520 2020 2020 2020 2020 2020 2020 0 5 │ │ │ │ +000a2070: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2090: 2020 2020 2032 2020 2020 3020 3520 2020 2 0 5 │ │ │ │ +000a20a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a20b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a20c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a20d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a20c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a20d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a20e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a20f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2120: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2130: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a2140: 2078 2078 202c 2020 2020 2020 2020 2020 x x , │ │ │ │ +000a2110: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2130: 2020 2020 7820 7820 202d 2078 2078 202c x x - x x , │ │ │ │ +000a2140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2180: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ -000a2190: 2020 3020 3420 2020 2020 2020 2020 2020 0 4 │ │ │ │ +000a2160: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2180: 2020 2020 2031 2032 2020 2020 3020 3420 1 2 0 4 │ │ │ │ +000a2190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a21a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a21b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a21c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a21b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a21c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a21d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a21e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a21f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2210: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2200: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2230: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a2230: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a2240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2260: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2270: 2020 2020 2020 2020 2020 2d20 3937 3032 - 9702 │ │ │ │ -000a2280: 7820 7820 202b 2039 3432 3934 7820 202d x x + 94294x - │ │ │ │ +000a2250: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2270: 2020 2020 2d20 3937 3032 7820 7820 202b - 9702x x + │ │ │ │ +000a2280: 2039 3432 3934 7820 202d 2020 2020 2020 94294x - │ │ │ │ 000a2290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a22a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a22b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a22c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a22d0: 2031 2032 2020 2020 2020 2020 2032 2020 1 2 2 │ │ │ │ +000a22a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a22b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a22c0: 2020 2020 2020 2020 2020 2031 2032 2020 1 2 │ │ │ │ +000a22d0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a22e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a22f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2300: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a2310: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +000a22f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a2310: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000a2320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2340: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a23a0: 207c 0a7c 6f34 203a 2052 6174 696f 6e61 |.|o4 : Rationa │ │ │ │ -000a23b0: 6c4d 6170 2028 7175 6164 7261 7469 6320 lMap (quadratic │ │ │ │ -000a23c0: 7261 7469 6f6e 616c 206d 6170 2066 726f rational map fro │ │ │ │ -000a23d0: 6d20 2020 2020 2020 2020 2020 2020 2020 m │ │ │ │ -000a23e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a23f0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a2390: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000a23a0: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000a23b0: 7175 6164 7261 7469 6320 7261 7469 6f6e quadratic ration │ │ │ │ +000a23c0: 616c 206d 6170 2066 726f 6d20 2020 2020 al map from │ │ │ │ +000a23d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a23e0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a23f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a2400: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a2410: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a2420: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a2430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a2440: 2d7c 0a7c 2c20 7820 2c20 7820 2c20 7820 -|.|, x , x , x │ │ │ │ -000a2450: 2c20 7820 5d29 2064 6566 696e 6564 2062 , x ]) defined b │ │ │ │ -000a2460: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +000a2430: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2c20 -----------|.|, │ │ │ │ +000a2440: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +000a2450: 2064 6566 696e 6564 2062 7920 2020 2020 defined by │ │ │ │ +000a2460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2490: 207c 0a7c 2020 2032 2020 2033 2020 2034 |.| 2 3 4 │ │ │ │ -000a24a0: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000a2480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2490: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +000a24a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a24b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a24c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a24d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a24e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a24d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a24e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a24f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2530: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2560: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000a2570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2580: 207c 0a7c 2b20 3638 3039 3478 2078 2020 |.|+ 68094x x │ │ │ │ -000a2590: 2d20 3937 3032 7820 7820 202d 2036 3830 - 9702x x - 680 │ │ │ │ -000a25a0: 3934 7820 7820 202b 2039 3335 3933 7820 94x x + 93593x │ │ │ │ -000a25b0: 7820 202d 2035 3332 3531 7820 202b 2039 x - 53251x + 9 │ │ │ │ -000a25c0: 3432 3934 7820 7820 2020 2020 2020 2020 4294x x │ │ │ │ -000a25d0: 207c 0a7c 2020 2020 2020 2020 3220 3320 |.| 2 3 │ │ │ │ -000a25e0: 2020 2020 2020 2030 2034 2020 2020 2020 0 4 │ │ │ │ -000a25f0: 2020 2031 2034 2020 2020 2020 2020 2032 1 4 2 │ │ │ │ -000a2600: 2034 2020 2020 2020 2020 2034 2020 2020 4 4 │ │ │ │ -000a2610: 2020 2020 2030 2035 2020 2020 2020 2020 0 5 │ │ │ │ -000a2620: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2560: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000a2570: 2020 2020 2020 2020 2020 207c 0a7c 2b20 |.|+ │ │ │ │ +000a2580: 3638 3039 3478 2078 2020 2d20 3937 3032 68094x x - 9702 │ │ │ │ +000a2590: 7820 7820 202d 2036 3830 3934 7820 7820 x x - 68094x x │ │ │ │ +000a25a0: 202b 2039 3335 3933 7820 7820 202d 2035 + 93593x x - 5 │ │ │ │ +000a25b0: 3332 3531 7820 202b 2039 3432 3934 7820 3251x + 94294x │ │ │ │ +000a25c0: 7820 2020 2020 2020 2020 207c 0a7c 2020 x |.| │ │ │ │ +000a25d0: 2020 2020 2020 3220 3320 2020 2020 2020 2 3 │ │ │ │ +000a25e0: 2030 2034 2020 2020 2020 2020 2031 2034 0 4 1 4 │ │ │ │ +000a25f0: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ +000a2600: 2020 2020 2034 2020 2020 2020 2020 2030 4 0 │ │ │ │ +000a2610: 2035 2020 2020 2020 2020 207c 0a7c 2020 5 |.| │ │ │ │ +000a2620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2670: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2660: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a26a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a26b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a26c0: 207c 0a7c 2c20 7820 2c20 7820 2c20 7820 |.|, x , x , x │ │ │ │ -000a26d0: 2c20 7820 5d29 2064 6566 696e 6564 2062 , x ]) defined b │ │ │ │ -000a26e0: 7920 2020 2020 2020 2020 2020 2020 2020 y │ │ │ │ +000a26b0: 2020 2020 2020 2020 2020 207c 0a7c 2c20 |.|, │ │ │ │ +000a26c0: 7820 2c20 7820 2c20 7820 2c20 7820 5d29 x , x , x , x ]) │ │ │ │ +000a26d0: 2064 6566 696e 6564 2062 7920 2020 2020 defined by │ │ │ │ +000a26e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a26f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2710: 207c 0a7c 2020 2032 2020 2033 2020 2034 |.| 2 3 4 │ │ │ │ -000a2720: 2020 2035 2020 2020 2020 2020 2020 2020 5 │ │ │ │ +000a2700: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2710: 2032 2020 2033 2020 2034 2020 2035 2020 2 3 4 5 │ │ │ │ +000a2720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2760: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2750: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a27a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a27b0: 207c 0a7c 2020 2d20 3737 3836 3478 2020 |.| - 77864x │ │ │ │ -000a27c0: 2d20 3731 3332 3178 2020 2020 2020 2020 - 71321x │ │ │ │ +000a27a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a27b0: 2d20 3737 3836 3478 2020 2d20 3731 3332 - 77864x - 7132 │ │ │ │ +000a27c0: 3178 2020 2020 2020 2020 2020 2020 2020 1x │ │ │ │ 000a27d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a27e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a27f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2800: 207c 0a7c 3320 2020 2020 2020 2020 3420 |.|3 4 │ │ │ │ -000a2810: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +000a27f0: 2020 2020 2020 2020 2020 207c 0a7c 3320 |.|3 │ │ │ │ +000a2800: 2020 2020 2020 2020 3420 2020 2020 2020 4 │ │ │ │ +000a2810: 2020 3520 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 000a2820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2850: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2840: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a28a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2890: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a28a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a28b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a28c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a28d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a28e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a28f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a28e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a28f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2940: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2930: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2990: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2980: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a29a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a29b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a29c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a29d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a29e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a29d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a29e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a29f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2a30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2a20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2a80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2a70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2ad0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2ac0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2b20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2b10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2b70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2b60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2bc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2bb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2c10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2c00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2c60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2c50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2cb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2ca0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2d00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2cf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2d50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2d40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2da0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2d90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2df0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2de0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2e40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2e30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2e70: 2020 2020 2020 2020 2032 2020 2020 2020 2 │ │ │ │ -000a2e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2e90: 207c 0a7c 3638 3039 3478 2078 2020 2b20 |.|68094x x + │ │ │ │ -000a2ea0: 3937 3032 7820 7820 202b 2036 3830 3934 9702x x + 68094 │ │ │ │ -000a2eb0: 7820 7820 202d 2039 3335 3933 7820 7820 x x - 93593x x │ │ │ │ -000a2ec0: 202b 2035 3332 3531 7820 202d 2039 3432 + 53251x - 942 │ │ │ │ -000a2ed0: 3934 7820 7820 202b 2020 2020 2020 2020 94x x + │ │ │ │ -000a2ee0: 207c 0a7c 2020 2020 2020 3220 3320 2020 |.| 2 3 │ │ │ │ -000a2ef0: 2020 2020 2030 2034 2020 2020 2020 2020 0 4 │ │ │ │ -000a2f00: 2031 2034 2020 2020 2020 2020 2032 2034 1 4 2 4 │ │ │ │ -000a2f10: 2020 2020 2020 2020 2034 2020 2020 2020 4 │ │ │ │ -000a2f20: 2020 2030 2035 2020 2020 2020 2020 2020 0 5 │ │ │ │ -000a2f30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2e70: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ +000a2e80: 2020 2020 2020 2020 2020 207c 0a7c 3638 |.|68 │ │ │ │ +000a2e90: 3039 3478 2078 2020 2b20 3937 3032 7820 094x x + 9702x │ │ │ │ +000a2ea0: 7820 202b 2036 3830 3934 7820 7820 202d x + 68094x x - │ │ │ │ +000a2eb0: 2039 3335 3933 7820 7820 202b 2035 3332 93593x x + 532 │ │ │ │ +000a2ec0: 3531 7820 202d 2039 3432 3934 7820 7820 51x - 94294x x │ │ │ │ +000a2ed0: 202b 2020 2020 2020 2020 207c 0a7c 2020 + |.| │ │ │ │ +000a2ee0: 2020 2020 3220 3320 2020 2020 2020 2030 2 3 0 │ │ │ │ +000a2ef0: 2034 2020 2020 2020 2020 2031 2034 2020 4 1 4 │ │ │ │ +000a2f00: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ +000a2f10: 2020 2034 2020 2020 2020 2020 2030 2035 4 0 5 │ │ │ │ +000a2f20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2f80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a2f70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a2f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a2fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a2fd0: 207c 0a7c 2068 7970 6572 7375 7266 6163 |.| hypersurfac │ │ │ │ -000a2fe0: 6520 696e 2050 505e 3520 746f 2068 7970 e in PP^5 to hyp │ │ │ │ -000a2ff0: 6572 7375 7266 6163 6520 696e 2050 505e ersurface in PP^ │ │ │ │ -000a3000: 3529 2020 2020 2020 2020 2020 2020 2020 5) │ │ │ │ -000a3010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3020: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a2fc0: 2020 2020 2020 2020 2020 207c 0a7c 2068 |.| h │ │ │ │ +000a2fd0: 7970 6572 7375 7266 6163 6520 696e 2050 ypersurface in P │ │ │ │ +000a2fe0: 505e 3520 746f 2068 7970 6572 7375 7266 P^5 to hypersurf │ │ │ │ +000a2ff0: 6163 6520 696e 2050 505e 3529 2020 2020 ace in PP^5) │ │ │ │ +000a3000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a3010: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a3020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3050: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3070: 2d7c 0a7c 2d20 3933 3539 3378 2078 2020 -|.|- 93593x x │ │ │ │ -000a3080: 2b20 3533 3235 3178 2078 2020 2020 2020 + 53251x x │ │ │ │ +000a3060: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2d20 -----------|.|- │ │ │ │ +000a3070: 3933 3539 3378 2078 2020 2b20 3533 3235 93593x x + 5325 │ │ │ │ +000a3080: 3178 2078 2020 2020 2020 2020 2020 2020 1x x │ │ │ │ 000a3090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a30a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a30b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a30c0: 207c 0a7c 2020 2020 2020 2020 3120 3520 |.| 1 5 │ │ │ │ -000a30d0: 2020 2020 2020 2020 3320 3520 2020 2020 3 5 │ │ │ │ +000a30b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a30c0: 2020 2020 2020 3120 3520 2020 2020 2020 1 5 │ │ │ │ +000a30d0: 2020 3320 3520 2020 2020 2020 2020 2020 3 5 │ │ │ │ 000a30e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a30f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3110: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3100: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3160: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3150: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a31a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a31b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a31a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a31b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a31c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a31d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a31e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a31f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3200: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a31f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3250: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3240: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a32a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3290: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a32a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a32b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a32c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a32d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a32e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a32f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a32e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a32f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3340: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3330: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3390: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3380: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a33a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a33b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a33c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a33d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a33e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a33d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a33e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a33f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3430: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3420: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3480: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3470: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a34a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a34b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a34c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a34d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a34c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a34d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a34e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a34f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3520: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3510: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3570: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3560: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a35a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a35b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a35c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a35b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a35c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a35d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a35e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a35f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3610: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3600: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3660: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3650: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a36a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a36b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a36a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a36b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a36c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a36d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a36e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a36f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3700: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a36f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3750: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3740: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a37a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3790: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a37a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a37b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a37c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a37d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a37e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a37f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a37e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a37f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3840: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3830: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3890: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3880: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a38a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a38b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a38c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a38d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a38e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a38d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a38e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a38f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3930: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3920: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3980: 207c 0a7c 3933 3539 3378 2078 2020 2d20 |.|93593x x - │ │ │ │ -000a3990: 3533 3235 3178 2078 2020 2020 2020 2020 53251x x │ │ │ │ +000a3970: 2020 2020 2020 2020 2020 207c 0a7c 3933 |.|93 │ │ │ │ +000a3980: 3539 3378 2078 2020 2d20 3533 3235 3178 593x x - 53251x │ │ │ │ +000a3990: 2078 2020 2020 2020 2020 2020 2020 2020 x │ │ │ │ 000a39a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a39b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a39c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a39d0: 207c 0a7c 2020 2020 2020 3120 3520 2020 |.| 1 5 │ │ │ │ -000a39e0: 2020 2020 2020 3320 3520 2020 2020 2020 3 5 │ │ │ │ +000a39c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a39d0: 2020 2020 3120 3520 2020 2020 2020 2020 1 5 │ │ │ │ +000a39e0: 3320 3520 2020 2020 2020 2020 2020 2020 3 5 │ │ │ │ 000a39f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3a00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3a20: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a3a10: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a3a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3a40: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3a70: 2d2b 0a7c 6935 203a 2064 6573 6372 6962 -+.|i5 : describ │ │ │ │ -000a3a80: 6520 5068 6920 2020 2020 2020 2020 2020 e Phi │ │ │ │ +000a3a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6935 -----------+.|i5 │ │ │ │ +000a3a70: 203a 2064 6573 6372 6962 6520 5068 6920 : describe Phi │ │ │ │ +000a3a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3aa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3ac0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3ab0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3b10: 207c 0a7c 6f35 203d 2072 6174 696f 6e61 |.|o5 = rationa │ │ │ │ -000a3b20: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ -000a3b30: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ -000a3b40: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000a3b50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3b60: 207c 0a7c 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ -000a3b70: 7661 7269 6574 793a 2050 505e 3520 2020 variety: PP^5 │ │ │ │ +000a3b00: 2020 2020 2020 2020 2020 207c 0a7c 6f35 |.|o5 │ │ │ │ +000a3b10: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ +000a3b20: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ +000a3b30: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ +000a3b40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a3b50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3b60: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ +000a3b70: 793a 2050 505e 3520 2020 2020 2020 2020 y: PP^5 │ │ │ │ 000a3b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3bb0: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ -000a3bc0: 7661 7269 6574 793a 2050 505e 3520 2020 variety: PP^5 │ │ │ │ +000a3ba0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3bb0: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +000a3bc0: 793a 2050 505e 3520 2020 2020 2020 2020 y: PP^5 │ │ │ │ 000a3bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3c00: 207c 0a7c 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ -000a3c10: 6965 6e74 2072 696e 673a 205a 5a2f 3139 ient ring: ZZ/19 │ │ │ │ -000a3c20: 3031 3831 2020 2020 2020 2020 2020 2020 0181 │ │ │ │ +000a3bf0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3c00: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ +000a3c10: 696e 673a 205a 5a2f 3139 3031 3831 2020 ing: ZZ/190181 │ │ │ │ +000a3c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3c30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3c40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3c50: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a3c40: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a3c50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3c60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3c70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3c80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3ca0: 2d2b 0a7c 6936 203a 2064 6573 6372 6962 -+.|i6 : describ │ │ │ │ -000a3cb0: 6520 5068 6927 2020 2020 2020 2020 2020 e Phi' │ │ │ │ +000a3c90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6936 -----------+.|i6 │ │ │ │ +000a3ca0: 203a 2064 6573 6372 6962 6520 5068 6927 : describe Phi' │ │ │ │ +000a3cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3cf0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a3ce0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3d30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3d40: 207c 0a7c 6f36 203d 2072 6174 696f 6e61 |.|o6 = rationa │ │ │ │ -000a3d50: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ -000a3d60: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ -000a3d70: 2032 2020 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000a3d80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3d90: 207c 0a7c 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ -000a3da0: 7661 7269 6574 793a 2073 6d6f 6f74 6820 variety: smooth │ │ │ │ -000a3db0: 7175 6164 7269 6320 6879 7065 7273 7572 quadric hypersur │ │ │ │ -000a3dc0: 6661 6365 2069 6e20 5050 5e35 2020 2020 face in PP^5 │ │ │ │ -000a3dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3de0: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ -000a3df0: 7661 7269 6574 793a 2068 7970 6572 706c variety: hyperpl │ │ │ │ -000a3e00: 616e 6520 696e 2050 505e 3520 2020 2020 ane in PP^5 │ │ │ │ +000a3d30: 2020 2020 2020 2020 2020 207c 0a7c 6f36 |.|o6 │ │ │ │ +000a3d40: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ +000a3d50: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ +000a3d60: 206f 6620 6465 6772 6565 2032 2020 2020 of degree 2 │ │ │ │ +000a3d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a3d80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3d90: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ +000a3da0: 793a 2073 6d6f 6f74 6820 7175 6164 7269 y: smooth quadri │ │ │ │ +000a3db0: 6320 6879 7065 7273 7572 6661 6365 2069 c hypersurface i │ │ │ │ +000a3dc0: 6e20 5050 5e35 2020 2020 2020 2020 2020 n PP^5 │ │ │ │ +000a3dd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3de0: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +000a3df0: 793a 2068 7970 6572 706c 616e 6520 696e y: hyperplane in │ │ │ │ +000a3e00: 2050 505e 3520 2020 2020 2020 2020 2020 PP^5 │ │ │ │ 000a3e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3e20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3e30: 207c 0a7c 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ -000a3e40: 6965 6e74 2072 696e 673a 205a 5a2f 3139 ient ring: ZZ/19 │ │ │ │ -000a3e50: 3031 3831 2020 2020 2020 2020 2020 2020 0181 │ │ │ │ +000a3e20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a3e30: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ +000a3e40: 696e 673a 205a 5a2f 3139 3031 3831 2020 ing: ZZ/190181 │ │ │ │ +000a3e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a3e60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3e70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a3e80: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a3e70: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a3e80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3e90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3ea0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a3eb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a3ed0: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -000a3ee0: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -000a3ef0: 2052 6174 696f 6e61 6c4d 6170 207c 2049 RationalMap | I │ │ │ │ -000a3f00: 6465 616c 3a20 5261 7469 6f6e 616c 4d61 deal: RationalMa │ │ │ │ -000a3f10: 7020 7c20 4964 6561 6c2c 202d 2d20 7265 p | Ideal, -- re │ │ │ │ -000a3f20: 7374 7269 6374 696f 6e20 6f66 2061 0a20 striction of a. │ │ │ │ -000a3f30: 2020 2072 6174 696f 6e61 6c20 6d61 700a rational map. │ │ │ │ -000a3f40: 0a57 6179 7320 746f 2075 7365 2074 6869 .Ways to use thi │ │ │ │ -000a3f50: 7320 6d65 7468 6f64 3a0a 3d3d 3d3d 3d3d s method:.====== │ │ │ │ -000a3f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ -000a3f70: 3d3d 0a0a 2020 2a20 2a6e 6f74 6520 5261 ==.. * *note Ra │ │ │ │ -000a3f80: 7469 6f6e 616c 4d61 7020 7c7c 2049 6465 tionalMap || Ide │ │ │ │ -000a3f90: 616c 3a20 5261 7469 6f6e 616c 4d61 7020 al: RationalMap │ │ │ │ -000a3fa0: 7c7c 2049 6465 616c 2c20 2d2d 2072 6573 || Ideal, -- res │ │ │ │ -000a3fb0: 7472 6963 7469 6f6e 206f 6620 610a 2020 triction of a. │ │ │ │ -000a3fc0: 2020 7261 7469 6f6e 616c 206d 6170 0a20 rational map. │ │ │ │ -000a3fd0: 202a 2022 5261 7469 6f6e 616c 4d61 7020 * "RationalMap │ │ │ │ -000a3fe0: 7c7c 2052 696e 6722 0a20 202a 2022 5261 || Ring". * "Ra │ │ │ │ -000a3ff0: 7469 6f6e 616c 4d61 7020 7c7c 2052 696e tionalMap || Rin │ │ │ │ -000a4000: 6745 6c65 6d65 6e74 220a 2d2d 2d2d 2d2d gElement".------ │ │ │ │ +000a3ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +000a3ed0: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +000a3ee0: 0a20 202a 202a 6e6f 7465 2052 6174 696f . * *note Ratio │ │ │ │ +000a3ef0: 6e61 6c4d 6170 207c 2049 6465 616c 3a20 nalMap | Ideal: │ │ │ │ +000a3f00: 5261 7469 6f6e 616c 4d61 7020 7c20 4964 RationalMap | Id │ │ │ │ +000a3f10: 6561 6c2c 202d 2d20 7265 7374 7269 6374 eal, -- restrict │ │ │ │ +000a3f20: 696f 6e20 6f66 2061 0a20 2020 2072 6174 ion of a. rat │ │ │ │ +000a3f30: 696f 6e61 6c20 6d61 700a 0a57 6179 7320 ional map..Ways │ │ │ │ +000a3f40: 746f 2075 7365 2074 6869 7320 6d65 7468 to use this meth │ │ │ │ +000a3f50: 6f64 3a0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d od:.============ │ │ │ │ +000a3f60: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 0a0a 2020 ============.. │ │ │ │ +000a3f70: 2a20 2a6e 6f74 6520 5261 7469 6f6e 616c * *note Rational │ │ │ │ +000a3f80: 4d61 7020 7c7c 2049 6465 616c 3a20 5261 Map || Ideal: Ra │ │ │ │ +000a3f90: 7469 6f6e 616c 4d61 7020 7c7c 2049 6465 tionalMap || Ide │ │ │ │ +000a3fa0: 616c 2c20 2d2d 2072 6573 7472 6963 7469 al, -- restricti │ │ │ │ +000a3fb0: 6f6e 206f 6620 610a 2020 2020 7261 7469 on of a. rati │ │ │ │ +000a3fc0: 6f6e 616c 206d 6170 0a20 202a 2022 5261 onal map. * "Ra │ │ │ │ +000a3fd0: 7469 6f6e 616c 4d61 7020 7c7c 2052 696e tionalMap || Rin │ │ │ │ +000a3fe0: 6722 0a20 202a 2022 5261 7469 6f6e 616c g". * "Rational │ │ │ │ +000a3ff0: 4d61 7020 7c7c 2052 696e 6745 6c65 6d65 Map || RingEleme │ │ │ │ +000a4000: 6e74 220a 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d nt".------------ │ │ │ │ 000a4010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4040: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4050: 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 ---------..The s │ │ │ │ -000a4060: 6f75 7263 6520 6f66 2074 6869 7320 646f ource of this do │ │ │ │ -000a4070: 6375 6d65 6e74 2069 7320 696e 0a2f 6275 cument is in./bu │ │ │ │ -000a4080: 696c 642f 7265 7072 6f64 7563 6962 6c65 ild/reproducible │ │ │ │ -000a4090: 2d70 6174 682f 6d61 6361 756c 6179 322d -path/macaulay2- │ │ │ │ -000a40a0: 312e 3235 2e31 312b 6473 2f4d 322f 4d61 1.25.11+ds/M2/Ma │ │ │ │ -000a40b0: 6361 756c 6179 322f 7061 636b 6167 6573 caulay2/packages │ │ │ │ -000a40c0: 2f43 7265 6d6f 6e61 2f0a 646f 6375 6d65 /Cremona/.docume │ │ │ │ -000a40d0: 6e74 6174 696f 6e2e 6d32 3a37 3736 3a30 ntation.m2:776:0 │ │ │ │ -000a40e0: 2e0a 1f0a 4669 6c65 3a20 4372 656d 6f6e ....File: Cremon │ │ │ │ -000a40f0: 612e 696e 666f 2c20 4e6f 6465 3a20 7261 a.info, Node: ra │ │ │ │ -000a4100: 7469 6f6e 616c 4d61 705f 6c70 4964 6561 tionalMap_lpIdea │ │ │ │ -000a4110: 6c5f 636d 5a5a 5f63 6d5a 5a5f 7270 2c20 l_cmZZ_cmZZ_rp, │ │ │ │ -000a4120: 4e65 7874 3a20 7261 7469 6f6e 616c 4d61 Next: rationalMa │ │ │ │ -000a4130: 705f 6c70 506f 6c79 6e6f 6d69 616c 5269 p_lpPolynomialRi │ │ │ │ -000a4140: 6e67 5f63 6d4c 6973 745f 7270 2c20 5072 ng_cmList_rp, Pr │ │ │ │ -000a4150: 6576 3a20 5261 7469 6f6e 616c 4d61 7020 ev: RationalMap │ │ │ │ -000a4160: 7c7c 2049 6465 616c 2c20 5570 3a20 546f || Ideal, Up: To │ │ │ │ -000a4170: 700a 0a72 6174 696f 6e61 6c4d 6170 2849 p..rationalMap(I │ │ │ │ -000a4180: 6465 616c 2c5a 5a2c 5a5a 2920 2d2d 206d deal,ZZ,ZZ) -- m │ │ │ │ -000a4190: 616b 6573 2061 2072 6174 696f 6e61 6c20 akes a rational │ │ │ │ -000a41a0: 6d61 7020 6672 6f6d 2061 6e20 6964 6561 map from an idea │ │ │ │ -000a41b0: 6c0a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a l.************** │ │ │ │ +000a4050: 2d2d 2d0a 0a54 6865 2073 6f75 7263 6520 ---..The source │ │ │ │ +000a4060: 6f66 2074 6869 7320 646f 6375 6d65 6e74 of this document │ │ │ │ +000a4070: 2069 7320 696e 0a2f 6275 696c 642f 7265 is in./build/re │ │ │ │ +000a4080: 7072 6f64 7563 6962 6c65 2d70 6174 682f producible-path/ │ │ │ │ +000a4090: 6d61 6361 756c 6179 322d 312e 3235 2e31 macaulay2-1.25.1 │ │ │ │ +000a40a0: 312b 6473 2f4d 322f 4d61 6361 756c 6179 1+ds/M2/Macaulay │ │ │ │ +000a40b0: 322f 7061 636b 6167 6573 2f43 7265 6d6f 2/packages/Cremo │ │ │ │ +000a40c0: 6e61 2f0a 646f 6375 6d65 6e74 6174 696f na/.documentatio │ │ │ │ +000a40d0: 6e2e 6d32 3a37 3736 3a30 2e0a 1f0a 4669 n.m2:776:0....Fi │ │ │ │ +000a40e0: 6c65 3a20 4372 656d 6f6e 612e 696e 666f le: Cremona.info │ │ │ │ +000a40f0: 2c20 4e6f 6465 3a20 7261 7469 6f6e 616c , Node: rational │ │ │ │ +000a4100: 4d61 705f 6c70 4964 6561 6c5f 636d 5a5a Map_lpIdeal_cmZZ │ │ │ │ +000a4110: 5f63 6d5a 5a5f 7270 2c20 4e65 7874 3a20 _cmZZ_rp, Next: │ │ │ │ +000a4120: 7261 7469 6f6e 616c 4d61 705f 6c70 506f rationalMap_lpPo │ │ │ │ +000a4130: 6c79 6e6f 6d69 616c 5269 6e67 5f63 6d4c lynomialRing_cmL │ │ │ │ +000a4140: 6973 745f 7270 2c20 5072 6576 3a20 5261 ist_rp, Prev: Ra │ │ │ │ +000a4150: 7469 6f6e 616c 4d61 7020 7c7c 2049 6465 tionalMap || Ide │ │ │ │ +000a4160: 616c 2c20 5570 3a20 546f 700a 0a72 6174 al, Up: Top..rat │ │ │ │ +000a4170: 696f 6e61 6c4d 6170 2849 6465 616c 2c5a ionalMap(Ideal,Z │ │ │ │ +000a4180: 5a2c 5a5a 2920 2d2d 206d 616b 6573 2061 Z,ZZ) -- makes a │ │ │ │ +000a4190: 2072 6174 696f 6e61 6c20 6d61 7020 6672 rational map fr │ │ │ │ +000a41a0: 6f6d 2061 6e20 6964 6561 6c0a 2a2a 2a2a om an ideal.**** │ │ │ │ +000a41b0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a41c0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a41d0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000a41e0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000a41f0: 0a0a 2020 2a20 4675 6e63 7469 6f6e 3a20 .. * Function: │ │ │ │ -000a4200: 2a6e 6f74 6520 7261 7469 6f6e 616c 4d61 *note rationalMa │ │ │ │ -000a4210: 703a 2072 6174 696f 6e61 6c4d 6170 2c0a p: rationalMap,. │ │ │ │ -000a4220: 2020 2a20 5573 6167 653a 200a 2020 2020 * Usage: . │ │ │ │ -000a4230: 2020 2020 7261 7469 6f6e 616c 4d61 7028 rationalMap( │ │ │ │ -000a4240: 492c 642c 6529 0a20 2020 2020 2020 2072 I,d,e). r │ │ │ │ -000a4250: 6174 696f 6e61 6c4d 6170 2849 2c64 290a ationalMap(I,d). │ │ │ │ -000a4260: 2020 2020 2020 2020 7261 7469 6f6e 616c rational │ │ │ │ -000a4270: 4d61 7020 490a 2020 2a20 496e 7075 7473 Map I. * Inputs │ │ │ │ -000a4280: 3a0a 2020 2020 2020 2a20 492c 2061 6e20 :. * I, an │ │ │ │ -000a4290: 2a6e 6f74 6520 6964 6561 6c3a 2028 4d61 *note ideal: (Ma │ │ │ │ -000a42a0: 6361 756c 6179 3244 6f63 2949 6465 616c caulay2Doc)Ideal │ │ │ │ -000a42b0: 2c2c 2061 2068 6f6d 6f67 656e 656f 7573 ,, a homogeneous │ │ │ │ -000a42c0: 2069 6465 616c 2069 6e20 7468 650a 2020 ideal in the. │ │ │ │ -000a42d0: 2020 2020 2020 636f 6f72 6469 6e61 7465 coordinate │ │ │ │ -000a42e0: 2072 696e 6720 6f66 2061 2070 726f 6a65 ring of a proje │ │ │ │ -000a42f0: 6374 6976 6520 7661 7269 6574 7920 2458 ctive variety $X │ │ │ │ -000a4300: 5c73 7562 7365 7465 715c 6d61 7468 6262 \subseteq\mathbb │ │ │ │ -000a4310: 7b50 7d5e 6e24 0a20 2020 2020 202a 2064 {P}^n$. * d │ │ │ │ -000a4320: 2c20 616e 202a 6e6f 7465 2069 6e74 6567 , an *note integ │ │ │ │ -000a4330: 6572 3a20 284d 6163 6175 6c61 7932 446f er: (Macaulay2Do │ │ │ │ -000a4340: 6329 5a5a 2c2c 2061 2070 6f73 6974 6976 c)ZZ,, a positiv │ │ │ │ -000a4350: 6520 696e 7465 6765 7220 286f 7220 6120 e integer (or a │ │ │ │ -000a4360: 2a6e 6f74 650a 2020 2020 2020 2020 6c69 *note. li │ │ │ │ -000a4370: 7374 3a20 284d 6163 6175 6c61 7932 446f st: (Macaulay2Do │ │ │ │ -000a4380: 6329 4c69 7374 2c20 6f66 2069 6e74 6567 c)List, of integ │ │ │ │ -000a4390: 6572 7320 696e 2074 6865 2063 6173 6520 ers in the case │ │ │ │ -000a43a0: 2458 2420 6973 2065 6d62 6564 6465 6420 $X$ is embedded │ │ │ │ -000a43b0: 696e 2061 0a20 2020 2020 2020 2070 726f in a. pro │ │ │ │ -000a43c0: 6475 6374 206f 6620 7072 6f6a 6563 7469 duct of projecti │ │ │ │ -000a43d0: 7665 2073 7061 6365 7329 0a20 2020 2020 ve spaces). │ │ │ │ -000a43e0: 202a 2065 2c20 616e 202a 6e6f 7465 2069 * e, an *note i │ │ │ │ -000a43f0: 6e74 6567 6572 3a20 284d 6163 6175 6c61 nteger: (Macaula │ │ │ │ -000a4400: 7932 446f 6329 5a5a 2c2c 2061 2070 6f73 y2Doc)ZZ,, a pos │ │ │ │ -000a4410: 6974 6976 6520 696e 7465 6765 7220 2869 itive integer (i │ │ │ │ -000a4420: 6620 6f6d 6974 7465 642c 0a20 2020 2020 f omitted,. │ │ │ │ -000a4430: 2020 2069 7420 6973 2074 616b 656e 2074 it is taken t │ │ │ │ -000a4440: 6f20 6265 2031 290a 2020 2a20 2a6e 6f74 o be 1). * *not │ │ │ │ -000a4450: 6520 4f70 7469 6f6e 616c 2069 6e70 7574 e Optional input │ │ │ │ -000a4460: 733a 2028 4d61 6361 756c 6179 3244 6f63 s: (Macaulay2Doc │ │ │ │ -000a4470: 2975 7369 6e67 2066 756e 6374 696f 6e73 )using functions │ │ │ │ -000a4480: 2077 6974 6820 6f70 7469 6f6e 616c 2069 with optional i │ │ │ │ -000a4490: 6e70 7574 732c 3a0a 2020 2020 2020 2a20 nputs,:. * │ │ │ │ -000a44a0: 2a6e 6f74 6520 446f 6d69 6e61 6e74 3a20 *note Dominant: │ │ │ │ -000a44b0: 446f 6d69 6e61 6e74 2c20 3d3e 202e 2e2e Dominant, => ... │ │ │ │ -000a44c0: 2c20 6465 6661 756c 7420 7661 6c75 6520 , default value │ │ │ │ -000a44d0: 6e75 6c6c 2c20 0a20 202a 204f 7574 7075 null, . * Outpu │ │ │ │ -000a44e0: 7473 3a0a 2020 2020 2020 2a20 6120 2a6e ts:. * a *n │ │ │ │ -000a44f0: 6f74 6520 7261 7469 6f6e 616c 206d 6170 ote rational map │ │ │ │ -000a4500: 3a20 5261 7469 6f6e 616c 4d61 702c 2c20 : RationalMap,, │ │ │ │ -000a4510: 7468 6520 7261 7469 6f6e 616c 206d 6170 the rational map │ │ │ │ -000a4520: 2024 585c 6461 7368 7269 6768 7461 7272 $X\dashrightarr │ │ │ │ -000a4530: 6f77 0a20 2020 2020 2020 205c 6d61 7468 ow. \math │ │ │ │ -000a4540: 6262 7b50 7d5e 6d24 2064 6566 696e 6564 bb{P}^m$ defined │ │ │ │ -000a4550: 2062 7920 7468 6520 6c69 6e65 6172 2073 by the linear s │ │ │ │ -000a4560: 7973 7465 6d20 6f66 2068 7970 6572 7375 ystem of hypersu │ │ │ │ -000a4570: 7266 6163 6573 206f 6620 6465 6772 6565 rfaces of degree │ │ │ │ -000a4580: 0a20 2020 2020 2020 2024 6424 2068 6176 . $d$ hav │ │ │ │ -000a4590: 696e 6720 706f 696e 7473 206f 6620 6d75 ing points of mu │ │ │ │ -000a45a0: 6c74 6970 6c69 6369 7479 2024 6524 2061 ltiplicity $e$ a │ │ │ │ -000a45b0: 6c6f 6e67 2074 6865 2070 726f 6a65 6374 long the project │ │ │ │ -000a45c0: 6976 6520 7375 6273 6368 656d 6520 6f66 ive subscheme of │ │ │ │ -000a45d0: 0a20 2020 2020 2020 2024 5824 2064 6566 . $X$ def │ │ │ │ -000a45e0: 696e 6564 2062 7920 2449 242e 0a0a 4465 ined by $I$...De │ │ │ │ -000a45f0: 7363 7269 7074 696f 6e0a 3d3d 3d3d 3d3d scription.====== │ │ │ │ -000a4600: 3d3d 3d3d 3d0a 0a49 6e20 6d6f 7374 2063 =====..In most c │ │ │ │ -000a4610: 6173 6573 2c20 7468 6520 636f 6d6d 616e ases, the comman │ │ │ │ -000a4620: 6420 7261 7469 6f6e 616c 4d61 7028 492c d rationalMap(I, │ │ │ │ -000a4630: 642c 6529 2079 6965 6c64 7320 7468 6520 d,e) yields the │ │ │ │ -000a4640: 7361 6d65 206f 7574 7075 7420 6173 0a72 same output as.r │ │ │ │ -000a4650: 6174 696f 6e61 6c4d 6170 2873 6174 7572 ationalMap(satur │ │ │ │ -000a4660: 6174 6528 495e 6529 2c64 292c 2062 7574 ate(I^e),d), but │ │ │ │ -000a4670: 2074 6865 2066 6f72 6d65 7220 6973 2069 the former is i │ │ │ │ -000a4680: 6d70 6c65 6d65 6e74 6564 2075 7369 6e67 mplemented using │ │ │ │ -000a4690: 2070 7572 6520 6c69 6e65 6172 0a61 6c67 pure linear.alg │ │ │ │ -000a46a0: 6562 7261 2e0a 0a54 6865 2063 6f6d 6d61 ebra...The comma │ │ │ │ -000a46b0: 6e64 2072 6174 696f 6e61 6c4d 6170 2049 nd rationalMap I │ │ │ │ -000a46c0: 2069 7320 6261 7369 6361 6c6c 7920 6571 is basically eq │ │ │ │ -000a46d0: 7569 7661 6c65 6e74 2074 6f20 7261 7469 uivalent to rati │ │ │ │ -000a46e0: 6f6e 616c 4d61 7028 492c 6d61 7820 6465 onalMap(I,max de │ │ │ │ -000a46f0: 6772 6565 730a 4929 2e0a 0a49 6e20 7468 grees.I)...In th │ │ │ │ -000a4700: 6520 666f 6c6c 6f77 696e 6720 6578 616d e following exam │ │ │ │ -000a4710: 706c 652c 2077 6520 6361 6c63 756c 6174 ple, we calculat │ │ │ │ -000a4720: 6520 7468 6520 7261 7469 6f6e 616c 206d e the rational m │ │ │ │ -000a4730: 6170 2064 6566 696e 6564 2062 7920 7468 ap defined by th │ │ │ │ -000a4740: 6520 6c69 6e65 6172 0a73 7973 7465 6d20 e linear.system │ │ │ │ -000a4750: 6f66 2063 7562 6963 2068 7970 6572 7375 of cubic hypersu │ │ │ │ -000a4760: 7266 6163 6573 2069 6e20 245c 6d61 7468 rfaces in $\math │ │ │ │ -000a4770: 6262 7b50 7d5e 3624 2068 6176 696e 6720 bb{P}^6$ having │ │ │ │ -000a4780: 646f 7562 6c65 2070 6f69 6e74 7320 616c double points al │ │ │ │ -000a4790: 6f6e 6720 610a 5665 726f 6e65 7365 2073 ong a.Veronese s │ │ │ │ -000a47a0: 7572 6661 6365 2024 565c 7375 6273 6574 urface $V\subset │ │ │ │ -000a47b0: 5c6d 6174 6862 627b 507d 5e35 5c73 7562 \mathbb{P}^5\sub │ │ │ │ -000a47c0: 7365 745c 6d61 7468 6262 7b50 7d5e 3624 set\mathbb{P}^6$ │ │ │ │ -000a47d0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ +000a41e0: 2a2a 2a2a 2a2a 2a2a 2a2a 0a0a 2020 2a20 **********.. * │ │ │ │ +000a41f0: 4675 6e63 7469 6f6e 3a20 2a6e 6f74 6520 Function: *note │ │ │ │ +000a4200: 7261 7469 6f6e 616c 4d61 703a 2072 6174 rationalMap: rat │ │ │ │ +000a4210: 696f 6e61 6c4d 6170 2c0a 2020 2a20 5573 ionalMap,. * Us │ │ │ │ +000a4220: 6167 653a 200a 2020 2020 2020 2020 7261 age: . ra │ │ │ │ +000a4230: 7469 6f6e 616c 4d61 7028 492c 642c 6529 tionalMap(I,d,e) │ │ │ │ +000a4240: 0a20 2020 2020 2020 2072 6174 696f 6e61 . rationa │ │ │ │ +000a4250: 6c4d 6170 2849 2c64 290a 2020 2020 2020 lMap(I,d). │ │ │ │ +000a4260: 2020 7261 7469 6f6e 616c 4d61 7020 490a rationalMap I. │ │ │ │ +000a4270: 2020 2a20 496e 7075 7473 3a0a 2020 2020 * Inputs:. │ │ │ │ +000a4280: 2020 2a20 492c 2061 6e20 2a6e 6f74 6520 * I, an *note │ │ │ │ +000a4290: 6964 6561 6c3a 2028 4d61 6361 756c 6179 ideal: (Macaulay │ │ │ │ +000a42a0: 3244 6f63 2949 6465 616c 2c2c 2061 2068 2Doc)Ideal,, a h │ │ │ │ +000a42b0: 6f6d 6f67 656e 656f 7573 2069 6465 616c omogeneous ideal │ │ │ │ +000a42c0: 2069 6e20 7468 650a 2020 2020 2020 2020 in the. │ │ │ │ +000a42d0: 636f 6f72 6469 6e61 7465 2072 696e 6720 coordinate ring │ │ │ │ +000a42e0: 6f66 2061 2070 726f 6a65 6374 6976 6520 of a projective │ │ │ │ +000a42f0: 7661 7269 6574 7920 2458 5c73 7562 7365 variety $X\subse │ │ │ │ +000a4300: 7465 715c 6d61 7468 6262 7b50 7d5e 6e24 teq\mathbb{P}^n$ │ │ │ │ +000a4310: 0a20 2020 2020 202a 2064 2c20 616e 202a . * d, an * │ │ │ │ +000a4320: 6e6f 7465 2069 6e74 6567 6572 3a20 284d note integer: (M │ │ │ │ +000a4330: 6163 6175 6c61 7932 446f 6329 5a5a 2c2c acaulay2Doc)ZZ,, │ │ │ │ +000a4340: 2061 2070 6f73 6974 6976 6520 696e 7465 a positive inte │ │ │ │ +000a4350: 6765 7220 286f 7220 6120 2a6e 6f74 650a ger (or a *note. │ │ │ │ +000a4360: 2020 2020 2020 2020 6c69 7374 3a20 284d list: (M │ │ │ │ +000a4370: 6163 6175 6c61 7932 446f 6329 4c69 7374 acaulay2Doc)List │ │ │ │ +000a4380: 2c20 6f66 2069 6e74 6567 6572 7320 696e , of integers in │ │ │ │ +000a4390: 2074 6865 2063 6173 6520 2458 2420 6973 the case $X$ is │ │ │ │ +000a43a0: 2065 6d62 6564 6465 6420 696e 2061 0a20 embedded in a. │ │ │ │ +000a43b0: 2020 2020 2020 2070 726f 6475 6374 206f product o │ │ │ │ +000a43c0: 6620 7072 6f6a 6563 7469 7665 2073 7061 f projective spa │ │ │ │ +000a43d0: 6365 7329 0a20 2020 2020 202a 2065 2c20 ces). * e, │ │ │ │ +000a43e0: 616e 202a 6e6f 7465 2069 6e74 6567 6572 an *note integer │ │ │ │ +000a43f0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ +000a4400: 5a5a 2c2c 2061 2070 6f73 6974 6976 6520 ZZ,, a positive │ │ │ │ +000a4410: 696e 7465 6765 7220 2869 6620 6f6d 6974 integer (if omit │ │ │ │ +000a4420: 7465 642c 0a20 2020 2020 2020 2069 7420 ted,. it │ │ │ │ +000a4430: 6973 2074 616b 656e 2074 6f20 6265 2031 is taken to be 1 │ │ │ │ +000a4440: 290a 2020 2a20 2a6e 6f74 6520 4f70 7469 ). * *note Opti │ │ │ │ +000a4450: 6f6e 616c 2069 6e70 7574 733a 2028 4d61 onal inputs: (Ma │ │ │ │ +000a4460: 6361 756c 6179 3244 6f63 2975 7369 6e67 caulay2Doc)using │ │ │ │ +000a4470: 2066 756e 6374 696f 6e73 2077 6974 6820 functions with │ │ │ │ +000a4480: 6f70 7469 6f6e 616c 2069 6e70 7574 732c optional inputs, │ │ │ │ +000a4490: 3a0a 2020 2020 2020 2a20 2a6e 6f74 6520 :. * *note │ │ │ │ +000a44a0: 446f 6d69 6e61 6e74 3a20 446f 6d69 6e61 Dominant: Domina │ │ │ │ +000a44b0: 6e74 2c20 3d3e 202e 2e2e 2c20 6465 6661 nt, => ..., defa │ │ │ │ +000a44c0: 756c 7420 7661 6c75 6520 6e75 6c6c 2c20 ult value null, │ │ │ │ +000a44d0: 0a20 202a 204f 7574 7075 7473 3a0a 2020 . * Outputs:. │ │ │ │ +000a44e0: 2020 2020 2a20 6120 2a6e 6f74 6520 7261 * a *note ra │ │ │ │ +000a44f0: 7469 6f6e 616c 206d 6170 3a20 5261 7469 tional map: Rati │ │ │ │ +000a4500: 6f6e 616c 4d61 702c 2c20 7468 6520 7261 onalMap,, the ra │ │ │ │ +000a4510: 7469 6f6e 616c 206d 6170 2024 585c 6461 tional map $X\da │ │ │ │ +000a4520: 7368 7269 6768 7461 7272 6f77 0a20 2020 shrightarrow. │ │ │ │ +000a4530: 2020 2020 205c 6d61 7468 6262 7b50 7d5e \mathbb{P}^ │ │ │ │ +000a4540: 6d24 2064 6566 696e 6564 2062 7920 7468 m$ defined by th │ │ │ │ +000a4550: 6520 6c69 6e65 6172 2073 7973 7465 6d20 e linear system │ │ │ │ +000a4560: 6f66 2068 7970 6572 7375 7266 6163 6573 of hypersurfaces │ │ │ │ +000a4570: 206f 6620 6465 6772 6565 0a20 2020 2020 of degree. │ │ │ │ +000a4580: 2020 2024 6424 2068 6176 696e 6720 706f $d$ having po │ │ │ │ +000a4590: 696e 7473 206f 6620 6d75 6c74 6970 6c69 ints of multipli │ │ │ │ +000a45a0: 6369 7479 2024 6524 2061 6c6f 6e67 2074 city $e$ along t │ │ │ │ +000a45b0: 6865 2070 726f 6a65 6374 6976 6520 7375 he projective su │ │ │ │ +000a45c0: 6273 6368 656d 6520 6f66 0a20 2020 2020 bscheme of. │ │ │ │ +000a45d0: 2020 2024 5824 2064 6566 696e 6564 2062 $X$ defined b │ │ │ │ +000a45e0: 7920 2449 242e 0a0a 4465 7363 7269 7074 y $I$...Descript │ │ │ │ +000a45f0: 696f 6e0a 3d3d 3d3d 3d3d 3d3d 3d3d 3d0a ion.===========. │ │ │ │ +000a4600: 0a49 6e20 6d6f 7374 2063 6173 6573 2c20 .In most cases, │ │ │ │ +000a4610: 7468 6520 636f 6d6d 616e 6420 7261 7469 the command rati │ │ │ │ +000a4620: 6f6e 616c 4d61 7028 492c 642c 6529 2079 onalMap(I,d,e) y │ │ │ │ +000a4630: 6965 6c64 7320 7468 6520 7361 6d65 206f ields the same o │ │ │ │ +000a4640: 7574 7075 7420 6173 0a72 6174 696f 6e61 utput as.rationa │ │ │ │ +000a4650: 6c4d 6170 2873 6174 7572 6174 6528 495e lMap(saturate(I^ │ │ │ │ +000a4660: 6529 2c64 292c 2062 7574 2074 6865 2066 e),d), but the f │ │ │ │ +000a4670: 6f72 6d65 7220 6973 2069 6d70 6c65 6d65 ormer is impleme │ │ │ │ +000a4680: 6e74 6564 2075 7369 6e67 2070 7572 6520 nted using pure │ │ │ │ +000a4690: 6c69 6e65 6172 0a61 6c67 6562 7261 2e0a linear.algebra.. │ │ │ │ +000a46a0: 0a54 6865 2063 6f6d 6d61 6e64 2072 6174 .The command rat │ │ │ │ +000a46b0: 696f 6e61 6c4d 6170 2049 2069 7320 6261 ionalMap I is ba │ │ │ │ +000a46c0: 7369 6361 6c6c 7920 6571 7569 7661 6c65 sically equivale │ │ │ │ +000a46d0: 6e74 2074 6f20 7261 7469 6f6e 616c 4d61 nt to rationalMa │ │ │ │ +000a46e0: 7028 492c 6d61 7820 6465 6772 6565 730a p(I,max degrees. │ │ │ │ +000a46f0: 4929 2e0a 0a49 6e20 7468 6520 666f 6c6c I)...In the foll │ │ │ │ +000a4700: 6f77 696e 6720 6578 616d 706c 652c 2077 owing example, w │ │ │ │ +000a4710: 6520 6361 6c63 756c 6174 6520 7468 6520 e calculate the │ │ │ │ +000a4720: 7261 7469 6f6e 616c 206d 6170 2064 6566 rational map def │ │ │ │ +000a4730: 696e 6564 2062 7920 7468 6520 6c69 6e65 ined by the line │ │ │ │ +000a4740: 6172 0a73 7973 7465 6d20 6f66 2063 7562 ar.system of cub │ │ │ │ +000a4750: 6963 2068 7970 6572 7375 7266 6163 6573 ic hypersurfaces │ │ │ │ +000a4760: 2069 6e20 245c 6d61 7468 6262 7b50 7d5e in $\mathbb{P}^ │ │ │ │ +000a4770: 3624 2068 6176 696e 6720 646f 7562 6c65 6$ having double │ │ │ │ +000a4780: 2070 6f69 6e74 7320 616c 6f6e 6720 610a points along a. │ │ │ │ +000a4790: 5665 726f 6e65 7365 2073 7572 6661 6365 Veronese surface │ │ │ │ +000a47a0: 2024 565c 7375 6273 6574 5c6d 6174 6862 $V\subset\mathb │ │ │ │ +000a47b0: 627b 507d 5e35 5c73 7562 7365 745c 6d61 b{P}^5\subset\ma │ │ │ │ +000a47c0: 7468 6262 7b50 7d5e 3624 2e0a 0a2b 2d2d thbb{P}^6$...+-- │ │ │ │ +000a47d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a47e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a47f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4800: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4820: 2d2b 0a7c 6931 203a 205a 5a2f 3333 3333 -+.|i1 : ZZ/3333 │ │ │ │ -000a4830: 315b 785f 302e 2e78 5f36 5d3b 2056 203d 1[x_0..x_6]; V = │ │ │ │ +000a4810: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6931 -----------+.|i1 │ │ │ │ +000a4820: 203a 205a 5a2f 3333 3333 315b 785f 302e : ZZ/33331[x_0. │ │ │ │ +000a4830: 2e78 5f36 5d3b 2056 203d 2020 2020 2020 .x_6]; V = │ │ │ │ 000a4840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a4860: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a48a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a48b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a48c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a48d0: 2020 2020 5a5a 2020 2020 2020 2020 2020 ZZ │ │ │ │ +000a48b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a48c0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000a48d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a48e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a48f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4910: 207c 0a7c 6f32 203a 2049 6465 616c 206f |.|o2 : Ideal o │ │ │ │ -000a4920: 6620 2d2d 2d2d 2d5b 7820 2e2e 7820 5d20 f -----[x ..x ] │ │ │ │ +000a4900: 2020 2020 2020 2020 2020 207c 0a7c 6f32 |.|o2 │ │ │ │ +000a4910: 203a 2049 6465 616c 206f 6620 2d2d 2d2d : Ideal of ---- │ │ │ │ +000a4920: 2d5b 7820 2e2e 7820 5d20 2020 2020 2020 -[x ..x ] │ │ │ │ 000a4930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4960: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4970: 2020 3333 3333 3120 2030 2020 2036 2020 33331 0 6 │ │ │ │ +000a4950: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4960: 2020 2020 2020 2020 2020 2020 3333 3333 3333 │ │ │ │ +000a4970: 3120 2030 2020 2036 2020 2020 2020 2020 1 0 6 │ │ │ │ 000a4980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a49a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a49b0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a49a0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a49b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a49c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a49d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a49e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a49f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4a00: 2d7c 0a7c 6964 6561 6c28 785f 345e 322d -|.|ideal(x_4^2- │ │ │ │ -000a4a10: 785f 332a 785f 352c 785f 322a 785f 342d x_3*x_5,x_2*x_4- │ │ │ │ -000a4a20: 785f 312a 785f 352c 785f 322a 785f 332d x_1*x_5,x_2*x_3- │ │ │ │ -000a4a30: 785f 312a 785f 342c 785f 325e 322d 785f x_1*x_4,x_2^2-x_ │ │ │ │ -000a4a40: 302a 785f 352c 785f 312a 785f 322d 785f 0*x_5,x_1*x_2-x_ │ │ │ │ -000a4a50: 307c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 0|.|------------ │ │ │ │ +000a49f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6964 -----------|.|id │ │ │ │ +000a4a00: 6561 6c28 785f 345e 322d 785f 332a 785f eal(x_4^2-x_3*x_ │ │ │ │ +000a4a10: 352c 785f 322a 785f 342d 785f 312a 785f 5,x_2*x_4-x_1*x_ │ │ │ │ +000a4a20: 352c 785f 322a 785f 332d 785f 312a 785f 5,x_2*x_3-x_1*x_ │ │ │ │ +000a4a30: 342c 785f 325e 322d 785f 302a 785f 352c 4,x_2^2-x_0*x_5, │ │ │ │ +000a4a40: 785f 312a 785f 322d 785f 307c 0a7c 2d2d x_1*x_2-x_0|.|-- │ │ │ │ +000a4a50: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4a60: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4a70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4a80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4aa0: 2d7c 0a7c 2a78 5f34 2c78 5f31 5e32 2d78 -|.|*x_4,x_1^2-x │ │ │ │ -000a4ab0: 5f30 2a78 5f33 2c78 5f36 293b 2020 2020 _0*x_3,x_6); │ │ │ │ +000a4a90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 2a78 -----------|.|*x │ │ │ │ +000a4aa0: 5f34 2c78 5f31 5e32 2d78 5f30 2a78 5f33 _4,x_1^2-x_0*x_3 │ │ │ │ +000a4ab0: 2c78 5f36 293b 2020 2020 2020 2020 2020 ,x_6); │ │ │ │ 000a4ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4af0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a4ae0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a4af0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a4b20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a4b40: 2d2b 0a7c 6933 203a 2074 696d 6520 7068 -+.|i3 : time ph │ │ │ │ -000a4b50: 6920 3d20 7261 7469 6f6e 616c 4d61 7028 i = rationalMap( │ │ │ │ -000a4b60: 562c 332c 3229 2020 2020 2020 2020 2020 V,3,2) │ │ │ │ +000a4b30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6933 -----------+.|i3 │ │ │ │ +000a4b40: 203a 2074 696d 6520 7068 6920 3d20 7261 : time phi = ra │ │ │ │ +000a4b50: 7469 6f6e 616c 4d61 7028 562c 332c 3229 tionalMap(V,3,2) │ │ │ │ +000a4b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4b90: 207c 0a7c 202d 2d20 7573 6564 2030 2e30 |.| -- used 0.0 │ │ │ │ -000a4ba0: 3935 3332 3173 2028 6370 7529 3b20 302e 95321s (cpu); 0. │ │ │ │ -000a4bb0: 3039 3533 3231 3573 2028 7468 7265 6164 0953215s (thread │ │ │ │ -000a4bc0: 293b 2030 7320 2867 6329 2020 2020 2020 ); 0s (gc) │ │ │ │ -000a4bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a4b80: 2020 2020 2020 2020 2020 207c 0a7c 202d |.| - │ │ │ │ +000a4b90: 2d20 7573 6564 2030 2e31 3333 3034 3873 - used 0.133048s │ │ │ │ +000a4ba0: 2028 6370 7529 3b20 302e 3133 3330 3438 (cpu); 0.133048 │ │ │ │ +000a4bb0: 7320 2874 6872 6561 6429 3b20 3073 2028 s (thread); 0s ( │ │ │ │ +000a4bc0: 6763 2920 2020 2020 2020 2020 2020 2020 gc) │ │ │ │ +000a4bd0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4c30: 207c 0a7c 6f33 203d 202d 2d20 7261 7469 |.|o3 = -- rati │ │ │ │ -000a4c40: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +000a4c20: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +000a4c30: 203d 202d 2d20 7261 7469 6f6e 616c 206d = -- rational m │ │ │ │ +000a4c40: 6170 202d 2d20 2020 2020 2020 2020 2020 ap -- │ │ │ │ 000a4c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4c80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4c90: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +000a4c70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4c90: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a4ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4cd0: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ -000a4ce0: 2050 726f 6a28 2d2d 2d2d 2d5b 7820 2c20 Proj(-----[x , │ │ │ │ -000a4cf0: 7820 2c20 7820 2c20 7820 2c20 7820 2c20 x , x , x , x , │ │ │ │ -000a4d00: 7820 2c20 7820 5d29 2020 2020 2020 2020 x , x ]) │ │ │ │ -000a4d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4d20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4d30: 2020 2020 2020 3333 3333 3120 2030 2020 33331 0 │ │ │ │ -000a4d40: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -000a4d50: 2035 2020 2036 2020 2020 2020 2020 2020 5 6 │ │ │ │ -000a4d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4d70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4d80: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ +000a4cc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4cd0: 2020 2073 6f75 7263 653a 2050 726f 6a28 source: Proj( │ │ │ │ +000a4ce0: 2d2d 2d2d 2d5b 7820 2c20 7820 2c20 7820 -----[x , x , x │ │ │ │ +000a4cf0: 2c20 7820 2c20 7820 2c20 7820 2c20 7820 , x , x , x , x │ │ │ │ +000a4d00: 5d29 2020 2020 2020 2020 2020 2020 2020 ]) │ │ │ │ +000a4d10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4d20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4d30: 3333 3333 3120 2030 2020 2031 2020 2032 33331 0 1 2 │ │ │ │ +000a4d40: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +000a4d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4d60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4d70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4d80: 2020 5a5a 2020 2020 2020 2020 2020 2020 ZZ │ │ │ │ 000a4d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4dc0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ -000a4dd0: 2050 726f 6a28 2d2d 2d2d 2d5b 7920 2c20 Proj(-----[y , │ │ │ │ -000a4de0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ -000a4df0: 7920 2c20 7920 2c20 7920 2c20 7920 2c20 y , y , y , y , │ │ │ │ -000a4e00: 7920 2c20 7920 202c 2079 2020 2c20 2020 y , y , y , │ │ │ │ -000a4e10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4e20: 2020 2020 2020 3333 3333 3120 2030 2020 33331 0 │ │ │ │ -000a4e30: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ -000a4e40: 2035 2020 2036 2020 2037 2020 2038 2020 5 6 7 8 │ │ │ │ -000a4e50: 2039 2020 2031 3020 2020 3131 2020 2020 9 10 11 │ │ │ │ -000a4e60: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ -000a4e70: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ +000a4db0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4dc0: 2020 2074 6172 6765 743a 2050 726f 6a28 target: Proj( │ │ │ │ +000a4dd0: 2d2d 2d2d 2d5b 7920 2c20 7920 2c20 7920 -----[y , y , y │ │ │ │ +000a4de0: 2c20 7920 2c20 7920 2c20 7920 2c20 7920 , y , y , y , y │ │ │ │ +000a4df0: 2c20 7920 2c20 7920 2c20 7920 2c20 7920 , y , y , y , y │ │ │ │ +000a4e00: 202c 2079 2020 2c20 2020 207c 0a7c 2020 , y , |.| │ │ │ │ +000a4e10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4e20: 3333 3333 3120 2030 2020 2031 2020 2032 33331 0 1 2 │ │ │ │ +000a4e30: 2020 2033 2020 2034 2020 2035 2020 2036 3 4 5 6 │ │ │ │ +000a4e40: 2020 2037 2020 2038 2020 2039 2020 2031 7 8 9 1 │ │ │ │ +000a4e50: 3020 2020 3131 2020 2020 207c 0a7c 2020 0 11 |.| │ │ │ │ +000a4e60: 2020 2064 6566 696e 696e 6720 666f 726d defining form │ │ │ │ +000a4e70: 733a 207b 2020 2020 2020 2020 2020 2020 s: { │ │ │ │ 000a4e80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4eb0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4ec0: 2020 2020 2020 2020 2020 2033 2020 2020 3 │ │ │ │ +000a4ea0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4ec0: 2020 2020 2033 2020 2020 2020 2020 2020 3 │ │ │ │ 000a4ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4f00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4f10: 2020 2020 2020 2020 2020 7820 2c20 2020 x , │ │ │ │ +000a4ef0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4f00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4f10: 2020 2020 7820 2c20 2020 2020 2020 2020 x , │ │ │ │ 000a4f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4f50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a4f60: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ +000a4f40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a4f60: 2020 2020 2036 2020 2020 2020 2020 2020 6 │ │ │ │ 000a4f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4f90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4fa0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a4f90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4fa0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a4fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a4ff0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5000: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a4fe0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a4ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5000: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a5010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5040: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5050: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a5030: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5050: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a5060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5090: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a50a0: 2020 2020 2020 2020 2020 2035 2036 2020 5 6 │ │ │ │ +000a5080: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a50a0: 2020 2020 2035 2036 2020 2020 2020 2020 5 6 │ │ │ │ 000a50b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a50c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a50d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a50e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a50d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a50e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a50f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5130: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5140: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a5120: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5140: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a5150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5190: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a5170: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5190: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a51a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a51b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a51c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a51d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a51e0: 2020 2020 2020 2020 2020 2034 2036 2020 4 6 │ │ │ │ +000a51c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a51d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a51e0: 2020 2020 2034 2036 2020 2020 2020 2020 4 6 │ │ │ │ 000a51f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5210: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5220: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5210: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5260: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5280: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a5260: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5280: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a5290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a52a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a52b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a52c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a52d0: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a52b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a52c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a52d0: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a52e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a52f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5300: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5310: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5320: 2020 2020 2020 2020 2020 2033 2036 2020 3 6 │ │ │ │ +000a5300: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5310: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5320: 2020 2020 2033 2036 2020 2020 2020 2020 3 6 │ │ │ │ 000a5330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5350: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5360: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5350: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a53a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a53b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a53c0: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a53a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a53b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a53c0: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a53d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a53e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a53f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5400: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5410: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a53f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5400: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5410: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a5420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5440: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5450: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5460: 2020 2020 2020 2020 2020 2032 2036 2020 2 6 │ │ │ │ +000a5440: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5460: 2020 2020 2032 2036 2020 2020 2020 2020 2 6 │ │ │ │ 000a5470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a54a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5490: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a54a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a54b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a54c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a54d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a54e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a54f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5500: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a54e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a54f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5500: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a5510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5530: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5550: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a5530: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5540: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5550: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a5560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5590: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a55a0: 2020 2020 2020 2020 2020 2031 2036 2020 1 6 │ │ │ │ +000a5580: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a55a0: 2020 2020 2031 2036 2020 2020 2020 2020 1 6 │ │ │ │ 000a55b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a55c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a55d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a55e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a55d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a55e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a55f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5620: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5630: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5640: 2020 2020 2020 2020 2020 2020 2032 2020 2 │ │ │ │ +000a5620: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5630: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5640: 2020 2020 2020 2032 2020 2020 2020 2020 2 │ │ │ │ 000a5650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5680: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5690: 2020 2020 2020 2020 2020 7820 7820 2c20 x x , │ │ │ │ +000a5670: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5690: 2020 2020 7820 7820 2c20 2020 2020 2020 x x , │ │ │ │ 000a56a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a56b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a56c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a56d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a56e0: 2020 2020 2020 2020 2020 2030 2036 2020 0 6 │ │ │ │ +000a56c0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a56d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a56e0: 2020 2020 2030 2036 2020 2020 2020 2020 0 6 │ │ │ │ 000a56f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5710: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5710: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5720: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5770: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5780: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a5760: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5780: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a5790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a57a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a57b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a57c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a57d0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a57e0: 2078 2078 2078 202c 2020 2020 2020 2020 x x x , │ │ │ │ +000a57b0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a57c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a57d0: 2020 2020 7820 7820 202d 2078 2078 2078 x x - x x x │ │ │ │ +000a57e0: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000a57f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5800: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5810: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5820: 2020 2020 2020 2020 2020 2034 2036 2020 4 6 │ │ │ │ -000a5830: 2020 3320 3520 3620 2020 2020 2020 2020 3 5 6 │ │ │ │ +000a5800: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5810: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5820: 2020 2020 2034 2036 2020 2020 3320 3520 4 6 3 5 │ │ │ │ +000a5830: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 000a5840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5860: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5850: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5870: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a58a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a58b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a58c0: 2020 2020 2020 2020 2020 7820 7820 7820 x x x │ │ │ │ -000a58d0: 202d 2078 2078 2078 202c 2020 2020 2020 - x x x , │ │ │ │ +000a58a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a58b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a58c0: 2020 2020 7820 7820 7820 202d 2078 2078 x x x - x x │ │ │ │ +000a58d0: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 000a58e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a58f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5910: 2020 2020 2020 2020 2020 2032 2034 2036 2 4 6 │ │ │ │ -000a5920: 2020 2020 3120 3520 3620 2020 2020 2020 1 5 6 │ │ │ │ +000a58f0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5910: 2020 2020 2032 2034 2036 2020 2020 3120 2 4 6 1 │ │ │ │ +000a5920: 3520 3620 2020 2020 2020 2020 2020 2020 5 6 │ │ │ │ 000a5930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5950: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5940: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5950: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5960: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5970: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5980: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5990: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a59a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a59b0: 2020 2020 2020 2020 2020 7820 7820 7820 x x x │ │ │ │ -000a59c0: 202d 2078 2078 2078 202c 2020 2020 2020 - x x x , │ │ │ │ +000a5990: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a59a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a59b0: 2020 2020 7820 7820 7820 202d 2078 2078 x x x - x x │ │ │ │ +000a59c0: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 000a59d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a59e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a59f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5a00: 2020 2020 2020 2020 2020 2032 2033 2036 2 3 6 │ │ │ │ -000a5a10: 2020 2020 3120 3420 3620 2020 2020 2020 1 4 6 │ │ │ │ +000a59e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a59f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5a00: 2020 2020 2032 2033 2036 2020 2020 3120 2 3 6 1 │ │ │ │ +000a5a10: 3420 3620 2020 2020 2020 2020 2020 2020 4 6 │ │ │ │ 000a5a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5a40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5a30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5a50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5a60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5a70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5a80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5a90: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5aa0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a5a80: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5a90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5aa0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a5ab0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5ac0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5ad0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5ae0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5af0: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a5b00: 2078 2078 2078 202c 2020 2020 2020 2020 x x x , │ │ │ │ +000a5ad0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5ae0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5af0: 2020 2020 7820 7820 202d 2078 2078 2078 x x - x x x │ │ │ │ +000a5b00: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000a5b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5b30: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5b40: 2020 2020 2020 2020 2020 2032 2036 2020 2 6 │ │ │ │ -000a5b50: 2020 3020 3520 3620 2020 2020 2020 2020 0 5 6 │ │ │ │ +000a5b20: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5b40: 2020 2020 2032 2036 2020 2020 3020 3520 2 6 0 5 │ │ │ │ +000a5b50: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 000a5b60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5b70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5b80: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5b70: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5b80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5b90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5ba0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5bb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5bc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5bd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5be0: 2020 2020 2020 2020 2020 7820 7820 7820 x x x │ │ │ │ -000a5bf0: 202d 2078 2078 2078 202c 2020 2020 2020 - x x x , │ │ │ │ +000a5bc0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5bd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5be0: 2020 2020 7820 7820 7820 202d 2078 2078 x x x - x x │ │ │ │ +000a5bf0: 2078 202c 2020 2020 2020 2020 2020 2020 x , │ │ │ │ 000a5c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5c20: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5c30: 2020 2020 2020 2020 2020 2031 2032 2036 1 2 6 │ │ │ │ -000a5c40: 2020 2020 3020 3420 3620 2020 2020 2020 0 4 6 │ │ │ │ +000a5c10: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5c30: 2020 2020 2031 2032 2036 2020 2020 3020 1 2 6 0 │ │ │ │ +000a5c40: 3420 3620 2020 2020 2020 2020 2020 2020 4 6 │ │ │ │ 000a5c50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5c60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5c70: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5c60: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5c70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5c80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5c90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5ca0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5cb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5cc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5cd0: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ +000a5cb0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5cc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5cd0: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ 000a5ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5d10: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5d20: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a5d30: 2078 2078 2078 202c 2020 2020 2020 2020 x x x , │ │ │ │ +000a5d00: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5d20: 2020 2020 7820 7820 202d 2078 2078 2078 x x - x x x │ │ │ │ +000a5d30: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ 000a5d40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5d50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5d60: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5d70: 2020 2020 2020 2020 2020 2031 2036 2020 1 6 │ │ │ │ -000a5d80: 2020 3020 3320 3620 2020 2020 2020 2020 0 3 6 │ │ │ │ +000a5d50: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5d60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5d70: 2020 2020 2031 2036 2020 2020 3020 3320 1 6 0 3 │ │ │ │ +000a5d80: 3620 2020 2020 2020 2020 2020 2020 2020 6 │ │ │ │ 000a5d90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5da0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5db0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5da0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5db0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5e00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5e10: 2020 2020 2020 2020 2020 2032 2020 2020 2 │ │ │ │ -000a5e20: 2020 2020 2020 2020 2020 2020 2020 3220 2 │ │ │ │ -000a5e30: 2020 2032 2020 2020 2020 2020 2020 2020 2 │ │ │ │ -000a5e40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5e50: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5e60: 2020 2020 2020 2020 2020 7820 7820 202d x x - │ │ │ │ -000a5e70: 2032 7820 7820 7820 202b 2078 2078 2020 2x x x + x x │ │ │ │ -000a5e80: 2b20 7820 7820 202d 2078 2078 2078 2020 + x x - x x x │ │ │ │ -000a5e90: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5ea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5eb0: 2020 2020 2020 2020 2020 2032 2033 2020 2 3 │ │ │ │ -000a5ec0: 2020 2031 2032 2034 2020 2020 3020 3420 1 2 4 0 4 │ │ │ │ -000a5ed0: 2020 2031 2035 2020 2020 3020 3320 3520 1 5 0 3 5 │ │ │ │ -000a5ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5ef0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ -000a5f00: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ +000a5df0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5e10: 2020 2020 2032 2020 2020 2020 2020 2020 2 │ │ │ │ +000a5e20: 2020 2020 2020 2020 3220 2020 2032 2020 2 2 │ │ │ │ +000a5e30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5e40: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5e50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5e60: 2020 2020 7820 7820 202d 2032 7820 7820 x x - 2x x │ │ │ │ +000a5e70: 7820 202b 2078 2078 2020 2b20 7820 7820 x + x x + x x │ │ │ │ +000a5e80: 202d 2078 2078 2078 2020 2020 2020 2020 - x x x │ │ │ │ +000a5e90: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5ea0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5eb0: 2020 2020 2032 2033 2020 2020 2031 2032 2 3 1 2 │ │ │ │ +000a5ec0: 2034 2020 2020 3020 3420 2020 2031 2035 4 0 4 1 5 │ │ │ │ +000a5ed0: 2020 2020 3020 3320 3520 2020 2020 2020 0 3 5 │ │ │ │ +000a5ee0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5ef0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a5f00: 2020 207d 2020 2020 2020 2020 2020 2020 } │ │ │ │ 000a5f10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5f20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5f30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5f40: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a5f30: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a5f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5f60: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a5f70: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5f80: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5f90: 207c 0a7c 6f33 203a 2052 6174 696f 6e61 |.|o3 : Rationa │ │ │ │ -000a5fa0: 6c4d 6170 2028 6375 6269 6320 7261 7469 lMap (cubic rati │ │ │ │ -000a5fb0: 6f6e 616c 206d 6170 2066 726f 6d20 5050 onal map from PP │ │ │ │ -000a5fc0: 5e36 2074 6f20 5050 5e31 3329 2020 2020 ^6 to PP^13) │ │ │ │ -000a5fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a5fe0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a5f80: 2020 2020 2020 2020 2020 207c 0a7c 6f33 |.|o3 │ │ │ │ +000a5f90: 203a 2052 6174 696f 6e61 6c4d 6170 2028 : RationalMap ( │ │ │ │ +000a5fa0: 6375 6269 6320 7261 7469 6f6e 616c 206d cubic rational m │ │ │ │ +000a5fb0: 6170 2066 726f 6d20 5050 5e36 2074 6f20 ap from PP^6 to │ │ │ │ +000a5fc0: 5050 5e31 3329 2020 2020 2020 2020 2020 PP^13) │ │ │ │ +000a5fd0: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a5fe0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a5ff0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6000: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6030: 2d7c 0a7c 7920 202c 2079 2020 5d29 2020 -|.|y , y ]) │ │ │ │ +000a6020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 7920 -----------|.|y │ │ │ │ +000a6030: 202c 2079 2020 5d29 2020 2020 2020 2020 , y ]) │ │ │ │ 000a6040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6080: 207c 0a7c 2031 3220 2020 3133 2020 2020 |.| 12 13 │ │ │ │ +000a6070: 2020 2020 2020 2020 2020 207c 0a7c 2031 |.| 1 │ │ │ │ +000a6080: 3220 2020 3133 2020 2020 2020 2020 2020 2 13 │ │ │ │ 000a6090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a60a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a60b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a60c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a60d0: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a60c0: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a60d0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a60e0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a60f0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6100: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6120: 2d2b 0a7c 6934 203a 2064 6573 6372 6962 -+.|i4 : describ │ │ │ │ -000a6130: 6520 7068 6921 2020 2020 2020 2020 2020 e phi! │ │ │ │ +000a6110: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a7c 6934 -----------+.|i4 │ │ │ │ +000a6120: 203a 2064 6573 6372 6962 6520 7068 6921 : describe phi! │ │ │ │ +000a6130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a6160: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a61a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a61b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a61c0: 207c 0a7c 6f34 203d 2072 6174 696f 6e61 |.|o4 = rationa │ │ │ │ -000a61d0: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ -000a61e0: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ -000a61f0: 2033 2020 2020 2020 2020 2020 2020 2020 3 │ │ │ │ -000a6200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6210: 207c 0a7c 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ -000a6220: 7661 7269 6574 793a 2050 505e 3620 2020 variety: PP^6 │ │ │ │ +000a61b0: 2020 2020 2020 2020 2020 207c 0a7c 6f34 |.|o4 │ │ │ │ +000a61c0: 203d 2072 6174 696f 6e61 6c20 6d61 7020 = rational map │ │ │ │ +000a61d0: 6465 6669 6e65 6420 6279 2066 6f72 6d73 defined by forms │ │ │ │ +000a61e0: 206f 6620 6465 6772 6565 2033 2020 2020 of degree 3 │ │ │ │ +000a61f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a6200: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6210: 2020 2073 6f75 7263 6520 7661 7269 6574 source variet │ │ │ │ +000a6220: 793a 2050 505e 3620 2020 2020 2020 2020 y: PP^6 │ │ │ │ 000a6230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6260: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ -000a6270: 7661 7269 6574 793a 2050 505e 3133 2020 variety: PP^13 │ │ │ │ +000a6250: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6260: 2020 2074 6172 6765 7420 7661 7269 6574 target variet │ │ │ │ +000a6270: 793a 2050 505e 3133 2020 2020 2020 2020 y: PP^13 │ │ │ │ 000a6280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a62a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a62b0: 207c 0a7c 2020 2020 2069 6d61 6765 3a20 |.| image: │ │ │ │ -000a62c0: 362d 6469 6d65 6e73 696f 6e61 6c20 7661 6-dimensional va │ │ │ │ -000a62d0: 7269 6574 7920 6f66 2064 6567 7265 6520 riety of degree │ │ │ │ -000a62e0: 3136 2069 6e20 5050 5e31 3320 6375 7420 16 in PP^13 cut │ │ │ │ -000a62f0: 6f75 7420 6279 2032 3120 2020 2020 2020 out by 21 │ │ │ │ -000a6300: 207c 0a7c 2020 2020 2064 6f6d 696e 616e |.| dominan │ │ │ │ -000a6310: 6365 3a20 6661 6c73 6520 2020 2020 2020 ce: false │ │ │ │ +000a62a0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a62b0: 2020 2069 6d61 6765 3a20 362d 6469 6d65 image: 6-dime │ │ │ │ +000a62c0: 6e73 696f 6e61 6c20 7661 7269 6574 7920 nsional variety │ │ │ │ +000a62d0: 6f66 2064 6567 7265 6520 3136 2069 6e20 of degree 16 in │ │ │ │ +000a62e0: 5050 5e31 3320 6375 7420 6f75 7420 6279 PP^13 cut out by │ │ │ │ +000a62f0: 2032 3120 2020 2020 2020 207c 0a7c 2020 21 |.| │ │ │ │ +000a6300: 2020 2064 6f6d 696e 616e 6365 3a20 6661 dominance: fa │ │ │ │ +000a6310: 6c73 6520 2020 2020 2020 2020 2020 2020 lse │ │ │ │ 000a6320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6350: 207c 0a7c 2020 2020 2062 6972 6174 696f |.| biratio │ │ │ │ -000a6360: 6e61 6c69 7479 3a20 6661 6c73 6520 2020 nality: false │ │ │ │ +000a6340: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6350: 2020 2062 6972 6174 696f 6e61 6c69 7479 birationality │ │ │ │ +000a6360: 3a20 6661 6c73 6520 2020 2020 2020 2020 : false │ │ │ │ 000a6370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a63a0: 207c 0a7c 2020 2020 2064 6567 7265 6520 |.| degree │ │ │ │ -000a63b0: 6f66 206d 6170 3a20 3120 2020 2020 2020 of map: 1 │ │ │ │ +000a6390: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a63a0: 2020 2064 6567 7265 6520 6f66 206d 6170 degree of map │ │ │ │ +000a63b0: 3a20 3120 2020 2020 2020 2020 2020 2020 : 1 │ │ │ │ 000a63c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a63d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a63e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a63f0: 207c 0a7c 2020 2020 2070 726f 6a65 6374 |.| project │ │ │ │ -000a6400: 6976 6520 6465 6772 6565 733a 207b 312c ive degrees: {1, │ │ │ │ -000a6410: 2033 2c20 362c 2031 322c 2031 362c 2031 3, 6, 12, 16, 1 │ │ │ │ -000a6420: 362c 2031 367d 2020 2020 2020 2020 2020 6, 16} │ │ │ │ -000a6430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6440: 207c 0a7c 2020 2020 206e 756d 6265 7220 |.| number │ │ │ │ -000a6450: 6f66 206d 696e 696d 616c 2072 6570 7265 of minimal repre │ │ │ │ -000a6460: 7365 6e74 6174 6976 6573 3a20 3120 2020 sentatives: 1 │ │ │ │ +000a63e0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a63f0: 2020 2070 726f 6a65 6374 6976 6520 6465 projective de │ │ │ │ +000a6400: 6772 6565 733a 207b 312c 2033 2c20 362c grees: {1, 3, 6, │ │ │ │ +000a6410: 2031 322c 2031 362c 2031 362c 2031 367d 12, 16, 16, 16} │ │ │ │ +000a6420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ +000a6430: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6440: 2020 206e 756d 6265 7220 6f66 206d 696e number of min │ │ │ │ +000a6450: 696d 616c 2072 6570 7265 7365 6e74 6174 imal representat │ │ │ │ +000a6460: 6976 6573 3a20 3120 2020 2020 2020 2020 ives: 1 │ │ │ │ 000a6470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6490: 207c 0a7c 2020 2020 2064 696d 656e 7369 |.| dimensi │ │ │ │ -000a64a0: 6f6e 2062 6173 6520 6c6f 6375 733a 2034 on base locus: 4 │ │ │ │ +000a6480: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6490: 2020 2064 696d 656e 7369 6f6e 2062 6173 dimension bas │ │ │ │ +000a64a0: 6520 6c6f 6375 733a 2034 2020 2020 2020 e locus: 4 │ │ │ │ 000a64b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a64c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a64d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a64e0: 207c 0a7c 2020 2020 2064 6567 7265 6520 |.| degree │ │ │ │ -000a64f0: 6261 7365 206c 6f63 7573 3a20 3320 2020 base locus: 3 │ │ │ │ +000a64d0: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a64e0: 2020 2064 6567 7265 6520 6261 7365 206c degree base l │ │ │ │ +000a64f0: 6f63 7573 3a20 3320 2020 2020 2020 2020 ocus: 3 │ │ │ │ 000a6500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6530: 207c 0a7c 2020 2020 2063 6f65 6666 6963 |.| coeffic │ │ │ │ -000a6540: 6965 6e74 2072 696e 673a 205a 5a2f 3333 ient ring: ZZ/33 │ │ │ │ -000a6550: 3333 3120 2020 2020 2020 2020 2020 2020 331 │ │ │ │ +000a6520: 2020 2020 2020 2020 2020 207c 0a7c 2020 |.| │ │ │ │ +000a6530: 2020 2063 6f65 6666 6963 6965 6e74 2072 coefficient r │ │ │ │ +000a6540: 696e 673a 205a 5a2f 3333 3333 3120 2020 ing: ZZ/33331 │ │ │ │ +000a6550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6580: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ +000a6570: 2020 2020 2020 2020 2020 207c 0a7c 2d2d |.|-- │ │ │ │ +000a6580: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6590: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a65a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a65b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a65c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a65d0: 2d7c 0a7c 6879 7065 7273 7572 6661 6365 -|.|hypersurface │ │ │ │ -000a65e0: 7320 6f66 2064 6567 7265 6520 3220 2020 s of degree 2 │ │ │ │ +000a65c0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d7c 0a7c 6879 -----------|.|hy │ │ │ │ +000a65d0: 7065 7273 7572 6661 6365 7320 6f66 2064 persurfaces of d │ │ │ │ +000a65e0: 6567 7265 6520 3220 2020 2020 2020 2020 egree 2 │ │ │ │ 000a65f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6620: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ +000a6610: 2020 2020 2020 2020 2020 207c 0a2b 2d2d |.+-- │ │ │ │ +000a6620: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6630: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6640: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6650: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6670: 2d2b 0a0a 5365 6520 616c 736f 0a3d 3d3d -+..See also.=== │ │ │ │ -000a6680: 3d3d 3d3d 3d0a 0a20 202a 202a 6e6f 7465 =====.. * *note │ │ │ │ -000a6690: 2074 6f4d 6170 3a20 746f 4d61 702c 202d toMap: toMap, - │ │ │ │ -000a66a0: 2d20 7261 7469 6f6e 616c 206d 6170 2064 - rational map d │ │ │ │ -000a66b0: 6566 696e 6564 2062 7920 6120 6c69 6e65 efined by a line │ │ │ │ -000a66c0: 6172 2073 7973 7465 6d0a 2020 2a20 2a6e ar system. * *n │ │ │ │ -000a66d0: 6f74 6520 7261 7469 6f6e 616c 4d61 703a ote rationalMap: │ │ │ │ -000a66e0: 2072 6174 696f 6e61 6c4d 6170 2c20 2d2d rationalMap, -- │ │ │ │ -000a66f0: 206d 616b 6573 2061 2072 6174 696f 6e61 makes a rationa │ │ │ │ -000a6700: 6c20 6d61 700a 2020 2a20 2a6e 6f74 6520 l map. * *note │ │ │ │ -000a6710: 7261 7469 6f6e 616c 4d61 7028 5461 6c6c rationalMap(Tall │ │ │ │ -000a6720: 7929 3a20 7261 7469 6f6e 616c 4d61 705f y): rationalMap_ │ │ │ │ -000a6730: 6c70 5269 6e67 5f63 6d54 616c 6c79 5f72 lpRing_cmTally_r │ │ │ │ -000a6740: 702c 202d 2d20 7261 7469 6f6e 616c 206d p, -- rational m │ │ │ │ -000a6750: 6170 0a20 2020 2064 6566 696e 6564 2062 ap. defined b │ │ │ │ -000a6760: 7920 616e 2065 6666 6563 7469 7665 2064 y an effective d │ │ │ │ -000a6770: 6976 6973 6f72 0a0a 5761 7973 2074 6f20 ivisor..Ways to │ │ │ │ -000a6780: 7573 6520 7468 6973 206d 6574 686f 643a use this method: │ │ │ │ -000a6790: 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d .=============== │ │ │ │ -000a67a0: 3d3d 3d3d 3d3d 3d3d 3d0a 0a20 202a 2022 =========.. * " │ │ │ │ -000a67b0: 7261 7469 6f6e 616c 4d61 7028 4964 6561 rationalMap(Idea │ │ │ │ -000a67c0: 6c29 220a 2020 2a20 2272 6174 696f 6e61 l)". * "rationa │ │ │ │ -000a67d0: 6c4d 6170 2849 6465 616c 2c4c 6973 7429 lMap(Ideal,List) │ │ │ │ -000a67e0: 220a 2020 2a20 2272 6174 696f 6e61 6c4d ". * "rationalM │ │ │ │ -000a67f0: 6170 2849 6465 616c 2c5a 5a29 220a 2020 ap(Ideal,ZZ)". │ │ │ │ -000a6800: 2a20 2a6e 6f74 6520 7261 7469 6f6e 616c * *note rational │ │ │ │ -000a6810: 4d61 7028 4964 6561 6c2c 5a5a 2c5a 5a29 Map(Ideal,ZZ,ZZ) │ │ │ │ -000a6820: 3a20 7261 7469 6f6e 616c 4d61 705f 6c70 : rationalMap_lp │ │ │ │ -000a6830: 4964 6561 6c5f 636d 5a5a 5f63 6d5a 5a5f Ideal_cmZZ_cmZZ_ │ │ │ │ -000a6840: 7270 2c20 2d2d 206d 616b 6573 0a20 2020 rp, -- makes. │ │ │ │ -000a6850: 2061 2072 6174 696f 6e61 6c20 6d61 7020 a rational map │ │ │ │ -000a6860: 6672 6f6d 2061 6e20 6964 6561 6c0a 2d2d from an ideal.-- │ │ │ │ +000a6660: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2b 0a0a 5365 -----------+..Se │ │ │ │ +000a6670: 6520 616c 736f 0a3d 3d3d 3d3d 3d3d 3d0a e also.========. │ │ │ │ +000a6680: 0a20 202a 202a 6e6f 7465 2074 6f4d 6170 . * *note toMap │ │ │ │ +000a6690: 3a20 746f 4d61 702c 202d 2d20 7261 7469 : toMap, -- rati │ │ │ │ +000a66a0: 6f6e 616c 206d 6170 2064 6566 696e 6564 onal map defined │ │ │ │ +000a66b0: 2062 7920 6120 6c69 6e65 6172 2073 7973 by a linear sys │ │ │ │ +000a66c0: 7465 6d0a 2020 2a20 2a6e 6f74 6520 7261 tem. * *note ra │ │ │ │ +000a66d0: 7469 6f6e 616c 4d61 703a 2072 6174 696f tionalMap: ratio │ │ │ │ +000a66e0: 6e61 6c4d 6170 2c20 2d2d 206d 616b 6573 nalMap, -- makes │ │ │ │ +000a66f0: 2061 2072 6174 696f 6e61 6c20 6d61 700a a rational map. │ │ │ │ +000a6700: 2020 2a20 2a6e 6f74 6520 7261 7469 6f6e * *note ration │ │ │ │ +000a6710: 616c 4d61 7028 5461 6c6c 7929 3a20 7261 alMap(Tally): ra │ │ │ │ +000a6720: 7469 6f6e 616c 4d61 705f 6c70 5269 6e67 tionalMap_lpRing │ │ │ │ +000a6730: 5f63 6d54 616c 6c79 5f72 702c 202d 2d20 _cmTally_rp, -- │ │ │ │ +000a6740: 7261 7469 6f6e 616c 206d 6170 0a20 2020 rational map. │ │ │ │ +000a6750: 2064 6566 696e 6564 2062 7920 616e 2065 defined by an e │ │ │ │ +000a6760: 6666 6563 7469 7665 2064 6976 6973 6f72 ffective divisor │ │ │ │ +000a6770: 0a0a 5761 7973 2074 6f20 7573 6520 7468 ..Ways to use th │ │ │ │ +000a6780: 6973 206d 6574 686f 643a 0a3d 3d3d 3d3d is method:.===== │ │ │ │ +000a6790: 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d 3d3d ================ │ │ │ │ +000a67a0: 3d3d 3d0a 0a20 202a 2022 7261 7469 6f6e ===.. * "ration │ │ │ │ +000a67b0: 616c 4d61 7028 4964 6561 6c29 220a 2020 alMap(Ideal)". │ │ │ │ +000a67c0: 2a20 2272 6174 696f 6e61 6c4d 6170 2849 * "rationalMap(I │ │ │ │ +000a67d0: 6465 616c 2c4c 6973 7429 220a 2020 2a20 deal,List)". * │ │ │ │ +000a67e0: 2272 6174 696f 6e61 6c4d 6170 2849 6465 "rationalMap(Ide │ │ │ │ +000a67f0: 616c 2c5a 5a29 220a 2020 2a20 2a6e 6f74 al,ZZ)". * *not │ │ │ │ +000a6800: 6520 7261 7469 6f6e 616c 4d61 7028 4964 e rationalMap(Id │ │ │ │ +000a6810: 6561 6c2c 5a5a 2c5a 5a29 3a20 7261 7469 eal,ZZ,ZZ): rati │ │ │ │ +000a6820: 6f6e 616c 4d61 705f 6c70 4964 6561 6c5f onalMap_lpIdeal_ │ │ │ │ +000a6830: 636d 5a5a 5f63 6d5a 5a5f 7270 2c20 2d2d cmZZ_cmZZ_rp, -- │ │ │ │ +000a6840: 206d 616b 6573 0a20 2020 2061 2072 6174 makes. a rat │ │ │ │ +000a6850: 696f 6e61 6c20 6d61 7020 6672 6f6d 2061 ional map from a │ │ │ │ +000a6860: 6e20 6964 6561 6c0a 2d2d 2d2d 2d2d 2d2d n ideal.-------- │ │ │ │ 000a6870: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6880: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6890: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a68a0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a68b0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d0a 0a54 -------------..T │ │ │ │ -000a68c0: 6865 2073 6f75 7263 6520 6f66 2074 6869 he source of thi │ │ │ │ -000a68d0: 7320 646f 6375 6d65 6e74 2069 7320 696e s document is in │ │ │ │ -000a68e0: 0a2f 6275 696c 642f 7265 7072 6f64 7563 ./build/reproduc │ │ │ │ -000a68f0: 6962 6c65 2d70 6174 682f 6d61 6361 756c ible-path/macaul │ │ │ │ -000a6900: 6179 322d 312e 3235 2e31 312b 6473 2f4d ay2-1.25.11+ds/M │ │ │ │ -000a6910: 322f 4d61 6361 756c 6179 322f 7061 636b 2/Macaulay2/pack │ │ │ │ -000a6920: 6167 6573 2f43 7265 6d6f 6e61 2f0a 646f ages/Cremona/.do │ │ │ │ -000a6930: 6375 6d65 6e74 6174 696f 6e2e 6d32 3a38 cumentation.m2:8 │ │ │ │ -000a6940: 3230 3a30 2e0a 1f0a 4669 6c65 3a20 4372 20:0....File: Cr │ │ │ │ -000a6950: 656d 6f6e 612e 696e 666f 2c20 4e6f 6465 emona.info, Node │ │ │ │ -000a6960: 3a20 7261 7469 6f6e 616c 4d61 705f 6c70 : rationalMap_lp │ │ │ │ -000a6970: 506f 6c79 6e6f 6d69 616c 5269 6e67 5f63 PolynomialRing_c │ │ │ │ -000a6980: 6d4c 6973 745f 7270 2c20 4e65 7874 3a20 mList_rp, Next: │ │ │ │ -000a6990: 7261 7469 6f6e 616c 4d61 705f 6c70 5269 rationalMap_lpRi │ │ │ │ -000a69a0: 6e67 5f63 6d54 616c 6c79 5f72 702c 2050 ng_cmTally_rp, P │ │ │ │ -000a69b0: 7265 763a 2072 6174 696f 6e61 6c4d 6170 rev: rationalMap │ │ │ │ -000a69c0: 5f6c 7049 6465 616c 5f63 6d5a 5a5f 636d _lpIdeal_cmZZ_cm │ │ │ │ -000a69d0: 5a5a 5f72 702c 2055 703a 2054 6f70 0a0a ZZ_rp, Up: Top.. │ │ │ │ -000a69e0: 7261 7469 6f6e 616c 4d61 7028 506f 6c79 rationalMap(Poly │ │ │ │ -000a69f0: 6e6f 6d69 616c 5269 6e67 2c4c 6973 7429 nomialRing,List) │ │ │ │ -000a6a00: 202d 2d20 7261 7469 6f6e 616c 206d 6170 -- rational map │ │ │ │ -000a6a10: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ -000a6a20: 6c69 6e65 6172 2073 7973 7465 6d20 6f66 linear system of │ │ │ │ -000a6a30: 2068 7970 6572 7375 7266 6163 6573 2070 hypersurfaces p │ │ │ │ -000a6a40: 6173 7369 6e67 2074 6872 6f75 6768 2072 assing through r │ │ │ │ -000a6a50: 616e 646f 6d20 706f 696e 7473 2077 6974 andom points wit │ │ │ │ -000a6a60: 6820 6d75 6c74 6970 6c69 6369 7479 0a2a h multiplicity.* │ │ │ │ +000a68b0: 2d2d 2d2d 2d2d 2d0a 0a54 6865 2073 6f75 -------..The sou │ │ │ │ +000a68c0: 7263 6520 6f66 2074 6869 7320 646f 6375 rce of this docu │ │ │ │ +000a68d0: 6d65 6e74 2069 7320 696e 0a2f 6275 696c ment is in./buil │ │ │ │ +000a68e0: 642f 7265 7072 6f64 7563 6962 6c65 2d70 d/reproducible-p │ │ │ │ +000a68f0: 6174 682f 6d61 6361 756c 6179 322d 312e ath/macaulay2-1. │ │ │ │ +000a6900: 3235 2e31 312b 6473 2f4d 322f 4d61 6361 25.11+ds/M2/Maca │ │ │ │ +000a6910: 756c 6179 322f 7061 636b 6167 6573 2f43 ulay2/packages/C │ │ │ │ +000a6920: 7265 6d6f 6e61 2f0a 646f 6375 6d65 6e74 remona/.document │ │ │ │ +000a6930: 6174 696f 6e2e 6d32 3a38 3230 3a30 2e0a ation.m2:820:0.. │ │ │ │ +000a6940: 1f0a 4669 6c65 3a20 4372 656d 6f6e 612e ..File: Cremona. │ │ │ │ +000a6950: 696e 666f 2c20 4e6f 6465 3a20 7261 7469 info, Node: rati │ │ │ │ +000a6960: 6f6e 616c 4d61 705f 6c70 506f 6c79 6e6f onalMap_lpPolyno │ │ │ │ +000a6970: 6d69 616c 5269 6e67 5f63 6d4c 6973 745f mialRing_cmList_ │ │ │ │ +000a6980: 7270 2c20 4e65 7874 3a20 7261 7469 6f6e rp, Next: ration │ │ │ │ +000a6990: 616c 4d61 705f 6c70 5269 6e67 5f63 6d54 alMap_lpRing_cmT │ │ │ │ +000a69a0: 616c 6c79 5f72 702c 2050 7265 763a 2072 ally_rp, Prev: r │ │ │ │ +000a69b0: 6174 696f 6e61 6c4d 6170 5f6c 7049 6465 ationalMap_lpIde │ │ │ │ +000a69c0: 616c 5f63 6d5a 5a5f 636d 5a5a 5f72 702c al_cmZZ_cmZZ_rp, │ │ │ │ +000a69d0: 2055 703a 2054 6f70 0a0a 7261 7469 6f6e Up: Top..ration │ │ │ │ +000a69e0: 616c 4d61 7028 506f 6c79 6e6f 6d69 616c alMap(Polynomial │ │ │ │ +000a69f0: 5269 6e67 2c4c 6973 7429 202d 2d20 7261 Ring,List) -- ra │ │ │ │ +000a6a00: 7469 6f6e 616c 206d 6170 2064 6566 696e tional map defin │ │ │ │ +000a6a10: 6564 2062 7920 7468 6520 6c69 6e65 6172 ed by the linear │ │ │ │ +000a6a20: 2073 7973 7465 6d20 6f66 2068 7970 6572 system of hyper │ │ │ │ +000a6a30: 7375 7266 6163 6573 2070 6173 7369 6e67 surfaces passing │ │ │ │ +000a6a40: 2074 6872 6f75 6768 2072 616e 646f 6d20 through random │ │ │ │ +000a6a50: 706f 696e 7473 2077 6974 6820 6d75 6c74 points with mult │ │ │ │ +000a6a60: 6970 6c69 6369 7479 0a2a 2a2a 2a2a 2a2a iplicity.******* │ │ │ │ 000a6a70: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6a80: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6a90: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6aa0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6ab0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6ac0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6ad0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ 000a6ae0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a **************** │ │ │ │ -000a6af0: 2a2a 2a2a 2a2a 2a2a 2a2a 2a2a 2a0a 0a20 *************.. │ │ │ │ -000a6b00: 202a 2046 756e 6374 696f 6e3a 202a 6e6f * Function: *no │ │ │ │ -000a6b10: 7465 2072 6174 696f 6e61 6c4d 6170 3a20 te rationalMap: │ │ │ │ -000a6b20: 7261 7469 6f6e 616c 4d61 702c 0a20 202a rationalMap,. * │ │ │ │ -000a6b30: 2055 7361 6765 3a20 0a20 2020 2020 2020 Usage: . │ │ │ │ -000a6b40: 2072 6174 696f 6e61 6c4d 6170 2852 2c7b rationalMap(R,{ │ │ │ │ -000a6b50: 612c 692c 6a2c 6b2c 2e2e 2e7d 290a 2020 a,i,j,k,...}). │ │ │ │ -000a6b60: 2a20 496e 7075 7473 3a0a 2020 2020 2020 * Inputs:. │ │ │ │ -000a6b70: 2a20 522c 2061 202a 6e6f 7465 2070 6f6c * R, a *note pol │ │ │ │ -000a6b80: 796e 6f6d 6961 6c20 7269 6e67 3a20 284d ynomial ring: (M │ │ │ │ -000a6b90: 6163 6175 6c61 7932 446f 6329 506f 6c79 acaulay2Doc)Poly │ │ │ │ -000a6ba0: 6e6f 6d69 616c 5269 6e67 2c0a 2020 2020 nomialRing,. │ │ │ │ -000a6bb0: 2020 2a20 6120 2a6e 6f74 6520 6c69 7374 * a *note list │ │ │ │ -000a6bc0: 3a20 284d 6163 6175 6c61 7932 446f 6329 : (Macaulay2Doc) │ │ │ │ -000a6bd0: 4c69 7374 2c2c 2061 206c 6973 7420 245c List,, a list $\ │ │ │ │ -000a6be0: 7b61 2c69 2c6a 2c6b 2c5c 6c64 6f74 735c {a,i,j,k,\ldots\ │ │ │ │ -000a6bf0: 7d24 206f 660a 2020 2020 2020 2020 6e6f }$ of. no │ │ │ │ -000a6c00: 6e6e 6567 6174 6976 6520 696e 7465 6765 nnegative intege │ │ │ │ -000a6c10: 7273 0a20 202a 202a 6e6f 7465 204f 7074 rs. * *note Opt │ │ │ │ -000a6c20: 696f 6e61 6c20 696e 7075 7473 3a20 284d ional inputs: (M │ │ │ │ -000a6c30: 6163 6175 6c61 7932 446f 6329 7573 696e acaulay2Doc)usin │ │ │ │ -000a6c40: 6720 6675 6e63 7469 6f6e 7320 7769 7468 g functions with │ │ │ │ -000a6c50: 206f 7074 696f 6e61 6c20 696e 7075 7473 optional inputs │ │ │ │ -000a6c60: 2c3a 0a20 2020 2020 202a 202a 6e6f 7465 ,:. * *note │ │ │ │ -000a6c70: 2044 6f6d 696e 616e 743a 2044 6f6d 696e Dominant: Domin │ │ │ │ -000a6c80: 616e 742c 203d 3e20 2e2e 2e2c 2064 6566 ant, => ..., def │ │ │ │ -000a6c90: 6175 6c74 2076 616c 7565 206e 756c 6c2c ault value null, │ │ │ │ -000a6ca0: 200a 2020 2a20 4f75 7470 7574 733a 0a20 . * Outputs:. │ │ │ │ -000a6cb0: 2020 2020 202a 2061 202a 6e6f 7465 2072 * a *note r │ │ │ │ -000a6cc0: 6174 696f 6e61 6c20 6d61 703a 2052 6174 ational map: Rat │ │ │ │ -000a6cd0: 696f 6e61 6c4d 6170 2c2c 2074 6865 2072 ionalMap,, the r │ │ │ │ -000a6ce0: 6174 696f 6e61 6c20 6d61 7020 6465 6669 ational map defi │ │ │ │ -000a6cf0: 6e65 6420 6279 2074 6865 0a20 2020 2020 ned by the. │ │ │ │ -000a6d00: 2020 206c 696e 6561 7220 7379 7374 656d linear system │ │ │ │ -000a6d10: 206f 6620 6879 7065 7273 7572 6661 6365 of hypersurface │ │ │ │ -000a6d20: 7320 6f66 2064 6567 7265 6520 2461 2420 s of degree $a$ │ │ │ │ -000a6d30: 696e 2024 5072 6f6a 2852 2924 2068 6176 in $Proj(R)$ hav │ │ │ │ -000a6d40: 696e 6720 2469 240a 2020 2020 2020 2020 ing $i$. │ │ │ │ -000a6d50: 7261 6e64 6f6d 2062 6173 6520 706f 696e random base poin │ │ │ │ -000a6d60: 7473 206f 6620 6d75 6c74 6970 6c69 6369 ts of multiplici │ │ │ │ -000a6d70: 7479 2031 2c20 246a 2420 7261 6e64 6f6d ty 1, $j$ random │ │ │ │ -000a6d80: 2062 6173 6520 706f 696e 7473 206f 660a base points of. │ │ │ │ -000a6d90: 2020 2020 2020 2020 6d75 6c74 6970 6c69 multipli │ │ │ │ -000a6da0: 6369 7479 2032 2c20 246b 2420 7261 6e64 city 2, $k$ rand │ │ │ │ -000a6db0: 6f6d 2062 6173 6520 706f 696e 7473 206f om base points o │ │ │ │ -000a6dc0: 6620 6d75 6c74 6970 6c69 6369 7479 2033 f multiplicity 3 │ │ │ │ -000a6dd0: 2c20 616e 6420 736f 206f 6e0a 2020 2020 , and so on. │ │ │ │ -000a6de0: 2020 2020 756e 7469 6c20 7468 6520 6c61 until the la │ │ │ │ -000a6df0: 7374 2069 6e74 6567 6572 2069 6e20 7468 st integer in th │ │ │ │ -000a6e00: 6520 6769 7665 6e20 6c69 7374 2e0a 0a44 e given list...D │ │ │ │ -000a6e10: 6573 6372 6970 7469 6f6e 0a3d 3d3d 3d3d escription.===== │ │ │ │ -000a6e20: 3d3d 3d3d 3d3d 0a0a 496e 2074 6865 2065 ======..In the e │ │ │ │ -000a6e30: 7861 6d70 6c65 2062 656c 6f77 2c20 7765 xample below, we │ │ │ │ -000a6e40: 2074 616b 6520 7468 6520 7261 7469 6f6e take the ration │ │ │ │ -000a6e50: 616c 206d 6170 2064 6566 696e 6564 2062 al map defined b │ │ │ │ -000a6e60: 7920 7468 6520 6c69 6e65 6172 2073 7973 y the linear sys │ │ │ │ -000a6e70: 7465 6d20 6f66 0a73 6570 7469 6320 706c tem of.septic pl │ │ │ │ -000a6e80: 616e 6520 6375 7276 6573 2077 6974 6820 ane curves with │ │ │ │ -000a6e90: 3320 7261 6e64 6f6d 2073 696d 706c 6520 3 random simple │ │ │ │ -000a6ea0: 6261 7365 2070 6f69 6e74 7320 616e 6420 base points and │ │ │ │ -000a6eb0: 3920 7261 6e64 6f6d 2064 6f75 626c 650a 9 random double. │ │ │ │ -000a6ec0: 706f 696e 7473 2e0a 0a2b 2d2d 2d2d 2d2d points...+------ │ │ │ │ +000a6af0: 2a2a 2a2a 2a2a 2a0a 0a20 202a 2046 756e *******.. * Fun │ │ │ │ +000a6b00: 6374 696f 6e3a 202a 6e6f 7465 2072 6174 ction: *note rat │ │ │ │ +000a6b10: 696f 6e61 6c4d 6170 3a20 7261 7469 6f6e ionalMap: ration │ │ │ │ +000a6b20: 616c 4d61 702c 0a20 202a 2055 7361 6765 alMap,. * Usage │ │ │ │ +000a6b30: 3a20 0a20 2020 2020 2020 2072 6174 696f : . ratio │ │ │ │ +000a6b40: 6e61 6c4d 6170 2852 2c7b 612c 692c 6a2c nalMap(R,{a,i,j, │ │ │ │ +000a6b50: 6b2c 2e2e 2e7d 290a 2020 2a20 496e 7075 k,...}). * Inpu │ │ │ │ +000a6b60: 7473 3a0a 2020 2020 2020 2a20 522c 2061 ts:. * R, a │ │ │ │ +000a6b70: 202a 6e6f 7465 2070 6f6c 796e 6f6d 6961 *note polynomia │ │ │ │ +000a6b80: 6c20 7269 6e67 3a20 284d 6163 6175 6c61 l ring: (Macaula │ │ │ │ +000a6b90: 7932 446f 6329 506f 6c79 6e6f 6d69 616c y2Doc)Polynomial │ │ │ │ +000a6ba0: 5269 6e67 2c0a 2020 2020 2020 2a20 6120 Ring,. * a │ │ │ │ +000a6bb0: 2a6e 6f74 6520 6c69 7374 3a20 284d 6163 *note list: (Mac │ │ │ │ +000a6bc0: 6175 6c61 7932 446f 6329 4c69 7374 2c2c aulay2Doc)List,, │ │ │ │ +000a6bd0: 2061 206c 6973 7420 245c 7b61 2c69 2c6a a list $\{a,i,j │ │ │ │ +000a6be0: 2c6b 2c5c 6c64 6f74 735c 7d24 206f 660a ,k,\ldots\}$ of. │ │ │ │ +000a6bf0: 2020 2020 2020 2020 6e6f 6e6e 6567 6174 nonnegat │ │ │ │ +000a6c00: 6976 6520 696e 7465 6765 7273 0a20 202a ive integers. * │ │ │ │ +000a6c10: 202a 6e6f 7465 204f 7074 696f 6e61 6c20 *note Optional │ │ │ │ +000a6c20: 696e 7075 7473 3a20 284d 6163 6175 6c61 inputs: (Macaula │ │ │ │ +000a6c30: 7932 446f 6329 7573 696e 6720 6675 6e63 y2Doc)using func │ │ │ │ +000a6c40: 7469 6f6e 7320 7769 7468 206f 7074 696f tions with optio │ │ │ │ +000a6c50: 6e61 6c20 696e 7075 7473 2c3a 0a20 2020 nal inputs,:. │ │ │ │ +000a6c60: 2020 202a 202a 6e6f 7465 2044 6f6d 696e * *note Domin │ │ │ │ +000a6c70: 616e 743a 2044 6f6d 696e 616e 742c 203d ant: Dominant, = │ │ │ │ +000a6c80: 3e20 2e2e 2e2c 2064 6566 6175 6c74 2076 > ..., default v │ │ │ │ +000a6c90: 616c 7565 206e 756c 6c2c 200a 2020 2a20 alue null, . * │ │ │ │ +000a6ca0: 4f75 7470 7574 733a 0a20 2020 2020 202a Outputs:. * │ │ │ │ +000a6cb0: 2061 202a 6e6f 7465 2072 6174 696f 6e61 a *note rationa │ │ │ │ +000a6cc0: 6c20 6d61 703a 2052 6174 696f 6e61 6c4d l map: RationalM │ │ │ │ +000a6cd0: 6170 2c2c 2074 6865 2072 6174 696f 6e61 ap,, the rationa │ │ │ │ +000a6ce0: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ +000a6cf0: 2074 6865 0a20 2020 2020 2020 206c 696e the. lin │ │ │ │ +000a6d00: 6561 7220 7379 7374 656d 206f 6620 6879 ear system of hy │ │ │ │ +000a6d10: 7065 7273 7572 6661 6365 7320 6f66 2064 persurfaces of d │ │ │ │ +000a6d20: 6567 7265 6520 2461 2420 696e 2024 5072 egree $a$ in $Pr │ │ │ │ +000a6d30: 6f6a 2852 2924 2068 6176 696e 6720 2469 oj(R)$ having $i │ │ │ │ +000a6d40: 240a 2020 2020 2020 2020 7261 6e64 6f6d $. random │ │ │ │ +000a6d50: 2062 6173 6520 706f 696e 7473 206f 6620 base points of │ │ │ │ +000a6d60: 6d75 6c74 6970 6c69 6369 7479 2031 2c20 multiplicity 1, │ │ │ │ +000a6d70: 246a 2420 7261 6e64 6f6d 2062 6173 6520 $j$ random base │ │ │ │ +000a6d80: 706f 696e 7473 206f 660a 2020 2020 2020 points of. │ │ │ │ +000a6d90: 2020 6d75 6c74 6970 6c69 6369 7479 2032 multiplicity 2 │ │ │ │ +000a6da0: 2c20 246b 2420 7261 6e64 6f6d 2062 6173 , $k$ random bas │ │ │ │ +000a6db0: 6520 706f 696e 7473 206f 6620 6d75 6c74 e points of mult │ │ │ │ +000a6dc0: 6970 6c69 6369 7479 2033 2c20 616e 6420 iplicity 3, and │ │ │ │ +000a6dd0: 736f 206f 6e0a 2020 2020 2020 2020 756e so on. un │ │ │ │ +000a6de0: 7469 6c20 7468 6520 6c61 7374 2069 6e74 til the last int │ │ │ │ +000a6df0: 6567 6572 2069 6e20 7468 6520 6769 7665 eger in the give │ │ │ │ +000a6e00: 6e20 6c69 7374 2e0a 0a44 6573 6372 6970 n list...Descrip │ │ │ │ +000a6e10: 7469 6f6e 0a3d 3d3d 3d3d 3d3d 3d3d 3d3d tion.=========== │ │ │ │ +000a6e20: 0a0a 496e 2074 6865 2065 7861 6d70 6c65 ..In the example │ │ │ │ +000a6e30: 2062 656c 6f77 2c20 7765 2074 616b 6520 below, we take │ │ │ │ +000a6e40: 7468 6520 7261 7469 6f6e 616c 206d 6170 the rational map │ │ │ │ +000a6e50: 2064 6566 696e 6564 2062 7920 7468 6520 defined by the │ │ │ │ +000a6e60: 6c69 6e65 6172 2073 7973 7465 6d20 6f66 linear system of │ │ │ │ +000a6e70: 0a73 6570 7469 6320 706c 616e 6520 6375 .septic plane cu │ │ │ │ +000a6e80: 7276 6573 2077 6974 6820 3320 7261 6e64 rves with 3 rand │ │ │ │ +000a6e90: 6f6d 2073 696d 706c 6520 6261 7365 2070 om simple base p │ │ │ │ +000a6ea0: 6f69 6e74 7320 616e 6420 3920 7261 6e64 oints and 9 rand │ │ │ │ +000a6eb0: 6f6d 2064 6f75 626c 650a 706f 696e 7473 om double.points │ │ │ │ +000a6ec0: 2e0a 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ...+------------ │ │ │ │ 000a6ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6f00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6f10: 2d2d 2d2d 2d2d 2d2b 0a7c 6931 203a 2072 -------+.|i1 : r │ │ │ │ -000a6f20: 696e 6750 3220 3d20 5a5a 2f36 3535 3231 ingP2 = ZZ/65521 │ │ │ │ -000a6f30: 5b76 6172 7328 302e 2e32 295d 3b20 2020 [vars(0..2)]; │ │ │ │ +000a6f10: 2d2b 0a7c 6931 203a 2072 696e 6750 3220 -+.|i1 : ringP2 │ │ │ │ +000a6f20: 3d20 5a5a 2f36 3535 3231 5b76 6172 7328 = ZZ/65521[vars( │ │ │ │ +000a6f30: 302e 2e32 295d 3b20 2020 2020 2020 2020 0..2)]; │ │ │ │ 000a6f40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6f50: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a6f60: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000a6f60: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000a6f70: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6f80: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6f90: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a6fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a6fb0: 2d2d 2d2d 2d2d 2d2b 0a7c 6932 203a 2070 -------+.|i2 : p │ │ │ │ -000a6fc0: 6869 203d 2072 6174 696f 6e61 6c4d 6170 hi = rationalMap │ │ │ │ -000a6fd0: 2872 696e 6750 322c 7b37 2c33 2c39 7d29 (ringP2,{7,3,9}) │ │ │ │ +000a6fb0: 2d2b 0a7c 6932 203a 2070 6869 203d 2072 -+.|i2 : phi = r │ │ │ │ +000a6fc0: 6174 696f 6e61 6c4d 6170 2872 696e 6750 ationalMap(ringP │ │ │ │ +000a6fd0: 322c 7b37 2c33 2c39 7d29 2020 2020 2020 2,{7,3,9}) │ │ │ │ 000a6fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a6ff0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7000: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a7000: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7030: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7040: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7050: 2020 2020 2020 207c 0a7c 6f32 203d 202d |.|o2 = - │ │ │ │ -000a7060: 2d20 7261 7469 6f6e 616c 206d 6170 202d - rational map - │ │ │ │ -000a7070: 2d20 2020 2020 2020 2020 2020 2020 2020 - │ │ │ │ +000a7050: 207c 0a7c 6f32 203d 202d 2d20 7261 7469 |.|o2 = -- rati │ │ │ │ +000a7060: 6f6e 616c 206d 6170 202d 2d20 2020 2020 onal map -- │ │ │ │ +000a7070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7080: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a70a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a70b0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000a70a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a70b0: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 000a70c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a70d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a70e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a70f0: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -000a7100: 6f75 7263 653a 2050 726f 6a28 2d2d 2d2d ource: Proj(---- │ │ │ │ -000a7110: 2d5b 612c 2062 2c20 635d 2920 2020 2020 -[a, b, c]) │ │ │ │ +000a70f0: 207c 0a7c 2020 2020 2073 6f75 7263 653a |.| source: │ │ │ │ +000a7100: 2050 726f 6a28 2d2d 2d2d 2d5b 612c 2062 Proj(-----[a, b │ │ │ │ +000a7110: 2c20 635d 2920 2020 2020 2020 2020 2020 , c]) │ │ │ │ 000a7120: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7130: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7140: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7150: 2020 2020 2020 2020 2020 2020 3635 3532 6552 │ │ │ │ -000a7160: 3120 2020 2020 2020 2020 2020 2020 2020 1 │ │ │ │ +000a7140: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7150: 2020 2020 2020 3635 3532 3120 2020 2020 65521 │ │ │ │ +000a7160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7170: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7190: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a71a0: 2020 2020 2020 2020 2020 2020 2020 5a5a ZZ │ │ │ │ +000a7190: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a71a0: 2020 2020 2020 2020 5a5a 2020 2020 2020 ZZ │ │ │ │ 000a71b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a71c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a71d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a71e0: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ -000a71f0: 6172 6765 743a 2050 726f 6a28 2d2d 2d2d arget: Proj(---- │ │ │ │ -000a7200: 2d5b 7420 2c20 7420 2c20 7420 2c20 7420 -[t , t , t , t │ │ │ │ -000a7210: 2c20 7420 2c20 7420 5d29 2020 2020 2020 , t , t ]) │ │ │ │ +000a71e0: 207c 0a7c 2020 2020 2074 6172 6765 743a |.| target: │ │ │ │ +000a71f0: 2050 726f 6a28 2d2d 2d2d 2d5b 7420 2c20 Proj(-----[t , │ │ │ │ +000a7200: 7420 2c20 7420 2c20 7420 2c20 7420 2c20 t , t , t , t , │ │ │ │ +000a7210: 7420 5d29 2020 2020 2020 2020 2020 2020 t ]) │ │ │ │ 000a7220: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7230: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7240: 2020 2020 2020 2020 2020 2020 3635 3532 6552 │ │ │ │ -000a7250: 3120 2030 2020 2031 2020 2032 2020 2033 1 0 1 2 3 │ │ │ │ -000a7260: 2020 2034 2020 2035 2020 2020 2020 2020 4 5 │ │ │ │ +000a7230: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7240: 2020 2020 2020 3635 3532 3120 2030 2020 65521 0 │ │ │ │ +000a7250: 2031 2020 2032 2020 2033 2020 2034 2020 1 2 3 4 │ │ │ │ +000a7260: 2035 2020 2020 2020 2020 2020 2020 2020 5 │ │ │ │ 000a7270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7280: 2020 2020 2020 207c 0a7c 2020 2020 2064 |.| d │ │ │ │ -000a7290: 6566 696e 696e 6720 666f 726d 733a 207b efining forms: { │ │ │ │ +000a7280: 207c 0a7c 2020 2020 2064 6566 696e 696e |.| definin │ │ │ │ +000a7290: 6720 666f 726d 733a 207b 2020 2020 2020 g forms: { │ │ │ │ 000a72a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a72b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a72c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a72d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a72e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a72f0: 2032 2035 2020 2020 2020 2020 2020 2036 2 5 6 │ │ │ │ -000a7300: 2020 2020 2020 2020 2037 2020 2020 2020 7 │ │ │ │ -000a7310: 2020 2036 2020 2020 2020 2020 2020 3520 6 5 │ │ │ │ -000a7320: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7340: 6120 6220 202d 2031 3736 3137 612a 6220 a b - 17617a*b │ │ │ │ -000a7350: 202b 2031 3239 3030 6220 202b 2031 3933 + 12900b + 193 │ │ │ │ -000a7360: 3037 6120 6320 2d20 3138 3232 3961 2062 07a c - 18229a b │ │ │ │ -000a7370: 2a20 2020 2020 207c 0a7c 2020 2020 2020 * |.| │ │ │ │ +000a72d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a72e0: 2020 2020 2020 2020 2020 2032 2035 2020 2 5 │ │ │ │ +000a72f0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +000a7300: 2020 2037 2020 2020 2020 2020 2036 2020 7 6 │ │ │ │ +000a7310: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ +000a7320: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7330: 2020 2020 2020 2020 2020 6120 6220 202d a b - │ │ │ │ +000a7340: 2031 3736 3137 612a 6220 202b 2031 3239 17617a*b + 129 │ │ │ │ +000a7350: 3030 6220 202b 2031 3933 3037 6120 6320 00b + 19307a c │ │ │ │ +000a7360: 2d20 3138 3232 3961 2062 2a20 2020 2020 - 18229a b* │ │ │ │ +000a7370: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a73a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a73b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a73c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a73d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a73e0: 2033 2034 2020 2020 2020 2020 2020 3620 3 4 6 │ │ │ │ -000a73f0: 2020 2020 2020 2020 3720 2020 2020 2020 7 │ │ │ │ -000a7400: 2020 3620 2020 2020 2020 2020 2035 2020 6 5 │ │ │ │ -000a7410: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7430: 6120 6220 202d 2036 3431 3761 2a62 2020 a b - 6417a*b │ │ │ │ -000a7440: 2d20 3331 3339 3662 2020 2d20 3238 3838 - 31396b - 2888 │ │ │ │ -000a7450: 3661 2063 202d 2032 3134 3430 6120 622a 6a c - 21440a b* │ │ │ │ -000a7460: 6320 2020 2020 207c 0a7c 2020 2020 2020 c |.| │ │ │ │ +000a73c0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a73d0: 2020 2020 2020 2020 2020 2033 2034 2020 3 4 │ │ │ │ +000a73e0: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ +000a73f0: 2020 3720 2020 2020 2020 2020 3620 2020 7 6 │ │ │ │ +000a7400: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +000a7410: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7420: 2020 2020 2020 2020 2020 6120 6220 202d a b - │ │ │ │ +000a7430: 2036 3431 3761 2a62 2020 2d20 3331 3339 6417a*b - 3139 │ │ │ │ +000a7440: 3662 2020 2d20 3238 3838 3661 2063 202d 6b - 28886a c - │ │ │ │ +000a7450: 2032 3134 3430 6120 622a 6320 2020 2020 21440a b*c │ │ │ │ +000a7460: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7490: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a74a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a74b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a74c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a74d0: 2034 2033 2020 2020 2020 2020 2020 2036 4 3 6 │ │ │ │ -000a74e0: 2020 2020 2020 2020 2037 2020 2020 2020 7 │ │ │ │ -000a74f0: 2020 3620 2020 2020 2020 2020 2035 2020 6 5 │ │ │ │ -000a7500: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7520: 6120 6220 202b 2032 3038 3636 612a 6220 a b + 20866a*b │ │ │ │ -000a7530: 202b 2033 3131 3338 6220 202d 2037 3138 + 31138b - 718 │ │ │ │ -000a7540: 3361 2063 202b 2031 3730 3935 6120 622a 3a c + 17095a b* │ │ │ │ -000a7550: 6320 2020 2020 207c 0a7c 2020 2020 2020 c |.| │ │ │ │ +000a74b0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a74c0: 2020 2020 2020 2020 2020 2034 2033 2020 4 3 │ │ │ │ +000a74d0: 2020 2020 2020 2020 2036 2020 2020 2020 6 │ │ │ │ +000a74e0: 2020 2037 2020 2020 2020 2020 3620 2020 7 6 │ │ │ │ +000a74f0: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +000a7500: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7510: 2020 2020 2020 2020 2020 6120 6220 202b a b + │ │ │ │ +000a7520: 2032 3038 3636 612a 6220 202b 2033 3131 20866a*b + 311 │ │ │ │ +000a7530: 3338 6220 202d 2037 3138 3361 2063 202b 38b - 7183a c + │ │ │ │ +000a7540: 2031 3730 3935 6120 622a 6320 2020 2020 17095a b*c │ │ │ │ +000a7550: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7590: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a75a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a75b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a75c0: 2035 2032 2020 2020 2020 2020 2020 3620 5 2 6 │ │ │ │ -000a75d0: 2020 2020 2020 2037 2020 2020 2020 2020 7 │ │ │ │ -000a75e0: 2036 2020 2020 2020 2020 2035 2020 2020 6 5 │ │ │ │ -000a75f0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7610: 6120 6220 202b 2034 3731 3461 2a62 2020 a b + 4714a*b │ │ │ │ -000a7620: 2b20 3330 3036 6220 202b 2032 3533 3931 + 3006b + 25391 │ │ │ │ -000a7630: 6120 6320 2d20 3133 3137 6120 622a 6320 a c - 1317a b*c │ │ │ │ -000a7640: 2d20 2020 2020 207c 0a7c 2020 2020 2020 - |.| │ │ │ │ +000a75a0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a75b0: 2020 2020 2020 2020 2020 2035 2032 2020 5 2 │ │ │ │ +000a75c0: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ +000a75d0: 2037 2020 2020 2020 2020 2036 2020 2020 7 6 │ │ │ │ +000a75e0: 2020 2020 2035 2020 2020 2020 2020 2020 5 │ │ │ │ +000a75f0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7600: 2020 2020 2020 2020 2020 6120 6220 202b a b + │ │ │ │ +000a7610: 2034 3731 3461 2a62 2020 2b20 3330 3036 4714a*b + 3006 │ │ │ │ +000a7620: 6220 202b 2032 3533 3931 6120 6320 2d20 b + 25391a c - │ │ │ │ +000a7630: 3133 3137 6120 622a 6320 2d20 2020 2020 1317a b*c - │ │ │ │ +000a7640: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7680: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7690: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a76a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a76b0: 2036 2020 2020 2020 2020 2020 2020 3620 6 6 │ │ │ │ -000a76c0: 2020 2020 2020 2037 2020 2020 2020 2020 7 │ │ │ │ -000a76d0: 3620 2020 2020 2020 2020 3520 2020 2020 6 5 │ │ │ │ -000a76e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a76f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7700: 6120 6220 2d20 3139 3731 3761 2a62 2020 a b - 19717a*b │ │ │ │ -000a7710: 2b20 3239 3732 6220 202b 2035 3435 3761 + 2972b + 5457a │ │ │ │ -000a7720: 2063 202b 2032 3536 3261 2062 2a63 202d c + 2562a b*c - │ │ │ │ -000a7730: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a7690: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a76a0: 2020 2020 2020 2020 2020 2036 2020 2020 6 │ │ │ │ +000a76b0: 2020 2020 2020 2020 3620 2020 2020 2020 6 │ │ │ │ +000a76c0: 2037 2020 2020 2020 2020 3620 2020 2020 7 6 │ │ │ │ +000a76d0: 2020 2020 3520 2020 2020 2020 2020 2020 5 │ │ │ │ +000a76e0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a76f0: 2020 2020 2020 2020 2020 6120 6220 2d20 a b - │ │ │ │ +000a7700: 3139 3731 3761 2a62 2020 2b20 3239 3732 19717a*b + 2972 │ │ │ │ +000a7710: 6220 202b 2035 3435 3761 2063 202b 2032 b + 5457a c + 2 │ │ │ │ +000a7720: 3536 3261 2062 2a63 202d 2020 2020 2020 562a b*c - │ │ │ │ +000a7730: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7770: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7780: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7790: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a77a0: 2037 2020 2020 2020 2020 2020 2036 2020 7 6 │ │ │ │ -000a77b0: 2020 2020 2020 3720 2020 2020 2020 2020 7 │ │ │ │ -000a77c0: 3620 2020 2020 2020 2020 2035 2020 2020 6 5 │ │ │ │ -000a77d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a77e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a77f0: 6120 202d 2032 3833 3836 612a 6220 202b a - 28386a*b + │ │ │ │ -000a7800: 2036 3639 3962 2020 2d20 3133 3739 3661 6699b - 13796a │ │ │ │ -000a7810: 2063 202b 2031 3731 3432 6120 622a 6320 c + 17142a b*c │ │ │ │ -000a7820: 2d20 2020 2020 207c 0a7c 2020 2020 2020 - |.| │ │ │ │ -000a7830: 2020 2020 2020 2020 2020 2020 2020 207d } │ │ │ │ +000a7780: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7790: 2020 2020 2020 2020 2020 2037 2020 2020 7 │ │ │ │ +000a77a0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ +000a77b0: 3720 2020 2020 2020 2020 3620 2020 2020 7 6 │ │ │ │ +000a77c0: 2020 2020 2035 2020 2020 2020 2020 2020 5 │ │ │ │ +000a77d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a77e0: 2020 2020 2020 2020 2020 6120 202d 2032 a - 2 │ │ │ │ +000a77f0: 3833 3836 612a 6220 202b 2036 3639 3962 8386a*b + 6699b │ │ │ │ +000a7800: 2020 2d20 3133 3739 3661 2063 202b 2031 - 13796a c + 1 │ │ │ │ +000a7810: 3731 3432 6120 622a 6320 2d20 2020 2020 7142a b*c - │ │ │ │ +000a7820: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ +000a7830: 2020 2020 2020 2020 207d 2020 2020 2020 } │ │ │ │ 000a7840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7860: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7870: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a7870: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7880: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7890: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a78a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a78b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a78c0: 2020 2020 2020 207c 0a7c 6f32 203a 2052 |.|o2 : R │ │ │ │ -000a78d0: 6174 696f 6e61 6c4d 6170 2028 7261 7469 ationalMap (rati │ │ │ │ -000a78e0: 6f6e 616c 206d 6170 2066 726f 6d20 5050 onal map from PP │ │ │ │ -000a78f0: 5e32 2074 6f20 5050 5e35 2920 2020 2020 ^2 to PP^5) │ │ │ │ +000a78c0: 207c 0a7c 6f32 203a 2052 6174 696f 6e61 |.|o2 : Rationa │ │ │ │ +000a78d0: 6c4d 6170 2028 7261 7469 6f6e 616c 206d lMap (rational m │ │ │ │ +000a78e0: 6170 2066 726f 6d20 5050 5e32 2074 6f20 ap from PP^2 to │ │ │ │ +000a78f0: 5050 5e35 2920 2020 2020 2020 2020 2020 PP^5) │ │ │ │ 000a7900: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7910: 2020 2020 2020 207c 0a7c 2d2d 2d2d 2d2d |.|------ │ │ │ │ +000a7910: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000a7920: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7930: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7940: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7950: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a7960: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2020 2020 -------|.| │ │ │ │ -000a7970: 2020 2020 3420 3220 2020 2020 2020 2020 4 2 │ │ │ │ -000a7980: 3320 3320 2020 2020 2020 2020 2032 2034 3 3 2 4 │ │ │ │ -000a7990: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ -000a79a0: 2020 2020 2020 3620 2020 2020 2020 2020 6 │ │ │ │ -000a79b0: 2035 2020 2020 207c 0a7c 6320 2d20 3330 5 |.|c - 30 │ │ │ │ -000a79c0: 3936 3961 2062 2063 202b 2031 3537 3561 969a b c + 1575a │ │ │ │ -000a79d0: 2062 2063 202b 2032 3439 3639 6120 6220 b c + 24969a b │ │ │ │ -000a79e0: 6320 2b20 3234 3534 612a 6220 6320 2d20 c + 2454a*b c - │ │ │ │ -000a79f0: 3230 3239 3762 2063 202d 2032 3339 3430 20297b c - 23940 │ │ │ │ -000a7a00: 6120 6320 2020 207c 0a7c 2020 2020 2020 a c |.| │ │ │ │ +000a7960: 2d7c 0a7c 2020 2020 2020 2020 2020 3420 -|.| 4 │ │ │ │ +000a7970: 3220 2020 2020 2020 2020 3320 3320 2020 2 3 3 │ │ │ │ +000a7980: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ +000a7990: 2020 2020 2035 2020 2020 2020 2020 2020 5 │ │ │ │ +000a79a0: 3620 2020 2020 2020 2020 2035 2020 2020 6 5 │ │ │ │ +000a79b0: 207c 0a7c 6320 2d20 3330 3936 3961 2062 |.|c - 30969a b │ │ │ │ +000a79c0: 2063 202b 2031 3537 3561 2062 2063 202b c + 1575a b c + │ │ │ │ +000a79d0: 2032 3439 3639 6120 6220 6320 2b20 3234 24969a b c + 24 │ │ │ │ +000a79e0: 3534 612a 6220 6320 2d20 3230 3239 3762 54a*b c - 20297b │ │ │ │ +000a79f0: 2063 202d 2032 3339 3430 6120 6320 2020 c - 23940a c │ │ │ │ +000a7a00: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7a10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7a20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7a30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7a40: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7a50: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7a60: 2020 3420 3220 2020 2020 2020 2020 2033 4 2 3 │ │ │ │ -000a7a70: 2033 2020 2020 2020 2020 2020 3220 3420 3 2 4 │ │ │ │ -000a7a80: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ -000a7a90: 2020 2036 2020 2020 2020 2020 2020 3520 6 5 │ │ │ │ -000a7aa0: 3220 2020 2020 207c 0a7c 202b 2036 3931 2 |.| + 691 │ │ │ │ -000a7ab0: 3761 2062 2063 202d 2031 3034 3331 6120 7a b c - 10431a │ │ │ │ -000a7ac0: 6220 6320 2d20 3233 3939 3261 2062 2063 b c - 23992a b c │ │ │ │ -000a7ad0: 202d 2037 3538 3061 2a62 2063 202d 2037 - 7580a*b c - 7 │ │ │ │ -000a7ae0: 3838 6220 6320 2d20 3237 3139 3061 2063 88b c - 27190a c │ │ │ │ -000a7af0: 2020 2b20 2020 207c 0a7c 2020 2020 2020 + |.| │ │ │ │ +000a7a50: 207c 0a7c 2020 2020 2020 2020 3420 3220 |.| 4 2 │ │ │ │ +000a7a60: 2020 2020 2020 2020 2033 2033 2020 2020 3 3 │ │ │ │ +000a7a70: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ +000a7a80: 2020 2020 3520 2020 2020 2020 2036 2020 5 6 │ │ │ │ +000a7a90: 2020 2020 2020 2020 3520 3220 2020 2020 5 2 │ │ │ │ +000a7aa0: 207c 0a7c 202b 2036 3931 3761 2062 2063 |.| + 6917a b c │ │ │ │ +000a7ab0: 202d 2031 3034 3331 6120 6220 6320 2d20 - 10431a b c - │ │ │ │ +000a7ac0: 3233 3939 3261 2062 2063 202d 2037 3538 23992a b c - 758 │ │ │ │ +000a7ad0: 3061 2a62 2063 202d 2037 3838 6220 6320 0a*b c - 788b c │ │ │ │ +000a7ae0: 2d20 3237 3139 3061 2063 2020 2b20 2020 - 27190a c + │ │ │ │ +000a7af0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7b30: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7b40: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7b50: 2020 2034 2032 2020 2020 2020 2020 2020 4 2 │ │ │ │ -000a7b60: 3320 3320 2020 2020 2020 2032 2034 2020 3 3 2 4 │ │ │ │ -000a7b70: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ -000a7b80: 2020 2020 2036 2020 2020 2020 2020 2020 6 │ │ │ │ -000a7b90: 3520 3220 2020 207c 0a7c 202d 2032 3335 5 2 |.| - 235 │ │ │ │ -000a7ba0: 3231 6120 6220 6320 2d20 3133 3831 3261 21a b c - 13812a │ │ │ │ -000a7bb0: 2062 2063 202d 2037 3738 6120 6220 6320 b c - 778a b c │ │ │ │ -000a7bc0: 2b20 3239 3830 3761 2a62 2063 202b 2031 + 29807a*b c + 1 │ │ │ │ -000a7bd0: 3539 3834 6220 6320 2b20 3239 3832 3061 5984b c + 29820a │ │ │ │ -000a7be0: 2063 2020 2020 207c 0a7c 2020 2020 2020 c |.| │ │ │ │ +000a7b40: 207c 0a7c 2020 2020 2020 2020 2034 2032 |.| 4 2 │ │ │ │ +000a7b50: 2020 2020 2020 2020 2020 3320 3320 2020 3 3 │ │ │ │ +000a7b60: 2020 2020 2032 2034 2020 2020 2020 2020 2 4 │ │ │ │ +000a7b70: 2020 2020 3520 2020 2020 2020 2020 2036 5 6 │ │ │ │ +000a7b80: 2020 2020 2020 2020 2020 3520 3220 2020 5 2 │ │ │ │ +000a7b90: 207c 0a7c 202d 2032 3335 3231 6120 6220 |.| - 23521a b │ │ │ │ +000a7ba0: 6320 2d20 3133 3831 3261 2062 2063 202d c - 13812a b c - │ │ │ │ +000a7bb0: 2037 3738 6120 6220 6320 2b20 3239 3830 778a b c + 2980 │ │ │ │ +000a7bc0: 3761 2a62 2063 202b 2031 3539 3834 6220 7a*b c + 15984b │ │ │ │ +000a7bd0: 6320 2b20 3239 3832 3061 2063 2020 2020 c + 29820a c │ │ │ │ +000a7be0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7c20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7c30: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7c40: 3420 3220 2020 2020 2020 2020 3320 3320 4 2 3 3 │ │ │ │ -000a7c50: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -000a7c60: 2020 2020 2020 2020 3520 2020 2020 2020 5 │ │ │ │ -000a7c70: 2020 2036 2020 2020 2020 2020 2020 3520 6 5 │ │ │ │ -000a7c80: 3220 2020 2020 207c 0a7c 2036 3837 3861 2 |.| 6878a │ │ │ │ -000a7c90: 2062 2063 202d 2032 3134 3961 2062 2063 b c - 2149a b c │ │ │ │ -000a7ca0: 202d 2031 3431 3835 6120 6220 6320 2d20 - 14185a b c - │ │ │ │ -000a7cb0: 3131 3736 3361 2a62 2063 202b 2032 3032 11763a*b c + 202 │ │ │ │ -000a7cc0: 3333 6220 6320 2b20 3131 3134 3361 2063 33b c + 11143a c │ │ │ │ -000a7cd0: 2020 2b20 2020 207c 0a7c 2020 2020 2020 + |.| │ │ │ │ +000a7c30: 207c 0a7c 2020 2020 2020 3420 3220 2020 |.| 4 2 │ │ │ │ +000a7c40: 2020 2020 2020 3320 3320 2020 2020 2020 3 3 │ │ │ │ +000a7c50: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ +000a7c60: 2020 3520 2020 2020 2020 2020 2036 2020 5 6 │ │ │ │ +000a7c70: 2020 2020 2020 2020 3520 3220 2020 2020 5 2 │ │ │ │ +000a7c80: 207c 0a7c 2036 3837 3861 2062 2063 202d |.| 6878a b c - │ │ │ │ +000a7c90: 2032 3134 3961 2062 2063 202d 2031 3431 2149a b c - 141 │ │ │ │ +000a7ca0: 3835 6120 6220 6320 2d20 3131 3736 3361 85a b c - 11763a │ │ │ │ +000a7cb0: 2a62 2063 202b 2032 3032 3333 6220 6320 *b c + 20233b c │ │ │ │ +000a7cc0: 2b20 3131 3134 3361 2063 2020 2b20 2020 + 11143a c + │ │ │ │ +000a7cd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7d10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7d20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7d30: 3420 3220 2020 2020 2020 2020 2033 2033 4 2 3 3 │ │ │ │ -000a7d40: 2020 2020 2020 2020 2020 3220 3420 2020 2 4 │ │ │ │ -000a7d50: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ -000a7d60: 2020 2020 3620 2020 2020 2020 2020 3520 6 5 │ │ │ │ -000a7d70: 3220 2020 2020 207c 0a7c 3330 3530 3161 2 |.|30501a │ │ │ │ -000a7d80: 2062 2063 202d 2032 3033 3630 6120 6220 b c - 20360a b │ │ │ │ -000a7d90: 6320 2b20 3235 3733 3861 2062 2063 202b c + 25738a b c + │ │ │ │ -000a7da0: 2031 3836 3030 612a 6220 6320 2d20 3232 18600a*b c - 22 │ │ │ │ -000a7db0: 3432 3362 2063 202d 2033 3939 3361 2063 423b c - 3993a c │ │ │ │ -000a7dc0: 2020 2d20 2020 207c 0a7c 2020 2020 2020 - |.| │ │ │ │ +000a7d20: 207c 0a7c 2020 2020 2020 3420 3220 2020 |.| 4 2 │ │ │ │ +000a7d30: 2020 2020 2020 2033 2033 2020 2020 2020 3 3 │ │ │ │ +000a7d40: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ +000a7d50: 2020 2035 2020 2020 2020 2020 2020 3620 5 6 │ │ │ │ +000a7d60: 2020 2020 2020 2020 3520 3220 2020 2020 5 2 │ │ │ │ +000a7d70: 207c 0a7c 3330 3530 3161 2062 2063 202d |.|30501a b c - │ │ │ │ +000a7d80: 2032 3033 3630 6120 6220 6320 2b20 3235 20360a b c + 25 │ │ │ │ +000a7d90: 3733 3861 2062 2063 202b 2031 3836 3030 738a b c + 18600 │ │ │ │ +000a7da0: 612a 6220 6320 2d20 3232 3432 3362 2063 a*b c - 22423b c │ │ │ │ +000a7db0: 202d 2033 3939 3361 2063 2020 2d20 2020 - 3993a c - │ │ │ │ +000a7dc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a7dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7e00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7e10: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a7e20: 3420 3220 2020 2020 2020 2020 3320 3320 4 2 3 3 │ │ │ │ -000a7e30: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -000a7e40: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ -000a7e50: 2020 3620 2020 2020 2020 2020 2035 2032 6 5 2 │ │ │ │ -000a7e60: 2020 2020 2020 207c 0a7c 2033 3533 3261 |.| 3532a │ │ │ │ -000a7e70: 2062 2063 202b 2037 3935 3561 2062 2063 b c + 7955a b c │ │ │ │ -000a7e80: 202d 2031 3239 3537 6120 6220 6320 2b20 - 12957a b c + │ │ │ │ -000a7e90: 3732 3232 612a 6220 6320 2d20 3332 3434 7222a*b c - 3244 │ │ │ │ -000a7ea0: 3362 2063 202b 2032 3339 3735 6120 6320 3b c + 23975a c │ │ │ │ -000a7eb0: 202d 2020 2020 207c 0a7c 2d2d 2d2d 2d2d - |.|------ │ │ │ │ +000a7e10: 207c 0a7c 2020 2020 2020 3420 3220 2020 |.| 4 2 │ │ │ │ +000a7e20: 2020 2020 2020 3320 3320 2020 2020 2020 3 3 │ │ │ │ +000a7e30: 2020 2032 2034 2020 2020 2020 2020 2020 2 4 │ │ │ │ +000a7e40: 2035 2020 2020 2020 2020 2020 3620 2020 5 6 │ │ │ │ +000a7e50: 2020 2020 2020 2035 2032 2020 2020 2020 5 2 │ │ │ │ +000a7e60: 207c 0a7c 2033 3533 3261 2062 2063 202b |.| 3532a b c + │ │ │ │ +000a7e70: 2037 3935 3561 2062 2063 202d 2031 3239 7955a b c - 129 │ │ │ │ +000a7e80: 3537 6120 6220 6320 2b20 3732 3232 612a 57a b c + 7222a* │ │ │ │ +000a7e90: 6220 6320 2d20 3332 3434 3362 2063 202b b c - 32443b c + │ │ │ │ +000a7ea0: 2032 3339 3735 6120 6320 202d 2020 2020 23975a c - │ │ │ │ +000a7eb0: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000a7ec0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7ed0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7ee0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a7ef0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a7f00: 2d2d 2d2d 2d2d 2d7c 0a7c 3220 2020 2020 -------|.|2 │ │ │ │ -000a7f10: 2020 2020 3420 2020 3220 2020 2020 2020 4 2 │ │ │ │ -000a7f20: 2020 3320 3220 3220 2020 2020 2020 2020 3 2 2 │ │ │ │ -000a7f30: 3220 3320 3220 2020 2020 2020 2020 2034 2 3 2 4 │ │ │ │ -000a7f40: 2032 2020 2020 2020 2020 2035 2032 2020 2 5 2 │ │ │ │ -000a7f50: 2020 2020 2020 207c 0a7c 2020 2b20 3139 |.| + 19 │ │ │ │ -000a7f60: 3334 3061 2062 2a63 2020 2d20 3331 3936 340a b*c - 3196 │ │ │ │ -000a7f70: 3861 2062 2063 2020 2b20 3330 3436 3461 8a b c + 30464a │ │ │ │ -000a7f80: 2062 2063 2020 2b20 3836 3832 612a 6220 b c + 8682a*b │ │ │ │ -000a7f90: 6320 202d 2031 3630 3539 6220 6320 202d c - 16059b c - │ │ │ │ -000a7fa0: 2032 3738 3937 617c 0a7c 2020 2020 2020 27897a|.| │ │ │ │ +000a7f00: 2d7c 0a7c 3220 2020 2020 2020 2020 3420 -|.|2 4 │ │ │ │ +000a7f10: 2020 3220 2020 2020 2020 2020 3320 3220 2 3 2 │ │ │ │ +000a7f20: 3220 2020 2020 2020 2020 3220 3320 3220 2 2 3 2 │ │ │ │ +000a7f30: 2020 2020 2020 2020 2034 2032 2020 2020 4 2 │ │ │ │ +000a7f40: 2020 2020 2035 2032 2020 2020 2020 2020 5 2 │ │ │ │ +000a7f50: 207c 0a7c 2020 2b20 3139 3334 3061 2062 |.| + 19340a b │ │ │ │ +000a7f60: 2a63 2020 2d20 3331 3936 3861 2062 2063 *c - 31968a b c │ │ │ │ +000a7f70: 2020 2b20 3330 3436 3461 2062 2063 2020 + 30464a b c │ │ │ │ +000a7f80: 2b20 3836 3832 612a 6220 6320 202d 2031 + 8682a*b c - 1 │ │ │ │ +000a7f90: 3630 3539 6220 6320 202d 2032 3738 3937 6059b c - 27897 │ │ │ │ +000a7fa0: 617c 0a7c 2020 2020 2020 2020 2020 2020 a|.| │ │ │ │ 000a7fb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7fc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7fd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a7fe0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a7ff0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8000: 2034 2020 2032 2020 2020 2020 2020 2033 4 2 3 │ │ │ │ -000a8010: 2032 2032 2020 2020 2020 2020 2032 2033 2 2 2 3 │ │ │ │ -000a8020: 2032 2020 2020 2020 2020 2020 2034 2032 2 4 2 │ │ │ │ -000a8030: 2020 2020 2020 2020 2035 2032 2020 2020 5 2 │ │ │ │ -000a8040: 2020 2020 2034 207c 0a7c 2032 3030 3134 4 |.| 20014 │ │ │ │ -000a8050: 6120 622a 6320 202d 2032 3035 3337 6120 a b*c - 20537a │ │ │ │ -000a8060: 6220 6320 202b 2032 3730 3231 6120 6220 b c + 27021a b │ │ │ │ -000a8070: 6320 202d 2032 3332 3833 612a 6220 6320 c - 23283a*b c │ │ │ │ -000a8080: 202b 2031 3738 3532 6220 6320 202d 2032 + 17852b c - 2 │ │ │ │ -000a8090: 3439 3337 6120 637c 0a7c 2020 2020 2020 4937a c|.| │ │ │ │ +000a7ff0: 207c 0a7c 2020 2020 2020 2034 2020 2032 |.| 4 2 │ │ │ │ +000a8000: 2020 2020 2020 2020 2033 2032 2032 2020 3 2 2 │ │ │ │ +000a8010: 2020 2020 2020 2032 2033 2032 2020 2020 2 3 2 │ │ │ │ +000a8020: 2020 2020 2020 2034 2032 2020 2020 2020 4 2 │ │ │ │ +000a8030: 2020 2035 2032 2020 2020 2020 2020 2034 5 2 4 │ │ │ │ +000a8040: 207c 0a7c 2032 3030 3134 6120 622a 6320 |.| 20014a b*c │ │ │ │ +000a8050: 202d 2032 3035 3337 6120 6220 6320 202b - 20537a b c + │ │ │ │ +000a8060: 2032 3730 3231 6120 6220 6320 202d 2032 27021a b c - 2 │ │ │ │ +000a8070: 3332 3833 612a 6220 6320 202b 2031 3738 3283a*b c + 178 │ │ │ │ +000a8080: 3532 6220 6320 202d 2032 3439 3337 6120 52b c - 24937a │ │ │ │ +000a8090: 637c 0a7c 2020 2020 2020 2020 2020 2020 c|.| │ │ │ │ 000a80a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a80b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a80c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a80d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a80e0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a80f0: 2020 3420 2020 3220 2020 2020 2020 2033 4 2 3 │ │ │ │ -000a8100: 2032 2032 2020 2020 2020 2020 2032 2033 2 2 2 3 │ │ │ │ -000a8110: 2032 2020 2020 2020 2020 2034 2032 2020 2 4 2 │ │ │ │ -000a8120: 2020 2020 2020 2035 2032 2020 2020 2020 5 2 │ │ │ │ -000a8130: 2020 2034 2033 207c 0a7c 202d 2037 3934 4 3 |.| - 794 │ │ │ │ -000a8140: 3161 2062 2a63 2020 2b20 3231 3137 6120 1a b*c + 2117a │ │ │ │ -000a8150: 6220 6320 202b 2031 3335 3734 6120 6220 b c + 13574a b │ │ │ │ -000a8160: 6320 202b 2037 3336 612a 6220 6320 202d c + 736a*b c - │ │ │ │ -000a8170: 2032 3536 3036 6220 6320 202d 2033 3133 25606b c - 313 │ │ │ │ -000a8180: 3635 6120 6320 207c 0a7c 2020 2020 2020 65a c |.| │ │ │ │ +000a80e0: 207c 0a7c 2020 2020 2020 2020 3420 2020 |.| 4 │ │ │ │ +000a80f0: 3220 2020 2020 2020 2033 2032 2032 2020 2 3 2 2 │ │ │ │ +000a8100: 2020 2020 2020 2032 2033 2032 2020 2020 2 3 2 │ │ │ │ +000a8110: 2020 2020 2034 2032 2020 2020 2020 2020 4 2 │ │ │ │ +000a8120: 2035 2032 2020 2020 2020 2020 2034 2033 5 2 4 3 │ │ │ │ +000a8130: 207c 0a7c 202d 2037 3934 3161 2062 2a63 |.| - 7941a b*c │ │ │ │ +000a8140: 2020 2b20 3231 3137 6120 6220 6320 202b + 2117a b c + │ │ │ │ +000a8150: 2031 3335 3734 6120 6220 6320 202b 2037 13574a b c + 7 │ │ │ │ +000a8160: 3336 612a 6220 6320 202d 2032 3536 3036 36a*b c - 25606 │ │ │ │ +000a8170: 6220 6320 202d 2033 3133 3635 6120 6320 b c - 31365a c │ │ │ │ +000a8180: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a81a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a81b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a81c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a81d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a81e0: 2034 2020 2032 2020 2020 2020 2020 3320 4 2 3 │ │ │ │ -000a81f0: 3220 3220 2020 2020 2020 2020 3220 3320 2 2 2 3 │ │ │ │ -000a8200: 3220 2020 2020 2020 2020 2020 3420 3220 2 4 2 │ │ │ │ -000a8210: 2020 2020 2020 2020 3520 3220 2020 2020 5 2 │ │ │ │ -000a8220: 2020 2034 2033 207c 0a7c 2031 3332 3634 4 3 |.| 13264 │ │ │ │ -000a8230: 6120 622a 6320 202d 2033 3936 3461 2062 a b*c - 3964a b │ │ │ │ -000a8240: 2063 2020 2b20 3238 3234 3861 2062 2063 c + 28248a b c │ │ │ │ -000a8250: 2020 2b20 3331 3839 3161 2a62 2063 2020 + 31891a*b c │ │ │ │ -000a8260: 2d20 3233 3338 3062 2063 2020 2d20 3131 - 23380b c - 11 │ │ │ │ -000a8270: 3439 6120 6320 207c 0a7c 2020 2020 2020 49a c |.| │ │ │ │ +000a81d0: 207c 0a7c 2020 2020 2020 2034 2020 2032 |.| 4 2 │ │ │ │ +000a81e0: 2020 2020 2020 2020 3320 3220 3220 2020 3 2 2 │ │ │ │ +000a81f0: 2020 2020 2020 3220 3320 3220 2020 2020 2 3 2 │ │ │ │ +000a8200: 2020 2020 2020 3420 3220 2020 2020 2020 4 2 │ │ │ │ +000a8210: 2020 3520 3220 2020 2020 2020 2034 2033 5 2 4 3 │ │ │ │ +000a8220: 207c 0a7c 2031 3332 3634 6120 622a 6320 |.| 13264a b*c │ │ │ │ +000a8230: 202d 2033 3936 3461 2062 2063 2020 2b20 - 3964a b c + │ │ │ │ +000a8240: 3238 3234 3861 2062 2063 2020 2b20 3331 28248a b c + 31 │ │ │ │ +000a8250: 3839 3161 2a62 2063 2020 2d20 3233 3338 891a*b c - 2338 │ │ │ │ +000a8260: 3062 2063 2020 2d20 3131 3439 6120 6320 0b c - 1149a c │ │ │ │ +000a8270: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a82a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a82b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a82c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a82d0: 2034 2020 2032 2020 2020 2020 2020 3320 4 2 3 │ │ │ │ -000a82e0: 3220 3220 2020 2020 2020 2032 2033 2032 2 2 2 3 2 │ │ │ │ -000a82f0: 2020 2020 2020 2020 2020 2034 2032 2020 4 2 │ │ │ │ -000a8300: 2020 2020 2020 2035 2032 2020 2020 2020 5 2 │ │ │ │ -000a8310: 2020 3420 3320 207c 0a7c 2031 3037 3931 4 3 |.| 10791 │ │ │ │ -000a8320: 6120 622a 6320 202d 2035 3438 3061 2062 a b*c - 5480a b │ │ │ │ -000a8330: 2063 2020 2d20 3639 3436 6120 6220 6320 c - 6946a b c │ │ │ │ -000a8340: 202b 2032 3130 3235 612a 6220 6320 202d + 21025a*b c - │ │ │ │ -000a8350: 2031 3037 3538 6220 6320 202d 2033 3931 10758b c - 391 │ │ │ │ -000a8360: 3261 2063 2020 2d7c 0a7c 2020 2020 2020 2a c -|.| │ │ │ │ +000a82c0: 207c 0a7c 2020 2020 2020 2034 2020 2032 |.| 4 2 │ │ │ │ +000a82d0: 2020 2020 2020 2020 3320 3220 3220 2020 3 2 2 │ │ │ │ +000a82e0: 2020 2020 2032 2033 2032 2020 2020 2020 2 3 2 │ │ │ │ +000a82f0: 2020 2020 2034 2032 2020 2020 2020 2020 4 2 │ │ │ │ +000a8300: 2035 2032 2020 2020 2020 2020 3420 3320 5 2 4 3 │ │ │ │ +000a8310: 207c 0a7c 2031 3037 3931 6120 622a 6320 |.| 10791a b*c │ │ │ │ +000a8320: 202d 2035 3438 3061 2062 2063 2020 2d20 - 5480a b c - │ │ │ │ +000a8330: 3639 3436 6120 6220 6320 202b 2032 3130 6946a b c + 210 │ │ │ │ +000a8340: 3235 612a 6220 6320 202d 2031 3037 3538 25a*b c - 10758 │ │ │ │ +000a8350: 6220 6320 202d 2033 3931 3261 2063 2020 b c - 3912a c │ │ │ │ +000a8360: 2d7c 0a7c 2020 2020 2020 2020 2020 2020 -|.| │ │ │ │ 000a8370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a83a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a83b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a83c0: 3420 2020 3220 2020 2020 2020 2033 2032 4 2 3 2 │ │ │ │ -000a83d0: 2032 2020 2020 2020 2020 2032 2033 2032 2 2 3 2 │ │ │ │ -000a83e0: 2020 2020 2020 2020 2020 2034 2032 2020 4 2 │ │ │ │ -000a83f0: 2020 2020 2020 2035 2032 2020 2020 2020 5 2 │ │ │ │ -000a8400: 2020 2034 2033 207c 0a7c 3238 3339 3461 4 3 |.|28394a │ │ │ │ -000a8410: 2062 2a63 2020 2b20 3135 3332 6120 6220 b*c + 1532a b │ │ │ │ -000a8420: 6320 202d 2031 3730 3538 6120 6220 6320 c - 17058a b c │ │ │ │ -000a8430: 202b 2032 3038 3939 612a 6220 6320 202b + 20899a*b c + │ │ │ │ -000a8440: 2031 3635 3337 6220 6320 202b 2032 3538 16537b c + 258 │ │ │ │ -000a8450: 3330 6120 6320 207c 0a7c 2d2d 2d2d 2d2d 30a c |.|------ │ │ │ │ +000a83b0: 207c 0a7c 2020 2020 2020 3420 2020 3220 |.| 4 2 │ │ │ │ +000a83c0: 2020 2020 2020 2033 2032 2032 2020 2020 3 2 2 │ │ │ │ +000a83d0: 2020 2020 2032 2033 2032 2020 2020 2020 2 3 2 │ │ │ │ +000a83e0: 2020 2020 2034 2032 2020 2020 2020 2020 4 2 │ │ │ │ +000a83f0: 2035 2032 2020 2020 2020 2020 2034 2033 5 2 4 3 │ │ │ │ +000a8400: 207c 0a7c 3238 3339 3461 2062 2a63 2020 |.|28394a b*c │ │ │ │ +000a8410: 2b20 3135 3332 6120 6220 6320 202d 2031 + 1532a b c - 1 │ │ │ │ +000a8420: 3730 3538 6120 6220 6320 202b 2032 3038 7058a b c + 208 │ │ │ │ +000a8430: 3939 612a 6220 6320 202b 2031 3635 3337 99a*b c + 16537 │ │ │ │ +000a8440: 6220 6320 202b 2032 3538 3330 6120 6320 b c + 25830a c │ │ │ │ +000a8450: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000a8460: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8470: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8480: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8490: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a84a0: 2d2d 2d2d 2d2d 2d7c 0a7c 3420 3320 2020 -------|.|4 3 │ │ │ │ -000a84b0: 2020 2020 2033 2020 2033 2020 2020 2020 3 3 │ │ │ │ -000a84c0: 2020 2032 2032 2033 2020 2020 2020 2020 2 2 3 │ │ │ │ -000a84d0: 2020 2033 2033 2020 2020 2020 2020 2034 3 3 4 │ │ │ │ -000a84e0: 2033 2020 2020 2020 2020 3320 3420 2020 3 3 4 │ │ │ │ -000a84f0: 2020 2020 2020 327c 0a7c 2063 2020 2b20 2|.| c + │ │ │ │ -000a8500: 3934 3134 6120 622a 6320 202d 2031 3730 9414a b*c - 170 │ │ │ │ -000a8510: 3531 6120 6220 6320 202b 2031 3638 3538 51a b c + 16858 │ │ │ │ -000a8520: 612a 6220 6320 202b 2031 3638 3931 6220 a*b c + 16891b │ │ │ │ -000a8530: 6320 202b 2036 3534 3261 2063 2020 2b20 c + 6542a c + │ │ │ │ -000a8540: 3131 3230 3061 207c 0a7c 2020 2020 2020 11200a |.| │ │ │ │ +000a84a0: 2d7c 0a7c 3420 3320 2020 2020 2020 2033 -|.|4 3 3 │ │ │ │ +000a84b0: 2020 2033 2020 2020 2020 2020 2032 2032 3 2 2 │ │ │ │ +000a84c0: 2033 2020 2020 2020 2020 2020 2033 2033 3 3 3 │ │ │ │ +000a84d0: 2020 2020 2020 2020 2034 2033 2020 2020 4 3 │ │ │ │ +000a84e0: 2020 2020 3320 3420 2020 2020 2020 2020 3 4 │ │ │ │ +000a84f0: 327c 0a7c 2063 2020 2b20 3934 3134 6120 2|.| c + 9414a │ │ │ │ +000a8500: 622a 6320 202d 2031 3730 3531 6120 6220 b*c - 17051a b │ │ │ │ +000a8510: 6320 202b 2031 3638 3538 612a 6220 6320 c + 16858a*b c │ │ │ │ +000a8520: 202b 2031 3638 3931 6220 6320 202b 2036 + 16891b c + 6 │ │ │ │ +000a8530: 3534 3261 2063 2020 2b20 3131 3230 3061 542a c + 11200a │ │ │ │ +000a8540: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8550: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8560: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8570: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8580: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8590: 2020 2020 2020 207c 0a7c 3320 2020 2020 |.|3 │ │ │ │ -000a85a0: 2020 2020 3320 2020 3320 2020 2020 2020 3 3 │ │ │ │ -000a85b0: 2020 3220 3220 3320 2020 2020 2020 2020 2 2 3 │ │ │ │ -000a85c0: 2020 3320 3320 2020 2020 2020 2034 2033 3 3 4 3 │ │ │ │ -000a85d0: 2020 2020 2020 2020 2033 2034 2020 2020 3 4 │ │ │ │ -000a85e0: 2020 2020 2032 207c 0a7c 2020 2d20 3136 2 |.| - 16 │ │ │ │ -000a85f0: 3732 3361 2062 2a63 2020 2b20 3234 3536 723a b*c + 2456 │ │ │ │ -000a8600: 3461 2062 2063 2020 2b20 3236 3131 3561 4a b c + 26115a │ │ │ │ -000a8610: 2a62 2063 2020 2d20 3833 3339 6220 6320 *b c - 8339b c │ │ │ │ -000a8620: 202d 2031 3836 3738 6120 6320 202d 2031 - 18678a c - 1 │ │ │ │ -000a8630: 3537 3238 6120 627c 0a7c 2020 2020 2020 5728a b|.| │ │ │ │ +000a8590: 207c 0a7c 3320 2020 2020 2020 2020 3320 |.|3 3 │ │ │ │ +000a85a0: 2020 3320 2020 2020 2020 2020 3220 3220 3 2 2 │ │ │ │ +000a85b0: 3320 2020 2020 2020 2020 2020 3320 3320 3 3 3 │ │ │ │ +000a85c0: 2020 2020 2020 2034 2033 2020 2020 2020 4 3 │ │ │ │ +000a85d0: 2020 2033 2034 2020 2020 2020 2020 2032 3 4 2 │ │ │ │ +000a85e0: 207c 0a7c 2020 2d20 3136 3732 3361 2062 |.| - 16723a b │ │ │ │ +000a85f0: 2a63 2020 2b20 3234 3536 3461 2062 2063 *c + 24564a b c │ │ │ │ +000a8600: 2020 2b20 3236 3131 3561 2a62 2063 2020 + 26115a*b c │ │ │ │ +000a8610: 2d20 3833 3339 6220 6320 202d 2031 3836 - 8339b c - 186 │ │ │ │ +000a8620: 3738 6120 6320 202d 2031 3537 3238 6120 78a c - 15728a │ │ │ │ +000a8630: 627c 0a7c 2020 2020 2020 2020 2020 2020 b|.| │ │ │ │ 000a8640: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8650: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8670: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8680: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8690: 2020 3320 2020 3320 2020 2020 2020 2020 3 3 │ │ │ │ -000a86a0: 3220 3220 3320 2020 2020 2020 2020 2020 2 2 3 │ │ │ │ -000a86b0: 3320 3320 2020 2020 2020 2034 2033 2020 3 3 4 3 │ │ │ │ -000a86c0: 2020 2020 2033 2034 2020 2020 2020 2020 3 4 │ │ │ │ -000a86d0: 2032 2020 2034 207c 0a7c 2d20 3138 3432 2 4 |.|- 1842 │ │ │ │ -000a86e0: 3161 2062 2a63 2020 2d20 3130 3630 3061 1a b*c - 10600a │ │ │ │ -000a86f0: 2062 2063 2020 2d20 3239 3636 3461 2a62 b c - 29664a*b │ │ │ │ -000a8700: 2063 2020 2d20 3634 3335 6220 6320 202d c - 6435b c - │ │ │ │ -000a8710: 2036 3330 6120 6320 202b 2032 3035 3036 630a c + 20506 │ │ │ │ -000a8720: 6120 622a 6320 207c 0a7c 2020 2020 2020 a b*c |.| │ │ │ │ +000a8680: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ +000a8690: 3320 2020 2020 2020 2020 3220 3220 3320 3 2 2 3 │ │ │ │ +000a86a0: 2020 2020 2020 2020 2020 3320 3320 2020 3 3 │ │ │ │ +000a86b0: 2020 2020 2034 2033 2020 2020 2020 2033 4 3 3 │ │ │ │ +000a86c0: 2034 2020 2020 2020 2020 2032 2020 2034 4 2 4 │ │ │ │ +000a86d0: 207c 0a7c 2d20 3138 3432 3161 2062 2a63 |.|- 18421a b*c │ │ │ │ +000a86e0: 2020 2d20 3130 3630 3061 2062 2063 2020 - 10600a b c │ │ │ │ +000a86f0: 2d20 3239 3636 3461 2a62 2063 2020 2d20 - 29664a*b c - │ │ │ │ +000a8700: 3634 3335 6220 6320 202d 2036 3330 6120 6435b c - 630a │ │ │ │ +000a8710: 6320 202b 2032 3035 3036 6120 622a 6320 c + 20506a b*c │ │ │ │ +000a8720: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8730: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8740: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8750: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8760: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8770: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8780: 2020 3320 2020 3320 2020 2020 2020 2020 3 3 │ │ │ │ -000a8790: 3220 3220 3320 2020 2020 2020 2020 2020 2 2 3 │ │ │ │ -000a87a0: 3320 3320 2020 2020 2020 2020 3420 3320 3 3 4 3 │ │ │ │ -000a87b0: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ -000a87c0: 2020 2020 3220 207c 0a7c 2d20 3133 3434 2 |.|- 1344 │ │ │ │ -000a87d0: 3361 2062 2a63 2020 2b20 3231 3838 3161 3a b*c + 21881a │ │ │ │ -000a87e0: 2062 2063 2020 2b20 3332 3539 3461 2a62 b c + 32594a*b │ │ │ │ -000a87f0: 2063 2020 2d20 3231 3734 3462 2063 2020 c - 21744b c │ │ │ │ -000a8800: 2d20 3133 3835 3761 2063 2020 2b20 3136 - 13857a c + 16 │ │ │ │ -000a8810: 3538 3361 2062 2a7c 0a7c 2020 2020 2020 583a b*|.| │ │ │ │ +000a8770: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ +000a8780: 3320 2020 2020 2020 2020 3220 3220 3320 3 2 2 3 │ │ │ │ +000a8790: 2020 2020 2020 2020 2020 3320 3320 2020 3 3 │ │ │ │ +000a87a0: 2020 2020 2020 3420 3320 2020 2020 2020 4 3 │ │ │ │ +000a87b0: 2020 3320 3420 2020 2020 2020 2020 3220 3 4 2 │ │ │ │ +000a87c0: 207c 0a7c 2d20 3133 3434 3361 2062 2a63 |.|- 13443a b*c │ │ │ │ +000a87d0: 2020 2b20 3231 3838 3161 2062 2063 2020 + 21881a b c │ │ │ │ +000a87e0: 2b20 3332 3539 3461 2a62 2063 2020 2d20 + 32594a*b c - │ │ │ │ +000a87f0: 3231 3734 3462 2063 2020 2d20 3133 3835 21744b c - 1385 │ │ │ │ +000a8800: 3761 2063 2020 2b20 3136 3538 3361 2062 7a c + 16583a b │ │ │ │ +000a8810: 2a7c 0a7c 2020 2020 2020 2020 2020 2020 *|.| │ │ │ │ 000a8820: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8830: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8840: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8850: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8860: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8870: 3320 2020 3320 2020 2020 2020 2020 3220 3 3 2 │ │ │ │ -000a8880: 3220 3320 2020 2020 2020 2020 2020 3320 2 3 3 │ │ │ │ -000a8890: 3320 2020 2020 2020 2020 3420 3320 2020 3 4 3 │ │ │ │ -000a88a0: 2020 2020 2020 3320 3420 2020 2020 2020 3 4 │ │ │ │ -000a88b0: 2020 3220 2020 347c 0a7c 2036 3531 3561 2 4|.| 6515a │ │ │ │ -000a88c0: 2062 2a63 2020 2d20 3131 3335 3161 2062 b*c - 11351a b │ │ │ │ -000a88d0: 2063 2020 2b20 3134 3431 3761 2a62 2063 c + 14417a*b c │ │ │ │ -000a88e0: 2020 2b20 3137 3835 3162 2063 2020 2b20 + 17851b c + │ │ │ │ -000a88f0: 3134 3031 3461 2063 2020 2d20 3331 3934 14014a c - 3194 │ │ │ │ -000a8900: 3261 2062 2a63 207c 0a7c 2020 2020 2020 2a b*c |.| │ │ │ │ +000a8860: 207c 0a7c 2020 2020 2020 3320 2020 3320 |.| 3 3 │ │ │ │ +000a8870: 2020 2020 2020 2020 3220 3220 3320 2020 2 2 3 │ │ │ │ +000a8880: 2020 2020 2020 2020 3320 3320 2020 2020 3 3 │ │ │ │ +000a8890: 2020 2020 3420 3320 2020 2020 2020 2020 4 3 │ │ │ │ +000a88a0: 3320 3420 2020 2020 2020 2020 3220 2020 3 4 2 │ │ │ │ +000a88b0: 347c 0a7c 2036 3531 3561 2062 2a63 2020 4|.| 6515a b*c │ │ │ │ +000a88c0: 2d20 3131 3335 3161 2062 2063 2020 2b20 - 11351a b c + │ │ │ │ +000a88d0: 3134 3431 3761 2a62 2063 2020 2b20 3137 14417a*b c + 17 │ │ │ │ +000a88e0: 3835 3162 2063 2020 2b20 3134 3031 3461 851b c + 14014a │ │ │ │ +000a88f0: 2063 2020 2d20 3331 3934 3261 2062 2a63 c - 31942a b*c │ │ │ │ +000a8900: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8910: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8920: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8930: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8940: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8950: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8960: 2020 3320 2020 3320 2020 2020 2020 2020 3 3 │ │ │ │ -000a8970: 3220 3220 3320 2020 2020 2020 2020 2020 2 2 3 │ │ │ │ -000a8980: 3320 3320 2020 2020 2020 2020 3420 3320 3 3 4 3 │ │ │ │ -000a8990: 2020 2020 2020 2020 3320 3420 2020 2020 3 4 │ │ │ │ -000a89a0: 2020 2020 3220 207c 0a7c 2d20 3236 3538 2 |.|- 2658 │ │ │ │ -000a89b0: 3461 2062 2a63 2020 2d20 3130 3038 3461 4a b*c - 10084a │ │ │ │ -000a89c0: 2062 2063 2020 2b20 3332 3531 3361 2a62 b c + 32513a*b │ │ │ │ -000a89d0: 2063 2020 2d20 3238 3832 3562 2063 2020 c - 28825b c │ │ │ │ -000a89e0: 2d20 3136 3931 3161 2063 2020 2d20 3138 - 16911a c - 18 │ │ │ │ -000a89f0: 3935 3961 2062 2a7c 0a7c 2d2d 2d2d 2d2d 959a b*|.|------ │ │ │ │ +000a8950: 207c 0a7c 2020 2020 2020 2020 3320 2020 |.| 3 │ │ │ │ +000a8960: 3320 2020 2020 2020 2020 3220 3220 3320 3 2 2 3 │ │ │ │ +000a8970: 2020 2020 2020 2020 2020 3320 3320 2020 3 3 │ │ │ │ +000a8980: 2020 2020 2020 3420 3320 2020 2020 2020 4 3 │ │ │ │ +000a8990: 2020 3320 3420 2020 2020 2020 2020 3220 3 4 2 │ │ │ │ +000a89a0: 207c 0a7c 2d20 3236 3538 3461 2062 2a63 |.|- 26584a b*c │ │ │ │ +000a89b0: 2020 2d20 3130 3038 3461 2062 2063 2020 - 10084a b c │ │ │ │ +000a89c0: 2b20 3332 3531 3361 2a62 2063 2020 2d20 + 32513a*b c - │ │ │ │ +000a89d0: 3238 3832 3562 2063 2020 2d20 3136 3931 28825b c - 1691 │ │ │ │ +000a89e0: 3161 2063 2020 2d20 3138 3935 3961 2062 1a c - 18959a b │ │ │ │ +000a89f0: 2a7c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d *|.|------------ │ │ │ │ 000a8a00: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8a10: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8a20: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8a30: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a8a40: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 2034 2020 -------|.| 4 │ │ │ │ -000a8a50: 2020 2020 2020 2020 2032 2034 2020 2020 2 4 │ │ │ │ -000a8a60: 2020 2020 3320 3420 2020 2020 2020 2020 3 4 │ │ │ │ -000a8a70: 3220 3520 2020 2020 2020 2020 2020 2020 2 5 │ │ │ │ -000a8a80: 3520 2020 2020 2020 2020 3220 3520 2020 5 2 5 │ │ │ │ -000a8a90: 2020 2020 2020 207c 0a7c 622a 6320 202b |.|b*c + │ │ │ │ -000a8aa0: 2031 3836 3131 612a 6220 6320 202b 2034 18611a*b c + 4 │ │ │ │ -000a8ab0: 3836 3462 2063 2020 2b20 3235 3830 3561 864b c + 25805a │ │ │ │ -000a8ac0: 2063 2020 2b20 3137 3330 3861 2a62 2a63 c + 17308a*b*c │ │ │ │ -000a8ad0: 2020 2d20 3236 3633 3362 2063 2020 2d20 - 26633b c - │ │ │ │ -000a8ae0: 3138 3034 3361 207c 0a7c 2020 2020 2020 18043a |.| │ │ │ │ +000a8a40: 2d7c 0a7c 2020 2034 2020 2020 2020 2020 -|.| 4 │ │ │ │ +000a8a50: 2020 2032 2034 2020 2020 2020 2020 3320 2 4 3 │ │ │ │ +000a8a60: 3420 2020 2020 2020 2020 3220 3520 2020 4 2 5 │ │ │ │ +000a8a70: 2020 2020 2020 2020 2020 3520 2020 2020 5 │ │ │ │ +000a8a80: 2020 2020 3220 3520 2020 2020 2020 2020 2 5 │ │ │ │ +000a8a90: 207c 0a7c 622a 6320 202b 2031 3836 3131 |.|b*c + 18611 │ │ │ │ +000a8aa0: 612a 6220 6320 202b 2034 3836 3462 2063 a*b c + 4864b c │ │ │ │ +000a8ab0: 2020 2b20 3235 3830 3561 2063 2020 2b20 + 25805a c + │ │ │ │ +000a8ac0: 3137 3330 3861 2a62 2a63 2020 2d20 3236 17308a*b*c - 26 │ │ │ │ +000a8ad0: 3633 3362 2063 2020 2d20 3138 3034 3361 633b c - 18043a │ │ │ │ +000a8ae0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8af0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8b00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8b10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8b20: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8b30: 2020 2020 2020 207c 0a7c 2020 3420 2020 |.| 4 │ │ │ │ -000a8b40: 2020 2020 2020 2020 3220 3420 2020 2020 2 4 │ │ │ │ -000a8b50: 2020 2020 3320 3420 2020 2020 2020 2020 3 4 │ │ │ │ -000a8b60: 3220 3520 2020 2020 2020 2020 2020 2035 2 5 5 │ │ │ │ -000a8b70: 2020 2020 2020 2020 2032 2035 2020 2020 2 5 │ │ │ │ -000a8b80: 2020 2020 2020 207c 0a7c 2a63 2020 2b20 |.|*c + │ │ │ │ -000a8b90: 3230 3538 3161 2a62 2063 2020 2d20 3134 20581a*b c - 14 │ │ │ │ -000a8ba0: 3338 3462 2063 2020 2b20 3235 3530 3961 384b c + 25509a │ │ │ │ -000a8bb0: 2063 2020 2b20 3239 3236 612a 622a 6320 c + 2926a*b*c │ │ │ │ -000a8bc0: 202d 2031 3737 3035 6220 6320 202d 2032 - 17705b c - 2 │ │ │ │ -000a8bd0: 3831 3336 612a 207c 0a7c 2020 2020 2020 8136a* |.| │ │ │ │ +000a8b30: 207c 0a7c 2020 3420 2020 2020 2020 2020 |.| 4 │ │ │ │ +000a8b40: 2020 3220 3420 2020 2020 2020 2020 3320 2 4 3 │ │ │ │ +000a8b50: 3420 2020 2020 2020 2020 3220 3520 2020 4 2 5 │ │ │ │ +000a8b60: 2020 2020 2020 2020 2035 2020 2020 2020 5 │ │ │ │ +000a8b70: 2020 2032 2035 2020 2020 2020 2020 2020 2 5 │ │ │ │ +000a8b80: 207c 0a7c 2a63 2020 2b20 3230 3538 3161 |.|*c + 20581a │ │ │ │ +000a8b90: 2a62 2063 2020 2d20 3134 3338 3462 2063 *b c - 14384b c │ │ │ │ +000a8ba0: 2020 2b20 3235 3530 3961 2063 2020 2b20 + 25509a c + │ │ │ │ +000a8bb0: 3239 3236 612a 622a 6320 202d 2031 3737 2926a*b*c - 177 │ │ │ │ +000a8bc0: 3035 6220 6320 202d 2032 3831 3336 612a 05b c - 28136a* │ │ │ │ +000a8bd0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8be0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8bf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8c00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8c10: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8c20: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8c30: 2020 2020 3220 3420 2020 2020 2020 2020 2 4 │ │ │ │ -000a8c40: 3320 3420 2020 2020 2020 2020 3220 3520 3 4 2 5 │ │ │ │ -000a8c50: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ -000a8c60: 2020 2020 2032 2035 2020 2020 2020 2020 2 5 │ │ │ │ -000a8c70: 2020 2036 2020 207c 0a7c 2d20 3238 3932 6 |.|- 2892 │ │ │ │ -000a8c80: 3361 2a62 2063 2020 2d20 3231 3235 3762 3a*b c - 21257b │ │ │ │ -000a8c90: 2063 2020 2b20 3136 3632 3961 2063 2020 c + 16629a c │ │ │ │ -000a8ca0: 2b20 3239 3036 612a 622a 6320 202d 2031 + 2906a*b*c - 1 │ │ │ │ -000a8cb0: 3631 3034 6220 6320 202b 2032 3130 3938 6104b c + 21098 │ │ │ │ -000a8cc0: 612a 6320 202d 207c 0a7c 2020 2020 2020 a*c - |.| │ │ │ │ +000a8c20: 207c 0a7c 2020 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +000a8c30: 3420 2020 2020 2020 2020 3320 3420 2020 4 3 4 │ │ │ │ +000a8c40: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ +000a8c50: 2020 2020 2035 2020 2020 2020 2020 2032 5 2 │ │ │ │ +000a8c60: 2035 2020 2020 2020 2020 2020 2036 2020 5 6 │ │ │ │ +000a8c70: 207c 0a7c 2d20 3238 3932 3361 2a62 2063 |.|- 28923a*b c │ │ │ │ +000a8c80: 2020 2d20 3231 3235 3762 2063 2020 2b20 - 21257b c + │ │ │ │ +000a8c90: 3136 3632 3961 2063 2020 2b20 3239 3036 16629a c + 2906 │ │ │ │ +000a8ca0: 612a 622a 6320 202d 2031 3631 3034 6220 a*b*c - 16104b │ │ │ │ +000a8cb0: 6320 202b 2032 3130 3938 612a 6320 202d c + 21098a*c - │ │ │ │ +000a8cc0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8cd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8ce0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8cf0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8d00: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8d10: 2020 2020 2020 207c 0a7c 2034 2020 2020 |.| 4 │ │ │ │ -000a8d20: 2020 2020 2020 3220 3420 2020 2020 2020 2 4 │ │ │ │ -000a8d30: 2020 3320 3420 2020 2020 2020 2020 3220 3 4 2 │ │ │ │ -000a8d40: 3520 2020 2020 2020 2020 2020 2035 2020 5 5 │ │ │ │ -000a8d50: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ -000a8d60: 2020 3620 2020 207c 0a7c 6320 202d 2035 6 |.|c - 5 │ │ │ │ -000a8d70: 3634 3861 2a62 2063 2020 2b20 3232 3433 648a*b c + 2243 │ │ │ │ -000a8d80: 3562 2063 2020 2b20 3233 3339 3961 2063 5b c + 23399a c │ │ │ │ -000a8d90: 2020 2b20 3637 3138 612a 622a 6320 202d + 6718a*b*c - │ │ │ │ -000a8da0: 2036 3736 3162 2063 2020 2d20 3337 3161 6761b c - 371a │ │ │ │ -000a8db0: 2a63 2020 2b20 207c 0a7c 2020 2020 2020 *c + |.| │ │ │ │ +000a8d10: 207c 0a7c 2034 2020 2020 2020 2020 2020 |.| 4 │ │ │ │ +000a8d20: 3220 3420 2020 2020 2020 2020 3320 3420 2 4 3 4 │ │ │ │ +000a8d30: 2020 2020 2020 2020 3220 3520 2020 2020 2 5 │ │ │ │ +000a8d40: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +000a8d50: 3220 3520 2020 2020 2020 2020 3620 2020 2 5 6 │ │ │ │ +000a8d60: 207c 0a7c 6320 202d 2035 3634 3861 2a62 |.|c - 5648a*b │ │ │ │ +000a8d70: 2063 2020 2b20 3232 3433 3562 2063 2020 c + 22435b c │ │ │ │ +000a8d80: 2b20 3233 3339 3961 2063 2020 2b20 3637 + 23399a c + 67 │ │ │ │ +000a8d90: 3138 612a 622a 6320 202d 2036 3736 3162 18a*b*c - 6761b │ │ │ │ +000a8da0: 2063 2020 2d20 3337 3161 2a63 2020 2b20 c - 371a*c + │ │ │ │ +000a8db0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8dc0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8dd0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8de0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8df0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8e00: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a8e10: 2020 2020 3220 3420 2020 2020 2020 2033 2 4 3 │ │ │ │ -000a8e20: 2034 2020 2020 2020 2020 2032 2035 2020 4 2 5 │ │ │ │ -000a8e30: 2020 2020 2020 2020 2020 2035 2020 2020 5 │ │ │ │ -000a8e40: 2020 2020 3220 3520 2020 2020 2020 2020 2 5 │ │ │ │ -000a8e50: 2020 3620 2020 207c 0a7c 202b 2032 3032 6 |.| + 202 │ │ │ │ -000a8e60: 3961 2a62 2063 2020 2d20 3234 3438 6220 9a*b c - 2448b │ │ │ │ -000a8e70: 6320 202d 2031 3332 3039 6120 6320 202d c - 13209a c - │ │ │ │ -000a8e80: 2033 3130 3939 612a 622a 6320 202b 2038 31099a*b*c + 8 │ │ │ │ -000a8e90: 3037 3262 2063 2020 2b20 3131 3239 3161 072b c + 11291a │ │ │ │ -000a8ea0: 2a63 2020 2d20 207c 0a7c 2020 2020 2020 *c - |.| │ │ │ │ +000a8e00: 207c 0a7c 2020 2020 2020 2020 2020 3220 |.| 2 │ │ │ │ +000a8e10: 3420 2020 2020 2020 2033 2034 2020 2020 4 3 4 │ │ │ │ +000a8e20: 2020 2020 2032 2035 2020 2020 2020 2020 2 5 │ │ │ │ +000a8e30: 2020 2020 2035 2020 2020 2020 2020 3220 5 2 │ │ │ │ +000a8e40: 3520 2020 2020 2020 2020 2020 3620 2020 5 6 │ │ │ │ +000a8e50: 207c 0a7c 202b 2032 3032 3961 2a62 2063 |.| + 2029a*b c │ │ │ │ +000a8e60: 2020 2d20 3234 3438 6220 6320 202d 2031 - 2448b c - 1 │ │ │ │ +000a8e70: 3332 3039 6120 6320 202d 2033 3130 3939 3209a c - 31099 │ │ │ │ +000a8e80: 612a 622a 6320 202b 2038 3037 3262 2063 a*b*c + 8072b c │ │ │ │ +000a8e90: 2020 2b20 3131 3239 3161 2a63 2020 2d20 + 11291a*c - │ │ │ │ +000a8ea0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a8eb0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8ec0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8ed0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a8ee0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a8ef0: 2020 2020 2020 207c 0a7c 2034 2020 2020 |.| 4 │ │ │ │ -000a8f00: 2020 2020 2020 2032 2034 2020 2020 2020 2 4 │ │ │ │ -000a8f10: 2020 3320 3420 2020 2020 2020 2032 2035 3 4 2 5 │ │ │ │ -000a8f20: 2020 2020 2020 2020 2020 2020 2035 2020 5 │ │ │ │ -000a8f30: 2020 2020 2020 3220 3520 2020 2020 2020 2 5 │ │ │ │ -000a8f40: 2020 2020 3620 207c 0a7c 6320 202d 2032 6 |.|c - 2 │ │ │ │ -000a8f50: 3037 3231 612a 6220 6320 202d 2034 3839 0721a*b c - 489 │ │ │ │ -000a8f60: 3162 2063 2020 2d20 3530 3833 6120 6320 1b c - 5083a c │ │ │ │ -000a8f70: 202d 2032 3135 3438 612a 622a 6320 202b - 21548a*b*c + │ │ │ │ -000a8f80: 2031 3731 3362 2063 2020 2b20 3239 3333 1713b c + 2933 │ │ │ │ -000a8f90: 3661 2a63 2020 207c 0a7c 2d2d 2d2d 2d2d 6a*c |.|------ │ │ │ │ +000a8ef0: 207c 0a7c 2034 2020 2020 2020 2020 2020 |.| 4 │ │ │ │ +000a8f00: 2032 2034 2020 2020 2020 2020 3320 3420 2 4 3 4 │ │ │ │ +000a8f10: 2020 2020 2020 2032 2035 2020 2020 2020 2 5 │ │ │ │ +000a8f20: 2020 2020 2020 2035 2020 2020 2020 2020 5 │ │ │ │ +000a8f30: 3220 3520 2020 2020 2020 2020 2020 3620 2 5 6 │ │ │ │ +000a8f40: 207c 0a7c 6320 202d 2032 3037 3231 612a |.|c - 20721a* │ │ │ │ +000a8f50: 6220 6320 202d 2034 3839 3162 2063 2020 b c - 4891b c │ │ │ │ +000a8f60: 2d20 3530 3833 6120 6320 202d 2032 3135 - 5083a c - 215 │ │ │ │ +000a8f70: 3438 612a 622a 6320 202b 2031 3731 3362 48a*b*c + 1713b │ │ │ │ +000a8f80: 2063 2020 2b20 3239 3333 3661 2a63 2020 c + 29336a*c │ │ │ │ +000a8f90: 207c 0a7c 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.|------------ │ │ │ │ 000a8fa0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8fb0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8fc0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a8fd0: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a8fe0: 2d2d 2d2d 2d2d 2d7c 0a7c 2020 3620 2020 -------|.| 6 │ │ │ │ -000a8ff0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ -000a9000: 2037 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +000a8fe0: 2d7c 0a7c 2020 3620 2020 2020 2020 2020 -|.| 6 │ │ │ │ +000a8ff0: 2036 2020 2020 2020 2020 2037 2020 2020 6 7 │ │ │ │ +000a9000: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9010: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9020: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9030: 2020 2020 2020 207c 0a7c 2a63 2020 2b20 |.|*c + │ │ │ │ -000a9040: 3435 3731 622a 6320 202d 2032 3532 3639 4571b*c - 25269 │ │ │ │ -000a9050: 6320 2c20 2020 2020 2020 2020 2020 2020 c , │ │ │ │ +000a9030: 207c 0a7c 2a63 2020 2b20 3435 3731 622a |.|*c + 4571b* │ │ │ │ +000a9040: 6320 202d 2032 3532 3639 6320 2c20 2020 c - 25269c , │ │ │ │ +000a9050: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9060: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9070: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9080: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a9080: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a9090: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a90a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a90b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a90c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a90d0: 2020 2020 2020 207c 0a7c 2036 2020 2020 |.| 6 │ │ │ │ -000a90e0: 2020 2020 2020 2036 2020 2020 2020 2020 6 │ │ │ │ -000a90f0: 3720 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ +000a90d0: 207c 0a7c 2036 2020 2020 2020 2020 2020 |.| 6 │ │ │ │ +000a90e0: 2036 2020 2020 2020 2020 3720 2020 2020 6 7 │ │ │ │ +000a90f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9100: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9110: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9120: 2020 2020 2020 207c 0a7c 6320 202d 2032 |.|c - 2 │ │ │ │ -000a9130: 3134 3330 622a 6320 202b 2038 3233 3363 1430b*c + 8233c │ │ │ │ -000a9140: 202c 2020 2020 2020 2020 2020 2020 2020 , │ │ │ │ +000a9120: 207c 0a7c 6320 202d 2032 3134 3330 622a |.|c - 21430b* │ │ │ │ +000a9130: 6320 202b 2038 3233 3363 202c 2020 2020 c + 8233c , │ │ │ │ +000a9140: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9150: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9160: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9170: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a9170: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a9180: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9190: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a91a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a91b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a91c0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a91d0: 2020 2036 2020 2020 2020 2020 2037 2020 6 7 │ │ │ │ +000a91c0: 207c 0a7c 2020 2020 2020 2020 2036 2020 |.| 6 │ │ │ │ +000a91d0: 2020 2020 2020 2037 2020 2020 2020 2020 7 │ │ │ │ 000a91e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a91f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9200: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9210: 2020 2020 2020 207c 0a7c 2031 3936 3034 |.| 19604 │ │ │ │ -000a9220: 622a 6320 202d 2031 3533 3733 6320 2c20 b*c - 15373c , │ │ │ │ +000a9210: 207c 0a7c 2031 3936 3034 622a 6320 202d |.| 19604b*c - │ │ │ │ +000a9220: 2031 3533 3733 6320 2c20 2020 2020 2020 15373c , │ │ │ │ 000a9230: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9240: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9250: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9260: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a9260: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a9270: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9280: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9290: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a92a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a92b0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a92c0: 2020 3620 2020 2020 2020 2020 3720 2020 6 7 │ │ │ │ +000a92b0: 207c 0a7c 2020 2020 2020 2020 3620 2020 |.| 6 │ │ │ │ +000a92c0: 2020 2020 2020 3720 2020 2020 2020 2020 7 │ │ │ │ 000a92d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a92e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a92f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9300: 2020 2020 2020 207c 0a7c 3330 3531 3562 |.|30515b │ │ │ │ -000a9310: 2a63 2020 2b20 3139 3331 3363 202c 2020 *c + 19313c , │ │ │ │ +000a9300: 207c 0a7c 3330 3531 3562 2a63 2020 2b20 |.|30515b*c + │ │ │ │ +000a9310: 3139 3331 3363 202c 2020 2020 2020 2020 19313c , │ │ │ │ 000a9320: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9330: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9340: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9350: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a9350: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a9360: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9370: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9380: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9390: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a93a0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a93b0: 2020 3620 2020 2020 2020 2020 3720 2020 6 7 │ │ │ │ +000a93a0: 207c 0a7c 2020 2020 2020 2020 3620 2020 |.| 6 │ │ │ │ +000a93b0: 2020 2020 2020 3720 2020 2020 2020 2020 7 │ │ │ │ 000a93c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a93d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a93e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a93f0: 2020 2020 2020 207c 0a7c 3132 3935 3062 |.|12950b │ │ │ │ -000a9400: 2a63 2020 2b20 3130 3235 3663 202c 2020 *c + 10256c , │ │ │ │ +000a93f0: 207c 0a7c 3132 3935 3062 2a63 2020 2b20 |.|12950b*c + │ │ │ │ +000a9400: 3130 3235 3663 202c 2020 2020 2020 2020 10256c , │ │ │ │ 000a9410: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9420: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9430: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9440: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a9440: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a9450: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9460: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9470: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9480: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9490: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ -000a94a0: 2020 2036 2020 2020 2020 2020 2037 2020 6 7 │ │ │ │ +000a9490: 207c 0a7c 2020 2020 2020 2020 2036 2020 |.| 6 │ │ │ │ +000a94a0: 2020 2020 2020 2037 2020 2020 2020 2020 7 │ │ │ │ 000a94b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a94c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a94d0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a94e0: 2020 2020 2020 207c 0a7c 2b20 3337 3633 |.|+ 3763 │ │ │ │ -000a94f0: 622a 6320 202d 2033 3031 3137 6320 2020 b*c - 30117c │ │ │ │ +000a94e0: 207c 0a7c 2b20 3337 3633 622a 6320 202d |.|+ 3763b*c - │ │ │ │ +000a94f0: 2033 3031 3137 6320 2020 2020 2020 2020 30117c │ │ │ │ 000a9500: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9510: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9520: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9530: 2020 2020 2020 207c 0a2b 2d2d 2d2d 2d2d |.+------ │ │ │ │ +000a9530: 207c 0a2b 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d |.+------------ │ │ │ │ 000a9540: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a9550: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a9560: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ 000a9570: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ---------------- │ │ │ │ -000a9580: 2d2d 2d2d 2d2d 2d2b 0a7c 6933 203a 2064 -------+.|i3 : d │ │ │ │ -000a9590: 6573 6372 6962 6520 7068 6921 2020 2020 escribe phi! │ │ │ │ +000a9580: 2d2b 0a7c 6933 203a 2064 6573 6372 6962 -+.|i3 : describ │ │ │ │ +000a9590: 6520 7068 6921 2020 2020 2020 2020 2020 e phi! │ │ │ │ 000a95a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a95b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a95c0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a95d0: 2020 2020 2020 207c 0a7c 2020 2020 2020 |.| │ │ │ │ +000a95d0: 207c 0a7c 2020 2020 2020 2020 2020 2020 |.| │ │ │ │ 000a95e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a95f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9600: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9610: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9620: 2020 2020 2020 207c 0a7c 6f33 203d 2072 |.|o3 = r │ │ │ │ -000a9630: 6174 696f 6e61 6c20 6d61 7020 6465 6669 ational map defi │ │ │ │ -000a9640: 6e65 6420 6279 2066 6f72 6d73 206f 6620 ned by forms of │ │ │ │ -000a9650: 6465 6772 6565 2037 2020 2020 2020 2020 degree 7 │ │ │ │ +000a9620: 207c 0a7c 6f33 203d 2072 6174 696f 6e61 |.|o3 = rationa │ │ │ │ +000a9630: 6c20 6d61 7020 6465 6669 6e65 6420 6279 l map defined by │ │ │ │ +000a9640: 2066 6f72 6d73 206f 6620 6465 6772 6565 forms of degree │ │ │ │ +000a9650: 2037 2020 2020 2020 2020 2020 2020 2020 7 │ │ │ │ 000a9660: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9670: 2020 2020 2020 207c 0a7c 2020 2020 2073 |.| s │ │ │ │ -000a9680: 6f75 7263 6520 7661 7269 6574 793a 2050 ource variety: P │ │ │ │ -000a9690: 505e 3220 2020 2020 2020 2020 2020 2020 P^2 │ │ │ │ +000a9670: 207c 0a7c 2020 2020 2073 6f75 7263 6520 |.| source │ │ │ │ +000a9680: 7661 7269 6574 793a 2050 505e 3220 2020 variety: PP^2 │ │ │ │ +000a9690: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a96a0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a96b0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a96c0: 2020 2020 2020 207c 0a7c 2020 2020 2074 |.| t │ │ │ │ -000a96d0: 6172 6765 7420 7661 7269 6574 793a 2050 arget variety: P │ │ │ │ -000a96e0: 505e 3520 2020 2020 2020 2020 2020 2020 P^5 │ │ │ │ +000a96c0: 207c 0a7c 2020 2020 2074 6172 6765 7420 |.| target │ │ │ │ +000a96d0: 7661 7269 6574 793a 2050 505e 3520 2020 variety: PP^5 │ │ │ │ +000a96e0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a96f0: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ 000a9700: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ -000a9710: 2020 2020 2020 207c 0a7c 2020 2020 2069 |.| i │ │ │ │ -000a9720: 6d61 6765 3a20 7375 7266 6163 6520 6f66 mage: surface of │ │ │ │ -000a9730: 2064 6567 7265 6520 3130 2061 6e64 2073 degree 10 and s │ │ │ │ -000a9740: 6563 7469 6f6e 616c 2067 656e 7573 2036 ectional genus 6 │ │ │ │ -000a9750: 2069 6e20 5050 5e35 2063 7574 206f 7574 in PP^5 cut out │ │ │ │ -000a9760: 2062 7920 3130 207c 0a7c 2020 2020 2064 by 10 |.| d │ │ │ │ -000a9770: 6f6d 696e 616e 6365 3a20 6661 6c73 6520 ominance: false │ │ │ │ +000a9710: 207c 0a7c 2020 2020 2069 6d61 6765 3a20 |.| image: │ │ │ │ +000a9720: 7375 7266 6163 6520 6f66 2064 6567 7265 surface of degre │ │ │ │ +000a9730: 6520 3130 2061 6e64 2073 6563 7469 6f6e e 10 and section │ │ │ │ +000a9740: 616c 2067 656e 7573 2036 2069 6e20 5050 al genus 6 in PP │ │ │ │ +000a9750: 5e35 2063 7574 206f 7574 2062 7920 3130 ^5 cut out by 10 │ │ │ │ +000a9760: 207c 0a7c 2020 2020 2064 6f6d 696e 616e |.| dominan │ │ │ │ +000a9770: 6365 3a20 6661 6c73 6520 2020 2020 2020 ce: false │ │ │ │ 000a9780: 2020 2020 2020 2020 2020 2020 2020 2020 │ │ │ │ TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes