=============================================================================== About this build: this rebuild has been done as part of reproduce.debian.net where we aim to reproduce Debian binary packages distributed via ftp.debian.org, by rebuilding using the exact same packages as the original build on the buildds, as described in the relevant .buildinfo file from buildinfos.debian.net. For more information please go to https://reproduce.debian.net or join #debian-reproducible on irc.debian.org =============================================================================== Preparing download of sources for /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6_arm64.buildinfo Source: hol88 Version: 2.02.19940316dfsg-6 rebuilderd-worker node: codethink02-arm64 +------------------------------------------------------------------------------+ | Downloading sources Thu, 24 Jul 2025 21:17:38 +0000 | +------------------------------------------------------------------------------+ Get:1 https://deb.debian.org/debian trixie InRelease [168 kB] Get:2 https://deb.debian.org/debian sid InRelease [213 kB] Get:3 https://deb.debian.org/debian trixie/main Sources [10.5 MB] Get:4 https://deb.debian.org/debian sid/main Sources [11.0 MB] Fetched 21.9 MB in 2s (9926 kB/s) Reading package lists... 'https://deb.debian.org/debian/pool/main/h/hol88/hol88_2.02.19940316dfsg-6.dsc' hol88_2.02.19940316dfsg-6.dsc 2263 SHA256:8b9645257263029d2ee1b9bfc1df3c4da8478815fb3d1f8f3bf7f9653c8e16b1 'https://deb.debian.org/debian/pool/main/h/hol88/hol88_2.02.19940316dfsg.orig.tar.gz' hol88_2.02.19940316dfsg.orig.tar.gz 10359437 SHA256:8e2a4f83cea20d0cf2416f7d55c951498f6c807b03ebc9381a02fa4c81c5da69 'https://deb.debian.org/debian/pool/main/h/hol88/hol88_2.02.19940316dfsg-6.debian.tar.xz' hol88_2.02.19940316dfsg-6.debian.tar.xz 132416 SHA256:9c8afe3b9031c845bb8182e4d21d8999abce384fb93d533e978de52a0d9cd87d 8e2a4f83cea20d0cf2416f7d55c951498f6c807b03ebc9381a02fa4c81c5da69 hol88_2.02.19940316dfsg.orig.tar.gz 9c8afe3b9031c845bb8182e4d21d8999abce384fb93d533e978de52a0d9cd87d hol88_2.02.19940316dfsg-6.debian.tar.xz 8b9645257263029d2ee1b9bfc1df3c4da8478815fb3d1f8f3bf7f9653c8e16b1 hol88_2.02.19940316dfsg-6.dsc +------------------------------------------------------------------------------+ | Calling debrebuild Thu, 24 Jul 2025 21:17:40 +0000 | +------------------------------------------------------------------------------+ Rebuilding hol88=2.02.19940316dfsg-6 in /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs now. + nice /usr/bin/debrebuild --buildresult=/srv/rebuilderd/tmp/rebuilderdMZ1i5G/out --builder=sbuild+unshare --cache=/srv/rebuilderd/cache -- /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6_arm64.buildinfo /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6_arm64.buildinfo contains a GPG signature which has NOT been validated Using defined Build-Path: /build/reproducible-path/hol88-2.02.19940316dfsg I: verifying dsc... successful! Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie InRelease [175 kB] Get:2 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie InRelease [175 kB] Get:3 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 Packages [9620 kB] Get:4 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 Packages [9613 kB] Fetched 19.6 MB in 2s (10.6 MB/s) Reading package lists... W: http://snapshot.debian.org/archive/debian/20250430T203420Z/dists/trixie/InRelease: Loading /etc/apt/trusted.gpg from deprecated option Dir::Etc::Trusted W: http://snapshot.debian.org/archive/debian/20250513T203928Z/dists/trixie/InRelease: Loading /etc/apt/trusted.gpg from deprecated option Dir::Etc::Trusted Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsystemd0 arm64 257.5-2 [421 kB] Fetched 421 kB in 0s (20.7 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpuu2wtpky/libsystemd0_257.5-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libhwasan0 arm64 14.2.0-19 [1442 kB] Fetched 1442 kB in 0s (49.7 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpwgzzzguv/libhwasan0_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 liblzma5 arm64 5.8.1-1 [303 kB] Fetched 303 kB in 0s (15.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpg79_cqop/liblzma5_5.8.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libk5crypto3 arm64 1.21.3-5 [81.2 kB] Fetched 81.2 kB in 0s (4593 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpkp9zncmq/libk5crypto3_1.21.3-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 sysvinit-utils arm64 3.14-4 [34.0 kB] Fetched 34.0 kB in 0s (2032 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp53np0s8c/sysvinit-utils_3.14-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 mawk arm64 1.3.4.20250131-1 [134 kB] Fetched 134 kB in 0s (11.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpgwyi1r96/mawk_1.3.4.20250131-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 fonts-lmodern all 2.005-1 [4540 kB] Fetched 4540 kB in 0s (85.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpbok1r7q8/fonts-lmodern_2.005-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libubsan1 arm64 14.2.0-19 [1039 kB] Fetched 1039 kB in 0s (41.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpgpbg2sj5/libubsan1_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libblkid1 arm64 2.41-4 [165 kB] Fetched 165 kB in 0s (9042 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphyu45z7x/libblkid1_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libexpat1 arm64 2.7.1-1 [93.3 kB] Fetched 93.3 kB in 0s (3502 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4acabrgt/libexpat1_2.7.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libfile-stripnondeterminism-perl all 1.14.1-2 [19.7 kB] Fetched 19.7 kB in 0s (1203 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphcq49icr/libfile-stripnondeterminism-perl_1.14.1-2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 base-passwd arm64 3.6.7 [53.4 kB] Fetched 53.4 kB in 0s (3138 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphzj6cg75/base-passwd_3.6.7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 file arm64 1:5.46-5 [43.7 kB] Fetched 43.7 kB in 0s (2603 kB/s) dpkg-name: info: moved 'file_1%3a5.46-5_arm64.deb' to '/srv/rebuilderd/tmp/tmp_y90_j6e/file_5.46-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtext-charwidth-perl arm64 0.04-11+b4 [9652 B] Fetched 9652 B in 0s (571 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp44fxx6qy/libtext-charwidth-perl_0.04-11+b4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcrypt-dev arm64 1:4.4.38-1 [123 kB] Fetched 123 kB in 0s (7037 kB/s) dpkg-name: info: moved 'libcrypt-dev_1%3a4.4.38-1_arm64.deb' to '/srv/rebuilderd/tmp/tmps2vp1v39/libcrypt-dev_4.4.38-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libdpkg-perl all 1.22.18 [649 kB] Fetched 649 kB in 0s (29.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp7cg_xwo5/libdpkg-perl_1.22.18_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmpfi0 arm64 1.5.4+ds-4 [34.5 kB] Fetched 34.5 kB in 0s (1975 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnod_td7w/libmpfi0_1.5.4+ds-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libuuid1 arm64 2.41-4 [37.4 kB] Fetched 37.4 kB in 0s (2246 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjv018_fm/libuuid1_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libx11-data all 2:1.8.12-1 [343 kB] Fetched 343 kB in 0s (17.8 MB/s) dpkg-name: info: moved 'libx11-data_2%3a1.8.12-1_all.deb' to '/srv/rebuilderd/tmp/tmp784_lqd_/libx11-data_1.8.12-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmd0 arm64 1.1.0-2+b1 [33.7 kB] Fetched 33.7 kB in 0s (1972 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp_jpvin1z/libmd0_1.1.0-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtirpc-dev arm64 1.3.6+ds-1 [192 kB] Fetched 192 kB in 0s (10.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpaes71tuy/libtirpc-dev_1.3.6+ds-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgraphite2-3 arm64 1.3.14-2+b1 [70.4 kB] Fetched 70.4 kB in 0s (4073 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpxl3jf16z/libgraphite2-3_1.3.14-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 sensible-utils all 0.0.25 [25.0 kB] Fetched 25.0 kB in 0s (1485 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp52l30ug3/sensible-utils_0.0.25_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 util-linux arm64 2.41-4 [1191 kB] Fetched 1191 kB in 0s (45.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4k1ysxg9/util-linux_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpcre2-8-0 arm64 10.45-1 [262 kB] Fetched 262 kB in 0s (14.0 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpxizd91oh/libpcre2-8-0_10.45-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsynctex2 arm64 2024.20240313.70630+ds-6 [60.5 kB] Fetched 60.5 kB in 0s (3439 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpvjtfxo5a/libsynctex2_2024.20240313.70630+ds-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libctf-nobfd0 arm64 2.44-3 [152 kB] Fetched 152 kB in 0s (8266 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmplimzsc9a/libctf-nobfd0_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 procps arm64 2:4.0.4-8 [873 kB] Fetched 873 kB in 0s (37.1 MB/s) dpkg-name: info: moved 'procps_2%3a4.0.4-8_arm64.deb' to '/srv/rebuilderd/tmp/tmpj8e4jjs9/procps_4.0.4-8_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libacl1 arm64 2.3.2-2+b1 [32.2 kB] Fetched 32.2 kB in 0s (1872 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmprxi04_im/libacl1_2.3.2-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dpkg arm64 1.22.18 [1529 kB] Fetched 1529 kB in 0s (56.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpszlosawk/dpkg_1.22.18_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcom-err2 arm64 1.47.2-1+b1 [24.2 kB] Fetched 24.2 kB in 0s (1419 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpgkr8bsqr/libcom-err2_1.47.2-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 openssl-provider-legacy arm64 3.5.0-1 [304 kB] Fetched 304 kB in 0s (15.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpfdcwilz2/openssl-provider-legacy_3.5.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxmu6 arm64 2:1.1.3-3+b4 [55.7 kB] Fetched 55.7 kB in 0s (3212 kB/s) dpkg-name: info: moved 'libxmu6_2%3a1.1.3-3+b4_arm64.deb' to '/srv/rebuilderd/tmp/tmpfy4t8uxa/libxmu6_1.1.3-3+b4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtirpc-common all 1.3.6+ds-1 [11.0 kB] Fetched 11.0 kB in 0s (702 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpv2pcmg3r/libtirpc-common_1.3.6+ds-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpotrace0 arm64 1.16-2+b2 [23.4 kB] Fetched 23.4 kB in 0s (1421 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpol659jdr/libpotrace0_1.16-2+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 liblsan0 arm64 14.2.0-19 [1161 kB] Fetched 1161 kB in 0s (44.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp_puzvfvg/liblsan0_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 init-system-helpers all 1.68 [38.7 kB] Fetched 38.7 kB in 0s (2304 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpw3397f5u/init-system-helpers_1.68_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libbz2-1.0 arm64 1.0.8-6 [37.8 kB] Fetched 37.8 kB in 0s (2242 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpwo0bn_ls/libbz2-1.0_1.0.8-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dh-autoreconf all 20 [17.1 kB] Fetched 17.1 kB in 0s (1017 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpcdt0glws/dh-autoreconf_20_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libaudit-common all 1:4.0.2-2 [12.7 kB] Fetched 12.7 kB in 0s (771 kB/s) dpkg-name: info: moved 'libaudit-common_1%3a4.0.2-2_all.deb' to '/srv/rebuilderd/tmp/tmp16lq9wrz/libaudit-common_4.0.2-2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 diffutils arm64 1:3.10-4 [378 kB] Fetched 378 kB in 0s (18.8 MB/s) dpkg-name: info: moved 'diffutils_1%3a3.10-4_arm64.deb' to '/srv/rebuilderd/tmp/tmpb7nruf8x/diffutils_3.10-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 fontconfig-config arm64 2.15.0-2.3 [318 kB] Fetched 318 kB in 0s (16.8 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0ozw86ag/fontconfig-config_2.15.0-2.3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpam0g arm64 1.7.0-3 [68.6 kB] Fetched 68.6 kB in 0s (4045 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpiq8xf5m8/libpam0g_1.7.0-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 make arm64 4.4.1-2 [452 kB] Fetched 452 kB in 0s (22.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpii1h4wt6/make_4.4.1-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpng16-16t64 arm64 1.6.47-1.1 [274 kB] Fetched 274 kB in 0s (14.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp6fwd0j9b/libpng16-16t64_1.6.47-1.1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmagic-mgc arm64 1:5.46-5 [338 kB] Fetched 338 kB in 0s (17.2 MB/s) dpkg-name: info: moved 'libmagic-mgc_1%3a5.46-5_arm64.deb' to '/srv/rebuilderd/tmp/tmp48dma8a3/libmagic-mgc_5.46-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 intltool-debian all 0.35.0+20060710.6 [22.9 kB] Fetched 22.9 kB in 0s (1404 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdsbjc7u0/intltool-debian_0.35.0+20060710.6_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 binutils arm64 2.44-3 [262 kB] Fetched 262 kB in 0s (13.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnfk61gqi/binutils_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 gcl27 arm64 2.7.1-3 [64.2 MB] Fetched 64.2 MB in 0s (188 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpbe156zh4/gcl27_2.7.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libstdc++6 arm64 14.2.0-19 [638 kB] Fetched 638 kB in 0s (29.2 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpfmd1m43u/libstdc++6_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 cpp arm64 4:14.2.0-1 [1568 B] Fetched 1568 B in 0s (34.7 kB/s) dpkg-name: info: moved 'cpp_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpp15b0v_9/cpp_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gcc-aarch64-linux-gnu arm64 4:14.2.0-1 [1440 B] Fetched 1440 B in 0s (23.8 kB/s) dpkg-name: info: moved 'gcc-aarch64-linux-gnu_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmp4fvguvp3/gcc-aarch64-linux-gnu_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libkeyutils1 arm64 1.6.3-6 [9716 B] Fetched 9716 B in 0s (581 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnk7fut1q/libkeyutils1_1.6.3-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gettext arm64 0.23.1-1 [1610 kB] Fetched 1610 kB in 0s (52.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnbyun6bv/gettext_0.23.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 libffi8 arm64 3.4.8-2 [21.3 kB] Fetched 21.3 kB in 0s (1293 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpe5mvdyu_/libffi8_3.4.8-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 tex-common all 6.19 [29.4 kB] Fetched 29.4 kB in 0s (1835 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmptjtn0udn/tex-common_6.19_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libudev1 arm64 257.5-2 [143 kB] Fetched 143 kB in 0s (7942 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp6cahtbz6/libudev1_257.5-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxcb-shm0 arm64 1.17.0-2+b1 [105 kB] Fetched 105 kB in 0s (3833 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp7xxd5g2b/libxcb-shm0_1.17.0-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libc6 arm64 2.41-7 [2483 kB] Fetched 2483 kB in 0s (64.8 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp3fi46uj1/libc6_2.41-7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gcc-14-base arm64 14.2.0-19 [49.4 kB] Fetched 49.4 kB in 0s (1876 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp9nt1xk7l/gcc-14-base_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libelf1t64 arm64 0.192-4 [189 kB] Fetched 189 kB in 0s (4469 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4pwlekky/libelf1t64_0.192-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libperl5.40 arm64 5.40.1-3 [4126 kB] Fetched 4126 kB in 0s (84.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpadhcrfn4/libperl5.40_5.40.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxt6t64 arm64 1:1.2.1-1.2+b2 [173 kB] Fetched 173 kB in 0s (9556 kB/s) dpkg-name: info: moved 'libxt6t64_1%3a1.2.1-1.2+b2_arm64.deb' to '/srv/rebuilderd/tmp/tmpcqr38ld1/libxt6t64_1.2.1-1.2+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 grep arm64 3.11-4+b1 [426 kB] Fetched 426 kB in 0s (21.2 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp5mpcgdv2/grep_3.11-4+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpixman-1-0 arm64 0.44.0-3 [168 kB] Fetched 168 kB in 0s (9453 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdt7_stdj/libpixman-1-0_0.44.0-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libptexenc1 arm64 2024.20240313.70630+ds-6 [48.1 kB] Fetched 48.1 kB in 0s (3751 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpa6b5_k7y/libptexenc1_2024.20240313.70630+ds-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtext-wrapi18n-perl all 0.06-10 [8808 B] Fetched 8808 B in 0s (534 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnnal085a/libtext-wrapi18n-perl_0.06-10_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 xz-utils arm64 5.8.1-1 [657 kB] Fetched 657 kB in 0s (30.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0a7c7cn6/xz-utils_5.8.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dwz arm64 0.15-1+b1 [102 kB] Fetched 102 kB in 0s (5063 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpgjpm3v4q/dwz_0.15-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libstdc++-14-dev arm64 14.2.0-19 [2295 kB] Fetched 2295 kB in 0s (63.7 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmppqdhgotx/libstdc++-14-dev_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 linux-libc-dev all 6.12.22-1 [2542 kB] Fetched 2542 kB in 0s (68.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp45_d5m8s/linux-libc-dev_6.12.22-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libbinutils arm64 2.44-3 [660 kB] Fetched 660 kB in 0s (30.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpq6dlmf7k/libbinutils_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxau6 arm64 1:1.0.11-1 [20.6 kB] Fetched 20.6 kB in 0s (1236 kB/s) dpkg-name: info: moved 'libxau6_1%3a1.0.11-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpzakjfjwl/libxau6_1.0.11-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libncursesw6 arm64 6.5+20250216-2 [124 kB] Fetched 124 kB in 0s (6900 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdds90jwn/libncursesw6_6.5+20250216-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libdebconfclient0 arm64 0.278 [10.6 kB] Fetched 10.6 kB in 0s (633 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpmsfvytb2/libdebconfclient0_0.278_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 texlive-latex-base all 2024.20250309-1 [1294 kB] Fetched 1294 kB in 0s (47.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpx7kwstuc/texlive-latex-base_2024.20250309-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 perl-base arm64 5.40.1-3 [1526 kB] Fetched 1526 kB in 0s (52.7 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp5mouuow0/perl-base_5.40.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libfontconfig1 arm64 2.15.0-2.3 [387 kB] Fetched 387 kB in 0s (16.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjeq_qxyw/libfontconfig1_2.15.0-2.3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 fonts-dejavu-core all 2.37-8 [840 kB] Fetched 840 kB in 0s (36.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp7wodr49m/fonts-dejavu-core_2.37-8_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 tar arm64 1.35+dfsg-3.1 [802 kB] Fetched 802 kB in 0s (34.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp5caji_md/tar_1.35+dfsg-3.1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libzstd1 arm64 1.5.7+dfsg-1 [266 kB] Fetched 266 kB in 0s (10.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpkx5zrowp/libzstd1_1.5.7+dfsg-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcairo2 arm64 1.18.4-1+b1 [483 kB] Fetched 483 kB in 0s (23.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp6phwofu1/libcairo2_1.18.4-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 automake all 1:1.17-4 [862 kB] Fetched 862 kB in 0s (36.5 MB/s) dpkg-name: info: moved 'automake_1%3a1.17-4_all.deb' to '/srv/rebuilderd/tmp/tmpig1ermyu/automake_1.17-4_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 findutils arm64 4.10.0-3 [696 kB] Fetched 696 kB in 0s (27.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpvjldr05b/findutils_4.10.0-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsframe1 arm64 2.44-3 [77.8 kB] Fetched 77.8 kB in 0s (4643 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpwhrfls5n/libsframe1_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxpm4 arm64 1:3.5.17-1+b3 [53.4 kB] Fetched 53.4 kB in 0s (3184 kB/s) dpkg-name: info: moved 'libxpm4_1%3a3.5.17-1+b3_arm64.deb' to '/srv/rebuilderd/tmp/tmp202d0owe/libxpm4_3.5.17-1+b3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpaper2 arm64 2.2.5-0.3+b2 [16.6 kB] Fetched 16.6 kB in 0s (956 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdjodb5mk/libpaper2_2.2.5-0.3+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 coreutils arm64 9.7-2 [2947 kB] Fetched 2947 kB in 0s (73.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpke7ez20k/coreutils_9.7-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libkpathsea6 arm64 2024.20240313.70630+ds-6 [154 kB] Fetched 154 kB in 0s (8417 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpd7_wvm0m/libkpathsea6_2024.20240313.70630+ds-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 x11-common all 1:7.7+24 [217 kB] Fetched 217 kB in 0s (11.8 MB/s) dpkg-name: info: moved 'x11-common_1%3a7.7+24_all.deb' to '/srv/rebuilderd/tmp/tmpr3h5obc0/x11-common_7.7+24_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 autopoint all 0.23.1-1 [770 kB] Fetched 770 kB in 0s (44.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpqzghf1c1/autopoint_0.23.1-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 binutils-common arm64 2.44-3 [2509 kB] Fetched 2509 kB in 0s (148 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpsxhzjjki/binutils-common_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libarchive-zip-perl all 1.68-1 [104 kB] Fetched 104 kB in 0s (5851 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpn97jq4zb/libarchive-zip-perl_1.68-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpam-modules-bin arm64 1.7.0-3 [48.0 kB] Fetched 48.0 kB in 0s (2797 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpmgkvl1ub/libpam-modules-bin_1.7.0-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dh-strip-nondeterminism all 1.14.1-2 [8620 B] Fetched 8620 B in 0s (739 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0q0cvv9y/dh-strip-nondeterminism_1.14.1-2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpaper-utils arm64 2.2.5-0.3+b2 [16.4 kB] Fetched 16.4 kB in 0s (917 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpn7u4cz1p/libpaper-utils_2.2.5-0.3+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 bash arm64 5.2.37-2 [1457 kB] Fetched 1457 kB in 0s (58.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpqpnydk5v/bash_5.2.37-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgprofng0 arm64 2.44-3 [668 kB] Fetched 668 kB in 0s (31.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpth7dksxb/libgprofng0_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtirpc3t64 arm64 1.3.6+ds-1 [79.1 kB] Fetched 79.1 kB in 0s (4485 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp5er3dmmt/libtirpc3t64_1.3.6+ds-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcrypt1 arm64 1:4.4.38-1 [91.8 kB] Fetched 91.8 kB in 0s (5381 kB/s) dpkg-name: info: moved 'libcrypt1_1%3a4.4.38-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpe831ctkh/libcrypt1_4.4.38-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 fonts-dejavu-mono all 2.37-8 [489 kB] Fetched 489 kB in 0s (24.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0m3hemz3/fonts-dejavu-mono_2.37-8_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgomp1 arm64 14.2.0-19 [124 kB] Fetched 124 kB in 0s (6816 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpv6_j0kpi/libgomp1_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpipeline1 arm64 1.5.8-1 [40.2 kB] Fetched 40.2 kB in 0s (2352 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpk6g1n9la/libpipeline1_1.5.8-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtool all 2.5.4-4 [539 kB] Fetched 539 kB in 0s (25.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpzrabw0ns/libtool_2.5.4-4_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 m4 arm64 1.4.19-8 [285 kB] Fetched 285 kB in 0s (14.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0nmv7b6k/m4_1.4.19-8_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libteckit0 arm64 2.5.12+ds1-1+b1 [303 kB] Fetched 303 kB in 0s (8546 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp1idqz7up/libteckit0_2.5.12+ds1-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gcc arm64 4:14.2.0-1 [5136 B] Fetched 5136 B in 0s (306 kB/s) dpkg-name: info: moved 'gcc_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpq0xe7ger/gcc_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 bsdextrautils arm64 2.41-4 [93.9 kB] Fetched 93.9 kB in 0s (5254 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpejasudan/bsdextrautils_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 debianutils arm64 5.22 [92.3 kB] Fetched 92.3 kB in 0s (4794 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmplt3g_ky_/debianutils_5.22_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libc-dev-bin arm64 2.41-7 [56.5 kB] Fetched 56.5 kB in 0s (3340 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpsy16teej/libc-dev-bin_2.41-7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libicu76 arm64 76.1-3 [9526 kB] Fetched 9526 kB in 0s (127 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpd_qsmek2/libicu76_76.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libbrotli1 arm64 1.1.0-2+b7 [308 kB] Fetched 308 kB in 0s (16.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpr1rftduw/libbrotli1_1.1.0-2+b7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmpc3 arm64 1.3.1-1+b3 [50.5 kB] Fetched 50.5 kB in 0s (3024 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpx7dtg8yu/libmpc3_1.3.1-1+b3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsmartcols1 arm64 2.41-4 [139 kB] Fetched 139 kB in 0s (9284 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp62d4h595/libsmartcols1_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 texlive-base all 2024.20250309-1 [23.1 MB] Fetched 23.1 MB in 0s (165 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmppc7rycoy/texlive-base_2024.20250309-1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtsan2 arm64 14.2.0-19 [2383 kB] Fetched 2383 kB in 0s (66.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpytxmunsd/libtsan2_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxml2 arm64 2.12.7+dfsg+really2.9.14-0.4 [629 kB] Fetched 629 kB in 0s (28.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphw5ur844/libxml2_2.12.7+dfsg+really2.9.14-0.4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 man-db arm64 2.13.0-1 [1404 kB] Fetched 1404 kB in 0s (49.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjo8sj3tl/man-db_2.13.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 sed arm64 4.9-2+b1 [326 kB] Fetched 326 kB in 0s (16.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpeekrcxl8/sed_4.9-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libaudit1 arm64 1:4.0.2-2+b2 [54.6 kB] Fetched 54.6 kB in 0s (3175 kB/s) dpkg-name: info: moved 'libaudit1_1%3a4.0.2-2+b2_arm64.deb' to '/srv/rebuilderd/tmp/tmpqhxwu4fv/libaudit1_4.0.2-2+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libedit2 arm64 3.1-20250104-1 [89.3 kB] Fetched 89.3 kB in 0s (5266 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmppfujyvql/libedit2_3.1-20250104-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 build-essential arm64 12.12 [4624 B] Fetched 4624 B in 0s (284 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp5m1scn19/build-essential_12.12_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgcc-14-dev arm64 14.2.0-19 [2359 kB] Fetched 2359 kB in 0s (66.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpogwosaaq/libgcc-14-dev_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 g++-14-aarch64-linux-gnu arm64 14.2.0-19 [10.1 MB] Fetched 10.1 MB in 0s (116 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp_1kn4f50/g++-14-aarch64-linux-gnu_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgmp10 arm64 2:6.3.0+dfsg-3 [535 kB] Fetched 535 kB in 0s (25.8 MB/s) dpkg-name: info: moved 'libgmp10_2%3a6.3.0+dfsg-3_arm64.deb' to '/srv/rebuilderd/tmp/tmp2nrbcp1e/libgmp10_6.3.0+dfsg-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgdbm6t64 arm64 1.24-2 [74.0 kB] Fetched 74.0 kB in 0s (4235 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp9lrxyg0u/libgdbm6t64_1.24-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 autotools-dev all 20240727.1 [60.2 kB] Fetched 60.2 kB in 0s (3447 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpo0r9fzx2/autotools-dev_20240727.1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 base-files arm64 13.7 [72.9 kB] Fetched 72.9 kB in 0s (4233 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdc4ofk6k/base-files_13.7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 zlib1g arm64 1:1.3.dfsg+really1.3.1-1+b1 [85.1 kB] Fetched 85.1 kB in 0s (4990 kB/s) dpkg-name: info: moved 'zlib1g_1%3a1.3.dfsg+really1.3.1-1+b1_arm64.deb' to '/srv/rebuilderd/tmp/tmpl3awtxps/zlib1g_1.3.dfsg+really1.3.1-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 t1utils arm64 1.41-4+b1 [57.6 kB] Fetched 57.6 kB in 0s (3462 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpaurb7dgy/t1utils_1.41-4+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpam-modules arm64 1.7.0-3 [170 kB] Fetched 170 kB in 0s (9430 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpabis2fi_/libpam-modules_1.7.0-3_arm64.deb' Downloading dependency 1 of 209: libsystemd0:arm64=257.5-2 Downloading dependency 2 of 209: libhwasan0:arm64=14.2.0-19 Downloading dependency 3 of 209: liblzma5:arm64=5.8.1-1 Downloading dependency 4 of 209: libk5crypto3:arm64=1.21.3-5 Downloading dependency 5 of 209: sysvinit-utils:arm64=3.14-4 Downloading dependency 6 of 209: mawk:arm64=1.3.4.20250131-1 Downloading dependency 7 of 209: fonts-lmodern:arm64=2.005-1 Downloading dependency 8 of 209: libubsan1:arm64=14.2.0-19 Downloading dependency 9 of 209: libblkid1:arm64=2.41-4 Downloading dependency 10 of 209: libexpat1:arm64=2.7.1-1 Downloading dependency 11 of 209: libfile-stripnondeterminism-perl:arm64=1.14.1-2 Downloading dependency 12 of 209: base-passwd:arm64=3.6.7 Downloading dependency 13 of 209: file:arm64=1:5.46-5 Downloading dependency 14 of 209: libtext-charwidth-perl:arm64=0.04-11+b4 Downloading dependency 15 of 209: libcrypt-dev:arm64=1:4.4.38-1 Downloading dependency 16 of 209: libdpkg-perl:arm64=1.22.18 Downloading dependency 17 of 209: libmpfi0:arm64=1.5.4+ds-4 Downloading dependency 18 of 209: libuuid1:arm64=2.41-4 Downloading dependency 19 of 209: libx11-data:arm64=2:1.8.12-1 Downloading dependency 20 of 209: libmd0:arm64=1.1.0-2+b1 Downloading dependency 21 of 209: libtirpc-dev:arm64=1.3.6+ds-1 Downloading dependency 22 of 209: libgraphite2-3:arm64=1.3.14-2+b1 Downloading dependency 23 of 209: sensible-utils:arm64=0.0.25 Downloading dependency 24 of 209: util-linux:arm64=2.41-4 Downloading dependency 25 of 209: libpcre2-8-0:arm64=10.45-1 Downloading dependency 26 of 209: libsynctex2:arm64=2024.20240313.70630+ds-6 Downloading dependency 27 of 209: libctf-nobfd0:arm64=2.44-3 Downloading dependency 28 of 209: procps:arm64=2:4.0.4-8 Downloading dependency 29 of 209: libacl1:arm64=2.3.2-2+b1 Downloading dependency 30 of 209: dpkg:arm64=1.22.18 Downloading dependency 31 of 209: libcom-err2:arm64=1.47.2-1+b1 Downloading dependency 32 of 209: openssl-provider-legacy:arm64=3.5.0-1 Downloading dependency 33 of 209: libxmu6:arm64=2:1.1.3-3+b4 Downloading dependency 34 of 209: libtirpc-common:arm64=1.3.6+ds-1 Downloading dependency 35 of 209: libpotrace0:arm64=1.16-2+b2 Downloading dependency 36 of 209: liblsan0:arm64=14.2.0-19 Downloading dependency 37 of 209: init-system-helpers:arm64=1.68 Downloading dependency 38 of 209: libbz2-1.0:arm64=1.0.8-6 Downloading dependency 39 of 209: dh-autoreconf:arm64=20 Downloading dependency 40 of 209: libaudit-common:arm64=1:4.0.2-2 Downloading dependency 41 of 209: diffutils:arm64=1:3.10-4 Downloading dependency 42 of 209: fontconfig-config:arm64=2.15.0-2.3 Downloading dependency 43 of 209: libpam0g:arm64=1.7.0-3 Downloading dependency 44 of 209: make:arm64=4.4.1-2 Downloading dependency 45 of 209: libpng16-16t64:arm64=1.6.47-1.1 Downloading dependency 46 of 209: libmagic-mgc:arm64=1:5.46-5 Downloading dependency 47 of 209: intltool-debian:arm64=0.35.0+20060710.6 Downloading dependency 48 of 209: binutils:arm64=2.44-3 Downloading dependency 49 of 209: gcl27:arm64=2.7.1-3 Downloading dependency 50 of 209: libstdc++6:arm64=14.2.0-19 Downloading dependency 51 of 209: cpp:arm64=4:14.2.0-1 Downloading dependency 52 of 209: gcc-aarch64-linux-gnu:arm64=4:14.2.0-1 Downloading dependency 53 of 209: libkeyutils1:arm64=1.6.3-6 Downloading dependency 54 of 209: gettext:arm64=0.23.1-1 Downloading dependency 55 of 209: libffi8:arm64=3.4.8-2 Downloading dependency 56 of 209: tex-common:arm64=6.19 Downloading dependency 57 of 209: libudev1:arm64=257.5-2 Downloading dependency 58 of 209: libxcb-shm0:arm64=1.17.0-2+b1 Downloading dependency 59 of 209: libc6:arm64=2.41-7 Downloading dependency 60 of 209: gcc-14-base:arm64=14.2.0-19 Downloading dependency 61 of 209: libelf1t64:arm64=0.192-4 Downloading dependency 62 of 209: libperl5.40:arm64=5.40.1-3 Downloading dependency 63 of 209: libxt6t64:arm64=1:1.2.1-1.2+b2 Downloading dependency 64 of 209: grep:arm64=3.11-4+b1 Downloading dependency 65 of 209: libpixman-1-0:arm64=0.44.0-3 Downloading dependency 66 of 209: libptexenc1:arm64=2024.20240313.70630+ds-6 Downloading dependency 67 of 209: libtext-wrapi18n-perl:arm64=0.06-10 Downloading dependency 68 of 209: xz-utils:arm64=5.8.1-1 Downloading dependency 69 of 209: dwz:arm64=0.15-1+b1 Downloading dependency 70 of 209: libstdc++-14-dev:arm64=14.2.0-19 Downloading dependency 71 of 209: linux-libc-dev:arm64=6.12.22-1 Downloading dependency 72 of 209: libbinutils:arm64=2.44-3 Downloading dependency 73 of 209: libxau6:arm64=1:1.0.11-1 Downloading dependency 74 of 209: libncursesw6:arm64=6.5+20250216-2 Downloading dependency 75 of 209: libdebconfclient0:arm64=0.278 Downloading dependency 76 of 209: texlive-latex-base:arm64=2024.20250309-1 Downloading dependency 77 of 209: perl-base:arm64=5.40.1-3 Downloading dependency 78 of 209: libfontconfig1:arm64=2.15.0-2.3 Downloading dependency 79 of 209: fonts-dejavu-core:arm64=2.37-8 Downloading dependency 80 of 209: tar:arm64=1.35+dfsg-3.1 Downloading dependency 81 of 209: libzstd1:arm64=1.5.7+dfsg-1 Downloading dependency 82 of 209: libcairo2:arm64=1.18.4-1+b1 Downloading dependency 83 of 209: automake:arm64=1:1.17-4 Downloading dependency 84 of 209: findutils:arm64=4.10.0-3 Downloading dependency 85 of 209: libsframe1:arm64=2.44-3 Downloading dependency 86 of 209: libxpm4:arm64=1:3.5.17-1+b3 Downloading dependency 87 of 209: libpaper2:arm64=2.2.5-0.3+b2 Downloading dependency 88 of 209: coreutils:arm64=9.7-2 Downloading dependency 89 of 209: libkpathsea6:arm64=2024.20240313.70630+ds-6 Downloading dependency 90 of 209: x11-common:arm64=1:7.7+24 Downloading dependency 91 of 209: autopoint:arm64=0.23.1-1 Downloading dependency 92 of 209: binutils-common:arm64=2.44-3 Downloading dependency 93 of 209: libarchive-zip-perl:arm64=1.68-1 Downloading dependency 94 of 209: libpam-modules-bin:arm64=1.7.0-3 Downloading dependency 95 of 209: dh-strip-nondeterminism:arm64=1.14.1-2 Downloading dependency 96 of 209: libpaper-utils:arm64=2.2.5-0.3+b2 Downloading dependency 97 of 209: bash:arm64=5.2.37-2 Downloading dependency 98 of 209: libgprofng0:arm64=2.44-3 Downloading dependency 99 of 209: libtirpc3t64:arm64=1.3.6+ds-1 Downloading dependency 100 of 209: libcrypt1:arm64=1:4.4.38-1 Downloading dependency 101 of 209: fonts-dejavu-mono:arm64=2.37-8 Downloading dependency 102 of 209: libgomp1:arm64=14.2.0-19 Downloading dependency 103 of 209: libpipeline1:arm64=1.5.8-1 Downloading dependency 104 of 209: libtool:arm64=2.5.4-4 Downloading dependency 105 of 209: m4:arm64=1.4.19-8 Downloading dependency 106 of 209: libteckit0:arm64=2.5.12+ds1-1+b1 Downloading dependency 107 of 209: gcc:arm64=4:14.2.0-1 Downloading dependency 108 of 209: bsdextrautils:arm64=2.41-4 Downloading dependency 109 of 209: debianutils:arm64=5.22 Downloading dependency 110 of 209: libc-dev-bin:arm64=2.41-7 Downloading dependency 111 of 209: libicu76:arm64=76.1-3 Downloading dependency 112 of 209: libbrotli1:arm64=1.1.0-2+b7 Downloading dependency 113 of 209: libmpc3:arm64=1.3.1-1+b3 Downloading dependency 114 of 209: libsmartcols1:arm64=2.41-4 Downloading dependency 115 of 209: texlive-base:arm64=2024.20250309-1 Downloading dependency 116 of 209: libtsan2:arm64=14.2.0-19 Downloading dependency 117 of 209: libxml2:arm64=2.12.7+dfsg+really2.9.14-0.4 Downloading dependency 118 of 209: man-db:arm64=2.13.0-1 Downloading dependency 119 of 209: sed:arm64=4.9-2+b1 Downloading dependency 120 of 209: libaudit1:arm64=1:4.0.2-2+b2 Downloading dependency 121 of 209: libedit2:arm64=3.1-20250104-1 Downloading dependency 122 of 209: build-essential:arm64=12.12 Downloading dependency 123 of 209: libgcc-14-dev:arm64=14.2.0-19 Downloading dependency 124 of 209: g++-14-aarch64-linux-gnu:arm64=14.2.0-19 Downloading dependency 125 of 209: libgmp10:arm64=2:6.3.0+dfsg-3 Downloading dependency 126 of 209: libgdbm6t64:arm64=1.24-2 Downloading dependency 127 of 209: autotools-dev:arm64=20240727.1 Downloading dependency 128 of 209: base-files:arm64=13.7 Downloading dependency 129 of 209: zlib1g:arm64=1:1.3.dfsg+really1.3.1-1+b1 Downloading dependency 130 of 209: t1utils:arm64=1.41-4+b1 Downloading dependency 131 of 209: libpam-modules:arm64=1.7.0-3 Downloading dependency 132 of 209: libpam-runtime:arm64=1.7.0-3Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libpam-runtime all 1.7.0-3 [248 kB] Fetched 248 kB in 0s (13.2 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpgjs4umn8/libpam-runtime_1.7.0-3_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dash arm64 0.5.12-12 [95.6 kB] Fetched 95.6 kB in 0s (5379 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmprb_hh7s4/dash_0.5.12-12_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 texlive-binaries arm64 2024.20240313.70630+ds-6 [7369 kB] Fetched 7369 kB in 0s (99.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp_e_yd44f/texlive-binaries_2024.20240313.70630+ds-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 cpp-aarch64-linux-gnu arm64 4:14.2.0-1 [4832 B] Fetched 4832 B in 0s (191 kB/s) dpkg-name: info: moved 'cpp-aarch64-linux-gnu_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpd_kt3rvm/cpp-aarch64-linux-gnu_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libdb5.3t64 arm64 5.3.28+dfsg2-9 [629 kB] Fetched 629 kB in 0s (34.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphnkr8d5v/libdb5.3t64_5.3.28+dfsg2-9_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libatomic1 arm64 14.2.0-19 [10.1 kB] Fetched 10.1 kB in 0s (598 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjk80d8yx/libatomic1_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libasan8 arm64 14.2.0-19 [2578 kB] Fetched 2578 kB in 0s (80.8 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpnxefxt3l/libasan8_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libitm1 arm64 14.2.0-19 [24.2 kB] Fetched 24.2 kB in 0s (1477 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0e5lp86j/libitm1_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgdbm-compat4t64 arm64 1.24-2 [50.3 kB] Fetched 50.3 kB in 0s (3020 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpi1y4n4yj/libgdbm-compat4t64_1.24-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libharfbuzz0b arm64 10.2.0-1+b1 [442 kB] Fetched 442 kB in 0s (21.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpyhitmfy_/libharfbuzz0b_10.2.0-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmount1 arm64 2.41-4 [199 kB] Fetched 199 kB in 0s (11.0 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpfq711mn3/libmount1_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libc-bin arm64 2.41-7 [550 kB] Fetched 550 kB in 0s (25.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpxdlj_l_m/libc-bin_2.41-7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 g++-14 arm64 14.2.0-19 [22.5 kB] Fetched 22.5 kB in 0s (1308 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpcg26r9k2/g++-14_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libunistring5 arm64 1.3-2 [453 kB] Fetched 453 kB in 0s (21.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpo_u1ciia/libunistring5_1.3-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 perl-modules-5.40 all 5.40.1-3 [3021 kB] Fetched 3021 kB in 0s (73.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpai8s7v61/perl-modules-5.40_5.40.1-3_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 po-debconf all 1.0.21+nmu1 [248 kB] Fetched 248 kB in 0s (13.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmptnvs2ytv/po-debconf_1.0.21+nmu1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgcc-s1 arm64 14.2.0-19 [54.1 kB] Fetched 54.1 kB in 0s (3023 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpa1wfm9tp/libgcc-s1_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libice6 arm64 2:1.1.1-1 [62.1 kB] Fetched 62.1 kB in 0s (3657 kB/s) dpkg-name: info: moved 'libice6_2%3a1.1.1-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpfzg8a_cl/libice6_1.1.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcc1-0 arm64 14.2.0-19 [42.2 kB] Fetched 42.2 kB in 0s (2345 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmps1qhcsan/libcc1-0_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 xdg-utils all 1.2.1-2 [75.8 kB] Fetched 75.8 kB in 0s (3978 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpou1_dxg9/xdg-utils_1.2.1-2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 autoconf all 2.72-3.1 [494 kB] Fetched 494 kB in 0s (24.5 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp89701hcb/autoconf_2.72-3.1_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 g++-aarch64-linux-gnu arm64 4:14.2.0-1 [1200 B] Fetched 1200 B in 0s (67.1 kB/s) dpkg-name: info: moved 'g++-aarch64-linux-gnu_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpdmrqp3s2/g++-aarch64-linux-gnu_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250513T203928Z trixie/main arm64 libglib2.0-0t64 arm64 2.84.1-2 [1423 kB] Fetched 1423 kB in 0s (50.7 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp9u2johf5/libglib2.0-0t64_2.84.1-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libproc2-0 arm64 2:4.0.4-8 [63.0 kB] Fetched 63.0 kB in 0s (3772 kB/s) dpkg-name: info: moved 'libproc2-0_2%3a4.0.4-8_arm64.deb' to '/srv/rebuilderd/tmp/tmpocx2vvpd/libproc2-0_4.0.4-8_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libgssapi-krb5-2 arm64 1.21.3-5 [127 kB] Fetched 127 kB in 0s (7880 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp9gbot4vw/libgssapi-krb5-2_1.21.3-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libuchardet0 arm64 0.0.8-1+b2 [69.2 kB] Fetched 69.2 kB in 0s (3981 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4jx9z0jt/libuchardet0_0.0.8-1+b2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 rpcsvc-proto arm64 1.4.3-1+b1 [60.5 kB] Fetched 60.5 kB in 0s (4183 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpo9c9g7g5/rpcsvc-proto_1.4.3-1+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmagic1t64 arm64 1:5.46-5 [103 kB] Fetched 103 kB in 0s (6727 kB/s) dpkg-name: info: moved 'libmagic1t64_1%3a5.46-5_arm64.deb' to '/srv/rebuilderd/tmp/tmpjb8iqg6j/libmagic1t64_5.46-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libzzip-0-13t64 arm64 0.13.78+dfsg.1-0.1 [59.4 kB] Fetched 59.4 kB in 0s (3602 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp2f3q3q06/libzzip-0-13t64_0.13.78+dfsg.1-0.1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libx11-6 arm64 2:1.8.12-1 [795 kB] Fetched 795 kB in 0s (34.6 MB/s) dpkg-name: info: moved 'libx11-6_2%3a1.8.12-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpko88wgp2/libx11-6_1.8.12-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 dpkg-dev all 1.22.18 [1338 kB] Fetched 1338 kB in 0s (49.0 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpztrs8s_q/dpkg-dev_1.22.18_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 bsdutils arm64 1:2.41-4 [109 kB] Fetched 109 kB in 0s (6285 kB/s) dpkg-name: info: moved 'bsdutils_1%3a2.41-4_arm64.deb' to '/srv/rebuilderd/tmp/tmpf5i1o4v2/bsdutils_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxext6 arm64 2:1.3.4-1+b3 [49.2 kB] Fetched 49.2 kB in 0s (2963 kB/s) dpkg-name: info: moved 'libxext6_2%3a1.3.4-1+b3_arm64.deb' to '/srv/rebuilderd/tmp/tmpmvai3byk/libxext6_1.3.4-1+b3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gcc-14-aarch64-linux-gnu arm64 14.2.0-19 [17.7 MB] Fetched 17.7 MB in 0s (190 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpzgrwsbsk/gcc-14-aarch64-linux-gnu_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxrender1 arm64 1:0.9.12-1 [27.0 kB] Fetched 27.0 kB in 0s (1618 kB/s) dpkg-name: info: moved 'libxrender1_1%3a0.9.12-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpj_ti100k/libxrender1_0.9.12-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcap2 arm64 1:2.75-6 [27.5 kB] Fetched 27.5 kB in 0s (1652 kB/s) dpkg-name: info: moved 'libcap2_1%3a2.75-6_arm64.deb' to '/srv/rebuilderd/tmp/tmpchoe5l3h/libcap2_2.75-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 perl arm64 5.40.1-3 [267 kB] Fetched 267 kB in 0s (14.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpfqbnjhsb/perl_5.40.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libkrb5-3 arm64 1.21.3-5 [308 kB] Fetched 308 kB in 0s (15.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpa9il1imx/libkrb5-3_1.21.3-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxi6 arm64 2:1.8.2-1 [77.8 kB] Fetched 77.8 kB in 0s (4478 kB/s) dpkg-name: info: moved 'libxi6_2%3a1.8.2-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpi8d8adpo/libxi6_1.8.2-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 debhelper all 13.24.2 [919 kB] Fetched 919 kB in 0s (37.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdsn90bom/debhelper_13.24.2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libkrb5support0 arm64 1.21.3-5 [32.4 kB] Fetched 32.4 kB in 0s (1892 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp79c7mdu0/libkrb5support0_1.21.3-5_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libcap-ng0 arm64 0.8.5-4+b1 [17.0 kB] Fetched 17.0 kB in 0s (1062 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp7cwur570/libcap-ng0_0.8.5-4+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsqlite3-0 arm64 3.46.1-3 [852 kB] Fetched 852 kB in 0s (36.8 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp0ng5og0t/libsqlite3-0_3.46.1-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libmpfr6 arm64 4.2.2-1 [685 kB] Fetched 685 kB in 0s (30.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmprqski2tj/libmpfr6_4.2.2-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 bzip2 arm64 1.0.8-6 [39.5 kB] Fetched 39.5 kB in 0s (2321 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpn8bnkmch/bzip2_1.0.8-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtinfo6 arm64 6.5+20250216-2 [341 kB] Fetched 341 kB in 0s (16.8 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjiilnv5e/libtinfo6_6.5+20250216-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gettext-base arm64 0.23.1-1 [241 kB] Fetched 241 kB in 0s (12.9 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmphy0aq92j/gettext-base_0.23.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libfreetype6 arm64 2.13.3+dfsg-1 [422 kB] Fetched 422 kB in 0s (21.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp2tlfjkqn/libfreetype6_2.13.3+dfsg-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 g++ arm64 4:14.2.0-1 [1332 B] Fetched 1332 B in 0s (81.9 kB/s) dpkg-name: info: moved 'g++_4%3a14.2.0-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpoku9ym9r/g++_14.2.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxcb-render0 arm64 1.17.0-2+b1 [115 kB] Fetched 115 kB in 0s (6296 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp6seepkb1/libxcb-render0_1.17.0-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 cpp-14 arm64 14.2.0-19 [1276 B] Fetched 1276 B in 0s (76.2 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp39txkoff/cpp-14_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gzip arm64 1.13-1 [135 kB] Fetched 135 kB in 0s (7640 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpdkvy2iyt/gzip_1.13-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libssl3t64 arm64 3.5.0-1 [2747 kB] Fetched 2747 kB in 0s (71.1 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp25991ov6/libssl3t64_3.5.0-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 hostname arm64 3.25 [10.8 kB] Fetched 10.8 kB in 0s (623 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp3vhqs44z/hostname_3.25_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libseccomp2 arm64 2.6.0-2 [51.0 kB] Fetched 51.0 kB in 0s (2787 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp7_11pxl3/libseccomp2_2.6.0-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 groff-base arm64 1.23.0-7 [1129 kB] Fetched 1129 kB in 0s (43.0 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpuzve1xlp/groff-base_1.23.0-7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxcb1 arm64 1.17.0-2+b1 [143 kB] Fetched 143 kB in 0s (8056 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpveuhjmdp/libxcb1_1.17.0-2+b1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libctf0 arm64 2.44-3 [84.2 kB] Fetched 84.2 kB in 0s (4552 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpcnurv4ki/libctf0_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libjansson4 arm64 2.14-2+b3 [39.2 kB] Fetched 39.2 kB in 0s (2334 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpb8f9glf8/libjansson4_2.14-2+b3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxaw7 arm64 2:1.0.16-1 [195 kB] Fetched 195 kB in 0s (10.7 MB/s) dpkg-name: info: moved 'libxaw7_2%3a1.0.16-1_arm64.deb' to '/srv/rebuilderd/tmp/tmposjybcza/libxaw7_1.0.16-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 cpp-14-aarch64-linux-gnu arm64 14.2.0-19 [9169 kB] Fetched 9169 kB in 0s (105 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpcx21qwfi/cpp-14-aarch64-linux-gnu_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 binutils-aarch64-linux-gnu arm64 2.44-3 [820 kB] Fetched 820 kB in 0s (36.2 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpcr7hoqpy/binutils-aarch64-linux-gnu_2.44-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libattr1 arm64 1:2.5.2-3 [22.7 kB] Fetched 22.7 kB in 0s (1381 kB/s) dpkg-name: info: moved 'libattr1_1%3a2.5.2-3_arm64.deb' to '/srv/rebuilderd/tmp/tmp02dfgkb1/libattr1_2.5.2-3_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libbsd0 arm64 0.12.2-2 [129 kB] Fetched 129 kB in 0s (7290 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4qdzgu4n/libbsd0_0.12.2-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 ncurses-base all 6.5+20250216-2 [273 kB] Fetched 273 kB in 0s (14.4 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpfu6hzhp9/ncurses-base_6.5+20250216-2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 ucf all 3.0051 [42.8 kB] Fetched 42.8 kB in 0s (2509 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp6lyfyw9x/ucf_3.0051_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libisl23 arm64 0.27-1 [601 kB] Fetched 601 kB in 0s (27.3 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp97an6s1f/libisl23_0.27-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libsm6 arm64 2:1.2.6-1 [36.4 kB] Fetched 36.4 kB in 0s (2285 kB/s) dpkg-name: info: moved 'libsm6_2%3a1.2.6-1_arm64.deb' to '/srv/rebuilderd/tmp/tmpzhwt8uwj/libsm6_1.2.6-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 gcc-14 arm64 14.2.0-19 [529 kB] Fetched 529 kB in 0s (25.0 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmptpf7ry4v/gcc-14_14.2.0-19_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libdebhelper-perl all 13.24.2 [90.9 kB] Fetched 90.9 kB in 0s (5212 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmptczlmn4h/libdebhelper-perl_13.24.2_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 ncurses-bin arm64 6.5+20250216-2 [432 kB] Fetched 432 kB in 0s (21.6 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpzh9wy8g5/ncurses-bin_6.5+20250216-2_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libxdmcp6 arm64 1:1.1.5-1 [27.8 kB] Fetched 27.8 kB in 0s (1641 kB/s) dpkg-name: info: moved 'libxdmcp6_1%3a1.1.5-1_arm64.deb' to '/srv/rebuilderd/tmp/tmppvrf87lt/libxdmcp6_1.1.5-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libc6-dev arm64 2.41-7 [1621 kB] Fetched 1621 kB in 0s (54.2 MB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpo_2kglky/libc6-dev_2.41-7_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libselinux1 arm64 3.8.1-1 [79.4 kB] Fetched 79.4 kB in 0s (4634 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpd_aor8ci/libselinux1_3.8.1-1_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 debconf all 1.5.91 [121 kB] Fetched 121 kB in 0s (6836 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmpjbghbgzo/debconf_1.5.91_all.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 libtexlua53-5 arm64 2024.20240313.70630+ds-6 [106 kB] Fetched 106 kB in 0s (2226 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp4wfs041e/libtexlua53-5_2024.20240313.70630+ds-6_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 liblastlog2-2 arm64 2.41-4 [28.3 kB] Fetched 28.3 kB in 0s (1522 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmp57tp_tih/liblastlog2-2_2.41-4_arm64.deb' Get:1 http://snapshot.debian.org/archive/debian/20250430T203420Z trixie/main arm64 patch arm64 2.8-1 [128 kB] Fetched 128 kB in 0s (7083 kB/s) dpkg-name: warning: skipping '/srv/rebuilderd/tmp/tmppes_j_zr/patch_2.8-1_arm64.deb' dpkg-buildpackage: info: source package debootsnap-dummy dpkg-buildpackage: info: source version 1.0 dpkg-buildpackage: info: source distribution unstable dpkg-buildpackage: info: source changed by Equivs Dummy Package Generator dpkg-source --before-build . dpkg-buildpackage: info: host architecture arm64 debian/rules clean dh clean dh_clean debian/rules binary dh binary dh_update_autotools_config dh_autoreconf create-stamp debian/debhelper-build-stamp dh_prep dh_auto_install --destdir=debian/debootsnap-dummy/ dh_install dh_installdocs dh_installchangelogs dh_perl dh_link dh_strip_nondeterminism dh_compress dh_fixperms dh_missing dh_installdeb dh_gencontrol dh_md5sums dh_builddeb dpkg-deb: building package 'debootsnap-dummy' in '../debootsnap-dummy_1.0_all.deb'. dpkg-genbuildinfo --build=binary -O../debootsnap-dummy_1.0_arm64.buildinfo dpkg-genchanges --build=binary -O../debootsnap-dummy_1.0_arm64.changes dpkg-genchanges: info: binary-only upload (no source code included) dpkg-source --after-build . dpkg-buildpackage: info: binary-only upload (no source included) The package has been created. Attention, the package has been created in the /srv/rebuilderd/tmp/tmp4rklptbz/cache directory, not in ".." as indicated by the message above! I: automatically chosen mode: unshare I: chroot architecture arm64 is equal to the host's architecture I: using /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 as tempdir I: running --setup-hook directly: /usr/share/mmdebstrap/hooks/maybe-merged-usr/setup00.sh /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 127.0.0.1 - - [24/Jul/2025 22:19:33] code 404, message File not found 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./InRelease HTTP/1.1" 404 - Ign:1 http://localhost:45009 ./ InRelease 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./Release HTTP/1.1" 200 - Get:2 http://localhost:45009 ./ Release [462 B] 127.0.0.1 - - [24/Jul/2025 22:19:33] code 404, message File not found 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./Release.gpg HTTP/1.1" 404 - Ign:3 http://localhost:45009 ./ Release.gpg 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./Packages HTTP/1.1" 200 - Get:4 http://localhost:45009 ./ Packages [269 kB] Fetched 269 kB in 0s (7796 kB/s) Reading package lists... usr-is-merged found but not real -- not running merged-usr setup hook I: skipping apt-get update because it was already run I: downloading packages with apt... 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./gcc-14-base_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libc6_2.41-7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libgcc-s1_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./mawk_1.3.4.20250131-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./base-files_13.7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libtinfo6_6.5%2b20250216-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./debianutils_5.22_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./bash_5.2.37-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libcap2_2.75-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libsystemd0_257.5-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./bsdutils_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libacl1_2.3.2-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libattr1_2.5.2-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libgmp10_6.3.0%2bdfsg-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libpcre2-8-0_10.45-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libselinux1_3.8.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libzstd1_1.5.7%2bdfsg-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./zlib1g_1.3.dfsg%2breally1.3.1-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libssl3t64_3.5.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./openssl-provider-legacy_3.5.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./coreutils_9.7-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./dash_0.5.12-12_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./diffutils_3.10-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libbz2-1.0_1.0.8-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./liblzma5_5.8.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libmd0_1.1.0-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./tar_1.35%2bdfsg-3.1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./dpkg_1.22.18_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./findutils_4.10.0-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./grep_3.11-4%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./gzip_1.13-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./hostname_3.25_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./ncurses-bin_6.5%2b20250216-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libcrypt1_4.4.38-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./perl-base_5.40.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./sed_4.9-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libaudit-common_4.0.2-2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libcap-ng0_0.8.5-4%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libaudit1_4.0.2-2%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libdb5.3t64_5.3.28%2bdfsg2-9_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./debconf_1.5.91_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libpam0g_1.7.0-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libpam-modules-bin_1.7.0-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libpam-modules_1.7.0-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libpam-runtime_1.7.0-3_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libblkid1_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libsqlite3-0_3.46.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./liblastlog2-2_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libmount1_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libsmartcols1_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libudev1_257.5-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./libuuid1_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:33] "GET /./util-linux_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./libdebconfclient0_0.278_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./base-passwd_3.6.7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./init-system-helpers_1.68_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./libc-bin_2.41-7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./ncurses-base_6.5%2b20250216-2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:34] "GET /./sysvinit-utils_3.14-4_arm64.deb HTTP/1.1" 200 - I: extracting archives... I: running --extract-hook directly: /usr/share/mmdebstrap/hooks/maybe-merged-usr/extract00.sh /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 127.0.0.1 - - [24/Jul/2025 22:19:37] code 404, message File not found 127.0.0.1 - - [24/Jul/2025 22:19:37] "GET /./InRelease HTTP/1.1" 404 - Ign:1 http://localhost:45009 ./ InRelease 127.0.0.1 - - [24/Jul/2025 22:19:37] "GET /./Release HTTP/1.1" 304 - Hit:2 http://localhost:45009 ./ Release 127.0.0.1 - - [24/Jul/2025 22:19:37] code 404, message File not found 127.0.0.1 - - [24/Jul/2025 22:19:37] "GET /./Release.gpg HTTP/1.1" 404 - Ign:3 http://localhost:45009 ./ Release.gpg Reading package lists... usr-is-merged found but not real -- not running merged-usr extract hook I: installing essential packages... I: running --essential-hook directly: /usr/share/mmdebstrap/hooks/maybe-merged-usr/essential00.sh /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 usr-is-merged was not installed in a previous hook -- not running merged-usr essential hook I: installing remaining packages inside the chroot... 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libtext-charwidth-perl_0.04-11%2bb4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libtext-wrapi18n-perl_0.06-10_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./sensible-utils_0.0.25_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libstdc%2b%2b6_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libuchardet0_0.0.8-1%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./groff-base_1.23.0-7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./bsdextrautils_2.41-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libgdbm6t64_1.24-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libpipeline1_1.5.8-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libseccomp2_2.6.0-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./man-db_2.13.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libncursesw6_6.5%2b20250216-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libproc2-0_4.0.4-8_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./procps_4.0.4-8_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./bzip2_1.0.8-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libmagic-mgc_5.46-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libmagic1t64_5.46-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./file_5.46-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./gettext-base_0.23.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./perl-modules-5.40_5.40.1-3_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libgdbm-compat4t64_1.24-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libperl5.40_5.40.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./perl_5.40.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./ucf_3.0051_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./xz-utils_5.8.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./m4_1.4.19-8_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./autoconf_2.72-3.1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./autotools-dev_20240727.1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./automake_1.17-4_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./autopoint_0.23.1-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libsframe1_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./binutils-common_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libbinutils_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libgprofng0_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libctf-nobfd0_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libctf0_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libjansson4_2.14-2%2bb3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./binutils-aarch64-linux-gnu_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./binutils_2.44-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libc-dev-bin_2.41-7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./linux-libc-dev_6.12.22-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libcrypt-dev_4.4.38-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./rpcsvc-proto_1.4.3-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libc6-dev_2.41-7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libisl23_0.27-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libmpfr6_4.2.2-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libmpc3_1.3.1-1%2bb3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./cpp-14-aarch64-linux-gnu_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./cpp-14_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./cpp-aarch64-linux-gnu_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./cpp_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libcc1-0_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libgomp1_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libitm1_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libatomic1_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libasan8_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./liblsan0_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libtsan2_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libubsan1_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libhwasan0_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libgcc-14-dev_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./gcc-14-aarch64-linux-gnu_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./gcc-14_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./gcc-aarch64-linux-gnu_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./gcc_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./libstdc%2b%2b-14-dev_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:46] "GET /./g%2b%2b-14-aarch64-linux-gnu_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./g%2b%2b-14_14.2.0-19_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./g%2b%2b-aarch64-linux-gnu_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./g%2b%2b_14.2.0-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./make_4.4.1-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libdpkg-perl_1.22.18_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./patch_2.8-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./dpkg-dev_1.22.18_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./build-essential_12.12_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libdebhelper-perl_13.24.2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libtool_2.5.4-4_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./dh-autoreconf_20_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libarchive-zip-perl_1.68-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libfile-stripnondeterminism-perl_1.14.1-2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./dh-strip-nondeterminism_1.14.1-2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libelf1t64_0.192-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./dwz_0.15-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libunistring5_1.3-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxml2_2.12.7%2bdfsg%2breally2.9.14-0.4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./gettext_0.23.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./intltool-debian_0.35.0%2b20060710.6_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./po-debconf_1.0.21%2bnmu1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./debhelper_13.24.2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libkrb5support0_1.21.3-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libk5crypto3_1.21.3-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./fonts-lmodern_2.005-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libexpat1_2.7.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libmpfi0_1.5.4%2bds-4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libx11-data_1.8.12-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libcom-err2_1.47.2-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libkeyutils1_1.6.3-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libkrb5-3_1.21.3-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libgssapi-krb5-2_1.21.3-5_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libtirpc-common_1.3.6%2bds-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libtirpc3t64_1.3.6%2bds-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libtirpc-dev_1.3.6%2bds-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libgraphite2-3_1.3.14-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libsynctex2_2024.20240313.70630%2bds-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxau6_1.0.11-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxdmcp6_1.1.5-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxcb1_1.17.0-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libx11-6_1.8.12-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxext6_1.3.4-1%2bb3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./x11-common_7.7%2b24_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libice6_1.1.1-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libsm6_1.2.6-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxt6t64_1.2.1-1.2%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxmu6_1.1.3-3%2bb4_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libpotrace0_1.16-2%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./fonts-dejavu-mono_2.37-8_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./fonts-dejavu-core_2.37-8_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./fontconfig-config_2.15.0-2.3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libpng16-16t64_1.6.47-1.1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libbsd0_0.12.2-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libedit2_3.1-20250104-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./gcl27_2.7.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libffi8_3.4.8-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./tex-common_6.19_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxcb-shm0_1.17.0-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libpixman-1-0_0.44.0-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libkpathsea6_2024.20240313.70630%2bds-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libptexenc1_2024.20240313.70630%2bds-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libpaper2_2.2.5-0.3%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libpaper-utils_2.2.5-0.3%2bb2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libtexlua53-5_2024.20240313.70630%2bds-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./t1utils_1.41-4%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libbrotli1_1.1.0-2%2bb7_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libfreetype6_2.13.3%2bdfsg-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libfontconfig1_2.15.0-2.3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxcb-render0_1.17.0-2%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxrender1_0.9.12-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libcairo2_1.18.4-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libglib2.0-0t64_2.84.1-2_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libharfbuzz0b_10.2.0-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libicu76_76.1-3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libteckit0_2.5.12%2bds1-1%2bb1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxpm4_3.5.17-1%2bb3_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxaw7_1.0.16-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libxi6_1.8.2-1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./libzzip-0-13t64_0.13.78%2bdfsg.1-0.1_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./texlive-binaries_2024.20240313.70630%2bds-6_arm64.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./xdg-utils_1.2.1-2_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:47] "GET /./texlive-base_2024.20250309-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:48] "GET /./texlive-latex-base_2024.20250309-1_all.deb HTTP/1.1" 200 - 127.0.0.1 - - [24/Jul/2025 22:19:48] "GET /./debootsnap-dummy_1.0_all.deb HTTP/1.1" 200 - I: running --customize-hook directly: /srv/rebuilderd/tmp/tmp4rklptbz/apt_install.sh /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 Reading package lists... Building dependency tree... Reading state information... libsystemd0 is already the newest version (257.5-2). libhwasan0 is already the newest version (14.2.0-19). libhwasan0 set to manually installed. liblzma5 is already the newest version (5.8.1-1). libk5crypto3 is already the newest version (1.21.3-5). libk5crypto3 set to manually installed. sysvinit-utils is already the newest version (3.14-4). mawk is already the newest version (1.3.4.20250131-1). fonts-lmodern is already the newest version (2.005-1). fonts-lmodern set to manually installed. libubsan1 is already the newest version (14.2.0-19). libubsan1 set to manually installed. libblkid1 is already the newest version (2.41-4). libexpat1 is already the newest version (2.7.1-1). libexpat1 set to manually installed. libfile-stripnondeterminism-perl is already the newest version (1.14.1-2). libfile-stripnondeterminism-perl set to manually installed. base-passwd is already the newest version (3.6.7). file is already the newest version (1:5.46-5). file set to manually installed. libtext-charwidth-perl is already the newest version (0.04-11+b4). libtext-charwidth-perl set to manually installed. libcrypt-dev is already the newest version (1:4.4.38-1). libcrypt-dev set to manually installed. libdpkg-perl is already the newest version (1.22.18). libdpkg-perl set to manually installed. libmpfi0 is already the newest version (1.5.4+ds-4). libmpfi0 set to manually installed. libuuid1 is already the newest version (2.41-4). libx11-data is already the newest version (2:1.8.12-1). libx11-data set to manually installed. libmd0 is already the newest version (1.1.0-2+b1). libtirpc-dev is already the newest version (1.3.6+ds-1). libtirpc-dev set to manually installed. libgraphite2-3 is already the newest version (1.3.14-2+b1). libgraphite2-3 set to manually installed. sensible-utils is already the newest version (0.0.25). sensible-utils set to manually installed. util-linux is already the newest version (2.41-4). libpcre2-8-0 is already the newest version (10.45-1). libsynctex2 is already the newest version (2024.20240313.70630+ds-6). libsynctex2 set to manually installed. libctf-nobfd0 is already the newest version (2.44-3). libctf-nobfd0 set to manually installed. procps is already the newest version (2:4.0.4-8). procps set to manually installed. libacl1 is already the newest version (2.3.2-2+b1). dpkg is already the newest version (1.22.18). libcom-err2 is already the newest version (1.47.2-1+b1). libcom-err2 set to manually installed. openssl-provider-legacy is already the newest version (3.5.0-1). libxmu6 is already the newest version (2:1.1.3-3+b4). libxmu6 set to manually installed. libtirpc-common is already the newest version (1.3.6+ds-1). libtirpc-common set to manually installed. libpotrace0 is already the newest version (1.16-2+b2). libpotrace0 set to manually installed. liblsan0 is already the newest version (14.2.0-19). liblsan0 set to manually installed. init-system-helpers is already the newest version (1.68). libbz2-1.0 is already the newest version (1.0.8-6). dh-autoreconf is already the newest version (20). dh-autoreconf set to manually installed. libaudit-common is already the newest version (1:4.0.2-2). diffutils is already the newest version (1:3.10-4). fontconfig-config is already the newest version (2.15.0-2.3). fontconfig-config set to manually installed. libpam0g is already the newest version (1.7.0-3). make is already the newest version (4.4.1-2). make set to manually installed. libpng16-16t64 is already the newest version (1.6.47-1.1). libpng16-16t64 set to manually installed. libmagic-mgc is already the newest version (1:5.46-5). libmagic-mgc set to manually installed. intltool-debian is already the newest version (0.35.0+20060710.6). intltool-debian set to manually installed. binutils is already the newest version (2.44-3). binutils set to manually installed. gcl27 is already the newest version (2.7.1-3). gcl27 set to manually installed. libstdc++6 is already the newest version (14.2.0-19). libstdc++6 set to manually installed. cpp is already the newest version (4:14.2.0-1). cpp set to manually installed. gcc-aarch64-linux-gnu is already the newest version (4:14.2.0-1). gcc-aarch64-linux-gnu set to manually installed. libkeyutils1 is already the newest version (1.6.3-6). libkeyutils1 set to manually installed. gettext is already the newest version (0.23.1-1). gettext set to manually installed. libffi8 is already the newest version (3.4.8-2). libffi8 set to manually installed. tex-common is already the newest version (6.19). tex-common set to manually installed. libudev1 is already the newest version (257.5-2). libxcb-shm0 is already the newest version (1.17.0-2+b1). libxcb-shm0 set to manually installed. libc6 is already the newest version (2.41-7). gcc-14-base is already the newest version (14.2.0-19). libelf1t64 is already the newest version (0.192-4). libelf1t64 set to manually installed. libperl5.40 is already the newest version (5.40.1-3). libperl5.40 set to manually installed. libxt6t64 is already the newest version (1:1.2.1-1.2+b2). libxt6t64 set to manually installed. grep is already the newest version (3.11-4+b1). libpixman-1-0 is already the newest version (0.44.0-3). libpixman-1-0 set to manually installed. libptexenc1 is already the newest version (2024.20240313.70630+ds-6). libptexenc1 set to manually installed. libtext-wrapi18n-perl is already the newest version (0.06-10). libtext-wrapi18n-perl set to manually installed. xz-utils is already the newest version (5.8.1-1). xz-utils set to manually installed. dwz is already the newest version (0.15-1+b1). dwz set to manually installed. libstdc++-14-dev is already the newest version (14.2.0-19). libstdc++-14-dev set to manually installed. linux-libc-dev is already the newest version (6.12.22-1). linux-libc-dev set to manually installed. libbinutils is already the newest version (2.44-3). libbinutils set to manually installed. libxau6 is already the newest version (1:1.0.11-1). libxau6 set to manually installed. libncursesw6 is already the newest version (6.5+20250216-2). libncursesw6 set to manually installed. libdebconfclient0 is already the newest version (0.278). texlive-latex-base is already the newest version (2024.20250309-1). texlive-latex-base set to manually installed. perl-base is already the newest version (5.40.1-3). libfontconfig1 is already the newest version (2.15.0-2.3). libfontconfig1 set to manually installed. fonts-dejavu-core is already the newest version (2.37-8). fonts-dejavu-core set to manually installed. tar is already the newest version (1.35+dfsg-3.1). libzstd1 is already the newest version (1.5.7+dfsg-1). libcairo2 is already the newest version (1.18.4-1+b1). libcairo2 set to manually installed. automake is already the newest version (1:1.17-4). automake set to manually installed. findutils is already the newest version (4.10.0-3). libsframe1 is already the newest version (2.44-3). libsframe1 set to manually installed. libxpm4 is already the newest version (1:3.5.17-1+b3). libxpm4 set to manually installed. libpaper2 is already the newest version (2.2.5-0.3+b2). libpaper2 set to manually installed. coreutils is already the newest version (9.7-2). libkpathsea6 is already the newest version (2024.20240313.70630+ds-6). libkpathsea6 set to manually installed. x11-common is already the newest version (1:7.7+24). x11-common set to manually installed. autopoint is already the newest version (0.23.1-1). autopoint set to manually installed. binutils-common is already the newest version (2.44-3). binutils-common set to manually installed. libarchive-zip-perl is already the newest version (1.68-1). libarchive-zip-perl set to manually installed. libpam-modules-bin is already the newest version (1.7.0-3). dh-strip-nondeterminism is already the newest version (1.14.1-2). dh-strip-nondeterminism set to manually installed. libpaper-utils is already the newest version (2.2.5-0.3+b2). libpaper-utils set to manually installed. bash is already the newest version (5.2.37-2). libgprofng0 is already the newest version (2.44-3). libgprofng0 set to manually installed. libtirpc3t64 is already the newest version (1.3.6+ds-1). libtirpc3t64 set to manually installed. libcrypt1 is already the newest version (1:4.4.38-1). fonts-dejavu-mono is already the newest version (2.37-8). fonts-dejavu-mono set to manually installed. libgomp1 is already the newest version (14.2.0-19). libgomp1 set to manually installed. libpipeline1 is already the newest version (1.5.8-1). libpipeline1 set to manually installed. libtool is already the newest version (2.5.4-4). libtool set to manually installed. m4 is already the newest version (1.4.19-8). m4 set to manually installed. libteckit0 is already the newest version (2.5.12+ds1-1+b1). libteckit0 set to manually installed. gcc is already the newest version (4:14.2.0-1). gcc set to manually installed. bsdextrautils is already the newest version (2.41-4). bsdextrautils set to manually installed. debianutils is already the newest version (5.22). libc-dev-bin is already the newest version (2.41-7). libc-dev-bin set to manually installed. libicu76 is already the newest version (76.1-3). libicu76 set to manually installed. libbrotli1 is already the newest version (1.1.0-2+b7). libbrotli1 set to manually installed. libmpc3 is already the newest version (1.3.1-1+b3). libmpc3 set to manually installed. libsmartcols1 is already the newest version (2.41-4). texlive-base is already the newest version (2024.20250309-1). texlive-base set to manually installed. libtsan2 is already the newest version (14.2.0-19). libtsan2 set to manually installed. libxml2 is already the newest version (2.12.7+dfsg+really2.9.14-0.4). libxml2 set to manually installed. man-db is already the newest version (2.13.0-1). man-db set to manually installed. sed is already the newest version (4.9-2+b1). libaudit1 is already the newest version (1:4.0.2-2+b2). libedit2 is already the newest version (3.1-20250104-1). libedit2 set to manually installed. build-essential is already the newest version (12.12). build-essential set to manually installed. libgcc-14-dev is already the newest version (14.2.0-19). libgcc-14-dev set to manually installed. g++-14-aarch64-linux-gnu is already the newest version (14.2.0-19). g++-14-aarch64-linux-gnu set to manually installed. libgmp10 is already the newest version (2:6.3.0+dfsg-3). libgdbm6t64 is already the newest version (1.24-2). libgdbm6t64 set to manually installed. autotools-dev is already the newest version (20240727.1). autotools-dev set to manually installed. base-files is already the newest version (13.7). zlib1g is already the newest version (1:1.3.dfsg+really1.3.1-1+b1). t1utils is already the newest version (1.41-4+b1). t1utils set to manually installed. libpam-modules is already the newest version (1.7.0-3). libpam-runtime is already the newest version (1.7.0-3). dash is already the newest version (0.5.12-12). texlive-binaries is already the newest version (2024.20240313.70630+ds-6). texlive-binaries set to manually installed. cpp-aarch64-linux-gnu is already the newest version (4:14.2.0-1). cpp-aarch64-linux-gnu set to manually installed. libdb5.3t64 is already the newest version (5.3.28+dfsg2-9). libatomic1 is already the newest version (14.2.0-19). libatomic1 set to manually installed. libasan8 is already the newest version (14.2.0-19). libasan8 set to manually installed. libitm1 is already the newest version (14.2.0-19). libitm1 set to manually installed. libgdbm-compat4t64 is already the newest version (1.24-2). libgdbm-compat4t64 set to manually installed. libharfbuzz0b is already the newest version (10.2.0-1+b1). libharfbuzz0b set to manually installed. libmount1 is already the newest version (2.41-4). libc-bin is already the newest version (2.41-7). g++-14 is already the newest version (14.2.0-19). g++-14 set to manually installed. libunistring5 is already the newest version (1.3-2). libunistring5 set to manually installed. perl-modules-5.40 is already the newest version (5.40.1-3). perl-modules-5.40 set to manually installed. po-debconf is already the newest version (1.0.21+nmu1). po-debconf set to manually installed. libgcc-s1 is already the newest version (14.2.0-19). libice6 is already the newest version (2:1.1.1-1). libice6 set to manually installed. libcc1-0 is already the newest version (14.2.0-19). libcc1-0 set to manually installed. xdg-utils is already the newest version (1.2.1-2). xdg-utils set to manually installed. autoconf is already the newest version (2.72-3.1). autoconf set to manually installed. g++-aarch64-linux-gnu is already the newest version (4:14.2.0-1). g++-aarch64-linux-gnu set to manually installed. libglib2.0-0t64 is already the newest version (2.84.1-2). libglib2.0-0t64 set to manually installed. libproc2-0 is already the newest version (2:4.0.4-8). libproc2-0 set to manually installed. libgssapi-krb5-2 is already the newest version (1.21.3-5). libgssapi-krb5-2 set to manually installed. libuchardet0 is already the newest version (0.0.8-1+b2). libuchardet0 set to manually installed. rpcsvc-proto is already the newest version (1.4.3-1+b1). rpcsvc-proto set to manually installed. libmagic1t64 is already the newest version (1:5.46-5). libmagic1t64 set to manually installed. libzzip-0-13t64 is already the newest version (0.13.78+dfsg.1-0.1). libzzip-0-13t64 set to manually installed. libx11-6 is already the newest version (2:1.8.12-1). libx11-6 set to manually installed. dpkg-dev is already the newest version (1.22.18). dpkg-dev set to manually installed. bsdutils is already the newest version (1:2.41-4). libxext6 is already the newest version (2:1.3.4-1+b3). libxext6 set to manually installed. gcc-14-aarch64-linux-gnu is already the newest version (14.2.0-19). gcc-14-aarch64-linux-gnu set to manually installed. libxrender1 is already the newest version (1:0.9.12-1). libxrender1 set to manually installed. libcap2 is already the newest version (1:2.75-6). perl is already the newest version (5.40.1-3). perl set to manually installed. libkrb5-3 is already the newest version (1.21.3-5). libkrb5-3 set to manually installed. libxi6 is already the newest version (2:1.8.2-1). libxi6 set to manually installed. debhelper is already the newest version (13.24.2). debhelper set to manually installed. libkrb5support0 is already the newest version (1.21.3-5). libkrb5support0 set to manually installed. libcap-ng0 is already the newest version (0.8.5-4+b1). libsqlite3-0 is already the newest version (3.46.1-3). libmpfr6 is already the newest version (4.2.2-1). libmpfr6 set to manually installed. bzip2 is already the newest version (1.0.8-6). bzip2 set to manually installed. libtinfo6 is already the newest version (6.5+20250216-2). gettext-base is already the newest version (0.23.1-1). gettext-base set to manually installed. libfreetype6 is already the newest version (2.13.3+dfsg-1). libfreetype6 set to manually installed. g++ is already the newest version (4:14.2.0-1). g++ set to manually installed. libxcb-render0 is already the newest version (1.17.0-2+b1). libxcb-render0 set to manually installed. cpp-14 is already the newest version (14.2.0-19). cpp-14 set to manually installed. gzip is already the newest version (1.13-1). libssl3t64 is already the newest version (3.5.0-1). hostname is already the newest version (3.25). libseccomp2 is already the newest version (2.6.0-2). libseccomp2 set to manually installed. groff-base is already the newest version (1.23.0-7). groff-base set to manually installed. libxcb1 is already the newest version (1.17.0-2+b1). libxcb1 set to manually installed. libctf0 is already the newest version (2.44-3). libctf0 set to manually installed. libjansson4 is already the newest version (2.14-2+b3). libjansson4 set to manually installed. libxaw7 is already the newest version (2:1.0.16-1). libxaw7 set to manually installed. cpp-14-aarch64-linux-gnu is already the newest version (14.2.0-19). cpp-14-aarch64-linux-gnu set to manually installed. binutils-aarch64-linux-gnu is already the newest version (2.44-3). binutils-aarch64-linux-gnu set to manually installed. libattr1 is already the newest version (1:2.5.2-3). libbsd0 is already the newest version (0.12.2-2). libbsd0 set to manually installed. ncurses-base is already the newest version (6.5+20250216-2). ucf is already the newest version (3.0051). ucf set to manually installed. libisl23 is already the newest version (0.27-1). libisl23 set to manually installed. libsm6 is already the newest version (2:1.2.6-1). libsm6 set to manually installed. gcc-14 is already the newest version (14.2.0-19). gcc-14 set to manually installed. libdebhelper-perl is already the newest version (13.24.2). libdebhelper-perl set to manually installed. ncurses-bin is already the newest version (6.5+20250216-2). libxdmcp6 is already the newest version (1:1.1.5-1). libxdmcp6 set to manually installed. libc6-dev is already the newest version (2.41-7). libc6-dev set to manually installed. libselinux1 is already the newest version (3.8.1-1). debconf is already the newest version (1.5.91). libtexlua53-5 is already the newest version (2024.20240313.70630+ds-6). libtexlua53-5 set to manually installed. liblastlog2-2 is already the newest version (2.41-4). patch is already the newest version (2.8-1). patch set to manually installed. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. I: running --customize-hook in shell: sh -c 'chroot "$1" dpkg -r debootsnap-dummy' exec /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 (Reading database ... 20912 files and directories currently installed.) Removing debootsnap-dummy (1.0) ... I: running --customize-hook in shell: sh -c 'chroot "$1" dpkg-query --showformat '${binary:Package}=${Version}\n' --show > "$1/pkglist"' exec /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 I: running special hook: download /pkglist ./pkglist I: running --customize-hook in shell: sh -c 'rm "$1/pkglist"' exec /srv/rebuilderd/tmp/mmdebstrap.1wC180On19 I: running special hook: upload sources.list /etc/apt/sources.list I: waiting for background processes to finish... I: cleaning package lists and apt cache... I: skipping cleanup/reproducible as requested I: creating tarball... I: done I: removing tempdir /srv/rebuilderd/tmp/mmdebstrap.1wC180On19... I: success in 93.6941 seconds Downloading dependency 133 of 209: dash:arm64=0.5.12-12 Downloading dependency 134 of 209: texlive-binaries:arm64=2024.20240313.70630+ds-6 Downloading dependency 135 of 209: cpp-aarch64-linux-gnu:arm64=4:14.2.0-1 Downloading dependency 136 of 209: libdb5.3t64:arm64=5.3.28+dfsg2-9 Downloading dependency 137 of 209: libatomic1:arm64=14.2.0-19 Downloading dependency 138 of 209: libasan8:arm64=14.2.0-19 Downloading dependency 139 of 209: libitm1:arm64=14.2.0-19 Downloading dependency 140 of 209: libgdbm-compat4t64:arm64=1.24-2 Downloading dependency 141 of 209: libharfbuzz0b:arm64=10.2.0-1+b1 Downloading dependency 142 of 209: libmount1:arm64=2.41-4 Downloading dependency 143 of 209: libc-bin:arm64=2.41-7 Downloading dependency 144 of 209: g++-14:arm64=14.2.0-19 Downloading dependency 145 of 209: libunistring5:arm64=1.3-2 Downloading dependency 146 of 209: perl-modules-5.40:arm64=5.40.1-3 Downloading dependency 147 of 209: po-debconf:arm64=1.0.21+nmu1 Downloading dependency 148 of 209: libgcc-s1:arm64=14.2.0-19 Downloading dependency 149 of 209: libice6:arm64=2:1.1.1-1 Downloading dependency 150 of 209: libcc1-0:arm64=14.2.0-19 Downloading dependency 151 of 209: xdg-utils:arm64=1.2.1-2 Downloading dependency 152 of 209: autoconf:arm64=2.72-3.1 Downloading dependency 153 of 209: g++-aarch64-linux-gnu:arm64=4:14.2.0-1 Downloading dependency 154 of 209: libglib2.0-0t64:arm64=2.84.1-2 Downloading dependency 155 of 209: libproc2-0:arm64=2:4.0.4-8 Downloading dependency 156 of 209: libgssapi-krb5-2:arm64=1.21.3-5 Downloading dependency 157 of 209: libuchardet0:arm64=0.0.8-1+b2 Downloading dependency 158 of 209: rpcsvc-proto:arm64=1.4.3-1+b1 Downloading dependency 159 of 209: libmagic1t64:arm64=1:5.46-5 Downloading dependency 160 of 209: libzzip-0-13t64:arm64=0.13.78+dfsg.1-0.1 Downloading dependency 161 of 209: libx11-6:arm64=2:1.8.12-1 Downloading dependency 162 of 209: dpkg-dev:arm64=1.22.18 Downloading dependency 163 of 209: bsdutils:arm64=1:2.41-4 Downloading dependency 164 of 209: libxext6:arm64=2:1.3.4-1+b3 Downloading dependency 165 of 209: gcc-14-aarch64-linux-gnu:arm64=14.2.0-19 Downloading dependency 166 of 209: libxrender1:arm64=1:0.9.12-1 Downloading dependency 167 of 209: libcap2:arm64=1:2.75-6 Downloading dependency 168 of 209: perl:arm64=5.40.1-3 Downloading dependency 169 of 209: libkrb5-3:arm64=1.21.3-5 Downloading dependency 170 of 209: libxi6:arm64=2:1.8.2-1 Downloading dependency 171 of 209: debhelper:arm64=13.24.2 Downloading dependency 172 of 209: libkrb5support0:arm64=1.21.3-5 Downloading dependency 173 of 209: libcap-ng0:arm64=0.8.5-4+b1 Downloading dependency 174 of 209: libsqlite3-0:arm64=3.46.1-3 Downloading dependency 175 of 209: libmpfr6:arm64=4.2.2-1 Downloading dependency 176 of 209: bzip2:arm64=1.0.8-6 Downloading dependency 177 of 209: libtinfo6:arm64=6.5+20250216-2 Downloading dependency 178 of 209: gettext-base:arm64=0.23.1-1 Downloading dependency 179 of 209: libfreetype6:arm64=2.13.3+dfsg-1 Downloading dependency 180 of 209: g++:arm64=4:14.2.0-1 Downloading dependency 181 of 209: libxcb-render0:arm64=1.17.0-2+b1 Downloading dependency 182 of 209: cpp-14:arm64=14.2.0-19 Downloading dependency 183 of 209: gzip:arm64=1.13-1 Downloading dependency 184 of 209: libssl3t64:arm64=3.5.0-1 Downloading dependency 185 of 209: hostname:arm64=3.25 Downloading dependency 186 of 209: libseccomp2:arm64=2.6.0-2 Downloading dependency 187 of 209: groff-base:arm64=1.23.0-7 Downloading dependency 188 of 209: libxcb1:arm64=1.17.0-2+b1 Downloading dependency 189 of 209: libctf0:arm64=2.44-3 Downloading dependency 190 of 209: libjansson4:arm64=2.14-2+b3 Downloading dependency 191 of 209: libxaw7:arm64=2:1.0.16-1 Downloading dependency 192 of 209: cpp-14-aarch64-linux-gnu:arm64=14.2.0-19 Downloading dependency 193 of 209: binutils-aarch64-linux-gnu:arm64=2.44-3 Downloading dependency 194 of 209: libattr1:arm64=1:2.5.2-3 Downloading dependency 195 of 209: libbsd0:arm64=0.12.2-2 Downloading dependency 196 of 209: ncurses-base:arm64=6.5+20250216-2 Downloading dependency 197 of 209: ucf:arm64=3.0051 Downloading dependency 198 of 209: libisl23:arm64=0.27-1 Downloading dependency 199 of 209: libsm6:arm64=2:1.2.6-1 Downloading dependency 200 of 209: gcc-14:arm64=14.2.0-19 Downloading dependency 201 of 209: libdebhelper-perl:arm64=13.24.2 Downloading dependency 202 of 209: ncurses-bin:arm64=6.5+20250216-2 Downloading dependency 203 of 209: libxdmcp6:arm64=1:1.1.5-1 Downloading dependency 204 of 209: libc6-dev:arm64=2.41-7 Downloading dependency 205 of 209: libselinux1:arm64=3.8.1-1 Downloading dependency 206 of 209: debconf:arm64=1.5.91 Downloading dependency 207 of 209: libtexlua53-5:arm64=2024.20240313.70630+ds-6 Downloading dependency 208 of 209: liblastlog2-2:arm64=2.41-4 Downloading dependency 209 of 209: patch:arm64=2.8-1 env --chdir=/srv/rebuilderd/tmp/rebuilderdMZ1i5G/out DEB_BUILD_OPTIONS=parallel=8 LANG=C.UTF-8 LC_COLLATE=C.UTF-8 LC_CTYPE=C.UTF-8 SOURCE_DATE_EPOCH=1745603185 SBUILD_CONFIG=/srv/rebuilderd/tmp/debrebuildVY6k_e/debrebuild.sbuildrc.bsiSrYzp9j94 sbuild --build=arm64 --host=arm64 --no-source --arch-any --no-arch-all --chroot=/srv/rebuilderd/tmp/debrebuildVY6k_e/debrebuild.tar.rWW5DMbtP_ro --chroot-mode=unshare --dist=unstable --no-run-lintian --no-run-piuparts --no-run-autopkgtest --no-apt-update --no-apt-upgrade --no-apt-distupgrade --verbose --nolog --bd-uninstallable-explainer= --build-path=/build/reproducible-path --dsc-dir=hol88-2.02.19940316dfsg /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6.dsc I: consider moving your ~/.sbuildrc to /srv/rebuilderd/.config/sbuild/config.pl The Debian buildds switched to the "unshare" backend and sbuild will default to it in the future. To start using "unshare" add this to your `~/.config/sbuild/config.pl`: $chroot_mode = "unshare"; If you want to keep the old "schroot" mode even in the future, add the following to your `~/.config/sbuild/config.pl`: $chroot_mode = "schroot"; $schroot = "schroot"; sbuild (Debian sbuild) 0.89.3 (07 June 2025) on codethink02-arm64 +==============================================================================+ | hol88 2.02.19940316dfsg-6 (arm64) Thu, 24 Jul 2025 21:21:07 +0000 | +==============================================================================+ Package: hol88 Version: 2.02.19940316dfsg-6 Source Version: 2.02.19940316dfsg-6 Distribution: unstable Machine Architecture: arm64 Host Architecture: arm64 Build Architecture: arm64 Build Type: any I: No tarballs found in /srv/rebuilderd/.cache/sbuild I: Unpacking /srv/rebuilderd/tmp/debrebuildVY6k_e/debrebuild.tar.rWW5DMbtP_ro to /srv/rebuilderd/tmp/tmp.sbuild.T5jgRhqX_u... I: Setting up the chroot... I: Creating chroot session... I: Setting up log color... I: Setting up apt archive... +------------------------------------------------------------------------------+ | Fetch source files Thu, 24 Jul 2025 21:21:16 +0000 | +------------------------------------------------------------------------------+ Local sources ------------- /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6.dsc exists in /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs; copying to chroot +------------------------------------------------------------------------------+ | Install package build dependencies Thu, 24 Jul 2025 21:21:19 +0000 | +------------------------------------------------------------------------------+ Setup apt archive ----------------- Merged Build-Depends: debhelper-compat (= 13), gcl27 (>= 2.7.1), texlive-latex-base, build-essential Filtered Build-Depends: debhelper-compat (= 13), gcl27 (>= 2.7.1), texlive-latex-base, build-essential dpkg-deb: building package 'sbuild-build-depends-main-dummy' in '/build/reproducible-path/resolver-3tJ6zD/apt_archive/sbuild-build-depends-main-dummy.deb'. Install main build dependencies (apt-based resolver) ---------------------------------------------------- Installing build dependencies +------------------------------------------------------------------------------+ | Check architectures Thu, 24 Jul 2025 21:21:26 +0000 | +------------------------------------------------------------------------------+ Arch check ok (arm64 included in any all) +------------------------------------------------------------------------------+ | Build environment Thu, 24 Jul 2025 21:21:26 +0000 | +------------------------------------------------------------------------------+ Kernel: Linux 6.12.35+deb13-cloud-arm64 #1 SMP Debian 6.12.35-1 (2025-07-03) arm64 (aarch64) Toolchain package versions: binutils_2.44-3 dpkg-dev_1.22.18 g++-14_14.2.0-19 gcc-14_14.2.0-19 libc6-dev_2.41-7 libstdc++-14-dev_14.2.0-19 libstdc++6_14.2.0-19 linux-libc-dev_6.12.22-1 Package versions: autoconf_2.72-3.1 automake_1:1.17-4 autopoint_0.23.1-1 autotools-dev_20240727.1 base-files_13.7 base-passwd_3.6.7 bash_5.2.37-2 binutils_2.44-3 binutils-aarch64-linux-gnu_2.44-3 binutils-common_2.44-3 bsdextrautils_2.41-4 bsdutils_1:2.41-4 build-essential_12.12 bzip2_1.0.8-6 coreutils_9.7-2 cpp_4:14.2.0-1 cpp-14_14.2.0-19 cpp-14-aarch64-linux-gnu_14.2.0-19 cpp-aarch64-linux-gnu_4:14.2.0-1 dash_0.5.12-12 debconf_1.5.91 debhelper_13.24.2 debianutils_5.22 dh-autoreconf_20 dh-strip-nondeterminism_1.14.1-2 diffutils_1:3.10-4 dpkg_1.22.18 dpkg-dev_1.22.18 dwz_0.15-1+b1 file_1:5.46-5 findutils_4.10.0-3 fontconfig-config_2.15.0-2.3 fonts-dejavu-core_2.37-8 fonts-dejavu-mono_2.37-8 fonts-lmodern_2.005-1 g++_4:14.2.0-1 g++-14_14.2.0-19 g++-14-aarch64-linux-gnu_14.2.0-19 g++-aarch64-linux-gnu_4:14.2.0-1 gcc_4:14.2.0-1 gcc-14_14.2.0-19 gcc-14-aarch64-linux-gnu_14.2.0-19 gcc-14-base_14.2.0-19 gcc-aarch64-linux-gnu_4:14.2.0-1 gcl27_2.7.1-3 gettext_0.23.1-1 gettext-base_0.23.1-1 grep_3.11-4+b1 groff-base_1.23.0-7 gzip_1.13-1 hostname_3.25 init-system-helpers_1.68 intltool-debian_0.35.0+20060710.6 libacl1_2.3.2-2+b1 libarchive-zip-perl_1.68-1 libasan8_14.2.0-19 libatomic1_14.2.0-19 libattr1_1:2.5.2-3 libaudit-common_1:4.0.2-2 libaudit1_1:4.0.2-2+b2 libbinutils_2.44-3 libblkid1_2.41-4 libbrotli1_1.1.0-2+b7 libbsd0_0.12.2-2 libbz2-1.0_1.0.8-6 libc-bin_2.41-7 libc-dev-bin_2.41-7 libc6_2.41-7 libc6-dev_2.41-7 libcairo2_1.18.4-1+b1 libcap-ng0_0.8.5-4+b1 libcap2_1:2.75-6 libcc1-0_14.2.0-19 libcom-err2_1.47.2-1+b1 libcrypt-dev_1:4.4.38-1 libcrypt1_1:4.4.38-1 libctf-nobfd0_2.44-3 libctf0_2.44-3 libdb5.3t64_5.3.28+dfsg2-9 libdebconfclient0_0.278 libdebhelper-perl_13.24.2 libdpkg-perl_1.22.18 libedit2_3.1-20250104-1 libelf1t64_0.192-4 libexpat1_2.7.1-1 libffi8_3.4.8-2 libfile-stripnondeterminism-perl_1.14.1-2 libfontconfig1_2.15.0-2.3 libfreetype6_2.13.3+dfsg-1 libgcc-14-dev_14.2.0-19 libgcc-s1_14.2.0-19 libgdbm-compat4t64_1.24-2 libgdbm6t64_1.24-2 libglib2.0-0t64_2.84.1-2 libgmp10_2:6.3.0+dfsg-3 libgomp1_14.2.0-19 libgprofng0_2.44-3 libgraphite2-3_1.3.14-2+b1 libgssapi-krb5-2_1.21.3-5 libharfbuzz0b_10.2.0-1+b1 libhwasan0_14.2.0-19 libice6_2:1.1.1-1 libicu76_76.1-3 libisl23_0.27-1 libitm1_14.2.0-19 libjansson4_2.14-2+b3 libk5crypto3_1.21.3-5 libkeyutils1_1.6.3-6 libkpathsea6_2024.20240313.70630+ds-6 libkrb5-3_1.21.3-5 libkrb5support0_1.21.3-5 liblastlog2-2_2.41-4 liblsan0_14.2.0-19 liblzma5_5.8.1-1 libmagic-mgc_1:5.46-5 libmagic1t64_1:5.46-5 libmd0_1.1.0-2+b1 libmount1_2.41-4 libmpc3_1.3.1-1+b3 libmpfi0_1.5.4+ds-4 libmpfr6_4.2.2-1 libncursesw6_6.5+20250216-2 libpam-modules_1.7.0-3 libpam-modules-bin_1.7.0-3 libpam-runtime_1.7.0-3 libpam0g_1.7.0-3 libpaper-utils_2.2.5-0.3+b2 libpaper2_2.2.5-0.3+b2 libpcre2-8-0_10.45-1 libperl5.40_5.40.1-3 libpipeline1_1.5.8-1 libpixman-1-0_0.44.0-3 libpng16-16t64_1.6.47-1.1 libpotrace0_1.16-2+b2 libproc2-0_2:4.0.4-8 libptexenc1_2024.20240313.70630+ds-6 libseccomp2_2.6.0-2 libselinux1_3.8.1-1 libsframe1_2.44-3 libsm6_2:1.2.6-1 libsmartcols1_2.41-4 libsqlite3-0_3.46.1-3 libssl3t64_3.5.0-1 libstdc++-14-dev_14.2.0-19 libstdc++6_14.2.0-19 libsynctex2_2024.20240313.70630+ds-6 libsystemd0_257.5-2 libteckit0_2.5.12+ds1-1+b1 libtexlua53-5_2024.20240313.70630+ds-6 libtext-charwidth-perl_0.04-11+b4 libtext-wrapi18n-perl_0.06-10 libtinfo6_6.5+20250216-2 libtirpc-common_1.3.6+ds-1 libtirpc-dev_1.3.6+ds-1 libtirpc3t64_1.3.6+ds-1 libtool_2.5.4-4 libtsan2_14.2.0-19 libubsan1_14.2.0-19 libuchardet0_0.0.8-1+b2 libudev1_257.5-2 libunistring5_1.3-2 libuuid1_2.41-4 libx11-6_2:1.8.12-1 libx11-data_2:1.8.12-1 libxau6_1:1.0.11-1 libxaw7_2:1.0.16-1 libxcb-render0_1.17.0-2+b1 libxcb-shm0_1.17.0-2+b1 libxcb1_1.17.0-2+b1 libxdmcp6_1:1.1.5-1 libxext6_2:1.3.4-1+b3 libxi6_2:1.8.2-1 libxml2_2.12.7+dfsg+really2.9.14-0.4 libxmu6_2:1.1.3-3+b4 libxpm4_1:3.5.17-1+b3 libxrender1_1:0.9.12-1 libxt6t64_1:1.2.1-1.2+b2 libzstd1_1.5.7+dfsg-1 libzzip-0-13t64_0.13.78+dfsg.1-0.1 linux-libc-dev_6.12.22-1 m4_1.4.19-8 make_4.4.1-2 man-db_2.13.0-1 mawk_1.3.4.20250131-1 ncurses-base_6.5+20250216-2 ncurses-bin_6.5+20250216-2 openssl-provider-legacy_3.5.0-1 patch_2.8-1 perl_5.40.1-3 perl-base_5.40.1-3 perl-modules-5.40_5.40.1-3 po-debconf_1.0.21+nmu1 procps_2:4.0.4-8 rpcsvc-proto_1.4.3-1+b1 sed_4.9-2+b1 sensible-utils_0.0.25 sysvinit-utils_3.14-4 t1utils_1.41-4+b1 tar_1.35+dfsg-3.1 tex-common_6.19 texlive-base_2024.20250309-1 texlive-binaries_2024.20240313.70630+ds-6 texlive-latex-base_2024.20250309-1 ucf_3.0051 util-linux_2.41-4 x11-common_1:7.7+24 xdg-utils_1.2.1-2 xz-utils_5.8.1-1 zlib1g_1:1.3.dfsg+really1.3.1-1+b1 +------------------------------------------------------------------------------+ | Build Thu, 24 Jul 2025 21:21:26 +0000 | +------------------------------------------------------------------------------+ Unpack source ------------- -----BEGIN PGP SIGNED MESSAGE----- Hash: SHA256 Format: 3.0 (quilt) Source: hol88 Binary: hol88, hol88-source, hol88-help, hol88-library, hol88-library-source, hol88-library-help, hol88-contrib-source, hol88-contrib-help, hol88-doc Architecture: any all Version: 2.02.19940316dfsg-6 Maintainer: Camm Maguire Standards-Version: 3.9.8 Build-Depends: debhelper-compat (= 13), gcl27 (>= 2.7.1), texlive-latex-base Package-List: hol88 deb math optional arch=any hol88-contrib-help deb math optional arch=all hol88-contrib-source deb math optional arch=all hol88-doc deb doc optional arch=all hol88-help deb math optional arch=all hol88-library deb math optional arch=any hol88-library-help deb math optional arch=all hol88-library-source deb math optional arch=all hol88-source deb math optional arch=all Checksums-Sha1: bc74d2d9ec9af6fe04c6b6853b0a9850897c4b7f 10359437 hol88_2.02.19940316dfsg.orig.tar.gz 15551dfef0f3f63a4dd29ba840587955167a4502 132416 hol88_2.02.19940316dfsg-6.debian.tar.xz Checksums-Sha256: 8e2a4f83cea20d0cf2416f7d55c951498f6c807b03ebc9381a02fa4c81c5da69 10359437 hol88_2.02.19940316dfsg.orig.tar.gz 9c8afe3b9031c845bb8182e4d21d8999abce384fb93d533e978de52a0d9cd87d 132416 hol88_2.02.19940316dfsg-6.debian.tar.xz Files: d916adf41bc7c1f9eb2a7c07ff442b01 10359437 hol88_2.02.19940316dfsg.orig.tar.gz c0bf6a4877e27507799219ffd6bcaff0 132416 hol88_2.02.19940316dfsg-6.debian.tar.xz -----BEGIN PGP SIGNATURE----- iQIzBAEBCAAdFiEE/iFPNjaXdzJC6BbsuEXOUQ+bcU0FAmgL2skACgkQuEXOUQ+b cU2yHg/+LdmAyhNCjCbtel3BRTTTekkLPWDEWZ6a9g6F4lBOefc3l9mZwzqdY9xW 8tYVNYfdCpIUHKXur4zL5ZSMWUov1WeEvbZqtHTuZ7bSCod24wS3zvz4K6MrRdja PR9CuzcSZpIWHQEVrTtIK5+AgZRUZ0kuuYWMSwsm8z+XREb7X5eo8Pus5XwQyf76 LEWdiHi8sEvRUcFRDZmE+SmleHKhFeFe2NhE4DsXqI8/CE0WY78u2CSOtkPjGbJJ td/18pOjz3DXHOX0tBjrsUo/SukS1ZUTlrMfElpUkqJgmWcUNbSMZiKqtVZSjg6f JABf+92LIJSkFP6bf8TT0fuIkItB1MKC0uqg/vXXXZ166SYFLsSRRBiqGtecmNux djVTJtPi0eDZpUm5WTBxrB7F4NkVws3Msw7a+fm7TQvPBrwl5febJP/78SVvIPEu wvnPmABGouirAyX22/FqhjFWAwYCQth4QGkbr6PeH4cs68vbWQ+8aldbAnwhEgnk PighTiUDnqBAXmMRptX2prb2X29VxiAVmwW4xgmJvUt4Eb3ljBe01p3fpeawXjnk 0GMhcjJPqoN7lgnJlmZinKyVeGBvpGFE3HVBlf08NC8CA5yKyqY7KOppPXi0UvFT hrzP0/MPT4z/CXg9OEASbOiHd8szxa008EEibKTtlvMvfDquBFY= =U0yO -----END PGP SIGNATURE----- dpkg-source: warning: cannot verify inline signature for ./hol88_2.02.19940316dfsg-6.dsc: unsupported subcommand dpkg-source: info: extracting hol88 in /build/reproducible-path/hol88-2.02.19940316dfsg dpkg-source: info: unpacking hol88_2.02.19940316dfsg.orig.tar.gz dpkg-source: info: unpacking hol88_2.02.19940316dfsg-6.debian.tar.xz dpkg-source: info: using patch list from debian/patches/series dpkg-source: info: applying quilt-source-init dpkg-source: info: applying FTBFS_detection_fix dpkg-source: info: applying function_representation Check disk space ---------------- Sufficient free space for build User Environment ---------------- APT_CONFIG=/var/lib/sbuild/apt.conf DEB_BUILD_OPTIONS=parallel=8 HOME=/sbuild-nonexistent LANG=C.UTF-8 LC_ALL=C.UTF-8 LC_COLLATE=C.UTF-8 LC_CTYPE=C.UTF-8 LOGNAME=sbuild PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games SHELL=/bin/sh SOURCE_DATE_EPOCH=1745603185 USER=sbuild dpkg-buildpackage ----------------- Command: dpkg-buildpackage --sanitize-env -us -uc -B dpkg-buildpackage: info: source package hol88 dpkg-buildpackage: info: source version 2.02.19940316dfsg-6 dpkg-buildpackage: info: source distribution unstable dpkg-buildpackage: info: source changed by Camm Maguire dpkg-source --before-build . dpkg-buildpackage: info: host architecture arm64 debian/rules clean dh_testdir dh_testroot rm -f build-arch-stamp build-indep-stamp configure-stamp [ ! -f Makefile ] || /usr/bin/make clean make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' /bin/rm -f ml/*_ml.o ml/*_ml.l ml/site.ml lisp/*.o /bin/rm -f hol-lcf basic-hol hol /usr/bin/make clean-library make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' (cd /build/reproducible-path/hol88-2.02.19940316dfsg/Library; /usr/bin/make Obj=o clean; cd ..) make[3]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' for lib in unwind taut sets reduce arith pred_sets string finite_sets res_quan wellorder abs_theory reals window pair word record_proof parser prettyp trs latex-hol more_arithmetic numeral ind_defs ; \ do (cd $lib; /usr/bin/make Obj=o clean; cd ..) ; \ done make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' rm -f *_ml.o *_ml.l ===> library unwind: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' rm -f taut_check_ml.o taut_check_ml.l ===> library taut: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' rm -f *_ml.o ===> library sets: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' rm -f boolconv_ml.o arithconv_ml.o reduce_ml.o make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' rm -f *_ml.l *_ml.o ===> library arith: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' rm -f *_ml.o ===> library pred_sets: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' rm -f *_ml.o ===> library string: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' rm -f *_ml.o ===> library finite_sets: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' rm -f *_ml.o ===> library res_quan: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' make[4]: 'clean' is up to date. make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' /bin/rm -f *_ml.o ===> abs_theory. All object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' cd theories; make clean make[5]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' rm -f *_ml.o make[5]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' rm -f *.l *.c *.o *.h *.data ===> library window: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' rm -f *.l *.c *.o *.h *.data *.i *.s *.ir ===> library pair: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' rm -f *_ml.o ===> library word: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' rm -f *_ml.o ===> library record_proof: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' rm -f *_ml.o *_ml.l *.o ===> library parser: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' rm -f PP_printer/*_ml.o PP_printer/*_ml.l rm -f PP_parser/*_ml.o PP_parser/*_ml.l rm -f PP_hol/*_ml.o PP_hol/*_ml.l ===> library prettyp: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' rm -f *_ml.l *_ml.o ===> library trs: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' rm -f *.o ===> library latex-hol: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' rm -f *_ml.o ===> library more_arithmetic: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' rm -f numeral_rules_ml.o make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' rm -f *_ml.o ===> library ind_defs: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' ===> all library object code deleted make[3]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' =======> all hol and lisp object code deleted make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' [ ! -f Makefile ] || /usr/bin/make clobber make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' /bin/rm -f ml/*_ml.o ml/*_ml.l ml/site.ml lisp/*.o /bin/rm -f /build/reproducible-path/hol88-2.02.19940316dfsg/theories/*.th hol-lcf basic-hol hol /usr/bin/make clobber-library make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' (cd /build/reproducible-path/hol88-2.02.19940316dfsg/Library; /usr/bin/make Obj=o clobber; cd ..) make[3]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' for lib in unwind taut sets reduce arith pred_sets string finite_sets res_quan wellorder abs_theory reals window pair word record_proof parser prettyp trs latex-hol more_arithmetic numeral ind_defs ; \ do (cd $lib; /usr/bin/make Obj=o clobber; cd ..) ; \ done make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' rm -f *_ml.o *_ml.l ===> library unwind: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' rm -f taut_check_ml.o taut_check_ml.l ===> library taut: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' rm -f *_ml.o *_ml.l *.th ===> library sets: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' rm -f boolconv_ml.o arithconv_ml.o reduce_ml.o make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' rm -f *_ml.l *_ml.o ===> library arith: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' rm -f *_ml.o *_ml.l *.th ===> library pred_sets: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' rm -f *_ml.o *_ml.l *.th ===> library string: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' rm -f *_ml.o *_ml.l *.th ===> library finite_sets: object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' rm -f *_ml.o *_ml.l *.th ===> library res_quan: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' rm -f WELLORDER.th make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' /bin/rm -f *_ml.o *.th print ===> abs_theory: All object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' cd theories; make clobber make[5]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' rm -f *_ml.o rm -f *.th make[5]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' rm -f *.l *.c *.o *.th *.h *.data ===> library window: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' rm -f *.l *.c *.o *.th *.h *.data *.i *.s *.ir ===> library pair: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' rm -f *_ml.o *_ml.l *.th ===> library word: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' rm -f *_ml.o *_ml.l *.th ===> library record_proof: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' rm -f *_ml.o *_ml.l *.o ===> library parser: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' rm -f PP_printer/*_ml.o PP_printer/*_ml.l rm -f PP_parser/*_ml.o PP_parser/*_ml.l PP_parser/*_pp.ml rm -f PP_hol/*_ml.o PP_hol/*_ml.l PP_hol/*_pp.ml ===> library prettyp: all object code and _pp.ml files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' rm -f *_ml.l *_ml.o ===> library trs: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' rm -f latex_*_pp.ml *.o ===> library latex-hol: all object code and _pp.ml file deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' rm -f *_ml.o *_ml.l *.th ===> library more_arithmetic: all object code and theory files deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' rm -f numeral_rules_ml.o rm -f numeral.th make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' rm -f *_ml.o *_ml.l ===> library ind_defs: all object code deleted make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' ===> all library object code and theory files deleted make[3]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' =======> all object code and theory files deleted make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' for i in $(find Library -name index.tex) Library/pred_sets/Manual/theorems.tex Library/record_proof/Manual/record_proof.ind ; do\ [ -e $i.sve ] || cp $i $i.sve ; done [ ! -f Makefile ] || /usr/bin/make -C Manual clean make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual' for i in Tutorial Description Reference Libraries Covers ; do /usr/bin/make -C $i clean ; done make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Tutorial' rm -f *.dvi *.aux *.toc *.log make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Tutorial' make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Description' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Description' make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Reference' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Reference' make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Libraries' rm -f *.dvi *.aux *.toc *.log make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Libraries' make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Covers' rm -f *.log core *.aux *~ #* LOG ===> Fancy end and title pages cleaned up make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual/Covers' make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Manual' [ ! -f Makefile ] || for i in $(find Library -name Manual); do /usr/bin/make -C $i clean ; done make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex *.bak; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory/Manual' \ rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce/Manual' \ rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral/Manual' \ rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/Manual' \ rm -f *.dvi *.aux *.toc *.log *.idx *.ilg; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair/Manual' rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex theorems.tex; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair/Manual' make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder/Manual' \ rm -f *.dvi *.aux *.toc *.log *.idx *.ilg entries.tex; \ printf '\\begin{theindex}' >index.tex; \ printf '\\mbox{}' >>index.tex; \ printf '\\end{theindex}' >>index.tex make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder/Manual' find -name X.tex -exec rm -rf {} \; dh_clean -X./ml/site.ml.orig -X./contrib/tooltool/Makefile.orig \ -X./contrib/tooltool/events.c.orig -X./contrib/tooltool/func_fix.c.orig \ -X./contrib/tooltool/lex.c.orig -X./contrib/tooltool/parse.y.orig \ -X./contrib/tooltool/patchlevel.h.orig -X./contrib/tooltool/windows.c.orig \ -X./contrib/Xhelp/hol_apro.orig -X./contrib/Xhelp/hol_ref.orig \ -X./contrib/Xhelp/xholhelp.h.orig -X./contrib/Xhelp/hol_thm.orig for i in $(find Library -name "*.sve") ; do mv $i $(echo $i | sed "s,\.sve,,1"); done rm -f debian/hol88.install debian/hol88-library.install debian/hol88-source.install debian/hol88-help.install debian/hol88-library-source.install debian/hol88-library-help.install debian/hol88-contrib-source.install debian/hol88-contrib-help.install debian/hol88-doc.install debian/hol88.links debian/hol88-library.links debian/hol88.sh find -name "*.dvi" -exec rm {} \; rm -f Manual/Tutorial/ack.tex Manual/Reference/ack.tex Manual/Description/ack.tex rm -f Manual/Covers/titlepages.ps Manual/Covers/endpages.ps rm -f bm.l foo* gcl ./lisp/f-ol-syntax.data cp debian/site_ml_orig ml/site.ml.orig rm -f Library/finite_sets/Manual/entries.tex \ Library/finite_sets/Manual/theorems.tex \ Library/more_arithmetic/Manual/theorems.tex \ Library/numeral/Manual/theorems.tex \ Library/pred_sets/Manual/entries.tex \ Library/prettyp/Manual/entries.tex \ Library/reals/Manual/theorems.tex \ Library/res_quan/Manual/entries.tex \ Library/sets/Manual/entries.tex \ Library/sets/Manual/theorems.tex \ Library/string/Manual/theorems.tex \ Library/wellorder/Manual/theorems.tex \ Library/word/Manual/theorems.tex \ Manual/Reference/entries.tex \ Manual/Reference/theorems.tex debian/rules binary-arch dh_testdir touch configure-stamp echo '(shadow "LIST")' \ '(defmacro list (&rest r &aux (l (length r)))' \ '(let ((x (nthcdr (1- call-arguments-limit) r)))' \ '(if x `(nconc (cl::list ,@(ldiff r x)) (list ,@x)) `(cl::list ,@r))))' \ '(deftype list nil (quote cl::list))' \ '(use-package :cltl1-compat)' \ '(si::save-system "gcl")' | gcl27 # FIXME list calls > call-arguments-limit GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ > T > LIST > LIST > T >PATH=$(pwd):$PATH /usr/bin/make all make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' date Thu Jul 24 21:21:34 UTC 2025 /usr/bin/make hol make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(compile-file "lisp/f-cl.l") (quit)'\ | gcl; else\ lisp/f-franz; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ > ;; Compiling lisp/f-cl.l. ;; When compiling (DEFUN WHILE ...) STYLE-WARNING: signature change on function WHILE, ((T T) CONS) -> ((T T) SYSTEM:PROPER-CONS) ;; When compiling (DEFUN LLPRINT) WARNING: ;; The variable |%theory_pp-flag| is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN INFILEPUSH) WARNING: ;; The variable INPUTSTACK is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN SET-FASL-FLAG) WARNING: ;; The variable |%print_fasl-flag| is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN INIT-IO) WARNING: ;; The variable OUTFILES is undefined. ;; The compiler will assume this variable is a global. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-macro.l") (quit)'\ | gcl; else\ lisp/f-macro; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-macro.l. ;; When compiling (DEFUN EXISTS) ;; inlining (#<@0000000004760100> # ...) ;; inlining (#<@000000000475DD80> # ...) ;; inlining (#<@000000000475B160> # ...) ;; inlining (SYSTEM::LMAP # ...) ;; inlining (SYSTEM::LMAPR # ...) ;; inlining (MAPL # ...) ;; inlining (MAPC # ...) ;; inlining (MAPCAR # ...) STYLE-WARNING: The variable IGNORE is not used. ;; When compiling (DEFUN FORALL) ;; inlining (#<@0000000004BD8110> # ...) ;; inlining (#<@0000000004BD5D90> # ...) ;; inlining (#<@0000000004BD3170> # ...) ;; inlining (SYSTEM::LMAP # ...) ;; inlining (SYSTEM::LMAPR # ...) ;; inlining (MAPL # ...) ;; inlining (MAPC # ...) ;; inlining (MAPCAR # ...) STYLE-WARNING: The variable IGNORE is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-system.l") (quit)'\ | gcl; else\ lisp/f-system; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-system.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;; When compiling (DEFUN FILETOKP) STYLE-WARNING: The variable TOK is not used. STYLE-WARNING: The variable KIND is not used. ;; When compiling (DEFUN COMPILE-LISP) ;; inlining (#<@0000000005EF82D0> # ...) ;; inlining (#<@0000000005EE9890> # ...) STYLE-WARNING: The variable X is not used. ;; When compiling (DEFUN COMPILE-LISP) ;; inlining (#<@0000000005F3AAE0> # ...) ;; inlining (#<@0000000005F2C0A0> # ...) STYLE-WARNING: The variable X is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-help.l") (quit)'\ | gcl; else\ lisp/f-help; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-help.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-ol-rec.l") (quit)'\ | gcl; else\ lisp/f-ol-rec; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-ol-rec.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/genmacs.l") (quit)'\ | gcl; else\ lisp/genmacs; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/genmacs.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28835c0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/mk-ml.l") (quit)'\ | gcl; else\ lisp/mk-ml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/mk-ml.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/mk-hol-lcf.l") (quit)'\ | gcl; else\ lisp/mk-hol-lcf; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/mk-hol-lcf.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-constants.l") (quit)'\ | gcl; else\ lisp/f-constants; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-constants.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-site.l") (quit)'\ | gcl; else\ lisp/f-site; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-site.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-gp.l") (quit)'\ | gcl; else\ lisp/f-gp; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-gp.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-parser.l") (quit)'\ | gcl; else\ lisp/f-parser; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-parser.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-parsml.l") (quit)'\ | gcl; else\ lisp/f-parsml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-parsml.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-mlprin.l") (quit)'\ | gcl; else\ lisp/f-mlprin; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-mlprin.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-typeml.l") (quit)'\ | gcl; else\ lisp/f-typeml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-typeml.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-dml.l") (quit)'\ | gcl; else\ lisp/f-dml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-dml.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x28835c0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-format.l") (quit)'\ | gcl; else\ lisp/f-format; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-format.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x28835c0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-tran.l") (quit)'\ | gcl; else\ lisp/f-tran; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-tran.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-iox-stand.l") (quit)'\ | gcl; else\ lisp/f-iox-stand; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-iox-stand.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-writml.l") (quit)'\ | gcl; else\ lisp/f-writml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-writml.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; When compiling (DEFUN ML-PRINT_VOID) STYLE-WARNING: The variable IGNORE is not used. ;; When compiling (DEFUN PRINT_PROD) STYLE-WARNING: The variable CL is not used. ;; When compiling (DEFUN PRINT_CONC) STYLE-WARNING: The variable TY is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-tml.l") (quit)'\ | gcl; else\ lisp/f-tml; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-tml.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; When compiling (DEFUN HOL-ERR) STYLE-WARNING: The variable X is not used. ;; When compiling (DEFUN OKPASS) ;; inlining (#<@0000000004982200> # ...) ;; inlining (#<@00000000049737C0> # ...) STYLE-WARNING: The variable ERRTOK is not used. ;; When compiling (DEFUN ML-COMPILE) STYLE-WARNING: The variable $GCPRINT is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-lis.l") (quit)'\ | gcl; else\ lisp/f-lis; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-lis.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-parsol.l") (quit)'\ | gcl; else\ lisp/f-parsol; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-parsol.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;; When compiling (DEFUN OLVARINFIX) WARNING: ;; The variable HOL-VAR-BINOPS is undefined. ;; The compiler will assume this variable is a global. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-typeol.l") (quit)'\ | gcl; else\ lisp/f-typeol; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-typeol.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; When compiling (DEFUN CANON-TY) WARNING: Type mismatches binding declared T variable #:PROG2267 to type NIL. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-writol.l") (quit)'\ | gcl; else\ lisp/f-writol; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-writol.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;;; Including lisp/genmacs;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o 0x2887240 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-thyfns.l") (quit)'\ | gcl; else\ lisp/f-thyfns; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-thyfns.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; When compiling (DEFUN OPEN-THY-FILE) ;; inlining (#<@0000000004F11D50> # ...) ;; inlining (#<@0000000004F02F30> # ...) STYLE-WARNING: The variable ERTOK is not used. ;; When compiling (DEFUN THY-READ) ;; inlining (#<@0000000004F58000> # ...) ;; inlining (#<@0000000004F48EE0> # ...) STYLE-WARNING: The variable ERTOK is not used. ;; When compiling (DEFUN GET-PARENT) STYLE-WARNING: The variable PARDATA is not used. ;; When compiling (DEFUN UNLOAD-THEORY) STYLE-WARNING: The variable TOK is not used. ;; When compiling (DEFUN WRITE-THY-FILE) STYLE-WARNING: The variable $GCPRINT is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-freadth.l") (quit)'\ | gcl; else\ touch lisp/f-freadth.o; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-freadth.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;; When compiling (DEFUN THY-READ) ;; inlining (#<@0000000004647580> # ...) ;; inlining (#<@0000000004638460> # ...) STYLE-WARNING: The variable ERTOK is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-ol-syntax.l") (quit)'\ | gcl; else\ lisp/f-ol-syntax; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-ol-syntax.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; When compiling (DEFUN Q-MK_EQUIV) ;; inlining (#<@0000000004679A50> # ...) ;; inlining (#<@000000000466FCF0> # ...) STYLE-WARNING: The variable TOK is not used. ;; When compiling (DEFUN Q-MK_INEQUIV) ;; inlining (#<@000000000468B4F0> # ...) ;; inlining (#<@0000000004682690> # ...) STYLE-WARNING: The variable TOK is not used. ;; When compiling (DEFUN Q-MK_COMB) WARNING: Type mismatches binding declared T variable #:PROG2267 to type NIL. ;; When compiling (DEFUN ML-MK_COMB) ;; inlining (#<@000000000520E100> # ...) ;; inlining (#<@00000000052052A0> # ...) STYLE-WARNING: The variable TOK is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-subst.l") (quit)'\ | gcl; else\ lisp/f-subst; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-subst.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-inst.l") (quit)'\ | gcl; else\ lisp/f-inst; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-inst.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-simpl.l") (quit)'\ | gcl; else\ lisp/f-simpl; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-simpl.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/f-ol-net.l") (quit)'\ | gcl; else\ lisp/f-ol-net; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/f-ol-net.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o" NIL NIL >echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/mk-ml")'\ '(load "lisp/mk-hol-lcf")'\ '(setq %system-name "HOL-LCF")'\ '(setq %liszt "")'\ '(setq %version "2.02 (GCL)")'\ '(set-make)'\ '(tml)'\ 'compile(`ml/ml-curry`,true);;'\ 'quit();;'\ | gcl GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/mk-ml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o 0x2878010 ;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x287c2f0 ;; Finished loading "lisp/f-cl" ;; Loading "lisp/f-system" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o 0x2885d10 ;; Finished loading "lisp/f-system" ;; Loading "lisp/f-constants" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2888b40 ;; Finished loading "lisp/f-constants" ;; Loading "lisp/f-site" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o 0x2888bc0 ;; Finished loading "lisp/f-site" ;; Loading "lisp/f-gp" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o 0x2888ec0 ;; Finished loading "lisp/f-gp" ;; Loading "lisp/f-parser" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o 0x288b200 ;; Finished loading "lisp/f-parser" ;; Loading "lisp/f-parsml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o 0x2891a30 ;; Finished loading "lisp/f-parsml" ;; Loading "lisp/f-mlprin" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o 0x289a240 ;; Finished loading "lisp/f-mlprin" ;; Loading "lisp/f-typeml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o 0x289eeb0 ;; Finished loading "lisp/f-typeml" ;; Loading "lisp/f-dml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o 0x28ac200 ;; Finished loading "lisp/f-dml" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28af9e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-tran" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o 0x28b29c0 ;; Finished loading "lisp/f-tran" ;; Loading "lisp/f-iox-stand" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o 0x28c01c0 ;; Finished loading "lisp/f-iox-stand" ;; Loading "lisp/f-writml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o 0x28c3550 ;; Finished loading "lisp/f-writml" ;; Loading "lisp/f-tml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o 0x28c6dc0 ;; Finished loading "lisp/f-tml" ;; Loading "lisp/f-lis" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o 0x28d4b10 ;; Finished loading "lisp/f-lis" ;; Loading "lisp/f-ol-rec" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28d6100 ;; Finished loading "lisp/f-ol-rec" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28d9d00 ;; Finished loading "lisp/f-help" ;; Finished loading "lisp/mk-ml" 17110 >;; Loading "lisp/mk-hol-lcf" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o 0x28da5c0 ;; Loading "lisp/f-parsol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o 0x28dd4f0 ;; Finished loading "lisp/f-parsol" ;; Loading "lisp/f-typeol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o 0x28e1950 ;; Finished loading "lisp/f-typeol" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28e5e20 ;; Finished loading "lisp/f-help" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28e66e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-writol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o 0x28e96c0 ;; Finished loading "lisp/f-writol" ;; Loading "lisp/f-thyfns" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o 0x28eee90 ;; Finished loading "lisp/f-thyfns" ;; Loading "lisp/f-freadth" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o 0x28fe190 lisp/f-freadth.l is redefining function THY-READ ;; Finished loading "lisp/f-freadth" ;; Loading "lisp/f-ol-syntax" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o 0x29012a0 ;; Finished loading "lisp/f-ol-syntax" ;; Loading "lisp/f-subst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o 0x2909560 ;; Finished loading "lisp/f-subst" ;; Loading "lisp/f-inst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o 0x290feb0 ;; Finished loading "lisp/f-inst" ;; Loading "lisp/f-simpl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o 0x2916f20 ;; Finished loading "lisp/f-simpl" ;; Loading "lisp/f-ol-net" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o 0x2919010 ;; Finished loading "lisp/f-ol-net" ;; Finished loading "lisp/mk-hol-lcf" 12070 > "HOL-LCF" > "" > "2.02 (GCL)" > NIL > HOL-LCF version 2.02 (GCL) created 24/7/25 # mem = - : (* -> * list -> bool) map = - : ((* -> **) -> * list -> ** list) exists = - : ((* -> bool) -> * list -> bool) forall = - : ((* -> bool) -> * list -> bool) find = - : ((* -> bool) -> * list -> *) tryfind = - : ((* -> **) -> * list -> **) filter = - : ((* -> bool) -> * list -> * list) mapfilter = - : ((* -> **) -> * list -> ** list) rev_itlist = - : ((* -> ** -> **) -> * list -> ** -> **) compiling = false : bool compiling_stack = [] : bool list load = - : ((string # bool) -> void) compile = - : ((string # bool) -> void) Calling Lisp compiler File ml/ml-curry compiled () : void #echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/mk-ml")'\ '(load "lisp/mk-hol-lcf")'\ '(setq %system-name "HOL-LCF")'\ '(setq %liszt "")'\ '(setq %version "2.02 (GCL)")'\ '(set-make)'\ '(tml)'\ 'load(`ml/ml-curry`,false);;'\ 'compile(`ml/lis`,true);;'\ 'quit();;'\ | gcl GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/mk-ml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o 0x2878010 ;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x287c2f0 ;; Finished loading "lisp/f-cl" ;; Loading "lisp/f-system" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o 0x2885d10 ;; Finished loading "lisp/f-system" ;; Loading "lisp/f-constants" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2888b40 ;; Finished loading "lisp/f-constants" ;; Loading "lisp/f-site" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o 0x2888bc0 ;; Finished loading "lisp/f-site" ;; Loading "lisp/f-gp" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o 0x2888ec0 ;; Finished loading "lisp/f-gp" ;; Loading "lisp/f-parser" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o 0x288b200 ;; Finished loading "lisp/f-parser" ;; Loading "lisp/f-parsml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o 0x2891a30 ;; Finished loading "lisp/f-parsml" ;; Loading "lisp/f-mlprin" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o 0x289a240 ;; Finished loading "lisp/f-mlprin" ;; Loading "lisp/f-typeml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o 0x289eeb0 ;; Finished loading "lisp/f-typeml" ;; Loading "lisp/f-dml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o 0x28ac200 ;; Finished loading "lisp/f-dml" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28af9e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-tran" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o 0x28b29c0 ;; Finished loading "lisp/f-tran" ;; Loading "lisp/f-iox-stand" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o 0x28c01c0 ;; Finished loading "lisp/f-iox-stand" ;; Loading "lisp/f-writml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o 0x28c3550 ;; Finished loading "lisp/f-writml" ;; Loading "lisp/f-tml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o 0x28c6dc0 ;; Finished loading "lisp/f-tml" ;; Loading "lisp/f-lis" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o 0x28d4b10 ;; Finished loading "lisp/f-lis" ;; Loading "lisp/f-ol-rec" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28d6100 ;; Finished loading "lisp/f-ol-rec" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28d9d00 ;; Finished loading "lisp/f-help" ;; Finished loading "lisp/mk-ml" 17110 >;; Loading "lisp/mk-hol-lcf" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o 0x28da5c0 ;; Loading "lisp/f-parsol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o 0x28dd4f0 ;; Finished loading "lisp/f-parsol" ;; Loading "lisp/f-typeol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o 0x28e1950 ;; Finished loading "lisp/f-typeol" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28e5e20 ;; Finished loading "lisp/f-help" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28e66e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-writol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o 0x28e96c0 ;; Finished loading "lisp/f-writol" ;; Loading "lisp/f-thyfns" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o 0x28eee90 ;; Finished loading "lisp/f-thyfns" ;; Loading "lisp/f-freadth" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o 0x28fe190 lisp/f-freadth.l is redefining function THY-READ ;; Finished loading "lisp/f-freadth" ;; Loading "lisp/f-ol-syntax" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o 0x29012a0 ;; Finished loading "lisp/f-ol-syntax" ;; Loading "lisp/f-subst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o 0x2909560 ;; Finished loading "lisp/f-subst" ;; Loading "lisp/f-inst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o 0x290feb0 ;; Finished loading "lisp/f-inst" ;; Loading "lisp/f-simpl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o 0x2916f20 ;; Finished loading "lisp/f-simpl" ;; Loading "lisp/f-ol-net" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o 0x2919010 ;; Finished loading "lisp/f-ol-net" ;; Finished loading "lisp/mk-hol-lcf" 12070 > "HOL-LCF" > "" > "2.02 (GCL)" > NIL > HOL-LCF version 2.02 (GCL) created 24/7/25 #;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ml-curry_ml.o 0x291bc00 .............() : void append = - : (* list -> * list -> * list) itlist = - : ((* -> ** -> **) -> * list -> ** -> **) end_itlist = - : ((* -> * -> *) -> * list -> *) assoc = - : (* -> (* # **) list -> (* # **)) rev_assoc = - : (* -> (** # *) list -> (** # *)) intersect = - : (* list -> * list -> * list) subtract = - : (* list -> * list -> * list) union = - : (* list -> * list -> * list) setify = - : (* list -> * list) split = - : ((* # **) list -> (* list # ** list)) combine = - : ((* list # ** list) -> (* # **) list) () : void com = - : ((* list # ** list) -> (* # **) list) distinct = - : (* list -> bool) chop_list = - : (int -> * list -> (* list # * list)) last = - : (* list -> *) butlast = - : (* list -> * list) partition = - : ((* -> bool) -> * list -> (* list # * list)) replicate = - : (* -> int -> * list) sort = - : (((* # *) -> bool) -> * list -> * list) splitp = - : ((* -> bool) -> * list -> (* list # * list)) remove = - : ((* -> bool) -> * list -> (* # * list)) Calling Lisp compiler File ml/lis compiled () : void #echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/mk-ml")'\ '(load "lisp/mk-hol-lcf")'\ '(setq %system-name "HOL-LCF")'\ '(setq %liszt "")'\ '(setq %version "2.02 (GCL)")'\ '(set-make)'\ '(tml)'\ 'load(`ml/ml-curry`,false);;'\ 'load(`ml/lis`,false);;'\ 'compile(`ml/gen`,true);;'\ 'quit();;'\ | gcl GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/mk-ml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o 0x2878010 ;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x287c2f0 ;; Finished loading "lisp/f-cl" ;; Loading "lisp/f-system" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o 0x2885d10 ;; Finished loading "lisp/f-system" ;; Loading "lisp/f-constants" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2888b40 ;; Finished loading "lisp/f-constants" ;; Loading "lisp/f-site" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o 0x2888bc0 ;; Finished loading "lisp/f-site" ;; Loading "lisp/f-gp" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o 0x2888ec0 ;; Finished loading "lisp/f-gp" ;; Loading "lisp/f-parser" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o 0x288b200 ;; Finished loading "lisp/f-parser" ;; Loading "lisp/f-parsml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o 0x2891a30 ;; Finished loading "lisp/f-parsml" ;; Loading "lisp/f-mlprin" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o 0x289a240 ;; Finished loading "lisp/f-mlprin" ;; Loading "lisp/f-typeml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o 0x289eeb0 ;; Finished loading "lisp/f-typeml" ;; Loading "lisp/f-dml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o 0x28ac200 ;; Finished loading "lisp/f-dml" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28af9e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-tran" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o 0x28b29c0 ;; Finished loading "lisp/f-tran" ;; Loading "lisp/f-iox-stand" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o 0x28c01c0 ;; Finished loading "lisp/f-iox-stand" ;; Loading "lisp/f-writml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o 0x28c3550 ;; Finished loading "lisp/f-writml" ;; Loading "lisp/f-tml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o 0x28c6dc0 ;; Finished loading "lisp/f-tml" ;; Loading "lisp/f-lis" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o 0x28d4b10 ;; Finished loading "lisp/f-lis" ;; Loading "lisp/f-ol-rec" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28d6100 ;; Finished loading "lisp/f-ol-rec" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28d9d00 ;; Finished loading "lisp/f-help" ;; Finished loading "lisp/mk-ml" 17110 >;; Loading "lisp/mk-hol-lcf" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o 0x28da5c0 ;; Loading "lisp/f-parsol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o 0x28dd4f0 ;; Finished loading "lisp/f-parsol" ;; Loading "lisp/f-typeol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o 0x28e1950 ;; Finished loading "lisp/f-typeol" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28e5e20 ;; Finished loading "lisp/f-help" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28e66e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-writol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o 0x28e96c0 ;; Finished loading "lisp/f-writol" ;; Loading "lisp/f-thyfns" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o 0x28eee90 ;; Finished loading "lisp/f-thyfns" ;; Loading "lisp/f-freadth" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o 0x28fe190 lisp/f-freadth.l is redefining function THY-READ ;; Finished loading "lisp/f-freadth" ;; Loading "lisp/f-ol-syntax" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o 0x29012a0 ;; Finished loading "lisp/f-ol-syntax" ;; Loading "lisp/f-subst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o 0x2909560 ;; Finished loading "lisp/f-subst" ;; Loading "lisp/f-inst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o 0x290feb0 ;; Finished loading "lisp/f-inst" ;; Loading "lisp/f-simpl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o 0x2916f20 ;; Finished loading "lisp/f-simpl" ;; Loading "lisp/f-ol-net" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o 0x2919010 ;; Finished loading "lisp/f-ol-net" ;; Finished loading "lisp/mk-hol-lcf" 12070 > "HOL-LCF" > "" > "2.02 (GCL)" > NIL > HOL-LCF version 2.02 (GCL) created 24/7/25 #;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ml-curry_ml.o 0x291bc00 .............() : void ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/lis_ml.o 0x291e500 ......................() : void words2 = - : (string -> string -> string list) words = - : (string -> string list) maptok = - : ((string -> *) -> string -> * list) loadt = - : (string -> void) loadf = - : (string -> void) compilet = - : (string -> void) compilef = - : (string -> void) concat = - : (string -> string -> string) concatl = - : (string list -> string) () : void ^ = - : (string -> string -> string) message = - : (string -> void) () : void () : void () : void () : void o = - : (((* -> **) # (*** -> *)) -> *** -> **) CB = - : ((* -> **) -> (** -> ***) -> * -> ***) # = - : (((* -> **) # (*** -> ****)) -> (* # ***) -> (** # ****)) oo = - : ((((* # **) -> ***) # (**** -> *) # (**** -> **)) -> **** -> ***) I = - : (* -> *) K = - : (* -> ** -> *) KI = - : (* -> ** -> **) C = - : ((* -> ** -> ***) -> ** -> * -> ***) W = - : ((* -> * -> **) -> * -> **) B = - : ((* -> **) -> (*** -> *) -> *** -> **) S = - : ((* -> ** -> ***) -> (* -> **) -> * -> ***) () : void Co = - : (((* -> ** -> ***) # (**** -> *)) -> ** -> **** -> ***) pair = - : (* -> ** -> (* # **)) curry = - : (((* # **) -> ***) -> * -> ** -> ***) can = - : ((* -> **) -> * -> bool) assert = - : ((* -> bool) -> * -> *) syserror = - : (string -> *) set_fail_prefix = - : (string -> (* -> **) -> * -> **) set_fail = - : (string -> (* -> **) -> * -> **) funpow = - : (int -> (* -> *) -> * -> *) () : void install = - : (string -> void) Calling Lisp compiler File ml/gen compiled () : void #sed -e "s;ml/;/build/reproducible-path/hol88-2.02.19940316dfsg/ml/;g" \ -e "s;lisp/;/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/;g" ml/site.ml.orig > ml/site.ml echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/mk-ml")'\ '(load "lisp/mk-hol-lcf")'\ '(setq %system-name "HOL-LCF")'\ '(setq %liszt "")'\ '(setq %version "2.02 (GCL)")'\ '(set-make)'\ '(tml)'\ 'compile(`ml/site`,true);;'\ 'quit();;'\ | gcl GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/mk-ml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o 0x2878010 ;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x287c2f0 ;; Finished loading "lisp/f-cl" ;; Loading "lisp/f-system" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o 0x2885d10 ;; Finished loading "lisp/f-system" ;; Loading "lisp/f-constants" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2888b40 ;; Finished loading "lisp/f-constants" ;; Loading "lisp/f-site" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o 0x2888bc0 ;; Finished loading "lisp/f-site" ;; Loading "lisp/f-gp" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o 0x2888ec0 ;; Finished loading "lisp/f-gp" ;; Loading "lisp/f-parser" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o 0x288b200 ;; Finished loading "lisp/f-parser" ;; Loading "lisp/f-parsml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o 0x2891a30 ;; Finished loading "lisp/f-parsml" ;; Loading "lisp/f-mlprin" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o 0x289a240 ;; Finished loading "lisp/f-mlprin" ;; Loading "lisp/f-typeml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o 0x289eeb0 ;; Finished loading "lisp/f-typeml" ;; Loading "lisp/f-dml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o 0x28ac200 ;; Finished loading "lisp/f-dml" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28af9e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-tran" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o 0x28b29c0 ;; Finished loading "lisp/f-tran" ;; Loading "lisp/f-iox-stand" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o 0x28c01c0 ;; Finished loading "lisp/f-iox-stand" ;; Loading "lisp/f-writml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o 0x28c3550 ;; Finished loading "lisp/f-writml" ;; Loading "lisp/f-tml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o 0x28c6dc0 ;; Finished loading "lisp/f-tml" ;; Loading "lisp/f-lis" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o 0x28d4b10 ;; Finished loading "lisp/f-lis" ;; Loading "lisp/f-ol-rec" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28d6100 ;; Finished loading "lisp/f-ol-rec" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28d9d00 ;; Finished loading "lisp/f-help" ;; Finished loading "lisp/mk-ml" 17110 >;; Loading "lisp/mk-hol-lcf" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o 0x28da5c0 ;; Loading "lisp/f-parsol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o 0x28dd4f0 ;; Finished loading "lisp/f-parsol" ;; Loading "lisp/f-typeol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o 0x28e1950 ;; Finished loading "lisp/f-typeol" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28e5e20 ;; Finished loading "lisp/f-help" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28e66e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-writol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o 0x28e96c0 ;; Finished loading "lisp/f-writol" ;; Loading "lisp/f-thyfns" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o 0x28eee90 ;; Finished loading "lisp/f-thyfns" ;; Loading "lisp/f-freadth" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o 0x28fe190 lisp/f-freadth.l is redefining function THY-READ ;; Finished loading "lisp/f-freadth" ;; Loading "lisp/f-ol-syntax" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o 0x29012a0 ;; Finished loading "lisp/f-ol-syntax" ;; Loading "lisp/f-subst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o 0x2909560 ;; Finished loading "lisp/f-subst" ;; Loading "lisp/f-inst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o 0x290feb0 ;; Finished loading "lisp/f-inst" ;; Loading "lisp/f-simpl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o 0x2916f20 ;; Finished loading "lisp/f-simpl" ;; Loading "lisp/f-ol-net" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o 0x2919010 ;; Finished loading "lisp/f-ol-net" ;; Finished loading "lisp/mk-hol-lcf" 12070 > "HOL-LCF" > "" > "2.02 (GCL)" > NIL > HOL-LCF version 2.02 (GCL) created 24/7/25 # concat = - : (string -> string -> string) ml_dir_pathname = `/build/reproducible-path/hol88-2.02.19940316dfsg/ml/` : string lisp_dir_pathname = `/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/` : string Calling Lisp compiler File ml/site compiled () : void #echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/mk-ml")'\ '(load "lisp/mk-hol-lcf")'\ '(setq %version "2.02 (GCL)")'\ '(set-make)'\ '(tml)'\ 'load(`ml/site`,false);;'\ 'load(`ml/ml-curry`,false);;'\ 'load(`ml/lis`,false);;'\ 'load(`ml/gen`,false);;'\ 'load(`ml/killpp`,false);;'\ 'lisp `(setq %system-name "HOL-LCF")`;;'\ 'lisp `(setq %liszt "")`;;'\ 'lisp `(setup)`;;' >foo echo '#+native-reloc(progn (load "foo")(ml-save "hol-lcf"))#-native-reloc(let ((si::*collect-binary-modules* t)(si::*binary-modules* nil)) (load "foo")(compiler::link (remove-duplicates si::*binary-modules* :test (function equal)) "hol-lcf" "(load \"debian/gcl_patch.l\")(load \"foo\")(ml-save \"hol-lcf\")" "" nil)(with-open-file (s "bm.l" :direction :output) (prin1 si::*binary-modules* s)))(quit)' | gcl GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "foo" ;; Loading "lisp/mk-ml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-ml.o 0x2878010 ;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x287c2f0 ;; Finished loading "lisp/f-cl" ;; Loading "lisp/f-system" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-system.o 0x2885d10 ;; Finished loading "lisp/f-system" ;; Loading "lisp/f-constants" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2888b40 ;; Finished loading "lisp/f-constants" ;; Loading "lisp/f-site" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-site.o 0x2888bc0 ;; Finished loading "lisp/f-site" ;; Loading "lisp/f-gp" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-gp.o 0x2888ec0 ;; Finished loading "lisp/f-gp" ;; Loading "lisp/f-parser" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parser.o 0x288b200 ;; Finished loading "lisp/f-parser" ;; Loading "lisp/f-parsml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsml.o 0x2891a30 ;; Finished loading "lisp/f-parsml" ;; Loading "lisp/f-mlprin" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-mlprin.o 0x289a240 ;; Finished loading "lisp/f-mlprin" ;; Loading "lisp/f-typeml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeml.o 0x289eeb0 ;; Finished loading "lisp/f-typeml" ;; Loading "lisp/f-dml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-dml.o 0x28ac200 ;; Finished loading "lisp/f-dml" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28af9e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-tran" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tran.o 0x28b29c0 ;; Finished loading "lisp/f-tran" ;; Loading "lisp/f-iox-stand" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-iox-stand.o 0x28c01c0 ;; Finished loading "lisp/f-iox-stand" ;; Loading "lisp/f-writml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writml.o 0x28c3550 ;; Finished loading "lisp/f-writml" ;; Loading "lisp/f-tml" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-tml.o 0x28c6dc0 ;; Finished loading "lisp/f-tml" ;; Loading "lisp/f-lis" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-lis.o 0x28d4b10 ;; Finished loading "lisp/f-lis" ;; Loading "lisp/f-ol-rec" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28d6100 ;; Finished loading "lisp/f-ol-rec" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28d9d00 ;; Finished loading "lisp/f-help" ;; Finished loading "lisp/mk-ml" ;; Loading "lisp/mk-hol-lcf" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk-hol-lcf.o 0x28da5c0 ;; Loading "lisp/f-parsol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-parsol.o 0x28dd4f0 ;; Finished loading "lisp/f-parsol" ;; Loading "lisp/f-typeol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-typeol.o 0x28e1950 ;; Finished loading "lisp/f-typeol" ;; Loading "lisp/f-help" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-help.o 0x28e5e20 ;; Finished loading "lisp/f-help" ;; Loading "lisp/f-format" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-format.o 0x28e66e0 ;; Finished loading "lisp/f-format" ;; Loading "lisp/f-writol" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-writol.o 0x28e96c0 ;; Finished loading "lisp/f-writol" ;; Loading "lisp/f-thyfns" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-thyfns.o 0x28eee90 ;; Finished loading "lisp/f-thyfns" ;; Loading "lisp/f-freadth" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-freadth.o 0x28fe190 lisp/f-freadth.l is redefining function THY-READ ;; Finished loading "lisp/f-freadth" ;; Loading "lisp/f-ol-syntax" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-syntax.o 0x29012a0 ;; Finished loading "lisp/f-ol-syntax" ;; Loading "lisp/f-subst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-subst.o 0x2909560 ;; Finished loading "lisp/f-subst" ;; Loading "lisp/f-inst" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-inst.o 0x290feb0 ;; Finished loading "lisp/f-inst" ;; Loading "lisp/f-simpl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-simpl.o 0x2916f20 ;; Finished loading "lisp/f-simpl" ;; Loading "lisp/f-ol-net" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-net.o 0x2919010 ;; Finished loading "lisp/f-ol-net" ;; Finished loading "lisp/mk-hol-lcf" version 2.02 (GCL) created 24/7/25 #;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/site_ml.o 0x291bc00 ...() : void ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ml-curry_ml.o 0x291c530 .............() : void ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/lis_ml.o 0x291ee30 ......................() : void ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/ml/gen_ml.o 0x2925870 ..................................() : void ............() : void #() : void () : void () : void #;; Finished loading "foo" =======> hol-lcf made if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/genfns.l") (quit)'\ | gcl; else\ lisp/genfns; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/genfns.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genfns.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genfns.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/gnt.l") (quit)'\ | gcl; else\ lisp/gnt; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/gnt.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/gnt.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/gnt.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/hol-pars.l") (quit)'\ | gcl; else\ lisp/hol-pars; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/hol-pars.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;;; Including lisp/genmacs;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o 0x2887240 ;; When compiling (DEFUN LAMQ-RTN) STYLE-WARNING: The variable CONSTR is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/hol-pars.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/hol-pars.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/parslist.l") (quit)'\ | gcl; else\ lisp/parslist; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/parslist.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;;; Including lisp/genmacs;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o 0x2887240 ;; When compiling (DEFUN HOL-SCOLONSETUP) WARNING: ;; The variable %HOL-LIST-DEPTH is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN ML-DEFINE_FINITE_SET_SYNTAX) WARNING: ;; The variable |%print_set-flag| is undefined. ;; The compiler will assume this variable is a global. STYLE-WARNING: The variable SET-PROP is not used. ;; When compiling (DEFUN ML-DEFINE_SET_ABSTRACTION_SYNTAX) STYLE-WARNING: The variable SET-PROP is not used. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/parslist.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/parslist.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/parslet.l") (quit)'\ | gcl; else\ lisp/parslet; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/parslet.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/parslet.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/parslet.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/constp.l") (quit)'\ | gcl; else\ lisp/constp; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/constp.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/constp.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/constp.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/hol-writ.l") (quit)'\ | gcl; else\ lisp/hol-writ; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/hol-writ.l. ;;; Including lisp/f-constants;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-constants.o 0x2881a30 ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881ab0 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x2883640 ;;; Including lisp/genmacs;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o 0x2887240 ;; When compiling (DEFUN PRINT-TM) WARNING: ;; The variable HOL-VAR-BINOPS is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN IS-OL-SET-CONS) WARNING: ;; The variable %FINITE-SET-CONSTRUCTOR is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN PREP-OL-SET-ABSTRACTION) WARNING: ;; The variable %SET-ABSTRACTION-CONSTRUCTOR is undefined. ;; The compiler will assume this variable is a global. ;; When compiling (DEFUN PREP-OL-QUANT) STYLE-WARNING: The variable TY is not used. ;; When compiling (DEFUN PREP-OL-RESTRICT) STYLE-WARNING: The variable TY is not used. ;; When compiling (DEFUN PREP-OL-UNOP) STYLE-WARNING: The variable TY is not used. ;; When compiling (DEFUN PREP-OL-BINOP) STYLE-WARNING: The variable TY is not used. ;; When compiling (DEFUN ML-PRINT_THM) ;; inlining (#<@0000000006A19E40> # ...) ;; inlining (#<@0000000006A17A80> # ...) ;; inlining (SYSTEM::LMAP # ...) ;; inlining (SYSTEM::LMAPR # ...) ;; inlining (MAPL # ...) ;; inlining (MAPC # ...) STYLE-WARNING: The variable X is not used. ;; When compiling (DEFUN ML-PRINT_THM) WARNING: ;; The variable %MARGIN is undefined. ;; The compiler will assume this variable is a global. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/hol-writ.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/hol-writ.o" NIL NIL >if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/mk_pp_thm.l") (quit)'\ | gcl; else\ lisp/mk_pp_thm; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/mk_pp_thm.l. ;;; Including lisp/f-macro;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-macro.o 0x2881a30 ;;; Including lisp/f-ol-rec;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-ol-rec.o 0x28835c0 ;;; Including lisp/genmacs;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/genmacs.o 0x28871c0 ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk_pp_thm.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/mk_pp_thm.o" NIL NIL >cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f PPLAMB.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/hol-lcf < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_PPLAMB.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg HOL-LCF version 2.02 (GCL) created 24/7/25 ###########################() : void ##() : void ##() : void ##=======> theory PPLAMB built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f bool.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/hol-lcf < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_bool.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg HOL-LCF version 2.02 (GCL) created 24/7/25 ################################################################################################() : void ##Theory PPLAMB loaded () : void ##() : void ##() : void ##() : void #####|-"HOL_ASSERT $= = $=" : thm ### () : void () : void () : void () : void () : void () : void () : void () : void ........() : void ...................................................................................................................................() : void File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/hol-in-out loaded () : void ###() : void ##() : void ##() : void ##() : void ##############() : void ##|- T = ((\x. x) = (\x. x)) ##() : void ##|- $! = (\P. P = (\x. T)) ###########|- $? = (\P. P($@ P)) ##() : void ##|- $/\ = (\t1 t2. !t. (t1 ==> t2 ==> t) ==> t) ##() : void ##|- $\/ = (\t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t) ############|- F = (!t. t) ##() : void ##|- $~ = (\t. t ==> F) ##() : void ####|- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y))) ##|- LET = (\f x. f x) ###|- COND = (\t t1 t2. @x. ((t = T) ==> (x = t1)) /\ ((t = F) ==> (x = t2))) #######|- !P B. RES_FORALL P B = (!x. P x ==> B x) ###|- !P B. RES_EXISTS P B = (?x. P x /\ B x) ###|- !P B. RES_SELECT P B = (@x. P x /\ B x) ###|- ARB = (@x. T) ###|- !P B. RES_ABSTRACT P B = (\x. (P x => B x | ARB)) ###########|- !f. ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2)) ###|- !f. ONTO f = (!y. ?x. y = f x) ###############[|- !t. (t = T) \/ (t = F); |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2); |- !t. (\x. t x) = t; |- !P x. P x ==> P($@ P)] : thm list #########|- !t1 t2. t1 IS_ASSUMPTION_OF t2 = t1 ==> t2 ##########|- !P rep. TYPE_DEFINITION P rep = (!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\ (!x. P x = (?x'. x = rep x')) ######MK_PAIR_DEF = |- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y)) ###IS_PAIR_DEF = |- !p. IS_PAIR p = (?x y. p = MK_PAIR x y) #########################################PAIR_EXISTS = |- ?p. IS_PAIR p ####|- ?rep. TYPE_DEFINITION IS_PAIR rep ###########|- REP_prod = (@rep. (!p' p''. (rep p' = rep p'') ==> (p' = p'')) /\ (!p. IS_PAIR p = (?p'. p = rep p'))) ##() : void ###|- !x y. x,y = (@p. REP_prod p = MK_PAIR x y) ###|- !p. FST p = (@x. ?y. MK_PAIR x y = REP_prod p) ###|- !p. SND p = (@y. ?x. MK_PAIR x y = REP_prod p) ##########[|- !x. FST x,SND x = x; |- !x y. FST(x,y) = x; |- !x y. SND(x,y) = y] : thm list #############################PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b) #####|- !f x y. UNCURRY f(x,y) = f x y ###|- !f x y. CURRY f x y = f(x,y) ##() : void ##=======> theory bool built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f ind.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/hol-lcf < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_ind.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg HOL-LCF version 2.02 (GCL) created 24/7/25 ############################() : void ##Theory bool loaded () : void ##() : void ## () : void () : void () : void () : void () : void () : void () : void () : void ........() : void ...................................................................................................................................() : void File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/hol-in-out loaded () : void ##|- ?f. ONE_ONE f /\ ~ONTO f ##() : void ##=======> theory ind built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f BASIC-HOL.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/hol-lcf < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_BASIC-HOL.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg HOL-LCF version 2.02 (GCL) created 24/7/25 ############################Theory ind loaded () : void ###.....................................................................................................................................................() : void ####.............() : void #...................................................................................() : void #............................() : void ##() : void #####() : void ##################TYPE_DEFINITION = |- !P rep. TYPE_DEFINITION P rep = (!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\ (!x. P x = (?x'. x = rep x')) #############################ABS_REP_THM = |- !P. (?rep. TYPE_DEFINITION P rep) ==> (?rep abs. (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))) ###|- !P. (?rep. TYPE_DEFINITION P rep) ==> (?rep abs. (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))) ##=======> theory BASIC-HOL built echo 'compilet `ml/genfns`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 # map2 = - : (((* # **) -> ***) -> (* list # ** list) -> *** list) itlist2 = - : (((* # **) -> *** -> ***) -> (* list # ** list) -> *** -> ***) set_equal = - : (* list -> * list -> bool) el = - : (int -> * list -> *) word_separators = [` `; ` `] : string list words = - : (string -> string list) maptok = - : ((string -> *) -> string -> * list) uncurry = - : ((* -> ** -> ***) -> (* # **) -> ***) Calling Lisp compiler File ml/genfns compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'lisp `(load "lisp/genfns")`;;'\ 'lisp `(load "lisp/gnt")`;;'\ 'lisp `(load "lisp/hol-pars")`;;'\ 'lisp `(load "lisp/parslist")`;;'\ 'lisp `(load "lisp/parslet")`;;'\ 'lisp `(load "lisp/constp")`;;'\ 'lisp `(load "lisp/hol-writ")`;;'\ 'lisp `(load "lisp/mk_pp_thm")`;;'\ 'compilet `ml/hol-syn`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void New constructors declared: AssumeStep : (term -> step) ReflStep : (term -> step) SubstStep : (((thm # term) list # term # thm) -> step) BetaConvStep : (term -> step) AbsStep : ((term # thm) -> step) InstTypeStep : (((type # type) list # thm) -> step) DischStep : ((term # thm) -> step) MpStep : ((thm # thm) -> step) MkCombStep : ((thm # thm) -> step) MkAbsStep : (thm -> step) AlphaStep : ((term # term) -> step) AddAssumStep : ((term # thm) -> step) SymStep : (thm -> step) TransStep : ((thm # thm) -> step) ImpTransStep : ((thm # thm) -> step) ApTermStep : ((term # thm) -> step) ApThmStep : ((thm # term) -> step) EqMpStep : ((thm # thm) -> step) EqImpRuleStep : (thm -> step) SpecStep : ((term # thm) -> step) EqtIntroStep : (thm -> step) GenStep : ((term # thm) -> step) EtaConvStep : (term -> step) ExtStep : (thm -> step) ExistsStep : (((term # term) # thm) -> step) ChooseStep : (((term # thm) # thm) -> step) ImpAntisymRuleStep : ((thm # thm) -> step) MkExistsStep : (thm -> step) SubsStep : ((thm list # thm) -> step) SubsOccsStep : (((int list # thm) list # thm) -> step) SubstConvStep : (((thm # term) list # term # term) -> step) ConjStep : ((thm # thm) -> step) Conjunct1Step : (thm -> step) Conjunct2Step : (thm -> step) Disj1Step : ((thm # term) -> step) Disj2Step : ((term # thm) -> step) DisjCasesStep : ((thm # thm # thm) -> step) NotIntroStep : (thm -> step) NotElimStep : (thm -> step) ContrStep : ((term # thm) -> step) CcontrStep : ((term # thm) -> step) InstStep : (((term # term) list # thm) -> step) StoreDefinitionStep : ((string # term) -> step) DefinitionStep : ((string # string) -> step) DefExistsRuleStep : (term -> step) NewAxiomStep : ((string # term) -> step) AxiomStep : ((string # string) -> step) TheoremStep : ((string # string) -> step) NewConstantStep : ((string # type) -> step) NewTypeStep : ((int # string) -> step) NumConvStep : (term -> step) steplist = [] : step list record_proof_flag = false : bool suspended = false : bool is_recording_proof = - : (void -> bool) record_proof = - : (bool -> void) suspend_recording = - : (* -> void) resume_recording = - : (* -> void) RecordStep = - : (step -> void) get_steps = - : (void -> step list) ((-), (-), (-), (-), (-), -) : ((bool -> void) # (void -> bool) # (step -> void) # (void -> step list) # (* -> void) # (** -> void)) record_proof = - : (bool -> void) is_recording_proof = - : (void -> bool) RecordStep = - : (step -> void) get_steps = - : (void -> step list) suspend_recording = - : (* -> void) resume_recording = - : (* -> void) new_constant = - : ((string # type) -> void) arb_term = "arb" : term ARB_THM = |- $= = $= falsity = "F" : term bool_ty = ":bool" : type mk_forall = - : ((term # term) -> term) mk_exists = - : ((term # term) -> term) mk_select = - : ((term # term) -> term) mk_conj = - : ((term # term) -> term) mk_disj = - : ((term # term) -> term) mk_imp = - : ((term # term) -> term) mk_eq = - : ((term # term) -> term) mk_pair = - : ((term # term) -> term) mk_neg = - : (term -> term) dest_forall = - : (term -> (term # term)) dest_exists = - : (term -> (term # term)) dest_select = - : (term -> (term # term)) dest_conj = - : (term -> (term # term)) dest_disj = - : (term -> (term # term)) dest_eq = - : (term -> (term # term)) dest_pair = - : (term -> (term # term)) dest_imp = - : (term -> (term # term)) dest_neg = - : (term -> term) dest_neg_imp = - : (term -> (term # term)) dest_form = - : (form -> term) mk_form = - : (term -> form) mk_thm = - : ((term list # term) -> thm) dest_thm = - : (thm -> (term list # term)) hyp = - : (thm -> term list) concl = - : (thm -> term) hyp_union = - : (thm list -> term list) is_forall = - : (term -> bool) is_exists = - : (term -> bool) is_select = - : (term -> bool) is_conj = - : (term -> bool) is_disj = - : (term -> bool) is_imp = - : (term -> bool) is_eq = - : (term -> bool) is_pair = - : (term -> bool) is_neg = - : (term -> bool) is_neg_imp = - : (term -> bool) aconv = - : (term -> term -> bool) subst = - : ((term # term) list -> term -> term) subst_occs = - : (int list list -> (term # term) list -> term -> term) free_in = - : (term -> term -> bool) variant = - : (term list -> term -> term) type_in_type = - : (type -> type -> bool) type_in = - : (type -> term -> bool) inst_type = - : ((type # type) list -> type -> type) inst = - : (term list -> (type # type) list -> term -> term) match = - : (term -> term -> ((term # term) list # (type # type) list)) freesl = - : (term list -> term list) varsl = - : (term list -> term list) tyvarsl = - : (term list -> type list) thm_frees = - : (thm -> term list) disch = - : ((term # term list) -> term list) is_pred = - : (term -> bool) mk_pred = - : ((string # term) -> term) dest_pred = - : (term -> (string # term)) list_mk_abs = - : ((term list # term) -> term) list_mk_comb = - : ((term # term list) -> term) list_mk_conj = - : (term list -> term) list_mk_disj = - : (term list -> term) list_mk_imp = - : ((term list # term) -> term) list_mk_forall = - : ((term list # term) -> term) list_mk_exists = - : ((term list # term) -> term) list_mk_pair = - : (term list -> term) strip_abs = - : (term -> (term list # term)) strip_comb = - : (term -> (term # term list)) conjuncts = - : (term -> term list) disjuncts = - : (term -> term list) strip_imp = - : (term -> (term list # term)) strip_forall = - : (term -> (term list # term)) strip_exists = - : (term -> (term list # term)) strip_pair = - : (term -> term list) mk_cond = - : ((term # term # term) -> term) is_cond = - : (term -> bool) dest_cond = - : (term -> (term # term # term)) dest_let = - : (term -> (term # term)) mk_let = - : ((term # term) -> term) is_let = - : (term -> bool) mk_cons = - : ((term # term) -> term) dest_cons = - : (term -> (term # term)) is_cons = - : (term -> bool) mk_list = - : ((term list # type) -> term) dest_list = - : (term -> (term list # type)) is_list = - : (term -> bool) mk_pabs = - : ((term # term) -> term) dest_pabs = - : (term -> (term # term)) is_pabs = - : (term -> bool) lhs = - : (term -> term) rhs = - : (term -> term) find_term = - : ((term -> bool) -> term -> term) rator = - : (term -> term) rand = - : (term -> term) bndvar = - : (term -> term) body = - : (term -> term) find_terms = - : ((term -> bool) -> term -> term list) mk_primed_var = - : ((string # type) -> term) new_axiom = - : ((string # term) -> thm) new_open_axiom = - : ((string # term) -> thm) new_predicate = - : ((string # type) -> void) mk_definition = - : (term -> term) dest_definition = - : (term -> term) is_definition = - : (term -> bool) store_definition = - : ((string # term) -> thm) theorem = - : (string -> string -> thm) new_type = - : (int -> string -> void) delete_thm = - : (string -> string -> thm) pp_axiom = - : (string -> string -> thm) axiom = - : (string -> string -> thm) definition = - : (string -> string -> thm) new_infix = - : ((string # type) -> void) store_binders = - : (term list -> thm) list_of_binders = [] : term list new_binder = - : ((string # type) -> void) n_strip_quant = - : ((* -> (** # *)) -> int -> * -> (** list # *)) is_infix_type = - : (type -> bool) is_binder_type = - : (type -> bool) check_specification = - : (* -> (string # string) list -> thm -> (term list # term)) new_specification = - : (string -> (string # string) list -> thm -> thm) check_varstruct = - : (term -> term list) check_lhs = - : (term -> term list) get_type = - : (term -> type -> type) DEF_EXISTS_RULE = - : (term -> thm) new_gen_definition = - : (string -> (string # term) -> thm) new_definition = - : ((string # term) -> thm) new_infix_definition = - : ((string # term) -> thm) new_theory = - : (string -> void) close_theory = - : (void -> void) binders = - : (string -> term list) activate_binders = - : (string -> string list) ancestors = - : (string -> string list) thy_chked = [] : string list activate_all_binders = - : (string -> string list) load_theory = - : (string -> void) extend_theory = - : (string -> void) new_parent = - : (string -> void) ((-), (-), -) : ((string -> void) # (string -> void) # (string -> void)) load_theory = - : (string -> void) extend_theory = - : (string -> void) new_parent = - : (string -> void) new_binder_definition = - : ((string # term) -> thm) new_type_definition = - : ((string # term # thm) -> thm) ML_eval = - : (string -> void) New constructors declared: preterm_var : (string -> preterm) preterm_const : (string -> preterm) preterm_comb : ((preterm # preterm) -> preterm) preterm_abs : ((preterm # preterm) -> preterm) preterm_typed : ((preterm # type) -> preterm) preterm_antiquot : (term -> preterm) preterm_to_term = - : (preterm -> term) Calling Lisp compiler File ml/hol-syn compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/hol-rule`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void T_DEF = |- T = ((\x. x) = (\x. x)) F_DEF = |- F = (!t. t) FORALL_DEF = |- $! = (\P. P = (\x. T)) AND_DEF = |- $/\ = (\t1 t2. !t. (t1 ==> t2 ==> t) ==> t) OR_DEF = |- $\/ = (\t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t) EXISTS_DEF = |- $? = (\P. P($@ P)) NOT_DEF = |- $~ = (\t. t ==> F) EXISTS_UNIQUE_DEF = |- ?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y))) LET_DEF = |- LET = (\f x. f x) UNCURRY_DEF = |- !f x y. UNCURRY f(x,y) = f x y CURRY_DEF = |- !f x y. CURRY f x y = f(x,y) COND_DEF = |- COND = (\t t1 t2. @x. ((t = T) ==> (x = t1)) /\ ((t = F) ==> (x = t2))) TYPE_DEFINITION = |- !P rep. TYPE_DEFINITION P rep = (!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\ (!x. P x = (?x'. x = rep x')) BOOL_CASES_AX = |- !t. (t = T) \/ (t = F) IMP_ANTISYM_AX = |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2) ETA_AX = |- !t. (\x. t x) = t SELECT_AX = |- !P x. P x ==> P($@ P) PAIR = |- !x. FST x,SND x = x FST = |- !x y. FST(x,y) = x SND = |- !x y. SND(x,y) = y PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b) ASSUME = - : (term -> thm) REFL = - : (term -> thm) SUBST = - : ((thm # term) list -> term -> thm -> thm) BETA_CONV = - : (term -> thm) ABS = - : (term -> thm -> thm) INST_TYPE = - : ((type # type) list -> thm -> thm) DISCH = - : (term -> thm -> thm) MP = - : (thm -> thm -> thm) Calling Lisp compiler File ml/hol-rule compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/hol-drule`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void ADD_ASSUM = - : (term -> thm -> thm) SYM = - : (thm -> thm) () : void TRANS = - : (thm -> thm -> thm) IMP_TRANS = - : (thm -> thm -> thm) AP_TERM = - : (term -> thm -> thm) AP_THM = - : (thm -> term -> thm) EQ_MP = - : (thm -> thm -> thm) EQ_IMP_RULE = - : (thm -> (thm # thm)) TRUTH = |- T EQT_ELIM = - : (thm -> thm) SPEC = - : (term -> thm -> thm) SPECL = - : (term list -> thm -> thm) EQT_INTRO = - : (thm -> thm) GEN = - : (term -> thm -> thm) GENL = - : (term list -> thm -> thm) ETA_CONV = - : (term -> thm) EXT = - : (thm -> thm) SELECT_INTRO = - : (thm -> thm) SELECT_ELIM = - : (thm -> (term # thm) -> thm) EXISTS = - : ((term # term) -> thm -> thm) CHOOSE = - : ((term # thm) -> thm -> thm) SELECT_RULE = - : (thm -> thm) IMP_ANTISYM_RULE = - : (thm -> thm -> thm) MK_EXISTS = - : (thm -> thm) LIST_MK_EXISTS = - : (term list -> thm -> thm) FORALL_EQ = - : (term -> thm -> thm) EXISTS_EQ = - : (term -> thm -> thm) SELECT_EQ = - : (term -> thm -> thm) SUBS = - : (thm list -> thm -> thm) SUBS_OCCS = - : ((int list # thm) list -> thm -> thm) SUBST_CONV = - : ((thm # term) list -> term -> term -> thm) RIGHT_BETA = - : (thm -> thm) LIST_BETA_CONV = - : (term -> thm) RIGHT_LIST_BETA = - : (thm -> thm) AND_INTRO_THM = |- !t1 t2. t1 ==> t2 ==> t1 /\ t2 CONJ = - : (thm -> thm -> thm) AND1_THM = |- !t1 t2. t1 /\ t2 ==> t1 CONJUNCT1 = - : (thm -> thm) AND2_THM = |- !t1 t2. t1 /\ t2 ==> t2 CONJUNCT2 = - : (thm -> thm) CONJ_SYM = |- !t1 t2. t1 /\ t2 = t2 /\ t1 CONJ_ASSOC = |- !t1 t2 t3. t1 /\ t2 /\ t3 = (t1 /\ t2) /\ t3 CONJUNCTS_CONV = - : ((term # term) -> thm) CONJ_SET_CONV = - : (term list -> term list -> thm) FRONT_CONJ_CONV = - : (term list -> term -> thm) CONJ_DISCH = - : (term -> thm -> thm) CONJ_DISCHL = - : (term list -> thm -> thm) OR_INTRO_THM1 = |- !t1 t2. t1 ==> t1 \/ t2 DISJ1 = - : (thm -> term -> thm) OR_INTRO_THM2 = |- !t1 t2. t2 ==> t1 \/ t2 DISJ2 = - : (term -> thm -> thm) OR_ELIM_THM = |- !t t1 t2. t1 \/ t2 ==> (t1 ==> t) ==> (t2 ==> t) ==> t DISJ_CASES = - : (thm -> thm -> thm -> thm) FALSITY = |- !t. F ==> t IMP_F = |- !t. (t ==> F) ==> ~t NOT_INTRO = - : (thm -> thm) NEG_DISCH = - : (term -> thm -> thm) F_IMP = |- !t. ~t ==> t ==> F NOT_MP = - : (thm -> thm -> thm) UNDISCH = - : (thm -> thm) NOT_ELIM = - : (thm -> thm) NOT_EQ_SYM = - : (thm -> thm) AND_CLAUSES = |- !t. (T /\ t = t) /\ (t /\ T = t) /\ (F /\ t = F) /\ (t /\ F = F) /\ (t /\ t = t) OR_CLAUSES = |- !t. (T \/ t = T) /\ (t \/ T = T) /\ (F \/ t = t) /\ (t \/ F = t) /\ (t \/ t = t) IMP_CLAUSES = |- !t. (T ==> t = t) /\ (t ==> T = T) /\ (F ==> t = T) /\ (t ==> t = T) /\ (t ==> F = ~t) CONTR = - : (term -> thm -> thm) EQF_INTRO = - : (thm -> thm) EQF_ELIM = - : (thm -> thm) EXCLUDED_MIDDLE = |- !t. t \/ ~t CCONTR = - : (term -> thm -> thm) INST = - : ((term # term) list -> thm -> thm) NOT_F = |- !t. ~t ==> (t = F) NOT_AND = |- ~(t /\ ~t) OR_IMP_THM = |- !t1 t2. (t1 = t2 \/ t1) = t2 ==> t1 NOT_IMP = |- !t1 t2. ~(t1 ==> t2) = t1 /\ ~t2 DISJ_ASSOC = |- !t1 t2 t3. t1 \/ t2 \/ t3 = (t1 \/ t2) \/ t3 DISJ_SYM = |- !t1 t2. t1 \/ t2 = t2 \/ t1 DE_MORGAN_THM = |- !t1 t2. (~(t1 /\ t2) = ~t1 \/ ~t2) /\ (~(t1 \/ t2) = ~t1 /\ ~t2) ISPEC = - : (term -> thm -> thm) ISPECL = - : (term list -> thm -> thm) SELECT_REFL = |- !x. (@y. y = x) = x SELECT_UNIQUE = |- !P x. (!y. P y = (y = x)) ==> ($@ P = x) Calling Lisp compiler File ml/hol-drule compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/drul`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void GEN_ALL = - : (thm -> thm) DISCH_ALL = - : (thm -> thm) SPEC_VAR = - : (thm -> (term # thm)) UNDISCH_ALL = - : (thm -> thm) SPEC_ALL = - : (thm -> thm) PROVE_HYP = - : (thm -> thm -> thm) CONJ_PAIR = - : (thm -> (thm # thm)) LIST_CONJ = - : (thm list -> thm) CONJ_LIST = - : (int -> thm -> thm list) CONJUNCTS = - : (thm -> thm list) BODY_CONJUNCTS = - : (thm -> thm list) IMP_CANON = - : (thm -> thm list) LIST_MP = - : (thm list -> thm -> thm) CONTRAPOS = - : (thm -> thm) DISJ_IMP = - : (thm -> thm) IMP_ELIM = - : (thm -> thm) NOT_CLAUSES = |- (!t. ~~t = t) /\ (~T = F) /\ (~F = T) DISJ_CASES_UNION = - : (thm -> thm -> thm -> thm) EQ_REFL = |- !x. x = x REFL_CLAUSE = |- !x. (x = x) = T EQ_SYM = |- !x y. (x = y) ==> (y = x) EQ_SYM_EQ = |- !x y. (x = y) = (y = x) EQ_EXT = |- !f g. (!x. f x = g x) ==> (f = g) EQ_TRANS = |- !x y z. (x = y) /\ (y = z) ==> (x = z) BOOL_EQ_DISTINCT = |- ~(T = F) /\ ~(F = T) EQ_CLAUSES = |- !t. ((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t) MK_COMB = - : ((thm # thm) -> thm) MK_ABS = - : (thm -> thm) HALF_MK_ABS = - : (thm -> thm) ALPHA_CONV = - : (term -> term -> thm) ALPHA = - : (term -> term -> thm) GEN_ALPHA_CONV = - : (term -> term -> thm) COND_CLAUSES = |- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2) COND_ID = |- !b t. (b => t | t) = t IMP_CONJ = - : (thm -> thm -> thm) EXISTS_IMP = - : (term -> thm -> thm) LEFT_AND_OVER_OR = |- !t1 t2 t3. t1 /\ (t2 \/ t3) = t1 /\ t2 \/ t1 /\ t3 RIGHT_AND_OVER_OR = |- !t1 t2 t3. (t2 \/ t3) /\ t1 = t2 /\ t1 \/ t3 /\ t1 LEFT_OR_OVER_AND = |- !t1 t2 t3. t1 \/ t2 /\ t3 = (t1 \/ t2) /\ (t1 \/ t3) RIGHT_OR_OVER_AND = |- !t1 t2 t3. t2 /\ t3 \/ t1 = (t2 \/ t1) /\ (t3 \/ t1) IMP_DISJ_THM = |- !t1 t2. t1 ==> t2 = ~t1 \/ t2 IMP_F_EQ_F = |- !t. t ==> F = (t = F) AND_IMP_INTRO = |- !t1 t2 t3. t1 ==> t2 ==> t3 = t1 /\ t2 ==> t3 EQ_IMP_THM = |- !t1 t2. (t1 = t2) = (t1 ==> t2) /\ (t2 ==> t1) EQ_EXPAND = |- !t1 t2. (t1 = t2) = t1 /\ t2 \/ ~t1 /\ ~t2 COND_RATOR = |- !b f g x. (b => f | g)x = (b => f x | g x) COND_RAND = |- !f b x y. f(b => x | y) = (b => f x | f y) COND_ABS = |- !b f g. (\x. (b => f x | g x)) = (b => f | g) COND_EXPAND = |- !b t1 t2. (b => t1 | t2) = (~b \/ t1) /\ (b \/ t2) Calling Lisp compiler File ml/drul compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/hol-thyfn`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void IS_ASSUMPTION_OF = |- !t1 t2. t1 IS_ASSUMPTION_OF t2 = t1 ==> t2 ASSUMPTION_DISCH = - : (term -> thm -> thm) ASSUMPTION_DISCH_ALL = - : (thm -> thm) ASSUMPTION_UNDISCH = - : (thm -> thm) ASSUMPTION_UNDISCH_ALL = - : (thm -> thm) save_thm = - : ((string # thm) -> thm) theorem = - : (string -> string -> thm) delete_thm = - : (string -> string -> thm) theorems = - : (string -> (string # thm) list) ((-), (-), (-), -) : (((string # thm) -> thm) # (string -> string -> thm) # (string -> string -> thm) # (string -> (string # thm) list)) save_thm = - : ((string # thm) -> thm) theorem = - : (string -> string -> thm) delete_thm = - : (string -> string -> thm) theorems = - : (string -> (string # thm) list) constants = - : (string -> term list) axioms = - : (string -> (string # thm) list) definition = - : (string -> string -> thm) definitions = - : (string -> (string # thm) list) print_list = - : (bool -> string -> (* -> **) -> * list -> void) print_theory = - : (string -> void) theorem_lfn = - : (string list -> thm) theorem_msg_lfn = - : (string list -> thm) load_theorem = - : (string -> string -> void) load_theorems = - : (string -> void list) definition_lfn = - : (string list -> thm) definition_msg_lfn = - : (string list -> thm) load_definition = - : (string -> string -> void) load_definitions = - : (string -> void list) axiom_lfn = - : (string list -> thm) axiom_msg_lfn = - : (string list -> thm) load_axiom = - : (string -> string -> void) load_axioms = - : (string -> void list) Calling Lisp compiler File ml/hol-thyfn compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/tacticals`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void type proof defined type goal defined type tactic defined TAC_PROOF = - : ((goal # tactic) -> thm) prove = - : ((term # tactic) -> thm) ASSUM_LIST = - : ((thm list -> tactic) -> tactic) POP_ASSUM = - : ((thm -> tactic) -> tactic) POP_ASSUM_LIST = - : ((thm list -> tactic) -> tactic) () : void () : void mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) THEN = - : (tactic -> tactic -> tactic) THENL = - : (tactic -> tactic list -> tactic) ((-), -) : ((tactic -> tactic -> tactic) # (tactic -> tactic list -> tactic)) THEN = - : (tactic -> tactic -> tactic) THENL = - : (tactic -> tactic list -> tactic) () : void ORELSE = - : (tactic -> tactic -> tactic) FAIL_TAC = - : (string -> tactic) NO_TAC = - : tactic ALL_TAC = - : tactic TRY = - : (tactic -> tactic) REPEAT = - : (tactic -> tactic) achieves = - : (thm -> goal -> bool) chktac = - : ((goal list # proof) -> thm) check_valid = - : (goal -> (goal list # proof) -> bool) VALID = - : (tactic -> tactic) EVERY = - : (tactic list -> tactic) FIRST = - : (tactic list -> tactic) MAP_EVERY = - : ((* -> tactic) -> * list -> tactic) MAP_FIRST = - : ((* -> tactic) -> * list -> tactic) EVERY_ASSUM = - : ((thm -> tactic) -> tactic) FIRST_ASSUM = - : ((thm -> tactic) -> tactic) SUBGOAL_THEN = - : (term -> (thm -> tactic) -> tactic) CHANGED_TAC = - : (tactic -> tactic) Calling Lisp compiler File ml/tacticals compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/tacont`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void type thm_tactic defined type thm_tactical defined () : void () : void THEN_TCL = - : (thm_tactical -> thm_tactical -> thm_tactical) ORELSE_TCL = - : (thm_tactical -> thm_tactical -> thm_tactical) REPEAT_TCL = - : (thm_tactical -> thm_tactical) REPEAT_GTCL = - : (thm_tactical -> thm_tactical) ALL_THEN = - : thm_tactical NO_THEN = - : thm_tactical EVERY_TCL = - : (thm_tactical list -> thm_tactical) FIRST_TCL = - : (thm_tactical list -> thm_tactical) CONJUNCTS_THEN2 = - : (thm_tactic -> thm_tactical) CONJUNCTS_THEN = - : thm_tactical DISJ_CASES_THEN2 = - : (thm_tactic -> thm_tactical) DISJ_CASES_THEN = - : thm_tactical DISJ_CASES_THENL = - : (thm_tactic list -> thm_tactic) DISCH_THEN = - : (thm_tactic -> tactic) X_CHOOSE_THEN = - : (term -> thm_tactical) CHOOSE_THEN = - : thm_tactical X_CASES_THENL = - : (term list list -> thm_tactic list -> thm_tactic) X_CASES_THEN = - : (term list list -> thm_tactical) CASES_THENL = - : (thm_tactic list -> thm_tactic) STRIP_THM_THEN = - : thm_tactical Calling Lisp compiler File ml/tacont compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/tactics`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void ACCEPT_TAC = - : thm_tactic DISCARD_TAC = - : thm_tactic CONTR_TAC = - : thm_tactic ASSUME_TAC = - : thm_tactic FREEZE_THEN = - : thm_tactical CONJ_TAC = - : tactic DISJ1_TAC = - : tactic DISJ2_TAC = - : tactic MP_TAC = - : thm_tactic EQ_TAC = - : tactic X_GEN_TAC = - : (term -> tactic) GEN_TAC = - : tactic SPEC_TAC = - : ((term # term) -> tactic) EXISTS_TAC = - : (term -> tactic) GSUBST_TAC = - : (((term # term) list -> term -> term) -> thm list -> tactic) SUBST_TAC = - : (thm list -> tactic) SUBST_OCCS_TAC = - : ((int list # thm) list -> tactic) SUBST1_TAC = - : thm_tactic RULE_ASSUM_TAC = - : ((thm -> thm) -> tactic) SUBST_ALL_TAC = - : thm_tactic CHECK_ASSUME_TAC = - : thm_tactic STRIP_ASSUME_TAC = - : thm_tactic STRUCT_CASES_TAC = - : thm_tactic COND_CASES_TAC = - : tactic BOOL_CASES_TAC = - : (term -> tactic) STRIP_GOAL_THEN = - : (thm_tactic -> tactic) FILTER_GEN_TAC = - : (term -> tactic) FILTER_DISCH_THEN = - : (thm_tactic -> term -> tactic) FILTER_STRIP_THEN = - : (thm_tactic -> term -> tactic) DISCH_TAC = - : tactic DISJ_CASES_TAC = - : thm_tactic CHOOSE_TAC = - : thm_tactic X_CHOOSE_TAC = - : (term -> thm_tactic) STRIP_TAC = - : tactic FILTER_DISCH_TAC = - : (term -> tactic) FILTER_STRIP_TAC = - : (term -> tactic) ASM_CASES_TAC = - : (term -> tactic) REFL_TAC = - : tactic UNDISCH_TAC = - : (term -> tactic) AP_TERM_TAC = - : tactic AP_THM_TAC = - : tactic Calling Lisp compiler File ml/tactics compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/conv`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void type conv defined INST_TY_TERM = - : (((term # term) list # (type # type) list) -> thm -> thm) GSPEC = - : (thm -> thm) PART_MATCH = - : ((term -> term) -> thm -> conv) MATCH_MP = - : (thm -> thm -> thm) REWR_CONV = - : (thm -> conv) NO_CONV = - : conv ALL_CONV = - : conv () : void () : void THENC = - : (conv -> conv -> conv) ORELSEC = - : (conv -> conv -> conv) FIRST_CONV = - : (conv list -> conv) EVERY_CONV = - : (conv list -> conv) REPEATC = - : (conv -> conv) CHANGED_CONV = - : (conv -> conv) TRY_CONV = - : (conv -> conv) SUB_CONV = - : (conv -> conv) qconv = `QCONV` : string QCONV = - : (conv -> conv) ALL_QCONV = - : conv THENQC = - : (conv -> conv -> conv) ORELSEQC = - : ((term -> *) -> (term -> *) -> term -> *) REPEATQC = - : (conv -> conv) CHANGED_QCONV = - : (conv -> conv) TRY_QCONV = - : (conv -> conv) SUB_QCONV = - : (conv -> conv) SUB_ALPHA_QCONV = - : (conv -> conv) DEPTH_QCONV = - : ((conv -> conv) -> conv -> conv) DEPTH_CONV = - : (conv -> conv) REDEPTH_QCONV = - : ((conv -> conv) -> conv -> conv) REDEPTH_CONV = - : (conv -> conv) TOP_DEPTH_QCONV = - : ((conv -> conv) -> conv -> conv) TOP_DEPTH_CONV = - : (conv -> conv) ONCE_DEPTH_QCONV = - : ((conv -> conv) -> conv -> conv) ONCE_DEPTH_CONV = - : (conv -> conv) REW_DEPTH_CONV = - : (conv -> conv) ONCE_REW_DEPTH_CONV = - : (conv -> conv) ((-), (-), (-), (-), (-), -) : ((conv -> conv) # (conv -> conv) # (conv -> conv) # (conv -> conv) # (conv -> conv) # (conv -> conv)) DEPTH_CONV = - : (conv -> conv) REDEPTH_CONV = - : (conv -> conv) TOP_DEPTH_CONV = - : (conv -> conv) ONCE_DEPTH_CONV = - : (conv -> conv) REW_DEPTH_CONV = - : (conv -> conv) ONCE_REW_DEPTH_CONV = - : (conv -> conv) CONV_RULE = - : (conv -> thm -> thm) CONV_TAC = - : (conv -> tactic) BETA_RULE = - : (thm -> thm) BETA_TAC = - : tactic NOT_FORALL_CONV = - : conv NOT_EXISTS_CONV = - : conv EXISTS_NOT_CONV = - : conv FORALL_NOT_CONV = - : conv FORALL_AND_CONV = - : conv EXISTS_OR_CONV = - : conv AND_FORALL_CONV = - : conv LEFT_AND_FORALL_CONV = - : conv RIGHT_AND_FORALL_CONV = - : conv OR_EXISTS_CONV = - : conv LEFT_OR_EXISTS_CONV = - : conv RIGHT_OR_EXISTS_CONV = - : conv EXISTS_AND_CONV = - : conv AND_EXISTS_CONV = - : conv LEFT_AND_EXISTS_CONV = - : conv RIGHT_AND_EXISTS_CONV = - : conv FORALL_OR_CONV = - : conv OR_FORALL_CONV = - : conv LEFT_OR_FORALL_CONV = - : conv RIGHT_OR_FORALL_CONV = - : conv FORALL_IMP_CONV = - : conv LEFT_IMP_EXISTS_CONV = - : conv RIGHT_IMP_FORALL_CONV = - : conv EXISTS_IMP_CONV = - : conv LEFT_IMP_FORALL_CONV = - : conv RIGHT_IMP_EXISTS_CONV = - : conv X_SKOLEM_CONV = - : (term -> conv) SKOLEM_CONV = - : conv SYM_CONV = - : conv RIGHT_CONV_RULE = - : (conv -> thm -> thm) FUN_EQ_CONV = - : conv X_FUN_EQ_CONV = - : (term -> conv) CONTRAPOS_CONV = - : conv ANTE_CONJ_CONV = - : conv SWAP_EXISTS_CONV = - : conv RAND_CONV = - : (conv -> conv) RATOR_CONV = - : (conv -> conv) ABS_CONV = - : (conv -> conv) SELECT_CONV = - : conv bool_EQ_CONV = - : conv EXISTS_UNIQUE_CONV = - : conv COND_CONV = - : conv PAIRED_BETA_CONV = - : conv PAIRED_ETA_CONV = - : conv GEN_BETA_CONV = - : conv ITER_BETA_CONV = - : conv ARGS_CONV = - : (conv list -> conv) RED_WHERE = - : (term -> term -> conv) REDUCE = - : (term -> term -> thm -> thm) let_CONV = - : conv - : conv let_CONV = - : conv EXISTENCE = - : (thm -> thm) AC_CONV = - : ((thm # thm) -> conv) GSYM = - : (thm -> thm) Calling Lisp compiler File ml/conv compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/hol-net`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void nil_term_net = - : * term_net enter_term = - : ((term # *) -> * term_net -> * term_net) lookup_term = - : (* term_net -> term -> * list) merge_term_nets = - : (* term_net -> * term_net -> * term_net) Calling Lisp compiler File ml/hol-net compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/rewrite`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void mk_rewrites = - : (thm -> thm list) mk_rewritesl = - : (thm list -> thm list) mk_conv_net = - : (thm list -> conv term_net) - : (thm list -> conv term_net) mk_conv_net = - : (thm list -> conv term_net) FORALL_SIMP = |- !t. (!x. t) = t EXISTS_SIMP = |- !t. (?x. t) = t ABS_SIMP = |- !t1 t2. (\x. t1)t2 = t1 basic_rewrites = [|- !x. (x = x) = T; |- !t. ((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t); |- (!t. ~~t = t) /\ (~T = F) /\ (~F = T); |- !t. (T /\ t = t) /\ (t /\ T = t) /\ (F /\ t = F) /\ (t /\ F = F) /\ (t /\ t = t); |- !t. (T \/ t = T) /\ (t \/ T = T) /\ (F \/ t = t) /\ (t \/ F = t) /\ (t \/ t = t); |- !t. (T ==> t = t) /\ (t ==> T = T) /\ (F ==> t = T) /\ (t ==> t = T) /\ (t ==> F = ~t); |- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2); |- !t. (!x. t) = t; |- !t. (?x. t) = t; |- !t1 t2. (\x. t1)t2 = t1; |- !x. FST x,SND x = x; |- !x y. FST(x,y) = x; |- !x y. SND(x,y) = y] : thm list GEN_REWRITE_CONV = - : ((conv -> conv) -> thm list -> thm list -> conv) PURE_REWRITE_CONV = - : (thm list -> conv) REWRITE_CONV = - : (thm list -> conv) PURE_ONCE_REWRITE_CONV = - : (thm list -> conv) ONCE_REWRITE_CONV = - : (thm list -> conv) GEN_REWRITE_RULE = - : ((conv -> conv) -> thm list -> thm list -> thm -> thm) PURE_REWRITE_RULE = - : (thm list -> thm -> thm) REWRITE_RULE = - : (thm list -> thm -> thm) PURE_ONCE_REWRITE_RULE = - : (thm list -> thm -> thm) ONCE_REWRITE_RULE = - : (thm list -> thm -> thm) PURE_ASM_REWRITE_RULE = - : (thm list -> thm -> thm) ASM_REWRITE_RULE = - : (thm list -> thm -> thm) PURE_ONCE_ASM_REWRITE_RULE = - : (thm list -> thm -> thm) ONCE_ASM_REWRITE_RULE = - : (thm list -> thm -> thm) FILTER_PURE_ASM_REWRITE_RULE = - : ((term -> bool) -> thm list -> thm -> thm) FILTER_ASM_REWRITE_RULE = - : ((term -> bool) -> thm list -> thm -> thm) FILTER_PURE_ONCE_ASM_REWRITE_RULE = - : ((term -> bool) -> thm list -> thm -> thm) FILTER_ONCE_ASM_REWRITE_RULE = - : ((term -> bool) -> thm list -> thm -> thm) GEN_REWRITE_TAC = - : ((conv -> conv) -> thm list -> thm list -> tactic) PURE_REWRITE_TAC = - : (thm list -> tactic) REWRITE_TAC = - : (thm list -> tactic) PURE_ONCE_REWRITE_TAC = - : (thm list -> tactic) ONCE_REWRITE_TAC = - : (thm list -> tactic) PURE_ASM_REWRITE_TAC = - : (thm list -> tactic) ASM_REWRITE_TAC = - : (thm list -> tactic) PURE_ONCE_ASM_REWRITE_TAC = - : (thm list -> tactic) ONCE_ASM_REWRITE_TAC = - : (thm list -> tactic) FILTER_PURE_ASM_REWRITE_TAC = - : ((term -> bool) -> thm list -> tactic) FILTER_ASM_REWRITE_TAC = - : ((term -> bool) -> thm list -> tactic) FILTER_PURE_ONCE_ASM_REWRITE_TAC = - : ((term -> bool) -> thm list -> tactic) FILTER_ONCE_ASM_REWRITE_TAC = - : ((term -> bool) -> thm list -> tactic) find_match = - : (term -> term -> ((term # term) list # (type # type) list)) SUBST_MATCH = - : (thm -> thm -> thm) Calling Lisp compiler File ml/rewrite compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/resolve`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void MATCH_ACCEPT_TAC = - : thm_tactic ANTE_RES_THEN = - : thm_tactical RES_CANON = - : (thm -> thm list) MATCH_MP = - : (thm -> thm -> thm) check = - : (string -> * list -> * list) IMP_RES_THEN = - : thm_tactical RES_THEN = - : (thm_tactic -> tactic) ((-), -) : (thm_tactical # (thm_tactic -> tactic)) IMP_RES_THEN = - : thm_tactical RES_THEN = - : (thm_tactic -> tactic) IMP_RES_TAC = - : thm_tactic RES_TAC = - : tactic MATCH_MP_TAC = - : thm_tactic Calling Lisp compiler File ml/resolve compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/goals`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void assignable_print_term = - : (term -> void) () : void print_hyps = - : (term list -> void) print_goal = - : (goal -> void) PROVE = - : ((term # tactic) -> thm) prove_thm = - : ((string # term # tactic) -> thm) type subgoals defined root_goal = - : tactic attempt_first = - : (subgoals -> tactic -> subgoals) rotate_goals = - : (subgoals -> subgoals) achieve_first = - : (subgoals -> thm -> subgoals) apply_proof = - : (subgoals -> thm) () : void print_subgoals = - : (subgoals -> void) print_stack = - : (subgoals list -> int -> void) pop_proofs = - : (subgoals list -> subgoals list) pop_proofs_print = - : (subgoals list -> subgoals list) push_print = - : (subgoals -> subgoals list -> subgoals list) push_fsubgoals = - : (subgoals list -> tactic -> subgoals list) push_subgoals = - : (subgoals list -> tactic -> subgoals list) rotate_top = - : (int -> subgoals list -> subgoals list) new_stack = - : (goal -> subgoals list) top_proof = - : (subgoals list -> thm) Calling Lisp compiler File ml/goals compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `bool`;;'\ 'compilet `ml/stack`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory bool loaded () : void () : void abs_goals = - : (subgoals list -> goalstack) rep_goals = - : (goalstack -> subgoals list) goals = - : goalstack backup_list = [] : goalstack list backup_limit = 12 : int print_state = - : (int -> void) change_state = - : (goalstack -> void) set_goal = - : (goal -> void) expandf = - : (tactic -> void) expand = - : (tactic -> void) rotate = - : (int -> void) backup = - : (void -> void) top_thm = - : (void -> thm) save_top_thm = - : (string -> thm) top_goal = - : (void -> goal) get_state = - : (void -> goalstack) set_state = - : (goalstack -> void) g = - : (term -> void) e = - : (tactic -> void) p = - : (int -> void) b = - : (void -> void) r = - : (int -> void) Calling Lisp compiler File ml/stack compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `BASIC-HOL`;;'\ 'compilet `ml/abs-rep`;;'\ 'quit();;'\ | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory BASIC-HOL loaded () : void () : void ABS_REP_THM = |- !P. (?rep. TYPE_DEFINITION P rep) ==> (?rep abs. (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))) define_new_type_bijections = - : (string -> string -> string -> thm -> thm) prove_rep_fn_one_one = - : (thm -> thm) prove_rep_fn_onto = - : (thm -> thm) prove_abs_fn_onto = - : (thm -> thm) prove_abs_fn_one_one = - : (thm -> thm) Calling Lisp compiler File ml/abs-rep compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `BASIC-HOL`;;'\ 'loadf `ml/hol-in-out`;;'\ 'loadf `ml/hol-rule`;;'\ 'loadf `ml/hol-drule`;;'\ 'loadf `ml/drul`;;'\ 'loadf `ml/tacticals`;;'\ 'loadf `ml/tacont`;;'\ 'loadf `ml/tactics`;;'\ 'loadf `ml/conv`;;'\ 'loadf `ml/hol-net`;;'\ 'loadf `ml/rewrite`;;'\ 'loadf `ml/resolve`;;'\ 'loadf `ml/hol-thyfn`;;'\ 'loadf `ml/goals`;;'\ 'loadf `ml/stack`;;'\ 'loadf `ml/abs-rep`;;'\ 'activate_binders `bool`;;'\ 'lisp `(setq %liszt "")`;;'\ 'lisp `(setq %version "2.02 (GCL)")`;;'\ 'lisp `(setq %system-name "BASIC-HOL")`;;'\ 'lisp `(setup)`;;' >foo1 echo 'lisp `(throw (quote eof) t)`;; #+native-reloc(progn (with-open-file (s "foo1") (let ((*standard-input* s)) (tml)))(ml-save "basic-hol")) #-native-reloc(let ((si::*collect-binary-modules* t)(si::*binary-modules* (with-open-file (s "bm.l") (read s)))) (with-open-file (s "foo1") (let ((*standard-input* s)) (tml)))(compiler::link (remove-duplicates si::*binary-modules* :test (function equal)) "basic-hol" "(progn (load \"debian/gcl_patch.l\")(load \"foo\")(with-open-file (s \"foo1\") (let ((*standard-input* s)) (tml)))(ml-save \"basic-hol\")(quit))" "" nil)(with-open-file (s "bm.l" :direction :output) (prin1 si::*binary-modules* s))(quit))`;;' | hol-lcf HOL-LCF version 2.02 (GCL) created 24/7/25 #GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ > HOL-LCF version 2.02 (GCL) created 24/7/25 #() : void Theory BASIC-HOL loaded () : void .....................................................................................................................................................() : void #.............() : void ...................................................................................() : void ..................................................() : void ...................................() : void .........................() : void ..........................................() : void ...................................................................................................() : void ..() : void ......................() : void .............() : void ............................() : void ........................() : void .................() : void .......() : void [`?!`; `!`; `?`; `@`] : string list () : void () : void () : void () : void #=======> basic-hol88 made cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f combin.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_combin.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ##########################() : void #####o_DEF = |- !f g. f o g = (\x. f(g x)) ###K_DEF = |- K = (\x y. x) ######S_DEF = |- S = (\f g x. f x(g x)) ########I_DEF = |- I = S K K ###() : void #########o_THM = |- !f g x. (f o g)x = f(g x) ########o_ASSOC = |- !f g h. f o (g o h) = (f o g) o h ########K_THM = |- !x y. K x y = x ########S_THM = |- !f g x. S f g x = f x(g x) ########I_THM = |- !x. I x = x ##########I_o_ID = |- !f. (I o f = f) /\ (f o I = f) ##=======> theory combin built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f num.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_num.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ##############################() : void ##INFINITY_AX = |- ?f. ONE_ONE f /\ ~ONTO f ##ONE_ONE_DEF = |- !f. ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2)) #ONTO_DEF = |- !f. ONTO f = (!y. ?x. y = f x) ######SUC_REP_DEF = |- SUC_REP = (@f. ONE_ONE f /\ ~ONTO f) #####ZERO_REP_DEF = |- ZERO_REP = (@x. !y. ~(x = SUC_REP y)) ##########IS_NUM_REP = |- !m. IS_NUM_REP m = (!P. P ZERO_REP /\ (!n. P n ==> P(SUC_REP n)) ==> P m) ########EXISTS_NUM_REP = |- ?n. IS_NUM_REP n ####num_TY_DEF = |- ?rep. TYPE_DEFINITION IS_NUM_REP rep ##########num_ISO_DEF = |- (!a. ABS_num(REP_num a) = a) /\ (!r. IS_NUM_REP r = (REP_num(ABS_num r) = r)) #####R_11 = |- !a a'. (REP_num a = REP_num a') = (a = a') R_ONTO = |- !r. IS_NUM_REP r = (?a. r = REP_num a) A_11 = |- !r r'. IS_NUM_REP r ==> IS_NUM_REP r' ==> ((ABS_num r = ABS_num r') = (r = r')) A_ONTO = |- !a. ?r. (a = ABS_num r) /\ IS_NUM_REP r ###############() : void #() : void ###ZERO_DEF = |- 0 = ABS_num ZERO_REP ####SUC_DEF = |- !m. SUC m = ABS_num(SUC_REP(REP_num m)) ##() : void ######IS_NUM_REP_ZERO = |- IS_NUM_REP ZERO_REP #######IS_NUM_SUC_REP = |- !i. IS_NUM_REP i ==> IS_NUM_REP(SUC_REP i) #######IS_NUM_REP_SUC_REP = |- !n. IS_NUM_REP(SUC_REP(REP_num n)) ####thm1 = |- ONE_ONE SUC_REP /\ ~ONTO SUC_REP #thm2 = |- (!x1 x2. (SUC_REP x1 = SUC_REP x2) ==> (x1 = x2)) /\ ~(!y. ?x. y = SUC_REP x) ####SUC_REP_11 = |- !x1 x2. (SUC_REP x1 = SUC_REP x2) ==> (x1 = x2) ########NOT_SUC_ZERO = |- !x. ~(SUC_REP x = ZERO_REP) ################NOT_SUC = |- !n. ~(SUC n = 0) ##############INV_SUC = |- !m n. (SUC m = SUC n) ==> (m = n) ###########ind_lemma1 = |- !P. P ZERO_REP /\ (!i. P i ==> P(SUC_REP i)) ==> (!i. IS_NUM_REP i ==> P i) ####lemma = |- A ==> A /\ B = A ==> B ############ind_lemma2 = |- !P. P ZERO_REP /\ (!i. IS_NUM_REP i /\ P i ==> P(SUC_REP i)) ==> (!i. IS_NUM_REP i ==> P i) ##########lemma1 = |- (!i. IS_NUM_REP i ==> P(ABS_num i)) = (!n. P n) ###############INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ##=======> theory num built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f prim_rec.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_prim_rec.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 #######################################################################() : void ##Theory num loaded () : void #####NOT_SUC = |- !n. ~(SUC n = 0) INV_SUC = |- !m n. (SUC m = SUC n) ==> (m = n) INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) #####LESS = |- !m n. m < n = (?P. (!n'. P(SUC n') ==> P n') /\ P m /\ ~P n) ########### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void ####INDUCT_TAC = - : tactic ########INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) ######LESS_REFL = |- !n. ~n < n ##########SUC_LESS = |- !m n. (SUC m) < n ==> m < n #########NOT_LESS_0 = |- !n. ~n < 0 #########LESS_0_0 = |- 0 < (SUC 0) #####################LESS_MONO = |- !m n. m < n ==> (SUC m) < (SUC n) #########LESS_SUC_REFL = |- !n. n < (SUC n) ###########LESS_SUC = |- !m n. m < n ==> m < (SUC n) #################LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < n ########LESS_LEMMA2 = |- !m n. (m = n) \/ m < n ==> m < (SUC n) #######LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n #########LESS_SUC_IMP = |- !m n. m < (SUC n) ==> ~(m = n) ==> m < n #######LESS_0 = |- !n. 0 < (SUC n) ##########EQ_LESS = |- !n. (SUC m = n) ==> m < n #######SUC_ID = |- !n. ~(SUC n = n) ########NOT_LESS_EQ = |- !m n. (m = n) ==> ~m < n ###########LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) ################################################SIMP_REC_REL = |- !fun x f n. SIMP_REC_REL fun x f n = (fun 0 = x) /\ (!m. m < n ==> (fun(SUC m) = f(fun m))) ######SIMP_REC_FUN = |- !x f n. SIMP_REC_FUN x f n = (@fun. SIMP_REC_REL fun x f n) ######SIMP_REC = |- !x f n. SIMP_REC x f n = SIMP_REC_FUN x f(SUC n)n ######################SIMP_REC_FUN_LEMMA = |- (?fun. SIMP_REC_REL fun x f n) = (SIMP_REC_FUN x f n 0 = x) /\ (!m. m < n ==> (SIMP_REC_FUN x f n(SUC m) = f(SIMP_REC_FUN x f n m))) ##################################SIMP_REC_EXISTS = |- !x f n. ?fun. SIMP_REC_REL fun x f n #############SIMP_REC_FUN_THM = |- !x f n. (SIMP_REC_FUN x f n 0 = x) /\ (!m. m < n ==> (SIMP_REC_FUN x f n(SUC m) = f(SIMP_REC_FUN x f n m))) ###SIMP_REC_FUN_THM1 = |- !x f n. SIMP_REC_FUN x f n 0 = x ###SIMP_REC_FUN_THM2 = |- !n m. m < n ==> (SIMP_REC_FUN x f n(SUC m) = f(SIMP_REC_FUN x f n m)) ###################SIMP_REC_UNIQUE = |- !n m1 m2 x f. n < m1 ==> n < m2 ==> (SIMP_REC_FUN x f m1 n = SIMP_REC_FUN x f m2 n) #######LESS_SUC_SUC = |- !m. m < (SUC m) /\ m < (SUC(SUC m)) ###############SIMP_REC_THM = |- !x f. (SIMP_REC x f 0 = x) /\ (!m. SIMP_REC x f(SUC m) = f(SIMP_REC x f m)) ########################PRE_DEF = |- !m. PRE m = ((m = 0) => 0 | (@n. m = SUC n)) ########SELECT_LEMMA = |- (@n. m = n) = m #######PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) ######PRIM_REC_FUN = |- !x f. PRIM_REC_FUN x f = SIMP_REC(\n. x)(\fun n. f(fun(PRE n))n) ###########PRIM_REC_EQN = |- !x f. (!n. PRIM_REC_FUN x f 0 n = x) /\ (!m n. PRIM_REC_FUN x f(SUC m)n = f(PRIM_REC_FUN x f m(PRE n))n) #####PRIM_REC = |- !x f m. PRIM_REC x f m = PRIM_REC_FUN x f m(PRE m) ###########PRIM_REC_THM = |- !x f. (PRIM_REC x f 0 = x) /\ (!m. PRIM_REC x f(SUC m) = f(PRIM_REC x f m)m) ####################num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) ###() : void ##=======> theory prim_rec built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f fun.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_fun.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ###########################() : void ######ASSOC_DEF = |- !f. ASSOC f = (!x y z. f x(f y z) = f(f x y)z) ###COMM_DEF = |- !f. COMM f = (!x y. f x y = f y x) ####FCOMM_DEF = |- !f g. FCOMM f g = (!x y z. g x(f y z) = f(g x y)z) ###RIGHT_ID_DEF = |- !f e. RIGHT_ID f e = (!x. f x e = x) ###LEFT_ID_DEF = |- !f e. LEFT_ID f e = (!x. f e x = x) ###MONOID_DEF = |- !f e. MONOID f e = ASSOC f /\ RIGHT_ID f e /\ LEFT_ID f e ###() : void #######ASSOC_CONJ = |- ASSOC $/\ ####ASSOC_DISJ = |- ASSOC $\/ ####FCOMM_ASSOC = |- !f. FCOMM f f = ASSOC f #####################MONOID_CONJ_T = |- MONOID $/\ T ####MONOID_DISJ_F = |- MONOID $\/ F ##=======> theory fun built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f arithmetic.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_arith.ml;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_arith_thms.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 #############################() : void ##Theory prim_rec loaded Theory fun loaded [(); ()] : void list ########### Section prove_rec_fn_exists begun derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) Section prove_rec_fn_exists ended prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/prim_rec.ml loaded () : void ###num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) ####ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) ####SUB = |- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n))) ####MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) ####EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) ########GREATER = |- !m n. m > n = n < m ###LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) ###GREATER_OR_EQ = |- !m n. m >= n = m > n \/ (m = n) ########FACT = |- (FACT 0 = 1) /\ (!n. FACT(SUC n) = (SUC n) * (FACT n)) ####EVEN = |- (EVEN 0 = T) /\ (!n. EVEN(SUC n) = ~EVEN n) ####ODD = |- (ODD 0 = F) /\ (!n. ODD(SUC n) = ~ODD n) #################() : void ## BASIC-HOL version 2.02 (GCL) created 24/7/25 ###########################Theory arithmetic loaded () : void ##########ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) SUB = |- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n))) MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) FACT = |- (FACT 0 = 1) /\ (!n. FACT(SUC n) = (SUC n) * (FACT n)) EVEN = |- (EVEN 0 = T) /\ (!n. EVEN(SUC n) = ~EVEN n) ODD = |- (ODD 0 = F) /\ (!n. ODD(SUC n) = ~ODD n) ####GREATER = |- !m n. m > n = n < m LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) GREATER_OR_EQ = |- !m n. m >= n = m > n \/ (m = n) ##################INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) LESS_REFL = |- !n. ~n < n SUC_LESS = |- !m n. (SUC m) < n ==> m < n NOT_LESS_0 = |- !n. ~n < 0 LESS_MONO = |- !m n. m < n ==> (SUC m) < (SUC n) LESS_SUC_REFL = |- !n. n < (SUC n) LESS_SUC = |- !m n. m < n ==> m < (SUC n) LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n LESS_SUC_IMP = |- !m n. m < (SUC n) ==> ~(m = n) ==> m < n LESS_0 = |- !n. 0 < (SUC n) EQ_LESS = |- !n. (SUC m = n) ==> m < n SUC_ID = |- !n. ~(SUC n = n) NOT_LESS_EQ = |- !m n. (m = n) ==> ~m < n LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) LESS_SUC_SUC = |- !m. m < (SUC m) /\ m < (SUC(SUC m)) PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) #####NOT_SUC = |- !n. ~(SUC n = 0) INV_SUC = |- !m n. (SUC m = SUC n) ==> (m = n) INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ######ASSOC_DEF = |- !f. ASSOC f = (!x y z. f x(f y z) = f(f x y)z) RIGHT_ID_DEF = |- !f e. RIGHT_ID f e = (!x. f x e = x) LEFT_ID_DEF = |- !f e. LEFT_ID f e = (!x. f e x = x) MONOID_DEF = |- !f e. MONOID f e = ASSOC f /\ RIGHT_ID f e /\ LEFT_ID f e ##### num_CONV = - : conv File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/numconv.ml loaded () : void ########### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void #####INDUCT_TAC = - : tactic ###########SUC_NOT = |- !n. ~(0 = SUC n) ########ADD_0 = |- !m. m + 0 = m ########ADD_SUC = |- !m n. SUC(m + n) = m + (SUC n) #########ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) ########ADD_SYM = |- !m n. m + n = n + m #########num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) ###########LESS_MONO_REV = |- !m n. (SUC m) < (SUC n) ==> m < n #########LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n ########SUC_SUB1 = |- !m. (SUC m) - 1 = m ########PRE_SUB1 = |- !m. PRE m = m - 1 ###############LESS_ADD = |- !m n. n < m ==> (?p. p + n = m) #######SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) ###############LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p #######ADD1 = |- !m. SUC m = m + 1 ###########LESS_ANTISYM = |- !m n. ~(m < n /\ n < m) ###########LESS_LESS_SUC = |- !m n. ~(m < n /\ n < (SUC m)) ##########FUN_EQ_LEMMA = |- !f x1 x2. f x1 /\ ~f x2 ==> ~(x1 = x2) ############LESS_OR = |- !m n. m < n ==> (SUC m) <= n ###########OR_LESS = |- !m n. (SUC m) <= n ==> m < n #######LESS_EQ = |- !m n. m < n = (SUC m) <= n ###########LESS_SUC_EQ_COR = |- !m n. m < n /\ ~(SUC m = n) ==> (SUC m) < n ###############LESS_NOT_SUC = |- !m n. m < n /\ ~(n = SUC m) ==> (SUC m) < n #######LESS_0_CASES = |- !m. (0 = m) \/ 0 < m #####################LESS_CASES_IMP = |- !m n. ~m < n /\ ~(m = n) ==> n < m ###########LESS_CASES = |- !m n. m < n \/ n <= m #########ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0) ###############LESS_EQ_ADD = |- !m n. m <= (m + n) #######LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) #############LESS_ADD_NONZERO = |- !m n. ~(n = 0) ==> m < (m + n) ############LESS_EQ_ANTISYM = |- !m n. ~(m < n /\ n <= m) #############NOT_LESS = |- !m n. ~m < n = n <= m ######################SUB_EQ_0 = |- !m n. (m - n = 0) = m <= n #######ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p #######MULT_0 = |- !m. m * 0 = 0 #######MULT_SUC = |- !m n. m * (SUC n) = m + (m * n) #######MULT_LEFT_1 = |- !m. 1 * m = m ########MULT_RIGHT_1 = |- !m. m * 1 = m ###########MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) ########MULT_SYM = |- !m n. m * n = n * m ############RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) ###############LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) #######MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p ###############SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) #############PRE_SUB = |- !m n. PRE(m - n) = (PRE m) - n ########ADD_EQ_0 = |- !m n. (m + n = 0) = (m = 0) /\ (n = 0) ##########ADD_INV_0_EQ = |- !m n. (m + n = m) = (n = 0) ########PRE_SUC_EQ = |- !m n. 0 < n ==> ((m = PRE n) = (SUC m = n)) ########INV_PRE_EQ = |- !m n. 0 < m /\ 0 < n ==> ((PRE m = PRE n) = (m = n)) ##########LESS_SUC_NOT = |- !m n. m < n ==> ~n < (SUC m) ##################TOTALLY_AD_HOC_LEMMA = |- !m n. (m + (SUC n) = n) = (SUC m = 0) #######################ADD_EQ_SUB = |- !m n p. n <= p ==> ((m + n = p) = (m = p - n)) ###########LESS_MONO_ADD = |- !m n p. m < n ==> (m + p) < (n + p) #########LESS_MONO_ADD_INV = |- !m n p. (m + p) < (n + p) ==> m < n ########LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n #########EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) #########LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n ###########LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p #############LESS_EQ_LESS_EQ_MONO = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q) #######LESS_EQ_REFL = |- !m. m <= m #######LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n ##############LESS_MONO_MULT = |- !m n p. m <= n ==> (m * p) <= (n * p) ##################RIGHT_SUB_DISTRIB = |- !m n p. (m - n) * p = (m * p) - (n * p) ###########LEFT_SUB_DISTRIB = |- !m n p. p * (m - n) = (p * m) - (p * n) ################LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) #############EXP_ADD = |- !p q n. n EXP (p + q) = (n EXP p) * (n EXP q) ##########NOT_ODD_EQ_EVEN = |- !n m. ~(SUC(n + n) = m + m) #######################MULT_SUC_EQ = |- !p m n. (n * (SUC p) = m * (SUC p)) = (n = m) ########MULT_EXP_MONO = |- !p q n m. (n * ((SUC q) EXP p) = m * ((SUC q) EXP p)) = (n = m) #########LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) #########LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) #########ZERO_LESS_EQ = |- !n. 0 <= n ######LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m #############LESS_OR_EQ_ADD = |- !n m. n < m \/ (?p. n = p + m) ############################lemma = |- ~(?n. P n /\ (!m. m < n ==> ~P m)) ==> (!n m. m < n ==> ~P m) ###############WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) ###################exists_lemma = |- ?r q. k = (q * n) + r #############smallest_lemma = |- ?n'. (?q. k = (q * n) + n') /\ (!m. m < n' ==> (!q. ~(k = (q * n) + m))) ###########leq_add_lemma = |- !m n. n <= m ==> (?p. m = n + p) #####k_expr_lemma = |- (k = (q * n) + (n + p)) ==> (k = ((q + 1) * n) + p) ########less_add = . |- p < (n + p) #############DA = |- !k n. 0 < n ==> (?r q. (k = (q * n) + r) /\ r < n) #########Theory arithmetic loaded () : void #############MOD_exists = |- ?MOD. !n. 0 < n ==> (!k. ?q. (k = (q * n) + (MOD k n)) /\ (MOD k n) < n) ################MOD_DIV_exist = |- ?MOD DIV. !n. 0 < n ==> (!k. (k = ((DIV k n) * n) + (MOD k n)) /\ (MOD k n) < n) ####DIVISION = |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n) ##() : void #############MOD_ONE = |- !k. k MOD (SUC 0) = 0 ################DIV_LESS_EQ = |- !n. 0 < n ==> (!k. (k DIV n) <= k) ###########################################################DIV_UNIQUE = |- !n k q. (?r. (k = (q * n) + r) /\ r < n) ==> (k DIV n = q) #########lemma = |- !n k q r. (k = (q * n) + r) /\ r < n ==> (k DIV n = q) #################MOD_UNIQUE = |- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r) ###############DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) #########LESS_MOD = |- !n k. k < n ==> (k MOD n = k) ###########MOD_EQ_0 = |- !n. 0 < n ==> (!k. (k * n) MOD n = 0) ########ZERO_MOD = |- !n. 0 < n ==> (0 MOD n = 0) #########ZERO_DIV = |- !n. 0 < n ==> (0 DIV n = 0) #########MOD_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) MOD n = r) ############MOD_TIMES = |- !n. 0 < n ==> (!q r. ((q * n) + r) MOD n = r MOD n) #############MOD_PLUS = |- !n. 0 < n ==> (!j k. ((j MOD n) + (k MOD n)) MOD n = (j + k) MOD n) ########MOD_MOD = |- !n. 0 < n ==> (!k. (k MOD n) MOD n = k MOD n) ###########SUB_MONO_EQ = |- !n m. (SUC n) - (SUC m) = n - m ##########SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c ######################INV_PRE_LESS = |- !m. 0 < m ==> (!n. (PRE m) < (PRE n) = m < n) ##########INV_PRE_LESS_EQ = |- !n. 0 < n ==> (!m. (PRE m) <= (PRE n) = m <= n) ########SUB_LESS_EQ = |- !n m. (n - m) <= n ##############SUB_EQ_EQ_0 = |- !m n. (m - n = m) = (m = 0) \/ (n = 0) ###########SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) #########SUB_LESS_OR = |- !m n. n < m ==> n <= (m - 1) ################LESS_SUB_ADD_LESS = |- !n m i. i < (n - m) ==> (i + m) < n ########TIMES2 = |- !n. 2 * n = n + n #####################LESS_MULT_MONO = |- !m i n. ((SUC n) * m) < ((SUC n) * i) = m < i #######################MULT_MONO_EQ = |- !m i n. ((SUC n) * m = (SUC n) * i) = (m = i) ###########ADD_SUB = |- !a c. (a + c) - c = a ###############LESS_EQ_ADD_SUB = |- !c b. c <= b ==> (!a. (a + b) - c = a + (b - c)) ########SUB_EQUAL_0 = |- !c. c - c = 0 ##################LESS_EQ_SUB_LESS = |- !a b. b <= a ==> (!c. (a - b) < c = a < (b + c)) ######NOT_SUC_LESS_EQ = |- !n m. ~(SUC n) <= m = m <= n ###############SUB_SUB = |- !b c. c <= b ==> (!a. a - (b - c) = (a + c) - b) ###########LESS_IMP_LESS_ADD = |- !n m. n < m ==> (!p. n < (m + p)) ########LESS_EQ_IMP_LESS_SUC = |- !n m. n <= m ==> n < (SUC m) ###############SUB_LESS_EQ_ADD = |- !m p. m <= p ==> (!n. (p - m) <= n = p <= (m + n)) #############################SUB_CANCEL = |- !p n m. n <= p /\ m <= p ==> ((p - n = p - m) = (n = m)) ##########################CANCEL_SUB = |- !p n m. p <= n /\ p <= m ==> ((n - p = m - p) = (n = m)) ###########NOT_EXP_0 = |- !m n. ~((SUC n) EXP m = 0) ##########ZERO_LESS_EXP = |- !m n. 0 < ((SUC n) EXP m) ##########ODD_OR_EVEN = |- !n. ?m. (n = (SUC(SUC 0)) * m) \/ (n = ((SUC(SUC 0)) * m) + 1) ##########LESS_EXP_SUC_MONO = |- !n m. ((SUC(SUC m)) EXP n) < ((SUC(SUC m)) EXP (SUC n)) #########LESS_LESS_CASES = |- !m n. (m = n) \/ m < n \/ n < m #####GREATER_EQ = |- !n m. n >= m = m <= n ######LESS_EQ_CASES = |- !m n. m <= n \/ n <= m #######LESS_EQUAL_ADD = |- !m n. m <= n ==> (?p. n = m + p) ######LESS_EQ_EXISTS = |- !m n. m <= n = (?p. n = m + p) ####NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m #######LESS_EQ_0 = |- !n. n <= 0 = (n = 0) ######MULT_EQ_0 = |- !m n. (m * n = 0) = (m = 0) \/ (n = 0) #####LESS_MULT2 = |- !m n. 0 < m /\ 0 < n ==> 0 < (m * n) #####LESS_EQ_LESS_TRANS = |- !m n p. m <= n /\ n < p ==> m < p #####LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p #########FACT_LESS = |- !n. 0 < (FACT n) ########EVEN_ODD = |- !n. EVEN n = ~ODD n ####ODD_EVEN = |- !n. ODD n = ~EVEN n ####EVEN_OR_ODD = |- !n. EVEN n \/ ODD n ####EVEN_AND_ODD = |- !n. ~(EVEN n /\ ODD n) #####EVEN_ADD = |- !m n. EVEN(m + n) = (EVEN m = EVEN n) #####EVEN_MULT = |- !m n. EVEN(m * n) = EVEN m \/ EVEN n #####ODD_ADD = |- !m n. ODD(m + n) = ~(ODD m = ODD n) ####ODD_MULT = |- !m n. ODD(m * n) = ODD m /\ ODD n #####EVEN_DOUBLE = |- !n. EVEN(2 * n) ####ODD_DOUBLE = |- !n. ODD(SUC(2 * n)) ###########EVEN_ODD_EXISTS = |- !n. (EVEN n ==> (?m. n = 2 * m)) /\ (ODD n ==> (?m. n = SUC(2 * m))) ######EVEN_EXISTS = |- !n. EVEN n = (?m. n = 2 * m) ######ODD_EXISTS = |- !n. ODD n = (?m. n = SUC(2 * m)) ############EQ_LESS_EQ = |- !m n. (m = n) = m <= n /\ n <= m #######ADD_MONO_LESS_EQ = |- !m n p. (m + n) <= (m + p) = n <= p ######NOT_SUC_LESS_EQ_0 = |- !n. ~(SUC n) <= 0 ###########NOT_LEQ = |- !m n. ~m <= n = (SUC n) <= m #######NOT_NUM_EQ = |- !m n. ~(m = n) = (SUC m) <= n \/ (SUC n) <= m ######NOT_GREATER = |- !m n. ~m > n = m <= n ######NOT_GREATER_EQ = |- !m n. ~m >= n = (SUC m) <= n ########SUC_ONE_ADD = |- !n. SUC n = 1 + n ########SUC_ADD_SYM = |- !m n. SUC(m + n) = (SUC n) + m ########NOT_SUC_ADD_LESS_EQ = |- !m n. ~(SUC(m + n)) <= m #########################MULT_LESS_EQ_SUC = |- !m n p. m <= n = ((SUC p) * m) <= ((SUC p) * n) ################SUB_LEFT_ADD = |- !m n p. m + (n - p) = (n <= p => m | (m + n) - p) ################SUB_RIGHT_ADD = |- !m n p. (m - n) + p = (m <= n => p | (m + p) - n) ##############SUB_LEFT_SUB = |- !m n p. m - (n - p) = (n <= p => m | (m + p) - n) #########SUB_RIGHT_SUB = |- !m n p. (m - n) - p = m - (n + p) ###########SUB_LEFT_SUC = |- !m n. SUC(m - n) = (m <= n => SUC 0 | (SUC m) - n) ##########################SUB_LEFT_LESS_EQ = |- !m n p. m <= (n - p) = (m + p) <= n \/ m <= 0 #################SUB_RIGHT_LESS_EQ = |- !m n p. (m - n) <= p = m <= (n + p) #########SUB_LEFT_LESS = |- !m n p. m < (n - p) = (m + p) < n #################SUB_RIGHT_LESS = |- !m n p. (m - n) < p = m < (n + p) /\ 0 < p ############SUB_LEFT_GREATER_EQ = |- !m n p. m >= (n - p) = (m + p) >= n ############SUB_RIGHT_GREATER_EQ = |- !m n p. (m - n) >= p = m >= (n + p) \/ 0 >= p #########SUB_LEFT_GREATER = |- !m n p. m > (n - p) = (m + p) > n /\ m > 0 #########SUB_RIGHT_GREATER = |- !m n p. (m - n) > p = m > (n + p) #############SUB_LEFT_EQ = |- !m n p. (m = n - p) = (m + p = n) \/ m <= 0 /\ n <= p ##############SUB_RIGHT_EQ = |- !m n p. (m - n = p) = (m = n + p) \/ m <= n /\ p <= 0 #######ASSOC_ADD = |- ASSOC $+ ####RIGHT_ID_ADD_0 = |- RIGHT_ID $+ 0 ####LEFT_ID_ADD_0 = |- LEFT_ID $+ 0 #####MONOID_ADD_0 = |- MONOID $+ 0 ####ASSOC_MULT = |- ASSOC $* ####RIGHT_ID_MULT_1 = |- RIGHT_ID $* 1 ####LEFT_ID_MULT_1 = |- LEFT_ID $* 1 ####MONOID_MULT_1 = |- MONOID $* 1 ##=======> theory arithmetic built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f list.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_list.ml;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_list_defs.ml;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_list_thms.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ##################################() : void ###Theory arithmetic loaded () : void ###NOT_LESS_0 = |- !n. ~n < 0 #PRIM_REC_THM = |- !x f. (PRIM_REC x f 0 = x) /\ (!m. PRIM_REC x f(SUC m) = f(PRIM_REC x f m)m) #PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) #LESS_0 = |- !n. 0 < (SUC n) ###NOT_SUC = |- !n. ~(SUC n = 0) #INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ###ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) #LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) #LESS_EQ = |- !m n. m < n = (SUC m) <= n #NOT_LESS = |- !m n. ~m < n = n <= m #LESS_EQ_ADD = |- !m n. m <= (m + n) #num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) #LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n ########### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void #####INDUCT_TAC = - : tactic #### num_CONV = - : conv File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/numconv.ml loaded () : void ######IS_list_REP = |- !r. IS_list_REP r = (?f n. r = (\m. (m < n => f m | (@x. T))),n) ########EXISTS_list_REP = |- ?p. IS_list_REP p #####list_TY_DEF = |- ?rep. TYPE_DEFINITION IS_list_REP rep ##########list_ISO_DEF = |- (!a. ABS_list(REP_list a) = a) /\ (!r. IS_list_REP r = (REP_list(ABS_list r) = r)) #####R_ONTO = |- !r. IS_list_REP r = (?a. r = REP_list a) A_11 = |- !r r'. IS_list_REP r ==> IS_list_REP r' ==> ((ABS_list r = ABS_list r') = (r = r')) A_R = |- !a. ABS_list(REP_list a) = a R_A = |- !r. IS_list_REP r = (REP_list(ABS_list r) = r) ########NIL_DEF = |- [] = ABS_list((\n. @e. T),0) #######CONS_DEF = |- !h t. CONS h t = ABS_list ((\m. ((m = 0) => h | FST(REP_list t)(PRE m))),SUC(SND(REP_list t))) ##() : void #######################lemma1 = |- !x f. ?fn. (!g. fn(g,0) = x) /\ (!g n. fn(g,n + 1) = f(fn((\i. g(i + 1)),n))(g 0)(ABS_list((\i. g(i + 1)),n))) ######NIL_lemma = |- REP_list[] = (\n. @x. T),0 ######REP_lemma = |- IS_list_REP(REP_list l) ########################CONS_lemma = |- REP_list(CONS h t) = (\m. ((m = 0) => h | FST(REP_list t)(PRE m))),SUC(SND(REP_list t)) #############exists_lemma = |- !x f. ?fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) ####A_11_lemma = |- (IS_list_REP r' /\ IS_list_REP r) /\ (r = r') ==> (ABS_list r = ABS_list r') #########R_A_lemma = |- REP_list(ABS_list((\m. (m < n => f(SUC m) | (@x. T))),n)) = (\m. (m < n => f(SUC m) | (@x. T))),n #####################cons_lemma = |- ABS_list((\m. (m < (SUC n) => f m | (@x. T))),SUC n) = CONS(f 0)(ABS_list((\m. (m < n => f(SUC m) | (@x. T))),n)) ###########################list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) ## BASIC-HOL version 2.02 (GCL) created 24/7/25 #################################Theory list loaded () : void #Theory combin loaded () : void #####list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) ##num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) #PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) ##UNCURRY_DEF = |- !f x y. UNCURRY f(x,y) = f x y #o_DEF = |- !f g. f o g = (\x. f(g x)) ################################# Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void #####INDUCT_TAC = - : tactic ########## Section prove_rec_fn_exists begun derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) Section prove_rec_fn_exists ended prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/prim_rec.ml loaded () : void ###### () : void Section prove_induction_thm begun UNIQUENESS = - : (thm -> thm) DEPTH_FORALL_CONV = - : (conv -> conv) CONJS_CONV = - : (conv -> conv) CONJS_SIMP = - : (conv -> conv) T_AND_CONV = - : conv GENL_T = - : (term list -> thm) SIMP_CONV = - : conv HYP_SIMP = - : conv ANTE_ALL_CONV = - : conv CONCL_SIMP = - : conv prove_induction_thm = - : (thm -> thm) - : (thm -> thm) Section prove_induction_thm ended prove_induction_thm = - : (thm -> thm) Section prove_cases_thm begun NOT_ALL_THENC = - : (conv -> conv) BASE_CONV = - : conv STEP_CONV = - : conv NOT_IN_CONV = - : conv STEP_SIMP = - : conv DISJS_CHAIN = - : (conv -> thm -> thm) prove_cases_thm = - : (thm -> thm) - : (thm -> thm) Section prove_cases_thm ended prove_cases_thm = - : (thm -> thm) Section prove_constructors_one_one begun PAIR_EQ_CONV = - : conv list_variant = - : (term list -> term list -> term list) prove_const_one_one = - : (thm -> conv) prove_constructors_one_one = - : (thm -> thm) - : (thm -> thm) Section prove_constructors_one_one ended prove_constructors_one_one = - : (thm -> thm) prove_constructors_distinct = - : (thm -> thm) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/tyfns.ml loaded () : void ####LIST_INDUCT_TAC = - : tactic ## num_CONV = - : conv File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/numconv.ml loaded () : void ########NULL_DEF = |- (NULL[] = T) /\ (!h t. NULL(CONS h t) = F) ####HD = |- !h t. HD(CONS h t) = h ####TL = |- !h t. TL(CONS h t) = t ###new_list_rec_definition = - : ((string # term) -> thm) ########SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) ##########FOLDR = |- (!f e. FOLDR f e[] = e) /\ (!f e x l. FOLDR f e(CONS x l) = f x(FOLDR f e l)) ####FOLDL = |- (!f e. FOLDL f e[] = e) /\ (!f e x l. FOLDL f e(CONS x l) = FOLDL f(f e x)l) ###########FILTER = |- (!P. FILTER P[] = []) /\ (!P x l. FILTER P(CONS x l) = (P x => CONS x(FILTER P l) | FILTER P l)) ############SCANL = |- (!f e. SCANL f e[] = [e]) /\ (!f e x l. SCANL f e(CONS x l) = CONS e(SCANL f(f e x)l)) #####SCANR = |- (!f e. SCANR f e[] = [e]) /\ (!f e x l. SCANR f e(CONS x l) = CONS(f x(HD(SCANR f e l)))(SCANR f e l)) ############REVERSE = |- (REVERSE[] = []) /\ (!x l. REVERSE(CONS x l) = SNOC x(REVERSE l)) ###########APPEND = |- (!l. APPEND[]l = l) /\ (!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2)) ###########FLAT = |- (FLAT[] = []) /\ (!h t. FLAT(CONS h t) = APPEND h(FLAT t)) ##########LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) ##########MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) #############################MAP2 = |- (!f. MAP2 f[][] = []) /\ (!f h1 t1 h2 t2. MAP2 f(CONS h1 t1)(CONS h2 t2) = CONS(f h1 h2)(MAP2 f t1 t2)) #################ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) #########SOME_EL = |- (!P. SOME_EL P[] = F) /\ (!P x l. SOME_EL P(CONS x l) = P x \/ SOME_EL P l) ########IS_EL_DEF = |- !x l. IS_EL x l = SOME_EL($= x)l ###AND_EL_DEF = |- AND_EL = ALL_EL I ###OR_EL_DEF = |- OR_EL = SOME_EL I #####################FIRSTN = |- (!l. FIRSTN 0 l = []) /\ (!n x l. FIRSTN(SUC n)(CONS x l) = CONS x(FIRSTN n l)) ###########BUTFIRSTN = |- (!l. BUTFIRSTN 0 l = l) /\ (!n x l. BUTFIRSTN(SUC n)(CONS x l) = BUTFIRSTN n l) ###############SEG = |- (!k l. SEG 0 k l = []) /\ (!m x l. SEG(SUC m)0(CONS x l) = CONS x(SEG m 0 l)) /\ (!m k x l. SEG(SUC m)(SUC k)(CONS x l) = SEG(SUC m)k l) ######LAST_DEF = |- !l. LAST l = HD(SEG 1(PRE(LENGTH l))l) ###BUTLAST_DEF = |- !l. BUTLAST l = SEG(PRE(LENGTH l))0 l ####LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) ###########LAST = |- !x l. LAST(SNOC x l) = x #########BUTLAST = |- !x l. BUTLAST(SNOC x l) = l ###########LASTN = |- (!l. LASTN 0 l = []) /\ (!n x l. LASTN(SUC n)(SNOC x l) = SNOC x(LASTN n l)) ###########BUTLASTN = |- (!l. BUTLASTN 0 l = l) /\ (!n x l. BUTLASTN(SUC n)(SNOC x l) = BUTLASTN n l) ###########EL = |- (!l. EL 0 l = HD l) /\ (!l n. EL(SUC n)l = EL n(TL l)) ####ELL = |- (!l. ELL 0 l = LAST l) /\ (!n l. ELL(SUC n)l = ELL n(BUTLAST l)) ################################IS_PREFIX = |- (!l. IS_PREFIX l[] = T) /\ (!x l. IS_PREFIX[](CONS x l) = F) /\ (!x1 l1 x2 l2. IS_PREFIX(CONS x1 l1)(CONS x2 l2) = (x1 = x2) /\ IS_PREFIX l1 l2) #####REVERSE_SNOC = |- !x l. REVERSE(SNOC x l) = CONS x(REVERSE l) ###REVERSE_REVERSE = |- !l. REVERSE(REVERSE l) = l ######forall_REVERSE = |- !P. (!l. P(REVERSE l)) = (!l. P l) ########f_REVERSE_lemma = |- !f1 f2. ((\x. f1(REVERSE x)) = (\x. f2(REVERSE x))) = (f1 = f2) #######################SNOC_Axiom = |- !e f. ?! fn. (fn[] = e) /\ (!x l. fn(SNOC x l) = f(fn l)x l) ####################################IS_SUFFIX = |- (!l. IS_SUFFIX l[] = T) /\ (!x l. IS_SUFFIX[](SNOC x l) = F) /\ (!x1 l1 x2 l2. IS_SUFFIX(SNOC x1 l1)(SNOC x2 l2) = (x1 = x2) /\ IS_SUFFIX l1 l2) ################IS_SUBLIST = |- (!l. IS_SUBLIST l[] = T) /\ (!x l. IS_SUBLIST[](CONS x l) = F) /\ (!x1 l1 x2 l2. IS_SUBLIST(CONS x1 l1)(CONS x2 l2) = (x1 = x2) /\ IS_PREFIX l1 l2 \/ IS_SUBLIST l1(CONS x2 l2)) ######SPLITP = |- (!P. SPLITP P[] = [],[]) /\ (!P x l. SPLITP P(CONS x l) = (P x => ([],CONS x l) | (CONS x(FST(SPLITP P l)),SND(SPLITP P l)))) ###PREFIX_DEF = |- !P l. PREFIX P l = FST(SPLITP($~ o P)l) ###SUFFIX_DEF = |- !P l. SUFFIX P l = FOLDL(\l' x. (P x => SNOC x l' | []))[]l ######################ZIP = |- (ZIP([],[]) = []) /\ (!x1 l1 x2 l2. ZIP(CONS x1 l1,CONS x2 l2) = CONS(x1,x2)(ZIP(l1,l2))) #####UNZIP = |- (UNZIP[] = [],[]) /\ (!x l. UNZIP(CONS x l) = CONS(FST x)(FST(UNZIP l)),CONS(SND x)(SND(UNZIP l))) ###UNZIP_FST_DEF = |- !l. UNZIP_FST l = FST(UNZIP l) ###UNZIP_SND_DEF = |- !l. UNZIP_SND l = SND(UNZIP l) #########SUM = |- (SUM[] = 0) /\ (!h t. SUM(CONS h t) = h + (SUM t)) ##########GENLIST = |- (!f. GENLIST f 0 = []) /\ (!f n. GENLIST f(SUC n) = SNOC(f n)(GENLIST f n)) ####REPLICATE = |- (!x. REPLICATE 0 x = []) /\ (!n x. REPLICATE(SUC n)x = CONS x(REPLICATE n x)) ##() : void ## BASIC-HOL version 2.02 (GCL) created 24/7/25 ###############################Theory list loaded () : void #####list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) #NULL_DEF = |- (NULL[] = T) /\ (!h t. NULL(CONS h t) = F) #HD = |- !h t. HD(CONS h t) = h #TL = |- !h t. TL(CONS h t) = t #SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) #FOLDR = |- (!f e. FOLDR f e[] = e) /\ (!f e x l. FOLDR f e(CONS x l) = f x(FOLDR f e l)) #FOLDL = |- (!f e. FOLDL f e[] = e) /\ (!f e x l. FOLDL f e(CONS x l) = FOLDL f(f e x)l) #FILTER = |- (!P. FILTER P[] = []) /\ (!P x l. FILTER P(CONS x l) = (P x => CONS x(FILTER P l) | FILTER P l)) #MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) #MAP2 = |- (!f. MAP2 f[][] = []) /\ (!f h1 t1 h2 t2. MAP2 f(CONS h1 t1)(CONS h2 t2) = CONS(f h1 h2)(MAP2 f t1 t2)) #SCANR = |- (!f e. SCANR f e[] = [e]) /\ (!f e x l. SCANR f e(CONS x l) = CONS(f x(HD(SCANR f e l)))(SCANR f e l)) #SCANL = |- (!f e. SCANL f e[] = [e]) /\ (!f e x l. SCANL f e(CONS x l) = CONS e(SCANL f(f e x)l)) #SEG = |- (!k l. SEG 0 k l = []) /\ (!m x l. SEG(SUC m)0(CONS x l) = CONS x(SEG m 0 l)) /\ (!m k x l. SEG(SUC m)(SUC k)(CONS x l) = SEG(SUC m)k l) #REVERSE = |- (REVERSE[] = []) /\ (!x l. REVERSE(CONS x l) = SNOC x(REVERSE l)) #APPEND = |- (!l. APPEND[]l = l) /\ (!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2)) #FLAT = |- (FLAT[] = []) /\ (!h t. FLAT(CONS h t) = APPEND h(FLAT t)) #LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) #ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) #SOME_EL = |- (!P. SOME_EL P[] = F) /\ (!P x l. SOME_EL P(CONS x l) = P x \/ SOME_EL P l) #IS_EL_DEF = |- !x l. IS_EL x l = SOME_EL($= x)l #AND_EL_DEF = |- AND_EL = ALL_EL I #OR_EL_DEF = |- OR_EL = SOME_EL I #FIRSTN = |- (!l. FIRSTN 0 l = []) /\ (!n x l. FIRSTN(SUC n)(CONS x l) = CONS x(FIRSTN n l)) #BUTFIRSTN = |- (!l. BUTFIRSTN 0 l = l) /\ (!n x l. BUTFIRSTN(SUC n)(CONS x l) = BUTFIRSTN n l) #LASTN = |- (!l. LASTN 0 l = []) /\ (!n x l. LASTN(SUC n)(SNOC x l) = SNOC x(LASTN n l)) #BUTLASTN = |- (!l. BUTLASTN 0 l = l) /\ (!n x l. BUTLASTN(SUC n)(SNOC x l) = BUTLASTN n l) #LAST_DEF = |- !l. LAST l = HD(SEG 1(PRE(LENGTH l))l) #BUTLAST_DEF = |- !l. BUTLAST l = SEG(PRE(LENGTH l))0 l #EL = |- (!l. EL 0 l = HD l) /\ (!l n. EL(SUC n)l = EL n(TL l)) #ELL = |- (!l. ELL 0 l = LAST l) /\ (!n l. ELL(SUC n)l = ELL n(BUTLAST l)) #IS_PREFIX = |- (!l. IS_PREFIX l[] = T) /\ (!x l. IS_PREFIX[](CONS x l) = F) /\ (!x1 l1 x2 l2. IS_PREFIX(CONS x1 l1)(CONS x2 l2) = (x1 = x2) /\ IS_PREFIX l1 l2) #IS_SUFFIX = |- (!l. IS_SUFFIX l[] = T) /\ (!x l. IS_SUFFIX[](SNOC x l) = F) /\ (!x1 l1 x2 l2. IS_SUFFIX(SNOC x1 l1)(SNOC x2 l2) = (x1 = x2) /\ IS_SUFFIX l1 l2) #IS_SUBLIST = |- (!l. IS_SUBLIST l[] = T) /\ (!x l. IS_SUBLIST[](CONS x l) = F) /\ (!x1 l1 x2 l2. IS_SUBLIST(CONS x1 l1)(CONS x2 l2) = (x1 = x2) /\ IS_PREFIX l1 l2 \/ IS_SUBLIST l1(CONS x2 l2)) #SPLITP = |- (!P. SPLITP P[] = [],[]) /\ (!P x l. SPLITP P(CONS x l) = (P x => ([],CONS x l) | (CONS x(FST(SPLITP P l)),SND(SPLITP P l)))) #PREFIX_DEF = |- !P l. PREFIX P l = FST(SPLITP($~ o P)l) #SUFFIX_DEF = |- !P l. SUFFIX P l = FOLDL(\l' x. (P x => SNOC x l' | []))[]l #ZIP = |- (ZIP([],[]) = []) /\ (!x1 l1 x2 l2. ZIP(CONS x1 l1,CONS x2 l2) = CONS(x1,x2)(ZIP(l1,l2))) #UNZIP = |- (UNZIP[] = [],[]) /\ (!x l. UNZIP(CONS x l) = CONS(FST x)(FST(UNZIP l)),CONS(SND x)(SND(UNZIP l))) #UNZIP_FST_DEF = |- !l. UNZIP_FST l = FST(UNZIP l) #UNZIP_SND_DEF = |- !l. UNZIP_SND l = SND(UNZIP l) #SUM = |- (SUM[] = 0) /\ (!h t. SUM(CONS h t) = h + (SUM t)) #GENLIST = |- (!f. GENLIST f 0 = []) /\ (!f n. GENLIST f(SUC n) = SNOC(f n)(GENLIST f n)) #REPLICATE = |- (!x. REPLICATE 0 x = []) /\ (!n x. REPLICATE(SUC n)x = CONS x(REPLICATE n x)) #####NOT_SUC = |- !n. ~(SUC n = 0) #INV_SUC = |- !m n. (SUC m = SUC n) ==> (m = n) #INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ##############################[(); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); ()] : void list #####################################################################################################[(); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); ()] : void list #######ASSOC_DEF = |- !f. ASSOC f = (!x y z. f x(f y z) = f(f x y)z) #COMM_DEF = |- !f. COMM f = (!x y. f x y = f y x) #FCOMM_DEF = |- !f g. FCOMM f g = (!x y z. g x(f y z) = f(g x y)z) #RIGHT_ID_DEF = |- !f e. RIGHT_ID f e = (!x. f x e = x) #LEFT_ID_DEF = |- !f e. LEFT_ID f e = (!x. f e x = x) #MONOID_DEF = |- !f e. MONOID f e = ASSOC f /\ RIGHT_ID f e /\ LEFT_ID f e ##ASSOC_CONJ = |- ASSOC $/\ #ASSOC_DISJ = |- ASSOC $\/ #FCOMM_ASSOC = |- !f. FCOMM f f = ASSOC f #MONOID_CONJ_T = |- MONOID $/\ T #MONOID_DISJ_F = |- MONOID $/\ T ####o_DEF = |- !f g. f o g = (\x. f(g x)) #o_THM = |- !f g x. (f o g)x = f(g x) #I_THM = |- !x. I x = x ##UNCURRY_DEF = |- !f x y. UNCURRY f(x,y) = f x y ######### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void #####INDUCT_TAC = - : tactic ########## Section prove_rec_fn_exists begun derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) Section prove_rec_fn_exists ended prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/prim_rec.ml loaded () : void ###### () : void Section prove_induction_thm begun UNIQUENESS = - : (thm -> thm) DEPTH_FORALL_CONV = - : (conv -> conv) CONJS_CONV = - : (conv -> conv) CONJS_SIMP = - : (conv -> conv) T_AND_CONV = - : conv GENL_T = - : (term list -> thm) SIMP_CONV = - : conv HYP_SIMP = - : conv ANTE_ALL_CONV = - : conv CONCL_SIMP = - : conv prove_induction_thm = - : (thm -> thm) - : (thm -> thm) Section prove_induction_thm ended prove_induction_thm = - : (thm -> thm) Section prove_cases_thm begun NOT_ALL_THENC = - : (conv -> conv) BASE_CONV = - : conv STEP_CONV = - : conv NOT_IN_CONV = - : conv STEP_SIMP = - : conv DISJS_CHAIN = - : (conv -> thm -> thm) prove_cases_thm = - : (thm -> thm) - : (thm -> thm) Section prove_cases_thm ended prove_cases_thm = - : (thm -> thm) Section prove_constructors_one_one begun PAIR_EQ_CONV = - : conv list_variant = - : (term list -> term list -> term list) prove_const_one_one = - : (thm -> conv) prove_constructors_one_one = - : (thm -> thm) - : (thm -> thm) Section prove_constructors_one_one ended prove_constructors_one_one = - : (thm -> thm) prove_constructors_distinct = - : (thm -> thm) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/tyfns.ml loaded () : void ## num_CONV = - : conv File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/numconv.ml loaded () : void #########NULL = |- NULL[] /\ (!h t. ~NULL(CONS h t)) ######list_INDUCT = |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) ###LIST_INDUCT_TAC = - : tactic ####list_CASES = |- !l. (l = []) \/ (?t h. l = CONS h t) ####CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') ###NOT_NIL_CONS = |- !h t. ~([] = CONS h t) ####NOT_CONS_NIL = |- !h t. ~(CONS h t = []) ######LIST_NOT_EQ = |- !l1 l2. ~(l1 = l2) ==> (!h1 h2. ~(CONS h1 l1 = CONS h2 l2)) ######NOT_EQ_LIST = |- !h1 h2. ~(h1 = h2) ==> (!l1 l2. ~(CONS h1 l1 = CONS h2 l2)) ######EQ_LIST = |- !h1 h2. (h1 = h2) ==> (!l1 l2. (l1 = l2) ==> (CONS h1 l1 = CONS h2 l2)) #########CONS = |- !l. ~NULL l ==> (CONS(HD l)(TL l) = l) ########APPEND_ASSOC = |- !l1 l2 l3. APPEND l1(APPEND l2 l3) = APPEND(APPEND l1 l2)l3 #######Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) LENGTH_APPEND = |- !l1 l2. LENGTH(APPEND l1 l2) = (LENGTH l1) + (LENGTH l2) ########MAP_APPEND = |- !f l1 l2. MAP f(APPEND l1 l2) = APPEND(MAP f l1)(MAP f l2) ######LENGTH_MAP = |- !l f. LENGTH(MAP f l) = LENGTH l #########################################LENGTH_NIL = |- !l. (LENGTH l = 0) = (l = []) ##############Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) LENGTH_CONS = |- !l n. (LENGTH l = SUC n) = (?h l'. (LENGTH l' = n) /\ (l = CONS h l')) #################LENGTH_EQ_SUC = |- !P n. (!l. (LENGTH l = SUC n) ==> P l) = (!l. (LENGTH l = n) ==> (\l. !x. P(CONS x l))l) ###########LENGTH_EQ_NIL = |- !P. (!l. (LENGTH l = 0) ==> P l) = P[] ####################Theorem SUC_NOT autoloading from theory `arithmetic` ... SUC_NOT = |- !n. ~(0 = SUC n) LENGTH_MAP2 = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!f. (LENGTH(MAP2 f l1 l2) = LENGTH l1) /\ (LENGTH(MAP2 f l1 l2) = LENGTH l2)) ## Section begun chk_var = - : (term list -> term -> bool) FORALL_PERM_RULE = - : (term list -> thm -> thm) FORALL_PERM_CONV = - : (term list -> conv) FORALL_PERM_TAC = - : (term list -> tactic) ((-), (-), -) : ((term list -> thm -> thm) # (term list -> conv) # (term list -> tactic)) Section ended FORALL_PERM_RULE = - : (term list -> thm -> thm) FORALL_PERM_CONV = - : (term list -> conv) FORALL_PERM_TAC = - : (term list -> tactic) NULL_EQ_NIL = |- !l. NULL l = (l = []) LENGTH_EQ = |- !x y. (x = y) ==> (LENGTH x = LENGTH y) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 LENGTH_NOT_NULL = |- !l. 0 < (LENGTH l) = ~NULL l REVERSE_SNOC = |- !x l. REVERSE(SNOC x l) = CONS x(REVERSE l) REVERSE_REVERSE = |- !l. REVERSE(REVERSE l) = l forall_REVERSE = |- !P. (!l. P(REVERSE l)) = (!l. P l) f_REVERSE_lemma = |- !f1 f2. ((\x. f1(REVERSE x)) = (\x. f2(REVERSE x))) = (f1 = f2) SNOC_Axiom = |- !e f. ?! fn. (fn[] = e) /\ (!x l. fn(SNOC x l) = f(fn l)x l) SNOC_INDUCT = |- !P. P[] /\ (!l. P l ==> (!x. P(SNOC x l))) ==> (!l. P l) SNOC_CASES = |- !l. (l = []) \/ (?l' x. l = SNOC x l') LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) NOT_NULL_SNOC = |- !x l. ~NULL(SNOC x l) NOT_NIL_SNOC = |- !x l. ~([] = SNOC x l) NOT_SNOC_NIL = |- !x l. ~(SNOC x l = []) SNOC_11 = |- !x l x' l'. (SNOC x l = SNOC x' l') = (x = x') /\ (l = l') Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) SNOC_EQ_LENGTH_EQ = |- !x1 l1 x2 l2. (SNOC x1 l1 = SNOC x2 l2) ==> (LENGTH l1 = LENGTH l2) SNOC_REVERSE_CONS = |- !x l. SNOC x l = REVERSE(CONS x(REVERSE l)) SNOC_APPEND = |- !x l. SNOC x l = APPEND l[x] MAP_SNOC = |- !f x l. MAP f(SNOC x l) = SNOC(f x)(MAP f l) FOLDR_SNOC = |- !f e x l. FOLDR f e(SNOC x l) = FOLDR f(f x e)l FOLDL_SNOC = |- !f e x l. FOLDL f e(SNOC x l) = f(FOLDL f e l)x SNOC_INDUCT_TAC = - : tactic FOLDR_FOLDL = |- !f e. MONOID f e ==> (!l. FOLDR f e l = FOLDL f e l) LENGTH_FOLDR = |- !l. LENGTH l = FOLDR(\x l'. SUC l')0 l LENGTH_FOLDL = |- !l. LENGTH l = FOLDL(\l' x. SUC l')0 l MAP_FOLDR = |- !f l. MAP f l = FOLDR(\x l'. CONS(f x)l')[]l MAP_FOLDL = |- !f l. MAP f l = FOLDL(\l' x. SNOC(f x)l')[]l MAP_o = |- !f g. MAP(f o g) = (MAP f) o (MAP g) MAP_MAP_o = |- !f g l. MAP f(MAP g l) = MAP(f o g)l FILTER_FOLDR = |- !P l. FILTER P l = FOLDR(\x l'. (P x => CONS x l' | l'))[]l FILTER_SNOC = |- !P x l. FILTER P(SNOC x l) = (P x => SNOC x(FILTER P l) | FILTER P l) FILTER_FOLDL = |- !P l. FILTER P l = FOLDL(\l' x. (P x => SNOC x l' | l'))[]l FILTER_COMM = |- !f1 f2 l. FILTER f1(FILTER f2 l) = FILTER f2(FILTER f1 l) FILTER_IDEM = |- !f l. FILTER f(FILTER f l) = FILTER f l FILTER_MAP = |- !f1 f2 l. FILTER f1(MAP f2 l) = MAP f2(FILTER(f1 o f2)l) Theorem ADD_SUC autoloading from theory `arithmetic` ... ADD_SUC = |- !m n. SUC(m + n) = m + (SUC n) Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Theorem ADD_0 autoloading from theory `arithmetic` ... ADD_0 = |- !m. m + 0 = m LENGTH_SEG = |- !n k l. (n + k) <= (LENGTH l) ==> (LENGTH(SEG n k l) = n) APPEND_NIL = |- (!l. APPEND l[] = l) /\ (!l. APPEND[]l = l) APPEND_SNOC = |- !l1 x l2. APPEND l1(SNOC x l2) = SNOC x(APPEND l1 l2) REVERSE_APPEND = |- !l1 l2. REVERSE(APPEND l1 l2) = APPEND(REVERSE l2)(REVERSE l1) APPEND_FOLDR = |- !l1 l2. APPEND l1 l2 = FOLDR CONS l2 l1 APPEND_FOLDL = |- !l1 l2. APPEND l1 l2 = FOLDL(\l' x. SNOC x l')l1 l2 FOLDR_APPEND = |- !f e l1 l2. FOLDR f e(APPEND l1 l2) = FOLDR f(FOLDR f e l2)l1 FOLDL_APPEND = |- !f e l1 l2. FOLDL f e(APPEND l1 l2) = FOLDL f(FOLDL f e l1)l2 CONS_APPEND = |- !x l. CONS x l = APPEND[x]l ASSOC_APPEND = |- ASSOC APPEND RIGHT_ID_APPEND_NIL = |- RIGHT_ID APPEND[] LEFT_ID_APPEND_NIL = |- LEFT_ID APPEND[] MONOID_APPEND_NIL = |- MONOID APPEND[] APPEND_LENGTH_EQ = |- !l1 l1'. (LENGTH l1 = LENGTH l1') ==> (!l2 l2'. (LENGTH l2 = LENGTH l2') ==> ((APPEND l1 l2 = APPEND l1' l2') = (l1 = l1') /\ (l2 = l2'))) FILTER_APPEND = |- !f l1 l2. FILTER f(APPEND l1 l2) = APPEND(FILTER f l1)(FILTER f l2) FLAT_SNOC = |- !x l. FLAT(SNOC x l) = APPEND(FLAT l)x FLAT_FOLDR = |- !l. FLAT l = FOLDR APPEND[]l FLAT_FOLDL = |- !l. FLAT l = FOLDL APPEND[]l LENGTH_FLAT = |- !l. LENGTH(FLAT l) = SUM(MAP LENGTH l) REVERSE_FOLDR = |- !l. REVERSE l = FOLDR SNOC[]l REVERSE_FOLDL = |- !l. REVERSE l = FOLDL(\l' x. CONS x l')[]l LENGTH_REVERSE = |- !l. LENGTH(REVERSE l) = LENGTH l REVERSE_EQ_NIL = |- !l. (REVERSE l = []) = (l = []) ALL_EL_SNOC = |- !P x l. ALL_EL P(SNOC x l) = ALL_EL P l /\ P x ALL_EL_CONJ = |- !P Q l. ALL_EL(\x. P x /\ Q x)l = ALL_EL P l /\ ALL_EL Q l ALL_EL_MAP = |- !P f l. ALL_EL P(MAP f l) = ALL_EL(P o f)l ALL_EL_APPEND = |- !P l1 l2. ALL_EL P(APPEND l1 l2) = ALL_EL P l1 /\ ALL_EL P l2 SOME_EL_SNOC = |- !P x l. SOME_EL P(SNOC x l) = P x \/ SOME_EL P l NOT_ALL_EL_SOME_EL = |- !P l. ~ALL_EL P l = SOME_EL($~ o P)l NOT_SOME_EL_ALL_EL = |- !P l. ~SOME_EL P l = ALL_EL($~ o P)l IS_EL = |- (!x. IS_EL x[] = F) /\ (!y x l. IS_EL y(CONS x l) = (y = x) \/ IS_EL y l) IS_EL_SNOC = |- !y x l. IS_EL y(SNOC x l) = (y = x) \/ IS_EL y l Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p SUM_SNOC = |- !x l. SUM(SNOC x l) = (SUM l) + x SUM_FOLDR = |- !l. SUM l = FOLDR $+ 0 l SUM_FOLDL = |- !l. SUM l = FOLDL $+ 0 l IS_PREFIX_APPEND = |- !l1 l2. IS_PREFIX l1 l2 = (?l. l1 = APPEND l2 l) IS_SUFFIX_APPEND = |- !l1 l2. IS_SUFFIX l1 l2 = (?l. l1 = APPEND l l2) IS_SUBLIST_APPEND = |- !l1 l2. IS_SUBLIST l1 l2 = (?l l'. l1 = APPEND l(APPEND l2 l')) IS_PREFIX_IS_SUBLIST = |- !l1 l2. IS_PREFIX l1 l2 ==> IS_SUBLIST l1 l2 IS_SUFFIX_IS_SUBLIST = |- !l1 l2. IS_SUFFIX l1 l2 ==> IS_SUBLIST l1 l2 IS_PREFIX_REVERSE = |- !l1 l2. IS_PREFIX(REVERSE l1)(REVERSE l2) = IS_SUFFIX l1 l2 IS_SUFFIX_REVERSE = |- !l1 l2. IS_SUFFIX(REVERSE l1)(REVERSE l2) = IS_PREFIX l1 l2 IS_SUBLIST_REVERSE = |- !l1 l2. IS_SUBLIST(REVERSE l1)(REVERSE l2) = IS_SUBLIST l1 l2 PREFIX_FOLDR = |- !P l. PREFIX P l = FOLDR(\x l'. (P x => CONS x l' | []))[]l PREFIX = |- (!P. PREFIX P[] = []) /\ (!P x l. PREFIX P(CONS x l) = (P x => CONS x(PREFIX P l) | [])) IS_PREFIX_PREFIX = |- !P l. IS_PREFIX l(PREFIX P l) LENGTH_SCANL = |- !f e l. LENGTH(SCANL f e l) = SUC(LENGTH l) LENGTH_SCANR = |- !f e l. LENGTH(SCANR f e l) = SUC(LENGTH l) COMM_MONOID_FOLDL = |- !f. COMM f ==> (!e'. MONOID f e' ==> (!e l. FOLDL f e l = f e(FOLDL f e' l))) COMM_MONOID_FOLDR = |- !f. COMM f ==> (!e'. MONOID f e' ==> (!e l. FOLDR f e l = f e(FOLDR f e' l))) FCOMM_FOLDR_APPEND = |- !g f. FCOMM g f ==> (!e. LEFT_ID g e ==> (!l1 l2. FOLDR f e(APPEND l1 l2) = g(FOLDR f e l1)(FOLDR f e l2))) FCOMM_FOLDL_APPEND = |- !f g. FCOMM f g ==> (!e. RIGHT_ID g e ==> (!l1 l2. FOLDL f e(APPEND l1 l2) = g(FOLDL f e l1)(FOLDL f e l2))) MONOID_FOLDR_APPEND_FOLDR = |- !f e. MONOID f e ==> (!l1 l2. FOLDR f e(APPEND l1 l2) = f(FOLDR f e l1)(FOLDR f e l2)) MONOID_FOLDL_APPEND_FOLDL = |- !f e. MONOID f e ==> (!l1 l2. FOLDL f e(APPEND l1 l2) = f(FOLDL f e l1)(FOLDL f e l2)) FOLDL_SINGLE = |- !f e x. FOLDL f e[x] = f e x FOLDR_SINGLE = |- !f e x. FOLDR f e[x] = f x e FOLDR_CONS_NIL = |- !l. FOLDR CONS[]l = l FOLDL_SNOC_NIL = |- !l. FOLDL(\xs x. SNOC x xs)[]l = l FOLDR_FOLDL_REVERSE = |- !f e l. FOLDR f e l = FOLDL(\x y. f y x)e(REVERSE l) FOLDL_FOLDR_REVERSE = |- !f e l. FOLDL f e l = FOLDR(\x y. f y x)e(REVERSE l) FOLDR_REVERSE = |- !f e l. FOLDR f e(REVERSE l) = FOLDL(\x y. f y x)e l FOLDL_REVERSE = |- !f e l. FOLDL f e(REVERSE l) = FOLDR(\x y. f y x)e l FOLDR_MAP = |- !f e g l. FOLDR f e(MAP g l) = FOLDR(\x y. f(g x)y)e l FOLDL_MAP = |- !f e g l. FOLDL f e(MAP g l) = FOLDL(\x y. f x(g y))e l ALL_EL_FOLDR = |- !P l. ALL_EL P l = FOLDR(\x l'. P x /\ l')T l ALL_EL_FOLDL = |- !P l. ALL_EL P l = FOLDL(\l' x. l' /\ P x)T l SOME_EL_FOLDR = |- !P l. SOME_EL P l = FOLDR(\x l'. P x \/ l')F l SOME_EL_FOLDL = |- !P l. SOME_EL P l = FOLDL(\l' x. l' \/ P x)F l ALL_EL_FOLDR_MAP = |- !P l. ALL_EL P l = FOLDR $/\ T(MAP P l) ALL_EL_FOLDL_MAP = |- !P l. ALL_EL P l = FOLDL $/\ T(MAP P l) SOME_EL_FOLDR_MAP = |- !P l. SOME_EL P l = FOLDR $\/ F(MAP P l) SOME_EL_FOLDL_MAP = |- !P l. SOME_EL P l = FOLDL $\/ F(MAP P l) FOLDR_FILTER = |- !f e P l. FOLDR f e(FILTER P l) = FOLDR(\x y. (P x => f x y | y))e l FOLDL_FILTER = |- !f e P l. FOLDL f e(FILTER P l) = FOLDL(\x y. (P y => f x y | x))e l ASSOC_FOLDR_FLAT = |- !f. ASSOC f ==> (!e. LEFT_ID f e ==> (!l. FOLDR f e(FLAT l) = FOLDR f e(MAP(FOLDR f e)l))) ASSOC_FOLDL_FLAT = |- !f. ASSOC f ==> (!e. RIGHT_ID f e ==> (!l. FOLDL f e(FLAT l) = FOLDL f e(MAP(FOLDL f e)l))) MAP_FLAT = |- !f l. MAP f(FLAT l) = FLAT(MAP(MAP f)l) FILTER_FLAT = |- !P l. FILTER P(FLAT l) = FLAT(MAP(FILTER P)l) SOME_EL_MAP = |- !P f l. SOME_EL P(MAP f l) = SOME_EL(P o f)l SOME_EL_APPEND = |- !P l1 l2. SOME_EL P(APPEND l1 l2) = SOME_EL P l1 \/ SOME_EL P l2 SOME_EL_DISJ = |- !P Q l. SOME_EL(\x. P x \/ Q x)l = SOME_EL P l \/ SOME_EL Q l IS_EL_APPEND = |- !l1 l2 x. IS_EL x(APPEND l1 l2) = IS_EL x l1 \/ IS_EL x l2 IS_EL_FOLDR = |- !y l. IS_EL y l = FOLDR(\x l'. (y = x) \/ l')F l IS_EL_FOLDL = |- !y l. IS_EL y l = FOLDL(\l' x. l' \/ (y = x))F l NULL_FOLDR = |- !l. NULL l = FOLDR(\x l'. F)T l NULL_FOLDL = |- !l. NULL l = FOLDL(\x l'. F)T l MAP_REVERSE = |- !f l. MAP f(REVERSE l) = REVERSE(MAP f l) FILTER_REVERSE = |- !P l. FILTER P(REVERSE l) = REVERSE(FILTER P l) Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) LAST = |- !x l. LAST(SNOC x l) = x BUTLAST = |- !x l. BUTLAST(SNOC x l) = l SEG_LENGTH_ID = |- !l. SEG(LENGTH l)0 l = l SEG_SUC_CONS = |- !m n l x. SEG m(SUC n)(CONS x l) = SEG m n l SEG_0_SNOC = |- !m l x. m <= (LENGTH l) ==> (SEG m 0(SNOC x l) = SEG m 0 l) Theorem SUB_LESS_EQ autoloading from theory `arithmetic` ... SUB_LESS_EQ = |- !n m. (n - m) <= n Theorem SUB_MONO_EQ autoloading from theory `arithmetic` ... SUB_MONO_EQ = |- !n m. (SUC n) - (SUC m) = n - m Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) BUTLASTN_SEG = |- !n l. n <= (LENGTH l) ==> (BUTLASTN n l = SEG((LENGTH l) - n)0 l) LASTN_CONS = |- !n l. n <= (LENGTH l) ==> (!x. LASTN n(CONS x l) = LASTN n l) LENGTH_LASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(LASTN n l) = n) LASTN_LENGTH_ID = |- !l. LASTN(LENGTH l)l = l Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n LASTN_LASTN = |- !l n m. m <= (LENGTH l) ==> n <= m ==> (LASTN n(LASTN m l) = LASTN n l) Theorem NOT_SUC_LESS_EQ_0 autoloading from theory `arithmetic` ... NOT_SUC_LESS_EQ_0 = |- !n. ~(SUC n) <= 0 NOT_SUC_LESS_EQ_0 = |- !n. ~(SUC n) <= 0 FIRSTN_LENGTH_ID = |- !l. FIRSTN(LENGTH l)l = l FIRSTN_SNOC = |- !n l. n <= (LENGTH l) ==> (!x. FIRSTN n(SNOC x l) = FIRSTN n l) BUTLASTN_LENGTH_NIL = |- !l. BUTLASTN(LENGTH l)l = [] BUTLASTN_SUC_BUTLAST = |- !n l. n < (LENGTH l) ==> (BUTLASTN(SUC n)l = BUTLASTN n(BUTLAST l)) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n BUTLASTN_BUTLAST = |- !n l. n < (LENGTH l) ==> (BUTLASTN n(BUTLAST l) = BUTLAST(BUTLASTN n l)) LENGTH_BUTLASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(BUTLASTN n l) = (LENGTH l) - n) ADD_SUC_lem = |- !m n. m + (SUC n) = (SUC m) + n BUTLASTN_BUTLASTN = |- !m n l. (n + m) <= (LENGTH l) ==> (BUTLASTN n(BUTLASTN m l) = BUTLASTN(n + m)l) APPEND_BUTLASTN_LASTN = |- !n l. n <= (LENGTH l) ==> (APPEND(BUTLASTN n l)(LASTN n l) = l) Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m APPEND_FIRSTN_LASTN = |- !m n l. (m + n = LENGTH l) ==> (APPEND(FIRSTN n l)(LASTN m l) = l) BUTLASTN_APPEND2 = |- !n l1 l2. n <= (LENGTH l2) ==> (BUTLASTN n(APPEND l1 l2) = APPEND l1(BUTLASTN n l2)) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m BUTLASTN_LENGTH_APPEND = |- !l2 l1. BUTLASTN(LENGTH l2)(APPEND l1 l2) = l1 LASTN_LENGTH_APPEND = |- !l1 l2. LASTN(LENGTH l2)(APPEND l1 l2) = l2 BUTLASTN_CONS = |- !n l. n <= (LENGTH l) ==> (!x. BUTLASTN n(CONS x l) = CONS x(BUTLASTN n l)) BUTLASTN_LENGTH_CONS = |- !l x. BUTLASTN(LENGTH l)(CONS x l) = [x] LAST_LASTN_LAST = |- !n l. n <= (LENGTH l) ==> 0 < n ==> (LAST(LASTN n l) = LAST l) BUTLASTN_LASTN_NIL = |- !n l. n <= (LENGTH l) ==> (BUTLASTN n(LASTN n l) = []) LASTN_BUTLASTN = |- !n m l. (n + m) <= (LENGTH l) ==> (LASTN n(BUTLASTN m l) = BUTLASTN m(LASTN(n + m)l)) BUTLASTN_LASTN = |- !m n l. m <= n /\ n <= (LENGTH l) ==> (BUTLASTN m(LASTN n l) = LASTN(n - m)(BUTLASTN m l)) LASTN_1 = |- !l. ~(l = []) ==> (LASTN 1 l = [LAST l]) BUTLASTN_1 = |- !l. ~(l = []) ==> (BUTLASTN 1 l = BUTLAST l) BUTLASTN_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. BUTLASTN n(APPEND l1 l2) = BUTLASTN(n - (LENGTH l2))l1) LASTN_APPEND2 = |- !n l2. n <= (LENGTH l2) ==> (!l1. LASTN n(APPEND l1 l2) = LASTN n l2) LASTN_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. LASTN n(APPEND l1 l2) = APPEND(LASTN(n - (LENGTH l2))l1)l2) LASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. LASTN n(MAP f l) = MAP f(LASTN n l)) BUTLASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. BUTLASTN n(MAP f l) = MAP f(BUTLASTN n l)) ALL_EL_LASTN = |- !P l. ALL_EL P l ==> (!m. m <= (LENGTH l) ==> ALL_EL P(LASTN m l)) ALL_EL_BUTLASTN = |- !P l. ALL_EL P l ==> (!m. m <= (LENGTH l) ==> ALL_EL P(BUTLASTN m l)) LENGTH_FIRSTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(FIRSTN n l) = n) FIRSTN_FIRSTN = |- !m l. m <= (LENGTH l) ==> (!n. n <= m ==> (FIRSTN n(FIRSTN m l) = FIRSTN n l)) LENGTH_BUTFIRSTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(BUTFIRSTN n l) = (LENGTH l) - n) BUTFIRSTN_LENGTH_NIL = |- !l. BUTFIRSTN(LENGTH l)l = [] BUTFIRSTN_APPEND1 = |- !n l1. n <= (LENGTH l1) ==> (!l2. BUTFIRSTN n(APPEND l1 l2) = APPEND(BUTFIRSTN n l1)l2) BUTFIRSTN_APPEND2 = |- !l1 n. (LENGTH l1) <= n ==> (!l2. BUTFIRSTN n(APPEND l1 l2) = BUTFIRSTN(n - (LENGTH l1))l2) BUTFIRSTN_BUTFIRSTN = |- !n m l. (n + m) <= (LENGTH l) ==> (BUTFIRSTN n(BUTFIRSTN m l) = BUTFIRSTN(n + m)l) APPEND_FIRSTN_BUTFIRSTN = |- !n l. n <= (LENGTH l) ==> (APPEND(FIRSTN n l)(BUTFIRSTN n l) = l) Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n Definition SUB autoloading from theory `arithmetic` ... SUB = |- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n))) Theorem LESS_SUC_NOT autoloading from theory `arithmetic` ... LESS_SUC_NOT = |- !m n. m < n ==> ~n < (SUC m) LASTN_SEG = |- !n l. n <= (LENGTH l) ==> (LASTN n l = SEG n((LENGTH l) - n)l) FIRSTN_SEG = |- !n l. n <= (LENGTH l) ==> (FIRSTN n l = SEG n 0 l) BUTFIRSTN_SEG = |- !n l. n <= (LENGTH l) ==> (BUTFIRSTN n l = SEG((LENGTH l) - n)n l) APPEND_BUTLAST_LAST = |- !l. ~(l = []) ==> (APPEND(BUTLAST l)[LAST l] = l) BUTFIRSTN_SNOC = |- !n l. n <= (LENGTH l) ==> (!x. BUTFIRSTN n(SNOC x l) = SNOC x(BUTFIRSTN n l)) APPEND_BUTLASTN_BUTFIRSTN = |- !m n l. (m + n = LENGTH l) ==> (APPEND(BUTLASTN m l)(BUTFIRSTN n l) = l) SEG_SEG = |- !n1 m1 n2 m2 l. (n1 + m1) <= (LENGTH l) /\ (n2 + m2) <= n1 ==> (SEG n2 m2(SEG n1 m1 l) = SEG n2(m1 + m2)l) SEG_APPEND1 = |- !n m l1. (n + m) <= (LENGTH l1) ==> (!l2. SEG n m(APPEND l1 l2) = SEG n m l1) SEG_APPEND2 = |- !l1 m n l2. (LENGTH l1) <= m /\ n <= (LENGTH l2) ==> (SEG n m(APPEND l1 l2) = SEG n(m - (LENGTH l1))l2) SEG_FIRSTN_BUTFIRSTN = |- !n m l. (n + m) <= (LENGTH l) ==> (SEG n m l = FIRSTN n(BUTFIRSTN m l)) Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a + c) - c = a Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem LESS_0_CASES autoloading from theory `arithmetic` ... LESS_0_CASES = |- !m. (0 = m) \/ 0 < m Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) SEG_APPEND = |- !m l1 n l2. m < (LENGTH l1) /\ (LENGTH l1) <= (n + m) /\ (n + m) <= ((LENGTH l1) + (LENGTH l2)) ==> (SEG n m(APPEND l1 l2) = APPEND(SEG((LENGTH l1) - m)m l1)(SEG((n + m) - (LENGTH l1))0 l2)) SEG_LENGTH_SNOC = |- !l x. SEG 1(LENGTH l)(SNOC x l) = [x] SEG_SNOC = |- !n m l. (n + m) <= (LENGTH l) ==> (!x. SEG n m(SNOC x l) = SEG n m l) Theorem SUB_LESS_0 autoloading from theory `arithmetic` ... SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) Theorem PRE_SUC_EQ autoloading from theory `arithmetic` ... PRE_SUC_EQ = |- !m n. 0 < n ==> ((m = PRE n) = (SUC m = n)) ELL_SEG = |- !n l. n < (LENGTH l) ==> (ELL n l = HD(SEG 1(PRE((LENGTH l) - n))l)) REWRITE1_TAC = - : thm_tactic SNOC_FOLDR = |- !x l. SNOC x l = FOLDR CONS[x]l IS_EL_FOLDR_MAP = |- !x l. IS_EL x l = FOLDR $\/ F(MAP($= x)l) IS_EL_FOLDL_MAP = |- !x l. IS_EL x l = FOLDL $\/ F(MAP($= x)l) FILTER_FILTER = |- !P Q l. FILTER P(FILTER Q l) = FILTER(\x. P x /\ Q x)l FCOMM_FOLDR_FLAT = |- !g f. FCOMM g f ==> (!e. LEFT_ID g e ==> (!l. FOLDR f e(FLAT l) = FOLDR g e(MAP(FOLDR f e)l))) FCOMM_FOLDL_FLAT = |- !f g. FCOMM f g ==> (!e. RIGHT_ID g e ==> (!l. FOLDL f e(FLAT l) = FOLDL g e(MAP(FOLDL f e)l))) FOLDR1 = |- !f. (!a b c. f a(f b c) = f b(f a c)) ==> (!e l. FOLDR f(f h e)l = f h(FOLDR f e l)) FOLDL1 = |- !f. (!a b c. f(f a b)c = f(f a c)b) ==> (!e l. FOLDL f(f e h)l = f(FOLDL f e l)h) FOLDR_REVERSE2 = |- !f. (!a b c. f a(f b c) = f b(f a c)) ==> (!e l. FOLDR f e(REVERSE l) = FOLDR f e l) FOLDR_MAP_REVERSE = |- !f. (!a b c. f a(f b c) = f b(f a c)) ==> (!e g l. FOLDR f e(MAP g(REVERSE l)) = FOLDR f e(MAP g l)) FOLDR_FILTER_REVERSE = |- !f. (!a b c. f a(f b c) = f b(f a c)) ==> (!e P l. FOLDR f e(FILTER P(REVERSE l)) = FOLDR f e(FILTER P l)) FOLDL_REVERSE2 = |- !f. (!a b c. f(f a b)c = f(f a c)b) ==> (!e l. FOLDL f e(REVERSE l) = FOLDL f e l) COMM_ASSOC_LEM1 = |- !f. COMM f ==> ASSOC f ==> (!a b c. f a(f b c) = f b(f a c)) COMM_ASSOC_LEM2 = |- !f. COMM f ==> ASSOC f ==> (!a b c. f(f a b)c = f(f a c)b) COMM_ASSOC_FOLDR_REVERSE = |- !f. COMM f ==> ASSOC f ==> (!e l. FOLDR f e(REVERSE l) = FOLDR f e l) COMM_ASSOC_FOLDL_REVERSE = |- !f. COMM f ==> ASSOC f ==> (!e l. FOLDL f e(REVERSE l) = FOLDL f e l) ELL_LAST = |- !l. ~NULL l ==> (ELL 0 l = LAST l) ELL_0_SNOC = |- !l x. ELL 0(SNOC x l) = x ELL_SNOC = |- !n. 0 < n ==> (!x l. ELL n(SNOC x l) = ELL(PRE n)l) ELL_SUC_SNOC = |- !n x l. ELL(SUC n)(SNOC x l) = ELL n l ELL_CONS = |- !n l. n < (LENGTH l) ==> (!x. ELL n(CONS x l) = ELL n l) ELL_LENGTH_CONS = |- !l x. ELL(LENGTH l)(CONS x l) = x ELL_LENGTH_SNOC = |- !l x. ELL(LENGTH l)(SNOC x l) = (NULL l => x | HD l) ELL_APPEND2 = |- !n l2. n < (LENGTH l2) ==> (!l1. ELL n(APPEND l1 l2) = ELL n l2) ELL_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. ELL n(APPEND l1 l2) = ELL(n - (LENGTH l2))l1) ELL_PRE_LENGTH = |- !l. ~(l = []) ==> (ELL(PRE(LENGTH l))l = HD l) EL_LENGTH_SNOC = |- !l x. EL(LENGTH l)(SNOC x l) = x EL_PRE_LENGTH = |- !l. ~(l = []) ==> (EL(PRE(LENGTH l))l = LAST l) EL_SNOC = |- !n l. n < (LENGTH l) ==> (!x. EL n(SNOC x l) = EL n l) Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n LESS_PRE_SUB_LESS = |- !n m. m < n ==> (PRE(n - m)) < n EL_ELL = |- !n l. n < (LENGTH l) ==> (EL n l = ELL(PRE((LENGTH l) - n))l) EL_LENGTH_APPEND = |- !l2 l1. ~NULL l2 ==> (EL(LENGTH l1)(APPEND l1 l2) = HD l2) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) ELL_EL = |- !n l. n < (LENGTH l) ==> (ELL n l = EL(PRE((LENGTH l) - n))l) ELL_MAP = |- !n l f. n < (LENGTH l) ==> (ELL n(MAP f l) = f(ELL n l)) LENGTH_BUTLAST = |- !l. ~(l = []) ==> (LENGTH(BUTLAST l) = PRE(LENGTH l)) BUTFIRSTN_LENGTH_APPEND = |- !l1 l2. BUTFIRSTN(LENGTH l1)(APPEND l1 l2) = l2 FIRSTN_APPEND1 = |- !n l1. n <= (LENGTH l1) ==> (!l2. FIRSTN n(APPEND l1 l2) = FIRSTN n l1) FIRSTN_APPEND2 = |- !l1 n. (LENGTH l1) <= n ==> (!l2. FIRSTN n(APPEND l1 l2) = APPEND l1(FIRSTN(n - (LENGTH l1))l2)) FIRSTN_LENGTH_APPEND = |- !l1 l2. FIRSTN(LENGTH l1)(APPEND l1 l2) = l1 REVERSE_FLAT = |- !l. REVERSE(FLAT l) = FLAT(REVERSE(MAP REVERSE l)) MAP_COND = |- !f c l1 l2. MAP f(c => l1 | l2) = (c => MAP f l1 | MAP f l2) MAP_FILTER = |- !f P l. (!x. P(f x) = P x) ==> (MAP f(FILTER P l) = FILTER P(MAP f l)) FLAT_APPEND = |- !l1 l2. FLAT(APPEND l1 l2) = APPEND(FLAT l1)(FLAT l2) FLAT_REVERSE = |- !l. FLAT(REVERSE l) = REVERSE(FLAT(MAP REVERSE l)) FLAT_FLAT = |- !l. FLAT(FLAT l) = FLAT(MAP FLAT l) ALL_EL_REVERSE = |- !P l. ALL_EL P(REVERSE l) = ALL_EL P l SOME_EL_REVERSE = |- !P l. SOME_EL P(REVERSE l) = SOME_EL P l ALL_EL_SEG = |- !P l. ALL_EL P l ==> (!m k. (m + k) <= (LENGTH l) ==> ALL_EL P(SEG m k l)) ALL_EL_FIRSTN = |- !P l. ALL_EL P l ==> (!m. m <= (LENGTH l) ==> ALL_EL P(FIRSTN m l)) Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) ALL_EL_BUTFIRSTN = |- !P l. ALL_EL P l ==> (!m. m <= (LENGTH l) ==> ALL_EL P(BUTFIRSTN m l)) SOME_EL_SEG = |- !m k l. (m + k) <= (LENGTH l) ==> (!P. SOME_EL P(SEG m k l) ==> SOME_EL P l) SOME_EL_FIRSTN = |- !m l. m <= (LENGTH l) ==> (!P. SOME_EL P(FIRSTN m l) ==> SOME_EL P l) SOME_EL_BUTFIRSTN = |- !m l. m <= (LENGTH l) ==> (!P. SOME_EL P(BUTFIRSTN m l) ==> SOME_EL P l) SOME_EL_LASTN = |- !m l. m <= (LENGTH l) ==> (!P. SOME_EL P(LASTN m l) ==> SOME_EL P l) SOME_EL_BUTLASTN = |- !m l. m <= (LENGTH l) ==> (!P. SOME_EL P(BUTLASTN m l) ==> SOME_EL P l) IS_EL_REVERSE = |- !x l. IS_EL x(REVERSE l) = IS_EL x l IS_EL_FILTER = |- !P x. P x ==> (!l. IS_EL x(FILTER P l) = IS_EL x l) IS_EL_SEG = |- !n m l. (n + m) <= (LENGTH l) ==> (!x. IS_EL x(SEG n m l) ==> IS_EL x l) IS_EL_SOME_EL = |- !x l. IS_EL x l = SOME_EL($= x)l IS_EL_FIRSTN = |- !m l. m <= (LENGTH l) ==> (!x. IS_EL x(FIRSTN m l) ==> IS_EL x l) IS_EL_BUTFIRSTN = |- !m l. m <= (LENGTH l) ==> (!x. IS_EL x(BUTFIRSTN m l) ==> IS_EL x l) IS_EL_BUTLASTN = |- !m l. m <= (LENGTH l) ==> (!x. IS_EL x(BUTLASTN m l) ==> IS_EL x l) IS_EL_LASTN = |- !m l. m <= (LENGTH l) ==> (!x. IS_EL x(LASTN m l) ==> IS_EL x l) ZIP_SNOC = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!x1 x2. ZIP(SNOC x1 l1,SNOC x2 l2) = SNOC(x1,x2)(ZIP(l1,l2))) UNZIP_SNOC = |- !x l. UNZIP(SNOC x l) = SNOC(FST x)(FST(UNZIP l)),SNOC(SND x)(SND(UNZIP l)) LENGTH_ZIP = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (LENGTH(ZIP(l1,l2)) = LENGTH l1) /\ (LENGTH(ZIP(l1,l2)) = LENGTH l2) LENGTH_UNZIP_FST = |- !l. LENGTH(UNZIP_FST l) = LENGTH l LENGTH_UNZIP_SND = |- !l. LENGTH(UNZIP_SND l) = LENGTH l ZIP_UNZIP = |- !l. ZIP(UNZIP l) = l UNZIP_ZIP = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (UNZIP(ZIP(l1,l2)) = l1,l2) SUM_APPEND = |- !l1 l2. SUM(APPEND l1 l2) = (SUM l1) + (SUM l2) SUM_REVERSE = |- !l. SUM(REVERSE l) = SUM l SUM_FLAT = |- !l. SUM(FLAT l) = SUM(MAP SUM l) EL_APPEND1 = |- !n l1 l2. n < (LENGTH l1) ==> (EL n(APPEND l1 l2) = EL n l1) EL_APPEND2 = |- !l1 n. (LENGTH l1) <= n ==> (!l2. EL n(APPEND l1 l2) = EL(n - (LENGTH l1))l2) EL_MAP = |- !n l. n < (LENGTH l) ==> (!f. EL n(MAP f l) = f(EL n l)) EL_CONS = |- !n. 0 < n ==> (!x l. EL n(CONS x l) = EL(PRE n)l) EL_SEG = |- !n l. n < (LENGTH l) ==> (EL n l = HD(SEG 1 n l)) EL_IS_EL = |- !n l. n < (LENGTH l) ==> IS_EL(EL n l)l TL_SNOC = |- !x l. TL(SNOC x l) = (NULL l => [] | SNOC x(TL l)) SUB_SUC_LESS = |- !m n. n < m ==> (m - (SUC n)) < m Theorem SUB_PLUS autoloading from theory `arithmetic` ... SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 EL_REVERSE = |- !n l. n < (LENGTH l) ==> (EL n(REVERSE l) = EL(PRE((LENGTH l) - n))l) EL_REVERSE_ELL = |- !n l. n < (LENGTH l) ==> (EL n(REVERSE l) = ELL n l) ELL_LENGTH_APPEND = |- !l1 l2. ~NULL l1 ==> (ELL(LENGTH l2)(APPEND l1 l2) = LAST l1) ELL_IS_EL = |- !n l. n < (LENGTH l) ==> IS_EL(EL n l)l ELL_REVERSE = |- !n l. n < (LENGTH l) ==> (ELL n(REVERSE l) = ELL(PRE((LENGTH l) - n))l) ELL_REVERSE_EL = |- !n l. n < (LENGTH l) ==> (ELL n(REVERSE l) = EL n l) Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p LESS_EQ_SPLIT = |- !m n p. (m + n) <= p ==> n <= p /\ m <= p Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n SUB_GREATER_EQ_ADD = |- !p n m. p >= n ==> ((p - n) >= m = p >= (m + n)) Theorem SUB_LESS_EQ_ADD autoloading from theory `arithmetic` ... SUB_LESS_EQ_ADD = |- !m p. m <= p ==> (!n. (p - m) <= n = p <= (m + n)) SUB_LESS_EQ_ADD = |- !p n m. n <= p ==> (m <= (p - n) = (m + n) <= p) FIRSTN_BUTLASTN = |- !n l. n <= (LENGTH l) ==> (FIRSTN n l = BUTLASTN((LENGTH l) - n)l) BUTLASTN_FIRSTN = |- !n l. n <= (LENGTH l) ==> (BUTLASTN n l = FIRSTN((LENGTH l) - n)l) LASTN_BUTFIRSTN = |- !n l. n <= (LENGTH l) ==> (LASTN n l = BUTFIRSTN((LENGTH l) - n)l) BUTFIRSTN_LASTN = |- !n l. n <= (LENGTH l) ==> (BUTFIRSTN n l = LASTN((LENGTH l) - n)l) SUB_ADD_lem = |- !l n m. (n + m) <= l ==> ((l - (n + m)) + n = l - m) SEG_LASTN_BUTLASTN = |- !n m l. (n + m) <= (LENGTH l) ==> (SEG n m l = LASTN n(BUTLASTN((LENGTH l) - (n + m))l)) BUTFIRSTN_REVERSE = |- !n l. n <= (LENGTH l) ==> (BUTFIRSTN n(REVERSE l) = REVERSE(BUTLASTN n l)) BUTLASTN_REVERSE = |- !n l. n <= (LENGTH l) ==> (BUTLASTN n(REVERSE l) = REVERSE(BUTFIRSTN n l)) LASTN_REVERSE = |- !n l. n <= (LENGTH l) ==> (LASTN n(REVERSE l) = REVERSE(FIRSTN n l)) FIRSTN_REVERSE = |- !n l. n <= (LENGTH l) ==> (FIRSTN n(REVERSE l) = REVERSE(LASTN n l)) Theorem SUB_SUB autoloading from theory `arithmetic` ... SUB_SUB = |- !b c. c <= b ==> (!a. a - (b - c) = (a + c) - b) SEG_REVERSE = |- !n m l. (n + m) <= (LENGTH l) ==> (SEG n m(REVERSE l) = REVERSE(SEG n((LENGTH l) - (n + m))l)) LENGTH_GENLIST = |- !f n. LENGTH(GENLIST f n) = n LENGTH_REPLICATE = |- !n x. LENGTH(REPLICATE n x) = n IS_EL_REPLICATE = |- !n. 0 < n ==> (!x. IS_EL x(REPLICATE n x)) ALL_EL_REPLICATE = |- !x n. ALL_EL($= x)(REPLICATE n x) AND_EL_FOLDL = |- !l. AND_EL l = FOLDL $/\ T l AND_EL_FOLDR = |- !l. AND_EL l = FOLDR $/\ T l OR_EL_FOLDL = |- !l. OR_EL l = FOLDL $\/ F l OR_EL_FOLDR = |- !l. OR_EL l = FOLDR $\/ F l MAP2_ZIP = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!f. MAP2 f l1 l2 = MAP(UNCURRY f)(ZIP(l1,l2))) File mk_list_thm2 loaded () : void ##=======> theory list built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f tree.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_tree.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 #############################() : void ###Theory list loaded () : void #########list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) list_INDUCT = |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') NULL = |- NULL[] /\ (!h t. ~NULL(CONS h t)) NOT_CONS_NIL = |- !h t. ~(CONS h t = []) NOT_NIL_CONS = |- !h t. ~([] = CONS h t) ALL_EL_CONJ = |- !P Q l. ALL_EL(\x. P x /\ Q x)l = ALL_EL P l /\ ALL_EL Q l ######ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) HD = |- !h t. HD(CONS h t) = h TL = |- !h t. TL(CONS h t) = t ####LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) ###EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) ####################LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) ADD_SYM = |- !m n. m + n = n + m EXP_ADD = |- !p q n. n EXP (p + q) = (n EXP p) * (n EXP q) MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p MULT_EXP_MONO = |- !p q n m. (n * ((SUC q) EXP p) = m * ((SUC q) EXP p)) = (n = m) MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) NOT_ODD_EQ_EVEN = |- !n m. ~(SUC(n + n) = m + m) LESS_CASES = |- !m n. m < n \/ n <= m WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) NOT_LESS = |- !m n. ~m < n = n <= m LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p LESS_EQ_ADD = |- !m n. m <= (m + n) LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p LESS_EQ_ANTISYM = |- !m n. ~(m < n /\ n <= m) LESS_EQ = |- !m n. m < n = (SUC m) <= n ###########INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) PRIM_REC_THM = |- !x f. (PRIM_REC x f 0 = x) /\ (!m. PRIM_REC x f(SUC m) = f(PRIM_REC x f m)m) LESS_0 = |- !n. 0 < (SUC n) LESS_SUC_REFL = |- !n. n < (SUC n) LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n LESS_SUC = |- !m n. m < n ==> m < (SUC n) NOT_LESS_0 = |- !n. ~n < 0 LESS_REFL = |- !n. ~n < n ####NOT_SUC = |- !n. ~(SUC n = 0) INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ####### num_CONV = - : conv File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/numconv.ml loaded () : void ####### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void ####### Section prove_rec_fn_exists begun derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) Section prove_rec_fn_exists ended prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/prim_rec.ml loaded () : void ###INDUCT_TAC = - : tactic ###LIST_INDUCT_TAC = - : tactic #####################arith_lemma = |- !p q n m. p < q ==> ~((SUC(n + n)) * (2 EXP p) = (SUC(m + m)) * (2 EXP q)) #############fun_11_1 = |- !p q n m. ((SUC(n + n)) * (2 EXP p) = (SUC(m + m)) * (2 EXP q)) ==> (p = q) ##############fun_11_2 = |- !p q n m. ((SUC(n + n)) * (2 EXP p) = (SUC(m + m)) * (2 EXP q)) ==> (n = m) #######ty = ":num" : type #########node_REP = |- (node_REP[] = 0) /\ (!h t. node_REP(CONS h t) = (SUC(h + h)) * (2 EXP (node_REP t))) ########################node_REP_one_one = |- !l1 l2. (node_REP l1 = node_REP l2) = (l1 = l2) #############Is_tree_REP = |- Is_tree_REP = (\t. !P. (!tl. ALL_EL P tl ==> P(node_REP tl)) ==> P t) #############ALL_EL_Is_tree_REP = |- !trl. ALL_EL Is_tree_REP trl = (!P. ALL_EL(\t. (!tl. ALL_EL P tl ==> P(node_REP tl)) ==> P t)trl) ##########Is_tree_lemma1 = |- !trl. ALL_EL Is_tree_REP trl ==> Is_tree_REP(node_REP trl) #####taut1 = |- !a b. ~(a ==> b) = a /\ ~b ###########################Is_tree_lemma2 = |- !t. Is_tree_REP t ==> (?trl. ALL_EL Is_tree_REP trl /\ (t = node_REP trl)) #######Is_tree_lemma3 = |- !tl. Is_tree_REP(node_REP tl) ==> ALL_EL Is_tree_REP tl #########Is_tree_lemma4 = |- !tl. Is_tree_REP(node_REP tl) = ALL_EL Is_tree_REP tl #########Exists_tree_REP = |- ?t. Is_tree_REP t ############tree_TY_DEF = |- ?rep. TYPE_DEFINITION Is_tree_REP rep ##########tree_ISO_DEF = |- (!a. ABS_tree(REP_tree a) = a) /\ (!r. Is_tree_REP r = (REP_tree(ABS_tree r) = r)) #######R_11 = |- !a a'. (REP_tree a = REP_tree a') = (a = a') R_ONTO = |- !r. Is_tree_REP r = (?a. r = REP_tree a) A_11 = |- !r r'. Is_tree_REP r ==> Is_tree_REP r' ==> ((ABS_tree r = ABS_tree r') = (r = r')) A_ONTO = |- !a. ?r. (a = ABS_tree r) /\ Is_tree_REP r A_R = |- !a. ABS_tree(REP_tree a) = a R_A = |- !r. Is_tree_REP r = (REP_tree(ABS_tree r) = r) ######node = |- !tl. node tl = ABS_tree(node_REP(MAP REP_tree tl)) #####dest_node = |- !t. dest_node t = (@p. t = node p) ##########IS_REP_lemma = |- !tl. ALL_EL Is_tree_REP(MAP REP_tree tl) ############REP_ABS_lemma = |- !tl. REP_tree(node tl) = node_REP(MAP REP_tree tl) ######ABS_REP = |- !tl. Is_tree_REP(node_REP(MAP REP_tree tl)) #####ABS_11_lemma = |- (ABS_tree(node_REP(MAP REP_tree tl1)) = ABS_tree(node_REP(MAP REP_tree tl2))) = (node_REP(MAP REP_tree tl1) = node_REP(MAP REP_tree tl2)) ###################node_11 = |- !tl1 tl2. (node tl1 = node tl2) = (tl1 = tl2) ########A_R_list = |- !tl. tl = MAP ABS_tree(MAP REP_tree tl) ######R_A_R = |- REP_tree(ABS_tree(REP_tree t)) = REP_tree t #####Is_R = |- Is_tree_REP(REP_tree t) ######R_A_R_list = |- !tl. MAP REP_tree(MAP ABS_tree(MAP REP_tree tl)) = MAP REP_tree tl ###########A_ONTO_list = |- !tl. ?trl. (tl = MAP ABS_tree trl) /\ ALL_EL Is_tree_REP trl ############R_ONTO_list = |- !trl. ALL_EL Is_tree_REP trl ==> (?tl. trl = MAP REP_tree tl) ########R_A_list = |- !trl. ALL_EL Is_tree_REP trl ==> (MAP REP_tree(MAP ABS_tree trl) = trl) ############################induct_lemma1 = |- (!tl. ALL_EL P tl ==> P(node tl)) = (!trl. ALL_EL Is_tree_REP trl ==> ALL_EL(\x. P(ABS_tree x))trl ==> (\x. P(ABS_tree x))(node_REP trl)) #################induct_lemma2 = |- (!t. P t) = (!rep. Is_tree_REP rep ==> (\r. Is_tree_REP r /\ (\x. P(ABS_tree x))r)rep) #############tree_Induct = |- !P. (!tl. ALL_EL P tl ==> P(node tl)) ==> (!t. P t) #######################tree_INDUCT = - : (thm -> thm) ####################tree_INDUCT_TAC = - : tactic ##############bht = |- bht = PRIM_REC (\tr. tr = node[]) (\res n tr. ?trl. (tr = node trl) /\ ALL_EL res trl) #########bht_thm = |- (bht 0 tr = (tr = node[])) /\ (bht(SUC n)tr = (?trl. (tr = node trl) /\ ALL_EL(bht n)trl)) ##################bht_lemma1 = |- !n tr. bht n tr ==> bht(SUC n)tr #########bht_lemma2 = |- !n tr. bht n tr ==> (!m. bht(n + m)tr) ######################bht_lemma3 = |- !trl. ALL_EL(\tr. ?n. bht n tr)trl ==> (?n. ALL_EL(bht n)trl) ##########exists_bht = |- !t. ?n. bht n t ##########min_bht = |- !t. ?n. bht n t /\ (!m. m < n ==> ~bht m t) ######HT = |- !t. HT t = (@n. bht n t /\ (!m. m < n ==> ~bht m t)) ###########HT_thm1 = |- !tr. bht(HT tr)tr ######HT_thm2 = |- !tr m. m < (HT tr) ==> ~bht m tr ##################HT_leaf = |- !trl. (HT(node trl) = 0) = (trl = []) ############HT_thm3 = |- !m tr. ~bht m tr ==> m < (HT tr) #####HT_thm4 = |- !tr m. m < (HT tr) = ~bht m tr ###################HT_thm5 = |- !n tl h. ~bht n(node tl) ==> ~bht n(node(CONS h tl)) ###########HT_thm6 = |- !trl tl t. ALL_EL(\t'. ~bht(HT t')(node tl))trl ==> ALL_EL(\t'. ~bht(HT t')(node(CONS h tl)))trl ##########################HT_node = |- !tl. ALL_EL(\t. (HT t) < (HT(node tl)))tl ########Less_lemma = |- !n m. n < (SUC m) = n <= m #############less_HT = |- !trl m n. m <= n ==> ALL_EL(\t. (HT t) < m)trl ==> ALL_EL(\t. (HT t) <= n)trl ###################less_HT2 = |- !trl n. (HT(node trl)) < n ==> ALL_EL(\t. (HT t) < n)trl ##########less_HT3 = |- !trl. (HT(node trl)) <= (HT(node[node trl])) ################less_HT4 = |- !trl m n. m <= n ==> ALL_EL(\t. (HT t) < m)trl ==> ALL_EL(\t. (HT t) < n)trl ######less_HT5 = |- !h. (HT h) < (HT(node[h])) ########less_HT6 = |- !h trl. (HT h) < (HT(node[node(CONS h trl)])) #####less_HT7 = |- ALL_EL(\t. (HT t) < (HT(node[node tl])))tl #####less_HT8 = |- ALL_EL(\t. (HT t) < (HT(node[node(CONS h trl)])))trl ##########dest_node_thm = |- !tl. dest_node(node tl) = tl ########################################approx_lemma = |- !f n. ?fn. !trl. (HT(node trl)) <= n ==> (fn(node trl) = f(MAP fn trl)) #########trf = |- !n f. trf n f = (@fn. !trl. (HT(node trl)) <= n ==> (fn(node trl) = f(MAP fn trl))) #########trf_thm = |- !f n trl. (HT(node trl)) <= n ==> (trf n f(node trl) = f(MAP(trf n f)trl)) #######################trf_EQ_thm = |- !t n m f. (HT t) < n /\ (HT t) < m ==> (trf n f t = trf m f t) #############trf_EQ_thm2 = |- !trl n m f. ALL_EL(\t. (HT t) < n)trl /\ ALL_EL(\t. (HT t) < m)trl ==> (MAP(trf n f)trl = MAP(trf m f)trl) ##############################FN_EXISTS = |- !f. ?fn. !trl. fn(node trl) = f(MAP fn trl) ##########FN_thm = |- ?FN. !f trl. FN f(node trl) = f(MAP(FN f)trl) ######AP = |- ?AP. (!l. AP[]l = []) /\ (!h t l. AP(CONS h t)l = CONS(h(HD l))(AP t(TL l))) ###AP = |- ?AP. (!l. AP[]l = []) /\ (!h t l. AP(CONS h t)l = CONS(h(HD l))(AP t(TL l))) #AP_DEF = ["!l. AP[]l = []"; "!h t l. AP(CONS h t)l = CONS(h(HD l))(AP t(TL l))"] : term list #########AP_MAP = .. |- !l. AP(MAP f l)l = MAP(\x. f x x)l #################EXISTS_THM = |- !f. ?fn. !tl. fn(node tl) = f(MAP fn tl)tl #########lemma = |- !l. ALL_EL(\x. f x = g x)l ==> (MAP f l = MAP g l) ###############tree_Axiom = |- !f. ?! fn. !tl. fn(node tl) = f(MAP fn tl)tl ###() : void ##=======> theory tree built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f ltree.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_ltree.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ############################() : void ###Theory tree loaded () : void ###Theory combin loaded () : void #####node_11 = |- !tl1 tl2. (node tl1 = node tl2) = (tl1 = tl2) tree_Induct = |- !P. (!tl. ALL_EL P tl ==> P(node tl)) ==> (!t. P t) tree_Axiom = |- !f. ?! fn. !tl. fn(node tl) = f(MAP fn tl)tl ##########SUM = |- (SUM[] = 0) /\ (!h t. SUM(CONS h t) = h + (SUM t)) LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) FLAT = |- (FLAT[] = []) /\ (!h t. FLAT(CONS h t) = APPEND h(FLAT t)) APPEND = |- (!l. APPEND[]l = l) /\ (!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2)) HD = |- !h t. HD(CONS h t) = h TL = |- !h t. TL(CONS h t) = t ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) #######list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) list_INDUCT = |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) LENGTH_APPEND = |- !l1 l2. LENGTH(APPEND l1 l2) = (LENGTH l1) + (LENGTH l2) LENGTH_NIL = |- !l. (LENGTH l = 0) = (l = []) LENGTH_CONS = |- !l n. (LENGTH l = SUC n) = (?h l'. (LENGTH l' = n) /\ (l = CONS h l')) ####o_THM = |- !f g x. (f o g)x = f(g x) ####ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) ADD_EQ_0 = |- !m n. (m + n = 0) = (m = 0) /\ (n = 0) #####num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) ###INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) ########### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void ####### Section prove_rec_fn_exists begun derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) Section prove_rec_fn_exists ended prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/prim_rec.ml loaded () : void #######################tree_INDUCT = - : (thm -> thm) ####################tree_INDUCT_TAC = - : tactic ###LIST_INDUCT_TAC = - : tactic ###INDUCT_TAC = - : tactic ########Size = |- Size = (@fn. !tl. fn(node tl) = SUC(SUM(MAP fn tl))) ###########Size_thm = |- !tl. Size(node tl) = SUC(SUM(MAP Size tl)) #########Is_ltree = |- !t l. Is_ltree(t,l) = (Size t = LENGTH l) ###ty = ":tree # (*)list" : type ######Exists_ltree_REP = |- ?t. Is_ltree t #######ltree_TY_DEF = |- ?rep. TYPE_DEFINITION Is_ltree rep ##########ltree_ISO_DEF = |- (!a. ABS_ltree(REP_ltree a) = a) /\ (!r. Is_ltree r = (REP_ltree(ABS_ltree r) = r)) #######R_11 = |- !a a'. (REP_ltree a = REP_ltree a') = (a = a') R_ONTO = |- !r. Is_ltree r = (?a. r = REP_ltree a) A_11 = |- !r r'. Is_ltree r ==> Is_ltree r' ==> ((ABS_ltree r = ABS_ltree r') = (r = r')) A_ONTO = |- !a. ?r. (a = ABS_ltree r) /\ Is_ltree r A_R = |- !a. ABS_ltree(REP_ltree a) = a R_A = |- !r. Is_ltree r = (REP_ltree(ABS_ltree r) = r) ########Node = |- !v tl. Node v tl = ABS_ltree (node(MAP(FST o REP_ltree)tl),CONS v(FLAT(MAP(SND o REP_ltree)tl))) ######################REP_Node = |- !tl. REP_ltree(Node v tl) = node(MAP(FST o REP_ltree)tl),CONS v(FLAT(MAP(SND o REP_ltree)tl)) ###########Size_LENGTH_lemma = |- !t. Size(FST(REP_ltree t)) = LENGTH(SND(REP_ltree t)) #########MAP_Size_LENGTH = |- !tl. MAP Size(MAP(FST o REP_ltree)tl) = MAP LENGTH(MAP(SND o REP_ltree)tl) ##############AP = |- (!l. AP[]l = []) /\ (!h t l. AP(CONS h t)l = CONS(h(HD l))(AP t(TL l))) ######SPLIT = |- (!l. SPLIT 0 l = [],l) /\ (!n l. SPLIT(SUC n)l = CONS(HD l)(FST(SPLIT n(TL l))),SND(SPLIT n(TL l))) ######PART = |- (!l. PART[]l = []) /\ (!n t l. PART(CONS n t)l = CONS(FST(SPLIT n l))(PART t(SND(SPLIT n l)))) ##########SPLIT_APPEND = |- !l l'. SPLIT(LENGTH l)(APPEND l l') = l,l' ######PART_FLAT = |- !l. PART(MAP LENGTH l)(FLAT l) = l ###############LENGTH_SND_SPLIT = |- !l n m. (LENGTH l = n + m) ==> (LENGTH(SND(SPLIT n l)) = m) ###############LENGTH_FST_SPLIT = |- !l n m. (LENGTH l = n + m) ==> (LENGTH(FST(SPLIT n l)) = n) #################APPEND_SPLIT = |- !l n m. (LENGTH l = n + m) ==> (APPEND(FST(SPLIT n l))(SND(SPLIT n l)) = l) ##################################REP_REC_lemma = |- !f. ?! fn. !tl l. fn(node tl,l) = f (AP(MAP(\t e. fn(t,e))tl)(PART(MAP Size tl)(TL l))) (HD l) (MAP ABS_ltree(AP(MAP $, tl)(PART(MAP Size tl)(TL l)))) ############lemma1 = |- !tl. MAP ABS_ltree (AP (MAP $,(MAP(FST o REP_ltree)tl)) (PART (MAP Size(MAP(FST o REP_ltree)tl)) (FLAT(MAP(SND o REP_ltree)tl)))) = tl ##############lemma2 = |- !tl. AP (MAP(\t e. fn(t,e))(MAP(FST o REP_ltree)tl)) (PART (MAP Size(MAP(FST o REP_ltree)tl)) (FLAT(MAP(SND o REP_ltree)tl))) = MAP(fn o REP_ltree)tl #######################lemma3 = |- !trl l. (LENGTH l = SUM(MAP Size trl)) ==> (FLAT (MAP (SND o REP_ltree) (MAP ABS_ltree(AP(MAP $, trl)(PART(MAP Size trl)l)))) = l) #########################lemma4 = |- !trl l. (LENGTH l = SUM(MAP Size trl)) ==> (node (MAP (FST o REP_ltree) (MAP ABS_ltree(AP(MAP $, trl)(PART(MAP Size trl)l)))) = node trl) ####################lemma5 = |- !trl l. (Size(node trl) = LENGTH l) ==> (ABS_ltree(node trl,l) = Node(HD l)(MAP ABS_ltree(AP(MAP $, trl)(PART(MAP Size trl)(TL l))))) #######################lemma6 = |- !trl l. (Size(node trl) = LENGTH l) ==> ALL_EL (\p. Size(FST p) = LENGTH(SND p)) (AP(MAP $, trl)(PART(MAP Size trl)(TL l))) ##################lemma7 = |- !trl. ALL_EL (\t. !l. (Size t = LENGTH l) ==> (x(ABS_ltree(t,l)) = y(ABS_ltree(t,l)))) trl ==> (!l. ALL_EL(\p. Size(FST p) = LENGTH(SND p))(AP(MAP $, trl)l) ==> (MAP x(MAP ABS_ltree(AP(MAP $, trl)l)) = MAP y(MAP ABS_ltree(AP(MAP $, trl)l)))) ###########################ltree_Axiom = |- !f. ?! fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl ####unique_lemma = |- !f fn fn'. (!v tl. fn(Node v tl) = f(MAP fn tl)v tl) /\ (!v tl. fn'(Node v tl) = f(MAP fn' tl)v tl) ==> (fn = fn') ##############################ltree_Induct = |- !P. (!t. ALL_EL P t ==> (!h. P(Node h t))) ==> (!l. P l) ###exists_lemma = |- !f. ?fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl ################Node_11 = |- !v1 v2 trl1 trl2. (Node v1 trl1 = Node v2 trl2) = (v1 = v2) /\ (trl1 = trl2) #######################ltree_INDUCT = - : (thm -> thm) #######################ltree_INDUCT_TAC = - : tactic ########Node_onto = |- !l. ?v trl. l = Node v trl ##() : void ##=======> theory ltree built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f tydefs.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_tydefs.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ############################() : void ###Theory ltree loaded [()] : void list ###o_THM = |- !f g x. (f o g)x = f(g x) ###list_INDUCT = |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) #MAP_o = |- !f g. MAP(f o g) = (MAP f) o (MAP g) ####ltree_Axiom = |- !f. ?! fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl ltree_Induct = |- !P. (!t. ALL_EL P t ==> (!h. P(Node h t))) ==> (!l. P l) ####ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) ########### Section INDUCT_THEN begun BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) Section INDUCT_THEN ended INDUCT_THEN = - : (thm -> thm_tactic -> tactic) File /build/reproducible-path/hol88-2.02.19940316dfsg/ml/ind.ml loaded () : void ###LIST_INDUCT_TAC = - : tactic ########################ltree_INDUCT = - : (thm -> thm) #######################ltree_INDUCT_TAC = - : tactic #######Node_onto = |- !l. ?v trl. l = Node v trl #########ALL_EL_MAP_lemma = |- !l. ALL_EL(\x. x)(MAP P l) = ALL_EL P l ####exists_lemma = |- !f. ?fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl ###############TRP_thm = |- !P. ?TRP. !v tl. TRP(Node v tl) = P v tl /\ ALL_EL TRP tl ##########lemma1 = |- !l x y. ALL_EL P l /\ ALL_EL(\e. P e ==> (x e = y e))l ==> (MAP x l = MAP y l) ######################TRP_EU = |- !TRP P. (!v tl. TRP(Node v tl) = P v tl /\ ALL_EL TRP tl) ==> (!f. (?fn. !v tl. TRP(Node v tl) ==> (fn(Node v tl) = f(MAP fn tl)v tl)) /\ (!x y. (!v tl. TRP(Node v tl) ==> (x(Node v tl) = f(MAP x tl)v tl)) ==> (!v tl. TRP(Node v tl) ==> (y(Node v tl) = f(MAP y tl)v tl)) ==> (!l. TRP l ==> (x l = y l)))) ######TRP_DEF = |- !P. TRP P = (@trp. !v tl. trp(Node v tl) = P v tl /\ ALL_EL trp tl) ########TRP = |- !P v tl. TRP P(Node v tl) = P v tl /\ ALL_EL(TRP P)tl ##############TRP_EU_thm = |- !P f. (?fn. !v tl. TRP P(Node v tl) ==> (fn(Node v tl) = f(MAP fn tl)v tl)) /\ (!x y. (!v tl. TRP P(Node v tl) ==> (x(Node v tl) = f(MAP x tl)v tl)) ==> (!v tl. TRP P(Node v tl) ==> (y(Node v tl) = f(MAP y tl)v tl)) ==> (!l. TRP P l ==> (x l = y l))) ########AR_lemma1 = |- (!a. ABS(REP a) = a) ==> (!r. TRP P r = (REP(ABS r) = r)) ==> (!tl. ALL_EL(TRP P)(MAP REP tl)) ############AR_lemma2 = |- (!a. ABS(REP a) = a) ==> (!r. TRP P r = (REP(ABS r) = r)) ==> (!tl v. P v(MAP REP tl) ==> (REP(ABS(Node v(MAP REP tl))) = Node v(MAP REP tl))) ############AR_lemma3 = |- (!a. ABS(REP a) = a) ==> (!r. TRP P r = (REP(ABS r) = r)) ==> (!trl. ALL_EL(TRP P)trl ==> (?tl. trl = MAP REP tl)) #######AR_lemma4 = |- (!a. ABS(REP a) = a) ==> (!al. MAP ABS(MAP REP al) = al) #####AR_lemma5 = .. |- !a. ?r. (a = ABS r) /\ TRP P r ###############################################################TY_DEF_THM = |- !REP ABS P. (!a. ABS(REP a) = a) /\ (!r. TRP P r = (REP(ABS r) = r)) ==> (!f. ?! fn. !v tl. P v(MAP REP tl) ==> (fn(ABS(Node v(MAP REP tl))) = f(MAP fn tl)v tl)) ########exists_TRP = |- !P. (?v. P v[]) ==> (?t. TRP P t) ##() : void ##=======> theory tydefs built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f sum.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_sum.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ############################################() : void ###Theory combin loaded () : void ###o_DEF = |- !f g. f o g = (\x. f(g x)) #o_THM = |- !f g x. (f o g)x = f(g x) ###################IS_SUM_REP = |- !f. IS_SUM_REP f = (?v1 v2. (f = (\b x y. (x = v1) /\ b)) \/ (f = (\b x y. (y = v2) /\ ~b))) ###########EXISTS_SUM_REP = |- ?f. IS_SUM_REP f #########sum_TY_DEF = |- ?rep. TYPE_DEFINITION IS_SUM_REP rep ##########sum_ISO_DEF = |- (!a. ABS_sum(REP_sum a) = a) /\ (!r. IS_SUM_REP r = (REP_sum(ABS_sum r) = r)) ######R_A = |- !r. (REP_sum(ABS_sum r) = r) = IS_SUM_REP r R_11 = |- (a = a') = (REP_sum a = REP_sum a') A_ONTO = |- !a. ?r. (a = ABS_sum r) /\ (?v1 v2. (r = (\b x y. (x = v1) /\ b)) \/ (r = (\b x y. (y = v2) /\ ~b))) ##########INL_DEF = |- !e. INL e = ABS_sum(\b x y. (x = e) /\ b) ######INR_DEF = |- !e. INR e = ABS_sum(\b x y. (y = e) /\ ~b) #######SIMP = - : (thm -> thm) #REWRITE1_TAC = - : thm_tactic #######REP_INL = |- REP_sum(INL v) = (\b x y. (x = v) /\ b) #######REP_INR = |- REP_sum(INR v) = (\b x y. (y = v) /\ ~b) #########INL_11 = |- (INL x = INL y) = (x = y) #########INR_11 = |- (INR x = INR y) = (x = y) ########INR_neq_INL = |- !v1 v2. ~(INR v2 = INL v1) ######EPS_lemma = |- (@x. y = x) = y #############################sum_axiom = |- !f g. ?! h. (h o INL = f) /\ (h o INR = g) ##############sum_Axiom = |- !f g. ?! h. (!x. h(INL x) = f x) /\ (!x. h(INR x) = g x) ################ISL_DEF = |- ?ISL. (!x. ISL(INL x)) /\ (!y. ~ISL(INR y)) ###ISL = |- (!x. ISL(INL x)) /\ (!y. ~ISL(INR y)) ##########ISR_DEF = |- ?ISR. (!x. ISR(INR x)) /\ (!y. ~ISR(INL y)) ###ISR = |- (!x. ISR(INR x)) /\ (!y. ~ISR(INL y)) ##########OUTL_DEF = |- ?OUTL. !x. OUTL(INL x) = x ###OUTL = |- !x. OUTL(INL x) = x ##########OUTR_DEF = |- ?OUTR. !x. OUTR(INR x) = x ###OUTR = |- !x. OUTR(INR x) = x ###() : void ###########################sum_EXISTS = |- !f g. ?h. (!x. h(INL x) = f x) /\ (!x. h(INR x) = g x) sum_UNIQUE = |- !f g h h'. ((!x. h(INL x) = f x) /\ (!x. h(INR x) = g x)) /\ (!x. h'(INL x) = f x) /\ (!x. h'(INR x) = g x) ==> (!s. h s = h' s) ########################sum_lemma = |- !v. (?x. v = INL x) \/ (?x. v = INR x) ########ISL_OR_ISR = |- !x. ISL x \/ ISR x ########INL = |- !x. ISL x ==> (INL(OUTL x) = x) ########INR = |- !x. ISR x ==> (INR(OUTR x) = x) ##=======> theory sum built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f one.th;\ /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol < /build/reproducible-path/hol88-2.02.19940316dfsg/theories/mk_one.ml;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 ##################################() : void ################EXISTS_ONE_REP = |- ?b. (\b. b)b #######one_TY_DEF = |- ?rep. (!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\ (!x'''. (\b. b)x''' = (?x'. x''' = rep x')) ###one_DEF = |- one = (@x. T) ###() : void ###################one_axiom = |- !f g. f = g ##########one = |- !v. v = one ###########one_Axiom = |- !e. ?! fn. fn one = e ##=======> theory one built cd /build/reproducible-path/hol88-2.02.19940316dfsg/theories; rm -f HOL.th;\ echo 'new_theory `HOL`;;'\ 'map new_parent [`one`;`sum`;`tydefs`];;'\ 'close_theory();;'\ 'quit();;'\ | /build/reproducible-path/hol88-2.02.19940316dfsg/basic-hol;\ cd /build/reproducible-path/hol88-2.02.19940316dfsg BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory one loaded Theory sum loaded Theory tydefs loaded [(); (); ()] : void list () : void =======> theory HOL built echo 'load_theory `num`;;'\ 'compilet `ml/numconv`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #Theory num loaded () : void num_CONV = - : conv Calling Lisp compiler File ml/numconv compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `HOL`;;'\ 'compilet `ml/tydefs`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory HOL loaded () : void ignore = - : (string -> bool) is_sing = - : (string -> bool) getid = - : (string -> string list -> (string # string list)) gettyvid = - : (string -> string list -> (string # string list)) gnt = - : (string list -> ((string + string + string + void) # string list)) isid = - : ((* + **) -> bool) istyvar = - : ((* + ** + ***) -> bool) is = - : ((* + ** + *** + ****) -> *** -> bool) end = - : ((* + ** + *** + ****) -> bool) istyop = - : ((string + *) -> bool) ckrb = - : ((* + ** + string + ***) -> (* + ** + string + ***)) mk_ty = - : ((string # type list) -> type) parse_types = - : (string -> string list -> ((type + void) list # string list)) parse_clause = - : (string -> string -> string list -> string list -> (string # (type + void) list # string list)) parse_clauses = - : (string -> string list -> string list -> (string # (type + void) list) list) parse_input = - : (string -> (string # (string # (type + void) list) list)) pargs = - : ((* + **) list -> (* list # term)) mk_tuple_ty = - : (type list -> type) mk_tuple = - : (term list -> term) mk_sum_ty = - : (type list -> type) inject = - : (type -> term list -> term list) mkvars = - : (type list -> term list) mk_subset_pred = - : ((type + *) list list -> term) splitf = - : ((* -> bool) -> * list -> (* list # * # * list)) prove_existence_thm = - : conv variant_tyvar = - : (type list -> string list -> type) OR_IMP_CONV = - : conv FORALL_IN_CONV = - : conv CONJS_CONV = - : (conv -> conv) EQN_ELIM_CONV = - : conv LENGTH_MAP_CONV = - : (thm -> conv) LENGTH_ELIM_CONV = - : conv MAP_CONV = - : conv ELIM_MAP_CONV = - : conv TRANSFORM = - : (term -> thm -> (term # thm)) part = - : (int -> * list -> (* list # * list)) define_const = - : ((string # (* + **) list # term) -> thm) DEFINE_CONSTRUCTORS = - : (string list -> (* + **) list list -> thm -> thm) mk_tests = - : (* list -> type -> (term # term list)) mk_proj = - : (term -> * list -> type -> term list) extract_list = - : (type -> term -> term -> term list) strip_inj = - : (term -> term) extract_tuple = - : (type -> term -> term -> term list) gen_names = - : ((bool # bool) -> * list list -> string list) mk_fun_ty = - : (term -> type -> type) make_rhs = - : (type -> term -> term -> (bool # term # string # term list) -> (term # term)) make_conditional = - : (term list -> term list -> term) make_function = - : ((* + **) list list -> thm -> goal) PROJ_CONV = - : conv TEST_SIMP_CONV = - : conv LIST_ELS = - : (term -> thm list) GEN_PROJ_CONV = - : conv TUPLE_COMPS = - : (thm -> thm list) SIMP_CONV = - : conv SIMPLIFY = - : (thm -> thm) define_type = - : (string -> string -> thm) - : (string -> string -> thm) define_type = - : (string -> string -> thm) Calling Lisp compiler File ml/tydefs compiled () : void #echo 'compilet `ml/ind`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 # BETAS = - : (term -> term -> conv) GTAC = - : (term -> tactic) TACF = - : (term -> term -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> tactic list) GOALS = - : (* -> ((* # term) -> (** # ***)) list -> term -> (** list # *** list)) GALPH = - : conv GALPHA = - : conv mapshape = - : (int list -> (* list -> **) list -> * list -> ** list) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) - : (thm -> thm_tactic -> tactic) INDUCT_THEN = - : (thm -> thm_tactic -> tactic) Calling Lisp compiler File ml/ind compiled () : void #echo 'compilet `ml/prim_rec`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 # derive_existence_thm = - : (thm -> conv) mk_fn = - : ((term # term # term list # term # goal) -> (term # term list # thm)) instantiate_existence_thm = - : (thm -> conv) closeup = - : (term -> term) prove_rec_fn_exists = - : (thm -> conv) - : (thm -> conv) prove_rec_fn_exists = - : (thm -> conv) new_recursive_definition = - : (bool -> thm -> string -> conv) Calling Lisp compiler File ml/prim_rec compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `HOL`;;'\ 'compilet `ml/tyfns`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory HOL loaded () : void () : void UNIQUENESS = - : (thm -> thm) DEPTH_FORALL_CONV = - : (conv -> conv) CONJS_CONV = - : (conv -> conv) CONJS_SIMP = - : (conv -> conv) T_AND_CONV = - : conv GENL_T = - : (term list -> thm) SIMP_CONV = - : conv HYP_SIMP = - : conv ANTE_ALL_CONV = - : conv CONCL_SIMP = - : conv prove_induction_thm = - : (thm -> thm) - : (thm -> thm) prove_induction_thm = - : (thm -> thm) NOT_ALL_THENC = - : (conv -> conv) BASE_CONV = - : conv STEP_CONV = - : conv NOT_IN_CONV = - : conv STEP_SIMP = - : conv DISJS_CHAIN = - : (conv -> thm -> thm) prove_cases_thm = - : (thm -> thm) - : (thm -> thm) prove_cases_thm = - : (thm -> thm) PAIR_EQ_CONV = - : conv list_variant = - : (term list -> term list -> term list) prove_const_one_one = - : (thm -> conv) prove_constructors_one_one = - : (thm -> thm) - : (thm -> thm) prove_constructors_one_one = - : (thm -> thm) prove_constructors_distinct = - : (thm -> thm) Calling Lisp compiler File ml/tyfns compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `HOL`;;'\ 'compilet `ml/num`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory HOL loaded () : void () : void INDUCT = - : ((thm # thm) -> thm) INDUCT_TAC = - : tactic new_prim_rec_definition = - : ((string # term) -> thm) new_infix_prim_rec_definition = - : ((string # term) -> thm) ADD_CONV = - : conv num_EQ_CONV = - : conv EXISTS_LEAST_CONV = - : conv EXISTS_GREATEST_CONV = - : conv term_of_int = - : (int -> term) int_of_term = - : (term -> int) Calling Lisp compiler File ml/num compiled () : void #echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `HOL`;;'\ 'compilet `ml/list`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory HOL loaded () : void () : void LIST_INDUCT = - : ((thm # thm) -> thm) LIST_INDUCT_TAC = - : tactic SNOC_INDUCT_TAC = - : tactic EQ_LENGTH_INDUCT_TAC = - : tactic EQ_LENGTH_SNOC_INDUCT_TAC = - : tactic new_list_rec_definition = - : ((string # term) -> thm) new_infix_list_rec_definition = - : ((string # term) -> thm) LENGTH_CONV = - : conv list_EQ_CONV = - : (conv -> conv) check_const = - : (string -> term -> bool) int_of_term = - : (term -> int) term_of_int = - : (int -> term) APPEND_CONV = - : conv MAP_CONV = - : (conv -> conv) FOLDR_CONV = - : (conv -> conv) FOLDL_CONV = - : (conv -> conv) list_FOLD_CONV = - : (thm -> conv -> conv) SUM_CONV = - : conv FILTER_CONV = - : (conv -> conv) SNOC_CONV = - : conv REVERSE_CONV = - : conv FLAT_CONV = - : conv EL_CONV = - : conv ELL_CONV = - : conv MAP2_CONV = - : (conv -> conv) ALL_EL_CONV = - : (conv -> conv) SOME_EL_CONV = - : (conv -> conv) IS_EL_CONV = - : (conv -> conv) LAST_CONV = - : conv BUTLAST_CONV = - : conv SUC_CONV = - : conv SEG_CONV = - : conv LASTN_CONV = - : conv BUTLASTN_CONV = - : conv BUTFIRSTN_CONV = - : conv FIRSTN_CONV = - : conv SCANL_CONV = - : (conv -> conv) SCANR_CONV = - : (conv -> conv) REPLICATE_CONV = - : conv GENLIST_CONV = - : (conv -> conv) ((-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), -) : (conv # (conv -> conv) # (conv -> conv) # (conv -> conv) # (thm -> conv -> conv) # conv # (conv -> conv) # conv # conv # conv # conv # conv # (conv -> conv) # (conv -> conv) # (conv -> conv) # (conv -> conv) # conv # conv # conv # conv # conv # conv # conv # (conv -> conv) # (conv -> conv) # conv # (conv -> conv)) APPEND_CONV = - : conv MAP_CONV = - : (conv -> conv) FOLDR_CONV = - : (conv -> conv) FOLDL_CONV = - : (conv -> conv) list_FOLD_CONV = - : (thm -> conv -> conv) SUM_CONV = - : conv FILTER_CONV = - : (conv -> conv) SNOC_CONV = - : conv REVERSE_CONV = - : conv FLAT_CONV = - : conv EL_CONV = - : conv ELL_CONV = - : conv MAP2_CONV = - : (conv -> conv) ALL_EL_CONV = - : (conv -> conv) SOME_EL_CONV = - : (conv -> conv) IS_EL_CONV = - : (conv -> conv) LAST_CONV = - : conv BUTLAST_CONV = - : conv SEG_CONV = - : conv LASTN_CONV = - : conv BUTLASTN_CONV = - : conv BUTFIRSTN_CONV = - : conv FIRSTN_CONV = - : conv SCANL_CONV = - : (conv -> conv) SCANR_CONV = - : (conv -> conv) REPLICATE_CONV = - : conv GENLIST_CONV = - : (conv -> conv) Calling Lisp compiler File ml/list compiled () : void #echo 'compilet `ml/lib_loader`;;'\ 'quit();;'\ | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 # define_load_lib_function = - : (string list -> void -> void) library_loader = - : ((string # string list # string list # string list # string # string # string list) -> void) Calling Lisp compiler File ml/lib_loader compiled () : void #if [ cl = cl ]; then\ echo '#+allegro (progn () (set-case-mode :case-insensitive-upper) (setq *cltl1-in-package-compatibility-p* t) (setq comp:*cltl1-compile-file-toplevel-compatibility-p* t) (setq *enable-package-locked-errors* nil))'\ '(load "lisp/f-cl") (compile-file "lisp/banner.l") (quit)'\ | gcl; else\ lisp/banner; fi GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ >;; Loading "lisp/f-cl" ;; start address for /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/f-cl.o 0x2878010 ;; Finished loading "lisp/f-cl" 39446 > ;; Compiling lisp/banner.l. ;; End of Pass 1. ;; End of Pass 2. OPTIMIZE levels: Safety=0 (No runtime error checking), Space=0, Speed=3 ;; Finished compiling /build/reproducible-path/hol88-2.02.19940316dfsg/lisp/banner.o. #P"/build/reproducible-path/hol88-2.02.19940316dfsg/lisp/banner.o" NIL NIL >echo 'set_search_path[``; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'load_theory `HOL`;;'\ 'loadf `ml/load_thms`;;'\ 'loadf `ml/lib_loader`;;'\ 'loadf `ml/numconv`;;'\ 'loadf `ml/tydefs`;;'\ 'loadf `ml/ind`;;'\ 'loadf `ml/prim_rec`;;'\ 'loadf `ml/tyfns`;;'\ 'loadf `ml/num`;;'\ 'loadf `ml/list`;;'\ 'map delete_cache [`arithmetic`;`sum`;`list`];;'\ 'map delete_cache [`tree`;`ltree`;`prim_rec`];;'\ 'lisp `(load "lisp/banner")`;;'\ 'lisp `(setq %system-name "HOL")`;;'\ 'lisp `(setq %hol-dir "/build/reproducible-path/hol88-2.02.19940316dfsg")`;;'\ 'lisp `(setq %lib-dir "/build/reproducible-path/hol88-2.02.19940316dfsg/Library")`;;'\ 'lisp `(setq %liszt "")`;;'\ 'lisp `(setq %version "2.02 (GCL)")`;;'\ 'set_flag(`abort_when_fail`,false);;'\ 'set_search_path[``; `~/`; `/build/reproducible-path/hol88-2.02.19940316dfsg/theories/`];;'\ 'set_help_search_path (words `/build/reproducible-path/hol88-2.02.19940316dfsg/help/ENTRIES/`);;'\ 'set_library_search_path [`/build/reproducible-path/hol88-2.02.19940316dfsg/Library/`];;'\ 'lisp `(setup)`;;' >foo2 echo 'lisp `(throw (quote eof) t)`;; #+native-reloc(progn (with-open-file (s "foo2") (let ((*standard-input* s)) (tml)))(ml-save "hol")) #-native-reloc(let ((si::*collect-binary-modules* t)(si::*binary-modules* (with-open-file (s "bm.l") (read s)))) (with-open-file (s "foo2") (let ((*standard-input* s)) (tml)))(compiler::link (remove-duplicates si::*binary-modules* :test (function equal)) "hol" "(progn (load \"debian/gcl_patch.l\")(load \"foo\")(with-open-file (s \"foo1\") (let ((*standard-input* s)) (tml)))(with-open-file (s \"foo2\") (let ((*standard-input* s)) (tml)))(ml-save \"hol\")(quit))" "" nil)(quit))`;;' | basic-hol BASIC-HOL version 2.02 (GCL) created 24/7/25 #GCL (GNU Common Lisp) 2.7.1 Thu Apr 10 09:38:27 PM EDT 2025 CLtL1 git: Version_2_7_2ore2 Source License: LGPL(gcl,gmp), GPL(unexec,bfd,xgcl) Binary License: GPL due to GPL'ed components: (XGCL UNEXEC) Modifications of this banner must retain notice of a compatible license Dedicated to the memory of W. Schelter Use (help) to get some basic information on how to use GCL. Temporary directory for compiler files set to /tmp/ > BASIC-HOL version 2.02 (GCL) created 24/7/25 #() : void Theory HOL loaded () : void .........() : void #..() : void .() : void .......................................................() : void ...........() : void ........() : void ..............................() : void ...........() : void ...........................................() : void [(); (); ()] : void list [(); (); ()] : void list () : void () : void () : void () : void () : void () : void true : bool () : void () : void () : void () : void #make permissions make[3]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' find $(ls -1 | grep -v debian) \ \( -type d -exec chmod 775 {} \; \) -o\ \( -type f -exec chmod 664 {} \; \) for f in hol hol-lcf basic-hol Manual/LaTeX/makeindex Manual/LaTeX/makeindex.bin/*/makeindex Manual/Reference/bin/mktex Manual/Reference/bin/typecheck ; do\ ( if [ -f $f ] ; then\ find $f -exec chmod 775 {} \; ;fi) ; \ done make[3]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' =======> hol88 version 2.02 (GCL) made make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' date Thu Jul 24 21:23:51 UTC 2025 /usr/bin/make library make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' date Thu Jul 24 21:23:51 UTC 2025 (cd /build/reproducible-path/hol88-2.02.19940316dfsg/Library; /usr/bin/make LispType=cl\ Obj=o\ Lisp=gcl\ Liszt=\ LispDir=/build/reproducible-path/hol88-2.02.19940316dfsg/lisp\ Hol=/build/reproducible-path/hol88-2.02.19940316dfsg/hol library; cd ..) make[3]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' for lib in unwind taut sets reduce arith pred_sets string finite_sets res_quan wellorder abs_theory reals window pair word record_proof parser prettyp trs latex-hol more_arithmetic numeral ind_defs ; \ do (cd $lib; /usr/bin/make LispType=cl\ Obj=o\ Lisp=gcl\ Liszt=\ LispDir=/build/reproducible-path/hol88-2.02.19940316dfsg/lisp\ Hol=/build/reproducible-path/hol88-2.02.19940316dfsg/hol all; cd ..) ; \ done make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `unwinding`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool DEPTH_FORALL_CONV = - : (conv -> conv) DEPTH_EXISTS_CONV = - : (conv -> conv) FLATTEN_CONJ_CONV = - : conv CONJ_FORALL_ONCE_CONV = - : conv FORALL_CONJ_ONCE_CONV = - : conv CONJ_FORALL_CONV = - : conv FORALL_CONJ_CONV = - : conv CONJ_FORALL_RIGHT_RULE = - : (thm -> thm) FORALL_CONJ_RIGHT_RULE = - : (thm -> thm) UNFOLD_CONV = - : (thm list -> conv) UNFOLD_RIGHT_RULE = - : (thm list -> thm -> thm) line_var = - : (term -> term) line_name = - : (term -> string) UNWIND_ONCE_CONV = - : ((term -> bool) -> conv) UNWIND_CONV = - : ((term -> bool) -> conv) UNWIND_ALL_BUT_CONV = - : (string list -> conv) UNWIND_AUTO_CONV = - : conv UNWIND_ALL_BUT_RIGHT_RULE = - : (string list -> thm -> thm) UNWIND_AUTO_RIGHT_RULE = - : (thm -> thm) EXISTS_DEL1_CONV = - : conv EXISTS_DEL_CONV = - : conv EXISTS_EQN_CONV = - : conv PRUNE_ONCE_CONV = - : conv PRUNE_ONE_CONV = - : (string -> conv) PRUNE_SOME_CONV = - : (string list -> conv) PRUNE_CONV = - : conv PRUNE_SOME_RIGHT_RULE = - : (string list -> thm -> thm) PRUNE_RIGHT_RULE = - : (thm -> thm) EXPAND_ALL_BUT_CONV = - : (string list -> thm list -> conv) EXPAND_AUTO_CONV = - : (thm list -> conv) EXPAND_ALL_BUT_RIGHT_RULE = - : (string list -> thm list -> thm -> thm) EXPAND_AUTO_RIGHT_RULE = - : (thm list -> thm -> thm) Calling Lisp compiler File unwinding compiled () : void #===> library unwind rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/unwind' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `taut_check`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool is_T = - : (term -> bool) is_F = - : (term -> bool) BOOL_CASES_T_F = |- !f. (f T = F) ==> ((!x. f x) = F) BOOL_CASES_F_F = |- !f. (f F = F) ==> ((!x. f x) = F) BOOL_CASES_BOTH_T_RULE = - : ((thm # thm) -> conv) BOOL_CASES_T_F_RULE = - : (thm -> conv) BOOL_CASES_F_F_RULE = - : (thm -> conv) qconv = `QCONV` : string QCONV = - : (conv -> conv) ALL_QCONV = - : conv THENQC = - : (conv -> conv -> conv) ORELSEQC = - : (conv -> conv -> conv) TRY_QCONV = - : (conv -> conv) RAND_QCONV = - : (conv -> conv) RATOR_QCONV = - : (conv -> conv) ABS_QCONV = - : (conv -> conv) T_REFL = |- T = T F_REFL = |- F = F NOT_CONV = - : conv EQ_CONV = - : conv EQ_THEN_NOT_CONV = - : conv AND_CONV = - : conv OR_CONV = - : conv IMP_CONV = - : conv IMP_THEN_NOT_CONV = - : conv IF_CONV = - : conv SIMP_PROP_QCONV = - : conv DEPTH_FORALL_QCONV = - : (conv -> conv) FORALL_T = - : (term list -> thm) FORALL_F = - : (term list -> thm) TAUT_CHECK_CONV = - : conv PTAUT_CONV = - : conv PTAUT_TAC = - : tactic PTAUT_PROVE = - : conv non_prop_terms = - : (term -> term list) TAUT_CONV = - : conv TAUT_TAC = - : tactic TAUT_PROVE = - : conv ((-), (-), (-), (-), (-), -) : (conv # tactic # conv # conv # tactic # conv) PTAUT_CONV = - : conv PTAUT_TAC = - : tactic PTAUT_PROVE = - : conv TAUT_CONV = - : conv TAUT_TAC = - : tactic TAUT_PROVE = - : conv Calling Lisp compiler File taut_check compiled () : void #===> library taut rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/taut' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' rm -f sets.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_sets`;;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void EXISTENCE_THM = |- ?s. (\p. T)s set_TY_DEF = |- ?rep. TYPE_DEFINITION(\p. T)rep set_ISO_DEF = |- (!a. SPEC(CHF a) = a) /\ (!r. (\p. T)r = (CHF(SPEC r) = r)) CHF_11 = |- !a a'. (CHF a = CHF a') = (a = a') set_ISO_DEF = |- (!a. SPEC(CHF a) = a) /\ (!r. CHF(SPEC r) = r) IN_DEF = |- !x s. x IN s = CHF s x SPECIFICATION = |- !P x. x IN (SPEC P) = P x EXTENSION = |- !s t. (s = t) = (!x. x IN s = x IN t) NOT_EQUAL_SETS = |- !s t. ~(s = t) = (?x. x IN t = ~x IN s) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem WOP autoloading from theory `arithmetic` ... WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) NUM_SET_WOP = |- !s. (?n. n IN s) = (?n. n IN s /\ (!m. m IN s ==> n <= m)) GSPEC_DEF = |- !f. GSPEC f = SPEC(\y. ?x. y,T = f x) GSPECIFICATION = |- !f v. v IN (GSPEC f) = (?x. v,T = f x) Section SET_SPEC_CONV begun dest_tuple = - : (term -> term list) MK_PAIR = - : (* list -> conv) EXISTS_TUPLE_CONV = - : (term list -> conv) PAIR_EQ_CONV = - : conv ELIM_EXISTS_CONV = - : conv PROVE_EXISTS = - : conv list_variant = - : (term list -> term list -> term list) SET_SPEC_CONV = - : conv - : conv Section SET_SPEC_CONV ended SET_SPEC_CONV = - : conv File gspec.ml loaded () : void () : void true : bool lemma = |- !s x. x IN s ==> (!f. (f x) IN {f x | x IN s}) SET_MINIMUM = |- !s M. (?x. x IN s) = (?x. x IN s /\ (!y. y IN s ==> (M x) <= (M y))) EMPTY_DEF = |- EMPTY = SPEC(\x. F) NOT_IN_EMPTY = |- !x. ~x IN EMPTY MEMBER_NOT_EMPTY = |- !s. (?x. x IN s) = ~(s = EMPTY) UNIV_DEF = |- UNIV = SPEC(\x. T) IN_UNIV = |- !x. x IN UNIV UNIV_NOT_EMPTY = |- ~(UNIV = EMPTY) EMPTY_NOT_UNIV = |- ~(EMPTY = UNIV) EQ_UNIV = |- (!x. x IN s) = (s = UNIV) SUBSET_DEF = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t) SUBSET_TRANS = |- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u SUBSET_REFL = |- !s. s SUBSET s SUBSET_ANTISYM = |- !s t. s SUBSET t /\ t SUBSET s ==> (s = t) EMPTY_SUBSET = |- !s. EMPTY SUBSET s SUBSET_EMPTY = |- !s. s SUBSET EMPTY = (s = EMPTY) SUBSET_UNIV = |- !s. s SUBSET UNIV UNIV_SUBSET = |- !s. UNIV SUBSET s = (s = UNIV) PSUBSET_DEF = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t) PSUBSET_TRANS = |- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u PSUBSET_IRREFL = |- !s. ~s PSUBSET s NOT_PSUBSET_EMPTY = |- !s. ~s PSUBSET EMPTY NOT_UNIV_PSUBSET = |- !s. ~UNIV PSUBSET s PSUBSET_UNIV = |- !s. s PSUBSET UNIV = (?x. ~x IN s) UNION_DEF = |- !s t. s UNION t = {x | x IN s \/ x IN t} IN_UNION = |- !s t x. x IN (s UNION t) = x IN s \/ x IN t UNION_ASSOC = |- !s t u. (s UNION t) UNION u = s UNION (t UNION u) UNION_IDEMPOT = |- !s. s UNION s = s UNION_COMM = |- !s t. s UNION t = t UNION s SUBSET_UNION = |- (!s t. s SUBSET (s UNION t)) /\ (!s t. s SUBSET (t UNION s)) SUBSET_UNION_ABSORPTION = |- !s t. s SUBSET t = (s UNION t = t) UNION_EMPTY = |- (!s. EMPTY UNION s = s) /\ (!s. s UNION EMPTY = s) UNION_UNIV = |- (!s. UNIV UNION s = UNIV) /\ (!s. s UNION UNIV = UNIV) EMPTY_UNION = |- !s t. (s UNION t = EMPTY) = (s = EMPTY) /\ (t = EMPTY) INTER_DEF = |- !s t. s INTER t = {x | x IN s /\ x IN t} IN_INTER = |- !s t x. x IN (s INTER t) = x IN s /\ x IN t INTER_ASSOC = |- !s t u. (s INTER t) INTER u = s INTER (t INTER u) INTER_IDEMPOT = |- !s. s INTER s = s INTER_COMM = |- !s t. s INTER t = t INTER s INTER_SUBSET = |- (!s t. (s INTER t) SUBSET s) /\ (!s t. (t INTER s) SUBSET s) SUBSET_INTER_ABSORPTION = |- !s t. s SUBSET t = (s INTER t = s) INTER_EMPTY = |- (!s. EMPTY INTER s = EMPTY) /\ (!s. s INTER EMPTY = EMPTY) INTER_UNIV = |- (!s. UNIV INTER s = s) /\ (!s. s INTER UNIV = s) UNION_OVER_INTER = |- !s t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u) INTER_OVER_UNION = |- !s t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u) DISJOINT_DEF = |- !s t. DISJOINT s t = (s INTER t = EMPTY) IN_DISJOINT = |- !s t. DISJOINT s t = ~(?x. x IN s /\ x IN t) DISJOINT_SYM = |- !s t. DISJOINT s t = DISJOINT t s DISJOINT_EMPTY = |- !s. DISJOINT EMPTY s /\ DISJOINT s EMPTY DISJOINT_EMPTY_REFL = |- !s. (s = EMPTY) = DISJOINT s s DISJOINT_UNION = |- !s t u. DISJOINT(s UNION t)u = DISJOINT s u /\ DISJOINT t u DIFF_DEF = |- !s t. s DIFF t = {x | x IN s /\ ~x IN t} IN_DIFF = |- !s t x. x IN (s DIFF t) = x IN s /\ ~x IN t DIFF_EMPTY = |- !s. s DIFF EMPTY = s EMPTY_DIFF = |- !s. EMPTY DIFF s = EMPTY DIFF_UNIV = |- !s. s DIFF UNIV = EMPTY DIFF_DIFF = |- !s t. (s DIFF t) DIFF t = s DIFF t DIFF_EQ_EMPTY = |- !s. s DIFF s = EMPTY INSERT_DEF = |- !x s. x INSERT s = {y | (y = x) \/ y IN s} () : void IN_INSERT = |- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s COMPONENT = |- !x s. x IN (x INSERT s) SET_CASES = |- !s. (s = {}) \/ (?x t. (s = x INSERT t) /\ ~x IN t) DECOMPOSITION = |- !s x. x IN s = (?t. (s = x INSERT t) /\ ~x IN t) ABSORPTION = |- !x s. x IN s = (x INSERT s = s) INSERT_INSERT = |- !x s. x INSERT (x INSERT s) = x INSERT s INSERT_COMM = |- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s) INSERT_UNIV = |- !x. x INSERT UNIV = UNIV NOT_INSERT_EMPTY = |- !x s. ~(x INSERT s = {}) NOT_EMPTY_INSERT = |- !x s. ~({} = x INSERT s) INSERT_UNION = |- !x s t. (x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t)) INSERT_UNION_EQ = |- !x s t. (x INSERT s) UNION t = x INSERT (s UNION t) INSERT_INTER = |- !x s t. (x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t) DISJOINT_INSERT = |- !x s t. DISJOINT(x INSERT s)t = DISJOINT s t /\ ~x IN t INSERT_SUBSET = |- !x s t. (x INSERT s) SUBSET t = x IN t /\ s SUBSET t SUBSET_INSERT = |- !x s. ~x IN s ==> (!t. s SUBSET (x INSERT t) = s SUBSET t) INSERT_DIFF = |- !s t x. (x INSERT s) DIFF t = (x IN t => s DIFF t | x INSERT (s DIFF t)) DELETE_DEF = |- !s x. s DELETE x = s DIFF {x} IN_DELETE = |- !s x y. x IN (s DELETE y) = x IN s /\ ~(x = y) DELETE_NON_ELEMENT = |- !x s. ~x IN s = (s DELETE x = s) IN_DELETE_EQ = |- !s x x'. (x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x)) EMPTY_DELETE = |- !x. {} DELETE x = {} DELETE_DELETE = |- !x s. (s DELETE x) DELETE x = s DELETE x DELETE_COMM = |- !x y s. (s DELETE x) DELETE y = (s DELETE y) DELETE x DELETE_SUBSET = |- !x s. (s DELETE x) SUBSET s SUBSET_DELETE = |- !x s t. s SUBSET (t DELETE x) = ~x IN s /\ s SUBSET t SUBSET_INSERT_DELETE = |- !x s t. s SUBSET (x INSERT t) = (s DELETE x) SUBSET t DIFF_INSERT = |- !s t x. s DIFF (x INSERT t) = (s DELETE x) DIFF t PSUBSET_INSERT_SUBSET = |- !s t. s PSUBSET t = (?x. ~x IN s /\ (x INSERT s) SUBSET t) lemma = |- ~(a = b) = (b = ~a) PSUBSET_MEMBER = |- !s t. s PSUBSET t = s SUBSET t /\ (?y. y IN t /\ ~y IN s) DELETE_INSERT = |- !x y s. (x INSERT s) DELETE y = ((x = y) => s DELETE y | x INSERT (s DELETE y)) INSERT_DELETE = |- !x s. x IN s ==> (x INSERT (s DELETE x) = s) DELETE_INTER = |- !s t x. (s DELETE x) INTER t = (s INTER t) DELETE x DISJOINT_DELETE_SYM = |- !s t x. DISJOINT(s DELETE x)t = DISJOINT(t DELETE x)s CHOICE_EXISTS = |- ?CHOICE. !s. ~(s = {}) ==> (CHOICE s) IN s CHOICE_DEF = |- !s. ~(s = {}) ==> (CHOICE s) IN s REST_DEF = |- !s. REST s = s DELETE (CHOICE s) CHOICE_NOT_IN_REST = |- !s. ~(CHOICE s) IN (REST s) CHOICE_INSERT_REST = |- !s. ~(s = {}) ==> ((CHOICE s) INSERT (REST s) = s) REST_SUBSET = |- !s. (REST s) SUBSET s lemma = |- (P /\ Q = P) = P ==> Q REST_PSUBSET = |- !s. ~(s = {}) ==> (REST s) PSUBSET s SING_DEF = |- !s. SING s = (?x. s = {x}) SING = |- !x. SING{x} IN_SING = |- !x y. x IN {y} = (x = y) NOT_SING_EMPTY = |- !x. ~({x} = {}) NOT_EMPTY_SING = |- !x. ~({} = {x}) EQUAL_SING = |- !x y. ({x} = {y}) = (x = y) DISJOINT_SING_EMPTY = |- !x. DISJOINT{x}{} INSERT_SING_UNION = |- !s x. x INSERT s = {x} UNION s SING_DELETE = |- !x. {x} DELETE x = {} DELETE_EQ_SING = |- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x})) CHOICE_SING = |- !x. CHOICE{x} = x REST_SING = |- !x. REST{x} = {} SING_IFF_EMPTY_REST = |- !s. SING s = ~(s = {}) /\ (REST s = {}) IMAGE_DEF = |- !f s. IMAGE f s = {f x | x IN s} IN_IMAGE = |- !y s f. y IN (IMAGE f s) = (?x. (y = f x) /\ x IN s) IMAGE_IN = |- !x s. x IN s ==> (!f. (f x) IN (IMAGE f s)) IMAGE_EMPTY = |- !f. IMAGE f{} = {} IMAGE_ID = |- !s. IMAGE(\x. x)s = s Theorem o_THM autoloading from theory `combin` ... o_THM = |- !f g x. (f o g)x = f(g x) IMAGE_COMPOSE = |- !f g s. IMAGE(f o g)s = IMAGE f(IMAGE g s) IMAGE_INSERT = |- !f x s. IMAGE f(x INSERT s) = (f x) INSERT (IMAGE f s) IMAGE_EQ_EMPTY = |- !s f. (IMAGE f s = {}) = (s = {}) IMAGE_DELETE = |- !f x s. ~x IN s ==> (IMAGE f(s DELETE x) = IMAGE f s) IMAGE_UNION = |- !f s t. IMAGE f(s UNION t) = (IMAGE f s) UNION (IMAGE f t) IMAGE_SUBSET = |- !s t. s SUBSET t ==> (!f. (IMAGE f s) SUBSET (IMAGE f t)) IMAGE_INTER = |- !f s t. (IMAGE f(s INTER t)) SUBSET ((IMAGE f s) INTER (IMAGE f t)) INJ_DEF = |- !f s t. INJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) INJ_ID = |- !s. INJ(\x. x)s s INJ_COMPOSE = |- !f g s t u. INJ f s t /\ INJ g t u ==> INJ(g o f)s u INJ_EMPTY = |- !f. (!s. INJ f{}s) /\ (!s. INJ f s{} = (s = {})) SURJ_DEF = |- !f s t. SURJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x. x IN t ==> (?y. y IN s /\ (f y = x))) SURJ_ID = |- !s. SURJ(\x. x)s s SURJ_COMPOSE = |- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ(g o f)s u SURJ_EMPTY = |- !f. (!s. SURJ f{}s = (s = {})) /\ (!s. SURJ f s{} = (s = {})) IMAGE_SURJ = |- !f s t. SURJ f s t = (IMAGE f s = t) BIJ_DEF = |- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t BIJ_ID = |- !s. BIJ(\x. x)s s BIJ_EMPTY = |- !f. (!s. BIJ f{}s = (s = {})) /\ (!s. BIJ f s{} = (s = {})) BIJ_COMPOSE = |- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ(g o f)s u lemma1 = |- !f s. (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) = (!y. y IN s ==> (!x. x IN s /\ (f x = f y) = y IN s /\ (x = y))) lemma2 = |- !f s. ?g. !t. INJ f s t ==> (!x. x IN s ==> (g(f x) = x)) LINV_DEF = |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x)) lemma3 = |- !f s. ?g. !t. SURJ f s t ==> (!x. x IN t ==> (f(g x) = x)) RINV_DEF = |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x)) FINITE_DEF = |- !s. FINITE s = (!P. P{} /\ (!s'. P s' ==> (!e. P(e INSERT s'))) ==> P s) FINITE_EMPTY = |- FINITE{} FINITE_INSERT = |- !s. FINITE s ==> (!x. FINITE(x INSERT s)) SIMPLE_FINITE_INDUCT = |- !P. P{} /\ (!s. P s ==> (!e. P(e INSERT s))) ==> (!s. FINITE s ==> P s) lemma = |- P{} /\ (!s. FINITE s /\ P s ==> (!e. FINITE(e INSERT s) /\ P(e INSERT s))) ==> (!s. FINITE s ==> P s) FINITE_INDUCT = |- !P. P{} /\ (!s. FINITE s /\ P s ==> (!e. ~e IN s ==> P(e INSERT s))) ==> (!s. FINITE s ==> P s) SET_INDUCT_TAC = - : tactic File set_ind loaded () : void FINITE_DELETE = |- !s. FINITE s ==> (!x. FINITE(s DELETE x)) INSERT_FINITE = |- !x s. FINITE(x INSERT s) ==> FINITE s FINITE_INSERT = |- !x s. FINITE(x INSERT s) = FINITE s DELETE_FINITE = |- !x s. FINITE(s DELETE x) ==> FINITE s FINITE_DELETE = |- !x s. FINITE(s DELETE x) = FINITE s UNION_FINITE = |- !s. FINITE s ==> (!t. FINITE t ==> FINITE(s UNION t)) FINITE_UNION_LEMMA = |- !s. FINITE s ==> (!t. FINITE(s UNION t) ==> FINITE t) FINITE_UNION = |- !s t. FINITE(s UNION t) ==> FINITE s /\ FINITE t FINITE_UNION = |- !s t. FINITE(s UNION t) = FINITE s /\ FINITE t INTER_FINITE = |- !s. FINITE s ==> (!t. FINITE(s INTER t)) SUBSET_FINITE = |- !s. FINITE s ==> (!t. t SUBSET s ==> FINITE t) PSUBSET_FINITE = |- !s. FINITE s ==> (!t. t PSUBSET s ==> FINITE t) FINITE_DIFF = |- !s. FINITE s ==> (!t. FINITE(s DIFF t)) FINITE_SING = |- !x. FINITE{x} SING_FINITE = |- !s. SING s ==> FINITE s IMAGE_FINITE = |- !s. FINITE s ==> (!f. FINITE(IMAGE f s)) card_rel_def = "(!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n))" : term Theorem num_Axiom autoloading from theory `prim_rec` ... num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) CARD_REL_EXISTS = |- ?R. (!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n)) CARD_REL_DEL_LEMMA = .. |- !n s x. x IN s ==> R(s DELETE x)n ==> (!y. y IN s ==> R(s DELETE y)n) Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) CARD_REL_UNIQUE = .. |- !n s. R s n ==> (!m. R s m ==> (n = m)) CARD_REL_EXISTS_LEMMA = .. |- !s. FINITE s ==> (?n. R s n) CARD_REL_THM = .. |- !m s. FINITE s ==> (((@n. R s n) = m) = R s m) CARD_EXISTS = |- ?CARD. (CARD{} = 0) /\ (!s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))) CARD_DEF = |- (CARD{} = 0) /\ (!s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))) CARD_EMPTY = |- CARD{} = 0 CARD_INSERT = |- !s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))) CARD_EQ_0 = |- !s. FINITE s ==> ((CARD s = 0) = (s = {})) Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m CARD_DELETE = |- !s. FINITE s ==> (!x. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) lemma1 = |- !n m. (SUC n) <= (SUC m) = n <= m Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n lemma2 = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m CARD_INTER_LESS_EQ = |- !s. FINITE s ==> (!t. (CARD(s INTER t)) <= (CARD s)) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) CARD_UNION = |- !s. FINITE s ==> (!t. FINITE t ==> ((CARD(s UNION t)) + (CARD(s INTER t)) = (CARD s) + (CARD t))) lemma = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) CARD_SUBSET = |- !s. FINITE s ==> (!t. t SUBSET s ==> (CARD t) <= (CARD s)) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n CARD_PSUBSET = |- !s. FINITE s ==> (!t. t PSUBSET s ==> (CARD t) < (CARD s)) CARD_SING = |- !x. CARD{x} = 1 SING_IFF_CARD1 = |- !s. SING s = (CARD s = 1) /\ FINITE s Theorem SUB_PLUS autoloading from theory `arithmetic` ... SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) CARD_DIFF = |- !t. FINITE t ==> (!s. FINITE s ==> (CARD(s DIFF t) = (CARD s) - (CARD(s INTER t)))) Theorem SUB_LESS_0 autoloading from theory `arithmetic` ... SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) LESS_CARD_DIFF = |- !t. FINITE t ==> (!s. FINITE s ==> (CARD t) < (CARD s) ==> 0 < (CARD(s DIFF t))) INFINITE_DEF = |- !s. INFINITE s = ~FINITE s NOT_IN_FINITE = |- INFINITE UNIV = (!s. FINITE s ==> (?x. ~x IN s)) INVERSE_LEMMA = |- !f. (!x y. (f x = f y) ==> (x = y)) ==> ((\x. @y. x = f y) o f = (\x. x)) IMAGE_11_INFINITE = |- !f. (!x y. (f x = f y) ==> (x = y)) ==> (!s. INFINITE s ==> INFINITE(IMAGE f s)) INFINITE_SUBSET = |- !s. INFINITE s ==> (!t. s SUBSET t ==> INFINITE t) IN_INFINITE_NOT_FINITE = |- !s t. INFINITE s /\ FINITE t ==> (?x. x IN s /\ ~x IN t) gdef = ["g 0 = {}"; "!n. g(SUC n) = (@x. ~x IN (g n)) INSERT (g n)"] : term list g_finite = .. |- !n. FINITE(g n) g_subset = . |- !n x. x IN (g n) ==> (!i. x IN (g(n + i))) lemma = |- (A \/ B) /\ ~B = A /\ ~B Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) g_cases = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!x. (?n. x IN (g n)) ==> (?m. x IN (g(SUC m)) /\ ~x IN (g m))) z_in_g1 = .. |- (@x. ~x IN {}) IN (g(SUC 0)) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 z_in_gn = .. |- !n. (@x. ~x IN {}) IN (g(SUC n)) in_lemma = . |- !n. (@x. ~x IN (g n)) IN (g(SUC n)) not_in_lemma = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!i n. ~(@x. ~x IN (g(n + i))) IN (g n)) Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n less_lemma = |- !m n. ~(m = n) = m < n \/ n < m Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) gn_unique = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!n m. ((@x. ~x IN (g n)) = (@x. ~x IN (g m))) = (n = m)) x_unique = .. |- !n x y. ~x IN (g n) /\ ~y IN (g n) ==> x IN (g(SUC n)) ==> y IN (g(SUC n)) ==> (x = y) fdef = "\x. ((?n. x IN (g n)) => (@y. ~y IN (g(SUC(@n. x IN (g(SUC n)) /\ ~x IN (g n))))) | x)" : term cases = |- !x. (?n. x IN (g n)) \/ (!n. ~x IN (g n)) INF_IMP_INFINITY = |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) prth = |- ?fn. (!f x. fn f x 0 = x) /\ (!f x n. fn f x(SUC n) = f(fn f x n)) prmth = |- !x f. ?fn. (fn 0 = x) /\ (!n. fn(SUC n) = f(fn n)) num_fn_thm = |- (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) ==> (?fn. !n m. (fn n = fn m) ==> (n = m)) Theorem LESS_IMP_LESS_ADD autoloading from theory `arithmetic` ... LESS_IMP_LESS_ADD = |- !n m. n < m ==> (!p. n < (m + p)) Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) finite_N_bounded = |- !s. FINITE s ==> (?m. !n. n IN s ==> n < m) N_lemma = |- INFINITE UNIV main_lemma = |- !s. FINITE s ==> (!f. (!n m. (f n = f m) ==> (n = m)) ==> (?n. ~(f n) IN s)) INFINITY_IMP_INF = |- (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) ==> (!s. FINITE s ==> (?x. ~x IN s)) INFINITE_UNIV = |- INFINITE UNIV = (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) FINITE_PSUBSET_INFINITE = |- !s. INFINITE s = (!t. FINITE t ==> t SUBSET s ==> t PSUBSET s) FINITE_PSUBSET_UNIV = |- INFINITE UNIV = (!s. FINITE s ==> s PSUBSET UNIV) INFINITE_DIFF_FINITE = |- !s t. INFINITE s /\ FINITE t ==> ~(s DIFF t = {}) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 FINITE_ISO_NUM = |- !s. FINITE s ==> (?f. (!n m. n < (CARD s) /\ m < (CARD s) ==> (f n = f m) ==> (n = m)) /\ (s = {f n | n < (CARD s)})) echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `sets`;;'\ 'compilet `set_ind`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory sets loaded () : void SET_INDUCT_TAC = - : tactic Calling Lisp compiler File set_ind compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `sets`;;'\ 'compilet `gspec`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory sets loaded () : void dest_tuple = - : (term -> term list) MK_PAIR = - : (* list -> conv) EXISTS_TUPLE_CONV = - : (term list -> conv) PAIR_EQ_CONV = - : conv ELIM_EXISTS_CONV = - : conv PROVE_EXISTS = - : conv list_variant = - : (term list -> term list -> term list) SET_SPEC_CONV = - : conv - : conv SET_SPEC_CONV = - : conv Calling Lisp compiler File gspec compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `sets`;;'\ 'compilet `fset_conv`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory sets loaded () : void FINITE_CONV = - : conv IN_CONV = - : (conv -> conv) DELETE_CONV = - : (conv -> conv) UNION_CONV = - : (conv -> conv) INSERT_CONV = - : (conv -> conv) IMAGE_CONV = - : (conv -> conv -> conv) Calling Lisp compiler File fset_conv compiled () : void #===> library sets rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' \ echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `arithconv`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool dest_op = - : (term -> term -> term list) term_of_int = - : (int -> term) int_of_term = - : (term -> int) provelt = - : (int -> int -> thm) NEQ_CONV = - : conv LT_CONV = - : conv GT_CONV = - : conv LE_CONV = - : conv GE_CONV = - : conv SUC_CONV = - : conv PRE_CONV = - : conv SBC_CONV = - : conv ADD_CONV = - : conv MUL_CONV = - : conv EXP_CONV = - : conv DIV_CONV = - : conv MOD_CONV = - : conv Calling Lisp compiler File arithconv compiled () : void #\ echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `boolconv`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool dest_op = - : (term -> term -> term list) NOT_CONV = - : conv AND_CONV = - : conv OR_CONV = - : conv IMP_CONV = - : conv BEQ_CONV = - : conv COND_CONV = - : conv Calling Lisp compiler File boolconv compiled () : void #\ echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `reduce`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Extending help search path() : void Loading boolean conversions() : void Loading arithmetic conversions() : void Loading general conversions, rule and tactic() : void RED_CONV = - : conv REDUCE_CONV = - : conv REDUCE_RULE = - : (thm -> thm) REDUCE_TAC = - : tactic Calling Lisp compiler File reduce compiled () : void #make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reduce' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `int_extra`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool abs = - : (int -> int) () : void mod = - : (int -> int -> int) gcd = - : ((int # int) -> int) lcm = - : ((int # int) -> int) Calling Lisp compiler File int_extra compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'compilet `arith_cons`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void mk_arith_op = - : (string -> string -> (term # term) -> term) mk_plus = - : ((term # term) -> term) mk_minus = - : ((term # term) -> term) mk_mult = - : ((term # term) -> term) dest_arith_op = - : (string -> string -> term -> (term # term)) dest_plus = - : (term -> (term # term)) dest_minus = - : (term -> (term # term)) dest_mult = - : (term -> (term # term)) is_plus = - : (term -> bool) is_minus = - : (term -> bool) is_mult = - : (term -> bool) is_arith_op = - : (term -> bool) mk_num_reln = - : (string -> string -> (term # term) -> term) mk_less = - : ((term # term) -> term) mk_leq = - : ((term # term) -> term) mk_great = - : ((term # term) -> term) mk_geq = - : ((term # term) -> term) dest_num_reln = - : (string -> string -> term -> (term # term)) dest_less = - : (term -> (term # term)) dest_leq = - : (term -> (term # term)) dest_great = - : (term -> (term # term)) dest_geq = - : (term -> (term # term)) is_less = - : (term -> bool) is_leq = - : (term -> bool) is_great = - : (term -> bool) is_geq = - : (term -> bool) is_num_reln = - : (term -> bool) mk_suc = - : (term -> term) dest_suc = - : (term -> term) is_suc = - : (term -> bool) is_num_const = - : (term -> bool) is_zero = - : (term -> bool) int_of_term = - : (term -> int) term_of_int = - : (int -> term) mk_num_var = - : (string -> term) arg1 = - : (term -> term) arg2 = - : (term -> term) Calling Lisp compiler File arith_cons compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `string_extra`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool string_less = - : (string -> string -> bool) Calling Lisp compiler File string_extra compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'compilet `term_coeffs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void negate_coeffs = - : ((int # (* # int) list) -> (int # (* # int) list)) merge_coeffs = - : ((int # (string # int) list) -> (int # (string # int) list) -> (int # (string # int) list)) lhs_coeffs = - : ((int # (* # int) list) -> (int # (* # int) list)) rhs_coeffs = - : ((int # (* # int) list) -> (int # (* # int) list)) diff_of_coeffs = - : (((int # (string # int) list) # int # (string # int) list) -> ((int # (string # int) list) # int # (string # int) list)) vars_of_coeffs = - : ((* # (** # ***) list) list -> ** list) var_of_prod = - : (term -> string) coeffs_of_arith = - : (term -> (int # (string # int) list)) coeffs_of_leq = - : (term -> (int # (string # int) list)) coeffs_of_leq_set = - : (term -> (int # (string # int) list) list) build_arith = - : ((int # (string # int) list) -> term) build_leq = - : ((int # (string # int) list) -> term) Calling Lisp compiler File term_coeffs compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `qconv`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool qconv = `QCONV` : string qfailwith = - : (string -> string -> *) QCONV = - : (conv -> conv) ALL_QCONV = - : conv () : void THENQC = - : (conv -> conv -> conv) () : void ORELSEQC = - : (conv -> conv -> conv) REPEATQC = - : (conv -> conv) CHANGED_QCONV = - : (conv -> conv) TRY_QCONV = - : (conv -> conv) QCONV_RULE = - : (conv -> thm -> thm) RAND_QCONV = - : (conv -> conv) RATOR_QCONV = - : (conv -> conv) ABS_QCONV = - : (conv -> conv) ARGS_QCONV = - : (conv -> conv) Calling Lisp compiler File qconv compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `decls`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ONE_PLUS = |- T ZERO_PLUS = |- T PLUS_ZERO = |- T SUC_ADD1 = |- T SUC_ADD2 = |- T ZERO_MULT = |- T ONE_MULT = |- T MULT_ZERO = |- T MULT_ONE = |- T MULT_SUC = |- T MULT_COMM = |- T SUC_ADD_LESS_EQ_F = |- T MULT_LEQ_SUC = |- T ZERO_LESS_EQ_T = |- T SUC_LESS_EQ_ZERO_F = |- T ZERO_LESS_EQ_ONE_TIMES = |- T LESS_EQ_PLUS = |- T LESS_EQ_TRANSIT = |- T NOT_T_F = |- T NOT_F_T = |- T CONJ_ASSOC_NORM_CONV = - : conv DISJ_ASSOC_NORM_CONV = - : conv EQ_EXPAND_CONV = - : conv IMP_EXPAND_CONV = - : conv IMP_F_EQ_F_CONV = - : conv IMP_IMP_CONJ_IMP_CONV = - : conv LEFT_DIST_NORM_CONV = - : conv NOT_CONJ_NORM_CONV = - : conv NOT_DISJ_NORM_CONV = - : conv NOT_NOT_NORM_CONV = - : conv OR_F_CONV = - : conv RIGHT_DIST_NORM_CONV = - : conv ADD_ASSOC_CONV = - : conv ADD_SYM_CONV = - : conv GATHER_BOTH_CONV = - : conv GATHER_LEFT_CONV = - : conv GATHER_NEITHER_CONV = - : conv GATHER_RIGHT_CONV = - : conv GEQ_NORM_CONV = - : conv GREAT_NORM_CONV = - : conv LEFT_ADD_DISTRIB_CONV = - : conv LESS_NORM_CONV = - : conv MULT_ASSOC_CONV = - : conv MULT_COMM_CONV = - : conv NOT_GEQ_NORM_CONV = - : conv NOT_GREAT_NORM_CONV = - : conv NOT_LEQ_NORM_CONV = - : conv NOT_LESS_NORM_CONV = - : conv NOT_NUM_EQ_NORM_CONV = - : conv NUM_EQ_NORM_CONV = - : conv PLUS_ZERO_CONV = - : conv SYM_ADD_ASSOC_CONV = - : conv SYM_ONE_MULT_CONV = - : conv ZERO_MULT_CONV = - : conv ZERO_MULT_PLUS_CONV = - : conv ZERO_PLUS_CONV = - : conv LEQ_PLUS_CONV = - : conv FORALL_SIMP_CONV = - : conv NUM_COND_RATOR_CONV = - : conv NUM_COND_RAND_CONV = - : conv SUB_NORM_CONV = - : conv COND_RATOR_CONV = - : conv COND_RAND_CONV = - : conv COND_EXPAND_CONV = - : conv Calling Lisp compiler File decls compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'compilet `norm_bool`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void EQ_IMP_ELIM_QCONV = - : ((term -> bool) -> conv) MOVE_NOT_DOWN_QCONV = - : ((term -> bool) -> conv -> conv) DISJ_LINEAR_QCONV = - : conv DISJ_NORM_FORM_QCONV = - : conv Calling Lisp compiler File norm_bool compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'compilet `norm_arith`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void COLLECT_NUM_CONSTS_CONV = - : conv NUM_RELN_NORM_QCONV = - : (conv -> conv -> conv) MULT_CONV = - : conv mult_lookup = - : (((int # int) # thm) list -> (int # int) -> thm) multiplication_theorems = [] : ((int # int) # thm) list FAST_MULT_CONV = - : conv reset_multiplication_theorems = - : (void -> ((int # int) # thm) list) multiplication_theorems = - : (void -> ((int # int) # thm) list) SUM_OF_PRODUCTS_SUC_CONV = - : conv SUM_OF_PRODUCTS_MULT_QCONV = - : conv SUM_OF_PRODUCTS_QCONV = - : conv LINEAR_SUM_QCONV = - : conv GATHER_QCONV = - : conv IN_LINE_SUM_QCONV = - : (conv -> conv) ONE_PASS_SORT_QCONV = - : conv SORT_AND_GATHER_QCONV = - : conv SYM_ONE_MULT_VAR_CONV = - : conv NORM_ZERO_AND_ONE_QCONV = - : conv Calling Lisp compiler File norm_arith compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'loadf `norm_arith`;;'\ 'compilet `norm_ineqs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void ..................() : void ADD_TERM_TO_LEQ_CONV = - : (term -> conv) ADD_COEFFS_TO_LEQ_QCONV = - : ((int # (string # int) list) -> conv) LESS_OR_EQ_GATHER_QCONV = - : conv ARITH_FORM_NORM_QCONV = - : conv Calling Lisp compiler File norm_ineqs compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'loadf `norm_arith`;;'\ 'loadf `norm_ineqs`;;'\ 'compilet `solve_ineqs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void ..................() : void ....() : void CONST_TIMES_ARITH_QCONV = - : conv MULT_LEQ_BY_CONST_QCONV = - : (term -> conv) LEQ_CONV = - : conv WEIGHTED_SUM = - : (string -> ((int # (string # int) list) # int # (string # int) list) -> ((int # (string # int) list) # (void -> thm))) var_to_elim = - : ((* # (string # int) list) list -> string) VAR_ELIM = - : ((int # (string # int) list) list -> (int list # (void -> thm))) Calling Lisp compiler File solve_ineqs compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'loadf `norm_arith`;;'\ 'loadf `norm_ineqs`;;'\ 'loadf `solve_ineqs`;;'\ 'compilet `solve`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void ..................() : void ....() : void ......() : void INEQS_FALSE_CONV = - : conv DISJ_INEQS_FALSE_QCONV = - : conv NOT_NOT_INTRO_CONV = - : conv is_T = - : (term -> bool) is_F = - : (term -> bool) NEGATE_CONV = - : (conv -> conv) DEPTH_FORALL_QCONV = - : (conv -> conv) FORALL_ARITH_CONV = - : conv Calling Lisp compiler File solve compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'compilet `rationals`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void Rat = - : ((int # int) -> rat) Numerator = - : (rat -> int) Denominator = - : (rat -> int) rat_inv = - : (rat -> rat) rat_plus = - : (rat -> rat -> rat) rat_minus = - : (rat -> rat -> rat) rat_mult = - : (rat -> rat -> rat) rat_div = - : (rat -> rat -> rat) print_rat = - : (rat -> void) - : (rat -> void) rat_of_int = - : (int -> rat) lower_int_of_rat = - : (rat -> int) upper_int_of_rat = - : (rat -> int) rat_zero = 0 : rat rat_one = 1 : rat rat_less = - : (rat -> rat -> bool) Calling Lisp compiler File rationals compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `rationals`;;'\ 'loadf `string_extra`;;'\ 'compilet `sup-inf`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void ........() : void .() : void New constructors declared: Bound : ((rat # (string # rat) list) -> bound) Max_bound : (bound list -> bound) Min_bound : (bound list -> bound) Pos_inf : bound Neg_inf : bound New constructors declared: Ibound : (bound -> internal_bound) Mult_ibound : ((rat # internal_bound) -> internal_bound) Plus_ibound : ((internal_bound # internal_bound) -> internal_bound) Max_ibound : (internal_bound list -> internal_bound) Min_ibound : (internal_bound list -> internal_bound) solve_ineqs = - : ((int # (* # int) list) list -> * -> ((rat # (* # rat) list) list # (rat # (* # rat) list) list)) UPPER = - : ((int # (string # int) list) list -> string -> bound) LOWER = - : ((int # (string # int) list) list -> string -> bound) SIMP_mult = - : (rat -> bound -> bound) sum_bindings = - : ((string # rat) list -> (string # rat) list -> (string # rat) list) SIMP_plus = - : (bound -> bound -> bound) SIMP = - : (internal_bound -> bound) SUPP = - : ((string # bound) -> bound) INFF = - : ((string # bound) -> bound) occurs_in_bound = - : (string -> bound -> bool) occurs_in_ibound = - : (string -> internal_bound -> bool) SUP = - : ((int # (string # int) list) list -> (bound # string list) -> internal_bound) INF = - : ((int # (string # int) list) list -> (bound # string list) -> internal_bound) eval_max_bound = - : (bound list -> bound) eval_min_bound = - : (bound list -> bound) eval_bound = - : (bound -> bound) SUP_INF = - : ((int # (string # int) list) list -> (string # bound # bound) list) Calling Lisp compiler File sup-inf compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `streams`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool New constructors declared: Stream : ((* # (void -> * stream)) -> * stream) stream_map = - : ((* -> **) -> (void -> * stream) -> void -> ** stream) stream_append = - : ((void -> * stream) -> (void -> * stream) -> void -> * stream) stream_flat = - : ((void -> (void -> * stream) stream) -> void -> * stream) permutations = - : (* list -> void -> * list stream) Calling Lisp compiler File streams compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `int_extra`;;'\ 'loadf `rationals`;;'\ 'loadf `string_extra`;;'\ 'loadf `sup-inf`;;'\ 'loadf `streams`;;'\ 'compilet `sol_ranges`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool .....() : void ........() : void .() : void ..................() : void .....() : void less_bound = - : (bound -> bound -> bool) is_neg_bound = - : (bound -> bool) is_finite_bound = - : (bound -> bool) rat_of_bound = - : (bound -> rat) is_int_range = - : (rat -> rat -> bool) non_neg_int_between = - : (bound -> bound -> int) inst_var_in_coeffs = - : ((string # int) -> (int # (string # int) list) list -> (int # (string # int) list) list) Shostak = - : ((int # (string # int) list) list -> (string # int) list) Calling Lisp compiler File sol_ranges compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_library `reduce`;;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'loadf `norm_arith`;;'\ 'loadf `norm_ineqs`;;'\ 'loadf `rationals`;;'\ 'loadf `sup-inf`;;'\ 'loadf `streams`;;'\ 'loadf `sol_ranges`;;'\ 'compilet `exists_arith`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. () : void .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void ..................() : void ....() : void ........() : void ..................() : void .....() : void ........() : void NUM_REDUCE_QCONV = - : conv INEQ_REDUCE_QCONV = - : conv BOOL_REDUCE_QCONV = - : conv WITNESS = - : ((string # int) list -> conv) witness = - : (term list -> (string # int) list) EXISTS_ARITH_CONV = - : conv Calling Lisp compiler File exists_arith compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `decls`;;'\ 'compilet `sub_and_cond`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ................................................................() : void COND_ABS_CONV = - : conv SUB_AND_COND_ELIM_CONV = - : conv COND_ELIM_CONV = - : conv Calling Lisp compiler File sub_and_cond compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `decls`;;'\ 'compilet `prenex`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ................................................................() : void QUANT_EQ_IMP_CONV = - : conv is_prenex = - : (term -> bool) PRENEX_CONV = - : conv Calling Lisp compiler File prenex compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `instance`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool INSTANCE_T_CONV = - : ((term -> term list) -> conv -> conv) Calling Lisp compiler File instance compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_library `reduce`;;'\ 'loadf `int_extra`;;'\ 'loadf `arith_cons`;;'\ 'loadf `string_extra`;;'\ 'loadf `term_coeffs`;;'\ 'loadf `qconv`;;'\ 'loadf `decls`;;'\ 'loadf `norm_bool`;;'\ 'loadf `norm_arith`;;'\ 'loadf `norm_ineqs`;;'\ 'loadf `solve_ineqs`;;'\ 'loadf `solve`;;'\ 'loadf `rationals`;;'\ 'loadf `sup-inf`;;'\ 'loadf `streams`;;'\ 'loadf `sol_ranges`;;'\ 'loadf `exists_arith`;;'\ 'loadf `sub_and_cond`;;'\ 'loadf `prenex`;;'\ 'loadf `instance`;;'\ 'compilet `gen_arith`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. () : void .....() : void .....................() : void .() : void ............() : void ................() : void ................................................................() : void ....() : void ..................() : void ....() : void ......() : void .......() : void ........() : void ..................() : void .....() : void ........() : void ......() : void ...() : void ...() : void .() : void contains_var = - : (term -> bool) is_linear_mult = - : (term -> bool) non_presburger_subterms = - : (term -> term list) is_presburger = - : (term -> bool) ARITH_CONV = - : conv Calling Lisp compiler File gen_arith compiled () : void #===> library arith rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/arith' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' rm -f pred_sets.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_pred_sets`;;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void SPECIFICATION = |- !P x. x IN P = P x EXTENSION = |- !s t. (s = t) = (!x. x IN s = x IN t) NOT_EQUAL_SETS = |- !s t. ~(s = t) = (?x. x IN t = ~x IN s) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem WOP autoloading from theory `arithmetic` ... WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) NUM_SET_WOP = |- !s. (?n. n IN s) = (?n. n IN s /\ (!m. m IN s ==> n <= m)) GSPEC_DEF_LEMMA = |- ?g. !f v. v IN (g f) = (?x. v,T = f x) GSPECIFICATION = |- !f v. v IN (GSPEC f) = (?x. v,T = f x) Section SET_SPEC_CONV begun dest_tuple = - : (term -> term list) MK_PAIR = - : (* list -> conv) EXISTS_TUPLE_CONV = - : (term list -> conv) PAIR_EQ_CONV = - : conv ELIM_EXISTS_CONV = - : conv PROVE_EXISTS = - : conv list_variant = - : (term list -> term list -> term list) SET_SPEC_CONV = - : conv - : conv Section SET_SPEC_CONV ended SET_SPEC_CONV = - : conv File gspec.ml loaded () : void () : void true : bool lemma = |- !s x. x IN s ==> (!f. (f x) IN {f x | x IN s}) SET_MINIMUM = |- !s M. (?x. x IN s) = (?x. x IN s /\ (!y. y IN s ==> (M x) <= (M y))) EMPTY_DEF = |- EMPTY = (\x. F) NOT_IN_EMPTY = |- !x. ~x IN EMPTY MEMBER_NOT_EMPTY = |- !s. (?x. x IN s) = ~(s = EMPTY) UNIV_DEF = |- UNIV = (\x. T) IN_UNIV = |- !x. x IN UNIV UNIV_NOT_EMPTY = |- ~(UNIV = EMPTY) EMPTY_NOT_UNIV = |- ~(EMPTY = UNIV) EQ_UNIV = |- (!x. x IN s) = (s = UNIV) SUBSET_DEF = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t) SUBSET_TRANS = |- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u SUBSET_REFL = |- !s. s SUBSET s SUBSET_ANTISYM = |- !s t. s SUBSET t /\ t SUBSET s ==> (s = t) EMPTY_SUBSET = |- !s. EMPTY SUBSET s SUBSET_EMPTY = |- !s. s SUBSET EMPTY = (s = EMPTY) SUBSET_UNIV = |- !s. s SUBSET UNIV UNIV_SUBSET = |- !s. UNIV SUBSET s = (s = UNIV) PSUBSET_DEF = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t) PSUBSET_TRANS = |- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u PSUBSET_IRREFL = |- !s. ~s PSUBSET s NOT_PSUBSET_EMPTY = |- !s. ~s PSUBSET EMPTY NOT_UNIV_PSUBSET = |- !s. ~UNIV PSUBSET s PSUBSET_UNIV = |- !s. s PSUBSET UNIV = (?x. ~x IN s) UNION_DEF = |- !s t. s UNION t = {x | x IN s \/ x IN t} IN_UNION = |- !s t x. x IN (s UNION t) = x IN s \/ x IN t UNION_ASSOC = |- !s t u. (s UNION t) UNION u = s UNION (t UNION u) UNION_IDEMPOT = |- !s. s UNION s = s UNION_COMM = |- !s t. s UNION t = t UNION s SUBSET_UNION = |- (!s t. s SUBSET (s UNION t)) /\ (!s t. s SUBSET (t UNION s)) SUBSET_UNION_ABSORPTION = |- !s t. s SUBSET t = (s UNION t = t) UNION_EMPTY = |- (!s. EMPTY UNION s = s) /\ (!s. s UNION EMPTY = s) UNION_UNIV = |- (!s. UNIV UNION s = UNIV) /\ (!s. s UNION UNIV = UNIV) EMPTY_UNION = |- !s t. (s UNION t = EMPTY) = (s = EMPTY) /\ (t = EMPTY) INTER_DEF = |- !s t. s INTER t = {x | x IN s /\ x IN t} IN_INTER = |- !s t x. x IN (s INTER t) = x IN s /\ x IN t INTER_ASSOC = |- !s t u. (s INTER t) INTER u = s INTER (t INTER u) INTER_IDEMPOT = |- !s. s INTER s = s INTER_COMM = |- !s t. s INTER t = t INTER s INTER_SUBSET = |- (!s t. (s INTER t) SUBSET s) /\ (!s t. (t INTER s) SUBSET s) SUBSET_INTER_ABSORPTION = |- !s t. s SUBSET t = (s INTER t = s) INTER_EMPTY = |- (!s. EMPTY INTER s = EMPTY) /\ (!s. s INTER EMPTY = EMPTY) INTER_UNIV = |- (!s. UNIV INTER s = s) /\ (!s. s INTER UNIV = s) UNION_OVER_INTER = |- !s t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u) INTER_OVER_UNION = |- !s t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u) DISJOINT_DEF = |- !s t. DISJOINT s t = (s INTER t = EMPTY) IN_DISJOINT = |- !s t. DISJOINT s t = ~(?x. x IN s /\ x IN t) DISJOINT_SYM = |- !s t. DISJOINT s t = DISJOINT t s DISJOINT_EMPTY = |- !s. DISJOINT EMPTY s /\ DISJOINT s EMPTY DISJOINT_EMPTY_REFL = |- !s. (s = EMPTY) = DISJOINT s s DISJOINT_UNION = |- !s t u. DISJOINT(s UNION t)u = DISJOINT s u /\ DISJOINT t u DIFF_DEF = |- !s t. s DIFF t = {x | x IN s /\ ~x IN t} IN_DIFF = |- !s t x. x IN (s DIFF t) = x IN s /\ ~x IN t DIFF_EMPTY = |- !s. s DIFF EMPTY = s EMPTY_DIFF = |- !s. EMPTY DIFF s = EMPTY DIFF_UNIV = |- !s. s DIFF UNIV = EMPTY DIFF_DIFF = |- !s t. (s DIFF t) DIFF t = s DIFF t DIFF_EQ_EMPTY = |- !s. s DIFF s = EMPTY INSERT_DEF = |- !x s. x INSERT s = {y | (y = x) \/ y IN s} () : void IN_INSERT = |- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s COMPONENT = |- !x s. x IN (x INSERT s) SET_CASES = |- !s. (s = {}) \/ (?x t. (s = x INSERT t) /\ ~x IN t) DECOMPOSITION = |- !s x. x IN s = (?t. (s = x INSERT t) /\ ~x IN t) ABSORPTION = |- !x s. x IN s = (x INSERT s = s) INSERT_INSERT = |- !x s. x INSERT (x INSERT s) = x INSERT s INSERT_COMM = |- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s) INSERT_UNIV = |- !x. x INSERT UNIV = UNIV NOT_INSERT_EMPTY = |- !x s. ~(x INSERT s = {}) NOT_EMPTY_INSERT = |- !x s. ~({} = x INSERT s) INSERT_UNION = |- !x s t. (x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t)) INSERT_UNION_EQ = |- !x s t. (x INSERT s) UNION t = x INSERT (s UNION t) INSERT_INTER = |- !x s t. (x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t) DISJOINT_INSERT = |- !x s t. DISJOINT(x INSERT s)t = DISJOINT s t /\ ~x IN t INSERT_SUBSET = |- !x s t. (x INSERT s) SUBSET t = x IN t /\ s SUBSET t SUBSET_INSERT = |- !x s. ~x IN s ==> (!t. s SUBSET (x INSERT t) = s SUBSET t) INSERT_DIFF = |- !s t x. (x INSERT s) DIFF t = (x IN t => s DIFF t | x INSERT (s DIFF t)) DELETE_DEF = |- !s x. s DELETE x = s DIFF {x} IN_DELETE = |- !s x y. x IN (s DELETE y) = x IN s /\ ~(x = y) DELETE_NON_ELEMENT = |- !x s. ~x IN s = (s DELETE x = s) IN_DELETE_EQ = |- !s x x'. (x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x)) EMPTY_DELETE = |- !x. {} DELETE x = {} DELETE_DELETE = |- !x s. (s DELETE x) DELETE x = s DELETE x DELETE_COMM = |- !x y s. (s DELETE x) DELETE y = (s DELETE y) DELETE x DELETE_SUBSET = |- !x s. (s DELETE x) SUBSET s SUBSET_DELETE = |- !x s t. s SUBSET (t DELETE x) = ~x IN s /\ s SUBSET t SUBSET_INSERT_DELETE = |- !x s t. s SUBSET (x INSERT t) = (s DELETE x) SUBSET t DIFF_INSERT = |- !s t x. s DIFF (x INSERT t) = (s DELETE x) DIFF t PSUBSET_INSERT_SUBSET = |- !s t. s PSUBSET t = (?x. ~x IN s /\ (x INSERT s) SUBSET t) lemma = |- ~(a = b) = (b = ~a) PSUBSET_MEMBER = |- !s t. s PSUBSET t = s SUBSET t /\ (?y. y IN t /\ ~y IN s) DELETE_INSERT = |- !x y s. (x INSERT s) DELETE y = ((x = y) => s DELETE y | x INSERT (s DELETE y)) INSERT_DELETE = |- !x s. x IN s ==> (x INSERT (s DELETE x) = s) DELETE_INTER = |- !s t x. (s DELETE x) INTER t = (s INTER t) DELETE x DISJOINT_DELETE_SYM = |- !s t x. DISJOINT(s DELETE x)t = DISJOINT(t DELETE x)s CHOICE_EXISTS = |- ?CHOICE. !s. ~(s = {}) ==> (CHOICE s) IN s CHOICE_DEF = |- !s. ~(s = {}) ==> (CHOICE s) IN s REST_DEF = |- !s. REST s = s DELETE (CHOICE s) CHOICE_NOT_IN_REST = |- !s. ~(CHOICE s) IN (REST s) CHOICE_INSERT_REST = |- !s. ~(s = {}) ==> ((CHOICE s) INSERT (REST s) = s) REST_SUBSET = |- !s. (REST s) SUBSET s lemma = |- (P /\ Q = P) = P ==> Q REST_PSUBSET = |- !s. ~(s = {}) ==> (REST s) PSUBSET s SING_DEF = |- !s. SING s = (?x. s = {x}) SING = |- !x. SING{x} IN_SING = |- !x y. x IN {y} = (x = y) NOT_SING_EMPTY = |- !x. ~({x} = {}) NOT_EMPTY_SING = |- !x. ~({} = {x}) EQUAL_SING = |- !x y. ({x} = {y}) = (x = y) DISJOINT_SING_EMPTY = |- !x. DISJOINT{x}{} INSERT_SING_UNION = |- !s x. x INSERT s = {x} UNION s SING_DELETE = |- !x. {x} DELETE x = {} DELETE_EQ_SING = |- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x})) CHOICE_SING = |- !x. CHOICE{x} = x REST_SING = |- !x. REST{x} = {} SING_IFF_EMPTY_REST = |- !s. SING s = ~(s = {}) /\ (REST s = {}) IMAGE_DEF = |- !f s. IMAGE f s = {f x | x IN s} IN_IMAGE = |- !y s f. y IN (IMAGE f s) = (?x. (y = f x) /\ x IN s) IMAGE_IN = |- !x s. x IN s ==> (!f. (f x) IN (IMAGE f s)) IMAGE_EMPTY = |- !f. IMAGE f{} = {} IMAGE_ID = |- !s. IMAGE(\x. x)s = s Theorem o_THM autoloading from theory `combin` ... o_THM = |- !f g x. (f o g)x = f(g x) IMAGE_COMPOSE = |- !f g s. IMAGE(f o g)s = IMAGE f(IMAGE g s) IMAGE_INSERT = |- !f x s. IMAGE f(x INSERT s) = (f x) INSERT (IMAGE f s) IMAGE_EQ_EMPTY = |- !s f. (IMAGE f s = {}) = (s = {}) IMAGE_DELETE = |- !f x s. ~x IN s ==> (IMAGE f(s DELETE x) = IMAGE f s) IMAGE_UNION = |- !f s t. IMAGE f(s UNION t) = (IMAGE f s) UNION (IMAGE f t) IMAGE_SUBSET = |- !s t. s SUBSET t ==> (!f. (IMAGE f s) SUBSET (IMAGE f t)) IMAGE_INTER = |- !f s t. (IMAGE f(s INTER t)) SUBSET ((IMAGE f s) INTER (IMAGE f t)) INJ_DEF = |- !f s t. INJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) INJ_ID = |- !s. INJ(\x. x)s s INJ_COMPOSE = |- !f g s t u. INJ f s t /\ INJ g t u ==> INJ(g o f)s u INJ_EMPTY = |- !f. (!s. INJ f{}s) /\ (!s. INJ f s{} = (s = {})) SURJ_DEF = |- !f s t. SURJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x. x IN t ==> (?y. y IN s /\ (f y = x))) SURJ_ID = |- !s. SURJ(\x. x)s s SURJ_COMPOSE = |- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ(g o f)s u SURJ_EMPTY = |- !f. (!s. SURJ f{}s = (s = {})) /\ (!s. SURJ f s{} = (s = {})) IMAGE_SURJ = |- !f s t. SURJ f s t = (IMAGE f s = t) BIJ_DEF = |- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t BIJ_ID = |- !s. BIJ(\x. x)s s BIJ_EMPTY = |- !f. (!s. BIJ f{}s = (s = {})) /\ (!s. BIJ f s{} = (s = {})) BIJ_COMPOSE = |- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ(g o f)s u lemma1 = |- !f s. (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) = (!y. y IN s ==> (!x. x IN s /\ (f x = f y) = y IN s /\ (x = y))) lemma2 = |- !f s. ?g. !t. INJ f s t ==> (!x. x IN s ==> (g(f x) = x)) LINV_DEF = |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x)) lemma3 = |- !f s. ?g. !t. SURJ f s t ==> (!x. x IN t ==> (f(g x) = x)) RINV_DEF = |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x)) FINITE_DEF = |- !s. FINITE s = (!P. P{} /\ (!s'. P s' ==> (!e. P(e INSERT s'))) ==> P s) FINITE_EMPTY = |- FINITE{} FINITE_INSERT = |- !s. FINITE s ==> (!x. FINITE(x INSERT s)) SIMPLE_FINITE_INDUCT = |- !P. P{} /\ (!s. P s ==> (!e. P(e INSERT s))) ==> (!s. FINITE s ==> P s) lemma = |- P{} /\ (!s. FINITE s /\ P s ==> (!e. FINITE(e INSERT s) /\ P(e INSERT s))) ==> (!s. FINITE s ==> P s) FINITE_INDUCT = |- !P. P{} /\ (!s. FINITE s /\ P s ==> (!e. ~e IN s ==> P(e INSERT s))) ==> (!s. FINITE s ==> P s) SET_INDUCT_TAC = - : tactic File set_ind loaded () : void FINITE_DELETE = |- !s. FINITE s ==> (!x. FINITE(s DELETE x)) INSERT_FINITE = |- !x s. FINITE(x INSERT s) ==> FINITE s FINITE_INSERT = |- !x s. FINITE(x INSERT s) = FINITE s DELETE_FINITE = |- !x s. FINITE(s DELETE x) ==> FINITE s FINITE_DELETE = |- !x s. FINITE(s DELETE x) = FINITE s UNION_FINITE = |- !s. FINITE s ==> (!t. FINITE t ==> FINITE(s UNION t)) FINITE_UNION_LEMMA = |- !s. FINITE s ==> (!t. FINITE(s UNION t) ==> FINITE t) FINITE_UNION = |- !s t. FINITE(s UNION t) ==> FINITE s /\ FINITE t FINITE_UNION = |- !s t. FINITE(s UNION t) = FINITE s /\ FINITE t INTER_FINITE = |- !s. FINITE s ==> (!t. FINITE(s INTER t)) SUBSET_FINITE = |- !s. FINITE s ==> (!t. t SUBSET s ==> FINITE t) PSUBSET_FINITE = |- !s. FINITE s ==> (!t. t PSUBSET s ==> FINITE t) FINITE_DIFF = |- !s. FINITE s ==> (!t. FINITE(s DIFF t)) FINITE_SING = |- !x. FINITE{x} SING_FINITE = |- !s. SING s ==> FINITE s IMAGE_FINITE = |- !s. FINITE s ==> (!f. FINITE(IMAGE f s)) card_rel_def = "(!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n))" : term Theorem num_Axiom autoloading from theory `prim_rec` ... num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) CARD_REL_EXISTS = |- ?R. (!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n)) CARD_REL_DEL_LEMMA = .. |- !n s x. x IN s ==> R(s DELETE x)n ==> (!y. y IN s ==> R(s DELETE y)n) Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) CARD_REL_UNIQUE = .. |- !n s. R s n ==> (!m. R s m ==> (n = m)) CARD_REL_EXISTS_LEMMA = .. |- !s. FINITE s ==> (?n. R s n) CARD_REL_THM = .. |- !m s. FINITE s ==> (((@n. R s n) = m) = R s m) CARD_EXISTS = |- ?CARD. (CARD{} = 0) /\ (!s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))) CARD_DEF = |- (CARD{} = 0) /\ (!s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))) CARD_EMPTY = |- CARD{} = 0 CARD_INSERT = |- !s. FINITE s ==> (!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))) CARD_EQ_0 = |- !s. FINITE s ==> ((CARD s = 0) = (s = {})) Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m CARD_DELETE = |- !s. FINITE s ==> (!x. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s)) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) lemma1 = |- !n m. (SUC n) <= (SUC m) = n <= m Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n lemma2 = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m CARD_INTER_LESS_EQ = |- !s. FINITE s ==> (!t. (CARD(s INTER t)) <= (CARD s)) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) CARD_UNION = |- !s. FINITE s ==> (!t. FINITE t ==> ((CARD(s UNION t)) + (CARD(s INTER t)) = (CARD s) + (CARD t))) lemma = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) CARD_SUBSET = |- !s. FINITE s ==> (!t. t SUBSET s ==> (CARD t) <= (CARD s)) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n CARD_PSUBSET = |- !s. FINITE s ==> (!t. t PSUBSET s ==> (CARD t) < (CARD s)) CARD_SING = |- !x. CARD{x} = 1 SING_IFF_CARD1 = |- !s. SING s = (CARD s = 1) /\ FINITE s Theorem SUB_PLUS autoloading from theory `arithmetic` ... SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) CARD_DIFF = |- !t. FINITE t ==> (!s. FINITE s ==> (CARD(s DIFF t) = (CARD s) - (CARD(s INTER t)))) Theorem SUB_LESS_0 autoloading from theory `arithmetic` ... SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) LESS_CARD_DIFF = |- !t. FINITE t ==> (!s. FINITE s ==> (CARD t) < (CARD s) ==> 0 < (CARD(s DIFF t))) INFINITE_DEF = |- !s. INFINITE s = ~FINITE s NOT_IN_FINITE = |- INFINITE UNIV = (!s. FINITE s ==> (?x. ~x IN s)) INVERSE_LEMMA = |- !f. (!x y. (f x = f y) ==> (x = y)) ==> ((\x. @y. x = f y) o f = (\x. x)) IMAGE_11_INFINITE = |- !f. (!x y. (f x = f y) ==> (x = y)) ==> (!s. INFINITE s ==> INFINITE(IMAGE f s)) INFINITE_SUBSET = |- !s. INFINITE s ==> (!t. s SUBSET t ==> INFINITE t) IN_INFINITE_NOT_FINITE = |- !s t. INFINITE s /\ FINITE t ==> (?x. x IN s /\ ~x IN t) gdef = ["g 0 = {}"; "!n. g(SUC n) = (@x. ~x IN (g n)) INSERT (g n)"] : term list g_finite = .. |- !n. FINITE(g n) g_subset = . |- !n x. x IN (g n) ==> (!i. x IN (g(n + i))) lemma = |- (A \/ B) /\ ~B = A /\ ~B Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) g_cases = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!x. (?n. x IN (g n)) ==> (?m. x IN (g(SUC m)) /\ ~x IN (g m))) z_in_g1 = .. |- (@x. ~x IN {}) IN (g(SUC 0)) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 z_in_gn = .. |- !n. (@x. ~x IN {}) IN (g(SUC n)) in_lemma = . |- !n. (@x. ~x IN (g n)) IN (g(SUC n)) not_in_lemma = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!i n. ~(@x. ~x IN (g(n + i))) IN (g n)) Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n less_lemma = |- !m n. ~(m = n) = m < n \/ n < m Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) gn_unique = .. |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (!n m. ((@x. ~x IN (g n)) = (@x. ~x IN (g m))) = (n = m)) x_unique = .. |- !n x y. ~x IN (g n) /\ ~y IN (g n) ==> x IN (g(SUC n)) ==> y IN (g(SUC n)) ==> (x = y) fdef = "\x. ((?n. x IN (g n)) => (@y. ~y IN (g(SUC(@n. x IN (g(SUC n)) /\ ~x IN (g n))))) | x)" : term cases = |- !x. (?n. x IN (g n)) \/ (!n. ~x IN (g n)) INF_IMP_INFINITY = |- (!s. FINITE s ==> (?x. ~x IN s)) ==> (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) prth = |- ?fn. (!f x. fn f x 0 = x) /\ (!f x n. fn f x(SUC n) = f(fn f x n)) prmth = |- !x f. ?fn. (fn 0 = x) /\ (!n. fn(SUC n) = f(fn n)) num_fn_thm = |- (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) ==> (?fn. !n m. (fn n = fn m) ==> (n = m)) Theorem LESS_IMP_LESS_ADD autoloading from theory `arithmetic` ... LESS_IMP_LESS_ADD = |- !n m. n < m ==> (!p. n < (m + p)) Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) finite_N_bounded = |- !s. FINITE s ==> (?m. !n. n IN s ==> n < m) N_lemma = |- INFINITE UNIV main_lemma = |- !s. FINITE s ==> (!f. (!n m. (f n = f m) ==> (n = m)) ==> (?n. ~(f n) IN s)) INFINITY_IMP_INF = |- (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) ==> (!s. FINITE s ==> (?x. ~x IN s)) INFINITE_UNIV = |- INFINITE UNIV = (?f. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y))) FINITE_PSUBSET_INFINITE = |- !s. INFINITE s = (!t. FINITE t ==> t SUBSET s ==> t PSUBSET s) FINITE_PSUBSET_UNIV = |- INFINITE UNIV = (!s. FINITE s ==> s PSUBSET UNIV) INFINITE_DIFF_FINITE = |- !s t. INFINITE s /\ FINITE t ==> ~(s DIFF t = {}) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 FINITE_ISO_NUM = |- !s. FINITE s ==> (?f. (!n m. n < (CARD s) /\ m < (CARD s) ==> (f n = f m) ==> (n = m)) /\ (s = {f n | n < (CARD s)})) echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `pred_sets`;;'\ 'compilet `set_ind`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory pred_sets loaded () : void SET_INDUCT_TAC = - : tactic Calling Lisp compiler File set_ind compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `pred_sets`;;'\ 'compilet `gspec`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory pred_sets loaded () : void dest_tuple = - : (term -> term list) MK_PAIR = - : (* list -> conv) EXISTS_TUPLE_CONV = - : (term list -> conv) PAIR_EQ_CONV = - : conv ELIM_EXISTS_CONV = - : conv PROVE_EXISTS = - : conv list_variant = - : (term list -> term list -> term list) SET_SPEC_CONV = - : conv - : conv SET_SPEC_CONV = - : conv Calling Lisp compiler File gspec compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `pred_sets`;;'\ 'compilet `fset_conv`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory pred_sets loaded () : void FINITE_CONV = - : conv IN_CONV = - : (conv -> conv) DELETE_CONV = - : (conv -> conv) UNION_CONV = - : (conv -> conv) INSERT_CONV = - : (conv -> conv) IMAGE_CONV = - : (conv -> conv -> conv) Calling Lisp compiler File fset_conv compiled () : void #===> library pred_sets rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pred_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' rm -f ascii.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_ascii`;;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ascii_Axiom = |- !f. ?! fn. !b0 b1 b2 b3 b4 b5 b6 b7. fn(ASCII b0 b1 b2 b3 b4 b5 b6 b7) = f b0 b1 b2 b3 b4 b5 b6 b7 ascii_Induct = |- !P. (!b0 b1 b2 b3 b4 b5 b6 b7. P(ASCII b0 b1 b2 b3 b4 b5 b6 b7)) ==> (!a. P a) ascii_CASES = |- !a. ?b0 b1 b2 b3 b4 b5 b6 b7. a = ASCII b0 b1 b2 b3 b4 b5 b6 b7 ASCII_11 = |- !b0 b1 b2 b3 b4 b5 b6 b7 b0' b1' b2' b3' b4' b5' b6' b7'. (ASCII b0 b1 b2 b3 b4 b5 b6 b7 = ASCII b0' b1' b2' b3' b4' b5' b6' b7') = (b0 = b0') /\ (b1 = b1') /\ (b2 = b2') /\ (b3 = b3') /\ (b4 = b4') /\ (b5 = b5') /\ (b6 = b6') /\ (b7 = b7') rm -f string.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_string`;;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void Theory ascii loaded () : void () : void () : void () : void () : void string_Axiom = `string_Axiom` : string spec = `string = `` | STRING ascii string` : string tok = `tok` : string string_Induct = `string_Induct` : string string_CASES = `string_CASES` : string STRING_11 = `STRING_11` : string NOT_STRING_EMPTY = `NOT_STRING_EMPTY` : string NOT_EMPTY_STRING = `NOT_EMPTY_STRING` : string () : void string_Axiom = |- !e f. ?! fn. (fn `` = e) /\ (!a s. fn(STRING a s) = f(fn s)a s) () : void string_Induct = |- !P. P `` /\ (!s. P s ==> (!a. P(STRING a s))) ==> (!s. P s) string_CASES = |- !s. (s = ``) \/ (?s' a. s = STRING a s') STRING_11 = |- !a s a' s'. (STRING a s = STRING a' s') = (a = a') /\ (s = s') NOT_STRING_EMPTY = |- !a s. ~(`` = STRING a s) NOT_EMPTY_STRING = |- !a s. ~(STRING a s = ``) () : void echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `ascii`;;'\ 'compilet `ascii`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory ascii loaded () : void ascii_EQ_CONV = - : conv Calling Lisp compiler File ascii compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `string`;;'\ 'compilet `stringconv`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory string loaded () : void string_CONV = - : conv Calling Lisp compiler File stringconv compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `string`;;'\ 'loadf `stringconv`;;'\ 'loadf `ascii`;;'\ 'compilet `string_rules`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory string loaded () : void .() : void .() : void string_EQ_CONV = - : conv Calling Lisp compiler File string_rules compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `string`;;'\ 'compilet `string`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory string loaded () : void Updating search path () : void Updating help search path () : void Theory string loaded () : void () : void () : void Calling Lisp compiler File string compiled () : void #===> library string rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/string' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' rm -f finite_sets.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_finite_sets`;;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void IS_SET_REP = "\s. !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> P s" : term IS_SET_REP_EMPTY = |- (\s. !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> P s) (\x. F) INSERTION_PRESERVES_IS_SET_REP = |- !s. (\s. !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> P s) s ==> (!x. (\s. !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> P s) (\y. (y = x) \/ s y)) REP_INDUCT = |- !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> (!s. (\s. !P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> P s) s ==> P s) IS_SET_REP_EXISTS = |- ?IS_SET_REP. IS_SET_REP(\x. F) /\ (!s. IS_SET_REP s ==> (!x. IS_SET_REP(\y. (y = x) \/ s y))) /\ (!P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> (!s. IS_SET_REP s ==> P s)) IS_SET_REP = |- IS_SET_REP(\x. F) /\ (!s. IS_SET_REP s ==> (!x. IS_SET_REP(\y. (y = x) \/ s y))) /\ (!P. P(\x. F) /\ (!t. P t ==> (!x. P(\y. (y = x) \/ t y))) ==> (!s. IS_SET_REP s ==> P s)) STRONG_SET_REP_INDUCT = |- !P. P(\x. F) /\ (!t. IS_SET_REP t ==> P t ==> (!x. P(\y. (y = x) \/ t y))) ==> (!s. IS_SET_REP s ==> P s) EXISTENCE_THM = |- ?s. IS_SET_REP s set_TY_DEF = |- ?rep. TYPE_DEFINITION IS_SET_REP rep EXISTENCE_LEMMA = |- ?EMPTY INSERT IN. (!x. ~IN x EMPTY) /\ (!x y s. IN x(INSERT y s) = (x = y) \/ IN x s) /\ (!x s. INSERT x(INSERT x s) = INSERT x s) /\ (!x y s. INSERT x(INSERT y s) = INSERT y(INSERT x s)) /\ (!P. P EMPTY /\ (!s. P s ==> (!e. P(INSERT e s))) ==> (!s. P s)) FINITE_SET_DEF = |- (!x. ~x IN EMPTY) /\ (!x y s. x IN (y INSERT s) = (x = y) \/ x IN s) /\ (!x s. x INSERT (x INSERT s) = x INSERT s) /\ (!x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)) /\ (!P. P EMPTY /\ (!s. P s ==> (!e. P(e INSERT s))) ==> (!s. P s)) () : void NOT_IN_EMPTY = |- !x. ~x IN {} IN_INSERT = |- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s INSERT_INSERT = |- !x s. x INSERT (x INSERT s) = x INSERT s INSERT_COMM = |- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s) |- !x. ~x IN {} |- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s |- !x s. x INSERT (x INSERT s) = x INSERT s |- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s) COMPONENT = |- !x s. x IN (x INSERT s) NOT_EMPTY_INSERT = |- !x s. ~({} = x INSERT s) NOT_INSERT_EMPTY = |- !x s. ~(x INSERT s = {}) lemma = |- !x s. x IN s ==> (x INSERT s = s) ABSORPTION = |- !x s. x IN s = (x INSERT s = s) SET_INDUCT = |- !P. P{} /\ (!s. P s ==> (!e. ~e IN s ==> P(e INSERT s))) ==> (!s. P s) SET_INDUCT_TAC = - : tactic File set_ind.ml loaded () : void DECOMPOSITION = |- !s x. x IN s = (?t. (s = x INSERT t) /\ ~x IN t) MEMBER_NOT_EMPTY = |- !s. (?x. x IN s) = ~(s = {}) lemma = |- !s t. (!x. x IN s = x IN t) ==> (s = t) EXTENSION = |- !s t. (s = t) = (!x. x IN s = x IN t) NOT_EQUAL_SETS = |- !s t. ~(s = t) = (?x. x IN t = ~x IN s) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem WOP autoloading from theory `arithmetic` ... WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) NUM_SET_WOP = |- !s. (?n. n IN s) = (?n. n IN s /\ (!m. m IN s ==> n <= m)) SET_CASES = |- !s. (s = {}) \/ (?x t. (s = x INSERT t) /\ ~x IN t) SUBSET_DEF = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t) SUBSET_TRANS = |- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u SUBSET_REFL = |- !s. s SUBSET s SUBSET_ANTISYM = |- !s t. s SUBSET t /\ t SUBSET s ==> (s = t) EMPTY_SUBSET = |- !s. {} SUBSET s SUBSET_EMPTY = |- !s. s SUBSET {} = (s = {}) INSERT_SUBSET = |- !x s t. (x INSERT s) SUBSET t = x IN t /\ s SUBSET t SUBSET_INSERT = |- !x s. ~x IN s ==> (!t. s SUBSET (x INSERT t) = s SUBSET t) PSUBSET_DEF = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t) PSUBSET_TRANS = |- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u PSUBSET_IRREFL = |- !s. ~s PSUBSET s NOT_PSUBSET_EMPTY = |- !s. ~s PSUBSET {} PSUBSET_INSERT_SUBSET = |- !s t. s PSUBSET t = (?x. ~x IN s /\ (x INSERT s) SUBSET t) lemma = |- ~(a = b) = (b = ~a) PSUBSET_MEMBER = |- !s t. s PSUBSET t = s SUBSET t /\ (?y. y IN t /\ ~y IN s) UNION_EXISTS = |- !s t. ?u. !x. x IN u = x IN s \/ x IN t IN_UNION = |- !s t x. x IN (s UNION t) = x IN s \/ x IN t UNION_ASSOC = |- !s t u. (s UNION t) UNION u = s UNION (t UNION u) UNION_IDEMPOT = |- !s. s UNION s = s UNION_COMM = |- !s t. s UNION t = t UNION s SUBSET_UNION = |- (!s t. s SUBSET (s UNION t)) /\ (!s t. s SUBSET (t UNION s)) SUBSET_UNION_ABSORPTION = |- !s t. s SUBSET t = (s UNION t = t) UNION_EMPTY = |- (!s. {} UNION s = s) /\ (!s. s UNION {} = s) EMPTY_UNION = |- !s t. (s UNION t = {}) = (s = {}) /\ (t = {}) INSERT_UNION = |- !x s t. (x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t)) INSERT_UNION_EQ = |- !x s t. (x INSERT s) UNION t = x INSERT (s UNION t) INTER_EXISTS = |- !s t. ?i. !x. x IN i = x IN s /\ x IN t IN_INTER = |- !s t x. x IN (s INTER t) = x IN s /\ x IN t INTER_ASSOC = |- !s t u. (s INTER t) INTER u = s INTER (t INTER u) INTER_IDEMPOT = |- !s. s INTER s = s INTER_COMM = |- !s t. s INTER t = t INTER s INTER_SUBSET = |- (!s t. (s INTER t) SUBSET s) /\ (!s t. (t INTER s) SUBSET s) SUBSET_INTER_ABSORPTION = |- !s t. s SUBSET t = (s INTER t = s) INTER_EMPTY = |- (!s. {} INTER s = {}) /\ (!s. s INTER {} = {}) INSERT_INTER = |- !x s t. (x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t) UNION_OVER_INTER = |- !s t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u) INTER_OVER_UNION = |- !s t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u) DISJOINT_DEF = |- !s t. DISJOINT s t = (s INTER t = {}) IN_DISJOINT = |- !s t. DISJOINT s t = ~(?x. x IN s /\ x IN t) DISJOINT_SYM = |- !s t. DISJOINT s t = DISJOINT t s DISJOINT_EMPTY = |- !s. DISJOINT{}s /\ DISJOINT s{} DISJOINT_EMPTY_REFL = |- !s. (s = {}) = DISJOINT s s DISJOINT_INSERT = |- !x s t. DISJOINT(x INSERT s)t = DISJOINT s t /\ ~x IN t DISJOINT_UNION = |- !s t u. DISJOINT(s UNION t)u = DISJOINT s u /\ DISJOINT t u DIFF_EXISTS = |- !s t. ?d. !x. x IN d = x IN s /\ ~x IN t IN_DIFF = |- !s t x. x IN (s DIFF t) = x IN s /\ ~x IN t DIFF_EMPTY = |- !s. s DIFF {} = s EMPTY_DIFF = |- !s. {} DIFF s = {} DIFF_DIFF = |- !s t. (s DIFF t) DIFF t = s DIFF t DIFF_EQ_EMPTY = |- !s. s DIFF s = {} DELETE_DEF = |- !s x. s DELETE x = s DIFF {x} IN_DELETE = |- !s x y. x IN (s DELETE y) = x IN s /\ ~(x = y) DELETE_NON_ELEMENT = |- !x s. ~x IN s = (s DELETE x = s) IN_DELETE_EQ = |- !s x x'. (x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x)) EMPTY_DELETE = |- !x. {} DELETE x = {} DELETE_DELETE = |- !x s. (s DELETE x) DELETE x = s DELETE x DELETE_COMM = |- !x y s. (s DELETE x) DELETE y = (s DELETE y) DELETE x DELETE_SUBSET = |- !x s. (s DELETE x) SUBSET s SUBSET_DELETE = |- !x s t. s SUBSET (t DELETE x) = ~x IN s /\ s SUBSET t SUBSET_INSERT_DELETE = |- !x s t. s SUBSET (x INSERT t) = (s DELETE x) SUBSET t DIFF_INSERT = |- !s t x. s DIFF (x INSERT t) = (s DELETE x) DIFF t DELETE_INSERT = |- !x y s. (x INSERT s) DELETE y = ((x = y) => s DELETE y | x INSERT (s DELETE y)) INSERT_DELETE = |- !x s. x IN s ==> (x INSERT (s DELETE x) = s) DELETE_INTER = |- !s t x. (s DELETE x) INTER t = (s INTER t) DELETE x DISJOINT_DELETE_SYM = |- !s t x. DISJOINT(s DELETE x)t = DISJOINT(t DELETE x)s CHOICE_EXISTS = |- ?CHOICE. !s. ~(s = {}) ==> (CHOICE s) IN s CHOICE_DEF = |- !s. ~(s = {}) ==> (CHOICE s) IN s REST_DEF = |- !s. REST s = s DELETE (CHOICE s) CHOICE_NOT_IN_REST = |- !s. ~(CHOICE s) IN (REST s) CHOICE_INSERT_REST = |- !s. ~(s = {}) ==> ((CHOICE s) INSERT (REST s) = s) REST_SUBSET = |- !s. (REST s) SUBSET s lemma = |- (P /\ Q = P) = P ==> Q REST_PSUBSET = |- !s. ~(s = {}) ==> (REST s) PSUBSET s SING_DEF = |- !s. SING s = (?x. s = {x}) SING = |- !x. SING{x} IN_SING = |- !x y. x IN {y} = (x = y) NOT_SING_EMPTY = |- !x. ~({x} = {}) NOT_EMPTY_SING = |- !x. ~({} = {x}) EQUAL_SING = |- !x y. ({x} = {y}) = (x = y) DISJOINT_SING_EMPTY = |- !x. DISJOINT{x}{} INSERT_SING_UNION = |- !s x. x INSERT s = {x} UNION s SING_DELETE = |- !x. {x} DELETE x = {} DELETE_EQ_SING = |- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x})) CHOICE_SING = |- !x. CHOICE{x} = x REST_SING = |- !x. REST{x} = {} SING_IFF_EMPTY_REST = |- !s. SING s = ~(s = {}) /\ (REST s = {}) IMAGE_EXISTS = |- !f s. ?t. !y. y IN t = (?x. (y = f x) /\ x IN s) IN_IMAGE = |- !f s y. y IN (IMAGE f s) = (?x. (y = f x) /\ x IN s) IMAGE_IN = |- !x s. x IN s ==> (!f. (f x) IN (IMAGE f s)) IMAGE_EMPTY = |- !f. IMAGE f{} = {} IMAGE_ID = |- !s. IMAGE(\x. x)s = s Theorem o_THM autoloading from theory `combin` ... o_THM = |- !f g x. (f o g)x = f(g x) IMAGE_COMPOSE = |- !f g s. IMAGE(f o g)s = IMAGE f(IMAGE g s) IMAGE_INSERT = |- !f x s. IMAGE f(x INSERT s) = (f x) INSERT (IMAGE f s) IMAGE_EQ_EMPTY = |- !s f. (IMAGE f s = {}) = (s = {}) IMAGE_DELETE = |- !f x s. ~x IN s ==> (IMAGE f(s DELETE x) = IMAGE f s) IMAGE_UNION = |- !f s t. IMAGE f(s UNION t) = (IMAGE f s) UNION (IMAGE f t) IMAGE_SUBSET = |- !s t. s SUBSET t ==> (!f. (IMAGE f s) SUBSET (IMAGE f t)) IMAGE_INTER = |- !f s t. (IMAGE f(s INTER t)) SUBSET ((IMAGE f s) INTER (IMAGE f t)) lemma = |- !s x. x IN s ==> (!f. (f x) IN (IMAGE f s)) SET_MINIMUM = |- !s M. (?x. x IN s) = (?x. x IN s /\ (!y. y IN s ==> (M x) <= (M y))) INJ_DEF = |- !f s t. INJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) INJ_ID = |- !s. INJ(\x. x)s s INJ_COMPOSE = |- !f g s t u. INJ f s t /\ INJ g t u ==> INJ(g o f)s u INJ_EMPTY = |- !f. (!s. INJ f{}s) /\ (!s. INJ f s{} = (s = {})) SURJ_DEF = |- !f s t. SURJ f s t = (!x. x IN s ==> (f x) IN t) /\ (!x. x IN t ==> (?y. y IN s /\ (f y = x))) SURJ_ID = |- !s. SURJ(\x. x)s s SURJ_COMPOSE = |- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ(g o f)s u SURJ_EMPTY = |- !f. (!s. SURJ f{}s = (s = {})) /\ (!s. SURJ f s{} = (s = {})) IMAGE_SURJ = |- !f s t. SURJ f s t = (IMAGE f s = t) BIJ_DEF = |- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t BIJ_ID = |- !s. BIJ(\x. x)s s BIJ_EMPTY = |- !f. (!s. BIJ f{}s = (s = {})) /\ (!s. BIJ f s{} = (s = {})) BIJ_COMPOSE = |- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ(g o f)s u lemma1 = |- !f s. (!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)) = (!y. y IN s ==> (!x. x IN s /\ (f x = f y) = y IN s /\ (x = y))) lemma2 = |- !f s. ?g. !t. INJ f s t ==> (!x. x IN s ==> (g(f x) = x)) LINV_DEF = |- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x)) lemma3 = |- !f s. ?g. !t. SURJ f s t ==> (!x. x IN t ==> (f(g x) = x)) RINV_DEF = |- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x)) card_rel_def = "(!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n))" : term Theorem num_Axiom autoloading from theory `prim_rec` ... num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) CARD_REL_EXISTS = |- ?R. (!s. R s 0 = (s = {})) /\ (!s n. R s(SUC n) = (?x. x IN s /\ R(s DELETE x)n)) CARD_REL_DEL_LEMMA = .. |- !n s x. x IN s ==> R(s DELETE x)n ==> (!y. y IN s ==> R(s DELETE y)n) Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) CARD_REL_UNIQUE = .. |- !n s. R s n ==> (!m. R s m ==> (n = m)) CARD_REL_EXISTS_LEMMA = .. |- !s. ?n. R s n CARD_REL_THM = .. |- !m s. ((@n. R s n) = m) = R s m CARD_EXISTS = |- ?CARD. (CARD{} = 0) /\ (!s x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))) CARD_DEF = |- (CARD{} = 0) /\ (!s x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))) CARD_EMPTY = |- CARD{} = 0 CARD_INSERT = |- !s x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)) CARD_EQ_0 = |- !s. (CARD s = 0) = (s = {}) Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m CARD_DELETE = |- !s x. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) lemma1 = |- !n m. (SUC n) <= (SUC m) = n <= m Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n lemma2 = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m CARD_INTER_LESS_EQ = |- !s t. (CARD(s INTER t)) <= (CARD s) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) CARD_UNION = |- !s t. (CARD(s UNION t)) + (CARD(s INTER t)) = (CARD s) + (CARD t) lemma = |- !n m. n <= (SUC m) = n <= m \/ (n = SUC m) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) CARD_SUBSET = |- !s t. t SUBSET s ==> (CARD t) <= (CARD s) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n CARD_PSUBSET = |- !s t. t PSUBSET s ==> (CARD t) < (CARD s) CARD_SING = |- !x. CARD{x} = 1 SING_IFF_CARD1 = |- !s. SING s = (CARD s = 1) Theorem SUB_PLUS autoloading from theory `arithmetic` ... SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) CARD_DIFF = |- !t s. CARD(s DIFF t) = (CARD s) - (CARD(s INTER t)) Theorem SUB_LESS_0 autoloading from theory `arithmetic` ... SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) LESS_CARD_DIFF = |- !t s. (CARD t) < (CARD s) ==> 0 < (CARD(s DIFF t)) echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `finite_sets`;;'\ 'compilet `set_ind`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory finite_sets loaded () : void SET_INDUCT_TAC = - : tactic Calling Lisp compiler File set_ind compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `finite_sets`;;'\ 'compilet `fset_conv`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory finite_sets loaded () : void IN_CONV = - : (conv -> conv) DELETE_CONV = - : (conv -> conv) UNION_CONV = - : (conv -> conv) INSERT_CONV = - : (conv -> conv) IMAGE_CONV = - : (conv -> conv -> conv) Calling Lisp compiler File fset_conv compiled () : void #===> library finite_sets rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/finite_sets' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' rm -f res_quan.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_res_quan`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void RESQ_FORALL = |- !P B. RES_FORALL P B = (!x. P x ==> B x) RESQ_EXISTS = |- !P B. RES_EXISTS P B = (?x. P x /\ B x) RESQ_SELECT = |- !P B. RES_SELECT P B = (@x. P x /\ B x) RESQ_ABSTRACT = |- !P B. RES_ABSTRACT P B = (\x. (P x => B x | ARB)) RESQ_FORALL_CONJ_DIST = |- !P Q R. (!i :: P. Q i /\ R i) = (!i :: P. Q i) /\ (!i :: P. R i) RESQ_FORALL_DISJ_DIST = |- !P Q R. (!i :: \i. P i \/ Q i. R i) = (!i :: P. R i) /\ (!i :: Q. R i) RESQ_FORALL_UNIQUE = |- !P j. (!i :: $= j. P i) = P j RESQ_FORALL_FORALL = |- !P R x. (!x. !i :: P. R i x) = (!i :: P. !x. R i x) RESQ_FORALL_REORDER = |- !P Q R. (!i :: P. !j :: Q. R i j) = (!j :: Q. !i :: P. R i j) RESQ_EXISTS_DISJ_DIST = |- !P Q R. (?i :: P. Q i \/ R i) = (?i :: P. Q i) \/ (?i :: P. R i) RESQ_DISJ_EXISTS_DIST = |- !P Q R. (?i :: \i. P i \/ Q i. R i) = (?i :: P. R i) \/ (?i :: Q. R i) RESQ_EXISTS_UNIQUE = |- !P j. (?i :: $= j. P i) = P j RESQ_EXISTS_REORDER = |- !P Q R. (?i :: P. ?j :: Q. R i j) = (?j :: Q. ?i :: P. R i j) () : void File mk_res_quan loaded () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `cond_rewr`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool match_aa = - : (term -> term -> ((term # term) list # (type # type) list) list) match_ok = - : (* list -> ((** # *) list # *** list) list -> bool) match_aal = - : (term list -> term -> term list -> ((term # term) list # term) list) subset = - : (* list -> * list -> bool) match_asm = - : (term list -> term list -> ((term # term) list # term list) -> term list -> ((term # term) list # term list)) var_cap = - : (thm -> term list -> term list -> term list -> (term list # thm)) MATCH_SUBS1 = - : (thm -> term list -> term list -> ((term # term) list # (type # type) list) -> (term list # thm)) MATCH_SUBS = - : (thm -> term list -> term list -> ((term # term) list # (type # type) list) list -> (term list # thm list)) COND_REWR_TAC = - : ((term -> term -> ((term # term) list # (type # type) list) list) -> thm_tactic) - : ((term -> term -> ((term # term) list # (type # type) list) list) -> thm_tactic) COND_REWR_TAC = - : ((term -> term -> ((term # term) list # (type # type) list) list) -> thm_tactic) search_top_down = - : (term -> term -> ((term # term) list # (type # type) list) list) COND_REWR_CANON = - : (thm -> thm) COND_REWRITE1_TAC = - : thm_tactic COND_REWR_CONV = - : ((term -> term -> ((term # term) list # (type # type) list) list) -> thm -> conv) COND_REWRITE1_CONV = - : (thm list -> thm -> conv) Calling Lisp compiler File cond_rewr compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_theory `res_quan`;;'\ 'loadf `cond_rewr`;;'\ 'compilet `res_rules`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory res_quan loaded () : void ................() : void rtheory = `res_quan` : string mk_resq_forall = - : ((term # term # term) -> term) mk_resq_exists = - : ((term # term # term) -> term) mk_resq_select = - : ((term # term # term) -> term) mk_resq_abstract = - : ((term # term # term) -> term) list_mk_resq_forall = - : (((term # term) list # term) -> term) list_mk_resq_exists = - : (((term # term) list # term) -> term) dest_resq_forall = - : (term -> (term # term # term)) dest_resq_exists = - : (term -> (term # term # term)) dest_resq_select = - : (term -> (term # term # term)) dest_resq_abstract = - : (term -> (term # term # term)) strip_resq_forall = - : (term -> ((term # term) list # term)) strip_resq_exists = - : (term -> ((term # term) list # term)) is_resq_forall = - : (term -> bool) is_resq_exists = - : (term -> bool) is_resq_select = - : (term -> bool) is_resq_abstract = - : (term -> bool) RESQ_SPEC = - : (term -> thm -> thm) RESQ_SPECL = - : (term list -> thm -> thm) RESQ_SPEC_ALL = - : (thm -> thm) GQSPEC = - : (term -> thm -> thm) GQSPECL = - : (term list -> thm -> thm) GQSPEC_ALL = - : (thm -> thm) RESQ_HALF_SPEC = - : (thm -> thm) RESQ_HALF_EXISTS = - : (thm -> thm) RESQ_GEN = - : ((term # term) -> thm -> thm) RESQ_GENL = - : ((term # term) list -> thm -> thm) RESQ_GEN_ALL = - : (thm -> thm) RESQ_MATCH_MP = - : (thm -> thm -> thm) RESQ_HALF_GEN_TAC = - : tactic RESQ_GEN_TAC = - : tactic GGEN_TAC = - : tactic RESQ_EXISTS_TAC = - : (term -> tactic) MATCH_MP = - : (thm -> thm -> thm) check = - : (string -> * list -> * list) check_res = - : (thm -> thm) RESQ_IMP_RES_THEN = - : thm_tactical RESQ_RES_THEN = - : (thm_tactic -> tactic) ((-), -) : (thm_tactical # (thm_tactic -> tactic)) RESQ_IMP_RES_THEN = - : thm_tactical RESQ_RES_THEN = - : (thm_tactic -> tactic) RESQ_IMP_RES_TAC = - : thm_tactic RESQ_RES_TAC = - : tactic LHS_CONV = - : (conv -> conv) RHS_CONV = - : (conv -> conv) BOTH_CONV = - : (conv -> conv) LEFT_THENC_RIGHT = - : (conv -> conv -> conv) RF_BODY_CONV = - : (conv -> conv) RF_PRED_CONV = - : (conv -> conv) RF_CONV = - : (conv -> conv) PRED_THENC_BODY = - : (conv -> conv -> conv) RESQ_FORALL_CONV = - : conv LIST_RESQ_FORALL_CONV = - : conv IMP_RESQ_FORALL_CONV = - : conv RESQ_FORALL_AND_CONV = - : conv AND_RESQ_FORALL_CONV = - : conv RESQ_FORALL_SWAP_CONV = - : conv RESQ_EXISTS_CONV = - : conv RESQ_REWR_CANON = - : (thm -> thm) RESQ_REWRITE1_TAC = - : thm_tactic RESQ_REWRITE1_CONV = - : (thm list -> thm -> conv) check_varstruct = - : (term -> term list) check_lhs = - : (term -> term list) get_type = - : (term -> type -> type) RESQ_DEF_EXISTS_RULE = - : conv new_gen_resq_definition = - : (string -> (string # term) -> thm) new_resq_definition = - : ((string # term) -> thm) new_infix_resq_definition = - : ((string # term) -> thm) new_binder_resq_definition = - : ((string # term) -> thm) ((-), (-), -) : (((string # term) -> thm) # ((string # term) -> thm) # ((string # term) -> thm)) new_resq_definition = - : ((string # term) -> thm) new_infix_resq_definition = - : ((string # term) -> thm) new_binder_resq_definition = - : ((string # term) -> thm) Calling Lisp compiler File res_rules compiled () : void #===> library res_quan rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/res_quan' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' \ echo 'set_flag(`abort_when_fail`,true);;' \ 'loadt `mk_wellorder`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void false : bool Run time: 0.0s ty = ":* # * -> bool" : type Run time: 0.0s set_wo_map = - : (void -> void) unset_wo_map = - : (void -> void) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s PBETA_TAC = - : tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s ANTE_RES_THEN = - : thm_tactical Run time: 0.0s IMP_RES_THEN = - : thm_tactical Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s less = |- !l x y. wo_less l(x,y) = l(x,y) /\ ~(x = y) Run time: 0.0s Intermediate theorems generated: 2 subset = |- !P Q. P wo_subset Q = (!x. P x ==> Q x) Run time: 0.0s Intermediate theorems generated: 2 Union = |- !P. wo_Union P = (\x. ?p. P p /\ p x) Run time: 0.0s Intermediate theorems generated: 2 fl = |- !l x. wo_fl l x = (?y. l(x,y) \/ l(y,x)) Run time: 0.0s Intermediate theorems generated: 2 poset = |- !l. wo_poset l = (!x. wo_fl l x ==> l(x,x)) /\ (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\ (!x y. l(x,y) /\ l(y,x) ==> (x = y)) Run time: 0.0s Intermediate theorems generated: 2 chain = |- !l P. wo_chain l P = (!x y. P x /\ P y ==> l(x,y) \/ l(y,x)) Run time: 0.0s Intermediate theorems generated: 2 woset = |- !l. wo_woset l = (!x. wo_fl l x ==> l(x,x)) /\ (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\ (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\ (!x y. wo_fl l x /\ wo_fl l y ==> l(x,y) \/ l(y,x)) /\ (!P. (!x. P x ==> wo_fl l x) /\ (?x. P x) ==> (?y. P y /\ (!z. P z ==> l(y,z)))) Run time: 0.0s Intermediate theorems generated: 2 inseg = |- !l m. l wo_inseg m = (!x y. l(x,y) = m(x,y) /\ wo_fl l y) Run time: 0.0s Intermediate theorems generated: 2 linseg = |- !l a. wo_linseg l a = (\(x,y). l(x,y) /\ wo_less l(y,a)) Run time: 0.0s Intermediate theorems generated: 2 ordinal = |- !l. wo_ordinal l = wo_woset l /\ (!x. wo_fl l x ==> (x = (@y. ~wo_less l(y,x)))) Run time: 0.0s Intermediate theorems generated: 2 () : void Run time: 0.0s SUBSET_REFL = |- !P. P subset P Run time: 0.0s Intermediate theorems generated: 22 SUBSET_ANTISYM = |- !P Q. P subset Q /\ Q subset P ==> (P = Q) Run time: 0.0s Intermediate theorems generated: 100 SUBSET_TRANS = |- !P Q R. P subset Q /\ Q subset R ==> P subset R Run time: 0.0s Intermediate theorems generated: 121 POSET_REFL = |- !l. poset l ==> (!x. fl l x ==> l(x,x)) POSET_TRANS = |- !l. poset l ==> (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) POSET_ANTISYM = |- !l. poset l ==> (!x y. l(x,y) /\ l(y,x) ==> (x = y)) Run time: 0.0s Intermediate theorems generated: 16 POSET_FLEQ = |- !l. poset l ==> (!x. fl l x = l(x,x)) Run time: 0.0s Intermediate theorems generated: 34 CHAIN_SUBSET = |- !l P Q. chain l P /\ Q subset P ==> chain l Q Run time: 0.0s Intermediate theorems generated: 90 WOSET_REFL = |- !l. woset l ==> (!x. fl l x ==> l(x,x)) WOSET_TRANS = |- !l. woset l ==> (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) WOSET_ANTISYM = |- !l. woset l ==> (!x y. l(x,y) /\ l(y,x) ==> (x = y)) WOSET_TOTAL = |- !l. woset l ==> (!x y. fl l x /\ fl l y ==> l(x,y) \/ l(y,x)) WOSET_WELL = |- !l. woset l ==> (!P. (!x. P x ==> fl l x) /\ (?x. P x) ==> (?y. P y /\ (!z. P z ==> l(y,z)))) Run time: 0.0s Intermediate theorems generated: 24 WOSET_POSET = |- !l. woset l ==> poset l Run time: 0.0s Intermediate theorems generated: 98 WOSET_FLEQ = |- !l. woset l ==> (!x. fl l x = l(x,x)) Run time: 0.0s Intermediate theorems generated: 8 WOSET_TRANS_LESS = |- !l. woset l ==> (!x y z. less l(x,y) /\ l(y,z) ==> less l(x,z)) Run time: 0.0s Intermediate theorems generated: 144 WOSET = |- !l. woset l = (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\ (!P. (!x. P x ==> fl l x) /\ (?x. P x) ==> (?y. P y /\ (!z. P z ==> l(y,z)))) Run time: 0.0s Intermediate theorems generated: 1294 PAIRED_EXT = |- !l m. (!x y. l(x,y) = m(x,y)) = (l = m) Run time: 0.0s Intermediate theorems generated: 63 WOSET_REFL = |- !l. woset l ==> (!x. fl l x ==> l(x,x)) WOSET_TRANS = |- !l. woset l ==> (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) WOSET_ANTISYM = |- !l. woset l ==> (!x y. l(x,y) /\ l(y,x) ==> (x = y)) WOSET_TOTAL = |- !l. woset l ==> (!x y. fl l x /\ fl l y ==> l(x,y) \/ l(y,x)) WOSET_WELL = |- !l. woset l ==> (!P. (!x. P x ==> fl l x) /\ (?x. P x) ==> (?y. P y /\ (!z. P z ==> l(y,z)))) Run time: 0.0s Intermediate theorems generated: 24 WOSET_TRANS_LE = |- !l. woset l ==> (!x y z. l(x,y) /\ less l(y,z) ==> less l(x,z)) Run time: 0.0s Intermediate theorems generated: 143 WOSET_WELL_CONTRAPOS = |- !l. woset l ==> (!P. (!x. P x ==> fl l x) /\ (?x. P x) ==> (?y. P y /\ (!z. less l(z,y) ==> ~P z))) Run time: 0.0s Intermediate theorems generated: 109 WOSET_TOTAL_LE = |- !l. woset l ==> (!x y. fl l x /\ fl l y ==> l(x,y) \/ less l(y,x)) Run time: 0.0s Intermediate theorems generated: 138 WOSET_TOTAL_LT = |- !l. woset l ==> (!x y. fl l x /\ fl l y ==> (x = y) \/ less l(x,y) \/ less l(y,x)) Run time: 0.0s Intermediate theorems generated: 172 WO_INDUCT = |- !P l. woset l /\ (!x. fl l x /\ (!y. less l(y,x) ==> P y) ==> P x) ==> (!x. fl l x ==> P x) Run time: 0.0s Intermediate theorems generated: 469 WO_INDUCT_TAC = - : tactic Run time: 0.0s Intermediate theorems generated: 2 AGREE_LEMMA = |- !l h ms m n f g z. woset l /\ (!x. fl l(ms x)) /\ (!f f' x. (!y. less l(ms y,ms x) ==> (f y = f' y)) ==> (h f x = h f' x)) /\ (!x. l(ms x,m) ==> (f x = h f x)) /\ (!x. l(ms x,n) ==> (g x = h g x)) /\ l(ms z,m) /\ l(ms z,n) ==> (f z = g z) Run time: 0.0s Intermediate theorems generated: 1165 WO_RECURSE_LOCAL = |- !l h ms. woset l /\ (!x. fl l(ms x)) /\ (!f f' x. (!y. less l(ms y,ms x) ==> (f y = f' y)) ==> (h f x = h f' x)) ==> (!n. ?f. !x. l(ms x,n) ==> (f x = h f x)) Run time: 0.0s Intermediate theorems generated: 1556 WO_RECURSE_EXISTS = |- !l h ms. woset l /\ (!x. fl l(ms x)) /\ (!f f' x. (!y. less l(ms y,ms x) ==> (f y = f' y)) ==> (h f x = h f' x)) ==> (?f. !x. f x = h f x) Run time: 0.0s Intermediate theorems generated: 444 WO_RECURSE = |- !l h ms. woset l /\ (!x. fl l(ms x)) /\ (!f g x. (!y. less l(ms y,ms x) ==> (f y = g y)) ==> (h f x = h g x)) ==> (?! f. !x. f x = h f x) Run time: 0.0s Intermediate theorems generated: 280 Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Run time: 0.0s FL_NUM = |- !n. fl(\(m,n). m <= n)n Run time: 0.0s Intermediate theorems generated: 39 Theorem WOP autoloading from theory `arithmetic` ... WOP = |- !P. (?n. P n) ==> (?n. P n /\ (!m. m < n ==> ~P m)) Run time: 0.0s Theorem NOT_LESS_EQUAL autoloading from theory `arithmetic` ... NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m Run time: 0.0s Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) Run time: 0.0s WOSET_NUM = |- woset(\(m,n). m <= n) Run time: 0.0s Intermediate theorems generated: 148 Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) Run time: 0.0s Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Run time: 0.0s Intermediate theorems generated: 1 WO_RECURSE_NUM = |- !h ms. (!f g x. (!y. (ms y) < (ms x) ==> (f y = g y)) ==> (h f x = h g x)) ==> (?! f. !x. f x = h f x) Run time: 0.0s Intermediate theorems generated: 259 UNION_FL = |- !P l. fl(Union P)x = (?l. P l /\ fl l x) Run time: 0.0s Intermediate theorems generated: 170 UNION_INSEG = |- !P l. (!m. P m ==> m inseg l) ==> (Union P) inseg l Run time: 0.0s Intermediate theorems generated: 232 INSEG_SUBSET = |- !l m. m inseg l ==> (!x y. m(x,y) ==> l(x,y)) Run time: 0.0s Intermediate theorems generated: 68 INSEG_SUBSET_FL = |- !l m. m inseg l ==> (!x. fl m x ==> fl l x) Run time: 0.0s Intermediate theorems generated: 187 INSEG_WOSET = |- !l m. m inseg l /\ woset l ==> woset m Run time: 0.0s Intermediate theorems generated: 401 LINSEG_INSEG = |- !l a. woset l ==> (linseg l a) inseg l Run time: 0.0s Intermediate theorems generated: 240 LINSEG_WOSET = |- !l a. woset l ==> woset(linseg l a) Run time: 0.0s Intermediate theorems generated: 39 LINSEG_FL = |- !l a x. woset l ==> (fl(linseg l a)x = less l(x,a)) Run time: 0.0s Intermediate theorems generated: 142 INSEG_PROPER_SUBSET = |- !l m. m inseg l /\ ~(l = m) ==> (?x y. l(x,y) /\ ~m(x,y)) Run time: 0.1s Intermediate theorems generated: 213 INSEG_PROPER_SUBSET_FL = |- !l m. m inseg l /\ ~(l = m) ==> (?a. fl l a /\ ~fl m a) Run time: 0.0s Intermediate theorems generated: 107 INSEG_LINSEG = |- !l m. woset l ==> (m inseg l = (m = l) \/ (?a. fl l a /\ (m = linseg l a))) Run time: 0.0s Intermediate theorems generated: 1172 EXTEND_FL = |- !l x. woset l ==> (fl(\(x,y). l(x,y) /\ l(y,a))x = l(x,a)) Run time: 0.0s Intermediate theorems generated: 143 EXTEND_INSEG = |- !l a. woset l /\ fl l a ==> (\(x,y). l(x,y) /\ l(y,a)) inseg l Run time: 0.0s Intermediate theorems generated: 57 EXTEND_LINSEG = |- !l a. woset l /\ fl l a ==> (\(x,y). linseg l a(x,y) \/ (y = a) /\ (fl(linseg l a)x \/ (x = a))) inseg l Run time: 0.0s Intermediate theorems generated: 489 ORDINAL_CHAINED = |- !l m. ordinal l /\ ordinal m ==> m inseg l \/ l inseg m Run time: 0.0s Intermediate theorems generated: 997 FL_SUC = |- !l a. fl(\(x,y). l(x,y) \/ (y = a) /\ (fl l x \/ (x = a)))x = fl l x \/ (x = a) Run time: 0.0s Intermediate theorems generated: 659 ORDINAL_SUC = |- !l. ordinal l /\ (?x. ~fl l x) ==> ordinal (\(x,y). l(x,y) \/ (y = (@y. ~fl l y)) /\ (fl l x \/ (x = (@y. ~fl l y)))) Run time: 0.0s Intermediate theorems generated: 2338 ORDINAL_UNION = |- !P. (!l. P l ==> ordinal l) ==> ordinal(Union P) Run time: 0.1s Intermediate theorems generated: 2015 ORDINAL_UNION_LEMMA = |- !l x. ordinal l ==> fl l x ==> fl(Union ordinal)x Run time: 0.0s Intermediate theorems generated: 30 ORDINAL_UP = |- !l. ordinal l ==> (!x. fl l x) \/ (?m x. ordinal m /\ fl m x /\ ~fl l x) Run time: 0.0s Intermediate theorems generated: 154 WO_LEMMA = |- ?l. ordinal l /\ (!x. fl l x) Run time: 0.0s Intermediate theorems generated: 135 WO_FL_RESTRICT = |- !l. woset l ==> (!P. fl(\(x,y). P x /\ P y /\ l(x,y))x = P x /\ fl l x) Run time: 0.0s Intermediate theorems generated: 392 WO = |- !P. ?l. woset l /\ (fl l = P) Run time: 0.0s Intermediate theorems generated: 403 HP = |- !l. poset l ==> (?P. chain l P /\ (!Q. chain l Q /\ P subset Q ==> (Q = P))) Run time: 0.0s Intermediate theorems generated: 2506 ZL = |- !l. poset l /\ (!P. chain l P ==> (?y. fl l y /\ (!x. P x ==> l(x,y)))) ==> (?y. fl l y /\ (!x. l(y,x) ==> (y = x))) Run time: 0.0s Intermediate theorems generated: 795 kl_tm = "\(c1,c2). C subset c1 /\ c1 subset c2 /\ chain l c2" : term Run time: 0.0s KL_POSET_LEMMA = |- poset(\(c1,c2). C subset c1 /\ c1 subset c2 /\ chain l c2) Run time: 0.0s Intermediate theorems generated: 386 KL = |- !l. poset l ==> (!C. chain l C ==> (?P. (chain l P /\ C subset P) /\ (!R. chain l R /\ P subset R ==> (R = P)))) Run time: 0.0s Intermediate theorems generated: 1083 () : void Run time: 0.0s Intermediate theorems generated: 1 File mk_wellorder loaded () : void Run time: 0.3s Intermediate theorems generated: 22538 #make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/wellorder' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' Making ../../Library/abs_theory/monoid_def.th... =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool true : bool false : bool false : bool Run time: 0.0s () : void Run time: 0.0s true : bool Run time: 0.0s .loading abs_theory .Extending help search path......................................() : void Run time: 0.0s SYM_RULE = - : (thm -> thm) Run time: 0.0srm: cannot remove 'monoid_def.th': No such file or directory 1 : int Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 MONOID = |- !f. ?! fn. !f' x. fn(monoid f' x) = f f' x Run time: 0.0s Intermediate theorems generated: 431 () : void Run time: 0.0s Intermediate theorems generated: 2 "!f. (!a. (op m a f = a) /\ (op m f a = a)) ==> (f = e m)" 3 ["!x y z. op m x(op m y z) = op m(op m x y)z" ] 2 ["!x. op m(e m)x = x" ] 1 ["!x. op m x(e m) = x" ] () : void Run time: 0.0s Intermediate theorems generated: 1 OK.. "f = e m" 4 ["!x y z. op m x(op m y z) = op m(op m x y)z" ] 3 ["!x. op m(e m)x = x" ] 2 ["!x. op m x(e m) = x" ] 1 ["!a. (op m a f = a) /\ (op m f a = a)" ] () : void Run time: 0.0s Intermediate theorems generated: 6 OK.. "f = e m" 5 ["!x y z. op m x(op m y z) = op m(op m x y)z" ] 4 ["!x. op m(e m)x = x" ] 3 ["!x. op m x(e m) = x" ] 2 ["!a. (op m a f = a) /\ (op m f a = a)" ] 1 ["e m = op m(e m)f" ] () : void Run time: 0.0s Intermediate theorems generated: 10 OK.. "f = op m(e m)f" 5 ["!x y z. op m x(op m y z) = op m(op m x y)z" ] 4 ["!x. op m(e m)x = x" ] 3 ["!x. op m x(e m) = x" ] 2 ["!a. (op m a f = a) /\ (op m f a = a)" ] 1 ["e m = op m(e m)f" ] () : void Run time: 0.0s Intermediate theorems generated: 4 OK.. goal proved . |- f = op m(e m)f .. |- f = e m .. |- f = e m . |- !f. (!a. (op m a f = a) /\ (op m f a = a)) ==> (f = e m) Previous subproof: goal proved () : void Run time: 0.0s Intermediate theorems generated: 43 IDENTITY_UNIQUE = . |- !f. (!a. (op m a f = a) /\ (op m f a = a)) ==> (f = e m) Run time: 0.0s Intermediate theorems generated: 36 . |- !f. (!a. (op m a f = a) /\ (op m f a = a)) ==> (f = e m) Run time: 0.0s Intermediate theorems generated: 2 OP_DETERMINES_IDENTITY = .. |- (op m1 = op m2) ==> (e m1 = e m2) Run time: 0.0s Intermediate theorems generated: 73 .. |- (op m1 = op m2) ==> (e m1 = e m2) Run time: 0.0s Intermediate theorems generated: 4 () : void Run time: 0.0s Intermediate theorems generated: 1 File ../../Library/abs_theory/monoid_def.ml loaded () : void Run time: 0.0s Intermediate theorems generated: 614 Making ../../Library/abs_theory/group_def.th... =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool true : bool false : bool false : bool Run time: 0.0s () : void Run time: 0.0s true : bool Run time: 0.0s .loading abs_theory .Extending help search path......................................() : void Run time: 0.0s SYM_RULE = - : (thm -> thm) Run time: 0.0srm: cannot remove 'group_def.th': No such file or directory 1 : int Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 Theory monoid_def loaded () : void Run time: 0.0s Intermediate theorems generated: 6 GROUP = |- !f. ?! fn. !f0 x f1. fn(group f0 x f1) = f f0 x f1 Run time: 0.0s Intermediate theorems generated: 601 () : void Run time: 0.0s Intermediate theorems generated: 2 GROUP_EXTENDS_MONOID = ... |- IS_MONOID(monoid(fn g)(id g)) Run time: 0.0s Intermediate theorems generated: 144 IDENTITY_UNIQUE = ... |- !f. (!a. (fn g a f = a) /\ (fn g f a = a)) ==> (f = id g) Run time: 0.0s Intermediate theorems generated: 144 ":(*)group" : type Run time: 0.0s Intermediate theorems generated: 3 ... |- !f. (!a. (fn g a f = a) /\ (fn g f a = a)) ==> (f = id g) Run time: 0.0s Intermediate theorems generated: 6 LEFT_CANCELLATION = ... |- !x y a. (fn g a x = fn g a y) ==> (x = y) Run time: 0.0s Intermediate theorems generated: 67 INVERSE_INVERSE_LEMMA = |- !g. IS_GROUP g ==> (!a. inv g(inv g a) = a) Run time: 0.0s Intermediate theorems generated: 45 ALTERNATE_INVERSE_INVERSE_LEMMA = |- !g. IS_GROUP g ==> (!a. inv g(inv g a) = a) Run time: 0.0s Intermediate theorems generated: 69 () : void Run time: 0.0s Intermediate theorems generated: 1 File ../../Library/abs_theory/group_def.ml loaded () : void Run time: 0.0s Intermediate theorems generated: 1089 Making ../../Library/abs_theory/example.th... =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool true : bool false : bool false : bool Run time: 0.0s () : void Run time: 0.0s true : bool Run time: 0.0s .loading abs_theory .Extending help search path......................................() : void Run time: 0.0srm: cannot remove 'example.th': No such file or directory 1 : int Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 Loading library taut ... Updating help search path ........................................ Library taut loaded. () : void Run time: 0.0s Intermediate theorems generated: 153 Theory group_def loaded () : void Run time: 0.0s Intermediate theorems generated: 7 Theorem I_THM autoloading from theory `combin` ... I_THM = |- !x. I x = x Run time: 0.0s GROUP_THOBS = |- IS_GROUP(group(\x y. ~(x = y))F I) Run time: 0.0s Intermediate theorems generated: 378 |- !f. (!a. (~(a = f) = a) /\ (~(f = a) = a)) ==> ~f Run time: 0.0s Intermediate theorems generated: 733 |- !x y a. (~(a = x) = ~(a = y)) ==> (x = y) Run time: 0.0s Intermediate theorems generated: 732 |- !a. I(I a) = a Run time: 0.1s Intermediate theorems generated: 1106 concrete_rep = "group(\x y. x = y)T I" : term Run time: 0.0s GROUP_THOBS = |- IS_GROUP(group(\x y. x = y)T I) Run time: 0.0s Intermediate theorems generated: 356 inst_func = - : (string -> thm) Run time: 0.0s [|- !f. (!a. ((a = f) = a) /\ ((f = a) = a)) ==> f; |- !x y a. ((a = x) = (a = y)) ==> (x = y); |- !a. I(I a) = a] : thm list Run time: 0.0s Intermediate theorems generated: 2546 () : void Run time: 0.0s Intermediate theorems generated: 1 File ../../Library/abs_theory/example.ml loaded () : void Run time: 0.1s Intermediate theorems generated: 6013 ===> abs_theory rebuilt on Thu Jul 24 21:24:42 UTC 2025 Making abs_theory.ml =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool true : bool false : bool false : bool Run time: 0.0s () : void Run time: 0.0s () : void loading abs_theory () : void Extending help search path() : void int_to_term = - : (int -> term) term_to_int = - : (term -> int) for = - : (int -> * list -> * list) ol = - : ((* -> *) list -> * -> *) X_SPEC = - : (term -> term -> thm -> thm) CONJ_IMP = - : (thm -> thm) abs_type_info = - : (thm -> type) dest_all_type = - : (type -> (string # type list)) string_from_type = - : (type -> string) ty_str = - : (string -> type list -> string) def_prefix = `abs_def_` : string new_abstract_representation = - : (string -> (string # type) list -> thm) get_abs_defs = - : (string -> thm list) instantiate_abstract_definition = - : (string -> string -> thm -> (term # term) list -> thm) thobs = [] : (type # thm) list thobs_prefix = `thobs_` : string new_theory_obligations = - : ((string # term) -> void) get_thobs = - : (string -> (type # thm) list) orelsef = - : ((* -> **) -> (* -> **) -> * -> **) () : void D = - : (((* -> **) # (* -> ***)) -> * -> (** # ***)) () : void make_abs_goal = - : (goal -> goal) prove_abs_thm = - : ((string # term # tactic) -> thm) ABS_TAC_PROOF = - : ((goal # tactic) -> thm) set_abs_goal = - : (goal -> void) g = - : (term -> void) STRIP_THOBS_THEN = - : (thm_tactic -> tactic) STRIP_THOBS_TAC = - : tactic new_abstract_parent = - : (string -> void) EXPAND_THOBS_TAC = - : (string -> tactic) instantiate_abstract_theorem = - : (string -> string -> (term # term) list -> proof) close_theory_orig = - : (void -> void) close_theory = - : (void -> void) new_theory_orig = - : (string -> void) new_theory = - : (string -> void) ((-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), -) : (((goal # tactic) -> thm) # (string -> tactic) # tactic # (thm_tactic -> tactic) # (thm -> type) # (void -> void) # (term -> void) # (string -> string -> thm -> (term # term) list -> thm) # (string -> string -> (term # term) list -> proof) # (string -> void) # (string -> (string # type) list -> thm) # (string -> void) # ((string # term) -> void) # ((string # term # tactic) -> thm) # (goal -> void)) ABS_TAC_PROOF = - : ((goal # tactic) -> thm) EXPAND_THOBS_TAC = - : (string -> tactic) STRIP_THOBS_TAC = - : tactic STRIP_THOBS_THEN = - : (thm_tactic -> tactic) abs_type_info = - : (thm -> type) close_theory = - : (void -> void) g = - : (term -> void) instantiate_abstract_definition = - : (string -> string -> thm -> (term # term) list -> thm) instantiate_abstract_theorem = - : (string -> string -> (term # term) list -> proof) new_abstract_parent = - : (string -> void) new_abstract_representation = - : (string -> (string # type) list -> thm) new_theory = - : (string -> void) new_theory_obligations = - : ((string # term) -> void) prove_abs_thm = - : ((string # term # tactic) -> thm) set_abs_goal = - : (goal -> void) Calling Lisp compiler File abs_theory compiled () : void Run time: 0.1s make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/abs_theory' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' cd theories; make all make[5]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' \ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `hrat.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s define_equivalence_type = - : (string -> thm -> (term # string # bool) list -> thm list -> thm list -> thm list) Run time: 0.0s File equiv loaded () : void Run time: 0.0s Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Run time: 0.0s Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Run time: 0.0s Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) Run time: 0.0s Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s UNSUCK_TAC = - : tactic Run time: 0.0s Intermediate theorems generated: 336 trat_1 = |- trat_1 = 0,0 Run time: 0.0s Intermediate theorems generated: 2 trat_inv = |- !x y. trat_inv(x,y) = y,x Run time: 0.0s Intermediate theorems generated: 2 trat_add = |- !x y x' y'. (x,y) trat_add (x',y') = PRE(((SUC x) * (SUC y')) + ((SUC x') * (SUC y))), PRE((SUC y) * (SUC y')) Run time: 0.0s Intermediate theorems generated: 2 trat_mul = |- !x y x' y'. (x,y) trat_mul (x',y') = PRE((SUC x) * (SUC x')),PRE((SUC y) * (SUC y')) Run time: 0.0s Intermediate theorems generated: 2 trat_sucint = |- (trat_sucint 0 = trat_1) /\ (!n. trat_sucint(SUC n) = (trat_sucint n) trat_add trat_1) Run time: 0.0s Intermediate theorems generated: 136 trat_eq = |- !x y x' y'. (x,y) trat_eq (x',y') = ((SUC x) * (SUC y') = (SUC x') * (SUC y)) Run time: 0.0s Intermediate theorems generated: 2 TRAT_EQ_REFL = |- !p. p trat_eq p Run time: 0.0s Intermediate theorems generated: 22 TRAT_EQ_SYM = |- !p q. p trat_eq q = q trat_eq p Run time: 0.0s Intermediate theorems generated: 37 Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Run time: 0.0s Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Run time: 0.0s Theorem MULT_SUC_EQ autoloading from theory `arithmetic` ... MULT_SUC_EQ = |- !p m n. (n * (SUC p) = m * (SUC p)) = (n = m) Run time: 0.0s TRAT_EQ_TRANS = |- !p q r. p trat_eq q /\ q trat_eq r ==> p trat_eq r Run time: 0.0s Intermediate theorems generated: 152 TRAT_EQ_AP = |- !p q. (p = q) ==> p trat_eq q Run time: 0.0s Intermediate theorems generated: 8 Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Run time: 0.0s TRAT_ADD_SYM_EQ = |- !h i. h trat_add i = i trat_add h Run time: 0.0s Intermediate theorems generated: 62 TRAT_MUL_SYM_EQ = |- !h i. h trat_mul i = i trat_mul h Run time: 0.0s Intermediate theorems generated: 58 TRAT_INV_WELLDEFINED = |- !p q. p trat_eq q ==> (trat_inv p) trat_eq (trat_inv q) Run time: 0.0s Intermediate theorems generated: 61 Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) Run time: 0.0s TRAT_ADD_WELLDEFINED = |- !p q r. p trat_eq q ==> (p trat_add r) trat_eq (q trat_add r) Run time: 0.0s Intermediate theorems generated: 297 TRAT_ADD_WELLDEFINED2 = |- !p1 p2 q1 q2. p1 trat_eq p2 /\ q1 trat_eq q2 ==> (p1 trat_add q1) trat_eq (p2 trat_add q2) Run time: 0.0s Intermediate theorems generated: 65 TRAT_MUL_WELLDEFINED = |- !p q r. p trat_eq q ==> (p trat_mul r) trat_eq (q trat_mul r) Run time: 0.0s Intermediate theorems generated: 207 TRAT_MUL_WELLDEFINED2 = |- !p1 p2 q1 q2. p1 trat_eq p2 /\ q1 trat_eq q2 ==> (p1 trat_mul q1) trat_eq (p2 trat_mul q2) Run time: 0.0s Intermediate theorems generated: 65 TRAT_ADD_SYM = |- !h i. (h trat_add i) trat_eq (i trat_add h) Run time: 0.0s Intermediate theorems generated: 15 Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Run time: 0.0s TRAT_ADD_ASSOC = |- !h i j. (h trat_add (i trat_add j)) trat_eq ((h trat_add i) trat_add j) Run time: 0.0s Intermediate theorems generated: 297 TRAT_MUL_SYM = |- !h i. (h trat_mul i) trat_eq (i trat_mul h) Run time: 0.0s Intermediate theorems generated: 15 TRAT_MUL_ASSOC = |- !h i j. (h trat_mul (i trat_mul j)) trat_eq ((h trat_mul i) trat_mul j) Run time: 0.0s Intermediate theorems generated: 189 Theorem LEFT_ADD_DISTRIB autoloading from theory `arithmetic` ... LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) Run time: 0.0s TRAT_LDISTRIB = |- !h i j. (h trat_mul (i trat_add j)) trat_eq ((h trat_mul i) trat_add (h trat_mul j)) Run time: 0.0s Intermediate theorems generated: 611 TRAT_MUL_LID = |- !h. (trat_1 trat_mul h) trat_eq h Run time: 0.0s Intermediate theorems generated: 127 TRAT_MUL_LINV = |- !h. ((trat_inv h) trat_mul h) trat_eq trat_1 Run time: 0.0s Intermediate theorems generated: 136 Theorem ADD_INV_0_EQ autoloading from theory `arithmetic` ... ADD_INV_0_EQ = |- !m n. (m + n = m) = (n = 0) Run time: 0.0s TRAT_NOZERO = |- !h i. ~(h trat_add i) trat_eq h Run time: 0.1s Intermediate theorems generated: 250 Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) Run time: 0.0s Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Run time: 0.0s Theorem LESS_LESS_CASES autoloading from theory `arithmetic` ... LESS_LESS_CASES = |- !m n. (m = n) \/ m < n \/ n < m Run time: 0.0s TRAT_ADD_TOTAL = |- !h i. h trat_eq i \/ (?d. h trat_eq (i trat_add d)) \/ (?d. i trat_eq (h trat_add d)) Run time: 0.0s Intermediate theorems generated: 599 TRAT_SUCINT_0 = |- !n. (trat_sucint n) trat_eq (n,0) Run time: 0.0s Intermediate theorems generated: 233 Theorem LESS_ADD_NONZERO autoloading from theory `arithmetic` ... LESS_ADD_NONZERO = |- !m n. ~(n = 0) ==> m < (m + n) Run time: 0.0s Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n Run time: 0.0s Theorem LESS_MONO_MULT autoloading from theory `arithmetic` ... LESS_MONO_MULT = |- !m n p. m <= n ==> (m * p) <= (n * p) Run time: 0.0s Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) Run time: 0.0s Theorem RIGHT_SUB_DISTRIB autoloading from theory `arithmetic` ... RIGHT_SUB_DISTRIB = |- !m n p. (m - n) * p = (m * p) - (n * p) Run time: 0.0s Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Run time: 0.0s Theorem SUB_EQ_0 autoloading from theory `arithmetic` ... SUB_EQ_0 = |- !m n. (m - n = 0) = m <= n Run time: 0.0s TRAT_ARCH = |- !h. ?n d. (trat_sucint n) trat_eq (h trat_add d) Run time: 0.0s Intermediate theorems generated: 395 TRAT_SUCINT = |- (trat_sucint 0) trat_eq trat_1 /\ (!n. (trat_sucint(SUC n)) trat_eq ((trat_sucint n) trat_add trat_1)) Run time: 0.0s Intermediate theorems generated: 37 TRAT_EQ_EQUIV = |- !p q. p trat_eq q = ($trat_eq p = $trat_eq q) Run time: 0.0s Intermediate theorems generated: 73 HRAT_ADD_SYM = |- !h i. h hrat_add i = i hrat_add h HRAT_ADD_ASSOC = |- !h i j. h hrat_add (i hrat_add j) = (h hrat_add i) hrat_add j HRAT_MUL_SYM = |- !h i. h hrat_mul i = i hrat_mul h HRAT_MUL_ASSOC = |- !h i j. h hrat_mul (i hrat_mul j) = (h hrat_mul i) hrat_mul j HRAT_LDISTRIB = |- !h i j. h hrat_mul (i hrat_add j) = (h hrat_mul i) hrat_add (h hrat_mul j) HRAT_MUL_LID = |- !h. hrat_1 hrat_mul h = h HRAT_MUL_LINV = |- !h. (hrat_inv h) hrat_mul h = hrat_1 HRAT_NOZERO = |- !h i. ~(h hrat_add i = h) HRAT_ADD_TOTAL = |- !h i. (h = i) \/ (?d. h = i hrat_add d) \/ (?d. i = h hrat_add d) HRAT_ARCH = |- !h. ?n d. hrat_sucint n = h hrat_add d HRAT_SUCINT = |- (hrat_sucint 0 = hrat_1) /\ (!n. hrat_sucint(SUC n) = (hrat_sucint n) hrat_add hrat_1) Run time: 0.0s Intermediate theorems generated: 6487 HRAT_ADD_SYM = |- !h i. h hrat_add i = i hrat_add h Run time: 0.0s Intermediate theorems generated: 5 HRAT_ADD_ASSOC = |- !h i j. h hrat_add (i hrat_add j) = (h hrat_add i) hrat_add j Run time: 0.0s Intermediate theorems generated: 7 HRAT_MUL_SYM = |- !h i. h hrat_mul i = i hrat_mul h Run time: 0.0s Intermediate theorems generated: 5 HRAT_MUL_ASSOC = |- !h i j. h hrat_mul (i hrat_mul j) = (h hrat_mul i) hrat_mul j Run time: 0.0s Intermediate theorems generated: 7 HRAT_LDISTRIB = |- !h i j. h hrat_mul (i hrat_add j) = (h hrat_mul i) hrat_add (h hrat_mul j) Run time: 0.0s Intermediate theorems generated: 7 HRAT_MUL_LID = |- !h. hrat_1 hrat_mul h = h Run time: 0.0s Intermediate theorems generated: 3 HRAT_MUL_LINV = |- !h. (hrat_inv h) hrat_mul h = hrat_1 Run time: 0.0s Intermediate theorems generated: 3 HRAT_NOZERO = |- !h i. ~(h hrat_add i = h) Run time: 0.0s Intermediate theorems generated: 5 HRAT_ADD_TOTAL = |- !h i. (h = i) \/ (?d. h = i hrat_add d) \/ (?d. i = h hrat_add d) Run time: 0.0s Intermediate theorems generated: 5 HRAT_ARCH = |- !h. ?n d. hrat_sucint n = h hrat_add d Run time: 0.0s Intermediate theorems generated: 3 HRAT_SUCINT = |- (hrat_sucint 0 = hrat_1) /\ (!n. hrat_sucint(SUC n) = (hrat_sucint n) hrat_add hrat_1) Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 File hrat.ml loaded () : void Run time: 0.1s Intermediate theorems generated: 11032 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `hreal.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory HRAT loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s () : void Run time: 0.0s hrat_lt = |- !x y. x hrat_lt y = (?d. y = x hrat_add d) Run time: 0.0s Intermediate theorems generated: 2 Theorem HRAT_NOZERO autoloading from theory `HRAT` ... HRAT_NOZERO = |- !h i. ~(h hrat_add i = h) Run time: 0.0s HRAT_LT_REFL = |- !x. ~x hrat_lt x Run time: 0.0s Intermediate theorems generated: 41 Theorem HRAT_ADD_ASSOC autoloading from theory `HRAT` ... HRAT_ADD_ASSOC = |- !h i j. h hrat_add (i hrat_add j) = (h hrat_add i) hrat_add j Run time: 0.0s HRAT_LT_TRANS = |- !x y z. x hrat_lt y /\ y hrat_lt z ==> x hrat_lt z Run time: 0.0s Intermediate theorems generated: 63 HRAT_LT_ANTISYM = |- !x y. ~(x hrat_lt y /\ y hrat_lt x) Run time: 0.0s Intermediate theorems generated: 24 Theorem HRAT_ADD_TOTAL autoloading from theory `HRAT` ... HRAT_ADD_TOTAL = |- !h i. (h = i) \/ (?d. h = i hrat_add d) \/ (?d. i = h hrat_add d) Run time: 0.0s HRAT_LT_TOTAL = |- !x y. (x = y) \/ x hrat_lt y \/ y hrat_lt x Run time: 0.0s Intermediate theorems generated: 49 Theorem HRAT_MUL_LID autoloading from theory `HRAT` ... HRAT_MUL_LID = |- !h. hrat_1 hrat_mul h = h Run time: 0.0s Theorem HRAT_MUL_SYM autoloading from theory `HRAT` ... HRAT_MUL_SYM = |- !h i. h hrat_mul i = i hrat_mul h Run time: 0.0s HRAT_MUL_RID = |- !x. x hrat_mul hrat_1 = x Run time: 0.0s Intermediate theorems generated: 14 Theorem HRAT_MUL_LINV autoloading from theory `HRAT` ... HRAT_MUL_LINV = |- !h. (hrat_inv h) hrat_mul h = hrat_1 Run time: 0.0s HRAT_MUL_RINV = |- !x. x hrat_mul (hrat_inv x) = hrat_1 Run time: 0.0s Intermediate theorems generated: 14 Theorem HRAT_LDISTRIB autoloading from theory `HRAT` ... HRAT_LDISTRIB = |- !h i j. h hrat_mul (i hrat_add j) = (h hrat_mul i) hrat_add (h hrat_mul j) Run time: 0.0s HRAT_RDISTRIB = |- !x y z. (x hrat_add y) hrat_mul z = (x hrat_mul z) hrat_add (y hrat_mul z) Run time: 0.0s Intermediate theorems generated: 22 HRAT_LT_ADDL = |- !x y. x hrat_lt (x hrat_add y) Run time: 0.0s Intermediate theorems generated: 13 Theorem HRAT_ADD_SYM autoloading from theory `HRAT` ... HRAT_ADD_SYM = |- !h i. h hrat_add i = i hrat_add h Run time: 0.0s HRAT_LT_ADDR = |- !x y. y hrat_lt (x hrat_add y) Run time: 0.0s Intermediate theorems generated: 19 HRAT_LT_GT = |- !x y. x hrat_lt y ==> ~y hrat_lt x Run time: 0.0s Intermediate theorems generated: 78 HRAT_LT_NE = |- !x y. x hrat_lt y ==> ~(x = y) Run time: 0.0s Intermediate theorems generated: 33 HRAT_EQ_LADD = |- !x y z. (x hrat_add y = x hrat_add z) = (y = z) Run time: 0.0s Intermediate theorems generated: 126 Theorem HRAT_MUL_ASSOC autoloading from theory `HRAT` ... HRAT_MUL_ASSOC = |- !h i j. h hrat_mul (i hrat_mul j) = (h hrat_mul i) hrat_mul j Run time: 0.0s HRAT_EQ_LMUL = |- !x y z. (x hrat_mul y = x hrat_mul z) = (y = z) Run time: 0.0s Intermediate theorems generated: 50 HRAT_LT_ADD2 = |- !u v x y. u hrat_lt x /\ v hrat_lt y ==> (u hrat_add v) hrat_lt (x hrat_add y) Run time: 0.0s Intermediate theorems generated: 79 HRAT_LT_LADD = |- !x y z. (z hrat_add x) hrat_lt (z hrat_add y) = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 77 HRAT_LT_RADD = |- !x y z. (x hrat_add z) hrat_lt (y hrat_add z) = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 21 HRAT_LT_MUL2 = |- !u v x y. u hrat_lt x /\ v hrat_lt y ==> (u hrat_mul v) hrat_lt (x hrat_mul y) Run time: 0.0s Intermediate theorems generated: 100 HRAT_LT_LMUL = |- !x y z. (z hrat_mul x) hrat_lt (z hrat_mul y) = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 149 HRAT_LT_RMUL = |- !x y z. (x hrat_mul z) hrat_lt (y hrat_mul z) = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 21 HRAT_LT_LMUL1 = |- !x y. (x hrat_mul y) hrat_lt y = x hrat_lt hrat_1 Run time: 0.0s Intermediate theorems generated: 21 HRAT_LT_RMUL1 = |- !x y. (x hrat_mul y) hrat_lt x = y hrat_lt hrat_1 Run time: 0.0s Intermediate theorems generated: 18 HRAT_GT_LMUL1 = |- !x y. y hrat_lt (x hrat_mul y) = hrat_1 hrat_lt x Run time: 0.0s Intermediate theorems generated: 22 HRAT_LT_L1 = |- !x y. ((hrat_inv x) hrat_mul y) hrat_lt hrat_1 = y hrat_lt x Run time: 0.0s Intermediate theorems generated: 10 HRAT_LT_R1 = |- !x y. (x hrat_mul (hrat_inv y)) hrat_lt hrat_1 = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 10 HRAT_GT_L1 = |- !x y. hrat_1 hrat_lt ((hrat_inv x) hrat_mul y) = x hrat_lt y Run time: 0.0s Intermediate theorems generated: 10 HRAT_INV_MUL = |- !x y. hrat_inv(x hrat_mul y) = (hrat_inv x) hrat_mul (hrat_inv y) Run time: 0.0s Intermediate theorems generated: 85 HRAT_UP = |- !x. ?y. x hrat_lt y Run time: 0.0s Intermediate theorems generated: 13 HRAT_DOWN = |- !x. ?y. y hrat_lt x Run time: 0.0s Intermediate theorems generated: 45 HRAT_DOWN2 = |- !x y. ?z. z hrat_lt x /\ z hrat_lt y Run time: 0.0s Intermediate theorems generated: 154 HRAT_MEAN = |- !x y. x hrat_lt y ==> (?z. x hrat_lt z /\ z hrat_lt y) Run time: 0.0s Intermediate theorems generated: 133 isacut = |- !C. isacut C = (?x. C x) /\ (?x. ~C x) /\ (!x y. C x /\ y hrat_lt x ==> C y) /\ (!x. C x ==> (?y. C y /\ x hrat_lt y)) Run time: 0.0s Intermediate theorems generated: 2 cut_of_hrat = |- !x. cut_of_hrat x = (\y. y hrat_lt x) Run time: 0.0s Intermediate theorems generated: 2 ISACUT_HRAT = |- !h. isacut(cut_of_hrat h) Run time: 0.0s Intermediate theorems generated: 221 hreal_tydef = |- ?rep. TYPE_DEFINITION isacut rep Run time: 0.0s Intermediate theorems generated: 4 hreal_tybij = |- (!a. hreal(cut a) = a) /\ (!r. isacut r = (cut(hreal r) = r)) Run time: 0.0s Intermediate theorems generated: 4 EQUAL_CUTS = |- !X Y. (cut X = cut Y) ==> (X = Y) Run time: 0.0s Intermediate theorems generated: 24 CUT_ISACUT = |- !X. isacut(cut X) Run time: 0.0s Intermediate theorems generated: 26 CUT_PROPERTIES = |- (?x. cut X x) /\ (?x. ~cut X x) /\ (!x y. cut X x /\ y hrat_lt x ==> cut X y) /\ (!x. cut X x ==> (?y. cut X y /\ x hrat_lt y)) Run time: 0.1s Intermediate theorems generated: 3 CUT_NONEMPTY = |- !X. ?x. cut X x Run time: 0.0s Intermediate theorems generated: 37 CUT_BOUNDED = |- !X. ?x. ~cut X x Run time: 0.0s Intermediate theorems generated: 37 CUT_DOWN = |- !X x y. cut X x /\ y hrat_lt x ==> cut X y Run time: 0.0s Intermediate theorems generated: 49 CUT_UP = |- !X x. cut X x ==> (?y. cut X y /\ x hrat_lt y) Run time: 0.0s Intermediate theorems generated: 42 CUT_UBOUND = |- !X x y. ~cut X x /\ x hrat_lt y ==> ~cut X y Run time: 0.0s Intermediate theorems generated: 102 CUT_STRADDLE = |- !X x y. cut X x /\ ~cut X y ==> x hrat_lt y Run time: 0.0s Intermediate theorems generated: 137 Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Run time: 0.0s Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 Run time: 0.0s Theorem HRAT_SUCINT autoloading from theory `HRAT` ... HRAT_SUCINT = |- (hrat_sucint 0 = hrat_1) /\ (!n. hrat_sucint(SUC n) = (hrat_sucint n) hrat_add hrat_1) Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s Theorem HRAT_ARCH autoloading from theory `HRAT` ... HRAT_ARCH = |- !h. ?n d. hrat_sucint n = h hrat_add d Run time: 0.0s CUT_NEARTOP_ADD = |- !X e. ?x. cut X x /\ ~cut X(x hrat_add e) Run time: 0.0s Intermediate theorems generated: 303 CUT_NEARTOP_MUL = |- !X u. hrat_1 hrat_lt u ==> (?x. cut X x /\ ~cut X(u hrat_mul x)) Run time: 0.0s Intermediate theorems generated: 234 hreal_1 = |- hreal_1 = hreal(cut_of_hrat hrat_1) Run time: 0.0s Intermediate theorems generated: 2 hreal_add = |- !X Y. X hreal_add Y = hreal(\w. ?x y. (w = x hrat_add y) /\ cut X x /\ cut Y y) Run time: 0.0s Intermediate theorems generated: 2 hreal_mul = |- !X Y. X hreal_mul Y = hreal(\w. ?x y. (w = x hrat_mul y) /\ cut X x /\ cut Y y) Run time: 0.0s Intermediate theorems generated: 2 hreal_inv = |- !X. hreal_inv X = hreal (\w. ?d. d hrat_lt hrat_1 /\ (!x. cut X x ==> (w hrat_mul x) hrat_lt d)) Run time: 0.0s Intermediate theorems generated: 2 hreal_sup = |- !P. hreal_sup P = hreal(\w. ?X. P X /\ cut X w) Run time: 0.0s Intermediate theorems generated: 2 hreal_lt = |- !X Y. X hreal_lt Y = ~(X = Y) /\ (!x. cut X x ==> cut Y x) Run time: 0.0s Intermediate theorems generated: 2 HREAL_INV_ISACUT = |- !X. isacut (\w. ?d. d hrat_lt hrat_1 /\ (!x. cut X x ==> (w hrat_mul x) hrat_lt d)) Run time: 0.0s Intermediate theorems generated: 502 HREAL_ADD_ISACUT = |- !X Y. isacut(\w. ?x y. (w = x hrat_add y) /\ cut X x /\ cut Y y) Run time: 0.0s Intermediate theorems generated: 521 HREAL_MUL_ISACUT = |- !X Y. isacut(\w. ?x y. (w = x hrat_mul y) /\ cut X x /\ cut Y y) Run time: 0.0s Intermediate theorems generated: 537 HREAL_ADD_SYM = |- !X Y. X hreal_add Y = Y hreal_add X Run time: 0.0s Intermediate theorems generated: 124 HREAL_MUL_SYM = |- !X Y. X hreal_mul Y = Y hreal_mul X Run time: 0.0s Intermediate theorems generated: 124 HREAL_ADD_ASSOC = |- !X Y Z. X hreal_add (Y hreal_add Z) = (X hreal_add Y) hreal_add Z Run time: 0.0s Intermediate theorems generated: 490 HREAL_MUL_ASSOC = |- !X Y Z. X hreal_mul (Y hreal_mul Z) = (X hreal_mul Y) hreal_mul Z Run time: 0.0s Intermediate theorems generated: 490 HREAL_LDISTRIB = |- !X Y Z. X hreal_mul (Y hreal_add Z) = (X hreal_mul Y) hreal_add (X hreal_mul Z) Run time: 0.0s Intermediate theorems generated: 935 HREAL_MUL_LID = |- !X. hreal_1 hreal_mul X = X Run time: 0.0s Intermediate theorems generated: 278 HREAL_MUL_LINV = |- !X. (hreal_inv X) hreal_mul X = hreal_1 Run time: 0.0s Intermediate theorems generated: 485 HREAL_NOZERO = |- !X Y. ~(X hreal_add Y = X) Run time: 0.1s Intermediate theorems generated: 155 hreal_sub = |- !Y X. Y hreal_sub X = hreal(\w. ?x. ~cut X x /\ cut Y(x hrat_add w)) Run time: 0.0s Intermediate theorems generated: 2 HREAL_LT_LEMMA = |- !X Y. X hreal_lt Y ==> (?x. ~cut X x /\ cut Y x) Run time: 0.0s Intermediate theorems generated: 210 HREAL_SUB_ISACUT = |- !X Y. X hreal_lt Y ==> isacut(\w. ?x. ~cut X x /\ cut Y(x hrat_add w)) Run time: 0.0s Intermediate theorems generated: 400 HREAL_SUB_ADD = |- !X Y. X hreal_lt Y ==> ((Y hreal_sub X) hreal_add X = Y) Run time: 0.0s Intermediate theorems generated: 837 HREAL_LT_TOTAL = |- !X Y. (X = Y) \/ X hreal_lt Y \/ Y hreal_lt X Run time: 0.0s Intermediate theorems generated: 492 HREAL_LT = |- !X Y. X hreal_lt Y = (?D. Y = X hreal_add D) Run time: 0.0s Intermediate theorems generated: 196 HREAL_ADD_TOTAL = |- !X Y. (X = Y) \/ (?D. Y = X hreal_add D) \/ (?D. X = Y hreal_add D) Run time: 0.0s Intermediate theorems generated: 19 HREAL_SUP_ISACUT = |- !P. (?X. P X) /\ (?Y. !X. P X ==> X hreal_lt Y) ==> isacut(\w. ?X. P X /\ cut X w) Run time: 0.0s Intermediate theorems generated: 349 HREAL_SUP = |- !P. (?X. P X) /\ (?Y. !X. P X ==> X hreal_lt Y) ==> (!Y. (?X. P X /\ Y hreal_lt X) = Y hreal_lt (hreal_sup P)) Run time: 0.0s Intermediate theorems generated: 553 () : void Run time: 0.0s Intermediate theorems generated: 1 File hreal.ml loaded () : void Run time: 0.2s Intermediate theorems generated: 10456 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `realax.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory HREAL loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 12 () : void Run time: 0.0s define_equivalence_type = - : (string -> thm -> (term # string # bool) list -> thm list -> thm list -> thm list) Run time: 0.0s File equiv loaded () : void Run time: 0.0s Theorem HREAL_LDISTRIB autoloading from theory `HREAL` ... HREAL_LDISTRIB = |- !X Y Z. X hreal_mul (Y hreal_add Z) = (X hreal_mul Y) hreal_add (X hreal_mul Z) Run time: 0.0s Theorem HREAL_MUL_SYM autoloading from theory `HREAL` ... HREAL_MUL_SYM = |- !X Y. X hreal_mul Y = Y hreal_mul X Run time: 0.0s HREAL_RDISTRIB = |- !x y z. (x hreal_add y) hreal_mul z = (x hreal_mul z) hreal_add (y hreal_mul z) Run time: 0.0s Intermediate theorems generated: 22 Theorem HREAL_NOZERO autoloading from theory `HREAL` ... HREAL_NOZERO = |- !X Y. ~(X hreal_add Y = X) Run time: 0.0s HREAL_EQ_ADDR = |- !x y. ~(x hreal_add y = x) Run time: 0.0s Intermediate theorems generated: 5 HREAL_EQ_ADDL = |- !x y. ~(x = x hreal_add y) Run time: 0.0s Intermediate theorems generated: 11 Theorem HREAL_ADD_ASSOC autoloading from theory `HREAL` ... HREAL_ADD_ASSOC = |- !X Y Z. X hreal_add (Y hreal_add Z) = (X hreal_add Y) hreal_add Z Run time: 0.0s Theorem HREAL_ADD_TOTAL autoloading from theory `HREAL` ... HREAL_ADD_TOTAL = |- !X Y. (X = Y) \/ (?D. Y = X hreal_add D) \/ (?D. X = Y hreal_add D) Run time: 0.0s HREAL_EQ_LADD = |- !x y z. (x hreal_add y = x hreal_add z) = (y = z) Run time: 0.0s Intermediate theorems generated: 94 Theorem HREAL_LT autoloading from theory `HREAL` ... HREAL_LT = |- !X Y. X hreal_lt Y = (?D. Y = X hreal_add D) Run time: 0.0s HREAL_LT_REFL = |- !x. ~x hreal_lt x Run time: 0.0s Intermediate theorems generated: 33 HREAL_LT_ADDL = |- !x y. x hreal_lt (x hreal_add y) Run time: 0.0s Intermediate theorems generated: 13 HREAL_LT_NE = |- !x y. x hreal_lt y ==> ~(x = y) Run time: 0.0s Intermediate theorems generated: 23 HREAL_LT_ADDR = |- !x y. ~(x hreal_add y) hreal_lt x Run time: 0.0s Intermediate theorems generated: 56 HREAL_LT_GT = |- !x y. x hreal_lt y ==> ~y hreal_lt x Run time: 0.0s Intermediate theorems generated: 66 Theorem HREAL_ADD_SYM autoloading from theory `HREAL` ... HREAL_ADD_SYM = |- !X Y. X hreal_add Y = Y hreal_add X Run time: 0.0s HREAL_LT_ADD2 = |- !x1 x2 y1 y2. x1 hreal_lt y1 /\ x2 hreal_lt y2 ==> (x1 hreal_add x2) hreal_lt (y1 hreal_add y2) Run time: 0.0s Intermediate theorems generated: 79 HREAL_LT_LADD = |- !x y z. (x hreal_add y) hreal_lt (x hreal_add z) = y hreal_lt z Run time: 0.0s Intermediate theorems generated: 77 CANCEL_CONV = - : ((thm # thm # thm list) -> conv) Run time: 0.0s CANCEL_TAC = - : tactic Run time: 0.0s Intermediate theorems generated: 106 treal_0 = |- treal_0 = hreal_1,hreal_1 Run time: 0.0s Intermediate theorems generated: 2 treal_1 = |- treal_1 = hreal_1 hreal_add hreal_1,hreal_1 Run time: 0.0s Intermediate theorems generated: 2 treal_neg = |- !x y. treal_neg(x,y) = y,x Run time: 0.0s Intermediate theorems generated: 2 treal_add = |- !x1 y1 x2 y2. (x1,y1) treal_add (x2,y2) = x1 hreal_add x2,y1 hreal_add y2 Run time: 0.0s Intermediate theorems generated: 2 treal_mul = |- !x1 y1 x2 y2. (x1,y1) treal_mul (x2,y2) = (x1 hreal_mul x2) hreal_add (y1 hreal_mul y2), (x1 hreal_mul y2) hreal_add (y1 hreal_mul x2) Run time: 0.0s Intermediate theorems generated: 2 treal_lt = |- !x1 y1 x2 y2. (x1,y1) treal_lt (x2,y2) = (x1 hreal_add y2) hreal_lt (x2 hreal_add y1) Run time: 0.0s Intermediate theorems generated: 2 treal_inv = |- !x y. treal_inv(x,y) = ((x = y) => treal_0 | (y hreal_lt x => ((hreal_inv(x hreal_sub y)) hreal_add hreal_1,hreal_1) | (hreal_1,(hreal_inv(y hreal_sub x)) hreal_add hreal_1))) Run time: 0.0s Intermediate theorems generated: 2 treal_eq = |- !x1 y1 x2 y2. (x1,y1) treal_eq (x2,y2) = (x1 hreal_add y2 = x2 hreal_add y1) Run time: 0.0s Intermediate theorems generated: 2 TREAL_EQ_REFL = |- !x. x treal_eq x Run time: 0.0s Intermediate theorems generated: 22 TREAL_EQ_SYM = |- !x y. x treal_eq y = y treal_eq x Run time: 0.0s Intermediate theorems generated: 37 TREAL_EQ_TRANS = |- !x y z. x treal_eq y /\ y treal_eq z ==> x treal_eq z Run time: 0.0s Intermediate theorems generated: 1147 TREAL_EQ_EQUIV = |- !p q. p treal_eq q = ($treal_eq p = $treal_eq q) Run time: 0.0s Intermediate theorems generated: 73 TREAL_EQ_AP = |- !p q. (p = q) ==> p treal_eq q Run time: 0.0s Intermediate theorems generated: 8 TREAL_10 = |- ~treal_1 treal_eq treal_0 Run time: 0.0s Intermediate theorems generated: 32 TREAL_ADD_SYM = |- !x y. x treal_add y = y treal_add x Run time: 0.0s Intermediate theorems generated: 44 TREAL_MUL_SYM = |- !x y. x treal_mul y = y treal_mul x Run time: 0.0s Intermediate theorems generated: 75 TREAL_ADD_ASSOC = |- !x y z. x treal_add (y treal_add z) = (x treal_add y) treal_add z Run time: 0.0s Intermediate theorems generated: 63 Theorem HREAL_MUL_ASSOC autoloading from theory `HREAL` ... HREAL_MUL_ASSOC = |- !X Y Z. X hreal_mul (Y hreal_mul Z) = (X hreal_mul Y) hreal_mul Z Run time: 0.0s TREAL_MUL_ASSOC = |- !x y z. x treal_mul (y treal_mul z) = (x treal_mul y) treal_mul z Run time: 0.1s Intermediate theorems generated: 388 TREAL_LDISTRIB = |- !x y z. x treal_mul (y treal_add z) = (x treal_mul y) treal_add (x treal_mul z) Run time: 0.0s Intermediate theorems generated: 345 TREAL_ADD_LID = |- !x. (treal_0 treal_add x) treal_eq x Run time: 0.0s Intermediate theorems generated: 158 Theorem HREAL_MUL_LID autoloading from theory `HREAL` ... HREAL_MUL_LID = |- !X. hreal_1 hreal_mul X = X Run time: 0.0s TREAL_MUL_LID = |- !x. (treal_1 treal_mul x) treal_eq x Run time: 0.0s Intermediate theorems generated: 217 TREAL_ADD_LINV = |- !x. ((treal_neg x) treal_add x) treal_eq treal_0 Run time: 0.0s Intermediate theorems generated: 169 Theorem HREAL_SUB_ADD autoloading from theory `HREAL` ... HREAL_SUB_ADD = |- !X Y. X hreal_lt Y ==> ((Y hreal_sub X) hreal_add X = Y) Run time: 0.0s Theorem HREAL_MUL_LINV autoloading from theory `HREAL` ... HREAL_MUL_LINV = |- !X. (hreal_inv X) hreal_mul X = hreal_1 Run time: 0.0s Theorem HREAL_LT_TOTAL autoloading from theory `HREAL` ... HREAL_LT_TOTAL = |- !X Y. (X = Y) \/ X hreal_lt Y \/ Y hreal_lt X Run time: 0.0s TREAL_MUL_LINV = |- !x. ~x treal_eq treal_0 ==> ((treal_inv x) treal_mul x) treal_eq treal_1 Run time: 0.0s Intermediate theorems generated: 3953 TREAL_LT_TOTAL = |- !x y. x treal_eq y \/ x treal_lt y \/ y treal_lt x Run time: 0.0s Intermediate theorems generated: 48 TREAL_LT_REFL = |- !x. ~x treal_lt x Run time: 0.0s Intermediate theorems generated: 24 TREAL_LT_TRANS = |- !x y z. x treal_lt y /\ y treal_lt z ==> x treal_lt z Run time: 0.0s Intermediate theorems generated: 1063 TREAL_LT_ADD = |- !x y z. y treal_lt z ==> (x treal_add y) treal_lt (x treal_add z) Run time: 0.0s Intermediate theorems generated: 1045 TREAL_LT_MUL = |- !x y. treal_0 treal_lt x /\ treal_0 treal_lt y ==> treal_0 treal_lt (x treal_mul y) Run time: 0.0s Intermediate theorems generated: 866 treal_of_hreal = |- !x. treal_of_hreal x = x hreal_add hreal_1,hreal_1 Run time: 0.0s Intermediate theorems generated: 2 hreal_of_treal = |- !x y. hreal_of_treal(x,y) = (@d. x = y hreal_add d) Run time: 0.0s Intermediate theorems generated: 2 TREAL_BIJ = |- (!h. hreal_of_treal(treal_of_hreal h) = h) /\ (!r. treal_0 treal_lt r = (treal_of_hreal(hreal_of_treal r)) treal_eq r) Run time: 0.0s Intermediate theorems generated: 986 TREAL_ISO = |- !h i. h hreal_lt i ==> (treal_of_hreal h) treal_lt (treal_of_hreal i) Run time: 0.0s Intermediate theorems generated: 450 TREAL_BIJ_WELLDEF = |- !h i. h treal_eq i ==> (hreal_of_treal h = hreal_of_treal i) Run time: 0.0s Intermediate theorems generated: 1446 TREAL_NEG_WELLDEF = |- !x1 x2. x1 treal_eq x2 ==> (treal_neg x1) treal_eq (treal_neg x2) Run time: 0.0s Intermediate theorems generated: 58 TREAL_ADD_WELLDEFR = |- !x1 x2 y. x1 treal_eq x2 ==> (x1 treal_add y) treal_eq (x2 treal_add y) Run time: 0.0s Intermediate theorems generated: 1044 TREAL_ADD_WELLDEF = |- !x1 x2 y1 y2. x1 treal_eq x2 /\ y1 treal_eq y2 ==> (x1 treal_add y1) treal_eq (x2 treal_add y2) Run time: 0.0s Intermediate theorems generated: 65 TREAL_MUL_WELLDEFR = |- !x1 x2 y. x1 treal_eq x2 ==> (x1 treal_mul y) treal_eq (x2 treal_mul y) Run time: 0.0s Intermediate theorems generated: 183 TREAL_MUL_WELLDEF = |- !x1 x2 y1 y2. x1 treal_eq x2 /\ y1 treal_eq y2 ==> (x1 treal_mul y1) treal_eq (x2 treal_mul y2) Run time: 0.0s Intermediate theorems generated: 65 TREAL_LT_WELLDEFR = |- !x1 x2 y. x1 treal_eq x2 ==> (x1 treal_lt y = x2 treal_lt y) Run time: 0.0s Intermediate theorems generated: 519 TREAL_LT_WELLDEFL = |- !x y1 y2. y1 treal_eq y2 ==> (x treal_lt y1 = x treal_lt y2) Run time: 0.0s Intermediate theorems generated: 612 TREAL_LT_WELLDEF = |- !x1 x2 y1 y2. x1 treal_eq x2 /\ y1 treal_eq y2 ==> (x1 treal_lt y1 = x2 treal_lt y2) Run time: 0.0s Intermediate theorems generated: 60 TREAL_INV_WELLDEF = |- !x1 x2. x1 treal_eq x2 ==> (treal_inv x1) treal_eq (treal_inv x2) Run time: 0.0s Intermediate theorems generated: 2545 REAL_10 = |- ~(r1 = r0) REAL_ADD_SYM = |- !x y. x real_add y = y real_add x REAL_MUL_SYM = |- !x y. x real_mul y = y real_mul x REAL_ADD_ASSOC = |- !x y z. x real_add (y real_add z) = (x real_add y) real_add z REAL_MUL_ASSOC = |- !x y z. x real_mul (y real_mul z) = (x real_mul y) real_mul z REAL_LDISTRIB = |- !x y z. x real_mul (y real_add z) = (x real_mul y) real_add (x real_mul z) REAL_ADD_LID = |- !x. r0 real_add x = x REAL_MUL_LID = |- !x. r1 real_mul x = x REAL_ADD_LINV = |- !x. (real_neg x) real_add x = r0 REAL_MUL_LINV = |- !x. ~(x = r0) ==> ((real_inv x) real_mul x = r1) REAL_LT_TOTAL = |- !x y. (x = y) \/ x real_lt y \/ y real_lt x REAL_LT_REFL = |- !x. ~x real_lt x REAL_LT_TRANS = |- !x y z. x real_lt y /\ y real_lt z ==> x real_lt z REAL_LT_IADD = |- !x y z. y real_lt z ==> (x real_add y) real_lt (x real_add z) REAL_LT_MUL = |- !x y. r0 real_lt x /\ r0 real_lt y ==> r0 real_lt (x real_mul y) REAL_BIJ = |- (!h. hreal_of_real(real_of_hreal h) = h) /\ (!r. r0 real_lt r = (real_of_hreal(hreal_of_real r) = r)) REAL_ISO = |- !h i. h hreal_lt i ==> (real_of_hreal h) real_lt (real_of_hreal i) Run time: 0.0s Intermediate theorems generated: 7766 REAL_ISO_EQ = |- !h i. h hreal_lt i = (real_of_hreal h) real_lt (real_of_hreal i) Run time: 0.0s Intermediate theorems generated: 98 REAL_POS = |- !X. r0 real_lt (real_of_hreal X) Run time: 0.0s Intermediate theorems generated: 20 SUP_ALLPOS_LEMMA1 = |- (!x. P x ==> r0 real_lt x) ==> ((?x. P x /\ y real_lt x) = (?X. P(real_of_hreal X) /\ y real_lt (real_of_hreal X))) Run time: 0.0s Intermediate theorems generated: 68 SUP_ALLPOS_LEMMA2 = |- P(real_of_hreal X) = (\h. P(real_of_hreal h))X Run time: 0.0s Intermediate theorems generated: 5 SUP_ALLPOS_LEMMA3 = |- (!x. P x ==> r0 real_lt x) /\ (?x. P x) /\ (?z. !x. P x ==> x real_lt z) ==> (?X. (\h. P(real_of_hreal h))X) /\ (?Y. !X. (\h. P(real_of_hreal h))X ==> X hreal_lt Y) Run time: 0.0s Intermediate theorems generated: 135 SUP_ALLPOS_LEMMA4 = |- !y. ~r0 real_lt y ==> (!x. y real_lt (real_of_hreal x)) Run time: 0.0s Intermediate theorems generated: 75 Theorem HREAL_SUP autoloading from theory `HREAL` ... HREAL_SUP = |- !P. (?X. P X) /\ (?Y. !X. P X ==> X hreal_lt Y) ==> (!Y. (?X. P X /\ Y hreal_lt X) = Y hreal_lt (hreal_sup P)) Run time: 0.0s REAL_SUP_ALLPOS = |- !P. (!x. P x ==> r0 real_lt x) /\ (?x. P x) /\ (?z. !x. P x ==> x real_lt z) ==> (?s. !y. (?x. P x /\ y real_lt x) = y real_lt s) Run time: 0.1s Intermediate theorems generated: 199 [|- ~(r1 = r0); |- !x y. x real_add y = y real_add x; |- !x y. x real_mul y = y real_mul x; |- !x y z. x real_add (y real_add z) = (x real_add y) real_add z; |- !x y z. x real_mul (y real_mul z) = (x real_mul y) real_mul z; |- !x y z. x real_mul (y real_add z) = (x real_mul y) real_add (x real_mul z); |- !x. r0 real_add x = x; |- !x. r1 real_mul x = x; |- !x. (real_neg x) real_add x = r0; |- !x. ~(x = r0) ==> ((real_inv x) real_mul x = r1); |- !x y. (x = y) \/ x real_lt y \/ y real_lt x; |- !x. ~x real_lt x; |- !x y z. x real_lt y /\ y real_lt z ==> x real_lt z; |- !x y z. y real_lt z ==> (x real_add y) real_lt (x real_add z); |- !x y. r0 real_lt x /\ r0 real_lt y ==> r0 real_lt (x real_mul y)] : thm list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 File realax.ml loaded () : void Run time: 0.3s Intermediate theorems generated: 26795 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `real.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory REALAX loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s () : void Run time: 0.0s real_sub = |- !x y. x real_sub y = x real_add (real_neg y) Run time: 0.0s Intermediate theorems generated: 2 real_le = |- !x y. x real_le y = ~y real_lt x Run time: 0.0s Intermediate theorems generated: 2 real_gt = |- !x y. x real_gt y = y real_lt x Run time: 0.0s Intermediate theorems generated: 2 real_ge = |- !x y. x real_ge y = y real_le x Run time: 0.0s Intermediate theorems generated: 2 real_div = |- !x y. x / y = x real_mul (real_inv y) Run time: 0.0s Intermediate theorems generated: 2 real_of_num = |- (real_of_num 0 = r0) /\ (!n. real_of_num(SUC n) = (real_of_num n) real_add r1) Run time: 0.0s Intermediate theorems generated: 136 REAL_0 = |- r0 = real_of_num 0 Run time: 0.0s Intermediate theorems generated: 11 REAL_1 = |- r1 = real_of_num 1 Run time: 0.0s Intermediate theorems generated: 23 () : void Run time: 0.0s [] : (string # string) list Run time: 0.0s gonk = - : (string list -> thm) Run time: 0.0s reeducate = - : (string -> void) Run time: 0.0s () : void Run time: 0.0s REAL_10 = |- ~(& 1 = & 0) Run time: 0.0s Intermediate theorems generated: 4 REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Intermediate theorems generated: 2 REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Intermediate theorems generated: 2 REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Intermediate theorems generated: 2 REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Intermediate theorems generated: 2 REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Intermediate theorems generated: 7 REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.0s Intermediate theorems generated: 7 REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Intermediate theorems generated: 4 REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s Intermediate theorems generated: 8 REAL_LDISTRIB = |- !x y z. x * (y + z) = (x * y) + (x * z) Run time: 0.0s Intermediate theorems generated: 2 REAL_LT_TOTAL = |- !x y. (x = y) \/ x < y \/ y < x Run time: 0.0s Intermediate theorems generated: 2 REAL_LT_REFL = |- !x. ~x < x Run time: 0.0s Intermediate theorems generated: 2 REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Intermediate theorems generated: 2 REAL_LT_IADD = |- !x y z. y < z ==> (x + y) < (x + z) Run time: 0.0s Intermediate theorems generated: 2 REAL_LT_MUL = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x * y) Run time: 0.0s Intermediate theorems generated: 15 REAL_SUP_ALLPOS = |- !P. (!x. P x ==> (& 0) < x) /\ (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (?s. !y. (?x. P x /\ y < x) = y < s) Run time: 0.0s Intermediate theorems generated: 12 REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Intermediate theorems generated: 14 REAL_ADD_RINV = |- !x. x + (-- x) = & 0 Run time: 0.0s Intermediate theorems generated: 14 REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Intermediate theorems generated: 14 REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Intermediate theorems generated: 15 REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Intermediate theorems generated: 22 REAL_EQ_LADD = |- !x y z. (x + y = x + z) = (y = z) Run time: 0.0s Intermediate theorems generated: 50 REAL_EQ_RADD = |- !x y z. (x + z = y + z) = (x = y) Run time: 0.0s Intermediate theorems generated: 21 REAL_ADD_LID_UNIQ = |- !x y. (x + y = y) = (x = & 0) Run time: 0.0s Intermediate theorems generated: 21 REAL_ADD_RID_UNIQ = |- !x y. (x + y = x) = (y = & 0) Run time: 0.0s Intermediate theorems generated: 18 REAL_LNEG_UNIQ = |- !x y. (x + y = & 0) = (x = -- y) Run time: 0.0s Intermediate theorems generated: 10 REAL_RNEG_UNIQ = |- !x y. (x + y = & 0) = (y = -- x) Run time: 0.0s Intermediate theorems generated: 18 REAL_NEG_ADD = |- !x y. --(x + y) = (-- x) + (-- y) Run time: 0.0s Intermediate theorems generated: 101 REAL_MUL_LZERO = |- !x. (& 0) * x = & 0 Run time: 0.0s Intermediate theorems generated: 40 REAL_MUL_RZERO = |- !x. x * (& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 14 REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Intermediate theorems generated: 62 REAL_NEG_RMUL = |- !x y. --(x * y) = x * (-- y) Run time: 0.0s Intermediate theorems generated: 18 REAL_NEGNEG = |- !x. --(-- x) = x Run time: 0.0s Intermediate theorems generated: 33 REAL_NEG_MUL2 = |- !x y. (-- x) * (-- y) = x * y Run time: 0.0s Intermediate theorems generated: 56 REAL_ENTIRE = |- !x y. (x * y = & 0) = (x = & 0) \/ (y = & 0) Run time: 0.0s Intermediate theorems generated: 116 REAL_LT_LADD = |- !x y z. (x + y) < (x + z) = y < z Run time: 0.0s Intermediate theorems generated: 54 REAL_LT_RADD = |- !x y z. (x + z) < (y + z) = x < y Run time: 0.0s Intermediate theorems generated: 21 REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s Intermediate theorems generated: 15 REAL_LT_ANTISYM = |- !x y. ~(x < y /\ y < x) Run time: 0.0s Intermediate theorems generated: 24 REAL_LT_GT = |- !x y. x < y ==> ~y < x Run time: 0.0s Intermediate theorems generated: 26 REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s Intermediate theorems generated: 19 REAL_LE_TOTAL = |- !x y. x <= y \/ y <= x Run time: 0.0s Intermediate theorems generated: 55 REAL_LET_TOTAL = |- !x y. x <= y \/ y < x Run time: 0.0s Intermediate theorems generated: 28 REAL_LTE_TOTAL = |- !x y. x < y \/ y <= x Run time: 0.0s Intermediate theorems generated: 27 REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Intermediate theorems generated: 21 REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s Intermediate theorems generated: 93 REAL_LT_LE = |- !x y. x < y = x <= y /\ ~(x = y) Run time: 0.0s Intermediate theorems generated: 125 REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.1s Intermediate theorems generated: 22 REAL_LTE_TRANS = |- !x y z. x < y /\ y <= z ==> x < z Run time: 0.0s Intermediate theorems generated: 47 REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s Intermediate theorems generated: 46 REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s Intermediate theorems generated: 51 REAL_LE_ANTISYM = |- !x y. x <= y /\ y <= x = (x = y) Run time: 0.0s Intermediate theorems generated: 94 REAL_LET_ANTISYM = |- !x y. ~(x < y /\ y <= x) Run time: 0.0s Intermediate theorems generated: 32 REAL_LTE_ANTSYM = |- !x y. ~(x <= y /\ y < x) Run time: 0.0s Intermediate theorems generated: 15 REAL_NEG_LT0 = |- !x. (-- x) < (& 0) = (& 0) < x Run time: 0.0s Intermediate theorems generated: 24 REAL_NEG_GT0 = |- !x. (& 0) < (-- x) = x < (& 0) Run time: 0.0s Intermediate theorems generated: 25 REAL_NEG_LE0 = |- !x. (-- x) <= (& 0) = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 25 REAL_NEG_GE0 = |- !x. (& 0) <= (-- x) = x <= (& 0) Run time: 0.0s Intermediate theorems generated: 25 REAL_LT_NEGTOTAL = |- !x. (x = & 0) \/ (& 0) < x \/ (& 0) < (-- x) Run time: 0.0s Intermediate theorems generated: 79 REAL_LE_NEGTOTAL = |- !x. (& 0) <= x \/ (& 0) <= (-- x) Run time: 0.0s Intermediate theorems generated: 73 REAL_LE_MUL = |- !x y. (& 0) <= x /\ (& 0) <= y ==> (& 0) <= (x * y) Run time: 0.0s Intermediate theorems generated: 276 REAL_LE_SQUARE = |- !x. (& 0) <= (x * x) Run time: 0.0s Intermediate theorems generated: 68 REAL_LE_01 = |- (& 0) <= (& 1) Run time: 0.0s Intermediate theorems generated: 6 REAL_LT_01 = |- (& 0) < (& 1) Run time: 0.0s Intermediate theorems generated: 29 REAL_LE_LADD = |- !x y z. (x + y) <= (x + z) = y <= z Run time: 0.0s Intermediate theorems generated: 20 REAL_LE_RADD = |- !x y z. (x + z) <= (y + z) = x <= y Run time: 0.0s Intermediate theorems generated: 20 REAL_LT_ADD2 = |- !w x y z. w < x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Intermediate theorems generated: 55 REAL_LE_ADD2 = |- !w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z) Run time: 0.0s Intermediate theorems generated: 55 REAL_LE_ADD = |- !x y. (& 0) <= x /\ (& 0) <= y ==> (& 0) <= (x + y) Run time: 0.0s Intermediate theorems generated: 22 REAL_LT_ADD = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x + y) Run time: 0.0s Intermediate theorems generated: 22 REAL_LT_ADDNEG = |- !x y z. y < (x + (-- z)) = (y + z) < x Run time: 0.0s Intermediate theorems generated: 48 REAL_LT_ADDNEG2 = |- !x y z. (x + (-- y)) < z = x < (z + y) Run time: 0.0s Intermediate theorems generated: 49 REAL_LT_ADD1 = |- !x y. x <= y ==> x < (y + (& 1)) Run time: 0.0s Intermediate theorems generated: 75 REAL_SUB_ADD = |- !x y. (x - y) + y = x Run time: 0.0s Intermediate theorems generated: 50 REAL_SUB_ADD2 = |- !x y. y + (x - y) = x Run time: 0.0s Intermediate theorems generated: 16 REAL_SUB_REFL = |- !x. x - x = & 0 Run time: 0.0s Intermediate theorems generated: 20 REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s Intermediate theorems generated: 33 REAL_LE_DOUBLE = |- !x. (& 0) <= (x + x) = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 72 REAL_LE_NEGL = |- !x. (-- x) <= x = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 25 REAL_LE_NEGR = |- !x. x <= (-- x) = x <= (& 0) Run time: 0.0s Intermediate theorems generated: 42 REAL_NEG_EQ0 = |- !x. (-- x = & 0) = (x = & 0) Run time: 0.0s Intermediate theorems generated: 45 REAL_NEG_0 = |- --(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 9 REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s Intermediate theorems generated: 32 REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s Intermediate theorems generated: 28 REAL_SUB_LE = |- !x y. (& 0) <= (x - y) = y <= x Run time: 0.0s Intermediate theorems generated: 28 REAL_ADD_SUB = |- !x y. (x + y) - x = y Run time: 0.0s Intermediate theorems generated: 61 REAL_EQ_LMUL = |- !x y z. (x * y = x * z) = (x = & 0) \/ (y = z) Run time: 0.0s Intermediate theorems generated: 122 REAL_EQ_RMUL = |- !x y z. (x * z = y * z) = (z = & 0) \/ (x = y) Run time: 0.0s Intermediate theorems generated: 21 REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s Intermediate theorems generated: 39 REAL_SUB_RDISTRIB = |- !x y z. (x - y) * z = (x * z) - (y * z) Run time: 0.0s Intermediate theorems generated: 22 REAL_NEG_EQ = |- !x y. (-- x = y) = (x = -- y) Run time: 0.1s Intermediate theorems generated: 30 REAL_NEG_MINUS1 = |- !x. -- x = (--(& 1)) * x Run time: 0.0s Intermediate theorems generated: 30 REAL_INV_NZ = |- !x. ~(x = & 0) ==> ~(inv x = & 0) Run time: 0.0s Intermediate theorems generated: 35 REAL_INVINV = |- !x. ~(x = & 0) ==> (inv(inv x) = x) Run time: 0.0s Intermediate theorems generated: 114 REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s Intermediate theorems generated: 43 REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Intermediate theorems generated: 133 REAL_LT_LMUL_0 = |- !x y. (& 0) < x ==> ((& 0) < (x * y) = (& 0) < y) Run time: 0.0s Intermediate theorems generated: 87 REAL_LT_RMUL_0 = |- !x y. (& 0) < y ==> ((& 0) < (x * y) = (& 0) < x) Run time: 0.0s Intermediate theorems generated: 18 REAL_LT_LMUL = |- !x y z. (& 0) < x ==> ((x * y) < (x * z) = y < z) Run time: 0.0s Intermediate theorems generated: 57 REAL_LT_RMUL = |- !x y z. (& 0) < z ==> ((x * z) < (y * z) = x < y) Run time: 0.0s Intermediate theorems generated: 22 REAL_LT_RMUL_IMP = |- !x y z. x < y /\ (& 0) < z ==> (x * z) < (y * z) Run time: 0.0s Intermediate theorems generated: 29 REAL_LT_LMUL_IMP = |- !x y z. y < z /\ (& 0) < x ==> (x * y) < (x * z) Run time: 0.0s Intermediate theorems generated: 29 REAL_LINV_UNIQ = |- !x y. (x * y = & 1) ==> (x = inv y) Run time: 0.0s Intermediate theorems generated: 111 REAL_RINV_UNIQ = |- !x y. (x * y = & 1) ==> (y = inv x) Run time: 0.0s Intermediate theorems generated: 18 REAL_NEG_INV = |- !x. ~(x = & 0) ==> (--(inv x) = inv(-- x)) Run time: 0.0s Intermediate theorems generated: 71 REAL_INV_1OVER = |- !x. inv x = (& 1) / x Run time: 0.0s Intermediate theorems generated: 19 REAL_LE_ADDR = |- !x y. x <= (x + y) = (& 0) <= y Run time: 0.0s Intermediate theorems generated: 20 REAL_LE_ADDL = |- !x y. y <= (x + y) = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 17 REAL_LT_ADDR = |- !x y. x < (x + y) = (& 0) < y Run time: 0.0s Intermediate theorems generated: 20 REAL_LT_ADDL = |- !x y. y < (x + y) = (& 0) < x Run time: 0.0s Intermediate theorems generated: 17 REAL = |- !n. &(SUC n) = (& n) + (& 1) Run time: 0.0s Intermediate theorems generated: 19 REAL_POS = |- !n. (& 0) <= (& n) Run time: 0.0s Intermediate theorems generated: 70 Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 num_lt (SUC n) Run time: 0.0s Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m num_lt n = n num_le m Run time: 0.0s Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) num_le (SUC m) = n num_le m Run time: 0.0s Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 num_le n Run time: 0.0s REAL_LE = |- !m n. (& m) <= (& n) = m num_le n Run time: 0.0s Intermediate theorems generated: 321 REAL_LT = |- !m n. (& m) < (& n) = m num_lt n Run time: 0.0s Intermediate theorems generated: 48 Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n num_le m /\ m num_le n ==> (n = m) Run time: 0.0s Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m num_le m Run time: 0.0s REAL_INJ = |- !m n. (& m = & n) = (m = n) Run time: 0.0s Intermediate theorems generated: 57 Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 num_add n = n) /\ (!m n. (SUC m) num_add n = SUC(m num_add n)) Run time: 0.0s Intermediate theorems generated: 1 REAL_ADD = |- !m n. (& m) + (& n) = &(m num_add n) Run time: 0.0s Intermediate theorems generated: 131 Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 num_mul m = 0) /\ (m num_mul 0 = 0) /\ (1 num_mul m = m) /\ (m num_mul 1 = m) /\ ((SUC m) num_mul n = (m num_mul n) num_add n) /\ (m num_mul (SUC n) = m num_add (m num_mul n)) Run time: 0.0s REAL_MUL = |- !m n. (& m) * (& n) = &(m num_mul n) Run time: 0.0s Intermediate theorems generated: 148 REAL_INV1 = |- inv(& 1) = & 1 Run time: 0.0s Intermediate theorems generated: 26 REAL_OVER1 = |- !x. x / (& 1) = x Run time: 0.0s Intermediate theorems generated: 22 REAL_DIV_REFL = |- !x. ~(x = & 0) ==> (x / x = & 1) Run time: 0.0s Intermediate theorems generated: 19 REAL_DIV_LZERO = |- !x. (& 0) / x = & 0 Run time: 0.0s Intermediate theorems generated: 20 REAL_LT_NZ = |- !n. ~(& n = & 0) = (& 0) < (& n) Run time: 0.0s Intermediate theorems generated: 90 REAL_NZ_IMP_LT = |- !n. ~(n = 0) ==> (& 0) < (& n) Run time: 0.0s Intermediate theorems generated: 28 REAL_LT_RDIV_0 = |- !y z. (& 0) < z ==> ((& 0) < (y / z) = (& 0) < y) Run time: 0.0s Intermediate theorems generated: 40 REAL_LT_RDIV = |- !x y z. (& 0) < z ==> ((x / z) < (y / z) = x < y) Run time: 0.0s Intermediate theorems generated: 44 REAL_LT_FRACTION_0 = |- !n d. ~(n = 0) ==> ((& 0) < (d / (& n)) = (& 0) < d) Run time: 0.1s Intermediate theorems generated: 44 Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m num_lt n /\ n num_lt p ==> m num_lt p Run time: 0.0s Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n num_lt 0 Run time: 0.0s REAL_LT_MULTIPLE = |- !n d. 1 num_lt n ==> (d < ((& n) * d) = (& 0) < d) Run time: 0.0s Intermediate theorems generated: 268 REAL_LT_FRACTION = |- !n d. 1 num_lt n ==> ((d / (& n)) < d = (& 0) < d) Run time: 0.0s Intermediate theorems generated: 184 Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Run time: 0.0s REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s Intermediate theorems generated: 27 Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Intermediate theorems generated: 22 REAL_DOUBLE = |- !x. x + x = (& 2) * x Run time: 0.0s Intermediate theorems generated: 37 REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s Intermediate theorems generated: 70 REAL_DIV_RMUL = |- !x y. ~(y = & 0) ==> ((x / y) * y = x) Run time: 0.0s Intermediate theorems generated: 17 REAL_HALF_DOUBLE = |- !x. (x / (& 2)) + (x / (& 2)) = x Run time: 0.0s Intermediate theorems generated: 51 REAL_DOWN = |- !x. (& 0) < x ==> (?y. (& 0) < y /\ y < x) Run time: 0.0s Intermediate theorems generated: 24 REAL_DOWN2 = |- !x y. (& 0) < x /\ (& 0) < y ==> (?z. (& 0) < z /\ z < x /\ z < y) Run time: 0.0s Intermediate theorems generated: 145 REAL_SUB_SUB = |- !x y. (x - y) - x = -- y Run time: 0.0s Intermediate theorems generated: 91 REAL_LT_ADD_SUB = |- !x y z. (x + y) < z = x < (z - y) Run time: 0.0s Intermediate theorems generated: 23 REAL_LT_SUB_RADD = |- !x y z. (x - y) < z = x < (z + y) Run time: 0.0s Intermediate theorems generated: 25 REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Intermediate theorems generated: 57 REAL_LE_SUB_LADD = |- !x y z. x <= (y - z) = (x + z) <= y Run time: 0.0s Intermediate theorems generated: 38 REAL_LE_SUB_RADD = |- !x y z. (x - y) <= z = x <= (z + y) Run time: 0.0s Intermediate theorems generated: 38 REAL_LT_NEG = |- !x y. (-- x) < (-- y) = y < x Run time: 0.0s Intermediate theorems generated: 79 REAL_LE_NEG = |- !x y. (-- x) <= (-- y) = y <= x Run time: 0.0s Intermediate theorems generated: 37 REAL_ADD2_SUB2 = |- !a b c d. (a + b) - (c + d) = (a - c) + (b - d) Run time: 0.0s Intermediate theorems generated: 73 REAL_SUB_LZERO = |- !x. (& 0) - x = -- x Run time: 0.0s Intermediate theorems generated: 20 REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s Intermediate theorems generated: 22 REAL_LET_ADD2 = |- !w x y z. w <= x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Intermediate theorems generated: 58 REAL_LTE_ADD2 = |- !w x y z. w < x /\ y <= z ==> (w + y) < (x + z) Run time: 0.0s Intermediate theorems generated: 33 REAL_LET_ADD = |- !x y. (& 0) <= x /\ (& 0) < y ==> (& 0) < (x + y) Run time: 0.0s Intermediate theorems generated: 33 REAL_LTE_ADD = |- !x y. (& 0) < x /\ (& 0) <= y ==> (& 0) < (x + y) Run time: 0.0s Intermediate theorems generated: 33 REAL_LT_MUL2 = |- !x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 < x2 /\ y1 < y2 ==> (x1 * y1) < (x2 * y2) Run time: 0.0s Intermediate theorems generated: 344 REAL_LT_INV = |- !x y. (& 0) < x /\ x < y ==> (inv y) < (inv x) Run time: 0.0s Intermediate theorems generated: 282 REAL_SUB_LNEG = |- !x y. (-- x) - y = --(x + y) Run time: 0.0s Intermediate theorems generated: 23 REAL_SUB_RNEG = |- !x y. x - (-- y) = x + y Run time: 0.0s Intermediate theorems generated: 22 REAL_SUB_NEG2 = |- !x y. (-- x) - (-- y) = y - x Run time: 0.1s Intermediate theorems generated: 40 REAL_SUB_TRIANGLE = |- !a b c. (a - b) + (b - c) = a - c Run time: 0.0s Intermediate theorems generated: 93 REAL_EQ_SUB_LADD = |- !x y z. (x = y - z) = (x + z = y) Run time: 0.0s Intermediate theorems generated: 24 REAL_EQ_SUB_RADD = |- !x y z. (x - y = z) = (x = z + y) Run time: 0.0s Intermediate theorems generated: 17 REAL_INV_MUL = |- !x y. ~(x = & 0) /\ ~(y = & 0) ==> (inv(x * y) = (inv x) * (inv y)) Run time: 0.0s Intermediate theorems generated: 142 REAL_LE_LMUL = |- !x y z. (& 0) < x ==> ((x * y) <= (x * z) = y <= z) Run time: 0.0s Intermediate theorems generated: 43 REAL_LE_RMUL = |- !x y z. (& 0) < z ==> ((x * z) <= (y * z) = x <= y) Run time: 0.0s Intermediate theorems generated: 22 REAL_SUB_INV2 = |- !x y. ~(x = & 0) /\ ~(y = & 0) ==> ((inv x) - (inv y) = (y - x) / (x * y)) Run time: 0.0s Intermediate theorems generated: 153 REAL_SUB_SUB2 = |- !x y. x - (x - y) = y Run time: 0.0s Intermediate theorems generated: 40 REAL_ADD_SUB2 = |- !x y. x - (x + y) = -- y Run time: 0.0s Intermediate theorems generated: 36 REAL_MEAN = |- !x y. x < y ==> (?z. x < z /\ z < y) Run time: 0.0s Intermediate theorems generated: 91 REAL_EQ_LMUL2 = |- !x y z. ~(x = & 0) ==> ((y = z) = (x * y = x * z)) Run time: 0.0s Intermediate theorems generated: 35 REAL_LE_MUL2 = |- !x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 <= x2 /\ y1 <= y2 ==> (x1 * y1) <= (x2 * y2) Run time: 0.0s Intermediate theorems generated: 345 REAL_LE_LDIV = |- !x y z. (& 0) < x /\ y <= (z * x) ==> (y / x) <= z Run time: 0.0s Intermediate theorems generated: 102 REAL_LE_RDIV = |- !x y z. (& 0) < x /\ (y * x) <= z ==> y <= (z / x) Run time: 0.0s Intermediate theorems generated: 101 REAL_LT_1 = |- !x y. (& 0) <= x /\ x < y ==> (x / y) < (& 1) Run time: 0.0s Intermediate theorems generated: 120 REAL_LE_LMUL_IMP = |- !x y z. (& 0) <= x /\ y <= z ==> (x * y) <= (x * z) Run time: 0.0s Intermediate theorems generated: 65 REAL_LE_RMUL_IMP = |- !x y z. (& 0) <= x /\ y <= z ==> (y * x) <= (z * x) Run time: 0.0s Intermediate theorems generated: 26 REAL_EQ_IMP_LE = |- !x y. (x = y) ==> x <= y Run time: 0.0s Intermediate theorems generated: 8 REAL_INV_LT1 = |- !x. (& 0) < x /\ x < (& 1) ==> (& 1) < (inv x) Run time: 0.0s Intermediate theorems generated: 290 REAL_POS_NZ = |- !x. (& 0) < x ==> ~(x = & 0) Run time: 0.0s Intermediate theorems generated: 17 REAL_EQ_RMUL_IMP = |- !x y z. ~(z = & 0) /\ (x * z = y * z) ==> (x = y) Run time: 0.0s Intermediate theorems generated: 36 REAL_EQ_LMUL_IMP = |- !x y z. ~(x = & 0) /\ (x * y = x * z) ==> (y = z) Run time: 0.0s Intermediate theorems generated: 28 Theorem FACT_LESS autoloading from theory `arithmetic` ... FACT_LESS = |- !n. 0 num_lt (FACT n) Run time: 0.0s REAL_FACT_NZ = |- !n. ~(&(FACT n) = & 0) Run time: 0.0s Intermediate theorems generated: 25 REAL_DIFFSQ = |- !x y. (x + y) * (x - y) = (x * x) - (y * y) Run time: 0.0s Intermediate theorems generated: 165 REAL_POSSQ = |- !x. (& 0) < (x * x) = ~(x = & 0) Run time: 0.1s Intermediate theorems generated: 68 REAL_SUMSQ = |- !x y. ((x * x) + (y * y) = & 0) = (x = & 0) /\ (y = & 0) Run time: 0.0s Intermediate theorems generated: 163 REAL_EQ_NEG = |- !x y. (-- x = -- y) = (x = y) Run time: 0.0s Intermediate theorems generated: 36 REAL_DIV_MUL2 = |- !x z. ~(x = & 0) /\ ~(z = & 0) ==> (!y. y / z = (x * y) / (x * z)) Run time: 0.0s Intermediate theorems generated: 169 REAL_MIDDLE1 = |- !a b. a <= b ==> a <= ((a + b) / (& 2)) Run time: 0.0s Intermediate theorems generated: 89 REAL_MIDDLE2 = |- !a b. a <= b ==> ((a + b) / (& 2)) <= b Run time: 0.0s Intermediate theorems generated: 87 abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 2 ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s Intermediate theorems generated: 52 ABS_0 = |- abs(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 9 ABS_1 = |- abs(& 1) = & 1 Run time: 0.0s Intermediate theorems generated: 31 ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s Intermediate theorems generated: 178 ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Intermediate theorems generated: 604 ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s Intermediate theorems generated: 67 ABS_MUL = |- !x y. abs(x * y) = (abs x) * (abs y) Run time: 0.0s Intermediate theorems generated: 385 ABS_LT_MUL2 = |- !w x y z. (abs w) < y /\ (abs x) < z ==> (abs(w * x)) < (y * z) Run time: 0.0s Intermediate theorems generated: 56 ABS_SUB = |- !x y. abs(x - y) = abs(y - x) Run time: 0.0s Intermediate theorems generated: 31 ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s Intermediate theorems generated: 139 ABS_INV = |- !x. ~(x = & 0) ==> (abs(inv x) = inv(abs x)) Run time: 0.0s Intermediate theorems generated: 105 ABS_ABS = |- !x. abs(abs x) = abs x Run time: 0.0s Intermediate theorems generated: 27 ABS_LE = |- !x. x <= (abs x) Run time: 0.0s Intermediate theorems generated: 75 ABS_REFL = |- !x. (abs x = x) = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 156 ABS_N = |- !n. abs(& n) = & n Run time: 0.1s Intermediate theorems generated: 21 ABS_BETWEEN = |- !x y d. (& 0) < d /\ (x - d) < y /\ y < (x + d) = (abs(y - x)) < d Run time: 0.0s Intermediate theorems generated: 372 ABS_BOUND = |- !x y d. (abs(x - y)) < d ==> y < (x + d) Run time: 0.0s Intermediate theorems generated: 54 ABS_STILLNZ = |- !x y. (abs(x - y)) < (abs y) ==> ~(x = & 0) Run time: 0.0s Intermediate theorems generated: 56 ABS_CASES = |- !x. (x = & 0) \/ (& 0) < (abs x) Run time: 0.0s Intermediate theorems generated: 29 ABS_BETWEEN1 = |- !x y z. x < z /\ (abs(y - x)) < (z - x) ==> y < z Run time: 0.0s Intermediate theorems generated: 102 ABS_SIGN = |- !x y. (abs(x - y)) < y ==> (& 0) < x Run time: 0.0s Intermediate theorems generated: 22 ABS_SIGN2 = |- !x y. (abs(x - y)) < (-- y) ==> x < (& 0) Run time: 0.0s Intermediate theorems generated: 68 ABS_DIV = |- !y. ~(y = & 0) ==> (!x. abs(x / y) = (abs x) / (abs y)) Run time: 0.0s Intermediate theorems generated: 41 ABS_CIRCLE = |- !x y h. (abs h) < ((abs y) - (abs x)) ==> (abs(x + h)) < (abs y) Run time: 0.0s Intermediate theorems generated: 61 REAL_SUB_ABS = |- !x y. ((abs x) - (abs y)) <= (abs(x - y)) Run time: 0.0s Intermediate theorems generated: 94 ABS_SUB_ABS = |- !x y. (abs((abs x) - (abs y))) <= (abs(x - y)) Run time: 0.0s Intermediate theorems generated: 80 ABS_BETWEEN2 = |- !x0 x y0 y. x0 < y0 /\ (abs(x - x0)) < ((y0 - x0) / (& 2)) /\ (abs(y - y0)) < ((y0 - x0) / (& 2)) ==> x < y Run time: 0.0s Intermediate theorems generated: 935 ABS_BOUNDS = |- !x k. (abs x) <= k = (-- k) <= x /\ x <= k Run time: 0.0s Intermediate theorems generated: 250 pow = |- (!x. x pow 0 = & 1) /\ (!x n. x pow (SUC n) = x * (x pow n)) Run time: 0.0s Intermediate theorems generated: 175 POW_0 = |- !n. (& 0) pow (SUC n) = & 0 Run time: 0.0s Intermediate theorems generated: 56 POW_NZ = |- !c n. ~(c = & 0) ==> ~(c pow n = & 0) Run time: 0.0s Intermediate theorems generated: 108 POW_INV = |- !c. ~(c = & 0) ==> (!n. inv(c pow n) = (inv c) pow n) Run time: 0.0s Intermediate theorems generated: 126 POW_ABS = |- !c n. (abs c) pow n = abs(c pow n) Run time: 0.0s Intermediate theorems generated: 83 POW_PLUS1 = |- !e. (& 0) < e ==> (!n. ((& 1) + ((& n) * e)) <= (((& 1) + e) pow n)) Run time: 0.0s Intermediate theorems generated: 298 Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 num_add m = m) /\ (m num_add 0 = m) /\ ((SUC m) num_add n = SUC(m num_add n)) /\ (m num_add (SUC n) = SUC(m num_add n)) Run time: 0.0s POW_ADD = |- !c m n. c pow (m num_add n) = (c pow m) * (c pow n) Run time: 0.0s Intermediate theorems generated: 152 POW_1 = |- !x. x pow 1 = x Run time: 0.1s Intermediate theorems generated: 34 POW_2 = |- !x. x pow 2 = x * x Run time: 0.0s Intermediate theorems generated: 32 POW_POS = |- !x. (& 0) <= x ==> (!n. (& 0) <= (x pow n)) Run time: 0.0s Intermediate theorems generated: 68 POW_LE = |- !n x y. (& 0) <= x /\ x <= y ==> (x pow n) <= (y pow n) Run time: 0.0s Intermediate theorems generated: 160 POW_M1 = |- !n. abs((--(& 1)) pow n) = & 1 Run time: 0.0s Intermediate theorems generated: 80 POW_MUL = |- !n x y. (x * y) pow n = (x pow n) * (y pow n) Run time: 0.0s Intermediate theorems generated: 135 REAL_LE_POW2 = |- !x. (& 0) <= (x pow 2) Run time: 0.0s Intermediate theorems generated: 14 ABS_POW2 = |- !x. abs(x pow 2) = x pow 2 Run time: 0.0s Intermediate theorems generated: 13 REAL_POW2_ABS = |- !x. (abs x) pow 2 = x pow 2 Run time: 0.0s Intermediate theorems generated: 62 REAL_LE1_POW2 = |- !x. (& 1) <= x ==> (& 1) <= (x pow 2) Run time: 0.0s Intermediate theorems generated: 54 REAL_LT1_POW2 = |- !x. (& 1) < x ==> (& 1) < (x pow 2) Run time: 0.0s Intermediate theorems generated: 54 POW_POS_LT = |- !x n. (& 0) < x ==> (& 0) < (x pow (SUC n)) Run time: 0.0s Intermediate theorems generated: 73 Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m num_le (SUC m) Run time: 0.0s POW_2_LE1 = |- !n. (& 1) <= ((& 2) pow n) Run time: 0.0s Intermediate theorems generated: 118 Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m num_add 1 Run time: 0.0s POW_2_LT = |- !n. (& n) < ((& 2) pow n) Run time: 0.0s Intermediate theorems generated: 103 POW_MINUS1 = |- !n. (--(& 1)) pow (2 num_mul n) = & 1 Run time: 0.0s Intermediate theorems generated: 231 REAL_SUP_SOMEPOS = |- !P. (?x. P x /\ (& 0) < x) /\ (?z. !x. P x ==> x < z) ==> (?s. !y. (?x. P x /\ y < x) = y < s) Run time: 0.0s Intermediate theorems generated: 325 SUP_LEMMA1 = |- !d. (!y. (?x. (\x. P(x + d))x /\ y < x) = y < s) ==> (!y. (?x. P x /\ y < x) = y < (s + d)) Run time: 0.0s Intermediate theorems generated: 119 SUP_LEMMA2 = |- (?x. P x) ==> (?d x. (\x. P(x + d))x /\ (& 0) < x) Run time: 0.0s Intermediate theorems generated: 121 SUP_LEMMA3 = |- !d. (?z. !x. P x ==> x < z) ==> (?z. !x. (\x. P(x + d))x ==> x < z) Run time: 0.1s Intermediate theorems generated: 42 REAL_SUP_EXISTS = |- !P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (?s. !y. (?x. P x /\ y < x) = y < s) Run time: 0.0s Intermediate theorems generated: 45 sup = |- !P. sup P = (@s. !y. (?x. P x /\ y < x) = y < s) Run time: 0.0s Intermediate theorems generated: 2 REAL_SUP = |- !P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (!y. (?x. P x /\ y < x) = y < (sup P)) Run time: 0.0s Intermediate theorems generated: 31 REAL_SUP_UBOUND = |- !P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (!y. P y ==> y <= (sup P)) Run time: 0.0s Intermediate theorems generated: 87 SETOK_LE_LT = |- !P. (?x. P x) /\ (?z. !x. P x ==> x <= z) = (?x. P x) /\ (?z. !x. P x ==> x < z) Run time: 0.0s Intermediate theorems generated: 53 REAL_SUP_LE = |- !P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==> (!y. (?x. P x /\ y < x) = y < (sup P)) Run time: 0.0s Intermediate theorems generated: 15 REAL_SUP_UBOUND_LE = |- !P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==> (!y. P y ==> y <= (sup P)) Run time: 0.0s Intermediate theorems generated: 15 REAL_ARCH = |- !x. (& 0) < x ==> (!y. ?n. y < ((& n) * x)) Run time: 0.0s Intermediate theorems generated: 342 Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s REAL_ARCH_LEAST = |- !y. (& 0) < y ==> (!x. (& 0) <= x ==> (?n. ((& n) * y) <= x /\ x < ((&(SUC n)) * y))) Run time: 0.0s Intermediate theorems generated: 222 sum = |- (!n f. sum n 0 f = & 0) /\ (!n m f. sum n(SUC m)f = (sum n m f) + (f(n num_add m))) Run time: 0.0s Intermediate theorems generated: 202 Sum_DEF = |- !m n f. Sum(m,n)f = sum m n f Run time: 0.0s Intermediate theorems generated: 2 Sum = |- (Sum(n,0)f = & 0) /\ (Sum(n,SUC m)f = (Sum(n,m)f) + (f(n num_add m))) Run time: 0.0s Intermediate theorems generated: 51 SUM_TWO = |- !f n p. (Sum(0,n)f) + (Sum(n,p)f) = Sum(0,n num_add p)f Run time: 0.0s Intermediate theorems generated: 109 SUM_DIFF = |- !f m n. Sum(m,n)f = (Sum(0,m num_add n)f) - (Sum(0,m)f) Run time: 0.0s Intermediate theorems generated: 30 ABS_SUM = |- !f m n. (abs(Sum(m,n)f)) <= (Sum(m,n)(\n'. abs(f n'))) Run time: 0.0s Intermediate theorems generated: 103 Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m num_le (m num_add n) Run time: 0.0s Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m num_add n = n num_add m Run time: 0.0s SUM_LE = |- !f g m n. (!r. m num_le r /\ r num_lt (n num_add m) ==> (f r) <= (g r)) ==> (Sum(m,n)f) <= (Sum(m,n)g) Run time: 0.1s Intermediate theorems generated: 272 SUM_EQ = |- !f g m n. (!r. m num_le r /\ r num_lt (n num_add m) ==> (f r = g r)) ==> (Sum(m,n)f = Sum(m,n)g) Run time: 0.0s Intermediate theorems generated: 82 SUM_POS = |- !f. (!n. (& 0) <= (f n)) ==> (!m n. (& 0) <= (Sum(m,n)f)) Run time: 0.0s Intermediate theorems generated: 78 SUM_POS_GEN = |- !f m. (!n. m num_le n ==> (& 0) <= (f n)) ==> (!n. (& 0) <= (Sum(m,n)f)) Run time: 0.0s Intermediate theorems generated: 91 SUM_ABS = |- !f m n. abs(Sum(m,n)(\m. abs(f m))) = Sum(m,n)(\m. abs(f m)) Run time: 0.0s Intermediate theorems generated: 42 SUM_ABS_LE = |- !f m n. (abs(Sum(m,n)f)) <= (Sum(m,n)(\n'. abs(f n'))) Run time: 0.0s Intermediate theorems generated: 105 Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m num_add (n num_add p) = (m num_add n) num_add p Run time: 0.0s Theorem LESS_EQUAL_ADD autoloading from theory `arithmetic` ... LESS_EQUAL_ADD = |- !m n. m num_le n ==> (?p. n = m num_add p) Run time: 0.0s Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n num_ge m = m num_le n Run time: 0.0s SUM_ZERO = |- !f N. (!n. n num_ge N ==> (f n = & 0)) ==> (!m n. m num_ge N ==> (Sum(m,n)f = & 0)) Run time: 0.0s Intermediate theorems generated: 145 SUM_ADD = |- !f g m n. Sum(m,n)(\n'. (f n') + (g n')) = (Sum(m,n)f) + (Sum(m,n)g) Run time: 0.0s Intermediate theorems generated: 133 SUM_CMUL = |- !f c m n. Sum(m,n)(\n'. c * (f n')) = c * (Sum(m,n)f) Run time: 0.0s Intermediate theorems generated: 100 SUM_NEG = |- !f n d. Sum(n,d)(\n'. --(f n')) = --(Sum(n,d)f) Run time: 0.0s Intermediate theorems generated: 89 SUM_SUB = |- !f g m n. Sum(m,n)(\n. (f n) - (g n)) = (Sum(m,n)f) - (Sum(m,n)g) Run time: 0.0s Intermediate theorems generated: 74 Theorem LESS_MONO_ADD autoloading from theory `arithmetic` ... LESS_MONO_ADD = |- !m n p. m num_lt n ==> (m num_add p) num_lt (n num_add p) Run time: 0.0s Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m num_lt n ==> m num_le n Run time: 0.0s Theorem LESS_EQ_IMP_LESS_SUC autoloading from theory `arithmetic` ... LESS_EQ_IMP_LESS_SUC = |- !n m. n num_le m ==> n num_lt (SUC m) Run time: 0.0s SUM_SUBST = |- !f g m n. (!p. m num_le p /\ p num_lt (m num_add n) ==> (f p = g p)) ==> (Sum(m,n)f = Sum(m,n)g) Run time: 0.0s Intermediate theorems generated: 221 SUM_NSUB = |- !n f c. (Sum(0,n)f) - ((& n) * c) = Sum(0,n)(\p. (f p) - c) Run time: 0.0s Intermediate theorems generated: 239 Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m num_lt n ==> m num_lt (SUC n) Run time: 0.0s SUM_BOUND = |- !f K m n. (!p. m num_le p /\ p num_lt (m num_add n) ==> (f p) <= K) ==> (Sum(m,n)f) <= ((& n) * K) Run time: 0.0s Intermediate theorems generated: 226 SUM_GROUP = |- !n k f. Sum(0,n)(\m. Sum(m num_mul k,k)f) = Sum(0,n num_mul k)f Run time: 0.0s Intermediate theorems generated: 169 SUM_1 = |- !f n. Sum(n,1)f = f n Run time: 0.1s Intermediate theorems generated: 56 SUM_2 = |- !f n. Sum(n,2)f = (f n) + (f(n num_add 1)) Run time: 0.0s Intermediate theorems generated: 81 SUM_OFFSET = |- !f n k. Sum(0,n)(\m. f(m num_add k)) = (Sum(0,n num_add k)f) - (Sum(0,k)f) Run time: 0.0s Intermediate theorems generated: 141 SUM_REINDEX = |- !f m k n. Sum(m num_add k,n)f = Sum(m,n)(\r. f(r num_add k)) Run time: 0.0s Intermediate theorems generated: 117 SUM_0 = |- !m n. Sum(m,n)(\r. & 0) = & 0 Run time: 0.0s Intermediate theorems generated: 72 Theorem ADD_SUC autoloading from theory `arithmetic` ... ADD_SUC = |- !m n. SUC(m num_add n) = m num_add (SUC n) Run time: 0.0s Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Run time: 0.0s Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n num_lt n Run time: 0.0s Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m num_lt (m num_add (SUC n)) Run time: 0.0s Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) num_lt (SUC n) = m num_lt n Run time: 0.0s Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) num_sub 1 = m Run time: 0.0s Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n num_lt m ==> (?p. m = n num_add (p num_add 1)) Run time: 0.0s Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m num_le n = m num_lt n \/ (m = n) Run time: 0.0s Intermediate theorems generated: 1 Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m num_lt n = (SUC m) num_le n Run time: 0.0s Theorem LESS_CASES autoloading from theory `arithmetic` ... LESS_CASES = |- !m n. m num_lt n \/ n num_le m Run time: 0.0s SUM_PERMUTE_0 = |- !n p. (!y. y num_lt n ==> (?! x. x num_lt n /\ (p x = y))) ==> (!f. Sum(0,n)(\n'. f(p n')) = Sum(0,n)f) Run time: 0.0s Intermediate theorems generated: 2469 SUM_CANCEL = |- !f n d. Sum(n,d)(\n'. (f(SUC n')) - (f n')) = (f(n num_add d)) - (f n) Run time: 0.0s Intermediate theorems generated: 206 () : void Run time: 0.0s Intermediate theorems generated: 1 File real.ml loaded () : void Run time: 1.0s Intermediate theorems generated: 23746 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `topology.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory REAL loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s [] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 11 () : void Run time: 0.0s () : void Run time: 0.0s re_Union = |- !S. re_Union S = (\x. ?s. S s /\ s x) Run time: 0.0s Intermediate theorems generated: 2 re_union = |- !P Q. P re_union Q = (\x. P x \/ Q x) Run time: 0.0s Intermediate theorems generated: 2 re_intersect = |- !P Q. P re_intersect Q = (\x. P x /\ Q x) Run time: 0.0s Intermediate theorems generated: 2 re_null = |- re_null = (\x. F) Run time: 0.0s Intermediate theorems generated: 2 re_universe = |- re_universe = (\x. T) Run time: 0.0s Intermediate theorems generated: 2 re_subset = |- !P Q. P re_subset Q = (!x. P x ==> Q x) Run time: 0.0s Intermediate theorems generated: 2 re_compl = |- !S. re_compl S = (\x. ~S x) Run time: 0.0s Intermediate theorems generated: 2 SUBSET_REFL = |- !S. S re_subset S Run time: 0.0s Intermediate theorems generated: 16 COMPL_MEM = |- !S x. S x = ~re_compl S x Run time: 0.0s Intermediate theorems generated: 23 SUBSET_ANTISYM = |- !P Q. P re_subset Q /\ Q re_subset P = (P = Q) Run time: 0.0s Intermediate theorems generated: 99 SUBSET_TRANS = |- !P Q R. P re_subset Q /\ Q re_subset R ==> P re_subset R Run time: 0.0s Intermediate theorems generated: 49 istopology = |- !L. istopology L = L re_null /\ L re_universe /\ (!a b. L a /\ L b ==> L(a re_intersect b)) /\ (!P. P re_subset L ==> L(re_Union P)) Run time: 0.0s Intermediate theorems generated: 2 topology_tydef = |- ?rep. TYPE_DEFINITION istopology rep Run time: 0.0s Intermediate theorems generated: 86 topology_tybij = |- (!a. topology(open a) = a) /\ (!r. istopology r = (open(topology r) = r)) Run time: 0.0s Intermediate theorems generated: 4 TOPOLOGY = |- !L. open L re_null /\ open L re_universe /\ (!x y. open L x /\ open L y ==> open L(x re_intersect y)) /\ (!P. P re_subset (open L) ==> open L(re_Union P)) Run time: 0.0s Intermediate theorems generated: 34 TOPOLOGY_UNION = |- !L P. P re_subset (open L) ==> open L(re_Union P) Run time: 0.0s Intermediate theorems generated: 45 neigh = |- !top N x. neigh top(N,x) = (?P. open top P /\ P re_subset N /\ P x) Run time: 0.0s Intermediate theorems generated: 2 OPEN_OWN_NEIGH = |- !S top x. open top S /\ S x ==> neigh top(S,x) Run time: 0.0s Intermediate theorems generated: 40 OPEN_UNOPEN = |- !S top. open top S = (re_Union(\P. open top P /\ P re_subset S) = S) Run time: 0.0s Intermediate theorems generated: 212 OPEN_SUBOPEN = |- !S top. open top S = (!x. S x ==> (?P. P x /\ open top P /\ P re_subset S)) Run time: 0.0s Intermediate theorems generated: 245 OPEN_NEIGH = |- !S top. open top S = (!x. S x ==> (?N. neigh top(N,x) /\ N re_subset S)) Run time: 0.0s Intermediate theorems generated: 170 closed = |- !L S. closed L S = open L(re_compl S) Run time: 0.0s Intermediate theorems generated: 2 limpt = |- !top x S. limpt top x S = (!N. neigh top(N,x) ==> (?y. ~(x = y) /\ S y /\ N y)) Run time: 0.0s Intermediate theorems generated: 2 CLOSED_LIMPT = |- !top S. closed top S = (!x. limpt top x S ==> S x) Run time: 0.0s Intermediate theorems generated: 433 ismet = |- !m. ismet m = (!x y. (m(x,y) = & 0) = (x = y)) /\ (!x y z. (m(y,z)) <= ((m(x,y)) + (m(x,z)))) Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_LE_ADD2 autoloading from theory `REAL` ... REAL_LE_ADD2 = |- !w x y z. w <= x /\ y <= z ==> (w + y) <= (x + z) Run time: 0.0s Theorem REAL_LE_01 autoloading from theory `REAL` ... REAL_LE_01 = |- (& 0) <= (& 1) Run time: 0.0s Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Theorem REAL_ADD_RID autoloading from theory `REAL` ... REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem REAL_10 autoloading from theory `REAL` ... REAL_10 = |- ~(& 1 = & 0) Run time: 0.0s metric_tydef = |- ?rep. TYPE_DEFINITION ismet rep Run time: 0.0s Intermediate theorems generated: 560 metric_tybij = |- (!a. metric(dist a) = a) /\ (!r. ismet r = (dist(metric r) = r)) Run time: 0.0s Intermediate theorems generated: 4 METRIC_ISMET = |- !m. ismet(dist m) Run time: 0.0s Intermediate theorems generated: 20 METRIC_ZERO = |- !m x y. (dist m(x,y) = & 0) = (x = y) Run time: 0.0s Intermediate theorems generated: 41 METRIC_SAME = |- !m x. dist m(x,x) = & 0 Run time: 0.0s Intermediate theorems generated: 16 Theorem REAL_LT_ADD2 autoloading from theory `REAL` ... REAL_LT_ADD2 = |- !w x y z. w < x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Theorem REAL_NOT_LE autoloading from theory `REAL` ... REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s METRIC_POS = |- !m x y. (& 0) <= (dist m(x,y)) Run time: 0.0s Intermediate theorems generated: 91 Theorem REAL_LE_ANTISYM autoloading from theory `REAL` ... REAL_LE_ANTISYM = |- !x y. x <= y /\ y <= x = (x = y) Run time: 0.0s METRIC_SYM = |- !m x y. dist m(x,y) = dist m(y,x) Run time: 0.0s Intermediate theorems generated: 99 METRIC_TRIANGLE = |- !m x y z. (dist m(x,z)) <= ((dist m(x,y)) + (dist m(y,z))) Run time: 0.0s Intermediate theorems generated: 52 Theorem REAL_LE_LT autoloading from theory `REAL` ... REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s METRIC_NZ = |- !m x y. ~(x = y) ==> (& 0) < (dist m(x,y)) Run time: 0.0s Intermediate theorems generated: 78 mtop = |- !m. mtop m = topology (\S. !x. S x ==> (?e. (& 0) < e /\ (!y. (dist m(x,y)) < e ==> S y))) Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_LT_TOTAL autoloading from theory `REAL` ... REAL_LT_TOTAL = |- !x y. (x = y) \/ x < y \/ y < x Run time: 0.0s Theorem REAL_LT_01 autoloading from theory `REAL` ... REAL_LT_01 = |- (& 0) < (& 1) Run time: 0.0s mtop_istopology = |- !m. istopology (\S. !x. S x ==> (?e. (& 0) < e /\ (!y. (dist m(x,y)) < e ==> S y))) Run time: 0.0s Intermediate theorems generated: 544 MTOP_OPEN = |- !m. open(mtop m)S = (!x. S x ==> (?e. (& 0) < e /\ (!y. (dist m(x,y)) < e ==> S y))) Run time: 0.0s Intermediate theorems generated: 38 ball = |- !m x e. B m(x,e) = (\y. (dist m(x,y)) < e) Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem REAL_LT_SUB_LADD autoloading from theory `REAL` ... REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s BALL_OPEN = |- !m x e. (& 0) < e ==> open(mtop m)(B m(x,e)) Run time: 0.0s Intermediate theorems generated: 161 BALL_NEIGH = |- !m x e. (& 0) < e ==> neigh(mtop m)(B m(x,e),x) Run time: 0.0s Intermediate theorems generated: 76 MTOP_LIMPT = |- !m x S. limpt(mtop m)x S = (!e. (& 0) < e ==> (?y. ~(x = y) /\ S y /\ (dist m(x,y)) < e)) Run time: 0.0s Intermediate theorems generated: 298 Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 Theorem ABS_TRIANGLE autoloading from theory `REAL` ... ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Theorem ABS_NEG autoloading from theory `REAL` ... ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s Theorem REAL_SUB_0 autoloading from theory `REAL` ... REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s Theorem ABS_ZERO autoloading from theory `REAL` ... ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s ISMET_R1 = |- ismet(\(x,y). abs(y - x)) Run time: 0.0s Intermediate theorems generated: 204 mr1 = |- mr1 = metric(\(x,y). abs(y - x)) Run time: 0.0s Intermediate theorems generated: 2 MR1_DEF = |- !x y. dist mr1(x,y) = abs(y - x) Run time: 0.0s Intermediate theorems generated: 32 Theorem REAL_ADD_SUB autoloading from theory `REAL` ... REAL_ADD_SUB = |- !x y. (x + y) - x = y Run time: 0.0s MR1_ADD = |- !x d. dist mr1(x,x + d) = abs d Run time: 0.0s Intermediate theorems generated: 25 Theorem REAL_SUB_SUB autoloading from theory `REAL` ... REAL_SUB_SUB = |- !x y. (x - y) - x = -- y Run time: 0.0s MR1_SUB = |- !x d. dist mr1(x,x - d) = abs d Run time: 0.0s Intermediate theorems generated: 30 Definition abs autoloading from theory `REAL` ... abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 1 MR1_ADD_LE = |- !x d. (& 0) <= d ==> (dist mr1(x,x + d) = d) Run time: 0.0s Intermediate theorems generated: 34 MR1_SUB_LE = |- !x d. (& 0) <= d ==> (dist mr1(x,x - d) = d) Run time: 0.0s Intermediate theorems generated: 34 Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s MR1_ADD_LT = |- !x d. (& 0) < d ==> (dist mr1(x,x + d) = d) Run time: 0.0s Intermediate theorems generated: 11 MR1_SUB_LT = |- !x d. (& 0) < d ==> (dist mr1(x,x - d) = d) Run time: 0.0s Intermediate theorems generated: 11 Theorem ABS_BETWEEN1 autoloading from theory `REAL` ... ABS_BETWEEN1 = |- !x y z. x < z /\ (abs(y - x)) < (z - x) ==> y < z Run time: 0.0s MR1_BETWEEN1 = |- !x y z. x < z /\ (dist mr1(x,y)) < (z - x) ==> y < z Run time: 0.0s Intermediate theorems generated: 29 Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s Theorem REAL_ADD_RID_UNIQ autoloading from theory `REAL` ... REAL_ADD_RID_UNIQ = |- !x y. (x + y = x) = (y = & 0) Run time: 0.0s Theorem REAL_LT_HALF2 autoloading from theory `REAL` ... REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s MR1_LIMPT = |- !x. limpt(mtop mr1)x re_universe Run time: 0.0s Intermediate theorems generated: 143 () : void Run time: 0.0s Intermediate theorems generated: 1 File topology.ml loaded () : void Run time: 0.1s Intermediate theorems generated: 4132 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `nets.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory TOPOLOGY loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s real_interface_map = [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s [] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 30 () : void Run time: 0.0s () : void Run time: 0.0s dorder = |- !g. dorder g = (!x y. g x x /\ g y y ==> (?z. g z z /\ (!w. g w z ==> g w x /\ g w y))) Run time: 0.0s Intermediate theorems generated: 2 tends = |- !s l top g. (s tends l)(top,g) = (!N. neigh top(N,l) ==> (?n. g n n /\ (!m. g m n ==> N(s m)))) Run time: 0.0s Intermediate theorems generated: 2 bounded = |- !m g f. bounded(m,g)f = (?k x N. g N N /\ (!n. g n N ==> (dist m(f n,x)) < k)) Run time: 0.0s Intermediate theorems generated: 2 tendsto = |- !m x y z. tendsto(m,x)y z = (& 0) < (dist m(x,y)) /\ (dist m(x,y)) <= (dist m(x,z)) Run time: 0.0s Intermediate theorems generated: 2 [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s DORDER_LEMMA = |- !g. dorder g ==> (!P Q. (?n. g n n /\ (!m. g m n ==> P m)) /\ (?n. g n n /\ (!m. g m n ==> Q m)) ==> (?n. g n n /\ (!m. g m n ==> P m /\ Q m))) Run time: 0.0s Intermediate theorems generated: 312 DORDER_THEN = - : ((thm -> *) -> thm -> *) Run time: 0.0s Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m num_le n /\ n num_le p ==> m num_le p Run time: 0.0s Theorem LESS_EQ_CASES autoloading from theory `arithmetic` ... LESS_EQ_CASES = |- !m n. m num_le n \/ n num_le m Run time: 0.0s Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m num_le m Run time: 0.0s Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n num_ge m = m num_le n Run time: 0.0s DORDER_NGE = |- dorder $num_ge Run time: 0.0s Intermediate theorems generated: 136 Theorem REAL_LE_TRANS autoloading from theory `REAL` ... REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s Theorem REAL_LE_TOTAL autoloading from theory `REAL` ... REAL_LE_TOTAL = |- !x y. x <= y \/ y <= x Run time: 0.0s Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s DORDER_TENDSTO = |- !m x. dorder(tendsto(m,x)) Run time: 0.0s Intermediate theorems generated: 257 Definition re_subset autoloading from theory `TOPOLOGY` ... re_subset = |- !P Q. P re_subset Q = (!x. P x ==> Q x) Run time: 0.0s Intermediate theorems generated: 1 Theorem MTOP_OPEN autoloading from theory `TOPOLOGY` ... MTOP_OPEN = |- !m. open(mtop m)S = (!x. S x ==> (?e. (& 0) < e /\ (!y. (dist m(x,y)) < e ==> S y))) Run time: 0.0s Definition neigh autoloading from theory `TOPOLOGY` ... neigh = |- !top N x. neigh top(N,x) = (?P. open top P /\ P re_subset N /\ P x) Run time: 0.0s Intermediate theorems generated: 1 Theorem METRIC_SYM autoloading from theory `TOPOLOGY` ... METRIC_SYM = |- !m x y. dist m(x,y) = dist m(y,x) Run time: 0.0s Definition ball autoloading from theory `TOPOLOGY` ... ball = |- !m x e. B m(x,e) = (\y. (dist m(x,y)) < e) Run time: 0.0s Intermediate theorems generated: 1 Theorem BALL_NEIGH autoloading from theory `TOPOLOGY` ... BALL_NEIGH = |- !m x e. (& 0) < e ==> neigh(mtop m)(B m(x,e),x) Run time: 0.0s MTOP_TENDS = |- !d g x x0. (x --> x0)(mtop d,g) = (!e. (& 0) < e ==> (?n. g n n /\ (!m. g m n ==> (dist d(x m,x0)) < e))) Run time: 0.0s Intermediate theorems generated: 373 Theorem METRIC_TRIANGLE autoloading from theory `TOPOLOGY` ... METRIC_TRIANGLE = |- !m x y z. (dist m(x,z)) <= ((dist m(x,y)) + (dist m(y,z))) Run time: 0.0s Theorem REAL_NOT_LT autoloading from theory `REAL` ... REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s Theorem REAL_HALF_DOUBLE autoloading from theory `REAL` ... REAL_HALF_DOUBLE = |- !x. (x / (& 2)) + (x / (& 2)) = x Run time: 0.0s Theorem REAL_LT_ADD2 autoloading from theory `REAL` ... REAL_LT_ADD2 = |- !w x y z. w < x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Theorem METRIC_NZ autoloading from theory `TOPOLOGY` ... METRIC_NZ = |- !m x y. ~(x = y) ==> (& 0) < (dist m(x,y)) Run time: 0.0s Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s MTOP_TENDS_UNIQ = |- !g d. dorder g ==> (x --> x0)(mtop d,g) /\ (x --> x1)(mtop d,g) ==> (x0 = x1) Run time: 0.0s Intermediate theorems generated: 313 SEQ_TENDS = |- !d x x0. (x --> x0)(mtop d,$num_ge) = (!e. (& 0) < e ==> (?N. !n. n num_ge N ==> (dist d(x n,x0)) < e)) Run time: 0.0s Intermediate theorems generated: 64 Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s Definition re_universe autoloading from theory `TOPOLOGY` ... re_universe = |- re_universe = (\x. T) Run time: 0.0s Intermediate theorems generated: 1 Theorem MTOP_LIMPT autoloading from theory `TOPOLOGY` ... MTOP_LIMPT = |- !m x S. limpt(mtop m)x S = (!e. (& 0) < e ==> (?y. ~(x = y) /\ S y /\ (dist m(x,y)) < e)) Run time: 0.0s LIM_TENDS = |- !m1 m2 f x0 y0. limpt(mtop m1)x0 re_universe ==> ((f --> y0)(mtop m2,tendsto(m1,x0)) = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (dist m1(x,x0)) /\ (dist m1(x,x0)) <= d ==> (dist m2(f x,y0)) < e)))) Run time: 0.0s Intermediate theorems generated: 459 Theorem REAL_LT_HALF2 autoloading from theory `REAL` ... REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s LIM_TENDS2 = |- !m1 m2 f x0 y0. limpt(mtop m1)x0 re_universe ==> ((f --> y0)(mtop m2,tendsto(m1,x0)) = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (dist m1(x,x0)) /\ (dist m1(x,x0)) < d ==> (dist m2(f x,y0)) < e)))) Run time: 0.0s Intermediate theorems generated: 246 Theorem ABS_NEG autoloading from theory `REAL` ... ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s Theorem REAL_SUB_LZERO autoloading from theory `REAL` ... REAL_SUB_LZERO = |- !x. (& 0) - x = -- x Run time: 0.0s Theorem ABS_SUB autoloading from theory `REAL` ... ABS_SUB = |- !x y. abs(x - y) = abs(y - x) Run time: 0.0s Theorem REAL_LT_RADD autoloading from theory `REAL` ... REAL_LT_RADD = |- !x y z. (x + z) < (y + z) = x < y Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem ABS_TRIANGLE autoloading from theory `REAL` ... ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Theorem REAL_SUB_ADD autoloading from theory `REAL` ... REAL_SUB_ADD = |- !x y. (x - y) + y = x Run time: 0.0s Theorem MR1_DEF autoloading from theory `TOPOLOGY` ... MR1_DEF = |- !x y. dist mr1(x,y) = abs(y - x) Run time: 0.0s MR1_BOUNDED = |- !g f. bounded(mr1,g)f = (?k N. g N N /\ (!n. g n N ==> (abs(f n)) < k)) Run time: 0.0s Intermediate theorems generated: 331 Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s NET_NULL = |- !g x x0. (x --> x0)(mtop mr1,g) = ((\n. (x n) - x0) --> (& 0))(mtop mr1,g) Run time: 0.0s Intermediate theorems generated: 151 Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 num_lt (SUC n) Run time: 0.0s Theorem REAL_LT autoloading from theory `REAL` ... REAL_LT = |- !m n. (& m) < (& n) = m num_lt n Run time: 0.0s NET_CONV_BOUNDED = |- !g x x0. (x --> x0)(mtop mr1,g) ==> bounded(mr1,g)x Run time: 0.0s Intermediate theorems generated: 119 Theorem REAL_LT_REFL autoloading from theory `REAL` ... REAL_LT_REFL = |- !x. ~x < x Run time: 0.0s Theorem REAL_SUB_RZERO autoloading from theory `REAL` ... REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s Theorem ABS_NZ autoloading from theory `REAL` ... ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s NET_CONV_NZ = |- !g x x0. (x --> x0)(mtop mr1,g) /\ ~(x0 = & 0) ==> (?N. g N N /\ (!n. g n N ==> ~(x n = & 0))) Run time: 0.0s Intermediate theorems generated: 165 Theorem REAL_LT_INV autoloading from theory `REAL` ... REAL_LT_INV = |- !x y. (& 0) < x /\ x < y ==> (inv y) < (inv x) Run time: 0.0s Theorem ABS_INV autoloading from theory `REAL` ... ABS_INV = |- !x. ~(x = & 0) ==> (abs(inv x) = inv(abs x)) Run time: 0.0s Theorem REAL_INJ autoloading from theory `REAL` ... REAL_INJ = |- !m n. (& m = & n) = (m = n) Run time: 0.0s Theorem ABS_ABS autoloading from theory `REAL` ... ABS_ABS = |- !x. abs(abs x) = abs x Run time: 0.0s Theorem REAL_MUL_LID autoloading from theory `REAL` ... REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.0s Theorem REAL_MUL_LINV autoloading from theory `REAL` ... REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s Theorem REAL_MUL_SYM autoloading from theory `REAL` ... REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Theorem REAL_MUL_ASSOC autoloading from theory `REAL` ... REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Definition real_div autoloading from theory `REAL` ... real_div = |- !x y. x / y = x * (inv y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_RINV_UNIQ autoloading from theory `REAL` ... REAL_RINV_UNIQ = |- !x y. (x * y = & 1) ==> (y = inv x) Run time: 0.0s Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_LT_LADD autoloading from theory `REAL` ... REAL_LT_LADD = |- !x y z. (x + y) < (x + z) = y < z Run time: 0.0s NET_CONV_IBOUNDED = |- !g x x0. (x --> x0)(mtop mr1,g) /\ ~(x0 = & 0) ==> bounded(mr1,g)(\n. inv(x n)) Run time: 0.0s Intermediate theorems generated: 493 NET_NULL_ADD = |- !g. dorder g ==> (!x y. (x --> (& 0))(mtop mr1,g) /\ (y --> (& 0))(mtop mr1,g) ==> ((\n. (x n) + (y n)) --> (& 0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 324 Theorem REAL_LT_MUL2 autoloading from theory `REAL` ... REAL_LT_MUL2 = |- !x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 < x2 /\ y1 < y2 ==> (x1 * y1) < (x2 * y2) Run time: 0.0s Theorem ABS_MUL autoloading from theory `REAL` ... ABS_MUL = |- !x y. abs(x * y) = (abs x) * (abs y) Run time: 0.0s Theorem REAL_DIV_LMUL autoloading from theory `REAL` ... REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s Theorem REAL_LT_RDIV_0 autoloading from theory `REAL` ... REAL_LT_RDIV_0 = |- !y z. (& 0) < z ==> ((& 0) < (y / z) = (& 0) < y) Run time: 0.0s Theorem ABS_POS autoloading from theory `REAL` ... ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s NET_NULL_MUL = |- !g. dorder g ==> (!x y. bounded(mr1,g)x /\ (y --> (& 0))(mtop mr1,g) ==> ((\n. (x n) * (y n)) --> (& 0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 484 Theorem REAL_LT_LMUL autoloading from theory `REAL` ... REAL_LT_LMUL = |- !x y z. (& 0) < x ==> ((x * y) < (x * z) = y < z) Run time: 0.0s Theorem ABS_ZERO autoloading from theory `REAL` ... ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s Theorem REAL_INV_POS autoloading from theory `REAL` ... REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Theorem REAL_LT_MUL autoloading from theory `REAL` ... REAL_LT_MUL = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x * y) Run time: 0.0s Definition abs autoloading from theory `REAL` ... abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_MUL_LZERO autoloading from theory `REAL` ... REAL_MUL_LZERO = |- !x. (& 0) * x = & 0 Run time: 0.0s Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s NET_NULL_CMUL = |- !g k x. (x --> (& 0))(mtop mr1,g) ==> ((\n. k * (x n)) --> (& 0))(mtop mr1,g) Run time: 0.1s Intermediate theorems generated: 506 Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Theorem REAL_NEG_ADD autoloading from theory `REAL` ... REAL_NEG_ADD = |- !x y. --(x + y) = (-- x) + (-- y) Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 NET_ADD = |- !g. dorder g ==> (!x x0 y y0. (x --> x0)(mtop mr1,g) /\ (y --> y0)(mtop mr1,g) ==> ((\n. (x n) + (y n)) --> (x0 + y0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 167 Theorem REAL_SUB_NEG2 autoloading from theory `REAL` ... REAL_SUB_NEG2 = |- !x y. (-- x) - (-- y) = y - x Run time: 0.0s NET_NEG = |- !g. dorder g ==> (!x x0. (x --> x0)(mtop mr1,g) = ((\n. --(x n)) --> (-- x0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 121 NET_SUB = |- !g. dorder g ==> (!x x0 y y0. (x --> x0)(mtop mr1,g) /\ (y --> y0)(mtop mr1,g) ==> ((\n. (x n) - (y n)) --> (x0 - y0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 95 Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_NEG_RMUL autoloading from theory `REAL` ... REAL_NEG_RMUL = |- !x y. --(x * y) = x * (-- y) Run time: 0.0s Theorem REAL_NEG_LMUL autoloading from theory `REAL` ... REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Theorem REAL_RDISTRIB autoloading from theory `REAL` ... REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Theorem REAL_LDISTRIB autoloading from theory `REAL` ... REAL_LDISTRIB = |- !x y z. x * (y + z) = (x * y) + (x * z) Run time: 0.0s NET_MUL = |- !g. dorder g ==> (!x y x0 y0. (x --> x0)(mtop mr1,g) /\ (y --> y0)(mtop mr1,g) ==> ((\n. (x n) * (y n)) --> (x0 * y0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 338 Theorem REAL_INV_NZ autoloading from theory `REAL` ... REAL_INV_NZ = |- !x. ~(x = & 0) ==> ~(inv x = & 0) Run time: 0.0s Theorem ABS_LT_MUL2 autoloading from theory `REAL` ... ABS_LT_MUL2 = |- !w x y z. (abs w) < y /\ (abs x) < z ==> (abs(w * x)) < (y * z) Run time: 0.0s Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m num_le n = m num_lt n \/ (m = n) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LE autoloading from theory `REAL` ... REAL_LE = |- !m n. (& m) <= (& n) = m num_le n Run time: 0.0s Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s Theorem REAL_MUL_RINV autoloading from theory `REAL` ... REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Theorem REAL_MUL_RID autoloading from theory `REAL` ... REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Theorem REAL_SUB_LDISTRIB autoloading from theory `REAL` ... REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s NET_INV = |- !g. dorder g ==> (!x x0. (x --> x0)(mtop mr1,g) /\ ~(x0 = & 0) ==> ((\n. inv(x n)) --> (inv x0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 1253 NET_DIV = |- !g. dorder g ==> (!x x0 y y0. (x --> x0)(mtop mr1,g) /\ (y --> y0)(mtop mr1,g) /\ ~(y0 = & 0) ==> ((\n. (x n) / (y n)) --> (x0 / y0))(mtop mr1,g)) Run time: 0.0s Intermediate theorems generated: 106 Theorem ABS_SUB_ABS autoloading from theory `REAL` ... ABS_SUB_ABS = |- !x y. (abs((abs x) - (abs y))) <= (abs(x - y)) Run time: 0.0s NET_ABS = |- !x x0. (x --> x0)(mtop mr1,g) ==> ((\n. abs(x n)) --> (abs x0))(mtop mr1,g) Run time: 0.0s Intermediate theorems generated: 128 Theorem ABS_BETWEEN2 autoloading from theory `REAL` ... ABS_BETWEEN2 = |- !x0 x y0 y. x0 < y0 /\ (abs(x - x0)) < ((y0 - x0) / (& 2)) /\ (abs(y - y0)) < ((y0 - x0) / (& 2)) ==> x < y Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s Theorem REAL_NOT_LE autoloading from theory `REAL` ... REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s NET_LE = |- !g. dorder g ==> (!x x0 y y0. (x --> x0)(mtop mr1,g) /\ (y --> y0)(mtop mr1,g) /\ (?N. g N N /\ (!n. g n N ==> (x n) <= (y n))) ==> x0 <= y0) Run time: 0.0s Intermediate theorems generated: 400 () : void Run time: 0.0s Intermediate theorems generated: 1 File nets.ml loaded () : void Run time: 0.2s Intermediate theorems generated: 7389 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `seq.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory NETS loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s real_interface_map = [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s [] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 34 () : void Run time: 0.0s [(); ()] : void list Run time: 0.0s tends_num_real = |- !x x0. x tends_num_real x0 = (x tends x0)(mtop mr1,$num_ge) Run time: 0.0s Intermediate theorems generated: 2 [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s Theorem ABS_SUB autoloading from theory `REAL` ... ABS_SUB = |- !x y. abs(x - y) = abs(y - x) Run time: 0.0s Theorem MR1_DEF autoloading from theory `TOPOLOGY` ... MR1_DEF = |- !x y. dist mr1(x,y) = abs(y - x) Run time: 0.0s Theorem SEQ_TENDS autoloading from theory `NETS` ... SEQ_TENDS = |- !d x x0. (x tends x0)(mtop d,$num_ge) = (!e. (& 0) < e ==> (?N. !n. n num_ge N ==> (dist d(x n,x0)) < e)) Run time: 0.0s SEQ = |- !x x0. x --> x0 = (!e. (& 0) < e ==> (?N. !n. n num_ge N ==> (abs((x n) - x0)) < e)) Run time: 0.0s Intermediate theorems generated: 64 Theorem ABS_0 autoloading from theory `REAL` ... ABS_0 = |- abs(& 0) = & 0 Run time: 0.0s Theorem REAL_SUB_REFL autoloading from theory `REAL` ... REAL_SUB_REFL = |- !x. x - x = & 0 Run time: 0.0s SEQ_CONST = |- !k. (\x. k) --> k Run time: 0.0s Intermediate theorems generated: 58 Theorem DORDER_NGE autoloading from theory `NETS` ... DORDER_NGE = |- dorder $num_ge Run time: 0.0s Theorem NET_ADD autoloading from theory `NETS` ... NET_ADD = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) + (y n)) tends (x0 + y0))(mtop mr1,g)) Run time: 0.0s SEQ_ADD = |- !x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. (x n) + (y n)) --> (x0 + y0) Run time: 0.0s Intermediate theorems generated: 33 Theorem NET_MUL autoloading from theory `NETS` ... NET_MUL = |- !g. dorder g ==> (!x y x0 y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) * (y n)) tends (x0 * y0))(mtop mr1,g)) Run time: 0.0s SEQ_MUL = |- !x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. (x n) * (y n)) --> (x0 * y0) Run time: 0.0s Intermediate theorems generated: 33 Theorem NET_NEG autoloading from theory `NETS` ... NET_NEG = |- !g. dorder g ==> (!x x0. (x tends x0)(mtop mr1,g) = ((\n. --(x n)) tends (-- x0))(mtop mr1,g)) Run time: 0.0s SEQ_NEG = |- !x x0. x --> x0 = (\n. --(x n)) --> (-- x0) Run time: 0.0s Intermediate theorems generated: 26 Theorem NET_INV autoloading from theory `NETS` ... NET_INV = |- !g. dorder g ==> (!x x0. (x tends x0)(mtop mr1,g) /\ ~(x0 = & 0) ==> ((\n. inv(x n)) tends (inv x0))(mtop mr1,g)) Run time: 0.0s SEQ_INV = |- !x x0. x --> x0 /\ ~(x0 = & 0) ==> (\n. inv(x n)) --> (inv x0) Run time: 0.0s Intermediate theorems generated: 28 Theorem NET_SUB autoloading from theory `NETS` ... NET_SUB = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) - (y n)) tends (x0 - y0))(mtop mr1,g)) Run time: 0.0s SEQ_SUB = |- !x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. (x n) - (y n)) --> (x0 - y0) Run time: 0.0s Intermediate theorems generated: 33 Theorem NET_DIV autoloading from theory `NETS` ... NET_DIV = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) /\ ~(y0 = & 0) ==> ((\n. (x n) / (y n)) tends (x0 / y0))(mtop mr1,g)) Run time: 0.0s SEQ_DIV = |- !x x0 y y0. x --> x0 /\ y --> y0 /\ ~(y0 = & 0) ==> (\n. (x n) / (y n)) --> (x0 / y0) Run time: 0.0s Intermediate theorems generated: 35 Theorem MTOP_TENDS_UNIQ autoloading from theory `NETS` ... MTOP_TENDS_UNIQ = |- !g d. dorder g ==> (x tends x0)(mtop d,g) /\ (x tends x1)(mtop d,g) ==> (x0 = x1) Run time: 0.0s SEQ_UNIQ = |- !x x1 x2. x --> x1 /\ x --> x2 ==> (x1 = x2) Run time: 0.0s Intermediate theorems generated: 28 convergent = |- !f. convergent f = (?l. f --> l) Run time: 0.0s Intermediate theorems generated: 2 cauchy = |- !f. cauchy f = (!e. (& 0) < e ==> (?N. !m n. m num_ge N /\ n num_ge N ==> (abs((f m) - (f n))) < e)) Run time: 0.0s Intermediate theorems generated: 2 lim = |- !f. lim f = (@l. f --> l) Run time: 0.0s Intermediate theorems generated: 2 SEQ_LIM = |- !f. convergent f = f --> (lim f) Run time: 0.0s Intermediate theorems generated: 36 subseq = |- !f. subseq f = (!m n. m num_lt n ==> (f m) num_lt (f n)) Run time: 0.0s Intermediate theorems generated: 2 Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 num_add m = m) /\ (m num_add 0 = m) /\ ((SUC m) num_add n = SUC(m num_add n)) /\ (m num_add (SUC n) = SUC(m num_add n)) Run time: 0.1s Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m num_lt n /\ n num_lt p ==> m num_lt p Run time: 0.0s Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m num_add 1 Run time: 0.0s Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n num_lt m ==> (?p. m = n num_add (p num_add 1)) Run time: 0.0s Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s SUBSEQ_SUC = |- !f. subseq f = (!n. (f n) num_lt (f(SUC n))) Run time: 0.0s Intermediate theorems generated: 182 mono = |- !f. mono f = (!m n. m num_le n ==> (f m) <= (f n)) \/ (!m n. m num_le n ==> (f m) >= (f n)) Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_LE_TRANS autoloading from theory `REAL` ... REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Theorem LESS_EQUAL_ADD autoloading from theory `arithmetic` ... LESS_EQUAL_ADD = |- !m n. m num_le n ==> (?p. n = m num_add p) Run time: 0.0s Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m num_le (SUC m) Run time: 0.0s Definition real_ge autoloading from theory `REAL` ... real_ge = |- !x y. x >= y = y <= x Run time: 0.0s Intermediate theorems generated: 1 MONO_SUC = |- !f. mono f = (!n. (f(SUC n)) >= (f n)) \/ (!n. (f(SUC n)) <= (f n)) Run time: 0.0s Intermediate theorems generated: 528 Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s Theorem REAL_LT_ADD1 autoloading from theory `REAL` ... REAL_LT_ADD1 = |- !x y. x <= y ==> x < (y + (& 1)) Run time: 0.0s Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m num_lt (SUC n) = (m = n) \/ m num_lt n Run time: 0.0s Theorem REAL_LET_TOTAL autoloading from theory `REAL` ... REAL_LET_TOTAL = |- !x y. x <= y \/ y < x Run time: 0.0s Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n num_lt 0 Run time: 0.0s MAX_LEMMA = |- !s N. ?k. !n. n num_lt N ==> (abs(s n)) < k Run time: 0.0s Intermediate theorems generated: 241 Theorem REAL_LTE_TRANS autoloading from theory `REAL` ... REAL_LTE_TRANS = |- !x y z. x < y /\ y <= z ==> x < z Run time: 0.0s Theorem LESS_CASES autoloading from theory `arithmetic` ... LESS_CASES = |- !m n. m num_lt n \/ n num_le m Run time: 0.0s Theorem REAL_LE_TOTAL autoloading from theory `REAL` ... REAL_LE_TOTAL = |- !x y. x <= y \/ y <= x Run time: 0.0s Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m num_le m Run time: 0.0s Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n num_ge m = m num_le n Run time: 0.0s Theorem MR1_BOUNDED autoloading from theory `NETS` ... MR1_BOUNDED = |- !g f. bounded(mr1,g)f = (?k N. g N N /\ (!n. g n N ==> (abs(f n)) < k)) Run time: 0.0s SEQ_BOUNDED = |- !s. bounded(mr1,$num_ge)s = (?k. !n. (abs(s n)) < k) Run time: 0.0s Intermediate theorems generated: 273 Theorem REAL_LE_NEG autoloading from theory `REAL` ... REAL_LE_NEG = |- !x y. (-- x) <= (-- y) = y <= x Run time: 0.0s Theorem REAL_LE_ADDR autoloading from theory `REAL` ... REAL_LE_ADDR = |- !x y. x <= (x + y) = (& 0) <= y Run time: 0.0s Theorem ABS_LE autoloading from theory `REAL` ... ABS_LE = |- !x. x <= (abs x) Run time: 0.0s Theorem ABS_POS autoloading from theory `REAL` ... ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s Theorem REAL_LE_ADDL autoloading from theory `REAL` ... REAL_LE_ADDL = |- !x y. y <= (x + y) = (& 0) <= x Run time: 0.0s Definition abs autoloading from theory `REAL` ... abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LT_01 autoloading from theory `REAL` ... REAL_LT_01 = |- (& 0) < (& 1) Run time: 0.0s Theorem REAL_LT_ADDR autoloading from theory `REAL` ... REAL_LT_ADDR = |- !x y. x < (x + y) = (& 0) < y Run time: 0.0s Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s SEQ_BOUNDED_2 = |- !f k K. (!n. k <= (f n) /\ (f n) <= K) ==> bounded(mr1,$num_ge)f Run time: 0.0s Intermediate theorems generated: 334 Definition bounded autoloading from theory `NETS` ... bounded = |- !m g f. bounded(m,g)f = (?k x N. g N N /\ (!n. g n N ==> (dist m(f n,x)) < k)) Run time: 0.0s Intermediate theorems generated: 1 SEQ_CBOUNDED = |- !f. cauchy f ==> bounded(mr1,$num_ge)f Run time: 0.0s Intermediate theorems generated: 110 Theorem REAL_LE_RADD autoloading from theory `REAL` ... REAL_LE_RADD = |- !x y z. (x + z) <= (y + z) = x <= y Run time: 0.0s Theorem REAL_ADD_RINV autoloading from theory `REAL` ... REAL_ADD_RINV = |- !x. x + (-- x) = & 0 Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s Theorem REAL_NOT_LT autoloading from theory `REAL` ... REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s Theorem REAL_LT_REFL autoloading from theory `REAL` ... REAL_LT_REFL = |- !x. ~x < x Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem REAL_LT_SUB_RADD autoloading from theory `REAL` ... REAL_LT_SUB_RADD = |- !x y z. (x - y) < z = x < (z + y) Run time: 0.0s Theorem REAL_SUP autoloading from theory `REAL` ... REAL_SUP = |- !P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (!y. (?x. P x /\ y < x) = y < (sup P)) Run time: 0.0s SEQ_ICONV = |- !f. bounded(mr1,$num_ge)f /\ (!m n. m num_ge n ==> (f m) >= (f n)) ==> convergent f Run time: 0.0s Intermediate theorems generated: 910 Theorem REAL_NEGNEG autoloading from theory `REAL` ... REAL_NEGNEG = |- !x. --(-- x) = x Run time: 0.0s SEQ_NEG_CONV = |- !f. convergent f = convergent(\n. --(f n)) Run time: 0.0s Intermediate theorems generated: 72 Theorem ABS_NEG autoloading from theory `REAL` ... ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s SEQ_NEG_BOUNDED = |- !f. bounded(mr1,$num_ge)(\n. --(f n)) = bounded(mr1,$num_ge)f Run time: 0.0s Intermediate theorems generated: 39 SEQ_BCONV = |- !f. bounded(mr1,$num_ge)f /\ mono f ==> convergent f Run time: 0.0s Intermediate theorems generated: 209 Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m num_le n /\ n num_le p ==> m num_le p Run time: 0.0s Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m num_le n = m num_lt n \/ (m = n) Run time: 0.0s Intermediate theorems generated: 1 Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m num_lt n = (SUC m) num_le n Run time: 0.0s Theorem REAL_NOT_LE autoloading from theory `REAL` ... REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m num_lt n ==> m num_le n Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s Definition GREATER autoloading from theory `arithmetic` ... GREATER = |- !m n. m num_gt n = n num_lt m Run time: 0.0s Intermediate theorems generated: 1 Theorem num_Axiom autoloading from theory `prim_rec` ... num_Axiom = |- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n) Run time: 0.0s SEQ_MONOSUB = |- !s. ?f. subseq f /\ mono(\n. s(f n)) Run time: 0.0s Intermediate theorems generated: 1286 SEQ_SBOUNDED = |- !s f. bounded(mr1,$num_ge)s ==> bounded(mr1,$num_ge)(\n. s(f n)) Run time: 0.0s Intermediate theorems generated: 34 Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) num_le (SUC m) = n num_le m Run time: 0.0s Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m num_lt n = n num_le m Run time: 0.0s SEQ_SUBLE = |- !f. subseq f ==> (!n. n num_le (f n)) Run time: 0.0s Intermediate theorems generated: 116 Theorem LESS_EQ_CASES autoloading from theory `arithmetic` ... LESS_EQ_CASES = |- !m n. m num_le n \/ n num_le m Run time: 0.0s SEQ_DIRECT = |- !f. subseq f ==> (!N1 N2. ?n. n num_ge N1 /\ (f n) num_ge N2) Run time: 0.0s Intermediate theorems generated: 118 Theorem REAL_LT_ADD2 autoloading from theory `REAL` ... REAL_LT_ADD2 = |- !w x y z. w < x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Theorem REAL_HALF_DOUBLE autoloading from theory `REAL` ... REAL_HALF_DOUBLE = |- !x. (x / (& 2)) + (x / (& 2)) = x Run time: 0.0s Theorem ABS_TRIANGLE autoloading from theory `REAL` ... ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Theorem REAL_SUB_TRIANGLE autoloading from theory `REAL` ... REAL_SUB_TRIANGLE = |- !a b c. (a - b) + (b - c) = a - c Run time: 0.0s Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s SEQ_CAUCHY = |- !f. cauchy f = convergent f Run time: 0.0s Intermediate theorems generated: 665 Theorem NET_LE autoloading from theory `NETS` ... NET_LE = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) /\ (?N. g N N /\ (!n. g n N ==> (x n) <= (y n))) ==> x0 <= y0) Run time: 0.0s SEQ_LE = |- !f g l m. f --> l /\ g --> m /\ (?N. !n. n num_ge N ==> (f n) <= (g n)) ==> l <= m Run time: 0.0s Intermediate theorems generated: 80 Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 num_lt (SUC n) Run time: 0.0s SEQ_SUC = |- !f l. f --> l = (\n. f(SUC n)) --> l Run time: 0.0s Intermediate theorems generated: 236 Theorem ABS_ABS autoloading from theory `REAL` ... ABS_ABS = |- !x. abs(abs x) = abs x Run time: 0.0s Theorem REAL_SUB_RZERO autoloading from theory `REAL` ... REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s SEQ_ABS = |- !f. (\n. abs(f n)) --> (& 0) = f --> (& 0) Run time: 0.0s Intermediate theorems generated: 70 Theorem NET_ABS autoloading from theory `NETS` ... NET_ABS = |- !x x0. (x tends x0)(mtop mr1,g) ==> ((\n. abs(x n)) tends (abs x0))(mtop mr1,g) Run time: 0.0s SEQ_ABS_IMP = |- !f l. f --> l ==> (\n. abs(f n)) --> (abs l) Run time: 0.0s Intermediate theorems generated: 20 Theorem REAL_LT_INV autoloading from theory `REAL` ... REAL_LT_INV = |- !x y. (& 0) < x /\ x < y ==> (inv y) < (inv x) Run time: 0.0s Theorem REAL_INVINV autoloading from theory `REAL` ... REAL_INVINV = |- !x. ~(x = & 0) ==> (inv(inv x) = x) Run time: 0.0s Theorem ABS_INV autoloading from theory `REAL` ... ABS_INV = |- !x. ~(x = & 0) ==> (abs(inv x) = inv(abs x)) Run time: 0.0s Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_INV_POS autoloading from theory `REAL` ... REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Definition real_gt autoloading from theory `REAL` ... real_gt = |- !x y. x > y = y < x Run time: 0.0s Intermediate theorems generated: 1 SEQ_INV0 = |- !f. (!y. ?N. !n. n num_ge N ==> (f n) > y) ==> (\n. inv(f n)) --> (& 0) Run time: 0.0s Intermediate theorems generated: 423 Theorem POW_0 autoloading from theory `REAL` ... POW_0 = |- !n. (& 0) pow (SUC n) = & 0 Run time: 0.0s Theorem REAL_SUB_ADD autoloading from theory `REAL` ... REAL_SUB_ADD = |- !x y. (x - y) + y = x Run time: 0.0s Theorem POW_PLUS1 autoloading from theory `REAL` ... POW_PLUS1 = |- !e. (& 0) < e ==> (!n. ((& 1) + ((& n) * e)) <= (((& 1) + e) pow n)) Run time: 0.0s Theorem REAL_LT_ADDL autoloading from theory `REAL` ... REAL_LT_ADDL = |- !x y. y < (x + y) = (& 0) < x Run time: 0.0s Theorem REAL_LE autoloading from theory `REAL` ... REAL_LE = |- !m n. (& m) <= (& n) = m num_le n Run time: 0.0s Theorem REAL_LE_RMUL autoloading from theory `REAL` ... REAL_LE_RMUL = |- !x y z. (& 0) < z ==> ((x * z) <= (y * z) = x <= y) Run time: 0.0s Theorem REAL_ARCH autoloading from theory `REAL` ... REAL_ARCH = |- !x. (& 0) < x ==> (!y. ?n. y < ((& n) * x)) Run time: 0.0s Theorem REAL_INV1 autoloading from theory `REAL` ... REAL_INV1 = |- inv(& 1) = & 1 Run time: 0.0s Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem REAL_LT_SUB_LADD autoloading from theory `REAL` ... REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Theorem POW_INV autoloading from theory `REAL` ... POW_INV = |- !c. ~(c = & 0) ==> (!n. inv(c pow n) = (inv c) pow n) Run time: 0.0s Theorem ABS_NZ autoloading from theory `REAL` ... ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s Theorem POW_NZ autoloading from theory `REAL` ... POW_NZ = |- !c n. ~(c = & 0) ==> ~(c pow n = & 0) Run time: 0.0s Theorem REAL_LE_LT autoloading from theory `REAL` ... REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s SEQ_POWER_ABS = |- !c. (abs c) < (& 1) ==> (\n. (abs c) pow n) --> (& 0) Run time: 0.0s Intermediate theorems generated: 573 Theorem POW_ABS autoloading from theory `REAL` ... POW_ABS = |- !c n. (abs c) pow n = abs(c pow n) Run time: 0.0s SEQ_POWER = |- !c. (abs c) < (& 1) ==> (\n. c pow n) --> (& 0) Run time: 0.0s Intermediate theorems generated: 49 Theorem REAL_LE_LADD autoloading from theory `REAL` ... REAL_LE_LADD = |- !x y z. (x + y) <= (x + z) = y <= z Run time: 0.0s Theorem REAL_SUB_LE autoloading from theory `REAL` ... REAL_SUB_LE = |- !x y. (& 0) <= (x - y) = y <= x Run time: 0.0s Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m num_le (m num_add n) Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s NEST_LEMMA = |- !f g. (!n. (f(SUC n)) >= (f n)) /\ (!n. (g(SUC n)) <= (g n)) /\ (!n. (f n) <= (g n)) ==> (?l m. l <= m /\ ((!n. (f n) <= l) /\ f --> l) /\ (!n. m <= (g n)) /\ g --> m) Run time: 0.0s Intermediate theorems generated: 2190 Theorem REAL_SUB_0 autoloading from theory `REAL` ... REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s NEST_LEMMA_UNIQ = |- !f g. (!n. (f(SUC n)) >= (f n)) /\ (!n. (g(SUC n)) <= (g n)) /\ (!n. (f n) <= (g n)) /\ (\n. (f n) - (g n)) --> (& 0) ==> (?l. ((!n. (f n) <= l) /\ f --> l) /\ (!n. l <= (g n)) /\ g --> l) Run time: 0.0s Intermediate theorems generated: 295 Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m num_add n = n num_add m Run time: 0.0s Theorem REAL_MUL_LINV autoloading from theory `REAL` ... REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s Theorem REAL_LT autoloading from theory `REAL` ... REAL_LT = |- !m n. (& m) < (& n) = m num_lt n Run time: 0.0s Theorem REAL_LT_RMUL autoloading from theory `REAL` ... REAL_LT_RMUL = |- !x y z. (& 0) < z ==> ((x * z) < (y * z) = x < y) Run time: 0.0s Theorem ABS_N autoloading from theory `REAL` ... ABS_N = |- !n. abs(& n) = & n Run time: 0.0s Theorem REAL_MUL_RZERO autoloading from theory `REAL` ... REAL_MUL_RZERO = |- !x. x * (& 0) = & 0 Run time: 0.0s Theorem REAL_NEG_0 autoloading from theory `REAL` ... REAL_NEG_0 = |- --(& 0) = & 0 Run time: 0.0s Theorem REAL_MUL_RINV autoloading from theory `REAL` ... REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Theorem REAL_MUL_LID autoloading from theory `REAL` ... REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.0s Theorem REAL_INV_MUL autoloading from theory `REAL` ... REAL_INV_MUL = |- !x y. ~(x = & 0) /\ ~(y = & 0) ==> (inv(x * y) = (inv x) * (inv y)) Run time: 0.0s Theorem REAL_MUL_ASSOC autoloading from theory `REAL` ... REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Theorem REAL_MUL_SYM autoloading from theory `REAL` ... REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_ADD_RID autoloading from theory `REAL` ... REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Theorem REAL_NEG_ADD autoloading from theory `REAL` ... REAL_NEG_ADD = |- !x y. --(x + y) = (-- x) + (-- y) Run time: 0.0s Theorem REAL_DOUBLE autoloading from theory `REAL` ... REAL_DOUBLE = |- !x. x + x = (& 2) * x Run time: 0.0s Theorem REAL_INJ autoloading from theory `REAL` ... REAL_INJ = |- !m n. (& m = & n) = (m = n) Run time: 0.0s Theorem REAL_DIV_LMUL autoloading from theory `REAL` ... REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s Theorem REAL_SUB_LDISTRIB autoloading from theory `REAL` ... REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s Theorem REAL_EQ_LMUL_IMP autoloading from theory `REAL` ... REAL_EQ_LMUL_IMP = |- !x y z. ~(x = & 0) /\ (x * y = x * z) ==> (y = z) Run time: 0.0s Theorem REAL_MUL_RID autoloading from theory `REAL` ... REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Definition real_div autoloading from theory `REAL` ... real_div = |- !x y. x / y = x * (inv y) Run time: 0.0s Intermediate theorems generated: 1 Definition pow autoloading from theory `REAL` ... pow = |- (!x. x pow 0 = & 1) /\ (!x n. x pow (SUC n) = x * (x pow n)) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_MIDDLE1 autoloading from theory `REAL` ... REAL_MIDDLE1 = |- !a b. a <= b ==> a <= ((a + b) / (& 2)) Run time: 0.0s Theorem REAL_MIDDLE2 autoloading from theory `REAL` ... REAL_MIDDLE2 = |- !a b. a <= b ==> ((a + b) / (& 2)) <= b Run time: 0.0s BOLZANO_LEMMA = |- !P. (!a b c. a <= b /\ b <= c /\ P(a,b) /\ P(b,c) ==> P(a,c)) /\ (!x. ?d. (& 0) < d /\ (!a b. a <= x /\ x <= b /\ (b - a) < d ==> P(a,b))) ==> (!a b. a <= b ==> P(a,b)) Run time: 0.1s Intermediate theorems generated: 3396 sums = |- !f s. f sums s = (\n. Sum(0,n)f) --> s Run time: 0.0s Intermediate theorems generated: 2 summable = |- !f. summable f = (?s. f sums s) Run time: 0.0s Intermediate theorems generated: 2 suminf = |- !f. suminf f = (@s. f sums s) Run time: 0.0s Intermediate theorems generated: 2 SUM_SUMMABLE = |- !f l. f sums l ==> summable f Run time: 0.0s Intermediate theorems generated: 16 SUMMABLE_SUM = |- !f. summable f ==> f sums (suminf f) Run time: 0.0s Intermediate theorems generated: 30 SUM_UNIQ = |- !f x. f sums x ==> (x = suminf f) Run time: 0.0s Intermediate theorems generated: 69 Theorem SUM_ZERO autoloading from theory `REAL` ... SUM_ZERO = |- !f N. (!n. n num_ge N ==> (f n = & 0)) ==> (!m n. m num_ge N ==> (Sum(m,n)f = & 0)) Run time: 0.0s Theorem REAL_ADD_RID_UNIQ autoloading from theory `REAL` ... REAL_ADD_RID_UNIQ = |- !x y. (x + y = x) = (y = & 0) Run time: 0.0s Theorem SUM_TWO autoloading from theory `REAL` ... SUM_TWO = |- !f n p. (Sum(0,n)f) + (Sum(n,p)f) = Sum(0,n num_add p)f Run time: 0.0s Theorem ABS_ZERO autoloading from theory `REAL` ... ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s SER_0 = |- !f n. (!m. n num_le m ==> (f m = & 0)) ==> f sums (Sum(0,n)f) Run time: 0.0s Intermediate theorems generated: 175 Theorem SUM_POS_GEN autoloading from theory `REAL` ... SUM_POS_GEN = |- !f m. (!n. m num_le n ==> (& 0) <= (f n)) ==> (!n. (& 0) <= (Sum(m,n)f)) Run time: 0.0s SER_POS_LE = |- !f n. summable f /\ (!m. n num_le m ==> (& 0) <= (f m)) ==> (Sum(0,n)f) <= (suminf f) Run time: 0.0s Intermediate theorems generated: 220 Theorem Sum autoloading from theory `REAL` ... Sum = |- (Sum(n,0)f = & 0) /\ (Sum(n,SUC m)f = (Sum(n,m)f) + (f(n num_add m))) Run time: 0.0s SER_POS_LT = |- !f n. summable f /\ (!m. n num_le m ==> (& 0) < (f m)) ==> (Sum(0,n)f) < (suminf f) Run time: 0.0s Intermediate theorems generated: 209 Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n num_lt n Run time: 0.0s Theorem LESS_EQ_0 autoloading from theory `arithmetic` ... LESS_EQ_0 = |- !n. n num_le 0 = (n = 0) Run time: 0.0s Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 num_mul m = 0) /\ (m num_mul 0 = 0) /\ (1 num_mul m = m) /\ (m num_mul 1 = m) /\ ((SUC m) num_mul n = (m num_mul n) num_add n) /\ (m num_mul (SUC n) = m num_add (m num_mul n)) Run time: 0.0s Theorem SUM_GROUP autoloading from theory `REAL` ... SUM_GROUP = |- !n k f. Sum(0,n)(\m. Sum(m num_mul k,k)f) = Sum(0,n num_mul k)f Run time: 0.0s SER_GROUP = |- !f k. summable f /\ 0 num_lt k ==> (\n. Sum(n num_mul k,k)f) sums (suminf f) Run time: 0.0s Intermediate theorems generated: 258 Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m num_mul n = n num_mul m Run time: 0.0s SER_PAIR = |- !f. summable f ==> (\n. Sum(2 num_mul n,2)f) sums (suminf f) Run time: 0.0s Intermediate theorems generated: 34 Theorem SUM_OFFSET autoloading from theory `REAL` ... SUM_OFFSET = |- !f n k. Sum(0,n)(\m. f(m num_add k)) = (Sum(0,n num_add k)f) - (Sum(0,k)f) Run time: 0.0s SER_OFFSET = |- !f. summable f ==> (!k. (\n. f(n num_add k)) sums ((suminf f) - (Sum(0,k)f))) Run time: 0.0s Intermediate theorems generated: 299 Theorem REAL_EQ_IMP_LE autoloading from theory `REAL` ... REAL_EQ_IMP_LE = |- !x y. (x = y) ==> x <= y Run time: 0.0s Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m num_add (n num_add p) = (m num_add n) num_add p Run time: 0.0s SER_POS_LT_PAIR = |- !f n. summable f /\ (!d. (& 0) < ((f(n num_add (2 num_mul d))) + (f(n num_add ((2 num_mul d) num_add 1))))) ==> (Sum(0,n)f) < (suminf f) Run time: 0.0s Intermediate theorems generated: 1204 Theorem SUM_ADD autoloading from theory `REAL` ... SUM_ADD = |- !f g m n. Sum(m,n)(\n'. (f n') + (g n')) = (Sum(m,n)f) + (Sum(m,n)g) Run time: 0.0s SER_ADD = |- !x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. (x n) + (y n)) sums (x0 + y0) Run time: 0.0s Intermediate theorems generated: 62 Theorem SUM_CMUL autoloading from theory `REAL` ... SUM_CMUL = |- !f c m n. Sum(m,n)(\n'. c * (f n')) = c * (Sum(m,n)f) Run time: 0.0s SER_CMUL = |- !x x0 c. x sums x0 ==> (\n. c * (x n)) sums (c * x0) Run time: 0.0s Intermediate theorems generated: 82 Theorem REAL_NEG_MINUS1 autoloading from theory `REAL` ... REAL_NEG_MINUS1 = |- !x. -- x = (--(& 1)) * x Run time: 0.0s SER_NEG = |- !x x0. x sums x0 ==> (\n. --(x n)) sums (-- x0) Run time: 0.0s Intermediate theorems generated: 17 SER_SUB = |- !x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. (x n) - (y n)) sums (x0 - y0) Run time: 0.0s Intermediate theorems generated: 43 SER_CDIV = |- !x x0 c. x sums x0 ==> (\n. (x n) / c) sums (x0 / c) Run time: 0.0s Intermediate theorems generated: 35 Theorem SUM_DIFF autoloading from theory `REAL` ... SUM_DIFF = |- !f m n. Sum(m,n)f = (Sum(0,m num_add n)f) - (Sum(0,m)f) Run time: 0.0s SER_CAUCHY = |- !f. summable f = (!e. (& 0) < e ==> (?N. !m n. m num_ge N ==> (abs(Sum(m,n)f)) < e)) Run time: 0.0s Intermediate theorems generated: 412 SER_ZERO = |- !f. summable f ==> f --> (& 0) Run time: 0.0s Intermediate theorems generated: 121 Theorem SUM_LE autoloading from theory `REAL` ... SUM_LE = |- !f g m n. (!r. m num_le r /\ r num_lt (n num_add m) ==> (f r) <= (g r)) ==> (Sum(m,n)f) <= (Sum(m,n)g) Run time: 0.0s Theorem ABS_SUM autoloading from theory `REAL` ... ABS_SUM = |- !f m n. (abs(Sum(m,n)f)) <= (Sum(m,n)(\n'. abs(f n'))) Run time: 0.0s SER_COMPAR = |- !f g. (?N. !n. n num_ge N ==> (abs(f n)) <= (g n)) /\ summable g ==> summable f Run time: 0.0s Intermediate theorems generated: 395 SER_COMPARA = |- !f g. (?N. !n. n num_ge N ==> (abs(f n)) <= (g n)) /\ summable g ==> summable(\k. abs(f k)) Run time: 0.0s Intermediate theorems generated: 41 Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 num_le n Run time: 0.0s SER_LE = |- !f g. (!n. (f n) <= (g n)) /\ summable f /\ summable g ==> (suminf f) <= (suminf g) Run time: 0.0s Intermediate theorems generated: 191 SER_LE2 = |- !f g. (!n. (abs(f n)) <= (g n)) /\ summable g ==> summable f /\ (suminf f) <= (suminf g) Run time: 0.1s Intermediate theorems generated: 136 Theorem SUM_ABS autoloading from theory `REAL` ... SUM_ABS = |- !f m n. abs(Sum(m,n)(\m. abs(f m))) = Sum(m,n)(\m. abs(f m)) Run time: 0.0s SER_ACONV = |- !f. summable(\n. abs(f n)) ==> summable f Run time: 0.0s Intermediate theorems generated: 126 Theorem SUM_ABS_LE autoloading from theory `REAL` ... SUM_ABS_LE = |- !f m n. (abs(Sum(m,n)f)) <= (Sum(m,n)(\n'. abs(f n'))) Run time: 0.0s SER_ABS = |- !f. summable(\n. abs(f n)) ==> (abs(suminf f)) <= (suminf(\n. abs(f n))) Run time: 0.0s Intermediate theorems generated: 92 Theorem REAL_DIV_RMUL autoloading from theory `REAL` ... REAL_DIV_RMUL = |- !x y. ~(y = & 0) ==> ((x / y) * y = x) Run time: 0.0s Theorem REAL_RDISTRIB autoloading from theory `REAL` ... REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Theorem REAL_EQ_RMUL autoloading from theory `REAL` ... REAL_EQ_RMUL = |- !x y z. (x * z = y * z) = (z = & 0) \/ (x = y) Run time: 0.0s Theorem REAL_DIV_LZERO autoloading from theory `REAL` ... REAL_DIV_LZERO = |- !x. (& 0) / x = & 0 Run time: 0.0s GP_FINITE = |- !x. ~(x = & 1) ==> (!n. Sum(0,n)(\n'. x pow n') = ((x pow n) - (& 1)) / (x - (& 1))) Run time: 0.0s Intermediate theorems generated: 411 Theorem REAL_NEG_INV autoloading from theory `REAL` ... REAL_NEG_INV = |- !x. ~(x = & 0) ==> (--(inv x) = inv(-- x)) Run time: 0.0s Theorem REAL_NEG_MUL2 autoloading from theory `REAL` ... REAL_NEG_MUL2 = |- !x y. (-- x) * (-- y) = x * y Run time: 0.0s Theorem REAL_INV_1OVER autoloading from theory `REAL` ... REAL_INV_1OVER = |- !x. inv x = (& 1) / x Run time: 0.0s Theorem ABS_1 autoloading from theory `REAL` ... ABS_1 = |- abs(& 1) = & 1 Run time: 0.0s GP = |- !x. (abs x) < (& 1) ==> (\n. x pow n) sums (inv((& 1) - x)) Run time: 0.0s Intermediate theorems generated: 343 Theorem REAL_NEG_LMUL autoloading from theory `REAL` ... REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Theorem REAL_LE_MUL autoloading from theory `REAL` ... REAL_LE_MUL = |- !x y. (& 0) <= x /\ (& 0) <= y ==> (& 0) <= (x * y) Run time: 0.0s Theorem REAL_NEG_GE0 autoloading from theory `REAL` ... REAL_NEG_GE0 = |- !x. (& 0) <= (-- x) = x <= (& 0) Run time: 0.0s ABS_NEG_LEMMA = |- !c. c <= (& 0) ==> (!x y. (abs x) <= (c * (abs y)) ==> (x = & 0)) Run time: 0.0s Intermediate theorems generated: 114 Theorem REAL_LE_LMUL autoloading from theory `REAL` ... REAL_LE_LMUL = |- !x y z. (& 0) < x ==> ((x * y) <= (x * z) = y <= z) Run time: 0.0s Theorem POW_ADD autoloading from theory `REAL` ... POW_ADD = |- !c m n. c pow (m num_add n) = (c pow m) * (c pow n) Run time: 0.0s Theorem OR_LESS autoloading from theory `arithmetic` ... OR_LESS = |- !m n. (SUC m) num_le n ==> m num_lt n Run time: 0.0s SER_RATIO = |- !f c N. c < (& 1) /\ (!n. n num_ge N ==> (abs(f(SUC n))) <= (c * (abs(f n)))) ==> summable f Run time: 0.0s Intermediate theorems generated: 683 () : void Run time: 0.0s Intermediate theorems generated: 1 File seq.ml loaded () : void Run time: 0.4s Intermediate theorems generated: 18704 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `lim.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory SEQ loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s real_interface_map = [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 43 () : void Run time: 0.0s () : void Run time: 0.0s tends_real_real = |- !f l x0. (f tends_real_real l)x0 = (f tends l)(mtop mr1,tendsto(mr1,x0)) Run time: 0.0s Intermediate theorems generated: 2 [] : (string # string) list Run time: 0.0s Theorem ABS_SUB autoloading from theory `REAL` ... ABS_SUB = |- !x y. abs(x - y) = abs(y - x) Run time: 0.0s Theorem MR1_DEF autoloading from theory `TOPOLOGY` ... MR1_DEF = |- !x y. dist mr1(x,y) = abs(y - x) Run time: 0.0s Theorem MR1_LIMPT autoloading from theory `TOPOLOGY` ... MR1_LIMPT = |- !x. limpt(mtop mr1)x re_universe Run time: 0.0s Theorem LIM_TENDS2 autoloading from theory `NETS` ... LIM_TENDS2 = |- !m1 m2 f x0 y0. limpt(mtop m1)x0 re_universe ==> ((f tends y0)(mtop m2,tendsto(m1,x0)) = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (dist m1(x,x0)) /\ (dist m1(x,x0)) < d ==> (dist m2(f x,y0)) < e)))) Run time: 0.0s LIM = |- !f y0 x0. (f --> y0)x0 = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (abs(x - x0)) /\ (abs(x - x0)) < d ==> (abs((f x) - y0)) < e))) Run time: 0.0s Intermediate theorems generated: 102 Theorem REAL_SUB_0 autoloading from theory `REAL` ... REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s Theorem ABS_NZ autoloading from theory `REAL` ... ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s Theorem MTOP_LIMPT autoloading from theory `TOPOLOGY` ... MTOP_LIMPT = |- !m x S. limpt(mtop m)x S = (!e. (& 0) < e ==> (?y. ~(x = y) /\ S y /\ (dist m(x,y)) < e)) Run time: 0.0s Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Definition tendsto autoloading from theory `NETS` ... tendsto = |- !m x y z. tendsto(m,x)y z = (& 0) < (dist m(x,y)) /\ (dist m(x,y)) <= (dist m(x,z)) Run time: 0.0s Intermediate theorems generated: 1 Theorem METRIC_SAME autoloading from theory `TOPOLOGY` ... METRIC_SAME = |- !m x. dist m(x,x) = & 0 Run time: 0.0s Theorem MTOP_TENDS autoloading from theory `NETS` ... MTOP_TENDS = |- !d g x x0. (x tends x0)(mtop d,g) = (!e. (& 0) < e ==> (?n. g n n /\ (!m. g m n ==> (dist d(x m,x0)) < e))) Run time: 0.0s LIM_CONST = |- !k x. ((\x. k) --> k)x Run time: 0.0s Intermediate theorems generated: 193 Theorem DORDER_TENDSTO autoloading from theory `NETS` ... DORDER_TENDSTO = |- !m x. dorder(tendsto(m,x)) Run time: 0.0s Theorem NET_ADD autoloading from theory `NETS` ... NET_ADD = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) + (y n)) tends (x0 + y0))(mtop mr1,g)) Run time: 0.0s LIM_ADD = |- !f g l m. (f --> l)x /\ (g --> m)x ==> ((\x. (f x) + (g x)) --> (l + m))x Run time: 0.0s Intermediate theorems generated: 40 Theorem NET_MUL autoloading from theory `NETS` ... NET_MUL = |- !g. dorder g ==> (!x y x0 y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) * (y n)) tends (x0 * y0))(mtop mr1,g)) Run time: 0.0s LIM_MUL = |- !f g l m. (f --> l)x /\ (g --> m)x ==> ((\x. (f x) * (g x)) --> (l * m))x Run time: 0.0s Intermediate theorems generated: 40 Theorem NET_NEG autoloading from theory `NETS` ... NET_NEG = |- !g. dorder g ==> (!x x0. (x tends x0)(mtop mr1,g) = ((\n. --(x n)) tends (-- x0))(mtop mr1,g)) Run time: 0.0s LIM_NEG = |- !f l. (f --> l)x = ((\x. --(f x)) --> (-- l))x Run time: 0.0s Intermediate theorems generated: 33 Theorem NET_INV autoloading from theory `NETS` ... NET_INV = |- !g. dorder g ==> (!x x0. (x tends x0)(mtop mr1,g) /\ ~(x0 = & 0) ==> ((\n. inv(x n)) tends (inv x0))(mtop mr1,g)) Run time: 0.0s LIM_INV = |- !f l. (f --> l)x /\ ~(l = & 0) ==> ((\x. inv(f x)) --> (inv l))x Run time: 0.0s Intermediate theorems generated: 35 Theorem NET_SUB autoloading from theory `NETS` ... NET_SUB = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) ==> ((\n. (x n) - (y n)) tends (x0 - y0))(mtop mr1,g)) Run time: 0.0s LIM_SUB = |- !f g l m. (f --> l)x /\ (g --> m)x ==> ((\x. (f x) - (g x)) --> (l - m))x Run time: 0.0s Intermediate theorems generated: 40 Theorem NET_DIV autoloading from theory `NETS` ... NET_DIV = |- !g. dorder g ==> (!x x0 y y0. (x tends x0)(mtop mr1,g) /\ (y tends y0)(mtop mr1,g) /\ ~(y0 = & 0) ==> ((\n. (x n) / (y n)) tends (x0 / y0))(mtop mr1,g)) Run time: 0.0s LIM_DIV = |- !f g l m. (f --> l)x /\ (g --> m)x /\ ~(m = & 0) ==> ((\x. (f x) / (g x)) --> (l / m))x Run time: 0.1s Intermediate theorems generated: 42 Theorem NET_NULL autoloading from theory `NETS` ... NET_NULL = |- !g x x0. (x tends x0)(mtop mr1,g) = ((\n. (x n) - x0) tends (& 0))(mtop mr1,g) Run time: 0.0s LIM_NULL = |- !f l x. (f --> l)x = ((\x. (f x) - l) --> (& 0))x Run time: 0.0s Intermediate theorems generated: 23 LIM_X = |- !x0. ((\x. x) --> x0)x0 Run time: 0.0s Intermediate theorems generated: 52 Theorem MTOP_TENDS_UNIQ autoloading from theory `NETS` ... MTOP_TENDS_UNIQ = |- !g d. dorder g ==> (x tends x0)(mtop d,g) /\ (x tends x1)(mtop d,g) ==> (x0 = x1) Run time: 0.0s LIM_UNIQ = |- !f l m x. (f --> l)x /\ (f --> m)x ==> (l = m) Run time: 0.0s Intermediate theorems generated: 36 LIM_EQUAL = |- !f g l x0. (!x. ~(x = x0) ==> (f x = g x)) ==> ((f --> l)x0 = (g --> l)x0) Run time: 0.0s Intermediate theorems generated: 171 Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_LT_ADD2 autoloading from theory `REAL` ... REAL_LT_ADD2 = |- !w x y z. w < x /\ y < z ==> (w + y) < (x + z) Run time: 0.0s Theorem ABS_TRIANGLE autoloading from theory `REAL` ... ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Theorem REAL_SUB_TRIANGLE autoloading from theory `REAL` ... REAL_SUB_TRIANGLE = |- !a b c. (a - b) + (b - c) = a - c Run time: 0.0s Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_HALF_DOUBLE autoloading from theory `REAL` ... REAL_HALF_DOUBLE = |- !x. (x / (& 2)) + (x / (& 2)) = x Run time: 0.0s Theorem REAL_LTE_TRANS autoloading from theory `REAL` ... REAL_LTE_TRANS = |- !x y z. x < y /\ y <= z ==> x < z Run time: 0.0s Theorem REAL_DOWN2 autoloading from theory `REAL` ... REAL_DOWN2 = |- !x y. (& 0) < x /\ (& 0) < y ==> (?z. (& 0) < z /\ z < x /\ z < y) Run time: 0.0s Theorem REAL_SUB_RZERO autoloading from theory `REAL` ... REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s LIM_TRANSFORM = |- !f g x0 l. ((\x. (f x) - (g x)) --> (& 0))x0 /\ (g --> l)x0 ==> (f --> l)x0 Run time: 0.0s Intermediate theorems generated: 473 diffl = |- !f l x. (f diffl l)x = ((\h. ((f(x + h)) - (f x)) / h) --> l)(& 0) Run time: 0.0s Intermediate theorems generated: 2 contl = |- !f x. f contl x = ((\h. f(x + h)) --> (f x))(& 0) Run time: 0.0s Intermediate theorems generated: 2 differentiable = |- !f x. f differentiable x = (?l. (f diffl l)x) Run time: 0.0s Intermediate theorems generated: 2 DIFF_UNIQ = |- !f l m x. (f diffl l)x /\ (f diffl m)x ==> (l = m) Run time: 0.0s Intermediate theorems generated: 26 Theorem REAL_MUL_RZERO autoloading from theory `REAL` ... REAL_MUL_RZERO = |- !x. x * (& 0) = & 0 Run time: 0.0s Theorem REAL_DIV_RMUL autoloading from theory `REAL` ... REAL_DIV_RMUL = |- !x y. ~(y = & 0) ==> ((x / y) * y = x) Run time: 0.0s DIFF_CONT = |- !f l x. (f diffl l)x ==> f contl x Run time: 0.0s Intermediate theorems generated: 290 Theorem REAL_ADD_SUB autoloading from theory `REAL` ... REAL_ADD_SUB = |- !x y. (x + y) - x = y Run time: 0.0s Theorem REAL_SUB_ADD2 autoloading from theory `REAL` ... REAL_SUB_ADD2 = |- !x y. y + (x - y) = x Run time: 0.0s CONTL_LIM = |- !f x. f contl x = (f --> (f x))x Run time: 0.0s Intermediate theorems generated: 275 CONT_CONST = |- !x. (\x. k) contl x Run time: 0.0s Intermediate theorems generated: 20 CONT_ADD = |- !x. f contl x /\ g contl x ==> (\x. (f x) + (g x)) contl x Run time: 0.0s Intermediate theorems generated: 29 CONT_MUL = |- !x. f contl x /\ g contl x ==> (\x. (f x) * (g x)) contl x Run time: 0.0s Intermediate theorems generated: 29 CONT_NEG = |- !x. f contl x ==> (\x. --(f x)) contl x Run time: 0.0s Intermediate theorems generated: 43 CONT_INV = |- !x. f contl x /\ ~(f x = & 0) ==> (\x. inv(f x)) contl x Run time: 0.0s Intermediate theorems generated: 26 CONT_SUB = |- !x. f contl x /\ g contl x ==> (\x. (f x) - (g x)) contl x Run time: 0.0s Intermediate theorems generated: 29 CONT_DIV = |- !x. f contl x /\ g contl x /\ ~(g x = & 0) ==> (\x. (f x) / (g x)) contl x Run time: 0.0s Intermediate theorems generated: 31 Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s Theorem REAL_NOT_LT autoloading from theory `REAL` ... REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s Theorem REAL_SUB_ADD autoloading from theory `REAL` ... REAL_SUB_ADD = |- !x y. (x - y) + y = x Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem REAL_LE_RADD autoloading from theory `REAL` ... REAL_LE_RADD = |- !x y z. (x + z) <= (y + z) = x <= y Run time: 0.0s Theorem REAL_LE_NEG autoloading from theory `REAL` ... REAL_LE_NEG = |- !x y. (-- x) <= (-- y) = y <= x Run time: 0.0s Theorem REAL_LE_LADD autoloading from theory `REAL` ... REAL_LE_LADD = |- !x y z. (x + y) <= (x + z) = y <= z Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_NOT_LE autoloading from theory `REAL` ... REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s Theorem REAL_LT_LE autoloading from theory `REAL` ... REAL_LT_LE = |- !x y. x < y = x <= y /\ ~(x = y) Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s Theorem REAL_SUB_LE autoloading from theory `REAL` ... REAL_SUB_LE = |- !x y. (& 0) <= (x - y) = y <= x Run time: 0.0s Definition abs autoloading from theory `REAL` ... abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LT_TOTAL autoloading from theory `REAL` ... REAL_LT_TOTAL = |- !x y. (x = y) \/ x < y \/ y < x Run time: 0.0s Theorem REAL_LT_01 autoloading from theory `REAL` ... REAL_LT_01 = |- (& 0) < (& 1) Run time: 0.0s Theorem REAL_LE_TRANS autoloading from theory `REAL` ... REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s Theorem REAL_LE_TOTAL autoloading from theory `REAL` ... REAL_LE_TOTAL = |- !x y. x <= y \/ y <= x Run time: 0.0s Theorem BOLZANO_LEMMA autoloading from theory `SEQ` ... BOLZANO_LEMMA = |- !P. (!a b c. a <= b /\ b <= c /\ P(a,b) /\ P(b,c) ==> P(a,c)) /\ (!x. ?d. (& 0) < d /\ (!a b. a <= x /\ x <= b /\ (b - a) < d ==> P(a,b))) ==> (!a b. a <= b ==> P(a,b)) Run time: 0.0s IVT = |- !f a b y. a <= b /\ ((f a) <= y /\ y <= (f b)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?x. a <= x /\ x <= b /\ (f x = y)) Run time: 0.0s Intermediate theorems generated: 2647 Theorem REAL_NEGNEG autoloading from theory `REAL` ... REAL_NEGNEG = |- !x. --(-- x) = x Run time: 0.0s Theorem REAL_NEG_EQ autoloading from theory `REAL` ... REAL_NEG_EQ = |- !x y. (-- x = y) = (x = -- y) Run time: 0.0s IVT2 = |- !f a b y. a <= b /\ ((f b) <= y /\ y <= (f a)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?x. a <= x /\ x <= b /\ (f x = y)) Run time: 0.0s Intermediate theorems generated: 158 Theorem REAL_MUL_LZERO autoloading from theory `REAL` ... REAL_MUL_LZERO = |- !x. (& 0) * x = & 0 Run time: 0.0s Definition real_div autoloading from theory `REAL` ... real_div = |- !x y. x / y = x * (inv y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_SUB_REFL autoloading from theory `REAL` ... REAL_SUB_REFL = |- !x. x - x = & 0 Run time: 0.0s DIFF_CONST = |- !k x. ((\x. k) diffl (& 0))x Run time: 0.0s Intermediate theorems generated: 59 Theorem REAL_RDISTRIB autoloading from theory `REAL` ... REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Theorem REAL_ADD2_SUB2 autoloading from theory `REAL` ... REAL_ADD2_SUB2 = |- !a b c d. (a + b) - (c + d) = (a - c) + (b - d) Run time: 0.0s DIFF_ADD = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) + (g x)) diffl (l + m))x Run time: 0.0s Intermediate theorems generated: 150 Theorem REAL_MUL_SYM autoloading from theory `REAL` ... REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Theorem REAL_MUL_ASSOC autoloading from theory `REAL` ... REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Theorem REAL_SUB_RDISTRIB autoloading from theory `REAL` ... REAL_SUB_RDISTRIB = |- !x y z. (x - y) * z = (x * z) - (y * z) Run time: 0.0s Theorem REAL_SUB_LDISTRIB autoloading from theory `REAL` ... REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s DIFF_MUL = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) * (g x)) diffl ((l * (g x)) + (m * (f x))))x Run time: 0.0s Intermediate theorems generated: 567 DIFF_CMUL = |- !f c l x. (f diffl l)x ==> ((\x. c * (f x)) diffl (c * l))x Run time: 0.0s Intermediate theorems generated: 100 Theorem REAL_NEG_MINUS1 autoloading from theory `REAL` ... REAL_NEG_MINUS1 = |- !x. -- x = (--(& 1)) * x Run time: 0.0s DIFF_NEG = |- !f l x. (f diffl l)x ==> ((\x. --(f x)) diffl (-- l))x Run time: 0.0s Intermediate theorems generated: 20 DIFF_SUB = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) - (g x)) diffl (l - m))x Run time: 0.0s Intermediate theorems generated: 50 Theorem NET_NULL_MUL autoloading from theory `NETS` ... NET_NULL_MUL = |- !g. dorder g ==> (!x y. bounded(mr1,g)x /\ (y tends (& 0))(mtop mr1,g) ==> ((\n. (x n) * (y n)) tends (& 0))(mtop mr1,g)) Run time: 0.0s LIM_NULL_MUL = |- !x x0 y. bounded(mr1,tendsto(mr1,x0))x /\ (y --> (& 0))x0 ==> ((\u. (x u) * (y u)) --> (& 0))x0 Run time: 0.0s Intermediate theorems generated: 35 Theorem REAL_LT_HALF2 autoloading from theory `REAL` ... REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Theorem ABS_REFL autoloading from theory `REAL` ... ABS_REFL = |- !x. (abs x = x) = (& 0) <= x Run time: 0.0s Theorem ABS_LE autoloading from theory `REAL` ... ABS_LE = |- !x. x <= (abs x) Run time: 0.0s Theorem MR1_BOUNDED autoloading from theory `NETS` ... MR1_BOUNDED = |- !g f. bounded(mr1,g)f = (?k N. g N N /\ (!n. g n N ==> (abs(f n)) < k)) Run time: 0.0s LIM_BOUNDED = |- bounded(mr1,tendsto(mr1,x0))f = (?k d. (& 0) < d /\ (!x. (& 0) < (abs(x - x0)) /\ (abs(x - x0)) < d ==> (abs(f x)) < k)) Run time: 0.0s Intermediate theorems generated: 362 Theorem REAL_MUL_LID autoloading from theory `REAL` ... REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.1s Theorem REAL_MUL_LINV autoloading from theory `REAL` ... REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s CHAIN_LEMMA1 = |- !f g x h. ((f(g(x + h))) - (f(g x))) / h = (((f(g(x + h))) - (f(g x))) / ((g(x + h)) - (g x))) * (((g(x + h)) - (g x)) / h) Run time: 0.0s Intermediate theorems generated: 170 Theorem REAL_LT_RADD autoloading from theory `REAL` ... REAL_LT_RADD = |- !x y z. (x + z) < (y + z) = x < y Run time: 0.0s CHAIN_LEMMA2 = |- !x y d. (abs(x - y)) < d ==> (abs x) < ((abs y) + d) Run time: 0.0s Intermediate theorems generated: 65 Theorem ABS_POS autoloading from theory `REAL` ... ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s Theorem REAL_LE_ADDL autoloading from theory `REAL` ... REAL_LE_ADDL = |- !x y. y <= (x + y) = (& 0) <= x Run time: 0.0s Theorem ABS_0 autoloading from theory `REAL` ... ABS_0 = |- abs(& 0) = & 0 Run time: 0.0s Theorem REAL_LT_REFL autoloading from theory `REAL` ... REAL_LT_REFL = |- !x. ~x < x Run time: 0.0s Theorem ABS_NEG autoloading from theory `REAL` ... ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s Theorem REAL_SUB_LZERO autoloading from theory `REAL` ... REAL_SUB_LZERO = |- !x. (& 0) - x = -- x Run time: 0.0s DIFF_CHAIN = |- !f g x. (f diffl l)(g x) /\ (g diffl m)x ==> ((\x. f(g x)) diffl (l * m))x Run time: 0.0s Intermediate theorems generated: 2058 Theorem REAL_DIV_REFL autoloading from theory `REAL` ... REAL_DIV_REFL = |- !x. ~(x = & 0) ==> (x / x = & 1) Run time: 0.0s DIFF_X = |- !x. ((\x. x) diffl (& 1))x Run time: 0.0s Intermediate theorems generated: 148 Theorem REAL_MUL_RID autoloading from theory `REAL` ... REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Theorem POW_ADD autoloading from theory `REAL` ... POW_ADD = |- !c m n. c pow (m num_add n) = (c pow m) * (c pow n) Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a num_add c) num_sub c = a Run time: 0.0s Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m num_add 1 Run time: 0.0s Theorem REAL autoloading from theory `REAL` ... REAL = |- !n. &(SUC n) = (& n) + (& 1) Run time: 0.0s Definition pow autoloading from theory `REAL` ... pow = |- (!x. x pow 0 = & 1) /\ (!x n. x pow (SUC n) = x * (x pow n)) Run time: 0.0s Intermediate theorems generated: 1 DIFF_POW = |- !n x. ((\x'. x' pow n) diffl ((& n) * (x pow (n num_sub 1))))x Run time: 0.0s Intermediate theorems generated: 335 Theorem REAL_ADD_RID autoloading from theory `REAL` ... REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Theorem POW_2 autoloading from theory `REAL` ... POW_2 = |- !x. x pow 2 = x * x Run time: 0.0s Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s Theorem REAL_NEG_RMUL autoloading from theory `REAL` ... REAL_NEG_RMUL = |- !x y. --(x * y) = x * (-- y) Run time: 0.0s Theorem REAL_NEG_LMUL autoloading from theory `REAL` ... REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Theorem REAL_ENTIRE autoloading from theory `REAL` ... REAL_ENTIRE = |- !x y. (x * y = & 0) = (x = & 0) \/ (y = & 0) Run time: 0.0s Theorem REAL_EQ_LMUL autoloading from theory `REAL` ... REAL_EQ_LMUL = |- !x y z. (x * y = x * z) = (x = & 0) \/ (y = z) Run time: 0.0s Theorem REAL_LNEG_UNIQ autoloading from theory `REAL` ... REAL_LNEG_UNIQ = |- !x y. (x + y = & 0) = (x = -- y) Run time: 0.0s Theorem ABS_ZERO autoloading from theory `REAL` ... ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s DIFF_XM1 = |- !x. ~(x = & 0) ==> ((\x. inv x) diffl (--((inv x) pow 2)))x Run time: 0.0s Intermediate theorems generated: 818 Theorem POW_INV autoloading from theory `REAL` ... POW_INV = |- !c. ~(c = & 0) ==> (!n. inv(c pow n) = (inv c) pow n) Run time: 0.0s DIFF_INV = |- !f l x. (f diffl l)x /\ ~(f x = & 0) ==> ((\x. inv(f x)) diffl (--(l / ((f x) pow 2))))x Run time: 0.0s Intermediate theorems generated: 106 Theorem REAL_MUL_RINV autoloading from theory `REAL` ... REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Theorem REAL_INV_MUL autoloading from theory `REAL` ... REAL_INV_MUL = |- !x y. ~(x = & 0) /\ ~(y = & 0) ==> (inv(x * y) = (inv x) * (inv y)) Run time: 0.0s Theorem REAL_LDISTRIB autoloading from theory `REAL` ... REAL_LDISTRIB = |- !x y z. x * (y + z) = (x * y) + (x * z) Run time: 0.0s DIFF_DIV = |- !f g l m. (f diffl l)x /\ (g diffl m)x /\ ~(g x = & 0) ==> ((\x. (f x) / (g x)) diffl (((l * (g x)) - (m * (f x))) / ((g x) pow 2))) x Run time: 0.0s Intermediate theorems generated: 293 Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m num_le (m num_add n) Run time: 0.0s Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 num_add m = m) /\ (m num_add 0 = m) /\ ((SUC m) num_add n = SUC(m num_add n)) /\ (m num_add (SUC n) = SUC(m num_add n)) Run time: 0.0s Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m num_lt n /\ n num_lt p ==> m num_lt p Run time: 0.0s Theorem Sum autoloading from theory `REAL` ... Sum = |- (Sum(n,0)f = & 0) /\ (Sum(n,SUC m)f = (Sum(n,m)f) + (f(n num_add m))) Run time: 0.0s DIFF_SUM = |- !f f' m n x. (!r. m num_le r /\ r num_lt (m num_add n) ==> ((\x'. f r x') diffl (f' r x))x) ==> ((\x'. Sum(m,n)(\n'. f n' x')) diffl (Sum(m,n)(\r. f' r x)))x Run time: 0.0s Intermediate theorems generated: 301 CONT_BOUNDED = |- !f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?M. !x. a <= x /\ x <= b ==> (f x) <= M) Run time: 0.0s Intermediate theorems generated: 1866 Theorem REAL_LE_LT autoloading from theory `REAL` ... REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s Theorem REAL_SUP_LE autoloading from theory `REAL` ... REAL_SUP_LE = |- !P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==> (!y. (?x. P x /\ y < x) = y < (sup P)) Run time: 0.0s CONT_HASSUP = |- !f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?M. (!x. a <= x /\ x <= b ==> (f x) <= M) /\ (!N. N < M ==> (?x. a <= x /\ x <= b /\ N < (f x)))) Run time: 0.0s Intermediate theorems generated: 412 Theorem REAL_LT_SUB_RADD autoloading from theory `REAL` ... REAL_LT_SUB_RADD = |- !x y z. (x - y) < z = x < (z + y) Run time: 0.0s Theorem REAL_LT_SUB_LADD autoloading from theory `REAL` ... REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Theorem REAL_INVINV autoloading from theory `REAL` ... REAL_INVINV = |- !x. ~(x = & 0) ==> (inv(inv x) = x) Run time: 0.0s Theorem REAL_LT_INV autoloading from theory `REAL` ... REAL_LT_INV = |- !x y. (& 0) < x /\ x < y ==> (inv y) < (inv x) Run time: 0.0s Theorem REAL_LT_ADDR autoloading from theory `REAL` ... REAL_LT_ADDR = |- !x y. x < (x + y) = (& 0) < y Run time: 0.0s Theorem REAL_INV_POS autoloading from theory `REAL` ... REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s CONT_ATTAINS = |- !f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?M. (!x. a <= x /\ x <= b ==> (f x) <= M) /\ (?x. a <= x /\ x <= b /\ (f x = M))) Run time: 0.0s Intermediate theorems generated: 1646 CONT_ATTAINS2 = |- !f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?M. (!x. a <= x /\ x <= b ==> M <= (f x)) /\ (?x. a <= x /\ x <= b /\ (f x = M))) Run time: 0.0s Intermediate theorems generated: 177 Theorem ABS_SIGN autoloading from theory `REAL` ... ABS_SIGN = |- !x y. (abs(x - y)) < y ==> (& 0) < x Run time: 0.0s Theorem REAL_LT_RMUL autoloading from theory `REAL` ... REAL_LT_RMUL = |- !x y z. (& 0) < z ==> ((x * z) < (y * z) = x < y) Run time: 0.0s DIFF_LINC = |- !f x l. (f diffl l)x /\ (& 0) < l ==> (?d. (& 0) < d /\ (!h. (& 0) < h /\ h < d ==> (f x) < (f(x + h)))) Run time: 0.0s Intermediate theorems generated: 270 Theorem REAL_NEG_LE0 autoloading from theory `REAL` ... REAL_NEG_LE0 = |- !x. (-- x) <= (& 0) = (& 0) <= x Run time: 0.0s Theorem ABS_SIGN2 autoloading from theory `REAL` ... ABS_SIGN2 = |- !x y. (abs(x - y)) < (-- y) ==> x < (& 0) Run time: 0.0s Theorem REAL_NEG_INV autoloading from theory `REAL` ... REAL_NEG_INV = |- !x. ~(x = & 0) ==> (--(inv x) = inv(-- x)) Run time: 0.0s Theorem REAL_NEG_LT0 autoloading from theory `REAL` ... REAL_NEG_LT0 = |- !x. (-- x) < (& 0) = (& 0) < x Run time: 0.0s DIFF_LDEC = |- !f x l. (f diffl l)x /\ l < (& 0) ==> (?d. (& 0) < d /\ (!h. (& 0) < h /\ h < d ==> (f x) < (f(x - h)))) Run time: 0.0s Intermediate theorems generated: 469 Theorem REAL_ADD_SUB2 autoloading from theory `REAL` ... REAL_ADD_SUB2 = |- !x y. x - (x + y) = -- y Run time: 0.0s Theorem REAL_SUB_SUB2 autoloading from theory `REAL` ... REAL_SUB_SUB2 = |- !x y. x - (x - y) = y Run time: 0.0s DIFF_LMAX = |- !f x l. (f diffl l)x /\ (?d. (& 0) < d /\ (!y. (abs(x - y)) < d ==> (f y) <= (f x))) ==> (l = & 0) Run time: 0.0s Intermediate theorems generated: 572 Theorem REAL_NEG_EQ0 autoloading from theory `REAL` ... REAL_NEG_EQ0 = |- !x. (-- x = & 0) = (x = & 0) Run time: 0.0s DIFF_LMIN = |- !f x l. (f diffl l)x /\ (?d. (& 0) < d /\ (!y. (abs(x - y)) < d ==> (f x) <= (f y))) ==> (l = & 0) Run time: 0.0s Intermediate theorems generated: 88 DIFF_LCONST = |- !f x l. (f diffl l)x /\ (?d. (& 0) < d /\ (!y. (abs(x - y)) < d ==> (f y = f x))) ==> (l = & 0) Run time: 0.0s Intermediate theorems generated: 96 INTERVAL_LEMMA = |- !a b x. a < x /\ x < b ==> (?d. (& 0) < d /\ (!y. (abs(x - y)) < d ==> a <= y /\ y <= b)) Run time: 0.0s Intermediate theorems generated: 466 Theorem REAL_MEAN autoloading from theory `REAL` ... REAL_MEAN = |- !x y. x < y ==> (?z. x < z /\ z < y) Run time: 0.0s Theorem REAL_LE_ANTISYM autoloading from theory `REAL` ... REAL_LE_ANTISYM = |- !x y. x <= y /\ y <= x = (x = y) Run time: 0.0s ROLLE = |- !f a b. a < b /\ (f a = f b) /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> f differentiable x) ==> (?z. a < z /\ z < b /\ (f diffl (& 0))z) Run time: 0.0s Intermediate theorems generated: 3178 gfn = "\x. (f x) - ((((f b) - (f a)) / (b - a)) * x)" : term Run time: 0.0s Theorem REAL_NEG_ADD autoloading from theory `REAL` ... REAL_NEG_ADD = |- !x y. --(x + y) = (-- x) + (-- y) Run time: 0.0s Theorem REAL_EQ_RMUL autoloading from theory `REAL` ... REAL_EQ_RMUL = |- !x y z. (x * z = y * z) = (z = & 0) \/ (x = y) Run time: 0.0s MVT_LEMMA = |- !f a b. (\x. (f x) - ((((f b) - (f a)) / (b - a)) * x))a = (\x. (f x) - ((((f b) - (f a)) / (b - a)) * x))b Run time: 0.0s Intermediate theorems generated: 443 Theorem REAL_DIV_LMUL autoloading from theory `REAL` ... REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s MVT = |- !f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> f differentiable x) ==> (?l z. a < z /\ z < b /\ (f diffl l)z /\ ((f b) - (f a) = (b - a) * l)) Run time: 0.0s Intermediate theorems generated: 612 DIFF_ISCONST_END = |- !f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> (f diffl (& 0))x) ==> (f b = f a) Run time: 0.0s Intermediate theorems generated: 253 DIFF_ISCONST = |- !f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> (f diffl (& 0))x) ==> (!x. a <= x /\ x <= b ==> (f x = f a)) Run time: 0.0s Intermediate theorems generated: 310 DIFF_ISCONST_ALL = |- !f. (!x. (f diffl (& 0))x) ==> (!x y. f x = f y) Run time: 0.0s Intermediate theorems generated: 172 () : void Run time: 0.0s Intermediate theorems generated: 1 File lim.ml loaded () : void Run time: 0.4s Intermediate theorems generated: 21608 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `powser.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void Theory SEQ loaded Theory LIM loaded () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s real_interface_map = [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s [(); ()] : void list Run time: 0.0s [] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 47 () : void Run time: 0.1s Definition pow autoloading from theory `REAL` ... pow = |- (!x. x pow 0 = & 1) /\ (!x n. x pow (SUC n) = x * (x pow n)) Run time: 0.0s Intermediate theorems generated: 1 Definition SUB autoloading from theory `arithmetic` ... SUB = |- (!m. 0 num_sub m = 0) /\ (!m n. (SUC m) num_sub n = (m num_lt n => 0 | SUC(m num_sub n))) Run time: 0.0s Intermediate theorems generated: 1 Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m num_lt n ==> m num_le n Run time: 0.0s Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m num_le m Run time: 0.0s Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m num_lt (SUC n) = (m = n) \/ m num_lt n Run time: 0.0s Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m num_lt n = n num_le m Run time: 0.0s Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 num_add m = m) /\ (m num_add 0 = m) /\ ((SUC m) num_add n = SUC(m num_add n)) /\ (m num_add (SUC n) = SUC(m num_add n)) Run time: 0.0s Theorem REAL_MUL_ASSOC autoloading from theory `REAL` ... REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Theorem REAL_MUL_SYM autoloading from theory `REAL` ... REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Theorem SUM_SUBST autoloading from theory `REAL` ... SUM_SUBST = |- !f g m n. (!p. m num_le p /\ p num_lt (m num_add n) ==> (f p = g p)) ==> (Sum(m,n)f = Sum(m,n)g) Run time: 0.0s Theorem SUM_CMUL autoloading from theory `REAL` ... SUM_CMUL = |- !f c m n. Sum(m,n)(\n'. c * (f n')) = c * (Sum(m,n)f) Run time: 0.0s POWDIFF_LEMMA = |- !n x y. Sum(0,SUC n)(\p. (x pow p) * (y pow ((SUC n) num_sub p))) = y * (Sum(0,SUC n)(\p. (x pow p) * (y pow (n num_sub p)))) Run time: 0.0s Intermediate theorems generated: 223 Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_ADD_LID_UNIQ autoloading from theory `REAL` ... REAL_ADD_LID_UNIQ = |- !x y. (x + y = y) = (x = & 0) Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_SUB_LDISTRIB autoloading from theory `REAL` ... REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c num_sub c = 0 Run time: 0.0s Theorem REAL_LDISTRIB autoloading from theory `REAL` ... REAL_LDISTRIB = |- !x y z. x * (y + z) = (x * y) + (x * z) Run time: 0.0s Theorem REAL_MUL_RID autoloading from theory `REAL` ... REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 num_sub m = 0) /\ (m num_sub 0 = m) Run time: 0.0s Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem Sum autoloading from theory `REAL` ... Sum = |- (Sum(n,0)f = & 0) /\ (Sum(n,SUC m)f = (Sum(n,m)f) + (f(n num_add m))) Run time: 0.0s POWDIFF = |- !n x y. (x pow (SUC n)) - (y pow (SUC n)) = (x - y) * (Sum(0,SUC n)(\p. (x pow p) * (y pow (n num_sub p)))) Run time: 0.0s Intermediate theorems generated: 485 Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s Theorem REAL_NEG_LMUL autoloading from theory `REAL` ... REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Theorem REAL_NEGNEG autoloading from theory `REAL` ... REAL_NEGNEG = |- !x. --(-- x) = x Run time: 0.0s Theorem REAL_SUB_0 autoloading from theory `REAL` ... REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m num_add n = n num_add m Run time: 0.0s Theorem POW_ADD autoloading from theory `REAL` ... POW_ADD = |- !c m n. c pow (m num_add n) = (c pow m) * (c pow n) Run time: 0.0s Theorem REAL_EQ_LMUL2 autoloading from theory `REAL` ... REAL_EQ_LMUL2 = |- !x y z. ~(x = & 0) ==> ((y = z) = (x * y = x * z)) Run time: 0.0s POWREV = |- !n x y. Sum(0,SUC n)(\p. (x pow p) * (y pow (n num_sub p))) = Sum(0,SUC n)(\p. (x pow (n num_sub p)) * (y pow p)) Run time: 0.0s Intermediate theorems generated: 235 Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s Theorem POW_INV autoloading from theory `REAL` ... POW_INV = |- !c. ~(c = & 0) ==> (!n. inv(c pow n) = (inv c) pow n) Run time: 0.0s Theorem POW_MUL autoloading from theory `REAL` ... POW_MUL = |- !n x y. (x * y) pow n = (x pow n) * (y pow n) Run time: 0.0s Theorem POW_ABS autoloading from theory `REAL` ... POW_ABS = |- !c n. (abs c) pow n = abs(c pow n) Run time: 0.0s Theorem REAL_LT_1 autoloading from theory `REAL` ... REAL_LT_1 = |- !x y. (& 0) <= x /\ x < y ==> (x / y) < (& 1) Run time: 0.0s Theorem REAL_NOT_LT autoloading from theory `REAL` ... REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s Theorem ABS_INV autoloading from theory `REAL` ... ABS_INV = |- !x. ~(x = & 0) ==> (abs(inv x) = inv(abs x)) Run time: 0.0s Theorem GP autoloading from theory `SEQ` ... GP = |- !x. (abs x) < (& 1) ==> (\n. x pow n) sums (inv((& 1) - x)) Run time: 0.0s Theorem SER_CMUL autoloading from theory `SEQ` ... SER_CMUL = |- !x x0 c. x sums x0 ==> (\n. c * (x n)) sums (c * x0) Run time: 0.0s Definition real_div autoloading from theory `REAL` ... real_div = |- !x y. x / y = x * (inv y) Run time: 0.0s Intermediate theorems generated: 1 Definition summable autoloading from theory `SEQ` ... summable = |- !f. summable f = (?s. f sums s) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s Theorem REAL_LE_RMUL autoloading from theory `REAL` ... REAL_LE_RMUL = |- !x y z. (& 0) < z ==> ((x * z) <= (y * z) = x <= y) Run time: 0.0s Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Theorem REAL_MUL_RZERO autoloading from theory `REAL` ... REAL_MUL_RZERO = |- !x. x * (& 0) = & 0 Run time: 0.0s Theorem ABS_0 autoloading from theory `REAL` ... ABS_0 = |- abs(& 0) = & 0 Run time: 0.0s Theorem ABS_CASES autoloading from theory `REAL` ... ABS_CASES = |- !x. (x = & 0) \/ (& 0) < (abs x) Run time: 0.0s Theorem ABS_ABS autoloading from theory `REAL` ... ABS_ABS = |- !x. abs(abs x) = abs x Run time: 0.0s Theorem ABS_MUL autoloading from theory `REAL` ... ABS_MUL = |- !x y. abs(x * y) = (abs x) * (abs y) Run time: 0.0s Theorem ABS_POS autoloading from theory `REAL` ... ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s Theorem POW_NZ autoloading from theory `REAL` ... POW_NZ = |- !c n. ~(c = & 0) ==> ~(c pow n = & 0) Run time: 0.0s Theorem ABS_NZ autoloading from theory `REAL` ... ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s Theorem REAL_LE_RDIV autoloading from theory `REAL` ... REAL_LE_RDIV = |- !x y z. (& 0) < x /\ (y * x) <= z ==> y <= (z / x) Run time: 0.0s Theorem SER_COMPAR autoloading from theory `SEQ` ... SER_COMPAR = |- !f g. (?N. !n. n num_ge N ==> (abs(f n)) <= (g n)) /\ summable g ==> summable f Run time: 0.0s Theorem SEQ_BOUNDED autoloading from theory `SEQ` ... SEQ_BOUNDED = |- !s. bounded(mr1,$num_ge)s = (?k. !n. (abs(s n)) < k) Run time: 0.0s Theorem SEQ_CBOUNDED autoloading from theory `SEQ` ... SEQ_CBOUNDED = |- !f. cauchy f ==> bounded(mr1,$num_ge)f Run time: 0.0s Theorem SEQ_CAUCHY autoloading from theory `SEQ` ... SEQ_CAUCHY = |- !f. cauchy f = convergent f Run time: 0.0s Theorem SER_ZERO autoloading from theory `SEQ` ... SER_ZERO = |- !f. summable f ==> f tends_num_real (& 0) Run time: 0.0s Definition convergent autoloading from theory `SEQ` ... convergent = |- !f. convergent f = (?l. f tends_num_real l) Run time: 0.0s Intermediate theorems generated: 1 POWSER_INSIDEA = |- !f x z. summable(\n. (f n) * (x pow n)) /\ (abs z) < (abs x) ==> summable(\n. (abs(f n)) * (z pow n)) Run time: 0.0s Intermediate theorems generated: 753 Theorem SER_ACONV autoloading from theory `SEQ` ... SER_ACONV = |- !f. summable(\n. abs(f n)) ==> summable f Run time: 0.0s POWSER_INSIDE = |- !f x z. summable(\n. (f n) * (x pow n)) /\ (abs z) < (abs x) ==> summable(\n. (f n) * (z pow n)) Run time: 0.0s Intermediate theorems generated: 67 diffs = |- !c. diffs c = (\n. (&(SUC n)) * (c(SUC n))) Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_NEG_RMUL autoloading from theory `REAL` ... REAL_NEG_RMUL = |- !x y. --(x * y) = x * (-- y) Run time: 0.0s DIFFS_NEG = |- !c. diffs(\n. --(c n)) = (\n. --(diffs c n)) Run time: 0.0s Intermediate theorems generated: 37 Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) num_sub 1 = m Run time: 0.0s Theorem REAL_MUL_LZERO autoloading from theory `REAL` ... REAL_MUL_LZERO = |- !x. (& 0) * x = & 0 Run time: 0.0s DIFFS_LEMMA = |- !n c x. Sum(0,n)(\n'. (diffs c n') * (x pow n')) = (Sum(0,n)(\n'. (& n') * ((c n') * (x pow (n' num_sub 1))))) + ((& n) * ((c n) * (x pow (n num_sub 1)))) Run time: 0.0s Intermediate theorems generated: 229 Theorem REAL_EQ_SUB_LADD autoloading from theory `REAL` ... REAL_EQ_SUB_LADD = |- !x y z. (x = y - z) = (x + z = y) Run time: 0.0s DIFFS_LEMMA2 = |- !n c x. Sum(0,n)(\n. (& n) * ((c n) * (x pow (n num_sub 1)))) = (Sum(0,n)(\n. (diffs c n) * (x pow n))) - ((& n) * ((c n) * (x pow (n num_sub 1)))) Run time: 0.0s Intermediate theorems generated: 34 Theorem REAL_SUB_RZERO autoloading from theory `REAL` ... REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s Theorem SEQ_SUB autoloading from theory `SEQ` ... SEQ_SUB = |- !x x0 y y0. x tends_num_real x0 /\ y tends_num_real y0 ==> (\n. (x n) - (y n)) tends_num_real (x0 - y0) Run time: 0.0s Definition sums autoloading from theory `SEQ` ... sums = |- !f s. f sums s = (\n. Sum(0,n)f) tends_num_real s Run time: 0.0s Intermediate theorems generated: 1 Theorem SUMMABLE_SUM autoloading from theory `SEQ` ... SUMMABLE_SUM = |- !f. summable f ==> f sums (suminf f) Run time: 0.0s Theorem SEQ_SUC autoloading from theory `SEQ` ... SEQ_SUC = |- !f l. f tends_num_real l = (\n. f(SUC n)) tends_num_real l Run time: 0.0s DIFFS_EQUIV = |- !c x. summable(\n. (diffs c n) * (x pow n)) ==> (\n. (& n) * ((c n) * (x pow (n num_sub 1)))) sums (suminf(\n. (diffs c n) * (x pow n))) Run time: 0.0s Intermediate theorems generated: 180 Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n num_le m ==> ((m num_sub n) num_add n = m) Run time: 0.0s TERMDIFF_LEMMA1 = |- !m z h. Sum(0,m)(\p. (((z + h) pow (m num_sub p)) * (z pow p)) - (z pow m)) = Sum (0,m) (\p. (z pow p) * (((z + h) pow (m num_sub p)) - (z pow (m num_sub p)))) Run time: 0.0s Intermediate theorems generated: 131 Theorem SUB_MONO_EQ autoloading from theory `arithmetic` ... SUB_MONO_EQ = |- !n m. (SUC n) num_sub (SUC m) = n num_sub m Run time: 0.0s Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a num_add c) num_sub c = a Run time: 0.0s Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m num_add 1 Run time: 0.0s Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n num_lt m ==> (?p. m = n num_add (p num_add 1)) Run time: 0.0s Theorem SUM_NSUB autoloading from theory `REAL` ... SUM_NSUB = |- !n f c. (Sum(0,n)f) - ((& n) * c) = Sum(0,n)(\p. (f p) - c) Run time: 0.0s Theorem REAL_ADD_RID autoloading from theory `REAL` ... REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Theorem REAL_ADD2_SUB2 autoloading from theory `REAL` ... REAL_ADD2_SUB2 = |- !a b c d. (a + b) - (c + d) = (a - c) + (b - d) Run time: 0.0s Theorem REAL_RDISTRIB autoloading from theory `REAL` ... REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Theorem REAL_MUL_LID autoloading from theory `REAL` ... REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.0s Theorem REAL autoloading from theory `REAL` ... REAL = |- !n. &(SUC n) = (& n) + (& 1) Run time: 0.0s Theorem REAL_EQ_LMUL autoloading from theory `REAL` ... REAL_EQ_LMUL = |- !x y z. (x * y = x * z) = (x = & 0) \/ (y = z) Run time: 0.0s Theorem REAL_ADD_SUB autoloading from theory `REAL` ... REAL_ADD_SUB = |- !x y. (x + y) - x = y Run time: 0.0s Theorem REAL_SUB_REFL autoloading from theory `REAL` ... REAL_SUB_REFL = |- !x. x - x = & 0 Run time: 0.0s Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Run time: 0.0s Theorem REAL_DIV_LMUL autoloading from theory `REAL` ... REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s TERMDIFF_LEMMA2 = |- !z h. ~(h = & 0) ==> (((((z + h) pow n) - (z pow n)) / h) - ((& n) * (z pow (n num_sub 1))) = h * (Sum (0,n num_sub 1) (\p. (z pow p) * (Sum (0,(n num_sub 1) num_sub p) (\q. ((z + h) pow q) * (z pow (((n num_sub 2) num_sub p) num_sub q))))))) Run time: 0.0s Intermediate theorems generated: 866 Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Run time: 0.0s Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m num_le (m num_add n) Run time: 0.0s Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m num_le n /\ n num_le p ==> m num_le p Run time: 0.0s Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) num_le (SUC m) = n num_le m Run time: 0.0s Theorem REAL_LE autoloading from theory `REAL` ... REAL_LE = |- !m n. (& m) <= (& n) = m num_le n Run time: 0.0s Theorem REAL_LE_LT autoloading from theory `REAL` ... REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s Theorem POW_POS autoloading from theory `REAL` ... POW_POS = |- !x. (& 0) <= x ==> (!n. (& 0) <= (x pow n)) Run time: 0.0s Theorem POW_LE autoloading from theory `REAL` ... POW_LE = |- !n x y. (& 0) <= x /\ x <= y ==> (x pow n) <= (y pow n) Run time: 0.0s Theorem REAL_LE_MUL2 autoloading from theory `REAL` ... REAL_LE_MUL2 = |- !x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 <= x2 /\ y1 <= y2 ==> (x1 * y1) <= (x2 * y2) Run time: 0.0s Theorem SUM_BOUND autoloading from theory `REAL` ... SUM_BOUND = |- !f K m n. (!p. m num_le p /\ p num_lt (m num_add n) ==> (f p) <= K) ==> (Sum(m,n)f) <= ((& n) * K) Run time: 0.0s Theorem REAL_LE_LMUL autoloading from theory `REAL` ... REAL_LE_LMUL = |- !x y z. (& 0) < x ==> ((x * y) <= (x * z) = y <= z) Run time: 0.0s Theorem ABS_SUM autoloading from theory `REAL` ... ABS_SUM = |- !f m n. (abs(Sum(m,n)f)) <= (Sum(m,n)(\n'. abs(f n'))) Run time: 0.0s Theorem REAL_LE_TRANS autoloading from theory `REAL` ... REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s TERMDIFF_LEMMA3 = |- !z h n K. ~(h = & 0) /\ (abs z) <= K /\ (abs(z + h)) <= K ==> (abs (((((z + h) pow n) - (z pow n)) / h) - ((& n) * (z pow (n num_sub 1))))) <= ((& n) * ((&(n num_sub 1)) * ((K pow (n num_sub 2)) * (abs h)))) Run time: 0.0s Intermediate theorems generated: 1294 Theorem REAL_MUL_LINV autoloading from theory `REAL` ... REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s Theorem REAL_LT_RDIV autoloading from theory `REAL` ... REAL_LT_RDIV = |- !x y z. (& 0) < z ==> ((x / z) < (y / z) = x < y) Run time: 0.0s Theorem REAL_LT_LMUL autoloading from theory `REAL` ... REAL_LT_LMUL = |- !x y z. (& 0) < x ==> ((x * y) < (x * z) = y < z) Run time: 0.0s Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_DOWN2 autoloading from theory `REAL` ... REAL_DOWN2 = |- !x y. (& 0) < x /\ (& 0) < y ==> (?z. (& 0) < z /\ z < x /\ z < y) Run time: 0.0s Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 num_lt (SUC n) Run time: 0.0s Theorem REAL_LT autoloading from theory `REAL` ... REAL_LT = |- !m n. (& m) < (& n) = m num_lt n Run time: 0.0s Theorem REAL_INV_POS autoloading from theory `REAL` ... REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Theorem REAL_LT_MUL autoloading from theory `REAL` ... REAL_LT_MUL = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x * y) Run time: 0.0s Theorem REAL_LE_ANTISYM autoloading from theory `REAL` ... REAL_LE_ANTISYM = |- !x y. x <= y /\ y <= x = (x = y) Run time: 0.0s Theorem REAL_LT_HALF2 autoloading from theory `REAL` ... REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Definition abs autoloading from theory `REAL` ... abs = |- !x. abs x = ((& 0) <= x => x | -- x) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.1s Theorem LIM autoloading from theory `LIM` ... LIM = |- !f y0 x0. (f tends_real_real y0)x0 = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (abs(x - x0)) /\ (abs(x - x0)) < d ==> (abs((f x) - y0)) < e))) Run time: 0.0s TERMDIFF_LEMMA4 = |- !f K k. (& 0) < k /\ (!h. (& 0) < (abs h) /\ (abs h) < k ==> (abs(f h)) <= (K * (abs h))) ==> (f tends_real_real (& 0))(& 0) Run time: 0.0s Intermediate theorems generated: 917 Theorem SER_LE autoloading from theory `SEQ` ... SER_LE = |- !f g. (!n. (f n) <= (g n)) /\ summable f /\ summable g ==> (suminf f) <= (suminf g) Run time: 0.0s Theorem SER_ABS autoloading from theory `SEQ` ... SER_ABS = |- !f. summable(\n. abs(f n)) ==> (abs(suminf f)) <= (suminf(\n. abs(f n))) Run time: 0.0s Theorem SUM_SUMMABLE autoloading from theory `SEQ` ... SUM_SUMMABLE = |- !f l. f sums l ==> summable f Run time: 0.0s Theorem SUM_UNIQ autoloading from theory `SEQ` ... SUM_UNIQ = |- !f x. f sums x ==> (x = suminf f) Run time: 0.0s TERMDIFF_LEMMA5 = |- !f g k. (& 0) < k /\ summable f /\ (!h. (& 0) < (abs h) /\ (abs h) < k ==> (!n. (abs(g h n)) <= ((f n) * (abs h)))) ==> ((\h. suminf(g h)) tends_real_real (& 0))(& 0) Run time: 0.0s Intermediate theorems generated: 502 Theorem REAL_LT_SUB_LADD autoloading from theory `REAL` ... REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Theorem ABS_TRIANGLE autoloading from theory `REAL` ... ABS_TRIANGLE = |- !x y. (abs(x + y)) <= ((abs x) + (abs y)) Run time: 0.0s Theorem REAL_LE_LMUL_IMP autoloading from theory `REAL` ... REAL_LE_LMUL_IMP = |- !x y z. (& 0) <= x /\ y <= z ==> (x * y) <= (x * z) Run time: 0.0s Theorem REAL_MUL_RINV autoloading from theory `REAL` ... REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Theorem ABS_LE autoloading from theory `REAL` ... ABS_LE = |- !x. x <= (abs x) Run time: 0.0s Theorem REAL_LTE_TRANS autoloading from theory `REAL` ... REAL_LTE_TRANS = |- !x y z. x < y /\ y <= z ==> x < z Run time: 0.0s Theorem POW_1 autoloading from theory `REAL` ... POW_1 = |- !x. x pow 1 = x Run time: 0.0s Theorem ABS_N autoloading from theory `REAL` ... ABS_N = |- !n. abs(& n) = & n Run time: 0.0s Theorem ABS_REFL autoloading from theory `REAL` ... ABS_REFL = |- !x. (abs x = x) = (& 0) <= x Run time: 0.0s Theorem REAL_MEAN autoloading from theory `REAL` ... REAL_MEAN = |- !x y. x < y ==> (?z. x < z /\ z < y) Run time: 0.0s Theorem REAL_SUB_RDISTRIB autoloading from theory `REAL` ... REAL_SUB_RDISTRIB = |- !x y z. (x - y) * z = (x * z) - (y * z) Run time: 0.0s Theorem LIM_NULL autoloading from theory `LIM` ... LIM_NULL = |- !f l x. (f tends_real_real l)x = ((\x. (f x) - l) tends_real_real (& 0))x Run time: 0.0s Theorem SER_CDIV autoloading from theory `SEQ` ... SER_CDIV = |- !x x0 c. x sums x0 ==> (\n. (x n) / c) sums (x0 / c) Run time: 0.0s Theorem SER_SUB autoloading from theory `SEQ` ... SER_SUB = |- !x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. (x n) - (y n)) sums (x0 - y0) Run time: 0.0s Theorem ABS_ZERO autoloading from theory `REAL` ... ABS_ZERO = |- !x. (abs x = & 0) = (x = & 0) Run time: 0.0s Theorem ABS_CIRCLE autoloading from theory `REAL` ... ABS_CIRCLE = |- !x y h. (abs h) < ((abs y) - (abs x)) ==> (abs(x + h)) < (abs y) Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s Theorem LIM_TRANSFORM autoloading from theory `LIM` ... LIM_TRANSFORM = |- !f g x0 l. ((\x. (f x) - (g x)) tends_real_real (& 0))x0 /\ (g tends_real_real l)x0 ==> (f tends_real_real l)x0 Run time: 0.0s Definition diffl autoloading from theory `LIM` ... diffl = |- !f l x. (f diffl l)x = ((\h. ((f(x + h)) - (f x)) / h) tends_real_real l)(& 0) Run time: 0.0s Intermediate theorems generated: 1 TERMDIFF = |- !c K. summable(\n. (c n) * (K pow n)) /\ summable(\n. (diffs c n) * (K pow n)) /\ summable(\n. (diffs(diffs c)n) * (K pow n)) /\ (abs x) < (abs K) ==> ((\x. suminf(\n. (c n) * (x pow n))) diffl (suminf(\n. (diffs c n) * (x pow n)))) x Run time: 0.0s Intermediate theorems generated: 2494 () : void Run time: 0.0s Intermediate theorems generated: 1 File powser.ml loaded () : void Run time: 0.2s Intermediate theorems generated: 8507 #\ echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `transc.ml`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. () : void false : bool Run time: 0.0s LAND_CONV = - : (conv -> conv) Run time: 0.0s TAUT_CONV = - : conv Run time: 0.0s AC = - : ((thm # thm) -> conv) Run time: 0.0s GEN_PAIR_TAC = - : tactic Run time: 0.0s MK_COMB_TAC = - : tactic Run time: 0.0s BINOP_TAC = - : tactic Run time: 0.0s SYM_CANON_CONV = - : (thm -> ((term # term) -> bool) -> conv) Run time: 0.0s IMP_SUBST_TAC = - : thm_tactic Run time: 0.0s ABBREV_TAC = - : (term -> tactic) Run time: 0.0s EXT_CONV = - : conv Run time: 0.0s ABS_TAC = - : tactic Run time: 0.0s EQUAL_TAC = - : tactic Run time: 0.0s X_BETA_CONV = - : (term -> conv) Run time: 0.0s EXACT_CONV = - : (thm list -> conv) Run time: 0.0s HABS_CONV = - : conv Run time: 0.0s autoload_definitions = - : (string -> void) Run time: 0.0s autoload_theorems = - : (string -> void) Run time: 0.0s EXPAND_TAC = - : (string -> tactic) Run time: 0.0s File useful loaded () : void Run time: 0.0s false : bool Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 1 Theory POWSER loaded () : void Run time: 0.0s Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Run time: 0.0s Theorem DIV_MULT autoloading from theory `arithmetic` ... DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) Run time: 0.0s Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Run time: 0.0s MULT_DIV_2 = |- !n. (2 * n) DIV 2 = n Run time: 0.0s Intermediate theorems generated: 66 Theorem LEFT_ADD_DISTRIB autoloading from theory `arithmetic` ... LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) Run time: 0.0s Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Run time: 0.0s Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Run time: 0.0s Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m Run time: 0.0s Theorem ODD_EXISTS autoloading from theory `arithmetic` ... ODD_EXISTS = |- !n. ODD n = (?m. n = SUC(2 * m)) Run time: 0.0s Theorem EVEN_ODD autoloading from theory `arithmetic` ... EVEN_ODD = |- !n. EVEN n = ~ODD n Run time: 0.0s EVEN_DIV2 = |- !n. ~EVEN n ==> ((SUC n) DIV 2 = SUC((n - 1) DIV 2)) Run time: 0.0s Intermediate theorems generated: 152 real_interface_map = [(`--`, `real_neg`); (`num_add`, `+`); (`+`, `real_add`); (`num_mul`, `*`); (`*`, `real_mul`); (`num_sub`, `-`); (`-`, `real_sub`); (`num_lt`, `<`); (`<`, `real_lt`); (`num_le`, `<=`); (`<=`, `real_le`); (`num_gt`, `>`); (`>`, `real_gt`); (`num_ge`, `>=`); (`>=`, `real_ge`); (`inv`, `real_inv`); (`&`, `real_of_num`)] : (string # string) list Run time: 0.0s [(); ()] : void list Run time: 0.0s [] : (string # string) list Run time: 0.0s () : void Run time: 0.0s Intermediate theorems generated: 48 () : void Run time: 0.1s basic_diffs = [] : thm list Run time: 0.0s Theorem DIFF_CHAIN autoloading from theory `LIM` ... DIFF_CHAIN = |- !f g x. (f diffl l)(g x) /\ (g diffl m)x ==> ((\x. f(g x)) diffl (l * m))x Run time: 0.0s Theorem DIFF_POW autoloading from theory `LIM` ... DIFF_POW = |- !n x. ((\x'. x' pow n) diffl ((& n) * (x pow (n num_sub 1))))x Run time: 0.0s Theorem DIFF_X autoloading from theory `LIM` ... DIFF_X = |- !x. ((\x. x) diffl (& 1))x Run time: 0.0s Theorem DIFF_CONST autoloading from theory `LIM` ... DIFF_CONST = |- !k x. ((\x. k) diffl (& 0))x Run time: 0.0s Theorem DIFF_NEG autoloading from theory `LIM` ... DIFF_NEG = |- !f l x. (f diffl l)x ==> ((\x. --(f x)) diffl (-- l))x Run time: 0.0s Theorem DIFF_SUB autoloading from theory `LIM` ... DIFF_SUB = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) - (g x)) diffl (l - m))x Run time: 0.0s Theorem DIFF_MUL autoloading from theory `LIM` ... DIFF_MUL = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) * (g x)) diffl ((l * (g x)) + (m * (f x))))x Run time: 0.0s Theorem DIFF_ADD autoloading from theory `LIM` ... DIFF_ADD = |- !f g l m x. (f diffl l)x /\ (g diffl m)x ==> ((\x. (f x) + (g x)) diffl (l + m))x Run time: 0.0s Theorem DIFF_DIV autoloading from theory `LIM` ... DIFF_DIV = |- !f g l m. (f diffl l)x /\ (g diffl m)x /\ ~(g x = & 0) ==> ((\x. (f x) / (g x)) diffl (((l * (g x)) - (m * (f x))) / ((g x) pow 2))) x Run time: 0.0s Theorem DIFF_INV autoloading from theory `LIM` ... DIFF_INV = |- !f l x. (f diffl l)x /\ ~(f x = & 0) ==> ((\x. inv(f x)) diffl (--(l / ((f x) pow 2))))x Run time: 0.0s DIFF_CONV = - : conv Run time: 0.0s exp_ser = "\n. inv(&(FACT n))" : term Run time: 0.0s sin_ser = "\n. (EVEN n => & 0 | ((--(& 1)) pow ((n num_sub 1) DIV 2)) / (&(FACT n)))" : term Run time: 0.0s cos_ser = "\n. (EVEN n => ((--(& 1)) pow (n DIV 2)) / (&(FACT n)) | & 0)" : term Run time: 0.0s exp = |- !x. exp x = suminf(\n. ((\n'. inv(&(FACT n')))n) * (x pow n)) Run time: 0.0s Intermediate theorems generated: 2 sin = |- !x. sin x = suminf (\n. ((\n'. (EVEN n' => & 0 | ((--(& 1)) pow ((n' num_sub 1) DIV 2)) / (&(FACT n')))) n) * (x pow n)) Run time: 0.0s Intermediate theorems generated: 2 cos = |- !x. cos x = suminf (\n. ((\n'. (EVEN n' => ((--(& 1)) pow (n' DIV 2)) / (&(FACT n')) | & 0)) n) * (x pow n)) Run time: 0.0s Intermediate theorems generated: 2 Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m num_le (SUC m) Run time: 0.0s Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m num_le n /\ n num_le p ==> m num_le p Run time: 0.0s Theorem REAL_LE_RMUL autoloading from theory `REAL` ... REAL_LE_RMUL = |- !x y z. (& 0) < z ==> ((x * z) <= (y * z) = x <= y) Run time: 0.0s Theorem REAL_LT_IMP_LE autoloading from theory `REAL` ... REAL_LT_IMP_LE = |- !x y. x < y ==> x <= y Run time: 0.0s Theorem REAL_LE_TRANS autoloading from theory `REAL` ... REAL_LE_TRANS = |- !x y z. x <= y /\ y <= z ==> x <= z Run time: 0.0s Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 num_le n Run time: 0.0s Theorem REAL_LE autoloading from theory `REAL` ... REAL_LE = |- !m n. (& m) <= (& n) = m num_le n Run time: 0.0s Theorem ABS_REFL autoloading from theory `REAL` ... ABS_REFL = |- !x. (abs x = x) = (& 0) <= x Run time: 0.0s Theorem ABS_NZ autoloading from theory `REAL` ... ABS_NZ = |- !x. ~(x = & 0) = (& 0) < (abs x) Run time: 0.0s Theorem REAL_LE_LDIV autoloading from theory `REAL` ... REAL_LE_LDIV = |- !x y z. (& 0) < x /\ y <= (z * x) ==> (y / x) <= z Run time: 0.0s Definition real_div autoloading from theory `REAL` ... real_div = |- !x y. x / y = x * (inv y) Run time: 0.0s Intermediate theorems generated: 1 Theorem ABS_INV autoloading from theory `REAL` ... ABS_INV = |- !x. ~(x = & 0) ==> (abs(inv x) = inv(abs x)) Run time: 0.0s Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 num_lt (SUC n) Run time: 0.0s Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Run time: 0.0s Theorem REAL_INJ autoloading from theory `REAL` ... REAL_INJ = |- !m n. (& m = & n) = (m = n) Run time: 0.0s Theorem REAL_INV_MUL autoloading from theory `REAL` ... REAL_INV_MUL = |- !x y. ~(x = & 0) /\ ~(y = & 0) ==> (inv(x * y) = (inv x) * (inv y)) Run time: 0.0s Theorem REAL_MUL autoloading from theory `REAL` ... REAL_MUL = |- !m n. (& m) * (& n) = &(m num_mul n) Run time: 0.0s Definition FACT autoloading from theory `arithmetic` ... FACT = |- (FACT 0 = 1) /\ (!n. FACT(SUC n) = (SUC n) num_mul (FACT n)) Run time: 0.0s Intermediate theorems generated: 1 Theorem ABS_POS autoloading from theory `REAL` ... ABS_POS = |- !x. (& 0) <= (abs x) Run time: 0.0s Theorem REAL_LE_RMUL_IMP autoloading from theory `REAL` ... REAL_LE_RMUL_IMP = |- !x y z. (& 0) <= x /\ y <= z ==> (y * x) <= (z * x) Run time: 0.0s Theorem REAL_MUL_SYM autoloading from theory `REAL` ... REAL_MUL_SYM = |- !x y. x * y = y * x Run time: 0.0s Theorem POW_1 autoloading from theory `REAL` ... POW_1 = |- !x. x pow 1 = x Run time: 0.0s Theorem REAL_MUL_ASSOC autoloading from theory `REAL` ... REAL_MUL_ASSOC = |- !x y z. x * (y * z) = (x * y) * z Run time: 0.0s Theorem ABS_MUL autoloading from theory `REAL` ... ABS_MUL = |- !x y. abs(x * y) = (abs x) * (abs y) Run time: 0.0s Theorem POW_ADD autoloading from theory `REAL` ... POW_ADD = |- !c m n. c pow (m num_add n) = (c pow m) * (c pow n) Run time: 0.0s Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n num_ge m = m num_le n Run time: 0.0s Theorem REAL_ARCH autoloading from theory `REAL` ... REAL_ARCH = |- !x. (& 0) < x ==> (!y. ?n. y < ((& n) * x)) Run time: 0.0s Theorem REAL_LT_01 autoloading from theory `REAL` ... REAL_LT_01 = |- (& 0) < (& 1) Run time: 0.0s Theorem REAL_DOWN autoloading from theory `REAL` ... REAL_DOWN = |- !x. (& 0) < x ==> (?y. (& 0) < y /\ y < x) Run time: 0.0s Theorem SER_RATIO autoloading from theory `SEQ` ... SER_RATIO = |- !f c N. c < (& 1) /\ (!n. n num_ge N ==> (abs(f(SUC n))) <= (c * (abs(f n)))) ==> summable f Run time: 0.0s Theorem SUMMABLE_SUM autoloading from theory `SEQ` ... SUMMABLE_SUM = |- !f. summable f ==> f sums (suminf f) Run time: 0.0s Theorem FACT_LESS autoloading from theory `arithmetic` ... FACT_LESS = |- !n. 0 num_lt (FACT n) Run time: 0.0s Theorem REAL_LT autoloading from theory `REAL` ... REAL_LT = |- !m n. (& m) < (& n) = m num_lt n Run time: 0.0s Theorem REAL_LT_IMP_NE autoloading from theory `REAL` ... REAL_LT_IMP_NE = |- !x y. x < y ==> ~(x = y) Run time: 0.0s EXP_CONVERGES = |- !x. (\n. ((\n. inv(&(FACT n)))n) * (x pow n)) sums (exp x) Run time: 0.0s Intermediate theorems generated: 628 Theorem REAL_INV_POS autoloading from theory `REAL` ... REAL_INV_POS = |- !x. (& 0) < x ==> (& 0) < (inv x) Run time: 0.0s Theorem REAL_EQ_IMP_LE autoloading from theory `REAL` ... REAL_EQ_IMP_LE = |- !x y. (x = y) ==> x <= y Run time: 0.0s Theorem REAL_MUL_LID autoloading from theory `REAL` ... REAL_MUL_LID = |- !x. (& 1) * x = x Run time: 0.0s Theorem POW_M1 autoloading from theory `REAL` ... POW_M1 = |- !n. abs((--(& 1)) pow n) = & 1 Run time: 0.0s Theorem REAL_LE_MUL autoloading from theory `REAL` ... REAL_LE_MUL = |- !x y. (& 0) <= x /\ (& 0) <= y ==> (& 0) <= (x * y) Run time: 0.0s Theorem REAL_MUL_LZERO autoloading from theory `REAL` ... REAL_MUL_LZERO = |- !x. (& 0) * x = & 0 Run time: 0.0s Theorem ABS_0 autoloading from theory `REAL` ... ABS_0 = |- abs(& 0) = & 0 Run time: 0.0s Theorem POW_ABS autoloading from theory `REAL` ... POW_ABS = |- !c n. (abs c) pow n = abs(c pow n) Run time: 0.0s Theorem SUM_SUMMABLE autoloading from theory `SEQ` ... SUM_SUMMABLE = |- !f l. f sums l ==> summable f Run time: 0.0s Theorem SER_COMPAR autoloading from theory `SEQ` ... SER_COMPAR = |- !f g. (?N. !n. n num_ge N ==> (abs(f n)) <= (g n)) /\ summable g ==> summable f Run time: 0.0s SIN_CONVERGES = |- !x. (\n. ((\n. (EVEN n => & 0 | ((--(& 1)) pow ((n num_sub 1) DIV 2)) / (&(FACT n)))) n) * (x pow n)) sums (sin x) Run time: 0.0s Intermediate theorems generated: 272 COS_CONVERGES = |- !x. (\n. ((\n. (EVEN n => ((--(& 1)) pow (n DIV 2)) / (&(FACT n)) | & 0))n) * (x pow n)) sums (cos x) Run time: 0.0s Intermediate theorems generated: 272 Theorem REAL_MUL_RINV autoloading from theory `REAL` ... REAL_MUL_RINV = |- !x. ~(x = & 0) ==> (x * (inv x) = & 1) Run time: 0.0s Theorem REAL_EQ_RMUL autoloading from theory `REAL` ... REAL_EQ_RMUL = |- !x y z. (x * z = y * z) = (z = & 0) \/ (x = y) Run time: 0.0s Definition diffs autoloading from theory `POWSER` ... diffs = |- !c. diffs c = (\n. (&(SUC n)) * (c(SUC n))) Run time: 0.0s Intermediate theorems generated: 1 EXP_FDIFF = |- diffs(\n. inv(&(FACT n))) = (\n. inv(&(FACT n))) Run time: 0.0s Intermediate theorems generated: 193 Theorem REAL_MUL_RZERO autoloading from theory `REAL` ... REAL_MUL_RZERO = |- !x. x * (& 0) = & 0 Run time: 0.0s Definition EVEN autoloading from theory `arithmetic` ... EVEN = |- (EVEN 0 = T) /\ (!n. EVEN(SUC n) = ~EVEN n) Run time: 0.0s Intermediate theorems generated: 1 SIN_FDIFF = |- diffs (\n. (EVEN n => & 0 | ((--(& 1)) pow ((n num_sub 1) DIV 2)) / (&(FACT n)))) = (\n. (EVEN n => ((--(& 1)) pow (n DIV 2)) / (&(FACT n)) | & 0)) Run time: 0.0s Intermediate theorems generated: 361 Theorem REAL_NEG_MINUS1 autoloading from theory `REAL` ... REAL_NEG_MINUS1 = |- !x. -- x = (--(& 1)) * x Run time: 0.0s Definition pow autoloading from theory `REAL` ... pow = |- (!x. x pow 0 = & 1) /\ (!x n. x pow (SUC n) = x * (x pow n)) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_NEG_LMUL autoloading from theory `REAL` ... REAL_NEG_LMUL = |- !x y. --(x * y) = (-- x) * y Run time: 0.0s Theorem REAL_NEG_0 autoloading from theory `REAL` ... REAL_NEG_0 = |- --(& 0) = & 0 Run time: 0.0s COS_FDIFF = |- diffs(\n. (EVEN n => ((--(& 1)) pow (n DIV 2)) / (&(FACT n)) | & 0)) = (\n. -- ((\n. (EVEN n => & 0 | ((--(& 1)) pow ((n num_sub 1) DIV 2)) / (&(FACT n)))) n)) Run time: 0.0s Intermediate theorems generated: 407 Theorem SER_NEG autoloading from theory `SEQ` ... SER_NEG = |- !x x0. x sums x0 ==> (\n. --(x n)) sums (-- x0) Run time: 0.0s Theorem SUM_UNIQ autoloading from theory `SEQ` ... SUM_UNIQ = |- !f x. f sums x ==> (x = suminf f) Run time: 0.0s SIN_NEGLEMMA = |- !x. --(sin x) = suminf (\n. -- (((\n. (EVEN n => & 0 | ((--(& 1)) pow ((n num_sub 1) DIV 2)) / (&(FACT n)))) n) * (x pow n))) Run time: 0.0s Intermediate theorems generated: 42 Theorem REAL_LT_ADDR autoloading from theory `REAL` ... REAL_LT_ADDR = |- !x y. x < (x + y) = (& 0) < y Run time: 0.0s Theorem ABS_LE autoloading from theory `REAL` ... ABS_LE = |- !x. x <= (abs x) Run time: 0.0s Theorem REAL_LTE_TRANS autoloading from theory `REAL` ... REAL_LTE_TRANS = |- !x y z. x < y /\ y <= z ==> x < z Run time: 0.0s Theorem TERMDIFF autoloading from theory `POWSER` ... TERMDIFF = |- !c K. summable(\n. (c n) * (K pow n)) /\ summable(\n. (diffs c n) * (K pow n)) /\ summable(\n. (diffs(diffs c)n) * (K pow n)) /\ (abs x) < (abs K) ==> ((\x. suminf(\n. (c n) * (x pow n))) diffl (suminf(\n. (diffs c n) * (x pow n)))) x Run time: 0.0s DIFF_EXP = |- !x. (exp diffl (exp x))x Run time: 0.0s Intermediate theorems generated: 144 DIFF_SIN = |- !x. (sin diffl (cos x))x Run time: 0.0s Intermediate theorems generated: 200 Theorem DIFFS_NEG autoloading from theory `POWSER` ... DIFFS_NEG = |- !c. diffs(\n. --(c n)) = (\n. --(diffs c n)) Run time: 0.0s DIFF_COS = |- !x. (cos diffl (--(sin x)))x Run time: 0.0s Intermediate theorems generated: 283 [|- !x. (exp diffl (exp x))x; |- !x. (sin diffl (cos x))x; |- !x. (cos diffl (--(sin x)))x] : thm list Run time: 0.0s Theorem POW_0 autoloading from theory `REAL` ... POW_0 = |- !n. (& 0) pow (SUC n) = & 0 Run time: 0.0s Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n num_lt m ==> (?p. m = n num_add (p num_add 1)) Run time: 0.0s Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m num_lt n = (SUC m) num_le n Run time: 0.0s Theorem REAL_INV1 autoloading from theory `REAL` ... REAL_INV1 = |- inv(& 1) = & 1 Run time: 0.0s Theorem REAL_MUL_RID autoloading from theory `REAL` ... REAL_MUL_RID = |- !x. x * (& 1) = x Run time: 0.0s Theorem REAL_ADD_LID autoloading from theory `REAL` ... REAL_ADD_LID = |- !x. (& 0) + x = x Run time: 0.0s Theorem Sum autoloading from theory `REAL` ... Sum = |- (Sum(n,0)f = & 0) /\ (Sum(n,SUC m)f = (Sum(n,m)f) + (f(n num_add m))) Run time: 0.0s Theorem SER_0 autoloading from theory `SEQ` ... SER_0 = |- !f n. (!m. n num_le m ==> (f m = & 0)) ==> f sums (Sum(0,n)f) Run time: 0.0s EXP_0 = |- exp(& 0) = & 1 Run time: 0.0s Intermediate theorems generated: 274 Theorem REAL_LE_REFL autoloading from theory `REAL` ... REAL_LE_REFL = |- !x. x <= x Run time: 0.0s Theorem REAL_ADD_RID autoloading from theory `REAL` ... REAL_ADD_RID = |- !x. x + (& 0) = x Run time: 0.0s Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 num_mul m = 0) /\ (m num_mul 0 = 0) /\ (1 num_mul m = m) /\ (m num_mul 1 = m) /\ ((SUC m) num_mul n = (m num_mul n) num_add n) /\ (m num_mul (SUC n) = m num_add (m num_mul n)) Run time: 0.0s Theorem POW_POS autoloading from theory `REAL` ... POW_POS = |- !x. (& 0) <= x ==> (!n. (& 0) <= (x pow n)) Run time: 0.0s Theorem SER_POS_LE autoloading from theory `SEQ` ... SER_POS_LE = |- !f n. summable f /\ (!m. n num_le m ==> (& 0) <= (f m)) ==> (Sum(0,n)f) <= (suminf f) Run time: 0.0s Theorem REAL_LE_LT autoloading from theory `REAL` ... REAL_LE_LT = |- !x y. x <= y = x < y \/ (x = y) Run time: 0.0s EXP_LE_X = |- !x. (& 0) <= x ==> ((& 1) + x) <= (exp x) Run time: 0.0s Intermediate theorems generated: 420 EXP_LT_1 = |- !x. (& 0) < x ==> (& 1) < (exp x) Run time: 0.0s Intermediate theorems generated: 56 Theorem REAL_SUB_0 autoloading from theory `REAL` ... REAL_SUB_0 = |- !x y. (x - y = & 0) = (x = y) Run time: 0.0s Definition real_sub autoloading from theory `REAL` ... real_sub = |- !x y. x - y = x + (-- y) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_NEG_RMUL autoloading from theory `REAL` ... REAL_NEG_RMUL = |- !x y. --(x * y) = x * (-- y) Run time: 0.0s Theorem DIFF_ISCONST_ALL autoloading from theory `LIM` ... DIFF_ISCONST_ALL = |- !f. (!x. (f diffl (& 0))x) ==> (!x y. f x = f y) Run time: 0.0s EXP_ADD_MUL = |- !x y. (exp(x + y)) * (exp(-- x)) = exp y Run time: 0.0s Intermediate theorems generated: 660 EXP_NEG_MUL = |- !x. (exp x) * (exp(-- x)) = & 1 Run time: 0.0s Intermediate theorems generated: 19 EXP_NEG_MUL2 = |- !x. (exp(-- x)) * (exp x) = & 1 Run time: 0.0s Intermediate theorems generated: 16 Theorem REAL_RINV_UNIQ autoloading from theory `REAL` ... REAL_RINV_UNIQ = |- !x y. (x * y = & 1) ==> (y = inv x) Run time: 0.0s EXP_NEG = |- !x. exp(-- x) = inv(exp x) Run time: 0.0s Intermediate theorems generated: 13 Theorem EXP_ADD autoloading from theory `arithmetic` ... EXP_ADD = |- !p q n. n EXP (p num_add q) = (n EXP p) num_mul (n EXP q) Run time: 0.0s EXP_ADD = |- !x y. exp(x + y) = (exp x) * (exp y) Run time: 0.1s Intermediate theorems generated: 71 Theorem REAL_LE_SQUARE autoloading from theory `REAL` ... REAL_LE_SQUARE = |- !x. (& 0) <= (x * x) Run time: 0.0s Theorem REAL_HALF_DOUBLE autoloading from theory `REAL` ... REAL_HALF_DOUBLE = |- !x. (x / (& 2)) + (x / (& 2)) = x Run time: 0.0s EXP_POS_LE = |- !x. (& 0) <= (exp x) Run time: 0.0s Intermediate theorems generated: 27 Theorem REAL_10 autoloading from theory `REAL` ... REAL_10 = |- ~(& 1 = & 0) Run time: 0.0s EXP_NZ = |- !x. ~(exp x = & 0) Run time: 0.0s Intermediate theorems generated: 29 Theorem REAL_LT_LE autoloading from theory `REAL` ... REAL_LT_LE = |- !x y. x < y = x <= y /\ ~(x = y) Run time: 0.0s EXP_POS_LT = |- !x. (& 0) < (exp x) Run time: 0.0s Intermediate theorems generated: 38 Theorem REAL_RDISTRIB autoloading from theory `REAL` ... REAL_RDISTRIB = |- !x y z. (x + y) * z = (x * z) + (y * z) Run time: 0.0s Theorem REAL_ADD autoloading from theory `REAL` ... REAL_ADD = |- !m n. (& m) + (& n) = &(m num_add n) Run time: 0.0s Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m num_add n = n num_add m Run time: 0.0s EXP_N = |- !n x. exp((& n) * x) = (exp x) pow n Run time: 0.0s Intermediate theorems generated: 152 EXP_SUB = |- !x y. exp(x - y) = (exp x) / (exp y) Run time: 0.0s Intermediate theorems generated: 38 Theorem REAL_LT_RMUL autoloading from theory `REAL` ... REAL_LT_RMUL = |- !x y z. (& 0) < z ==> ((x * z) < (y * z) = x < y) Run time: 0.0s Theorem REAL_SUB_LT autoloading from theory `REAL` ... REAL_SUB_LT = |- !x y. (& 0) < (x - y) = y < x Run time: 0.0s EXP_MONO_IMP = |- !x y. x < y ==> (exp x) < (exp y) Run time: 0.0s Intermediate theorems generated: 127 Theorem REAL_NOT_LT autoloading from theory `REAL` ... REAL_NOT_LT = |- !x y. ~x < y = y <= x Run time: 0.0s EXP_MONO_LT = |- !x y. (exp x) < (exp y) = x < y Run time: 0.0s Intermediate theorems generated: 85 EXP_MONO_LE = |- !x y. (exp x) <= (exp y) = x <= y Run time: 0.0s Intermediate theorems generated: 37 Theorem REAL_LE_ANTISYM autoloading from theory `REAL` ... REAL_LE_ANTISYM = |- !x y. x <= y /\ y <= x = (x = y) Run time: 0.0s EXP_INJ = |- !x y. (exp x = exp y) = (x = y) Run time: 0.0s Intermediate theorems generated: 39 Theorem DIFF_CONT autoloading from theory `LIM` ... DIFF_CONT = |- !f l x. (f diffl l)x ==> f contl x Run time: 0.0s Theorem REAL_SUB_ADD2 autoloading from theory `REAL` ... REAL_SUB_ADD2 = |- !x y. y + (x - y) = x Run time: 0.0s Theorem REAL_SUB_LE autoloading from theory `REAL` ... REAL_SUB_LE = |- !x y. (& 0) <= (x - y) = y <= x Run time: 0.0s Theorem REAL_LE_SUB_LADD autoloading from theory `REAL` ... REAL_LE_SUB_LADD = |- !x y z. x <= (y - z) = (x + z) <= y Run time: 0.0s Theorem IVT autoloading from theory `LIM` ... IVT = |- !f a b y. a <= b /\ ((f a) <= y /\ y <= (f b)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?x. a <= x /\ x <= b /\ (f x = y)) Run time: 0.0s EXP_TOTAL_LEMMA = |- !y. (& 1) <= y ==> (?x. (& 0) <= x /\ x <= (y - (& 1)) /\ (exp x = y)) Run time: 0.0s Intermediate theorems generated: 116 Theorem REAL_INVINV autoloading from theory `REAL` ... REAL_INVINV = |- !x. ~(x = & 0) ==> (inv(inv x) = x) Run time: 0.0s Theorem REAL_INV_LT1 autoloading from theory `REAL` ... REAL_INV_LT1 = |- !x. (& 0) < x /\ x < (& 1) ==> (& 1) < (inv x) Run time: 0.0s Theorem REAL_LET_TOTAL autoloading from theory `REAL` ... REAL_LET_TOTAL = |- !x y. x <= y \/ y < x Run time: 0.0s EXP_TOTAL = |- !y. (& 0) < y ==> (?x. exp x = y) Run time: 0.0s Intermediate theorems generated: 134 ln = |- !x. ln x = (@u. exp u = x) Run time: 0.0s Intermediate theorems generated: 2 LN_EXP = |- !x. ln(exp x) = x Run time: 0.0s Intermediate theorems generated: 52 EXP_LN = |- !x. (exp(ln x) = x) = (& 0) < x Run time: 0.0s Intermediate theorems generated: 41 Theorem REAL_LT_MUL autoloading from theory `REAL` ... REAL_LT_MUL = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x * y) Run time: 0.0s LN_MUL = |- !x y. (& 0) < x /\ (& 0) < y ==> (ln(x * y) = (ln x) + (ln y)) Run time: 0.0s Intermediate theorems generated: 113 LN_INJ = |- !x y. (& 0) < x /\ (& 0) < y ==> ((ln x = ln y) = (x = y)) Run time: 0.0s Intermediate theorems generated: 53 LN_1 = |- ln(& 1) = & 0 Run time: 0.0s Intermediate theorems generated: 27 Theorem REAL_POS_NZ autoloading from theory `REAL` ... REAL_POS_NZ = |- !x. (& 0) < x ==> ~(x = & 0) Run time: 0.0s Theorem REAL_RNEG_UNIQ autoloading from theory `REAL` ... REAL_RNEG_UNIQ = |- !x y. (x + y = & 0) = (y = -- x) Run time: 0.0s LN_INV = |- !x. (& 0) < x ==> (ln(inv x) = --(ln x)) Run time: 0.0s Intermediate theorems generated: 81 LN_DIV = |- !x. (& 0) < x /\ (& 0) < y ==> (ln(x / y) = (ln x) - (ln y)) Run time: 0.0s Intermediate theorems generated: 78 LN_MONO_LT = |- !x y. (& 0) < x /\ (& 0) < y ==> ((ln x) < (ln y) = x < y) Run time: 0.0s Intermediate theorems generated: 53 LN_MONO_LE = |- !x y. (& 0) < x /\ (& 0) < y ==> ((ln x) <= (ln y) = x <= y) Run time: 0.0s Intermediate theorems generated: 53 LN_POW = |- !n x. (& 0) < x ==> (ln(x pow n) = (& n) * (ln x)) Run time: 0.0s Intermediate theorems generated: 42 root = |- !n x. root n x = (@u. ((& 0) < x ==> (& 0) < u) /\ (u pow n = x)) Run time: 0.0s Intermediate theorems generated: 2 sqrt = |- !x. sqrt x = root 2 x Run time: 0.0s Intermediate theorems generated: 2 Theorem REAL_MUL_LINV autoloading from theory `REAL` ... REAL_MUL_LINV = |- !x. ~(x = & 0) ==> ((inv x) * x = & 1) Run time: 0.0s ROOT_LT_LEMMA = |- !n x. (& 0) < x ==> ((exp((ln x) / (&(SUC n)))) pow (SUC n) = x) Run time: 0.0s Intermediate theorems generated: 123 ROOT_LN = |- !n x. (& 0) < x ==> (!n. root(SUC n)x = exp((ln x) / (&(SUC n)))) Run time: 0.0s Intermediate theorems generated: 282 Theorem REAL_ENTIRE autoloading from theory `REAL` ... REAL_ENTIRE = |- !x y. (x * y = & 0) = (x = & 0) \/ (y = & 0) Run time: 0.0s Theorem REAL_LT_REFL autoloading from theory `REAL` ... REAL_LT_REFL = |- !x. ~x < x Run time: 0.0s ROOT_0 = |- !n. root(SUC n)(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 209 Theorem REAL_DIV_LZERO autoloading from theory `REAL` ... REAL_DIV_LZERO = |- !x. (& 0) / x = & 0 Run time: 0.0s ROOT_1 = |- !n. root(SUC n)(& 1) = & 1 Run time: 0.0s Intermediate theorems generated: 28 ROOT_POW_POS = |- !n x. (& 0) <= x ==> ((root(SUC n)x) pow (SUC n) = x) Run time: 0.0s Intermediate theorems generated: 66 SQRT_0 = |- sqrt(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 20 SQRT_1 = |- sqrt(& 1) = & 1 Run time: 0.0s Intermediate theorems generated: 20 Theorem REAL_LE_POW2 autoloading from theory `REAL` ... REAL_LE_POW2 = |- !x. (& 0) <= (x pow 2) Run time: 0.0s SQRT_POW2 = |- !x. ((sqrt x) pow 2 = x) = (& 0) <= x Run time: 0.0s Intermediate theorems generated: 33 Theorem ODD_EVEN autoloading from theory `arithmetic` ... ODD_EVEN = |- !n. ODD n = ~EVEN n Run time: 0.0s SIN_0 = |- sin(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 206 Theorem REAL_DIV_REFL autoloading from theory `REAL` ... REAL_DIV_REFL = |- !x. ~(x = & 0) ==> (x / x = & 1) Run time: 0.0s Theorem DIV_UNIQUE autoloading from theory `arithmetic` ... DIV_UNIQUE = |- !n k q. (?r. (k = (q num_mul n) num_add r) /\ r num_lt n) ==> (k DIV n = q) Run time: 0.0s COS_0 = |- cos(& 0) = & 1 Run time: 0.0s Intermediate theorems generated: 454 SIN_CIRCLE = |- !x. ((sin x) pow 2) + ((cos x) pow 2) = & 1 Run time: 0.0s Intermediate theorems generated: 690 Theorem REAL_ADD_RINV autoloading from theory `REAL` ... REAL_ADD_RINV = |- !x. x + (-- x) = & 0 Run time: 0.0s Theorem REAL_ADD_SYM autoloading from theory `REAL` ... REAL_ADD_SYM = |- !x y. x + y = y + x Run time: 0.0s Theorem REAL_ADD_ASSOC autoloading from theory `REAL` ... REAL_ADD_ASSOC = |- !x y z. x + (y + z) = (x + y) + z Run time: 0.0s Theorem REAL_LTE_ADD autoloading from theory `REAL` ... REAL_LTE_ADD = |- !x y. (& 0) < x /\ (& 0) <= y ==> (& 0) < (x + y) Run time: 0.0s Theorem POW_2 autoloading from theory `REAL` ... POW_2 = |- !x. x pow 2 = x * x Run time: 0.0s Theorem REAL_POW2_ABS autoloading from theory `REAL` ... REAL_POW2_ABS = |- !x. (abs x) pow 2 = x pow 2 Run time: 0.0s Theorem REAL_LT1_POW2 autoloading from theory `REAL` ... REAL_LT1_POW2 = |- !x. (& 1) < x ==> (& 1) < (x pow 2) Run time: 0.0s Theorem REAL_NOT_LE autoloading from theory `REAL` ... REAL_NOT_LE = |- !x y. ~x <= y = y < x Run time: 0.0s SIN_BOUND = |- !x. (abs(sin x)) <= (& 1) Run time: 0.1s Intermediate theorems generated: 212 Theorem ABS_BOUNDS autoloading from theory `REAL` ... ABS_BOUNDS = |- !x k. (abs x) <= k = (-- k) <= x /\ x <= k Run time: 0.0s SIN_BOUNDS = |- !x. (--(& 1)) <= (sin x) /\ (sin x) <= (& 1) Run time: 0.0s Intermediate theorems generated: 24 Theorem REAL_LET_ADD autoloading from theory `REAL` ... REAL_LET_ADD = |- !x y. (& 0) <= x /\ (& 0) < y ==> (& 0) < (x + y) Run time: 0.0s COS_BOUND = |- !x. (abs(cos x)) <= (& 1) Run time: 0.0s Intermediate theorems generated: 160 COS_BOUNDS = |- !x. (--(& 1)) <= (cos x) /\ (cos x) <= (& 1) Run time: 0.0s Intermediate theorems generated: 24 Theorem REAL_NEGNEG autoloading from theory `REAL` ... REAL_NEGNEG = |- !x. --(-- x) = x Run time: 0.0s Theorem REAL_NEG_ADD autoloading from theory `REAL` ... REAL_NEG_ADD = |- !x y. --(x + y) = (-- x) + (-- y) Run time: 0.0s Theorem REAL_SUB_LZERO autoloading from theory `REAL` ... REAL_SUB_LZERO = |- !x. (& 0) - x = -- x Run time: 0.0s Theorem REAL_EQ_SUB_LADD autoloading from theory `REAL` ... REAL_EQ_SUB_LADD = |- !x y z. (x = y - z) = (x + z = y) Run time: 0.0s Theorem REAL_SUB_REFL autoloading from theory `REAL` ... REAL_SUB_REFL = |- !x. x - x = & 0 Run time: 0.0s Theorem REAL_SUB_RZERO autoloading from theory `REAL` ... REAL_SUB_RZERO = |- !x. x - (& 0) = x Run time: 0.0s SIN_COS_ADD = |- !x y. (((sin(x + y)) - (((sin x) * (cos y)) + ((cos x) * (sin y)))) pow 2) + (((cos(x + y)) - (((cos x) * (cos y)) - ((sin x) * (sin y)))) pow 2) = & 0 Run time: 0.0s Intermediate theorems generated: 1747 SIN_COS_NEG = |- !x. (((sin(-- x)) + (sin x)) pow 2) + (((cos(-- x)) - (cos x)) pow 2) = & 0 Run time: 0.0s Intermediate theorems generated: 1099 Theorem REAL_SUMSQ autoloading from theory `REAL` ... REAL_SUMSQ = |- !x y. ((x * x) + (y * y) = & 0) = (x = & 0) /\ (y = & 0) Run time: 0.0s SIN_ADD = |- !x y. sin(x + y) = ((sin x) * (cos y)) + ((cos x) * (sin y)) Run time: 0.0s Intermediate theorems generated: 51 COS_ADD = |- !x y. cos(x + y) = ((cos x) * (cos y)) - ((sin x) * (sin y)) Run time: 0.0s Intermediate theorems generated: 51 Theorem REAL_LNEG_UNIQ autoloading from theory `REAL` ... REAL_LNEG_UNIQ = |- !x y. (x + y = & 0) = (x = -- y) Run time: 0.0s SIN_NEG = |- !x. sin(-- x) = --(sin x) Run time: 0.0s Intermediate theorems generated: 48 COS_NEG = |- !x. cos(-- x) = cos x Run time: 0.0s Intermediate theorems generated: 47 Theorem REAL_DOUBLE autoloading from theory `REAL` ... REAL_DOUBLE = |- !x. x + x = (& 2) * x Run time: 0.0s SIN_DOUBLE = |- !x. sin((& 2) * x) = (& 2) * ((sin x) * (cos x)) Run time: 0.0s Intermediate theorems generated: 29 COS_DOUBLE = |- !x. cos((& 2) * x) = ((cos x) pow 2) - ((sin x) pow 2) Run time: 0.0s Intermediate theorems generated: 34 Theorem ODD_DOUBLE autoloading from theory `arithmetic` ... ODD_DOUBLE = |- !n. ODD(SUC(2 num_mul n)) Run time: 0.0s Theorem EVEN_DOUBLE autoloading from theory `arithmetic` ... EVEN_DOUBLE = |- !n. EVEN(2 num_mul n) Run time: 0.0s Theorem SUM_2 autoloading from theory `REAL` ... SUM_2 = |- !f n. Sum(n,2)f = (f n) + (f(n num_add 1)) Run time: 0.0s Theorem SER_PAIR autoloading from theory `SEQ` ... SER_PAIR = |- !f. summable f ==> (\n. Sum(2 num_mul n,2)f) sums (suminf f) Run time: 0.0s SIN_PAIRED = |- !x. (\n. (((--(& 1)) pow n) / (&(FACT((2 num_mul n) num_add 1)))) * (x pow ((2 num_mul n) num_add 1))) sums (sin x) Run time: 0.0s Intermediate theorems generated: 183 Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) num_le (SUC m) = n num_le m Run time: 0.0s Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n num_lt (SUC n) Run time: 0.0s Theorem REAL_LT_TRANS autoloading from theory `REAL` ... REAL_LT_TRANS = |- !x y z. x < y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_LT_MUL2 autoloading from theory `REAL` ... REAL_LT_MUL2 = |- !x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 < x2 /\ y1 < y2 ==> (x1 * y1) < (x2 * y2) Run time: 0.0s Theorem REAL_LT_1 autoloading from theory `REAL` ... REAL_LT_1 = |- !x y. (& 0) <= x /\ x < y ==> (x / y) < (& 1) Run time: 0.0s Theorem POW_POS_LT autoloading from theory `REAL` ... POW_POS_LT = |- !x n. (& 0) < x ==> (& 0) < (x pow (SUC n)) Run time: 0.0s Theorem REAL_LT_RMUL_IMP autoloading from theory `REAL` ... REAL_LT_RMUL_IMP = |- !x y z. x < y /\ (& 0) < z ==> (x * z) < (y * z) Run time: 0.0s Theorem SER_POS_LT autoloading from theory `SEQ` ... SER_POS_LT = |- !f n. summable f /\ (!m. n num_le m ==> (& 0) < (f m)) ==> (Sum(0,n)f) < (suminf f) Run time: 0.0s Theorem POW_MINUS1 autoloading from theory `REAL` ... POW_MINUS1 = |- !n. (--(& 1)) pow (2 num_mul n) = & 1 Run time: 0.0s SIN_POS = |- !x. (& 0) < x /\ x < (& 2) ==> (& 0) < (sin x) Run time: 0.0s Intermediate theorems generated: 2052 COS_PAIRED = |- !x. (\n. (((--(& 1)) pow n) / (&(FACT(2 num_mul n)))) * (x pow (2 num_mul n))) sums (cos x) Run time: 0.0s Intermediate theorems generated: 163 Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) num_lt (SUC n) = m num_lt n Run time: 0.0s Theorem SER_POS_LT_PAIR autoloading from theory `SEQ` ... SER_POS_LT_PAIR = |- !f n. summable f /\ (!d. (& 0) < ((f(n num_add (2 num_mul d))) + (f(n num_add ((2 num_mul d) num_add 1))))) ==> (Sum(0,n)f) < (suminf f) Run time: 0.0s Theorem REAL_ADD_LINV autoloading from theory `REAL` ... REAL_ADD_LINV = |- !x. (-- x) + x = & 0 Run time: 0.0s Theorem REAL_EQ_LMUL_IMP autoloading from theory `REAL` ... REAL_EQ_LMUL_IMP = |- !x y z. ~(x = & 0) /\ (x * y = x * z) ==> (y = z) Run time: 0.0s Theorem REAL_NEG_LT0 autoloading from theory `REAL` ... REAL_NEG_LT0 = |- !x. (-- x) < (& 0) = (& 0) < x Run time: 0.0s COS_2 = |- (cos(& 2)) < (& 0) Run time: 0.1s Intermediate theorems generated: 3794 Theorem REAL_LET_TRANS autoloading from theory `REAL` ... REAL_LET_TRANS = |- !x y z. x <= y /\ y < z ==> x < z Run time: 0.0s Theorem REAL_NEG_EQ0 autoloading from theory `REAL` ... REAL_NEG_EQ0 = |- !x. (-- x = & 0) = (x = & 0) Run time: 0.0s Theorem DIFF_UNIQ autoloading from theory `LIM` ... DIFF_UNIQ = |- !f l m x. (f diffl l)x /\ (f diffl m)x ==> (l = m) Run time: 0.0s Theorem ROLLE autoloading from theory `LIM` ... ROLLE = |- !f a b. a < b /\ (f a = f b) /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> f differentiable x) ==> (?z. a < z /\ z < b /\ (f diffl (& 0))z) Run time: 0.0s Definition differentiable autoloading from theory `LIM` ... differentiable = |- !f x. f differentiable x = (?l. (f diffl l)x) Run time: 0.0s Intermediate theorems generated: 1 Theorem REAL_LT_TOTAL autoloading from theory `REAL` ... REAL_LT_TOTAL = |- !x y. (x = y) \/ x < y \/ y < x Run time: 0.0s Theorem REAL_LE_01 autoloading from theory `REAL` ... REAL_LE_01 = |- (& 0) <= (& 1) Run time: 0.0s Theorem IVT2 autoloading from theory `LIM` ... IVT2 = |- !f a b y. a <= b /\ ((f b) <= y /\ y <= (f a)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?x. a <= x /\ x <= b /\ (f x = y)) Run time: 0.0s COS_ISZERO = |- ?! x. (& 0) <= x /\ x <= (& 2) /\ (cos x = & 0) Run time: 0.0s Intermediate theorems generated: 775 pi = |- pi = (& 2) * (@x. (& 0) <= x /\ x <= (& 2) /\ (cos x = & 0)) Run time: 0.0s Intermediate theorems generated: 2 PI2 = |- pi / (& 2) = (@x. (& 0) <= x /\ x <= (& 2) /\ (cos x = & 0)) Run time: 0.0s Intermediate theorems generated: 117 COS_PI2 = |- cos(pi / (& 2)) = & 0 Run time: 0.0s Intermediate theorems generated: 42 PI2_BOUNDS = |- (& 0) < (pi / (& 2)) /\ (pi / (& 2)) < (& 2) Run time: 0.0s Intermediate theorems generated: 124 Theorem REAL_LT_ADD autoloading from theory `REAL` ... REAL_LT_ADD = |- !x y. (& 0) < x /\ (& 0) < y ==> (& 0) < (x + y) Run time: 0.0s PI_POS = |- (& 0) < pi Run time: 0.0s Intermediate theorems generated: 31 Theorem REAL_LT_GT autoloading from theory `REAL` ... REAL_LT_GT = |- !x y. x < y ==> ~y < x Run time: 0.0s Theorem REAL_DIFFSQ autoloading from theory `REAL` ... REAL_DIFFSQ = |- !x y. (x + y) * (x - y) = (x * x) - (y * y) Run time: 0.0s SIN_PI2 = |- sin(pi / (& 2)) = & 1 Run time: 0.0s Intermediate theorems generated: 212 Theorem REAL_DIV_LMUL autoloading from theory `REAL` ... REAL_DIV_LMUL = |- !x y. ~(y = & 0) ==> (y * (x / y) = x) Run time: 0.0s COS_PI = |- cos pi = --(& 1) Run time: 0.0s Intermediate theorems generated: 84 SIN_PI = |- sin pi = & 0 Run time: 0.0s Intermediate theorems generated: 79 SIN_COS = |- !x. sin x = cos((pi / (& 2)) - x) Run time: 0.0s Intermediate theorems generated: 66 COS_SIN = |- !x. cos x = sin((pi / (& 2)) - x) Run time: 0.0s Intermediate theorems generated: 56 SIN_PERIODIC_PI = |- !x. sin(x + pi) = --(sin x) Run time: 0.0s Intermediate theorems generated: 59 COS_PERIODIC_PI = |- !x. cos(x + pi) = --(cos x) Run time: 0.0s Intermediate theorems generated: 59 SIN_PERIODIC = |- !x. sin(x + ((& 2) * pi)) = sin x Run time: 0.0s Intermediate theorems generated: 47 COS_PERIODIC = |- !x. cos(x + ((& 2) * pi)) = cos x Run time: 0.0s Intermediate theorems generated: 47 COS_NPI = |- !n. cos((& n) * pi) = (--(& 1)) pow n Run time: 0.0s Intermediate theorems generated: 134 SIN_NPI = |- !n. sin((& n) * pi) = & 0 Run time: 0.0s Intermediate theorems generated: 137 SIN_POS_PI2 = |- !x. (& 0) < x /\ x < (pi / (& 2)) ==> (& 0) < (sin x) Run time: 0.0s Intermediate theorems generated: 53 COS_POS_PI2 = |- !x. (& 0) < x /\ x < (pi / (& 2)) ==> (& 0) < (cos x) Run time: 0.0s Intermediate theorems generated: 450 Theorem REAL_LT_NEG autoloading from theory `REAL` ... REAL_LT_NEG = |- !x y. (-- x) < (-- y) = y < x Run time: 0.0s COS_POS_PI = |- !x. (--(pi / (& 2))) < x /\ x < (pi / (& 2)) ==> (& 0) < (cos x) Run time: 0.0s Intermediate theorems generated: 143 Theorem REAL_LT_SUB_RADD autoloading from theory `REAL` ... REAL_LT_SUB_RADD = |- !x y z. (x - y) < z = x < (z + y) Run time: 0.1s Theorem REAL_LT_SUB_LADD autoloading from theory `REAL` ... REAL_LT_SUB_LADD = |- !x y z. x < (y - z) = (x + z) < y Run time: 0.0s Theorem REAL_NEG_SUB autoloading from theory `REAL` ... REAL_NEG_SUB = |- !x y. --(x - y) = y - x Run time: 0.0s SIN_POS_PI = |- !x. (& 0) < x /\ x < pi ==> (& 0) < (sin x) Run time: 0.0s Intermediate theorems generated: 96 COS_TOTAL = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (?! x. (& 0) <= x /\ x <= pi /\ (cos x = y)) Run time: 0.0s Intermediate theorems generated: 766 Theorem REAL_EQ_RADD autoloading from theory `REAL` ... REAL_EQ_RADD = |- !x y z. (x + z = y + z) = (x = y) Run time: 0.0s Theorem REAL_SUB_ADD autoloading from theory `REAL` ... REAL_SUB_ADD = |- !x y. (x - y) + y = x Run time: 0.0s Theorem REAL_LE_NEG autoloading from theory `REAL` ... REAL_LE_NEG = |- !x y. (-- x) <= (-- y) = y <= x Run time: 0.0s Theorem REAL_ADD_SUB autoloading from theory `REAL` ... REAL_ADD_SUB = |- !x y. (x + y) - x = y Run time: 0.0s Theorem REAL_EQ_NEG autoloading from theory `REAL` ... REAL_EQ_NEG = |- !x y. (-- x = -- y) = (x = y) Run time: 0.0s Theorem REAL_LE_SUB_RADD autoloading from theory `REAL` ... REAL_LE_SUB_RADD = |- !x y z. (x - y) <= z = x <= (z + y) Run time: 0.0s SIN_TOTAL = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (?! x. (--(pi / (& 2))) <= x /\ x <= (pi / (& 2)) /\ (sin x = y)) Run time: 0.0s Intermediate theorems generated: 431 Theorem REAL_DIV_RMUL autoloading from theory `REAL` ... REAL_DIV_RMUL = |- !x y. ~(y = & 0) ==> ((x / y) * y = x) Run time: 0.0s Theorem REAL_EQ_SUB_RADD autoloading from theory `REAL` ... REAL_EQ_SUB_RADD = |- !x y z. (x - y = z) = (x = z + y) Run time: 0.0s Theorem REAL_LT_HALF2 autoloading from theory `REAL` ... REAL_LT_HALF2 = |- !d. (d / (& 2)) < d = (& 0) < d Run time: 0.0s Theorem REAL_LT_HALF1 autoloading from theory `REAL` ... REAL_LT_HALF1 = |- !d. (& 0) < (d / (& 2)) = (& 0) < d Run time: 0.0s Theorem REAL_NEG_LE0 autoloading from theory `REAL` ... REAL_NEG_LE0 = |- !x. (-- x) <= (& 0) = (& 0) <= x Run time: 0.0s Theorem REAL_ARCH_LEAST autoloading from theory `REAL` ... REAL_ARCH_LEAST = |- !y. (& 0) < y ==> (!x. (& 0) <= x ==> (?n. ((& n) * y) <= x /\ x < ((&(SUC n)) * y))) Run time: 0.0s COS_ZERO_LEMMA = |- !x. (& 0) <= x /\ (cos x = & 0) ==> (?n. ~EVEN n /\ (x = (& n) * (pi / (& 2)))) Run time: 0.0s Intermediate theorems generated: 675 Theorem REAL_LE_ADDR autoloading from theory `REAL` ... REAL_LE_ADDR = |- !x y. x <= (x + y) = (& 0) <= y Run time: 0.0s SIN_ZERO_LEMMA = |- !x. (& 0) <= x /\ (sin x = & 0) ==> (?n. EVEN n /\ (x = (& n) * (pi / (& 2)))) Run time: 0.0s Intermediate theorems generated: 305 Theorem REAL_NEG_EQ autoloading from theory `REAL` ... REAL_NEG_EQ = |- !x y. (-- x = y) = (x = -- y) Run time: 0.0s Theorem REAL_LE_TOTAL autoloading from theory `REAL` ... REAL_LE_TOTAL = |- !x y. x <= y \/ y <= x Run time: 0.0s COS_ZERO = |- !x. (cos x = & 0) = (?n. ~EVEN n /\ (x = (& n) * (pi / (& 2)))) \/ (?n. ~EVEN n /\ (x = --((& n) * (pi / (& 2))))) Run time: 0.0s Intermediate theorems generated: 630 Theorem EVEN_EXISTS autoloading from theory `arithmetic` ... EVEN_EXISTS = |- !n. EVEN n = (?m. n = 2 num_mul m) Run time: 0.0s Theorem REAL_NEG_GE0 autoloading from theory `REAL` ... REAL_NEG_GE0 = |- !x. (& 0) <= (-- x) = x <= (& 0) Run time: 0.0s SIN_ZERO = |- !x. (sin x = & 0) = (?n. EVEN n /\ (x = (& n) * (pi / (& 2)))) \/ (?n. EVEN n /\ (x = --((& n) * (pi / (& 2))))) Run time: 0.0s Intermediate theorems generated: 319 tan = |- !x. tan x = (sin x) / (cos x) Run time: 0.0s Intermediate theorems generated: 2 TAN_0 = |- tan(& 0) = & 0 Run time: 0.0s Intermediate theorems generated: 19 TAN_PI = |- tan pi = & 0 Run time: 0.0s Intermediate theorems generated: 19 TAN_NPI = |- !n. tan((& n) * pi) = & 0 Run time: 0.0s Intermediate theorems generated: 24 TAN_NEG = |- !x. tan(-- x) = --(tan x) Run time: 0.0s Intermediate theorems generated: 46 TAN_PERIODIC = |- !x. tan(x + ((& 2) * pi)) = tan x Run time: 0.0s Intermediate theorems generated: 24 Theorem REAL_LDISTRIB autoloading from theory `REAL` ... REAL_LDISTRIB = |- !x y z. x * (y + z) = (x * y) + (x * z) Run time: 0.0s Theorem REAL_SUB_LDISTRIB autoloading from theory `REAL` ... REAL_SUB_LDISTRIB = |- !x y z. x * (y - z) = (x * y) - (x * z) Run time: 0.0s Theorem REAL_DIV_MUL2 autoloading from theory `REAL` ... REAL_DIV_MUL2 = |- !x z. ~(x = & 0) /\ ~(z = & 0) ==> (!y. y / z = (x * y) / (x * z)) Run time: 0.0s TAN_ADD = |- !x y. ~(cos x = & 0) /\ ~(cos y = & 0) /\ ~(cos(x + y) = & 0) ==> (tan(x + y) = ((tan x) + (tan y)) / ((& 1) - ((tan x) * (tan y)))) Run time: 0.0s Intermediate theorems generated: 869 TAN_DOUBLE = |- !x. ~(cos x = & 0) /\ ~(cos((& 2) * x) = & 0) ==> (tan((& 2) * x) = ((& 2) * (tan x)) / ((& 1) - ((tan x) pow 2))) Run time: 0.0s Intermediate theorems generated: 68 TAN_POS_PI2 = |- !x. (& 0) < x /\ x < (pi / (& 2)) ==> (& 0) < (tan x) Run time: 0.1s Intermediate theorems generated: 78 Theorem REAL_INV_1OVER autoloading from theory `REAL` ... REAL_INV_1OVER = |- !x. inv x = (& 1) / x Run time: 0.0s DIFF_TAN = |- !x. ~(cos x = & 0) ==> (tan diffl (inv((cos x) pow 2)))x Run time: 0.0s Intermediate theorems generated: 532 Theorem REAL_LT_INV autoloading from theory `REAL` ... REAL_LT_INV = |- !x y. (& 0) < x /\ x < y ==> (inv y) < (inv x) Run time: 0.0s Theorem ABS_NEG autoloading from theory `REAL` ... ABS_NEG = |- !x. abs(-- x) = abs x Run time: 0.0s Theorem REAL_SUB_SUB autoloading from theory `REAL` ... REAL_SUB_SUB = |- !x y. (x - y) - x = -- y Run time: 0.0s Theorem REAL_DOWN2 autoloading from theory `REAL` ... REAL_DOWN2 = |- !x y. (& 0) < x /\ (& 0) < y ==> (?z. (& 0) < z /\ z < x /\ z < y) Run time: 0.0s Theorem LIM autoloading from theory `LIM` ... LIM = |- !f y0 x0. (f tends_real_real y0)x0 = (!e. (& 0) < e ==> (?d. (& 0) < d /\ (!x. (& 0) < (abs(x - x0)) /\ (abs(x - x0)) < d ==> (abs((f x) - y0)) < e))) Run time: 0.0s Theorem CONTL_LIM autoloading from theory `LIM` ... CONTL_LIM = |- !f x. f contl x = (f tends_real_real (f x))x Run time: 0.0s Theorem LIM_DIV autoloading from theory `LIM` ... LIM_DIV = |- !f g l m. (f tends_real_real l)x /\ (g tends_real_real m)x /\ ~(m = & 0) ==> ((\x. (f x) / (g x)) tends_real_real (l / m))x Run time: 0.0s TAN_TOTAL_LEMMA = |- !y. (& 0) < y ==> (?x. (& 0) < x /\ x < (pi / (& 2)) /\ y < (tan x)) Run time: 0.0s Intermediate theorems generated: 1046 TAN_TOTAL_POS = |- !y. (& 0) <= y ==> (?x. (& 0) <= x /\ x < (pi / (& 2)) /\ (tan x = y)) Run time: 0.0s Intermediate theorems generated: 372 Theorem POW_NZ autoloading from theory `REAL` ... POW_NZ = |- !c n. ~(c = & 0) ==> ~(c pow n = & 0) Run time: 0.0s Theorem REAL_INV_NZ autoloading from theory `REAL` ... REAL_INV_NZ = |- !x. ~(x = & 0) ==> ~(inv x = & 0) Run time: 0.0s Theorem REAL_LE_NEGL autoloading from theory `REAL` ... REAL_LE_NEGL = |- !x. (-- x) <= x = (& 0) <= x Run time: 0.0s Theorem REAL_LE_NEGTOTAL autoloading from theory `REAL` ... REAL_LE_NEGTOTAL = |- !x. (& 0) <= x \/ (& 0) <= (-- x) Run time: 0.0s TAN_TOTAL = |- !y. ?! x. (--(pi / (& 2))) < x /\ x < (pi / (& 2)) /\ (tan x = y) Run time: 0.0s Intermediate theorems generated: 1301 asn = |- !y. asn y = (@x. (--(pi / (& 2))) <= x /\ x <= (pi / (& 2)) /\ (sin x = y)) Run time: 0.0s Intermediate theorems generated: 2 acs = |- !y. acs y = (@x. (& 0) <= x /\ x <= pi /\ (cos x = y)) Run time: 0.0s Intermediate theorems generated: 2 atn = |- !y. atn y = (@x. (--(pi / (& 2))) < x /\ x < (pi / (& 2)) /\ (tan x = y)) Run time: 0.0s Intermediate theorems generated: 2 ASN = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (--(pi / (& 2))) <= (asn y) /\ (asn y) <= (pi / (& 2)) /\ (sin(asn y) = y) Run time: 0.0s Intermediate theorems generated: 79 ASN_SIN = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (sin(asn y) = y) Run time: 0.0s Intermediate theorems generated: 18 ASN_BOUNDS = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (--(pi / (& 2))) <= (asn y) /\ (asn y) <= (pi / (& 2)) Run time: 0.0s Intermediate theorems generated: 17 SIN_ASN = |- !x. (--(pi / (& 2))) <= x /\ x <= (pi / (& 2)) ==> (asn(sin x) = x) Run time: 0.0s Intermediate theorems generated: 86 ACS = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (& 0) <= (acs y) /\ (acs y) <= pi /\ (cos(acs y) = y) Run time: 0.0s Intermediate theorems generated: 79 ACS_COS = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (cos(acs y) = y) Run time: 0.0s Intermediate theorems generated: 18 ACS_BOUNDS = |- !y. (--(& 1)) <= y /\ y <= (& 1) ==> (& 0) <= (acs y) /\ (acs y) <= pi Run time: 0.0s Intermediate theorems generated: 17 COS_ACS = |- !x. (& 0) <= x /\ x <= pi ==> (acs(cos x) = x) Run time: 0.0s Intermediate theorems generated: 86 ATN = |- !y. (--(pi / (& 2))) < (atn y) /\ (atn y) < (pi / (& 2)) /\ (tan(atn y) = y) Run time: 0.0s Intermediate theorems generated: 76 ATN_TAN = |- !y. tan(atn y) = y Run time: 0.0s Intermediate theorems generated: 28 ATN_BOUNDS = |- !y. (--(pi / (& 2))) < (atn y) /\ (atn y) < (pi / (& 2)) Run time: 0.0s Intermediate theorems generated: 28 TAN_ATN = |- !x. (--(pi / (& 2))) < x /\ x < (pi / (& 2)) ==> (atn(tan x) = x) Run time: 0.1s Intermediate theorems generated: 103 () : void Run time: 0.0s Intermediate theorems generated: 1 File transc.ml loaded () : void Run time: 0.7s Intermediate theorems generated: 30503 #make[5]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals/theories' make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/reals' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' rm -f win.th echo 'set_flag(`abort_when_fail`,true);;' \ 'loadt `mk_win_th`;;' \ 'quit ();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void |- !a b. a <== b = b ==> a () : void File mk_win_th loaded () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `ml_ext`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void le = - : (int -> int -> bool) () : void ge = - : (int -> int -> bool) prefix = - : (* list -> * list -> bool) suffix = - : (* list -> * list -> bool) after = - : (* list -> * list -> * list) before = - : (* list -> * list -> * list) index = - : ((* -> bool) -> * list -> int) merge = - : (((* # *) -> bool) -> * list -> * list -> * list) best = - : (((* # *) -> bool) -> * list -> *) first = - : (int -> * list -> * list) last = - : (int -> * list -> * list) New constructors declared: POINTER : (((void -> *) # (* -> void) # (void -> void)) -> * pointer) value = - : (* pointer -> *) store = - : (* pointer -> * -> void) dispose = - : (* pointer -> void) is_nil = - : (* pointer -> bool) ptrtype = - : (string -> string -> void) New constructors declared: SIGNAL : (((* -> void) # (void -> void) # ((* -> void) -> void)) -> * signal) signal = - : (* signal -> * -> void) clear = - : (* signal -> void) handle = - : (* signal -> (* -> void) -> void) sigtype = - : (string -> string -> void) Calling Lisp compiler File ml_ext compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'compilet `thms`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void PMI_DEF = |- !a b. a <== b = b ==> a IMP_REFL_THM = |- !x. x ==> x IMP_TRANS_THM = |- !x y z. (x ==> y) /\ (y ==> z) ==> x ==> z PMI_REFL_THM = |- !x. x <== x PMI_TRANS_THM = |- !x y z. x <== y /\ y <== z ==> x <== z Calling Lisp compiler File thms compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'compilet `hol_ext`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void .....() : void goal_frees = - : (goal -> term list) term_mem = - : (term -> term list -> bool) term_subset = - : (term list -> term list -> bool) term_setify = - : (term list -> term list) term_intersect = - : (term list -> term list -> term list) term_union = - : (term list -> term list -> term list) better_thm = - : (thm -> thm -> bool) better_goal = - : (goal -> goal -> bool) thm_subset = - : (thm list -> thm list -> bool) thm_set_equal = - : (thm list -> thm list -> bool) goal_subset = - : (goal list -> goal list -> bool) goal_set_equal = - : (goal list -> goal list -> bool) thm_setify = - : (thm list -> thm list) goal_setify = - : (goal list -> goal list) is_fun = - : (term -> bool) dom = - : (term -> type) ran = - : (term -> type) is_trueimp = - : (term -> bool) is_pmi = - : (term -> bool) dest_pmi = - : (term -> (term # term)) IMP_PMI_CONV = - : conv IMP_PMI = - : (thm -> thm) PMI_IMP_CONV = - : conv PMI_IMP = - : (thm -> thm) IMP_REFL = - : conv PMI_REFL = - : conv PMI_TRANS = - : (thm -> thm -> thm) EXISTS_PMI = - : (term -> thm -> thm) DNEG_THM = |- !t. ~~t = t NOT_DISJ_THM = |- !t1 t2. ~(t1 \/ t2) = ~t1 /\ ~t2 NOT_IMP_THM = |- !t1 t2. ~(t1 ==> t2) = t1 /\ ~t2 NOT_PMI_THM = |- !t1 t2. ~t1 <== t2 = ~t1 /\ t2 COND_F_THM = |- !t1 t2. (t1 => t2 | F) = t1 /\ t2 SMASH = - : (thm -> thm list) - : (thm -> thm list) SMASH = - : (thm -> thm list) smash = - : (term -> term list) prove_hyp = - : (goal -> goal -> goal) true_tm = "T" : term false_tm = "F" : term imp_tm = "$==>" : term pmi_tm = "$<==" : term equiv_tm = "$=" : term Calling Lisp compiler File hol_ext compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'compilet `tables`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void .....() : void .......................................() : void FAST_MATCH_MP = - : (thm -> thm -> thm) refl_ptr = - : conv add_refl = - : (thm -> void) reflexive = - : conv trans_ptr = - : (thm -> thm) add_trans = - : (thm -> void) transitive = - : (thm -> thm) known_relation = - : (term -> bool) weakenings = [] : thm list weak_table = [] : (term # term list) list check_weak_thm = - : (thm -> (term # term)) MATCH_IMP_TRANS = - : (thm -> thm -> thm) stronger = - : ((term # term) -> bool) weaker = - : ((term # term) -> bool) match_type = - : (term -> term -> (type # type) list) rel_str = - : (term -> term list) add_weak = - : (thm -> void) weaken = - : (term -> thm -> thm) relative_strengths = - : (term -> term list) add_relation = - : ((thm # thm) -> void) () : void () : void () : void ((-), (-), (-), (-), (-), -) : (((thm # thm) -> void) # conv # (thm -> thm) # (thm -> void) # (term -> thm -> thm) # (term -> term list)) add_relation = - : ((thm # thm) -> void) reflexive = - : conv transitive = - : (thm -> thm) add_weak = - : (thm -> void) weaken = - : (term -> thm -> thm) relative_strengths = - : (term -> term list) New constructors declared: RATOR : path_elt RAND : path_elt BODY : path_elt type path defined traverse = - : (path -> term -> term) New constructors declared: FOCUS_PATH : (path -> win_path) CONTEXT_PATH : ((term # path) -> win_path) type window_rule defined New constructors declared: TREE : ((((* list # **) -> void) # (* list -> (* list # **) list) # (void -> void)) -> (*,**) tree) plant = - : ((*,**) tree -> (* list # **) -> void) harvest = - : ((*,**) tree -> * list -> (* list # **) list) purge = - : ((*,**) tree -> void -> void) newtree = - : (void -> (path_elt,((term -> bool) # (term -> term -> term) # (term -> term -> term) # (term -> thm list -> thm list) # (term -> term list) # (term -> thm -> thm))) tree) rule_tree = TREE((-), (-), -) : (path_elt,((term -> bool) # (term -> term -> term) # (term -> term -> term) # (term -> thm list -> thm list) # (term -> term list) # (term -> thm -> thm))) tree store_rule = - : (window_rule -> void) search_rule = - : (path -> window_rule list) empty_rules = - : (void -> void) ((-), (-), -) : ((window_rule -> void) # (path -> window_rule list) # (void -> void)) store_rule = - : (window_rule -> void) search_rule = - : (path -> window_rule list) empty_rules = - : (void -> void) Calling Lisp compiler File tables compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'compilet `basic_close`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void .....() : void .......................................() : void .....................................() : void RATOR_CLOSE = - : (term -> thm -> thm) RAND_CLOSE = - : (term -> thm -> thm) BODY_CLOSE = - : (term -> thm -> thm) COND1_THM = |- !R A B C D. (!x. R x x) ==> (A ==> R D B) ==> R(A => D | C)(A => B | C) COND1_CLOSE = - : (term -> thm -> thm) COND2_THM = |- !R A B C D. (!x. R x x) ==> (~A ==> R D C) ==> R(A => B | D)(A => B | C) COND2_CLOSE = - : (term -> thm -> thm) BODY2_THM = |- !c f g r. (!v. (v = c) ==> r(f v)(g v)) ==> r(f c)(g c) BODY2_CLOSE = - : (term -> thm -> thm) LET_THM = |- !c f g r. (!v. (v = c) ==> r(f v)(g v)) ==> r(LET f c)(LET g c) LET_CLOSE = - : (term -> thm -> thm) () : void () : void () : void () : void () : void () : void () : void Section basic_close ended Calling Lisp compiler File basic_close compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'compilet `eq_close`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void .....() : void .......................................() : void .....................................() : void CONJ1_THM = |- !A B C. (B ==> (C = A)) ==> (C /\ B = A /\ B) CONJ1_CLOSE = - : (term -> thm -> thm) CONJ2_THM = |- !A B C. (A ==> (C = B)) ==> (A /\ C = A /\ B) CONJ2_CLOSE = - : (term -> thm -> thm) IMP1_THM = |- !A B C. (~B ==> (C = A)) ==> (C ==> B = A ==> B) IMP1_CLOSE = - : (term -> thm -> thm) IMP2_THM = |- !A B C. (A ==> (C = B)) ==> (A ==> C = A ==> B) IMP2_CLOSE = - : (term -> thm -> thm) PMI1_THM = |- !A B C. (B ==> (C = A)) ==> (C <== B = A <== B) PMI1_CLOSE = - : (term -> thm -> thm) PMI2_THM = |- !A B C. (~A ==> (C = B)) ==> (A <== C = A <== B) PMI2_CLOSE = - : (term -> thm -> thm) DISJ1_THM = |- !A B C. (~B ==> (C = A)) ==> (C \/ B = A \/ B) DISJ1_CLOSE = - : (term -> thm -> thm) DISJ2_THM = |- !A B C. (~A ==> (C = B)) ==> (A \/ C = A \/ B) DISJ2_CLOSE = - : (term -> thm -> thm) () : void () : void () : void () : void () : void () : void () : void () : void Section eq_close ended Calling Lisp compiler File eq_close compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'compilet `imp_close`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void .....() : void .......................................() : void .....................................() : void IMP_CONJ1_THM = |- !A B C. (B ==> C ==> A) ==> C /\ B ==> A /\ B IMP_CONJ1_CLOSE = - : (term -> thm -> thm) IMP_CONJ2_THM = |- !A B C. (A ==> C ==> B) ==> A /\ C ==> A /\ B IMP_CONJ2_CLOSE = - : (term -> thm -> thm) IMP_IMP1_THM = |- !A B C. (~B ==> C <== A) ==> (C ==> B) ==> A ==> B IMP_IMP1_CLOSE = - : (term -> thm -> thm) IMP_IMP2_THM = |- !A B C. (A ==> C ==> B) ==> (A ==> C) ==> A ==> B IMP_IMP2_CLOSE = - : (term -> thm -> thm) IMP_PMI1_THM = |- !A B C. (B ==> C ==> A) ==> C <== B ==> A <== B IMP_PMI1_CLOSE = - : (term -> thm -> thm) IMP_PMI2_THM = |- !A B C. (~A ==> C <== B) ==> A <== C ==> A <== B IMP_PMI2_CLOSE = - : (term -> thm -> thm) IMP_DISJ1_THM = |- !A B C. (~B ==> C ==> A) ==> C \/ B ==> A \/ B IMP_DISJ1_CLOSE = - : (term -> thm -> thm) IMP_DISJ2_THM = |- !A B C. (~A ==> C ==> B) ==> A \/ C ==> A \/ B IMP_DISJ2_CLOSE = - : (term -> thm -> thm) IMP_NEG_THM = |- !A B. B <== A ==> ~B ==> ~A IMP_NEG_CLOSE = - : (term -> thm -> thm) IMP_ALL_CLOSE = - : (term -> thm -> thm) IMP_EXISTS_CLOSE = - : (term -> thm -> thm) PMI_CONJ1_THM = |- !A B C. (B ==> C <== A) ==> (C /\ B) <== (A /\ B) PMI_CONJ1_CLOSE = - : (term -> thm -> thm) PMI_CONJ2_THM = |- !A B C. (A ==> C <== B) ==> (A /\ C) <== (A /\ B) PMI_CONJ2_CLOSE = - : (term -> thm -> thm) PMI_IMP1_THM = |- !A B C. (~B ==> C ==> A) ==> (C ==> B) <== (A ==> B) PMI_IMP1_CLOSE = - : (term -> thm -> thm) PMI_IMP2_THM = |- !A B C. (A ==> C <== B) ==> (A ==> C) <== (A ==> B) PMI_IMP2_CLOSE = - : (term -> thm -> thm) PMI_PMI1_THM = |- !A B C. (B ==> C <== A) ==> (C <== B) <== (A <== B) PMI_PMI1_CLOSE = - : (term -> thm -> thm) PMI_PMI2_THM = |- !A B C. (~A ==> C ==> B) ==> (A <== C) <== (A <== B) PMI_PMI2_CLOSE = - : (term -> thm -> thm) PMI_DISJ1_THM = |- !A B C. (~B ==> C <== A) ==> (C \/ B) <== (A \/ B) PMI_DISJ1_CLOSE = - : (term -> thm -> thm) PMI_DISJ2_THM = |- !A B C. (~A ==> C <== B) ==> (A \/ C) <== (A \/ B) PMI_DISJ2_CLOSE = - : (term -> thm -> thm) PMI_NEG_THM = |- !A B. (B ==> A) ==> (~B) <== (~A) PMI_NEG_CLOSE = - : (term -> thm -> thm) PMI_ALL_CLOSE = - : (term -> thm -> thm) PMI_EXISTS_CLOSE = - : (term -> thm -> thm) () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void () : void Calling Lisp compiler File imp_close compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `ml_ext`;;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'compilet `win`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ...................() : void Theory win loaded () : void .....() : void .......................................() : void .....................................() : void type window defined win_thm = - : (window -> thm) relation = - : (window -> term) focus = - : (window -> term) origin = - : (window -> term) bound = - : (window -> term list) hyp_thms = - : (window -> thm list) hypotheses = - : (window -> term list) disp_hypotheses = - : (window -> term list) all_hypotheses = - : (window -> term list) used_hypotheses = - : (window -> term list) lemma_thms = - : (window -> thm list) suppositions = - : (window -> goal list) conjectures = - : (window -> term list) used_conjectures = - : (window -> term list) lemmas = - : (window -> term list) context = - : (window -> term list) make_win = - : (term -> goal list -> term list -> thm list -> thm list -> window) create_win = - : (term -> term list -> thm list -> window) transform = - : (term -> term list -> thm list -> (window -> window) -> thm) get_thm = - : (term -> window -> thm) add_suppose = - : (goal -> window -> window) conjecture = - : (term -> window -> window) add_theorem = - : (thm -> window -> window) transform_win = - : (thm -> window -> window) match_transform_win = - : (thm -> window -> window) convert_win = - : (conv -> window -> window) rule_win = - : ((thm -> thm) -> window -> window) thm_rule_win = - : ((thm -> thm) -> window -> window) foc_rule_win = - : (conv -> window -> window) tactic_win = - : (tactic -> window -> window) gen_rewrite_win = - : ((conv -> conv) -> thm list -> thm list -> window -> window) pure_rewrite_win = - : (thm list -> window -> window) rewrite_win = - : (thm list -> window -> window) pure_once_rewrite_win = - : (thm list -> window -> window) once_rewrite_win = - : (thm list -> window -> window) pure_asm_rewrite_win = - : (thm list -> window -> window) asm_rewrite_win = - : (thm list -> window -> window) pure_once_asm_rewrite_win = - : (thm list -> window -> window) once_asm_rewrite_win = - : (thm list -> window -> window) filter_pure_asm_rewrite_win = - : ((term -> bool) -> thm list -> window -> window) filter_asm_rewrite_win = - : ((term -> bool) -> thm list -> window -> window) filter_pure_once_asm_rewrite_win = - : ((term -> bool) -> thm list -> window -> window) filter_once_asm_rewrite_win = - : ((term -> bool) -> thm list -> window -> window) transfer_sups_thms = - : (window -> window -> window) open_win_basis = - : (win_path -> window -> (window # (window -> window -> window))) open_context_basis = - : (win_path -> window -> (window # (window -> window -> window))) gen_open_basis = - : (win_path -> window -> (window # (window -> window -> window))) establish_basis = - : (win_path -> window -> (window # (window -> window -> window))) open_win = - : (path -> (window -> window) -> window -> window) open_context = - : (term -> path -> (window -> window) -> window -> window) gen_open_win = - : (win_path -> (window -> window) -> window -> window) establish = - : (term -> (window -> window) -> window -> window) Calling Lisp compiler File win compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `ml_ext`;;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'loadf `win`;;' \ 'compilet `inter`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ...................() : void Theory win loaded () : void .....() : void .......................................() : void .....................................() : void ............................................() : void epoch = - : (int -> * -> * history) present = - : (* history -> *) dodo = - : ((* -> *) -> * history -> * history) undo = - : (* history -> * history) redo = - : (* history -> * history) set_max_hist = - : (int -> * history -> * history) get_max_hist = - : (* history -> int) create_stack = - : (window -> window_stack) change_window = - : ((window -> window) -> window_stack -> window_stack) open_window = - : (win_path -> (win_path -> window -> (window # (window -> window -> window))) -> window_stack -> window_stack) pop_window = - : (window_stack -> window_stack) close_window = - : (window_stack -> window_stack) depth_stack = - : (window_stack -> int) top_window = - : (window_stack -> window) top_path = - : (window_stack -> win_path) bad_conjectures = - : (window_stack -> term list) print_stack = - : (window_stack -> void) () : void - : (string signal -> void) newsig_stk_sig = - : (void -> string signal) () : void - : (void signal -> void) newsig_win_sig = - : (void -> void signal) beg_stack_sig = (-) : string signal end_stack_sig = (-) : string signal set_stack_sig = (-) : string signal psh_win_sig = (-) : void signal pop_win_sig = (-) : void signal cng_win_sig = (-) : void signal () : void - : (window_stack history pointer -> void) new_wshp = - : (void -> window_stack history pointer) stack_table = [] : (string # window_stack history pointer) list cur_nam_st_hist = inr () : ((string # window_stack history pointer) + void) CURRENT_STACK = - : (void -> window_stack) CURRENT_NAME = - : (void -> string) CURRENT_SHP = - : (void -> window_stack history pointer) history_size = 20 : int EPOCH = - : (window_stack -> void) DO = - : ((window_stack -> window_stack) -> void) UNDO = - : (void -> void) REDO = - : (void -> void) SET_MAX_HIST = - : (int -> void list) GET_MAX_HIST = - : (void -> int) BEGIN_STACK = - : (string -> term -> term list -> thm list -> void) END_STACK = - : (string -> void) SET_STACK = - : (string -> void) GET_STACK = - : (string -> window_stack) ALL_STACKS = - : (void -> string list) ((-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), -) : ((void -> window_stack) # (void -> string) # ((window_stack -> window_stack) -> void) # (void -> void) # (void -> void) # (int -> void list) # (void -> int) # (string -> term -> term list -> thm list -> void) # (string -> void) # (string -> void) # (string -> window_stack) # (void -> string list)) CURRENT_STACK = - : (void -> window_stack) CURRENT_NAME = - : (void -> string) DO = - : ((window_stack -> window_stack) -> void) UNDO = - : (void -> void) REDO = - : (void -> void) SET_MAX_HIST = - : (int -> void list) GET_MAX_HIST = - : (void -> int) BEGIN_STACK = - : (string -> term -> term list -> thm list -> void) END_STACK = - : (string -> void) SET_STACK = - : (string -> void) GET_STACK = - : (string -> window_stack) ALL_STACKS = - : (void -> string list) APPLY_OPEN = - : (win_path -> (win_path -> window -> (window # (window -> window -> window))) -> void) APPLY_TRANSFORM = - : ((window -> window) -> void) CLOSE_WIN = - : (void -> void) UNDO_WIN = - : (void -> void) GEN_OPEN_WIN = - : (win_path -> void) OPEN_WIN = - : (path -> void) OPEN_CONTEXT = - : (term -> path -> void) ESTABLISH = - : (term -> void) TOP_WIN = - : (void -> window) BAD_CONJECTURES = - : (void -> term list) TRANSFORM_WIN = - : (thm -> void) MATCH_TRANSFORM_WIN = - : (thm -> void) CONVERT_WIN = - : (conv -> void) RULE_WIN = - : ((thm -> thm) -> void) THM_RULE_WIN = - : ((thm -> thm) -> void) FOC_RULE_WIN = - : (conv -> void) TACTIC_WIN = - : (tactic -> void) ADD_THEOREM = - : (thm -> void) ADD_SUPPOSE = - : (goal -> void) CONJECTURE = - : (term -> void) FOCUS = - : (void -> term) LEMMA_THMS = - : (void -> thm list) WIN_THM = - : (void -> thm) GEN_REWRITE_WIN = - : ((conv -> conv) -> thm list -> thm list -> void) PURE_REWRITE_WIN = - : (thm list -> void) REWRITE_WIN = - : (thm list -> void) PURE_ONCE_REWRITE_WIN = - : (thm list -> void) ONCE_REWRITE_WIN = - : (thm list -> void) PURE_ASM_REWRITE_WIN = - : (thm list -> void) ASM_REWRITE_WIN = - : (thm list -> void) PURE_ONCE_ASM_REWRITE_WIN = - : (thm list -> void) ONCE_ASM_REWRITE_WIN = - : (thm list -> void) FILTER_PURE_ASM_REWRITE_WIN = - : ((term -> bool) -> thm list -> void) FILTER_ASM_REWRITE_WIN = - : ((term -> bool) -> thm list -> void) FILTER_PURE_ONCE_ASM_REWRITE_WIN = - : ((term -> bool) -> thm list -> void) FILTER_ONCE_ASM_REWRITE_WIN = - : ((term -> bool) -> thm list -> void) SAVE_WIN_THM = - : (void -> thm) PRINT_STACK = - : (void -> void) () : void () : void () : void () : void () : void Calling Lisp compiler File inter compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'load_theory `win`;;' \ 'compilet `load_code`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theory win loaded () : void () : void Calling Lisp compiler File load_code compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `load_window`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool load_window = - : (void -> void) Calling Lisp compiler File load_window compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `window`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Extending help search path () : void Extending search path () : void Theory win loaded () : void () : void window_version = `Revision: 3.1` : string window Library (Revision: 3.1) loaded. Copyright (c) Jim Grundy 1992 () : void All rights reserved () : void Calling Lisp compiler File window compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `ml_ext`;;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'loadf `win`;;' \ 'loadf `inter`;;' \ 'compilet `xlabel`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ...................() : void Theory win loaded () : void .....() : void .......................................() : void .....................................() : void ............................................() : void ......................................................() : void () : void - : (string pointer -> void) new_strptr = - : (void -> string pointer) set_title = - : (string -> void) label = (-) : string pointer xset_stack = - : (string -> void) xbeg_stack = - : (string -> void) xend_stack = - : (string -> void) () : void () : void () : void () : void Calling Lisp compiler File xlabel compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `ml_ext`;;' \ 'load_theory `win`;;' \ 'loadf `thms`;;' \ 'loadf `hol_ext`;;' \ 'loadf `tables`;;' \ 'loadf `win`;;' \ 'loadf `inter`;;' \ 'compilet `tactic`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ...................() : void Theory win loaded () : void .....() : void .......................................() : void .....................................() : void ............................................() : void ......................................................() : void open_TAC = - : (path -> thm list -> (window -> window) -> tactic) close_table = [] : (string # window # (window -> window -> window)) list BEGIN_STACK_TAC = - : (string -> path -> thm list -> tactic) END_STACK_TAC = - : (string -> tactic) ((-), -) : ((string -> path -> thm list -> tactic) # (string -> tactic)) BEGIN_STACK_TAC = - : (string -> path -> thm list -> tactic) END_STACK_TAC = - : (string -> tactic) Calling Lisp compiler File tactic compiled () : void #===> library window built make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/window' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `syn`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool mk_pabs = - : ((term # term) -> term) mk_pforall = - : ((term # term) -> term) mk_pexists = - : ((term # term) -> term) mk_pselect = - : ((term # term) -> term) dest_pabs = - : (term -> (term # term)) dest_pforall = - : (term -> (term # term)) dest_pexists = - : (term -> (term # term)) dest_pselect = - : (term -> (term # term)) is_pabs = - : (term -> bool) is_pforall = - : (term -> bool) is_pexists = - : (term -> bool) is_pselect = - : (term -> bool) rip_pair = - : (term -> term list) is_pvar = - : (term -> bool) pvariant = - : (term list -> term -> term) genlike = - : (term -> term) list_mk_pabs = - : (goal -> term) list_mk_pforall = - : (goal -> term) list_mk_pexists = - : (goal -> term) strip_pabs = - : (term -> goal) strip_pforall = - : (term -> goal) strip_pexists = - : (term -> goal) bndpair = - : (term -> term) pbody = - : (term -> term) occs_in = - : (term -> term -> bool) is_prod = - : (type -> bool) dest_prod = - : (type -> (type # type)) mk_prod = - : ((type # type) -> type) Calling Lisp compiler File syn compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'compilet `basic`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void MK_PAIR = - : ((thm # thm) -> thm) PABS = - : (term -> thm -> thm) PABS_CONV = - : (conv -> conv) PSUB_CONV = - : (conv -> conv) CURRY_CONV = - : conv UNCURRY_CONV = - : conv PBETA_CONV = - : conv PBETA_RULE = - : (thm -> thm) PBETA_TAC = - : tactic RIGHT_PBETA = - : (thm -> thm) LIST_PBETA_CONV = - : conv RIGHT_LIST_PBETA = - : (thm -> thm) LEFT_PBETA = - : (thm -> thm) LEFT_LIST_PBETA = - : (thm -> thm) UNPBETA_CONV = - : (term -> conv) CURRY_UNCURRY_THM = |- !f. CURRY(UNCURRY f) = f UNCURRY_CURRY_THM = |- !f. UNCURRY(CURRY f) = f PETA_CONV = - : conv PALPHA_CONV = - : (term -> conv) GEN_PALPHA_CONV = - : (term -> conv) PALPHA = - : (term -> conv) paconv = - : (term -> term -> bool) PAIR_CONV = - : (conv -> conv) CURRY_ONE_ONE_THM = |- (CURRY f = CURRY g) = (f = g) UNCURRY_ONE_ONE_THM = |- (UNCURRY f = UNCURRY g) = (f = g) Calling Lisp compiler File basic compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'loadf `basic`;;' \ 'compilet `both1`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void ........................() : void PFORALL_THM = |- !f. (!x y. f x y) = (!(x,y). f x y) PEXISTS_THM = |- !f. (?x y. f x y) = (?(x,y). f x y) CURRY_FORALL_CONV = - : conv CURRY_EXISTS_CONV = - : conv UNCURRY_FORALL_CONV = - : conv UNCURRY_EXISTS_CONV = - : conv Calling Lisp compiler File both1 compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'loadf `basic`;;' \ 'loadf `both1`;;' \ 'compilet `all`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void ........................() : void ......() : void PSPEC = - : (term -> thm -> thm) PSPECL = - : (term list -> thm -> thm) IPSPEC = - : (term -> thm -> thm) IPSPECL = - : (term list -> thm -> thm) PSPEC_PAIR = - : (thm -> (term # thm)) PSPEC_ALL = - : (thm -> thm) GPSPEC = - : (thm -> thm) PSPEC_TAC = - : ((term # term) -> tactic) PGEN = - : (term -> thm -> thm) PGENL = - : (term list -> thm -> thm) P_PGEN_TAC = - : (term -> tactic) PGEN_TAC = - : tactic FILTER_PGEN_TAC = - : (term -> tactic) Calling Lisp compiler File all compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'loadf `basic`;;' \ 'loadf `both1`;;' \ 'loadf `all`;;' \ 'compilet `exi`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void ........................() : void ......() : void .............() : void PEXISTS_CONV = - : conv PSELECT_RULE = - : (thm -> thm) PSELECT_CONV = - : conv PEXISTS_RULE = - : (thm -> thm) PSELECT_INTRO = - : (thm -> thm) PSELECT_ELIM = - : (thm -> (term # thm) -> thm) PEXISTS = - : ((term # term) -> thm -> thm) PCHOOSE = - : ((term # thm) -> thm -> thm) P_PCHOOSE_THEN = - : (term -> thm_tactical) PCHOOSE_THEN = - : thm_tactical P_PCHOOSE_TAC = - : (term -> thm_tactic) PCHOOSE_TAC = - : thm_tactic PEXISTS_TAC = - : (term -> tactic) PEXISTENCE = - : (thm -> thm) PEXISTS_UNIQUE_CONV = - : conv BABY_P_PSKOLEM_CONV = - : (term -> conv) P_PSKOLEM_CONV = - : (term -> conv) - : (term -> conv) P_PSKOLEM_CONV = - : (term -> conv) PSKOLEM_CONV = - : conv Calling Lisp compiler File exi compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'loadf `basic`;;' \ 'loadf `both1`;;' \ 'loadf `all`;;' \ 'loadf `exi`;;' \ 'compilet `both2`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void ........................() : void ......() : void .............() : void ....................() : void PSTRIP_THM_THEN = - : thm_tactical PSTRIP_ASSUME_TAC = - : thm_tactic PSTRUCT_CASES_TAC = - : thm_tactic PSTRIP_GOAL_THEN = - : (thm_tactic -> tactic) FILTER_PSTRIP_THEN = - : (thm_tactic -> term -> tactic) PSTRIP_TAC = - : tactic FILTER_PSTRIP_TAC = - : (term -> tactic) PEXT = - : (thm -> thm) P_FUN_EQ_CONV = - : (term -> conv) MK_PABS = - : (thm -> thm) HALF_MK_PABS = - : (thm -> thm) MK_PFORALL = - : (thm -> thm) MK_PEXISTS = - : (thm -> thm) MK_PEXISTS = - : (thm -> thm) PFORALL_EQ = - : (term -> thm -> thm) PEXISTS_EQ = - : (term -> thm -> thm) PSELECT_EQ = - : (term -> thm -> thm) LIST_MK_PFORALL = - : (term list -> thm -> thm) LIST_MK_PEXISTS = - : (term list -> thm -> thm) PEXISTS_IMP = - : (term -> thm -> thm) SWAP_PFORALL_CONV = - : conv SWAP_PEXISTS_CONV = - : conv PART_PMATCH = - : ((term -> term) -> thm -> conv) PMATCH_MP_TAC = - : thm_tactic PMATCH_MP = - : (thm -> thm -> thm) Calling Lisp compiler File both2 compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'loadf `syn`;;' \ 'loadf `basic`;;' \ 'compilet `conv`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ........................() : void ........................() : void NOT_FORALL_THM = |- !f. ~(!x. f x) = (?x. ~f x) NOT_EXISTS_THM = |- !f. ~(?x. f x) = (!x. ~f x) NOT_PFORALL_CONV = - : conv NOT_PEXISTS_CONV = - : conv PEXISTS_NOT_CONV = - : conv PFORALL_NOT_CONV = - : conv FORALL_AND_THM = |- !f g. (!x. f x /\ g x) = (!x. f x) /\ (!x. g x) PFORALL_AND_CONV = - : conv EXISTS_OR_THM = |- !f g. (?x. f x \/ g x) = (?x. f x) \/ (?x. g x) PEXISTS_OR_CONV = - : conv AND_PFORALL_CONV = - : conv LEFT_AND_FORALL_THM = |- !Q f. (!x. f x) /\ Q = (!x. f x /\ Q) LEFT_AND_PFORALL_CONV = - : conv RIGHT_AND_FORALL_THM = |- !P g. P /\ (!x. g x) = (!x. P /\ g x) RIGHT_AND_PFORALL_CONV = - : conv OR_PEXISTS_CONV = - : conv LEFT_OR_EXISTS_THM = |- !Q f. (?x. f x) \/ Q = (?x. f x \/ Q) LEFT_OR_PEXISTS_CONV = - : conv RIGHT_OR_EXISTS_THM = |- !P g. P \/ (?x. g x) = (?x. P \/ g x) RIGHT_OR_PEXISTS_CONV = - : conv BOTH_EXISTS_AND_THM = |- !P Q. (?x. P /\ Q) = (?x. P) /\ (?x. Q) LEFT_EXISTS_AND_THM = |- !Q f. (?x. f x /\ Q) = (?x. f x) /\ Q RIGHT_EXISTS_AND_THM = |- !P g. (?x. P /\ g x) = P /\ (?x. g x) PEXISTS_AND_CONV = - : conv AND_PEXISTS_CONV = - : conv LEFT_AND_PEXISTS_CONV = - : conv RIGHT_AND_PEXISTS_CONV = - : conv BOTH_FORALL_OR_THM = |- !P Q. (!x. P \/ Q) = (!x. P) \/ (!x. Q) LEFT_FORALL_OR_THM = |- !Q f. (!x. f x \/ Q) = (!x. f x) \/ Q RIGHT_FORALL_OR_THM = |- !P g. (!x. P \/ g x) = P \/ (!x. g x) PFORALL_OR_CONV = - : conv OR_PFORALL_CONV = - : conv LEFT_OR_PFORALL_CONV = - : conv RIGHT_OR_PFORALL_CONV = - : conv BOTH_FORALL_IMP_THM = |- !P Q. (!x. P ==> Q) = (?x. P) ==> (!x. Q) LEFT_FORALL_IMP_THM = |- !Q f. (!x. f x ==> Q) = (?x. f x) ==> Q RIGHT_FORALL_IMP_THM = |- !P g. (!x. P ==> g x) = P ==> (!x. g x) BOTH_EXISTS_IMP_THM = |- !P Q. (?x. P ==> Q) = (!x. P) ==> (?x. Q) LEFT_EXISTS_IMP_THM = |- !Q f. (?x. f x ==> Q) = (!x. f x) ==> Q RIGHT_EXISTS_IMP_THM = |- !P g. (?x. P ==> g x) = P ==> (?x. g x) PFORALL_IMP_CONV = - : conv LEFT_IMP_PEXISTS_CONV = - : conv RIGHT_IMP_PFORALL_CONV = - : conv PEXISTS_IMP_CONV = - : conv LEFT_IMP_PFORALL_CONV = - : conv RIGHT_IMP_PEXISTS_CONV = - : conv ((-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), -) : (conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv # conv) NOT_PFORALL_CONV = - : conv NOT_PEXISTS_CONV = - : conv PEXISTS_NOT_CONV = - : conv PFORALL_NOT_CONV = - : conv PFORALL_AND_CONV = - : conv PEXISTS_OR_CONV = - : conv AND_PFORALL_CONV = - : conv LEFT_AND_PFORALL_CONV = - : conv RIGHT_AND_PFORALL_CONV = - : conv OR_PEXISTS_CONV = - : conv LEFT_OR_PEXISTS_CONV = - : conv RIGHT_OR_PEXISTS_CONV = - : conv PEXISTS_AND_CONV = - : conv AND_PEXISTS_CONV = - : conv LEFT_AND_PEXISTS_CONV = - : conv RIGHT_AND_PEXISTS_CONV = - : conv PFORALL_OR_CONV = - : conv OR_PFORALL_CONV = - : conv LEFT_OR_PFORALL_CONV = - : conv RIGHT_OR_PFORALL_CONV = - : conv PFORALL_IMP_CONV = - : conv LEFT_IMP_PEXISTS_CONV = - : conv RIGHT_IMP_PFORALL_CONV = - : conv PEXISTS_IMP_CONV = - : conv LEFT_IMP_PFORALL_CONV = - : conv RIGHT_IMP_PEXISTS_CONV = - : conv Calling Lisp compiler File conv compiled () : void #echo 'set_flag(`abort_when_fail`,true);;' \ 'compilet `pair`;;' \ 'quit();;' | ../../hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Extending help search path () : void () : void pair_version = `Revision: 3.1` : string pair Library (Revision: 3.1) loaded. Copyright (c) Jim Grundy 1992 () : void All rights reserved () : void Calling Lisp compiler File pair compiled () : void #===> library pair built make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/pair' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' rm -f word_base.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_word_base`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p LESS_EQ_SPLIT = |- !m n p. (m + n) <= p ==> n <= p /\ m <= p Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n SUB_GREATER_EQ_ADD = |- !p n m. p >= n ==> ((p - n) >= m = p >= (m + n)) ADD_LESS_EQ_SUB = |- !p n m. n <= p ==> ((m + n) <= p = m <= (p - n)) Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m Theorem NOT_SUC_LESS_EQ_0 autoloading from theory `arithmetic` ... NOT_SUC_LESS_EQ_0 = |- !n. ~(SUC n) <= 0 Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) ADD_LESS_EQ_TRANS = |- !m n p q. (m + n) <= p /\ q <= n ==> (m + q) <= p Theorem LESS_ANTISYM autoloading from theory `arithmetic` ... LESS_ANTISYM = |- !m n. ~(m < n /\ n < m) Theorem LESS_IMP_LESS_ADD autoloading from theory `arithmetic` ... LESS_IMP_LESS_ADD = |- !n m. n < m ==> (!p. n < (m + p)) Definition SUB autoloading from theory `arithmetic` ... SUB = |- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n))) Theorem SUB_MONO_EQ autoloading from theory `arithmetic` ... SUB_MONO_EQ = |- !n m. (SUC n) - (SUC m) = n - m Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 ADD_SUB_LEM = |- !m n p. p < n ==> ((m + n) - p = m + (n - p)) LESS_EQ_0_EQ = |- !m. m <= 0 ==> (m = 0) Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n Theorem INDUCTION autoloading from theory `num` ... INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) PRE_LESS_REFL = |- !m. 0 < m ==> (PRE m) < m Theorem DIV_MULT autoloading from theory `arithmetic` ... DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) Definition MULT autoloading from theory `arithmetic` ... MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) LESS_DIV_EQ_ZERO = |- !r n. r < n ==> (r DIV n = 0) Theorem ADD_0 autoloading from theory `arithmetic` ... ADD_0 = |- !m. m + 0 = m MULT_DIV = |- !n q. 0 < n ==> ((q * n) DIV n = q) Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Theorem DA autoloading from theory `arithmetic` ... DA = |- !k n. 0 < n ==> (?r q. (k = (q * n) + r) /\ r < n) ADD_DIV_ADD_DIV = |- !n. 0 < n ==> (!x r. ((x * n) + r) DIV n = x + (r DIV n)) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) NOT_MULT_LESS_0 = |- !m n. 0 < m /\ 0 < n ==> 0 < (m * n) Theorem MOD_TIMES autoloading from theory `arithmetic` ... MOD_TIMES = |- !n. 0 < n ==> (!q r. ((q * n) + r) MOD n = r MOD n) Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Theorem MOD_MULT autoloading from theory `arithmetic` ... MOD_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) MOD n = r) MOD_MULT_MOD = |- !m n. 0 < n /\ 0 < m ==> (!x. (x MOD (n * m)) MOD n = x MOD n) MULT_RIGHT_1 = |- !m. m * 1 = m DIV_ONE = |- !q. q DIV (SUC 0) = q Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Less_lemma = |- !m n. m < n ==> (?p. (n = m + p) /\ 0 < p) Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p Less_MULT_lemma = |- !r m p. 0 < p ==> r < m ==> r < (p * m) Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Less_MULT_ADD_lemma = |- !m n r r'. 0 < m /\ 0 < n /\ r < m /\ r' < n ==> ((r' * m) + r) < (n * m) Theorem ADD_INV_0_EQ autoloading from theory `arithmetic` ... ADD_INV_0_EQ = |- !m n. (m + n = m) = (n = 0) DIV_DIV_DIV_MULT = |- !m n. 0 < m /\ 0 < n ==> (!x. (x DIV m) DIV n = x DIV (m * n)) File arith_thms loaded () : void () : void Theorem SUB_LESS_EQ autoloading from theory `arithmetic` ... SUB_LESS_EQ = |- !n m. (n - m) <= n Theorem SUB_LESS_0 autoloading from theory `arithmetic` ... SUB_LESS_0 = |- !n m. m < n = 0 < (n - m) Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 Theorem SEG_SEG autoloading from theory `list` ... SEG_SEG = |- !n1 m1 n2 m2 l. (n1 + m1) <= (LENGTH l) /\ (n2 + m2) <= n1 ==> (SEG n2 m2(SEG n1 m1 l) = SEG n2(m1 + m2)l) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Theorem LENGTH_SEG autoloading from theory `list` ... LENGTH_SEG = |- !n k l. (n + k) <= (LENGTH l) ==> (LENGTH(SEG n k l) = n) Theorem ELL_SEG autoloading from theory `list` ... ELL_SEG = |- !n l. n < (LENGTH l) ==> (ELL n l = HD(SEG 1(PRE((LENGTH l) - n))l)) Theorem LASTN_SEG autoloading from theory `list` ... LASTN_SEG = |- !n l. n <= (LENGTH l) ==> (LASTN n l = SEG n((LENGTH l) - n)l) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m ELL_LASTN = |- !l m j. m <= (LENGTH l) ==> j < m ==> (ELL j(LASTN m l) = ELL j l) Theorem ELL_SUC_SNOC autoloading from theory `list` ... ELL_SUC_SNOC = |- !n x l. ELL(SUC n)(SNOC x l) = ELL n l Definition BUTLASTN autoloading from theory `list` ... BUTLASTN = |- (!l. BUTLASTN 0 l = l) /\ (!n x l. BUTLASTN(SUC n)(SNOC x l) = BUTLASTN n l) Theorem ADD_EQ_0 autoloading from theory `arithmetic` ... ADD_EQ_0 = |- !m n. (m + n = 0) = (m = 0) /\ (n = 0) Theorem LENGTH_SNOC autoloading from theory `list` ... LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) ELL_BUTLASTN = |- !l k j. (j + k) <= (LENGTH l) ==> (ELL j(BUTLASTN k l) = ELL(j + k)l) Theorem SNOC_11 autoloading from theory `list` ... SNOC_11 = |- !x l x' l'. (SNOC x l = SNOC x' l') = (x = x') /\ (l = l') Theorem APPEND_SNOC autoloading from theory `list` ... APPEND_SNOC = |- !l1 x l2. APPEND l1(SNOC x l2) = SNOC x(APPEND l1 l2) Theorem APPEND_NIL autoloading from theory `list` ... APPEND_NIL = |- (!l. APPEND l[] = l) /\ (!l. APPEND[]l = l) Definition LASTN autoloading from theory `list` ... LASTN = |- (!l. LASTN 0 l = []) /\ (!n x l. LASTN(SUC n)(SNOC x l) = SNOC x(LASTN n l)) APPEND_LASTN_LASTN = |- !l m1 m2. (m1 + m2) <= (LENGTH l) ==> (APPEND(LASTN m2(BUTLASTN m1 l))(LASTN m1 l) = LASTN(m1 + m2)l) Theorem LASTN_BUTLASTN autoloading from theory `list` ... LASTN_BUTLASTN = |- !n m l. (n + m) <= (LENGTH l) ==> (LASTN n(BUTLASTN m l) = BUTLASTN m(LASTN(n + m)l)) Theorem SUB_SUB autoloading from theory `arithmetic` ... SUB_SUB = |- !b c. c <= b ==> (!a. a - (b - c) = (a + c) - b) Theorem SUB_LESS_EQ_ADD autoloading from theory `arithmetic` ... SUB_LESS_EQ_ADD = |- !m p. m <= p ==> (!n. (p - m) <= n = p <= (m + n)) Theorem LENGTH_BUTLASTN autoloading from theory `list` ... LENGTH_BUTLASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(BUTLASTN n l) = (LENGTH l) - n) Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n Theorem BUTLASTN_APPEND2 autoloading from theory `list` ... BUTLASTN_APPEND2 = |- !n l1 l2. n <= (LENGTH l2) ==> (BUTLASTN n(APPEND l1 l2) = APPEND l1(BUTLASTN n l2)) Theorem LASTN_APPEND1 autoloading from theory `list` ... LASTN_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. LASTN n(APPEND l1 l2) = APPEND(LASTN(n - (LENGTH l2))l1)l2) Theorem LASTN_LENGTH_ID autoloading from theory `list` ... LASTN_LENGTH_ID = |- !l. LASTN(LENGTH l)l = l Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a + c) - c = a Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) Definition APPEND autoloading from theory `list` ... APPEND = |- (!l. APPEND[]l = l) /\ (!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2)) LASTN_BUTLASTN_APPEND = |- !l1 l2 m k. (m + k) <= ((LENGTH l1) + (LENGTH l2)) /\ k < (LENGTH l2) /\ (LENGTH l2) <= (m + k) ==> (LASTN m(BUTLASTN k(APPEND l1 l2)) = APPEND (LASTN((m + k) - (LENGTH l2))l1) (LASTN((LENGTH l2) - k)(BUTLASTN k l2))) word_Ax = |- !f. ?! fn. !l. fn(WORD l) = f l WORD_11 = |- !l l'. (WORD l = WORD l') = (l = l') word_induct = |- !P. (!l. P(WORD l)) ==> (!w. P w) word_cases = |- !w. ?l. w = WORD l WORDLEN_DEF = |- !l. WORDLEN(WORD l) = LENGTH l PWORDLEN_DEF = |- !n l. PWORDLEN n(WORD l) = (n = LENGTH l) word_CASES_TAC = - : (term -> tactic) word_INDUCT_TAC = - : tactic RESQ_WORDLEN_TAC = - : tactic File word_funs loaded () : void PWORDLEN = |- !n w. PWORDLEN n w = (WORDLEN w = n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) PWORDLEN0 = |- !w. PWORDLEN 0 w ==> (w = WORD[]) PWORDLEN1 = |- !x. PWORDLEN 1(WORD[x]) WSEG_DEF = |- !m k l. WSEG m k(WORD l) = WORD(LASTN m(BUTLASTN k l)) WSEG0 = |- !k w. WSEG 0 k w = WORD[] Theorem LENGTH_LASTN autoloading from theory `list` ... LENGTH_LASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(LASTN n l) = n) WSEG_PWORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w) WSEG_WORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> (WORDLEN(WSEG m k w) = m) WSEG_WORD_LENGTH = |- !n. !w :: PWORDLEN n. WSEG n 0 w = w BIT_DEF = |- !k l. BIT k(WORD l) = ELL k l Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) Theorem LAST autoloading from theory `list` ... LAST = |- !x l. LAST(SNOC x l) = x Definition ELL autoloading from theory `list` ... ELL = |- (!l. ELL 0 l = LAST l) /\ (!n l. ELL(SUC n)l = ELL n(BUTLAST l)) BIT0 = |- !b. BIT 0(WORD[b]) = b Theorem BUTLAST autoloading from theory `list` ... BUTLAST = |- !x l. BUTLAST(SNOC x l) = l WSEG_BIT = |- !n. !w :: PWORDLEN n. !k. k < n ==> (WSEG 1 k w = WORD[BIT k w]) BIT_WSEG = |- !n. !w :: PWORDLEN n. !m k j. (m + k) <= n ==> j < m ==> (BIT j(WSEG m k w) = BIT(j + k)w) MSB_DEF = |- !l. MSB(WORD l) = HD l Theorem ELL_PRE_LENGTH autoloading from theory `list` ... ELL_PRE_LENGTH = |- !l. ~(l = []) ==> (ELL(PRE(LENGTH l))l = HD l) Theorem NULL_EQ_NIL autoloading from theory `list` ... NULL_EQ_NIL = |- !l. NULL l = (l = []) Theorem LENGTH_NOT_NULL autoloading from theory `list` ... LENGTH_NOT_NULL = |- !l. 0 < (LENGTH l) = ~NULL l MSB = |- !n. !w :: PWORDLEN n. 0 < n ==> (MSB w = BIT(PRE n)w) LSB_DEF = |- !l. LSB(WORD l) = LAST l Theorem ELL_LAST autoloading from theory `list` ... ELL_LAST = |- !l. ~NULL l ==> (ELL 0 l = LAST l) LSB = |- !n. !w :: PWORDLEN n. 0 < n ==> (LSB w = BIT 0 w) WSPLIT_DEF = |- !m l. WSPLIT m(WORD l) = WORD(BUTLASTN m l),WORD(LASTN m l) th = |- ?bt. !l. bt(WORD l) = l word_bits = |- ?bt. (!l. bt(WORD l) = l) /\ (!w. WORD(bt w) = w) WCAT_lemma = |- ?WCAT. !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) WCAT_DEF = |- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) Theorem APPEND_BUTLASTN_LASTN autoloading from theory `list` ... APPEND_BUTLASTN_LASTN = |- !n l. n <= (LENGTH l) ==> (APPEND(BUTLASTN n l)(LASTN n l) = l) WCAT_WSPLIT = |- !n. !w :: PWORDLEN n. !m. m <= n ==> (WCAT(WSPLIT m w) = w) Theorem LASTN_LENGTH_APPEND autoloading from theory `list` ... LASTN_LENGTH_APPEND = |- !l1 l2. LASTN(LENGTH l2)(APPEND l1 l2) = l2 Theorem BUTLASTN_LENGTH_APPEND autoloading from theory `list` ... BUTLASTN_LENGTH_APPEND = |- !l2 l1. BUTLASTN(LENGTH l2)(APPEND l1 l2) = l1 WSPLIT_WCAT = |- !n m. !w1 :: PWORDLEN n. !w2 :: PWORDLEN m. WSPLIT m(WCAT(w1,w2)) = w1,w2 WORD_PARTITION = |- (!n. !w :: PWORDLEN n. !m. m <= n ==> (WCAT(WSPLIT m w) = w)) /\ (!n m. !w1 :: PWORDLEN n. !w2 :: PWORDLEN m. WSPLIT m(WCAT(w1,w2)) = w1,w2) Theorem APPEND_ASSOC autoloading from theory `list` ... APPEND_ASSOC = |- !l1 l2 l3. APPEND l1(APPEND l2 l3) = APPEND(APPEND l1 l2)l3 WCAT_ASSOC = |- !w1 w2 w3. WCAT(w1,WCAT(w2,w3)) = WCAT(WCAT(w1,w2),w3) WCAT0 = |- !w. (WCAT(WORD[],w) = w) /\ (WCAT(w,WORD[]) = w) Theorem APPEND_LENGTH_EQ autoloading from theory `list` ... APPEND_LENGTH_EQ = |- !l1 l1'. (LENGTH l1 = LENGTH l1') ==> (!l2 l2'. (LENGTH l2 = LENGTH l2') ==> ((APPEND l1 l2 = APPEND l1' l2') = (l1 = l1') /\ (l2 = l2'))) WCAT_11 = |- !m n. !wm1 wm2 :: PWORDLEN m. !wn1 wn2 :: PWORDLEN n. (WCAT(wm1,wn1) = WCAT(wm2,wn2)) = (wm1 = wm2) /\ (wn1 = wn2) WSPLIT_PWORDLEN = |- !n. !w :: PWORDLEN n. !m. m <= n ==> PWORDLEN(n - m)(FST(WSPLIT m w)) /\ PWORDLEN m(SND(WSPLIT m w)) Theorem LENGTH_APPEND autoloading from theory `list` ... LENGTH_APPEND = |- !l1 l2. LENGTH(APPEND l1 l2) = (LENGTH l1) + (LENGTH l2) WCAT_PWORDLEN = |- !n1. !w1 :: PWORDLEN n1. !n2. !w2 :: PWORDLEN n2. PWORDLEN(n1 + n2)(WCAT(w1,w2)) Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) WORDLEN_SUC_WCAT = |- !n w. PWORDLEN(SUC n)w ==> (?b :: PWORDLEN 1. ?w' :: PWORDLEN n. w = WCAT(b,w')) Theorem LASTN_LASTN autoloading from theory `list` ... LASTN_LASTN = |- !l n m. m <= (LENGTH l) ==> n <= m ==> (LASTN n(LASTN m l) = LASTN n l) Theorem BUTLASTN_BUTLASTN autoloading from theory `list` ... BUTLASTN_BUTLASTN = |- !m n l. (n + m) <= (LENGTH l) ==> (BUTLASTN n(BUTLASTN m l) = BUTLASTN(n + m)l) Theorem BUTLASTN_LASTN autoloading from theory `list` ... BUTLASTN_LASTN = |- !m n l. m <= n /\ n <= (LENGTH l) ==> (BUTLASTN m(LASTN n l) = LASTN(n - m)(BUTLASTN m l)) WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 k1 m2 k2. (m1 + k1) <= n /\ (m2 + k2) <= m1 ==> (WSEG m2 k2(WSEG m1 k1 w) = WSEG m2(k1 + k2)w) WSPLIT_WSEG = |- !n. !w :: PWORDLEN n. !k. k <= n ==> (WSPLIT k w = WSEG(n - k)k w,WSEG k 0 w) WSPLIT_WSEG1 = |- !n. !w :: PWORDLEN n. !k. k <= n ==> (FST(WSPLIT k w) = WSEG(n - k)k w) WSPLIT_WSEG2 = |- !n. !w :: PWORDLEN n. !k. k <= n ==> (SND(WSPLIT k w) = WSEG k 0 w) WCAT_WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 m2 k. (m1 + (m2 + k)) <= n ==> (WCAT(WSEG m2(m1 + k)w,WSEG m1 k w) = WSEG(m1 + m2)k w) WORD_SPLIT = |- !n1 n2. !w :: PWORDLEN(n1 + n2). w = WCAT(WSEG n1 n2 w,WSEG n2 0 w) WORDLEN_SUC_WCAT_WSEG_WSEG = |- !w :: PWORDLEN(SUC n). w = WCAT(WSEG 1 n w,WSEG n 0 w) WORDLEN_SUC_WCAT_WSEG_WSEG_RIGHT = |- !w :: PWORDLEN(SUC n). w = WCAT(WSEG n 1 w,WSEG 1 0 w) WORDLEN_SUC_WCAT_BIT_WSEG = |- !n. !w :: PWORDLEN(SUC n). w = WCAT(WORD[BIT n w],WSEG n 0 w) WORDLEN_SUC_WCAT_BIT_WSEG_RIGHT = |- !n. !w :: PWORDLEN(SUC n). w = WCAT(WSEG n 1 w,WORD[BIT 0 w]) WSEG_WCAT1 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n1 n2(WCAT(w1,w2)) = w1 WSEG_WCAT2 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n2 0(WCAT(w1,w2)) = w2 Theorem CONS_APPEND autoloading from theory `list` ... CONS_APPEND = |- !x l. CONS x l = APPEND[x]l WORD_CONS_WCAT = |- !x l. WORD(CONS x l) = WCAT(WORD[x],WORD l) Theorem SNOC_APPEND autoloading from theory `list` ... SNOC_APPEND = |- !x l. SNOC x l = APPEND l[x] WORD_SNOC_WCAT = |- !x l. WORD(SNOC x l) = WCAT(WORD l,WORD[x]) Theorem ELL_APPEND1 autoloading from theory `list` ... ELL_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. ELL n(APPEND l1 l2) = ELL(n - (LENGTH l2))l1) BIT_WCAT_FST = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !k. n2 <= k /\ k < (n1 + n2) ==> (BIT k(WCAT(w1,w2)) = BIT(k - n2)w1) Theorem ELL_APPEND2 autoloading from theory `list` ... ELL_APPEND2 = |- !n l2. n < (LENGTH l2) ==> (!l1. ELL n(APPEND l1 l2) = ELL n l2) BIT_WCAT_SND = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !k. k < n2 ==> (BIT k(WCAT(w1,w2)) = BIT k w2) Theorem ELL_LENGTH_CONS autoloading from theory `list` ... ELL_LENGTH_CONS = |- !l x. ELL(LENGTH l)(CONS x l) = x BIT_WCAT1 = |- !n. !w :: PWORDLEN n. !b. BIT n(WCAT(WORD[b],w)) = b Theorem BUTLASTN_APPEND1 autoloading from theory `list` ... BUTLASTN_APPEND1 = |- !l2 n. (LENGTH l2) <= n ==> (!l1. BUTLASTN n(APPEND l1 l2) = BUTLASTN(n - (LENGTH l2))l1) WSEG_WCAT_WSEG1 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. m <= n1 /\ n2 <= k ==> (WSEG m k(WCAT(w1,w2)) = WSEG m(k - n2)w1) Theorem LASTN_APPEND2 autoloading from theory `list` ... LASTN_APPEND2 = |- !n l2. n <= (LENGTH l2) ==> (!l1. LASTN n(APPEND l1 l2) = LASTN n l2) WSEG_WCAT_WSEG2 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. (m + k) <= n2 ==> (WSEG m k(WCAT(w1,w2)) = WSEG m k w2) WSEG_WCAT_WSEG = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. (m + k) <= (n1 + n2) /\ k < n2 /\ n2 <= (m + k) ==> (WSEG m k(WCAT(w1,w2)) = WCAT(WSEG((m + k) - n2)0 w1,WSEG(n2 - k)k w2)) PWORDLEN_BIT1 = |- !x. PWORDLEN 1(WORD[x]) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) Theorem CONS_11 autoloading from theory `list` ... CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') BIT_EQ_IMP_WORD_EQ = |- !n. !w1 w2 :: PWORDLEN n. (!k. k < n ==> (BIT k w1 = BIT k w2)) ==> (w1 = w2) () : void File mk_word_base loaded () : void #rm -f word_bitop.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_word_bitop`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void .........................................................() : void Theory word_base loaded () : void () : void () : void ...() : void Theorem SUB_LESS_EQ autoloading from theory `arithmetic` ... SUB_LESS_EQ = |- !n m. (n - m) <= n Theorem SEG_LASTN_BUTLASTN autoloading from theory `list` ... SEG_LASTN_BUTLASTN = |- !n m l. (n + m) <= (LENGTH l) ==> (SEG n m l = LASTN n(BUTLASTN((LENGTH l) - (n + m))l)) LASTN_BUTLASTN_SEG = |- !m k l. (m + k) <= (LENGTH l) ==> (LASTN m(BUTLASTN k l) = SEG m((LENGTH l) - (m + k))l) PBITOP_DEF = |- !op. PBITOP op = (!n. !w :: PWORDLEN n. PWORDLEN n(op w) /\ (!m k. (m + k) <= n ==> (op(WSEG m k w) = WSEG m k(op w)))) PBITOP_PWORDLEN = |- !op :: PBITOP. !n. !w :: PWORDLEN n. PWORDLEN n(op w) PBITOP_WSEG = |- !op :: PBITOP. !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> (op(WSEG m k w) = WSEG m k(op w)) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n Theorem WSEG_BIT autoloading from theory `word_base` ... WSEG_BIT = |- !n. !w :: PWORDLEN n. !k. k < n ==> (WSEG 1 k w = WORD[BIT k w]) PBITOP_BIT = |- !op :: PBITOP. !n. !w :: PWORDLEN n. !k. k < n ==> (op(WORD[BIT k w]) = WORD[BIT k(op w)]) Theorem BIT0 autoloading from theory `word_base` ... BIT0 = |- !b. BIT 0(WORD[b]) = b BIT_op_EXISTS = |- !op :: PBITOP. ?op'. !n. !w :: PWORDLEN n. !k. k < n ==> (BIT k(op w) = op'(BIT k w)) PBITBOP_DEF = |- !op. PBITBOP op = (!n. !w1 :: PWORDLEN n. !w2 :: PWORDLEN n. PWORDLEN n(op w1 w2) /\ (!m k. (m + k) <= n ==> (op(WSEG m k w1)(WSEG m k w2) = WSEG m k(op w1 w2)))) PBITBOP_PWORDLEN = |- !op :: PBITBOP. !n. !w1 :: PWORDLEN n. !w2 :: PWORDLEN n. PWORDLEN n(op w1 w2) PBITBOP_WSEG = |- !op :: PBITBOP. !n. !w1 :: PWORDLEN n. !w2 :: PWORDLEN n. !m k. (m + k) <= n ==> (op(WSEG m k w1)(WSEG m k w2) = WSEG m k(op w1 w2)) Theorem word_Ax autoloading from theory `word_base` ... word_Ax = |- !f. ?! fn. !l. fn(WORD l) = f l PBITBOP_EXISTS = |- !f. ?fn. !l1 l2. fn(WORD l1)(WORD l2) = WORD(MAP2 f l1 l2) WMAP_DEF = |- !f l. WMAP f(WORD l) = WORD(MAP f l) Theorem LENGTH_MAP autoloading from theory `list` ... LENGTH_MAP = |- !l f. LENGTH(MAP f l) = LENGTH l Definition PWORDLEN_DEF autoloading from theory `word_base` ... PWORDLEN_DEF = |- !n l. PWORDLEN n(WORD l) = (n = LENGTH l) WMAP_PWORDLEN = |- !w :: PWORDLEN n. !f. PWORDLEN n(WMAP f w) Definition MAP autoloading from theory `list` ... MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) WMAP0 = |- !f. WMAP f(WORD[]) = WORD[] Theorem ELL_MAP autoloading from theory `list` ... ELL_MAP = |- !n l f. n < (LENGTH l) ==> (ELL n(MAP f l) = f(ELL n l)) Definition BIT_DEF autoloading from theory `word_base` ... BIT_DEF = |- !k l. BIT k(WORD l) = ELL k l WMAP_BIT = |- !n. !w :: PWORDLEN n. !k. k < n ==> (!f. BIT k(WMAP f w) = f(BIT k w)) Theorem LENGTH_BUTLASTN autoloading from theory `list` ... LENGTH_BUTLASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(BUTLASTN n l) = (LENGTH l) - n) Theorem LASTN_MAP autoloading from theory `list` ... LASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. LASTN n(MAP f l) = MAP f(LASTN n l)) Theorem BUTLASTN_MAP autoloading from theory `list` ... BUTLASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. BUTLASTN n(MAP f l) = MAP f(BUTLASTN n l)) Theorem WORD_11 autoloading from theory `word_base` ... WORD_11 = |- !l l'. (WORD l = WORD l') = (l = l') Definition WSEG_DEF autoloading from theory `word_base` ... WSEG_DEF = |- !m k l. WSEG m k(WORD l) = WORD(LASTN m(BUTLASTN k l)) WMAP_WSEG = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> (!f. WMAP f(WSEG m k w) = WSEG m k(WMAP f w)) WMAP_PBITOP = |- !f. PBITOP(WMAP f) Theorem MAP_APPEND autoloading from theory `list` ... MAP_APPEND = |- !f l1 l2. MAP f(APPEND l1 l2) = APPEND(MAP f l1)(MAP f l2) Definition WCAT_DEF autoloading from theory `word_base` ... WCAT_DEF = |- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) WMAP_WCAT = |- !w1 w2 f. WMAP f(WCAT(w1,w2)) = WCAT(WMAP f w1,WMAP f w2) Theorem MAP_MAP_o autoloading from theory `list` ... MAP_MAP_o = |- !f g l. MAP f(MAP g l) = MAP(f o g)l WMAP_o = |- !w f g. WMAP g(WMAP f w) = WMAP(g o f)w FORALLBITS_DEF = |- !P l. FORALLBITS P(WORD l) = ALL_EL P l Theorem ELL_CONS autoloading from theory `list` ... ELL_CONS = |- !n l. n < (LENGTH l) ==> (!x. ELL n(CONS x l) = ELL n l) Theorem ELL_LENGTH_CONS autoloading from theory `list` ... ELL_LENGTH_CONS = |- !l x. ELL(LENGTH l)(CONS x l) = x Definition ALL_EL autoloading from theory `list` ... ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) FORALLBITS = |- !n. !w :: PWORDLEN n. !P. FORALLBITS P w = (!k. k < n ==> P(BIT k w)) Theorem ALL_EL_LASTN autoloading from theory `list` ... ALL_EL_LASTN = |- !P l. ALL_EL P l ==> (!m. m <= (LENGTH l) ==> ALL_EL P(LASTN m l)) Theorem ALL_EL_SNOC autoloading from theory `list` ... ALL_EL_SNOC = |- !P x l. ALL_EL P(SNOC x l) = ALL_EL P l /\ P x Theorem LENGTH_SNOC autoloading from theory `list` ... LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) Definition BUTLASTN autoloading from theory `list` ... BUTLASTN = |- (!l. BUTLASTN 0 l = l) /\ (!n x l. BUTLASTN(SUC n)(SNOC x l) = BUTLASTN n l) Definition LASTN autoloading from theory `list` ... LASTN = |- (!l. LASTN 0 l = []) /\ (!n x l. LASTN(SUC n)(SNOC x l) = SNOC x(LASTN n l)) Theorem ADD_EQ_0 autoloading from theory `arithmetic` ... ADD_EQ_0 = |- !m n. (m + n = 0) = (m = 0) /\ (n = 0) FORALLBITS_WSEG = |- !n. !w :: PWORDLEN n. !P. FORALLBITS P w ==> (!m k. (m + k) <= n ==> FORALLBITS P(WSEG m k w)) Theorem ALL_EL_APPEND autoloading from theory `list` ... ALL_EL_APPEND = |- !P l1 l2. ALL_EL P(APPEND l1 l2) = ALL_EL P l1 /\ ALL_EL P l2 FORALLBITS_WCAT = |- !w1 w2 P. FORALLBITS P(WCAT(w1,w2)) = FORALLBITS P w1 /\ FORALLBITS P w2 EXISTSABIT_DEF = |- !P l. EXISTSABIT P(WORD l) = SOME_EL P l Theorem NOT_SOME_EL_ALL_EL autoloading from theory `list` ... NOT_SOME_EL_ALL_EL = |- !P l. ~SOME_EL P l = ALL_EL($~ o P)l NOT_EXISTSABIT = |- !P w. ~EXISTSABIT P w = FORALLBITS($~ o P)w Theorem NOT_ALL_EL_SOME_EL autoloading from theory `list` ... NOT_ALL_EL_SOME_EL = |- !P l. ~ALL_EL P l = SOME_EL($~ o P)l NOT_FORALLBITS = |- !P w. ~FORALLBITS P w = EXISTSABIT($~ o P)w Definition SOME_EL autoloading from theory `list` ... SOME_EL = |- (!P. SOME_EL P[] = F) /\ (!P x l. SOME_EL P(CONS x l) = P x \/ SOME_EL P l) EXISTSABIT_BIT = |- !n. !w :: PWORDLEN n. !P. EXISTSABIT P w = (?k. k < n /\ P(BIT k w)) Theorem SOME_EL_SEG autoloading from theory `list` ... SOME_EL_SEG = |- !m k l. (m + k) <= (LENGTH l) ==> (!P. SOME_EL P(SEG m k l) ==> SOME_EL P l) EXISTSABIT_WSEG = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> (!P. EXISTSABIT P(WSEG m k w) ==> EXISTSABIT P w) Theorem SOME_EL_APPEND autoloading from theory `list` ... SOME_EL_APPEND = |- !P l1 l2. SOME_EL P(APPEND l1 l2) = SOME_EL P l1 \/ SOME_EL P l2 EXISTSABIT_WCAT = |- !w1 w2 P. EXISTSABIT P(WCAT(w1,w2)) = EXISTSABIT P w1 \/ EXISTSABIT P w2 SHR_DEF = |- !f b w. SHR f b w = WCAT ((f => WSEG 1(PRE(WORDLEN w))w | WORD[b]),WSEG(PRE(WORDLEN w))1 w), BIT 0 w SHL_DEF = |- !f w b. SHL f w b = BIT(PRE(WORDLEN w))w, WCAT(WSEG(PRE(WORDLEN w))0 w,(f => WSEG 1 0 w | WORD[b])) Theorem BIT_WSEG autoloading from theory `word_base` ... BIT_WSEG = |- !n. !w :: PWORDLEN n. !m k j. (m + k) <= n ==> j < m ==> (BIT j(WSEG m k w) = BIT(j + k)w) Theorem WSEG_WSEG autoloading from theory `word_base` ... WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 k1 m2 k2. (m1 + k1) <= n /\ (m2 + k2) <= m1 ==> (WSEG m2 k2(WSEG m1 k1 w) = WSEG m2(k1 + k2)w) Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 Theorem WSEG_WORDLEN autoloading from theory `word_base` ... WSEG_WORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> (WORDLEN(WSEG m k w) = m) SHR_WSEG = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> 0 < m ==> (!f b. SHR f b(WSEG m k w) = (f => WCAT(WSEG 1(k + (m - 1))w,WSEG(m - 1)(k + 1)w) | WCAT(WORD[b],WSEG(m - 1)(k + 1)w)),BIT k w) SHR_WSEG_1F = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> 0 < m ==> (!b. SHR F b(WSEG m k w) = WCAT(WORD[b],WSEG(m - 1)(k + 1)w),BIT k w) SHR_WSEG_NF_lem1 = |- 0 < m ==> ((m - 1) + 1 = m) SHR_WSEG_NF_lem2 = |- 0 < m ==> ((m - 1) + (k + 1) = m + k) Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem WCAT_WSEG_WSEG autoloading from theory `word_base` ... WCAT_WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 m2 k. (m1 + (m2 + k)) <= n ==> (WCAT(WSEG m2(m1 + k)w,WSEG m1 k w) = WSEG(m1 + m2)k w) Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n SHR_WSEG_NF = |- !n. !w :: PWORDLEN n. !m k. (m + k) < n ==> 0 < m ==> (SHR F(BIT(m + k)w)(WSEG m k w) = WSEG m(k + 1)w,BIT k w) SHL_WSEG = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> 0 < m ==> (!f b. SHL f(WSEG m k w)b = BIT(k + (m - 1))w, (f => WCAT(WSEG(m - 1)k w,WSEG 1 k w) | WCAT(WSEG(m - 1)k w,WORD[b]))) SHL_WSEG_1F = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> 0 < m ==> (!b. SHL F(WSEG m k w)b = BIT(k + (m - 1))w,WCAT(WSEG(m - 1)k w,WORD[b])) SHL_WSEG_NF = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> 0 < m ==> 0 < k ==> (SHL F(WSEG m k w)(BIT(k - 1)w) = BIT(k + (m - 1))w,WSEG m(k - 1)w) Theorem PWORDLEN1 autoloading from theory `word_base` ... PWORDLEN1 = |- !x. PWORDLEN 1(WORD[x]) Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) Theorem WSEG_PWORDLEN autoloading from theory `word_base` ... WSEG_PWORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w) Theorem WSEG_WCAT_WSEG1 autoloading from theory `word_base` ... WSEG_WCAT_WSEG1 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. m <= n1 /\ n2 <= k ==> (WSEG m k(WCAT(w1,w2)) = WSEG m(k - n2)w1) Theorem PWORDLEN autoloading from theory `word_base` ... PWORDLEN = |- !n w. PWORDLEN n w = (WORDLEN w = n) WSEG_SHL = |- !n. !w :: PWORDLEN(SUC n). !m k. 0 < k /\ (m + k) <= (SUC n) ==> (!b. WSEG m k(SND(SHL f w b)) = WSEG m(k - 1)w) Theorem WSEG_WORD_LENGTH autoloading from theory `word_base` ... WSEG_WORD_LENGTH = |- !n. !w :: PWORDLEN n. WSEG n 0 w = w Theorem WSEG_WCAT_WSEG autoloading from theory `word_base` ... WSEG_WCAT_WSEG = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. (m + k) <= (n1 + n2) /\ k < n2 /\ n2 <= (m + k) ==> (WSEG m k(WCAT(w1,w2)) = WCAT(WSEG((m + k) - n2)0 w1,WSEG(n2 - k)k w2)) WSEG_SHL_0 = |- !n. !w :: PWORDLEN(SUC n). !m b. 0 < m /\ m <= (SUC n) ==> (WSEG m 0(SND(SHL f w b)) = WCAT(WSEG(m - 1)0 w,(f => WSEG 1 0 w | WORD[b]))) () : void File mk_word_bitop loaded () : void #rm -f word_num.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_word_num`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void Theory word_base loaded () : void [()] : void list () : void ...() : void LVAL_DEF = |- !f b l. LVAL f b l = FOLDL(\e x. (b * e) + (f x))0 l Theorem LEFT_ADD_DISTRIB autoloading from theory `arithmetic` ... LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Theorem LENGTH_SNOC autoloading from theory `list` ... LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) Theorem FOLDL_SNOC autoloading from theory `list` ... FOLDL_SNOC = |- !f e x l. FOLDL f e(SNOC x l) = f(FOLDL f e l)x Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Definition FOLDL autoloading from theory `list` ... FOLDL = |- (!f e. FOLDL f e[] = e) /\ (!f e x l. FOLDL f e(CONS x l) = FOLDL f(f e x)l) LVAL = |- (!f b. LVAL f b[] = 0) /\ (!l f b x. LVAL f b(CONS x l) = ((f x) * (b EXP (LENGTH l))) + (LVAL f b l)) Theorem word_Ax autoloading from theory `word_base` ... word_Ax = |- !f. ?! fn. !l. fn(WORD l) = f l NVAL_DEF = |- !f b l. NVAL f b(WORD l) = LVAL f b l Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) Definition MULT autoloading from theory `arithmetic` ... MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) LVAL_SNOC = |- !l h f b. LVAL f b(SNOC h l) = ((LVAL f b l) * b) + (f h) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n LESS_SUC_IMP_LESS_EQ = |- !m n. m < (SUC n) = m <= n Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p Theorem LESS_MONO_ADD autoloading from theory `arithmetic` ... LESS_MONO_ADD = |- !m n p. m < n ==> (m + p) < (n + p) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m LVAL_MAX_lem = |- !a b c y. (a + b) < (SUC c) /\ y < b ==> (a + y) < c Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem LESS_EQ_LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_LESS_EQ_MONO = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Theorem INDUCTION autoloading from theory `num` ... INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) LESS_MULT_PLUS_DIFF = |- !n k l. k < l ==> ((k * n) + n) <= (l * n) Theorem LESS_EQ_IMP_LESS_SUC autoloading from theory `arithmetic` ... LESS_EQ_IMP_LESS_SUC = |- !n m. n <= m ==> n < (SUC m) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) LVAL_MAX = |- !l f b. (!x. (f x) < b) ==> (LVAL f b l) < (b EXP (LENGTH l)) NVAL_MAX = |- !f b. (!x. (f x) < b) ==> (!n. !w :: PWORDLEN n. (NVAL f b w) < (b EXP n)) NVAL0 = |- !f b. NVAL f b(WORD[]) = 0 NVAL1 = |- !f b x. NVAL f b(WORD[x]) = f x Theorem PWORDLEN0 autoloading from theory `word_base` ... PWORDLEN0 = |- !w. PWORDLEN 0 w ==> (w = WORD[]) NVAL_WORDLEN_0 = |- !w :: PWORDLEN 0. !fv r. NVAL fv r w = 0 Theorem SNOC_APPEND autoloading from theory `list` ... SNOC_APPEND = |- !x l. SNOC x l = APPEND l[x] Definition WCAT_DEF autoloading from theory `word_base` ... WCAT_DEF = |- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) NVAL_WCAT1 = |- !w f b x. NVAL f b(WCAT(w,WORD[x])) = ((NVAL f b w) * b) + (f x) Theorem CONS_APPEND autoloading from theory `list` ... CONS_APPEND = |- !x l. CONS x l = APPEND[x]l NVAL_WCAT2 = |- !n. !w :: PWORDLEN n. !f b x. NVAL f b(WCAT(WORD[x],w)) = ((f x) * (b EXP n)) + (NVAL f b w) Theorem EXP_ADD autoloading from theory `arithmetic` ... EXP_ADD = |- !p q n. n EXP (p + q) = (n EXP p) * (n EXP q) Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem WCAT_PWORDLEN autoloading from theory `word_base` ... WCAT_PWORDLEN = |- !n1. !w1 :: PWORDLEN n1. !n2. !w2 :: PWORDLEN n2. PWORDLEN(n1 + n2)(WCAT(w1,w2)) Theorem WCAT_ASSOC autoloading from theory `word_base` ... WCAT_ASSOC = |- !w1 w2 w3. WCAT(w1,WCAT(w2,w3)) = WCAT(WCAT(w1,w2),w3) Theorem WORDLEN_SUC_WCAT_BIT_WSEG autoloading from theory `word_base` ... WORDLEN_SUC_WCAT_BIT_WSEG = |- !n. !w :: PWORDLEN(SUC n). w = WCAT(WORD[BIT n w],WSEG n 0 w) Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) Theorem WCAT0 autoloading from theory `word_base` ... WCAT0 = |- !w. (WCAT(WORD[],w) = w) /\ (WCAT(w,WORD[]) = w) Theorem WSEG_PWORDLEN autoloading from theory `word_base` ... WSEG_PWORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w) Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) Theorem ADD_0 autoloading from theory `arithmetic` ... ADD_0 = |- !m. m + 0 = m NVAL_WCAT = |- !n m. !w1 :: PWORDLEN n. !w2 :: PWORDLEN m. !f b. NVAL f b(WCAT(w1,w2)) = ((NVAL f b w1) * (b EXP m)) + (NVAL f b w2) NLIST_DEF = |- (!frep b m. NLIST 0 frep b m = []) /\ (!n frep b m. NLIST(SUC n)frep b m = SNOC(frep(m MOD b))(NLIST n frep b(m DIV b))) NWORD_DEF = |- !n frep b m. NWORD n frep b m = WORD(NLIST n frep b m) NLIST_LENGTH = |- !n f b m. LENGTH(NLIST n f b m) = n Definition WORDLEN_DEF autoloading from theory `word_base` ... WORDLEN_DEF = |- !l. WORDLEN(WORD l) = LENGTH l NWORD_LENGTH = |- !n f b m. WORDLEN(NWORD n f b m) = n Definition PWORDLEN_DEF autoloading from theory `word_base` ... PWORDLEN_DEF = |- !n l. PWORDLEN n(WORD l) = (n = LENGTH l) NWORD_PWORDLEN = |- !n f b m. PWORDLEN n(NWORD n f b m) () : void File mk_word_num loaded () : void #rm -f bword_bitop.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_bword_bitop`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void .........................................................() : void Theory word_bitop loaded () : void [(); ()] : void list () : void ...() : void Theorem CONS_11 autoloading from theory `list` ... CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) Definition MAP2 autoloading from theory `list` ... MAP2 = |- (!f. MAP2 f[][] = []) /\ (!f h1 t1 h2 t2. MAP2 f(CONS h1 t1)(CONS h2 t2) = CONS(f h1 h2)(MAP2 f t1 t2)) Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) MAP2_SNOC = |- !f h1 h2 l1 l2. (LENGTH l1 = LENGTH l2) ==> (MAP2 f(SNOC h1 l1)(SNOC h2 l2) = SNOC(f h1 h2)(MAP2 f l1 l2)) Definition BUTLASTN autoloading from theory `list` ... BUTLASTN = |- (!l. BUTLASTN 0 l = l) /\ (!n x l. BUTLASTN(SUC n)(SNOC x l) = BUTLASTN n l) BUTLASTN_MAP2 = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!n. n <= (LENGTH l1) ==> (!f. BUTLASTN n(MAP2 f l1 l2) = MAP2 f(BUTLASTN n l1)(BUTLASTN n l2))) Theorem SNOC_11 autoloading from theory `list` ... SNOC_11 = |- !x l x' l'. (SNOC x l = SNOC x' l') = (x = x') /\ (l = l') Theorem LENGTH_LASTN autoloading from theory `list` ... LENGTH_LASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(LASTN n l) = n) Definition LASTN autoloading from theory `list` ... LASTN = |- (!l. LASTN 0 l = []) /\ (!n x l. LASTN(SUC n)(SNOC x l) = SNOC x(LASTN n l)) LASTN_MAP2 = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!n. n <= (LENGTH l1) ==> (!f. LASTN n(MAP2 f l1 l2) = MAP2 f(LASTN n l1)(LASTN n l2))) Theorem word_Ax autoloading from theory `word_base` ... word_Ax = |- !f. ?! fn. !l. fn(WORD l) = f l WNOT_DEF = |- !l. WNOT(WORD l) = WORD(MAP $~ l) Theorem LENGTH_BUTLASTN autoloading from theory `list` ... LENGTH_BUTLASTN = |- !n l. n <= (LENGTH l) ==> (LENGTH(BUTLASTN n l) = (LENGTH l) - n) Theorem LASTN_MAP autoloading from theory `list` ... LASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. LASTN n(MAP f l) = MAP f(LASTN n l)) Theorem BUTLASTN_MAP autoloading from theory `list` ... BUTLASTN_MAP = |- !n l. n <= (LENGTH l) ==> (!f. BUTLASTN n(MAP f l) = MAP f(BUTLASTN n l)) Theorem WORD_11 autoloading from theory `word_base` ... WORD_11 = |- !l l'. (WORD l = WORD l') = (l = l') Theorem LENGTH_MAP autoloading from theory `list` ... LENGTH_MAP = |- !l f. LENGTH(MAP f l) = LENGTH l Definition WSEG_DEF autoloading from theory `word_base` ... WSEG_DEF = |- !m k l. WSEG m k(WORD l) = WORD(LASTN m(BUTLASTN k l)) Definition PWORDLEN_DEF autoloading from theory `word_base` ... PWORDLEN_DEF = |- !n l. PWORDLEN n(WORD l) = (n = LENGTH l) BIT_WNOT_SYM_lemma = |- !n. !w :: PWORDLEN n. PWORDLEN n(WNOT w) /\ (!m k. (m + k) <= n ==> (WNOT(WSEG m k w) = WSEG m k(WNOT w))) Definition PBITOP_DEF autoloading from theory `word_bitop` ... PBITOP_DEF = |- !op. PBITOP op = (!n. !w :: PWORDLEN n. PWORDLEN n(op w) /\ (!m k. (m + k) <= n ==> (op(WSEG m k w) = WSEG m k(op w)))) PBITOP_WNOT = |- PBITOP WNOT Definition MAP autoloading from theory `list` ... MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) WNOT_WNOT = |- !w. WNOT(WNOT w) = w Theorem MAP_APPEND autoloading from theory `list` ... MAP_APPEND = |- !f l1 l2. MAP f(APPEND l1 l2) = APPEND(MAP f l1)(MAP f l2) Definition WCAT_DEF autoloading from theory `word_base` ... WCAT_DEF = |- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) WCAT_WNOT = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WCAT(WNOT w1,WNOT w2) = WNOT(WCAT(w1,w2)) Theorem LENGTH_MAP2 autoloading from theory `list` ... LENGTH_MAP2 = |- !l1 l2. (LENGTH l1 = LENGTH l2) ==> (!f. (LENGTH(MAP2 f l1 l2) = LENGTH l1) /\ (LENGTH(MAP2 f l1 l2) = LENGTH l2)) LENGTH_MAP22 = |- !l1 l2 f. (LENGTH l1 = LENGTH l2) ==> (LENGTH(MAP2 f l1 l2) = LENGTH l2) Theorem PBITBOP_EXISTS autoloading from theory `word_bitop` ... PBITBOP_EXISTS = |- !f. ?fn. !l1 l2. fn(WORD l1)(WORD l2) = WORD(MAP2 f l1 l2) WAND_DEF = |- !l1 l2. (WORD l1) WAND (WORD l2) = WORD(MAP2 $/\ l1 l2) PBITBOP_WAND_lemma = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WAND w2) /\ (!m k. (m + k) <= n ==> ((WSEG m k w1) WAND (WSEG m k w2) = WSEG m k(w1 WAND w2))) Definition PBITBOP_DEF autoloading from theory `word_bitop` ... PBITBOP_DEF = |- !op. PBITBOP op = (!n. !w1 :: PWORDLEN n. !w2 :: PWORDLEN n. PWORDLEN n(op w1 w2) /\ (!m k. (m + k) <= n ==> (op(WSEG m k w1)(WSEG m k w2) = WSEG m k(op w1 w2)))) PBITBOP_WAND = |- PBITBOP $WAND WOR_DEF = |- !l1 l2. (WORD l1) WOR (WORD l2) = WORD(MAP2 $\/ l1 l2) PBITBOP_WOR_lemma = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WOR w2) /\ (!m k. (m + k) <= n ==> ((WSEG m k w1) WOR (WSEG m k w2) = WSEG m k(w1 WOR w2))) PBITBOP_WOR = |- PBITBOP $WOR WXOR_DEF = |- !l1 l2. (WORD l1) WXOR (WORD l2) = WORD(MAP2(\x y. ~(x = y))l1 l2) PBITBOP_WXOR_lemma = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WXOR w2) /\ (!m k. (m + k) <= n ==> ((WSEG m k w1) WXOR (WSEG m k w2) = WSEG m k(w1 WXOR w2))) PBITBOP_WXOR = |- PBITBOP $WXOR () : void File mk_bword_bitop loaded () : void #rm -f bword_num.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_bword_num`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void .........................................................() : void Theory word_bitop loaded () : void () : void Theory word_num loaded () : void [(); (); ()] : void list ...() : void BV_DEF = |- !b. BV b = (b => SUC 0 | 0) Theorem word_Ax autoloading from theory `word_base` ... word_Ax = |- !f. ?! fn. !l. fn(WORD l) = f l BNVAL_DEF = |- !l. BNVAL(WORD l) = LVAL BV 2 l BV_LESS_2 = |- !x. (BV x) < 2 Definition NVAL_DEF autoloading from theory `word_num` ... NVAL_DEF = |- !f b l. NVAL f b(WORD l) = LVAL f b l BNVAL_NVAL = |- !w. BNVAL w = NVAL BV 2 w Theorem NVAL0 autoloading from theory `word_num` ... NVAL0 = |- !f b. NVAL f b(WORD[]) = 0 BNVAL0 = |- BNVAL(WORD[]) = 0 Theorem SUC_LESS autoloading from theory `prim_rec` ... SUC_LESS = |- !m n. (SUC m) < n ==> m < n Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Theorem ADD_EQ_0 autoloading from theory `arithmetic` ... ADD_EQ_0 = |- !m n. (m + n = 0) = (m = 0) /\ (n = 0) Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) BNVAL_11_lem = |- !m n p. m < p /\ n < p ==> ~(p + m = n) Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem CONS_11 autoloading from theory `list` ... CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') Theorem LVAL autoloading from theory `word_num` ... LVAL = |- (!f b. LVAL f b[] = 0) /\ (!l f b x. LVAL f b(CONS x l) = ((f x) * (b EXP (LENGTH l))) + (LVAL f b l)) Theorem WORD_11 autoloading from theory `word_base` ... WORD_11 = |- !l l'. (WORD l = WORD l') = (l = l') Definition WORDLEN_DEF autoloading from theory `word_base` ... WORDLEN_DEF = |- !l. WORDLEN(WORD l) = LENGTH l Theorem LVAL_MAX autoloading from theory `word_num` ... LVAL_MAX = |- !l f b. (!x. (f x) < b) ==> (LVAL f b l) < (b EXP (LENGTH l)) BNVAL_11 = |- !w1 w2. (WORDLEN w1 = WORDLEN w2) ==> (BNVAL w1 = BNVAL w2) ==> (w1 = w2) BNVAL_ONTO = |- !w. ?n. BNVAL w = n BNVAL_MAX = |- !n. !w :: PWORDLEN n. (BNVAL w) < (2 EXP n) Theorem LVAL_SNOC autoloading from theory `word_num` ... LVAL_SNOC = |- !l h f b. LVAL f b(SNOC h l) = ((LVAL f b l) * b) + (f h) Theorem SNOC_APPEND autoloading from theory `list` ... SNOC_APPEND = |- !x l. SNOC x l = APPEND l[x] Definition WCAT_DEF autoloading from theory `word_base` ... WCAT_DEF = |- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2) BNVAL_WCAT1 = |- !n. !w :: PWORDLEN n. !x. BNVAL(WCAT(w,WORD[x])) = ((BNVAL w) * 2) + (BV x) Theorem NVAL_WCAT2 autoloading from theory `word_num` ... NVAL_WCAT2 = |- !n. !w :: PWORDLEN n. !f b x. NVAL f b(WCAT(WORD[x],w)) = ((f x) * (b EXP n)) + (NVAL f b w) BNVAL_WCAT2 = |- !n. !w :: PWORDLEN n. !x. BNVAL(WCAT(WORD[x],w)) = ((BV x) * (2 EXP n)) + (BNVAL w) Theorem NVAL_WCAT autoloading from theory `word_num` ... NVAL_WCAT = |- !n m. !w1 :: PWORDLEN n. !w2 :: PWORDLEN m. !f b. NVAL f b(WCAT(w1,w2)) = ((NVAL f b w1) * (b EXP m)) + (NVAL f b w2) BNVAL_WCAT = |- !n m. !w1 :: PWORDLEN n. !w2 :: PWORDLEN m. BNVAL(WCAT(w1,w2)) = ((BNVAL w1) * (2 EXP m)) + (BNVAL w2) VB_DEF = |- !n. VB n = ~(n MOD 2 = 0) NBWORD_DEF = |- !n m. NBWORD n m = WORD(NLIST n VB 2 m) Definition NLIST_DEF autoloading from theory `word_num` ... NLIST_DEF = |- (!frep b m. NLIST 0 frep b m = []) /\ (!n frep b m. NLIST(SUC n)frep b m = SNOC(frep(m MOD b))(NLIST n frep b(m DIV b))) NBWORD0 = |- !m. NBWORD 0 m = WORD[] Theorem LENGTH_SNOC autoloading from theory `list` ... LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) NLIST_LENGTH = |- !n f b m. LENGTH(NLIST n f b m) = n WORDLEN_NBWORD = |- !n m. WORDLEN(NBWORD n m) = n Theorem PWORDLEN autoloading from theory `word_base` ... PWORDLEN = |- !n w. PWORDLEN n w = (WORDLEN w = n) PWORDLEN_NBWORD = |- !n m. PWORDLEN n(NBWORD n m) Theorem WORD_SNOC_WCAT autoloading from theory `word_base` ... WORD_SNOC_WCAT = |- !x l. WORD(SNOC x l) = WCAT(WORD l,WORD[x]) NBWORD_SUC = |- !n m. NBWORD(SUC n)m = WCAT(NBWORD n(m DIV 2),WORD[VB(m MOD 2)]) Theorem SUC_ID autoloading from theory `prim_rec` ... SUC_ID = |- !n. ~(SUC n = n) Theorem LESS_MOD autoloading from theory `arithmetic` ... LESS_MOD = |- !n k. k < n ==> (k MOD n = k) VB_BV = |- !x. VB(BV x) = x Theorem ZERO_MOD autoloading from theory `arithmetic` ... ZERO_MOD = |- !n. 0 < n ==> (0 MOD n = 0) Theorem ZERO_DIV autoloading from theory `arithmetic` ... ZERO_DIV = |- !n. 0 < n ==> (0 DIV n = 0) BV_VB = |- !x. x < 2 ==> (BV(VB x) = x) Theorem MOD_EQ_0 autoloading from theory `arithmetic` ... MOD_EQ_0 = |- !n. 0 < n ==> (!k. (k * n) MOD n = 0) Theorem MOD_MOD autoloading from theory `arithmetic` ... MOD_MOD = |- !n. 0 < n ==> (!k. (k MOD n) MOD n = k MOD n) Theorem SNOC_11 autoloading from theory `list` ... SNOC_11 = |- !x l x' l'. (SNOC x l = SNOC x' l') = (x = x') /\ (l = l') NBWORD_BNVAL = |- !n. !w :: PWORDLEN n. NBWORD n(BNVAL w) = w Theorem LESS_MULT_MONO autoloading from theory `arithmetic` ... LESS_MULT_MONO = |- !m i n. ((SUC n) * m) < ((SUC n) * i) = m < i Theorem ZERO_LESS_EXP autoloading from theory `arithmetic` ... ZERO_LESS_EXP = |- !m n. 0 < ((SUC n) EXP m) Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) Definition DIVISION autoloading from theory `arithmetic` ... DIVISION = |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n) BNVAL_NBWORD = |- !n m. m < (2 EXP n) ==> (BNVAL(NBWORD n m) = m) ZERO_WORD_VAL = |- !n. !w :: PWORDLEN n. (w = NBWORD n 0) = (BNVAL w = 0) Theorem WCAT_ASSOC autoloading from theory `word_base` ... WCAT_ASSOC = |- !w1 w2 w3. WCAT(w1,WCAT(w2,w3)) = WCAT(WCAT(w1,w2),w3) Theorem ADD_SUC autoloading from theory `arithmetic` ... ADD_SUC = |- !m n. SUC(m + n) = m + (SUC n) Theorem WCAT0 autoloading from theory `word_base` ... WCAT0 = |- !w. (WCAT(WORD[],w) = w) /\ (WCAT(w,WORD[]) = w) WCAT_NBWORD_0 = |- !n1 n2. WCAT(NBWORD n1 0,NBWORD n2 0) = NBWORD(n1 + n2)0 WSPLIT_NBWORD_0 = |- !m n. m <= n ==> (WSPLIT m(NBWORD n 0) = NBWORD(n - m)0,NBWORD m 0) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Theorem WSEG_PWORDLEN autoloading from theory `word_base` ... WSEG_PWORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w) Theorem WCAT_11 autoloading from theory `word_base` ... WCAT_11 = |- !m n. !wm1 wm2 :: PWORDLEN m. !wn1 wn2 :: PWORDLEN n. (WCAT(wm1,wn1) = WCAT(wm2,wn2)) = (wm1 = wm2) /\ (wn1 = wn2) Theorem WSPLIT_WSEG autoloading from theory `word_base` ... WSPLIT_WSEG = |- !n. !w :: PWORDLEN n. !k. k <= n ==> (WSPLIT k w = WSEG(n - k)k w,WSEG k 0 w) EQ_NBWORD0_SPLIT = |- !n. !w :: PWORDLEN n. !m. m <= n ==> ((w = NBWORD n 0) = (WSEG(n - m)m w = NBWORD(n - m)0) /\ (WSEG m 0 w = NBWORD m 0)) Theorem MULT_0 autoloading from theory `arithmetic` ... MULT_0 = |- !m. m * 0 = 0 LESS2_DIV2 = |- !r y. 0 < y /\ r < (2 * y) ==> (r DIV 2) < y less2 = |- 0 < 2 MOD_DIV_lemma = |- !x y. 0 < y ==> ((x MOD (2 * y)) DIV 2 = (x DIV 2) MOD y) Definition PWORDLEN_DEF autoloading from theory `word_base` ... PWORDLEN_DEF = |- !n l. PWORDLEN n(WORD l) = (n = LENGTH l) NBWORD_MOD = |- !n m. NBWORD n(m MOD (2 EXP n)) = NBWORD n m Theorem WSEG_WORD_LENGTH autoloading from theory `word_base` ... WSEG_WORD_LENGTH = |- !n. !w :: PWORDLEN n. WSEG n 0 w = w Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) Theorem PWORDLEN1 autoloading from theory `word_base` ... PWORDLEN1 = |- !x. PWORDLEN 1(WORD[x]) Theorem WSEG_WCAT_WSEG autoloading from theory `word_base` ... WSEG_WCAT_WSEG = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. (m + k) <= (n1 + n2) /\ k < n2 /\ n2 <= (m + k) ==> (WSEG m k(WCAT(w1,w2)) = WCAT(WSEG((m + k) - n2)0 w1,WSEG(n2 - k)k w2)) Theorem WSEG0 autoloading from theory `word_base` ... WSEG0 = |- !k w. WSEG 0 k w = WORD[] WSEG_NBWORD_SUC = |- !n m. WSEG n 0(NBWORD(SUC n)m) = NBWORD n m Theorem NVAL_MAX autoloading from theory `word_num` ... NVAL_MAX = |- !f b. (!x. (f x) < b) ==> (!n. !w :: PWORDLEN n. (NVAL f b w) < (b EXP n)) Theorem WORDLEN_SUC_WCAT_BIT_WSEG autoloading from theory `word_base` ... WORDLEN_SUC_WCAT_BIT_WSEG = |- !n. !w :: PWORDLEN(SUC n). w = WCAT(WORD[BIT n w],WSEG n 0 w) NBWORD_SUC_WSEG = |- !n. !w :: PWORDLEN(SUC n). NBWORD n(BNVAL w) = WSEG n 0 w Theorem TIMES2 autoloading from theory `arithmetic` ... TIMES2 = |- !n. 2 * n = n + n Definition SHL_DEF autoloading from theory `word_bitop` ... SHL_DEF = |- !f w b. SHL f w b = BIT(PRE(WORDLEN w))w, WCAT(WSEG(PRE(WORDLEN w))0 w,(f => WSEG 1 0 w | WORD[b])) DOUBLE_EQ_SHL = |- !n. 0 < n ==> (!w :: PWORDLEN n. !b. NBWORD n((BNVAL w) + ((BNVAL w) + (BV b))) = SND(SHL F w b)) Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) Theorem BIT_WCAT_FST autoloading from theory `word_base` ... BIT_WCAT_FST = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !k. n2 <= k /\ k < (n1 + n2) ==> (BIT k(WCAT(w1,w2)) = BIT(k - n2)w1) Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) Theorem BIT0 autoloading from theory `word_base` ... BIT0 = |- !b. BIT 0(WORD[b]) = b MSB_NBWORD = |- !n m. BIT n(NBWORD(SUC n)m) = VB((m DIV (2 EXP n)) MOD 2) ZERO_LESS_TWO_EXP = |- !m. 0 < (2 EXP m) NBWORD_SPLIT = |- !n1 n2 m. NBWORD(n1 + n2)m = WCAT(NBWORD n1(m DIV (2 EXP n2)),NBWORD n2 m) Theorem WSEG_WCAT2 autoloading from theory `word_base` ... WSEG_WCAT2 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n2 0(WCAT(w1,w2)) = w2 Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 Theorem WSEG_WCAT_WSEG1 autoloading from theory `word_base` ... WSEG_WCAT_WSEG1 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. m <= n1 /\ n2 <= k ==> (WSEG m k(WCAT(w1,w2)) = WSEG m(k - n2)w1) WSEG_NBWORD = |- !m k n. (m + k) <= n ==> (!l. WSEG m k(NBWORD n l) = NBWORD m(l DIV (2 EXP k))) NBWORD_SUC_FST = |- !n m. NBWORD(SUC n)m = WCAT(WORD[VB((m DIV (2 EXP n)) MOD 2)],NBWORD n m) Theorem BIT_WSEG autoloading from theory `word_base` ... BIT_WSEG = |- !n. !w :: PWORDLEN n. !m k j. (m + k) <= n ==> j < m ==> (BIT j(WSEG m k w) = BIT(j + k)w) BIT_NBWORD0 = |- !k n. k < n ==> (BIT k(NBWORD n 0) = F) add_lem = |- !m1 m2 n1 n2 p. ((m1 * p) + n1) + ((m2 * p) + n2) = ((m1 * p) + (m2 * p)) + (n1 + n2) ADD_BNVAL_LEFT = |- !n. !w1 w2 :: PWORDLEN(SUC n). (BNVAL w1) + (BNVAL w2) = (((BV(BIT n w1)) + (BV(BIT n w2))) * (2 EXP n)) + ((BNVAL(WSEG n 0 w1)) + (BNVAL(WSEG n 0 w2))) Theorem WORDLEN_SUC_WCAT_BIT_WSEG_RIGHT autoloading from theory `word_base` ... WORDLEN_SUC_WCAT_BIT_WSEG_RIGHT = |- !n. !w :: PWORDLEN(SUC n). w = WCAT(WSEG n 1 w,WORD[BIT 0 w]) ADD_BNVAL_RIGHT = |- !n. !w1 w2 :: PWORDLEN(SUC n). (BNVAL w1) + (BNVAL w2) = (((BNVAL(WSEG n 1 w1)) + (BNVAL(WSEG n 1 w2))) * 2) + ((BV(BIT 0 w1)) + (BV(BIT 0 w2))) Theorem WCAT_WSEG_WSEG autoloading from theory `word_base` ... WCAT_WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 m2 k. (m1 + (m2 + k)) <= n ==> (WCAT(WSEG m2(m1 + k)w,WSEG m1 k w) = WSEG(m1 + m2)k w) ADD_BNVAL_SPLIT = |- !n1 n2. !w1 w2 :: PWORDLEN(n1 + n2). (BNVAL w1) + (BNVAL w2) = (((BNVAL(WSEG n1 n2 w1)) + (BNVAL(WSEG n1 n2 w2))) * (2 EXP n2)) + ((BNVAL(WSEG n2 0 w1)) + (BNVAL(WSEG n2 0 w2))) () : void File mk_bword_num loaded () : void #rm -f bword_arith.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_bword_arith`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void .........................................................() : void Theory bword_num loaded () : void [(); (); ()] : void list () : void MULT_LEFT_1 = |- !m. 1 * m = m ADD_DIV_SUC_DIV = |- !n. 0 < n ==> (!r. (n + r) DIV n = SUC(r DIV n)) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n LESS_IMP_LESS_EQ_PRE = |- !m n. 0 < n ==> (m < n = m <= (PRE n)) LESS_MONO_DIV = |- !n. 0 < n ==> (!p q. p < q ==> (p DIV n) <= (q DIV n)) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) LESS_EQ_MONO_DIV = |- !n. 0 < n ==> (!p q. p <= q ==> (p DIV n) <= (q DIV n)) Theorem PRE_SUC_EQ autoloading from theory `arithmetic` ... PRE_SUC_EQ = |- !m n. 0 < n ==> ((m = PRE n) = (SUC m = n)) SUC_PRE = |- !n. 0 < n ==> (SUC(PRE n) = n) Theorem TIMES2 autoloading from theory `arithmetic` ... TIMES2 = |- !n. 2 * n = n + n Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) ONE_LESS_TWO_EXP_SUC = |- !n. 1 < (2 EXP (SUC n)) ADD_MONO_EQ = |- !m n p. (p + m = p + n) = (m = n) ACARRY_DEF = |- (!w1 w2 cin. ACARRY 0 w1 w2 cin = cin) /\ (!n w1 w2 cin. ACARRY(SUC n)w1 w2 cin = VB (((BV(BIT n w1)) + ((BV(BIT n w2)) + (BV(ACARRY n w1 w2 cin)))) DIV 2)) ICARRY_DEF = |- (!w1 w2 cin. ICARRY 0 w1 w2 cin = cin) /\ (!n w1 w2 cin. ICARRY(SUC n)w1 w2 cin = BIT n w1 /\ BIT n w2 \/ (BIT n w1 \/ BIT n w2) /\ ICARRY n w1 w2 cin) Theorem ZERO_MOD autoloading from theory `arithmetic` ... ZERO_MOD = |- !n. 0 < n ==> (0 MOD n = 0) Theorem ZERO_DIV autoloading from theory `arithmetic` ... ZERO_DIV = |- !n. 0 < n ==> (0 DIV n = 0) div_mod_lemmas = [|- !x. (SUC(SUC x)) DIV 2 = SUC(x DIV 2); |- (SUC 0) DIV 2 = 0; |- 0 DIV 2 = 0; |- (SUC 0) MOD 2 = SUC 0; |- 0 MOD 2 = 0] : thm list Theorem SUC_NOT autoloading from theory `arithmetic` ... SUC_NOT = |- !n. ~(0 = SUC n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Definition VB_DEF autoloading from theory `bword_num` ... VB_DEF = |- !n. VB n = ~(n MOD 2 = 0) Definition BV_DEF autoloading from theory `bword_num` ... BV_DEF = |- !b. BV b = (b => SUC 0 | 0) Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n ACARRY_EQ_ICARRY = |- !n. !w1 w2 :: PWORDLEN n. !cin k. k <= n ==> (ACARRY k w1 w2 cin = ICARRY k w1 w2 cin) Less2 = |- 0 < 2 Less2_SUC0 = |- (SUC 0) < 2 Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) BV_LESS_EQ_1 = |- !x. (BV x) <= 1 Theorem LESS_EQ_LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_LESS_EQ_MONO = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q) ADD_BV_LESS_EQ_2 = |- !x1 x2. ((BV x1) + (BV x2)) <= 2 LESS_EQ1_LESS2 = |- n < 2 = n <= 1 Theorem BNVAL_MAX autoloading from theory `bword_num` ... BNVAL_MAX = |- !n. !w :: PWORDLEN n. (BNVAL w) < (2 EXP n) Theorem ZERO_LESS_EXP autoloading from theory `arithmetic` ... ZERO_LESS_EXP = |- !m n. 0 < ((SUC n) EXP m) Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 BNVAL_LESS_EQ = |- !n. !w :: PWORDLEN n. (BNVAL w) <= ((2 EXP n) - 1) Theorem LESS_MONO_MULT autoloading from theory `arithmetic` ... LESS_MONO_MULT = |- !m n p. m <= n ==> (m * p) <= (n * p) Theorem LEFT_SUB_DISTRIB autoloading from theory `arithmetic` ... LEFT_SUB_DISTRIB = |- !m n p. p * (m - n) = (p * m) - (p * n) ADD_BNVAL_LESS_EQ = |- !n. !w1 w2 :: PWORDLEN n. !cin. ((BNVAL w1) + ((BNVAL w2) + (BV cin))) <= ((2 EXP (SUC n)) - 1) ZERO_LESS_TWO_EXP = |- !m. 0 < (2 EXP m) EXP_SUB1_LESS = |- ((2 EXP n) - 1) < (2 EXP n) ADD_BNVAL_LESS_EQ1 = |- !n cin. !w1 w2 :: PWORDLEN n. (((BNVAL w1) + ((BNVAL w2) + (BV cin))) DIV (2 EXP n)) <= (SUC 0) ADD_BV_BNVAL_DIV_LESS_EQ1 = |- !n x1 x2 cin. !w1 w2 :: PWORDLEN n. ((((BV x1) + (BV x2)) + (((BNVAL w1) + ((BNVAL w2) + (BV cin))) DIV (2 EXP n))) DIV 2) <= 1 Theorem SUC_LESS autoloading from theory `prim_rec` ... SUC_LESS = |- !m n. (SUC m) < n ==> m < n ADD_BV_BNVAL_LESS_EQ = |- !n x1 x2 cin. !w1 w2 :: PWORDLEN n. (((BV x1) + (BV x2)) + ((BNVAL w1) + ((BNVAL w2) + (BV cin)))) <= (SUC(2 EXP (SUC n))) ADD_BV_BNVAL_LESS_EQ1 = |- !n x1 x2 cin. !w1 w2 :: PWORDLEN n. ((((BV x1) + (BV x2)) + ((BNVAL w1) + ((BNVAL w2) + (BV cin)))) DIV (2 EXP (n + 1))) <= 1 Theorem WSEG_PWORDLEN autoloading from theory `word_base` ... WSEG_PWORDLEN = |- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w) seg_pw = |- !w. PWORDLEN n w ==> (SUC k) <= n ==> PWORDLEN(SUC k)(WSEG(SUC k)0 w) Theorem BIT_WSEG autoloading from theory `word_base` ... BIT_WSEG = |- !n. !w :: PWORDLEN n. !m k j. (m + k) <= n ==> j < m ==> (BIT j(WSEG m k w) = BIT(j + k)w) bit_thm = |- !w. PWORDLEN n w ==> (SUC k) <= n ==> (BIT k(WSEG(SUC k)0 w) = BIT k w) Theorem WSEG_WSEG autoloading from theory `word_base` ... WSEG_WSEG = |- !n. !w :: PWORDLEN n. !m1 k1 m2 k2. (m1 + k1) <= n /\ (m2 + k2) <= m1 ==> (WSEG m2 k2(WSEG m1 k1 w) = WSEG m2(k1 + k2)w) seg_thm = |- !w. PWORDLEN n w ==> (SUC k) <= n ==> (WSEG k 0(WSEG(SUC k)0 w) = WSEG k 0 w) seg_pw_thm' = |- !w. PWORDLEN n w ==> k <= n ==> PWORDLEN k(WSEG k 0 w) spec_thm = - : (thm -> thm list) Theorem ADD_BNVAL_LEFT autoloading from theory `bword_num` ... ADD_BNVAL_LEFT = |- !n. !w1 w2 :: PWORDLEN(SUC n). (BNVAL w1) + (BNVAL w2) = (((BV(BIT n w1)) + (BV(BIT n w2))) * (2 EXP n)) + ((BNVAL(WSEG n 0 w1)) + (BNVAL(WSEG n 0 w2))) add_left = ... |- (BNVAL(WSEG(SUC k)0 w1)) + (BNVAL(WSEG(SUC k)0 w2)) = (((BV(BIT k w1)) + (BV(BIT k w2))) * (2 EXP k)) + ((BNVAL(WSEG k 0 w1)) + (BNVAL(WSEG k 0 w2))) less1_lem = ... |- ((((BV(BIT k w1)) + (BV(BIT k w2))) + (((BNVAL(WSEG k 0 w1)) + ((BNVAL(WSEG k 0 w2)) + (BV cin))) DIV (2 EXP k))) DIV 2) <= 1 Theorem BV_VB autoloading from theory `bword_num` ... BV_VB = |- !x. x < 2 ==> (BV(VB x) = x) Theorem BNVAL0 autoloading from theory `bword_num` ... BNVAL0 = |- BNVAL(WORD[]) = 0 Theorem WSEG0 autoloading from theory `word_base` ... WSEG0 = |- !k w. WSEG 0 k w = WORD[] ACARRY_EQ_ADD_DIV = |- !n. !w1 w2 :: PWORDLEN n. !k. k < n ==> (BV(ACARRY k w1 w2 cin) = ((BNVAL(WSEG k 0 w1)) + ((BNVAL(WSEG k 0 w2)) + (BV cin))) DIV (2 EXP k)) Theorem NBWORD_MOD autoloading from theory `bword_num` ... NBWORD_MOD = |- !n m. NBWORD n(m MOD (2 EXP n)) = NBWORD n m Theorem LESS_ADD_NONZERO autoloading from theory `arithmetic` ... LESS_ADD_NONZERO = |- !m n. ~(n = 0) ==> m < (m + n) Theorem NBWORD_SPLIT autoloading from theory `bword_num` ... NBWORD_SPLIT = |- !n1 n2 m. NBWORD(n1 + n2)m = WCAT(NBWORD n1(m DIV (2 EXP n2)),NBWORD n2 m) Theorem WSEG_WORD_LENGTH autoloading from theory `word_base` ... WSEG_WORD_LENGTH = |- !n. !w :: PWORDLEN n. WSEG n 0 w = w Theorem WCAT0 autoloading from theory `word_base` ... WCAT0 = |- !w. (WCAT(WORD[],w) = w) /\ (WCAT(w,WORD[]) = w) Theorem NBWORD0 autoloading from theory `bword_num` ... NBWORD0 = |- !m. NBWORD 0 m = WORD[] Theorem PWORDLEN_NBWORD autoloading from theory `bword_num` ... PWORDLEN_NBWORD = |- !n m. PWORDLEN n(NBWORD n m) Theorem WCAT_11 autoloading from theory `word_base` ... WCAT_11 = |- !m n. !wm1 wm2 :: PWORDLEN m. !wn1 wn2 :: PWORDLEN n. (WCAT(wm1,wn1) = WCAT(wm2,wn2)) = (wm1 = wm2) /\ (wn1 = wn2) Theorem ADD_BNVAL_SPLIT autoloading from theory `bword_num` ... ADD_BNVAL_SPLIT = |- !n1 n2. !w1 w2 :: PWORDLEN(n1 + n2). (BNVAL w1) + (BNVAL w2) = (((BNVAL(WSEG n1 n2 w1)) + (BNVAL(WSEG n1 n2 w2))) * (2 EXP n2)) + ((BNVAL(WSEG n2 0 w1)) + (BNVAL(WSEG n2 0 w2))) ADD_WORD_SPLIT = |- !n1 n2. !w1 w2 :: PWORDLEN(n1 + n2). !cin. NBWORD(n1 + n2)((BNVAL w1) + ((BNVAL w2) + (BV cin))) = WCAT (NBWORD n1 ((BNVAL(WSEG n1 n2 w1)) + ((BNVAL(WSEG n1 n2 w2)) + (BV(ACARRY n2 w1 w2 cin)))), NBWORD n2 ((BNVAL(WSEG n2 0 w1)) + ((BNVAL(WSEG n2 0 w2)) + (BV cin)))) Theorem WSEG_WCAT2 autoloading from theory `word_base` ... WSEG_WCAT2 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n2 0(WCAT(w1,w2)) = w2 Theorem WSEG_WCAT_WSEG1 autoloading from theory `word_base` ... WSEG_WCAT_WSEG1 = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !m k. m <= n1 /\ n2 <= k ==> (WSEG m k(WCAT(w1,w2)) = WSEG m(k - n2)w1) Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 WSEG_NBWORD_ADD = |- !n. !w1 w2 :: PWORDLEN n. !m k cin. (m + k) <= n ==> (WSEG m k(NBWORD n((BNVAL w1) + ((BNVAL w2) + (BV cin)))) = NBWORD m ((BNVAL(WSEG m k w1)) + ((BNVAL(WSEG m k w2)) + (BV(ACARRY k w1 w2 cin))))) ADD_NBWORD_EQ0_SPLIT = |- !n1 n2. !w1 w2 :: PWORDLEN(n1 + n2). !cin. (NBWORD(n1 + n2)((BNVAL w1) + ((BNVAL w2) + (BV cin))) = NBWORD(n1 + n2)0) = (NBWORD n1 ((BNVAL(WSEG n1 n2 w1)) + ((BNVAL(WSEG n1 n2 w2)) + (BV(ACARRY n2 w1 w2 cin)))) = NBWORD n1 0) /\ (NBWORD n2 ((BNVAL(WSEG n2 0 w1)) + ((BNVAL(WSEG n2 0 w2)) + (BV cin))) = NBWORD n2 0) Theorem MOD_MOD autoloading from theory `arithmetic` ... MOD_MOD = |- !n. 0 < n ==> (!k. (k MOD n) MOD n = k MOD n) VB_MOD_2 = |- !n. VB(n MOD 2) = VB n Theorem NBWORD_SUC_FST autoloading from theory `bword_num` ... NBWORD_SUC_FST = |- !n m. NBWORD(SUC n)m = WCAT(WORD[VB((m DIV (2 EXP n)) MOD 2)],NBWORD n m) Theorem VB_BV autoloading from theory `bword_num` ... VB_BV = |- !x. VB(BV x) = x Theorem BV_LESS_2 autoloading from theory `bword_num` ... BV_LESS_2 = |- !x. (BV x) < 2 Theorem LESS_MOD autoloading from theory `arithmetic` ... LESS_MOD = |- !n k. k < n ==> (k MOD n = k) Theorem NVAL0 autoloading from theory `word_num` ... NVAL0 = |- !f b. NVAL f b(WORD[]) = 0 Theorem NBWORD_SUC autoloading from theory `bword_num` ... NBWORD_SUC = |- !n m. NBWORD(SUC n)m = WCAT(NBWORD n(m DIV 2),WORD[VB(m MOD 2)]) Theorem BNVAL_NVAL autoloading from theory `bword_num` ... BNVAL_NVAL = |- !w. BNVAL w = NVAL BV 2 w Theorem PWORDLEN0 autoloading from theory `word_base` ... PWORDLEN0 = |- !w. PWORDLEN 0 w ==> (w = WORD[]) Theorem BIT_WCAT_FST autoloading from theory `word_base` ... BIT_WCAT_FST = |- !n1 n2. !w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. !k. n2 <= k /\ k < (n1 + n2) ==> (BIT k(WCAT(w1,w2)) = BIT(k - n2)w1) Theorem BIT0 autoloading from theory `word_base` ... BIT0 = |- !b. BIT 0(WORD[b]) = b Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) Theorem PWORDLEN1 autoloading from theory `word_base` ... PWORDLEN1 = |- !x. PWORDLEN 1(WORD[x]) ACARRY_MSB = |- !n. !w1 w2 :: PWORDLEN n. !cin. ACARRY n w1 w2 cin = BIT n(NBWORD(SUC n)((BNVAL w1) + ((BNVAL w2) + (BV cin)))) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) ACARRY_WSEG = |- !n. !w1 w2 :: PWORDLEN n. !cin k m. k < m /\ m <= n ==> (ACARRY k(WSEG m 0 w1)(WSEG m 0 w2)cin = ACARRY k w1 w2 cin) ICARRY_WSEG = |- !n. !w1 w2 :: PWORDLEN n. !cin k m. k < m /\ m <= n ==> (ICARRY k(WSEG m 0 w1)(WSEG m 0 w2)cin = ICARRY k w1 w2 cin) ACARRY_ACARRY_WSEG = |- !n. !w1 w2 :: PWORDLEN n. !cin m k1 k2. k1 < m /\ k2 < n /\ (m + k2) <= n ==> (ACARRY k1(WSEG m k2 w1)(WSEG m k2 w2)(ACARRY k2 w1 w2 cin) = ACARRY(k1 + k2)w1 w2 cin) () : void File mk_bword_arith loaded () : void #rm -f word.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_word`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool autoload_all = - : (string -> void) Loading library arith ... Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. .Updating help search path ....................................................................................................................................................................................................................................................................................... Library arith loaded. () : void Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void ....() : void File ver_202 loaded () : void () : void Theory bword_bitop loaded Theory bword_num loaded Theory bword_arith loaded [(); (); ()] : void list () : void File mk_word loaded () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'load_library`res_quan`;;'\ 'load_theory `word`;;'\ 'compilet `word_convs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Loading library res_quan ... Updating search path Theory res_quan loaded ...............................................................................Updating help search path . Library res_quan loaded. () : void #Theory word loaded () : void word_CASES_TAC = - : (term -> tactic) word_INDUCT_TAC = - : tactic RESQ_WORDLEN_TAC = - : tactic BIT_CONV = - : conv WSEG_CONV = - : conv LESS_CONV = - : conv LESS_EQ_CONV = - : conv word_inst_thm = - : ((term # term) -> thm -> thm) WNOT_PWORDLEN = |- !n. !w :: PWORDLEN n. PWORDLEN n(WNOT w) WAND_PWORDLEN = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WAND w2) WOR_PWORDLEN = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WOR w2) WXOR_PWORDLEN = |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WXOR w2) pwordlen_bitop_funs = [(`WNOT`, |- !n. !w :: PWORDLEN n. PWORDLEN n(WNOT w)); (`WAND`, |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WAND w2)); (`WOR`, |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WOR w2)); (`WXOR`, |- !n. !w1 w2 :: PWORDLEN n. PWORDLEN n(w1 WXOR w2))] : (string # thm) list pwordlen_funs = [(`WORD`, -); (`WSEG`, -); (`WNOT`, -); (`WAND`, -); (`WOR`, -); (`WXOR`, -); (`WCAT`, -)] : (string # (term list -> term -> term list -> thm)) list check = - : (string -> term -> term) pick_fn = - : (string -> (string # *) list -> term -> *) PWORDLEN_CONV = - : (term list -> conv) PWORDLEN_bitop_CONV = - : conv WSEG_WSEG_CONV = - : (term -> conv) ((-), (-), -) : ((term list -> conv) # conv # (term -> conv)) PWORDLEN_CONV = - : (term list -> conv) PWORDLEN_bitop_CONV = - : conv WSEG_WSEG_CONV = - : (term -> conv) PWORDLEN_TAC = - : (term list -> tactic) Calling Lisp compiler File word_convs compiled () : void #===> library word rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/word' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `proof_rec`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool New constructors declared: Hypothesis : justification Assume : (term -> justification) Refl : (term -> justification) Subst : (((int # term) list # term # int) -> justification) BetaConv : (term -> justification) Abs : ((term # int) -> justification) InstType : (((type # type) list # int) -> justification) Disch : ((term # int) -> justification) Mp : ((int # int) -> justification) MkComb : ((int # int) -> justification) MkAbs : (int -> justification) Alpha : ((term # term) -> justification) AddAssum : ((term # int) -> justification) Sym : (int -> justification) Trans : ((int # int) -> justification) ImpTrans : ((int # int) -> justification) ApTerm : ((term # int) -> justification) ApThm : ((int # term) -> justification) EqMp : ((int # int) -> justification) EqImpRuleR : (int -> justification) EqImpRuleL : (int -> justification) Spec : ((term # int) -> justification) EqtIntro : (int -> justification) Gen : ((term # int) -> justification) EtaConv : (term -> justification) Ext : (int -> justification) Exists : (((term # term) # int) -> justification) Choose : (((term # int) # int) -> justification) ImpAntisymRule : ((int # int) -> justification) MkExists : (int -> justification) Subs : ((int list # int) -> justification) SubsOccs : (((int list # int) list # int) -> justification) SubstConv : (((int # term) list # term # term) -> justification) Conj : ((int # int) -> justification) Conjunct1 : (int -> justification) Conjunct2 : (int -> justification) Disj1 : ((int # term) -> justification) Disj2 : ((term # int) -> justification) DisjCases : ((int # int # int) -> justification) NotIntro : (int -> justification) NotElim : (int -> justification) Contr : ((term # int) -> justification) Ccontr : ((term # int) -> justification) Inst : (((term # term) list # int) -> justification) StoreDefinition : ((string # term) -> justification) Definition : ((string # string) -> justification) DefExistsRule : (term -> justification) NewAxiom : ((string # term) -> justification) Axiom : ((string # string) -> justification) Theorem : ((string # string) -> justification) NewConstant : ((string # type) -> justification) NewType : ((int # string) -> justification) NumConv : (term -> justification) New constructors declared: Line : ((int # thm # justification) -> line) MakeProof = - : (step list -> line list) output_strings = - : (string -> string list -> void) write_pair = - : (string -> ((string -> * -> **) # (string -> *** -> ****)) -> (* # ***) -> void) write_list = - : (string -> (string -> * -> **) -> * list -> void) write_type = - : (string -> type -> void) write_term = - : (string -> term -> void) write_thm = - : (string -> thm -> void) write_all_thm = - : (string -> thm -> void) write_int = - : (string -> int -> void) write_just = - : (string -> justification -> void) write_line = - : (string -> line -> void) write_tyconst = - : (string -> (int # string) -> void) write_sig = - : (string -> (string # type) -> void) write_env = - : (string -> void) write_thm_list = - : (string -> thm list -> void) ((-), (-), -) : ((string -> line -> void) # (string -> thm list -> void) # (string -> void)) write_line = - : (string -> line -> void) write_thm_list = - : (string -> thm list -> void) write_env = - : (string -> void) format_version = `(VERSION PRF FORMAT 1.0 EXTENDED) ` : string write_proof_add_to = - : (string -> string -> thm list -> line list -> void) write_proof_to = - : (string -> string -> thm list -> line list -> void) proof_file_name = `` : string proof_file_port = `` : string proof_name = `` : string proof_count = 0 : int current_goals = [] : thm list write_last_proof = - : (string -> thm list -> void) current_proof_file = - : (void -> string) current_proof = - : (void -> string) close_proof_file = - : (void -> void) new_proof_file = - : (string -> void) begin_proof = - : (string -> void) end_proof = - : (* -> void) sanitise = - : (string -> string) TAC_PROOF = - : ((goal # tactic) -> thm) PROVE = - : ((term # tactic) -> thm) prove = - : ((term # tactic) -> thm) prove_thm = - : ((string # term # tactic) -> thm) ((-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), (-), -) : ((string -> string -> thm list -> line list -> void) # (string -> string -> thm list -> line list -> void) # (string -> thm list -> void) # (void -> string) # (void -> string) # (string -> void) # (void -> void) # (string -> void) # (* -> void) # ((goal # tactic) -> thm) # ((term # tactic) -> thm) # ((term # tactic) -> thm) # ((string # term # tactic) -> thm)) write_proof_add_to = - : (string -> string -> thm list -> line list -> void) write_proof_to = - : (string -> string -> thm list -> line list -> void) write_last_proof = - : (string -> thm list -> void) current_proof = - : (void -> string) current_proof_file = - : (void -> string) new_proof_file = - : (string -> void) close_proof_file = - : (void -> void) begin_proof = - : (string -> void) end_proof = - : (* -> void) TAC_PROOF = - : ((goal # tactic) -> thm) PROVE = - : ((term # tactic) -> thm) prove = - : ((term # tactic) -> thm) prove_thm = - : ((string # term # tactic) -> thm) Calling Lisp compiler File proof_rec compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `dummy_funs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool new_proof_file = - : (string -> void) close_proof_file = - : (void -> void) begin_proof = - : (string -> void) end_proof = - : (void -> void) current_proof = - : (void -> string) current_proof_file = - : (void -> string) write_proof_add_to = - : (string -> string -> thm list -> * list -> void) write_proof_to = - : (string -> string -> thm list -> * list -> void) write_last_proof = - : (string -> thm list -> void) Calling Lisp compiler File dummy_funs compiled () : void #===> library record_proof rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/record_proof' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `general`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool FIRST_CHARS = [] : string list CHARS = [] : string list DEBUG = false : bool IGNORE = [] : (string # string) list USEFUL = [] : (string # string) list push = - : (* -> * list -> * list) pop = - : (* list -> (* # * list)) write_string = - : (string -> string -> void) read_char = - : (string -> string) close_file = - : (string -> void) open_file = - : (string -> string -> string) e_w_s = - : (string -> string -> string list -> string) e_w_s_ok = - : (string -> string -> string list -> string) determine_lst = - : (* -> * list -> * list -> bool) get_word2 = - : (string -> string list -> string -> string list -> (string # *) list -> (string # **) list -> (string # ***) list -> (string list # string)) get_word1 = - : (string -> string list -> string -> string list -> string list -> (string list # string)) complete_separator = - : (string -> string -> string list -> (string # string list) list -> (string # *) list -> (string # **) list -> (string # string)) get_word = - : (string -> string list -> string -> (string # string list) list -> string -> (string # *) list -> (string # **) list -> (string # string)) useful_stuff = - : (string -> string -> string -> string list -> (string # string)) ignore_stuff = - : (string -> string -> string -> string list -> string) read_input = - : (string -> string list -> string list -> (string # string list) list -> string -> (string # string) list -> (string # string) list -> string list) gnt = - : (string list -> string -> string -> (string # string list)) eat_terminal = - : (string -> string -> string list -> * -> (string # string list)) chop_off = - : (int -> * list -> * list -> (* list # * list)) debug_return = - : (string -> string -> void) do_return_1 = - : (* list -> ** -> string -> ** -> ** list -> ** -> (* # * list # ** # ** list)) do_return = - : (* list -> string -> string -> string -> string list -> string -> (* # * list # string # string list)) debug_enter = - : ((string # string # string) -> void) debug_on = - : (* -> bool) debug_off = - : (* -> bool) Calling Lisp compiler File general compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `parser`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void EXPECTED = [] : string list pg_failwith = - : (string -> string -> string -> *) escaped = - : (string -> string -> string) write_string = - : (string -> string -> void) read_char = - : (string -> string) split_filename = - : (string list -> string list -> bool -> (string # string)) close_file = - : (string -> void) bad_read = - : (string -> *) terminal_read_1 = - : (string -> string list) terminal_read = - : (* -> string) make_Makefile = - : (string -> string -> string -> void) make_makefile = - : (string -> void) open_file = - : (string -> string -> (string # string)) eat_white_space = - : (string -> string -> string) e_w_s = - : (string -> string -> string) e_w_s_ok = - : (string -> string -> string) write_comments = - : (string -> string -> string -> string -> string) get_word1 = - : (string -> string list -> string -> string -> string -> string -> (string list # string)) first_test = - : (string -> string -> bool) get_word = - : (string -> string -> string -> string -> string -> (string # string)) get_inits1 = - : (string -> string list -> string -> (string list # string)) get_inits = - : (string -> string -> string -> string) get_inits1_specials = - : (string -> string list -> string -> (string list # string)) get_inits_specials = - : (string -> string -> string -> string) separator = - : (string -> string) MK_word = - : (string -> string list) MK_start = - : (string -> string list) EOF = - : (string -> string) write_conditional = - : (string -> string list list) write_if = - : (string -> string -> string list list) finish_terminal = - : (string -> string -> * list) epsilon_start = - : (string -> string list list) get_terminal_2 = - : (string -> string -> string -> string list) is_EOF = - : (string -> string) get_terminal_1 = - : (string -> string -> string -> string -> * -> (string list list # string # string # bool)) get_terminal = - : (string -> string -> string -> string -> * -> (string list list # string # string # bool)) system_function_args = - : (string -> bool) prdn_errors_args = - : (string -> string -> void) tmp_var = - : (string -> int -> string) HOL_term = - : (string -> bool) top_or_middle = - : (string -> string list) get_args_prdn = - : (string -> * -> string -> string -> (string # string)) finish_arg = - : (string -> string -> string -> string list) get_argn1 = - : (string -> string -> string -> string -> string -> bool -> string list) get_arg_name = - : (string -> string -> string -> string -> bool -> (string # string)) add_new_calls = - : (* list -> string -> * list -> * list -> (* list # * list)) require_start = - : (string -> string -> string -> (string list # string)) need_to_use_pops = - : (int -> string list) add_EXPECTED = - : (string -> bool -> string list) pop_or_reg = - : (string -> string -> bool -> (string list # string # string # bool)) mk_lets = - : (string -> int -> string -> bool -> (string list # string # int # string # bool)) comma = - : (bool -> string -> string) failed_arg = - : (string -> bool) preprocess_args = - : (string -> string list -> string list -> string list -> string -> string -> int -> string -> string -> bool -> int -> bool -> (string list # string # int # string list # int # string # bool)) get_args_act = - : (string -> string -> string -> string list list -> int -> string -> string -> bool -> (string list list # string list # int # string # string # bool)) write_tabs = - : (int -> string -> void) then_if = - : (int -> string -> int) pop_EXPECTED = - : (* -> string) write_final = - : (string -> string list -> int -> string -> (int # string)) write_final_all = - : (string list list -> string -> int -> string -> void) eat_arrow = - : (string -> string -> string -> int -> string) unwind_parens = - : (int -> string list) finish_arm = - : (* list -> * list -> * -> * list -> * -> * list -> * list) new_letrefs = - : (string -> string -> string -> bool -> string list list) NT_letrefs = - : (string -> string -> string -> string list list) ACTION_letrefs = - : (string -> string -> string -> string list list) MK_failed = - : (bool -> * -> ** -> *** -> string list list) MK_return = - : (string -> bool -> string -> string list) system_function = - : (string -> bool) terminal_errors = - : (string -> string -> string -> void) prdn_errors = - : (string -> string -> void) action_errors = - : (string -> string -> void) final_trap = - : (bool -> * -> string list list) get_rest_of_prdn = - : (string -> string list list -> string list list -> string -> string -> int -> int -> bool -> string -> string -> bool -> string list list) process = - : (string -> string -> string -> string -> string list list) MK_lambda = - : (string -> string list list -> string list list) write_decs = - : (string -> string -> string -> void) make_main_wrapper = - : (string -> void) emit_firsts = - : (string -> string -> string -> void) emit_specials = - : (string -> string -> string -> void) token_failwith = - : (string -> *) make_tokeniser = - : (string -> bool -> bool -> void) decls_fail = - : (string -> *) decls_errors = - : (string -> bool -> bool -> (bool # bool)) make_productions = - : (string -> string -> string -> string -> bool -> bool -> void) get_ty = - : (string list -> bool -> string) parse = - : (* -> void) - : (* -> void) parse = - : (* -> void) Calling Lisp compiler File parser compiled () : void #===> library parser rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/parser' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `PP_printer/extents`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool max = - : (int list -> int) min = - : (int list -> int) change_assocl = - : ((* # **) list -> (* # **) list -> (* # **) list) Nat = - : (int -> nat) Int = - : (nat -> int) print_nat = - : (nat -> void) - : (nat -> void) get_margin = - : (void -> int) Calling Lisp compiler File PP_printer/extents compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'compilet `PP_printer/strings`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void substr = - : (int -> int -> string -> string) strlen = - : (string -> int) num_of_leading_chars = - : (string list -> string -> int) trim_leading_chars = - : (string list -> string -> string) trim_trailing_chars = - : (string list -> string -> string) trim_enclosing_chars = - : (string list -> string -> string) string_contains = - : (string -> string -> bool) strings_contain = - : (string list -> string -> bool) string_copies = - : (string -> int -> string) Calling Lisp compiler File PP_printer/strings compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'compilet `PP_printer/ptree`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void New constructors declared: Print_node : ((string # print_tree list) -> print_tree) print_tree_name = - : (print_tree -> string) print_tree_children = - : (print_tree -> print_tree list) Calling Lisp compiler File PP_printer/ptree compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'compilet `PP_printer/treematch`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void New constructors declared: No_address : address Address : (int list -> address) New constructors declared: Bound_name : ((string # address) -> metavar_binding) Bound_names : ((string # address) list -> metavar_binding) Bound_child : ((print_tree # address) -> metavar_binding) Bound_children : ((print_tree # address) list -> metavar_binding) type print_binding defined type print_test defined New constructors declared: Default : loop_limit Val : (nat -> loop_limit) New constructors declared: Const_name : ((string # child_metavar list) -> print_patt_tree) Var_name : ((string # child_metavar list) -> print_patt_tree) Wild_name : (child_metavar list -> print_patt_tree) Var_child : (string -> print_patt_tree) Wild_child : print_patt_tree Link_child : (((loop_limit # loop_limit) # string list) -> print_patt_tree) Print_label : ((string # print_patt_tree) -> print_patt_tree) Print_link : ((((loop_limit # loop_limit) # string list) # print_patt_tree) -> print_patt_tree) Print_loop : ((print_patt_tree # print_patt_tree) -> print_patt_tree) Var_children : (string -> child_metavar) Wild_children : child_metavar Patt_child : (print_patt_tree -> child_metavar) type print_pattern defined New constructors declared: No_link : print_loop_link Link : ((((loop_limit # loop_limit) # string list) # print_tree # int list) -> print_loop_link) lookup_metavar = - : (print_binding -> string -> metavar_binding) eq_metavar_bind = - : (metavar_binding -> metavar_binding -> bool) no_address_meta = - : (metavar_binding -> metavar_binding) replace = - : ((* # **) list -> (* # **) -> (* # **) list) replacel = - : ((* # **) list -> (* # **) list -> (* # **) list) print_merge = - : (print_binding -> print_binding -> print_binding) print_loop_merge = - : (print_binding -> print_binding -> print_binding) raise_binding = - : (print_binding -> print_binding) raise_bindings = - : (print_binding -> print_binding -> print_binding) correspond_bindings = - : (print_binding -> print_binding -> print_binding) raise_bindings_safe = - : (print_binding -> print_binding -> print_binding) extract_info_from_patt = - : (print_patt_tree -> ((string list # string list) # print_loop_link)) extract_info_from_child = - : (child_metavar -> ((string list # string list) # print_loop_link)) zero_loop_info = - : (print_patt_tree -> (print_binding # loop_limit)) new_addresses = - : (int list -> print_tree list -> (print_tree # int list) list) split_list = - : ((int # int) -> * list -> (* list # * list # * list)) print_tree_match' = - : (print_patt_tree -> (print_tree # int list) -> (print_binding # print_loop_link)) children_match = - : (child_metavar list -> (print_tree # int list) list -> (print_binding # print_loop_link)) print_tree_match = - : (print_patt_tree -> print_tree -> (print_binding # print_loop_link)) add_context = - : (string -> (string # int) list -> (string # int) list) print_pattern_match = - : (print_pattern -> string -> (string # int) list -> print_tree -> print_binding) ((-), -) : ((string -> (string # int) list -> (string # int) list) # (print_pattern -> string -> (string # int) list -> print_tree -> print_binding)) add_context = - : (string -> (string # int) list -> (string # int) list) print_pattern_match = - : (print_pattern -> string -> (string # int) list -> print_tree -> print_binding) Calling Lisp compiler File PP_printer/treematch compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'loadf `PP_printer/treematch`;;'\ 'compilet `PP_printer/boxes`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void .............................() : void New constructors declared: N_box : * print_box A_box : (((nat # string) # *) -> * print_box) L_box : (((nat # nat # * print_box # * print_box) # *) -> * print_box) C_box : ((((nat # nat # nat) # nat # (int # nat) # * print_box # * print_box) # *) -> * print_box) print_box_io = - : (* print_box -> int) print_box_width = - : (* print_box -> int) print_box_fo = - : (* print_box -> int) print_box_height = - : (* print_box -> int) print_box_sizes = - : (* print_box -> ((int # int # int) # int)) replace_box_label = - : (* -> * print_box -> * print_box) New constructors declared: Abs : (int -> print_indent) Inc : (int -> print_indent) New constructors declared: UB_H : (((int -> int -> * print_box) # (nat # (int -> int -> * print_box)) list) -> * unbuilt_box) UB_V : (((int -> int -> * print_box) # ((print_indent # nat) # (int -> int -> * print_box)) list) -> * unbuilt_box) UB_HV : (((int -> int -> * print_box) # ((nat # print_indent # nat) # (int -> int -> * print_box)) list) -> * unbuilt_box) UB_HoV : (((int -> int -> * print_box) # ((nat # print_indent # nat) # (int -> int -> * print_box)) list) -> * unbuilt_box) join_boxes = - : (int -> int -> * print_box -> * print_box -> * -> * print_box) join_H_boxes = - : (nat -> * print_box -> * print_box -> * -> * print_box) join_V_boxes = - : (int -> nat -> * print_box -> * print_box -> * -> * print_box) build_H_box = - : (int -> int -> * -> (int -> int -> * print_box) -> (nat # (int -> int -> * print_box)) list -> * print_box) build_V_box = - : (int -> int -> * -> (int -> int -> * print_box) -> ((print_indent # nat) # (int -> int -> * print_box)) list -> * print_box) build_HV_box = - : (int -> int -> * -> (int -> int -> * print_box) -> ((nat # print_indent # nat) # (int -> int -> * print_box)) list -> * print_box) build_HoV_box = - : (int -> int -> * -> (int -> int -> * print_box) -> ((nat # print_indent # nat) # (int -> int -> * print_box)) list -> * print_box) build_print_box = - : (int -> int -> * -> * unbuilt_box -> * print_box) - : (int -> int -> * -> * unbuilt_box -> * print_box) build_print_box = - : (int -> int -> * -> * unbuilt_box -> * print_box) Calling Lisp compiler File PP_printer/boxes compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'loadf `PP_printer/treematch`;;'\ 'loadf `PP_printer/boxes`;;'\ 'compilet `PP_printer/treetobox`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void .............................() : void ...................() : void type print_special defined type print_int_exp defined New constructors declared: H_box : ((nat # print_object) list -> print_box_spec) V_box : (((print_indent # nat) # print_object) list -> print_box_spec) HV_box : (((nat # print_indent # nat) # print_object) list -> print_box_spec) HoV_box : (((nat # print_indent # nat) # print_object) list -> print_box_spec) PF_empty : print_format PF : (print_box_spec -> print_format) PF_branch : ((print_test # print_format # print_format) -> print_format) PO_constant : (string -> print_object) PO_leaf : ((string # (string -> string)) -> print_object) PO_subcall : (((string # ((print_tree # address) list -> (print_tree # address) list)) # (string # print_int_exp) list) -> print_object) PO_context_subcall : ((string # (string # ((print_tree # address) list -> (print_tree # address) list)) # (string # print_int_exp) list) -> print_object) PO_format : (print_format -> print_object) PO_expand : (print_box_spec -> print_object) PF_H = - : ((nat # print_object) list -> print_format) PF_V = - : (((print_indent # nat) # print_object) list -> print_format) PF_HV = - : (((nat # print_indent # nat) # print_object) list -> print_format) PF_HoV = - : (((nat # print_indent # nat) # print_object) list -> print_format) type print_rule defined type print_rule_function defined print_special_fun = - : (string -> (string # int) list -> print_binding -> print_special list -> print_binding) print_rule_fun = - : (print_rule list -> print_rule_function) () : void then_try = - : (print_rule_function -> print_rule_function -> print_rule_function) raw_tree_rules = [((``, (Var_name(`n`, [Var_children `cl`; Patt_child(Var_child `c`)])), -), [], PF(HV_box[((0, (Abs 0), 0), PO_leaf(`n`, -)); ((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HoV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`cl`, -), [])); (0, PO_constant `,`)])); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `)`)])))])); ((``, (Var_name(`n`, [])), -), [], PF(H_box[(0, PO_leaf(`n`, -))]))] : print_rule list raw_tree_rules_fun = - : print_rule_function expand_binding = - : ((* # metavar_binding) list -> (* # metavar_binding) list list) extract_expanded_from_spec = - : (print_box_spec -> string list) extract_expanded_from_object = - : (print_object -> string list) print_tree_to_box = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> address print_box) print_box_spec_fun = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_binding -> print_binding -> bool -> print_box_spec -> address print_box) print_format_fun = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_binding -> print_format -> address print_box) print_object_fun = - : (print_rule_function -> string -> (string # int) list -> print_binding -> print_binding -> bool -> print_object -> (int -> int -> address print_box) list) - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> address print_box) print_tree_to_box = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> address print_box) Calling Lisp compiler File PP_printer/treetobox compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'loadf `PP_printer/treematch`;;'\ 'loadf `PP_printer/boxes`;;'\ 'loadf `PP_printer/treetobox`;;'\ 'compilet `PP_printer/boxtostring`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void .............................() : void ...................() : void .................() : void join_strings = - : ((string # int) -> (string # int) -> (string # int)) merge_string_lists = - : ((string # int # int) list -> (string # int # int) list -> (string # int # int) list) stringify_print_box = - : (int -> int -> * print_box -> (string # int # int) list) fill_in_strings = - : (bool -> int -> int -> (string # int # int) list -> string list) print_box_to_strings = - : (bool -> int -> * print_box -> string list) - : (bool -> int -> * print_box -> string list) print_box_to_strings = - : (bool -> int -> * print_box -> string list) Calling Lisp compiler File PP_printer/boxtostring compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'loadf `PP_printer/treematch`;;'\ 'loadf `PP_printer/boxes`;;'\ 'loadf `PP_printer/treetobox`;;'\ 'loadf `PP_printer/boxtostring`;;'\ 'compilet `PP_printer/print`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void .............................() : void ...................() : void .................() : void .......() : void display_strings = - : (string list -> void) output_strings = - : (string -> string list -> void) insert_strings = - : (string list -> void) pretty_print = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) pp_write = - : (string -> int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) pp = - : (print_rule_function -> string -> (string # int) list -> print_tree -> void) ((-), (-), -) : ((int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) # (string -> int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) # (print_rule_function -> string -> (string # int) list -> print_tree -> void)) pretty_print = - : (int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) pp_write = - : (string -> int -> int -> print_rule_function -> string -> (string # int) list -> print_tree -> void) pp = - : (print_rule_function -> string -> (string # int) list -> print_tree -> void) Calling Lisp compiler File PP_printer/print compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/extents`;;'\ 'loadf `PP_printer/strings`;;'\ 'loadf `PP_printer/ptree`;;'\ 'loadf `PP_printer/treematch`;;'\ 'loadf `PP_printer/boxes`;;'\ 'loadf `PP_printer/treetobox`;;'\ 'loadf `PP_printer/boxtostring`;;'\ 'loadf `PP_printer/print`;;'\ 'compilet `PP_printer/utils`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ......() : void .........() : void ...() : void .............................() : void ...................() : void .................() : void .......() : void ........() : void () : void is_a_member_of = - : (string -> string list -> print_test) bound_number = - : (string -> print_int_exp) bound_name = - : (string -> (string # int) list -> print_binding -> string) bound_names = - : (string -> (string # int) list -> print_binding -> string list) bound_child = - : (string -> (string # int) list -> print_binding -> print_tree) bound_children = - : (string -> (string # int) list -> print_binding -> print_tree list) bound_context = - : ((string # int) list -> print_binding -> string) apply0 = - : (* -> (string # int) list -> print_binding -> *) apply1 = - : ((* -> **) -> ((string # int) list -> print_binding -> *) -> (string # int) list -> print_binding -> **) apply2 = - : ((* -> ** -> ***) -> ((string # int) list -> print_binding -> *) -> ((string # int) list -> print_binding -> **) -> (string # int) list -> print_binding -> ***) new_name = - : ((string -> string) -> string -> (string # int) list -> print_binding -> metavar_binding) new_names = - : (((string # address) list -> (string # address) list) -> string -> (string # int) list -> print_binding -> metavar_binding) new_child = - : ((print_tree -> print_tree) -> string -> (string # int) list -> print_binding -> metavar_binding) new_children = - : (((print_tree # address) list -> (print_tree # address) list) -> string -> (string # int) list -> print_binding -> metavar_binding) Calling Lisp compiler File PP_printer/utils compiled () : void #(cd PP_parser; cp pp_lang1.build pp_lang1_pp.ml) (cd PP_parser; cp pp_lang2.build pp_lang2_pp.ml) echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'compilet `PP_parser/pp_lang1_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void # pp_lang1_rules = [] : print_rule list pp_lang1_rules_fun = - : print_rule_function Calling Lisp compiler File PP_parser/pp_lang1_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'compilet `PP_parser/pp_lang2_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void pp_lang2_rules = [] : print_rule list pp_lang2_rules_fun = - : print_rule_function Calling Lisp compiler File PP_parser/pp_lang2_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'compilet `PP_parser/lex`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void copy_chars = - : (int -> (string -> string) -> string -> (string -> void) -> void) New constructors declared: Lex_spec : (string -> lex_symb) Lex_num : (string -> lex_symb) Lex_id : (string -> lex_symb) Lex_block : (((string # string) # string list) -> lex_symb) is_lex_char = - : ((string # string # string) -> bool) is_lex_ucase = - : (string -> bool) is_lex_lcase = - : (string -> bool) is_lex_letter = - : (string -> bool) is_lex_digit = - : (string -> bool) is_lex_underscore = - : (string -> bool) is_lex_eof = - : (string -> bool) is_lex_eol = - : (string -> bool) is_lex_space = - : (string -> bool) lex_error = - : ((string -> string) -> string -> string -> string -> *) read_char = - : ((* -> string) -> * -> string) read_number = - : ((* -> string) -> * -> string -> (lex_symb # string)) read_identifier = - : ((string -> string) -> string -> string -> (lex_symb # string)) read_block = - : ((string -> string) -> string -> (string # string) -> string -> (lex_symb # string)) read_special = - : ((string -> string) -> string -> string list -> string -> (lex_symb # string)) read_symb = - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) read_symb = - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) Calling Lisp compiler File PP_parser/lex compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'compilet `PP_parser/syntax`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void PP_quotes = [(`'`, `'`); (`"`, `"`); (`{`, `}`); (`#`, `#`); (`%`, `%`)] : (string # string) list PP_keywords = [`prettyprinter`; `rules`; `declarations`; `abbreviations`; `with`; `end`; `where`; `if`; `then`; `else`; `h`; `v`; `hv`; `hov`] : string list PP_specials = [`+`; `-`; `*`; `**`; `***`; `,`; `;`; `:`; `::`; `=`; `:=`; `->`; `..`; `(`; `)`; `**[`; `[`; `]`; `<`; `>`; `<<`; `>>`; `|`] : string list syntax_error = - : ((string -> string) -> string -> string -> string -> lex_symb -> *) general_error = - : ((string -> string) -> string -> string -> string -> string -> *) read_PP_symb = - : ((string -> string) -> string -> string -> (lex_symb # string)) read_PP_number = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_integer = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_string = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_terminal = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_ML_function = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_identifier = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_name_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_children_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_metavar_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_min = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_max = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop_range = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop_link = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_label = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_node_name = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_pattern_tree = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_test = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_pattern = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_transformation = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_p_special = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_p_special_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_int_expression = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_assignment = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_assignments = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_fun_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_context_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_leaf_or_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_indent = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_box_spec = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_expand = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_format = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rule = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rule_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rules = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_binding = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_binding_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_declarations = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_abbreviations = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_body = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP = - : ((string -> string) -> string -> print_tree) - : ((string -> string) -> string -> print_tree) read_PP = - : ((string -> string) -> string -> print_tree) Calling Lisp compiler File PP_parser/syntax compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'compilet `PP_parser/convert`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void construction_error = - : (print_tree -> string -> *) indirect_string = - : (string -> string) convert_NUM = - : ((print_tree # *) -> (print_tree # ** list)) convert_NEG = - : ((print_tree # *) -> (print_tree # ** list)) convert_ML_FUN = - : ((print_tree # *) -> (print_tree # ** list)) convert_ID_to_VAR = - : ((print_tree # *) -> (print_tree # ** list)) convert_ID_to_TOKCONST = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR_to_TOKCONST = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR_LIST = - : ((print_tree # *) -> (print_tree # ** list)) convert_MIN = - : ((print_tree # *) -> (print_tree # ** list)) convert_MAX = - : ((print_tree # *) -> (print_tree # ** list)) convert_LOOP_RANGE = - : ((print_tree # *) -> (print_tree # ** list)) convert_LOOP_LINK = - : ((print_tree # *) -> (print_tree # ** list)) convert_LABEL = - : ((print_tree # *) -> (print_tree # ** list)) convert_NODE_NAME = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_CHILD = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_CHILD_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_PATT_TREE = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_LOOP = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_STRING = - : ((print_tree # *) -> (print_tree # ** list)) convert_TEST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_PATTERN = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_TRANSFORM = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_P_SPECIAL = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_P_SPECIAL_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_INT_EXP = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_ASSIGN = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_ASSIGNMENTS = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_F_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_C_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_LEAF_OR_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_TERMINAL = - : ((print_tree # *) -> (print_tree # ** list)) convert_INC = - : ((print_tree # *) -> (print_tree # ** list)) convert_H_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_V_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_HV_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_HOV_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_BOX = - : ((print_tree # *) -> (print_tree # ** list)) convert_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_H_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_V_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HV_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HOV_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_H_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_V_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HV_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HOV_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_BOX_SPEC = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_EXPAND = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_FORMAT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULE = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULE_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULES = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_BINDING = - : ((print_tree # *) -> (print_tree # ** list)) convert_BINDING_LIST_to_LIST = - : ((print_tree # *) -> (print_tree # ** list)) convert_BINDING_LIST_to_LETREC = - : ((print_tree # *) -> (print_tree # ** list)) convert_DECLARS = - : ((print_tree # *) -> (print_tree # ** list)) convert_ABBREVS = - : ((print_tree # *) -> (print_tree # (string # print_tree) list)) convert_BODY = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_PP = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_PP = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) Calling Lisp compiler File PP_parser/convert compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'loadf `PP_parser/convert`;;'\ 'compilet `PP_parser/generate`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void .................................................() : void PP_to_ML_rules = [((`name`, (Var_name(`n`, [])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`INTCONST`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`TOKCONST`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_constant ```); (0, PO_leaf(`n`, -)); (0, PO_constant ```)])); ((``, (Const_name(`VAR`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`CON`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`CON0`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`UNOP`, [Patt_child(Var_name(`n`, [])); Patt_child(Var_child `c`)])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`n`, -)); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`APPN`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((1, (Abs 1), 0), PO_subcall((`c1`, -), [])); ((1, (Abs 1), 0), PO_subcall((`c2`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`ABSTR`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(H_box[(0, PO_constant `(\`); (0, PO_format(PF(HV_box[((1, (Abs 1), 0), PO_format(PF(H_box[(0, PO_subcall((`c1`, -), [])); (0, PO_constant `.`)]))); ((1, (Abs 1), 0), PO_subcall((`c2`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`LIST`, [Var_children `cl`; Patt_child(Var_child `c`)])), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_format(PF(HoV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`cl`, -), [])); (0, PO_constant `;`)])); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `]`)])); ((``, (Const_name(`LIST`, [])), -), [], PF(H_box[(0, PO_constant `[]`)])); ((``, (Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `cl`); Patt_child(Link_child(((Val 1), Default), []))])), Var_child `c`)), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`cl`, -), [])); (0, PO_constant `,`)])); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`LETREC`, [Patt_child(Const_name(`DUPL`, [Patt_child(Var_child `var1`); Patt_child(Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `varl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `varl`))])); Patt_child(Const_name(`DUPL`, [Patt_child(Var_child `body1`); Patt_child(Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `bodyl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `bodyl`))]))])), -), [], PF(V_box[(((Abs 0), 0), PO_format(PF(HV_box[((1, (Inc 1), 0), PO_constant `letrec`); ((1, (Inc 1), 0), PO_format(PF(H_box[(1, PO_subcall((`var1`, -), [])); (1, PO_constant `=`)]))); ((1, (Inc 1), 0), PO_subcall((`body1`, -), []))]))); (((Abs 0), 0), PO_expand(HV_box[((1, (Inc 1), 0), PO_constant `and`); ((1, (Inc 1), 0), PO_expand(H_box[(1, PO_subcall((`varl`, -), [])); (1, PO_constant `=`)])); ((1, (Inc 1), 0), PO_subcall((`bodyl`, -), []))]))])); ((``, (Const_name(`LETREC`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(HV_box[((1, (Inc 1), 0), PO_constant `letrec`); ((1, (Inc 1), 0), PO_format(PF(H_box[(1, PO_subcall((`c1`, -), [])); (1, PO_constant `=`)]))); ((1, (Inc 1), 0), PO_subcall((`c2`, -), []))])); ((``, (Const_name(`ML_FUN`, [Var_children `cl`])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(V_box[(((Abs 0), 0), PO_context_subcall(`name`, (`cl`, -), []))]))); (0, PO_constant `)`)]))] : print_rule list PP_to_ML_rules_fun = - : print_rule_function write_strings = - : (((* # string) -> **) -> * -> string list -> void) generate_rule = - : (print_tree -> string list) write_rule = - : (((* # string) -> **) -> * -> print_tree -> void) write_rules = - : (((* # string) -> **) -> * -> print_tree list -> void) generate_declarations = - : (print_tree -> string list) write_declarations = - : (((* # string) -> **) -> * -> print_tree -> void) generate_head = - : (string -> string list) write_head = - : (((* # string) -> **) -> * -> string -> void) generate_tail = - : (string -> string list) write_tail = - : (((* # string) -> **) -> * -> string -> void) generate_ML = - : (((string # string) -> void) -> string -> print_tree -> void) - : (((string # string) -> void) -> string -> print_tree -> void) generate_ML = - : (((string # string) -> void) -> string -> print_tree -> void) Calling Lisp compiler File PP_parser/generate compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'loadf `PP_parser/convert`;;'\ 'loadf `PP_parser/generate`;;'\ 'compilet `PP_parser/PP_to_ML`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void .................................................() : void ...............() : void PP_to_ML = - : (bool -> string -> string -> void) Calling Lisp compiler File PP_parser/PP_to_ML compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'loadf `PP_parser/convert`;;'\ 'loadf `PP_parser/generate`;;'\ 'loadf `PP_parser/PP_to_ML`;;'\ 'PP_to_ML false `PP_parser/pp_lang1` ``;;'\ 'PP_to_ML false `PP_parser/pp_lang2` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void .................................................() : void ...............() : void .() : void () : void () : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'compilet `PP_parser/pp_lang1_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void # pp_lang1_rules = [((``, (Const_name(`NUM`, [Patt_child(Var_name(`num`, []))])), -), [], PF(H_box[(0, PO_leaf(`num`, -))])); ((``, (Const_name(`NEG`, [Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_constant `-`); (0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`STRING`, [Patt_child(Var_name(`string`, []))])), -), [], PF(H_box[(0, PO_constant `'`); (0, PO_leaf(`string`, -)); (0, PO_constant `'`)])); ((``, (Const_name(`TERMINAL`, [Patt_child(Var_name(`string`, []))])), -), [], PF(H_box[(0, PO_constant `"`); (0, PO_leaf(`string`, -)); (0, PO_constant `"`)])); ((``, (Const_name(`ML_FUN`, [Var_children `strings`])), -), [], PF(H_box[(0, PO_constant `{`); (0, PO_format(PF(V_box[(((Abs 0), 0), PO_subcall((`strings`, -), []))]))); (0, PO_constant `}`)])); ((``, (Const_name(`ID`, [Patt_child(Var_name(`id`, []))])), -), [], PF(H_box[(0, PO_leaf(`id`, -))])); ((``, (Const_name(`NAME_META`, [Var_children `id`])), -), [], PF(H_box[(0, PO_constant `***`); (0, PO_subcall((`id`, -), []))])); ((``, (Const_name(`CHILD_META`, [Var_children `id`])), -), [], PF(H_box[(0, PO_constant `*`); (0, PO_subcall((`id`, -), []))])); ((``, (Const_name(`CHILDREN_META`, [Var_children `id`])), -), [], PF(H_box[(0, PO_constant `**`); (0, PO_subcall((`id`, -), []))])); ((``, (Print_loop((Const_name(`METAVAR_LIST`, [Patt_child(Var_child `metavars`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`METAVAR_LIST`, [Patt_child(Var_child `metavar`)]))), -), [], PF(HV_box[((0, (Abs 3), 0), PO_expand(H_box[(0, PO_subcall((`metavars`, -), [])); (0, PO_constant `;`)])); ((0, (Abs 3), 0), PO_subcall((`metavar`, -), []))])); ((``, (Const_name(`MIN`, [Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`MAX`, [Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`LOOP_RANGE`, [Patt_child(Const_name(`MIN`, [Patt_child(Var_child `num`)]))])), -), [], PF(H_box[(0, PO_subcall((`num`, -), [])); (0, PO_constant `..`)])); ((``, (Const_name(`LOOP_RANGE`, [Patt_child(Const_name(`MAX`, [Patt_child(Var_child `num`)]))])), -), [], PF(H_box[(0, PO_constant `..`); (0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`LOOP_RANGE`, [Patt_child(Var_child `min`); Patt_child(Var_child `max`)])), -), [], PF(H_box[(0, PO_subcall((`min`, -), [])); (0, PO_constant `..`); (0, PO_subcall((`max`, -), []))])); ((``, (Const_name(`LOOP_LINK`, [Patt_child(Var_child `loop_range`); Patt_child(Var_child `metavar_list`)])), -), [], PF(H_box[(0, PO_constant `<`); (0, PO_subcall((`loop_range`, -), [])); (0, PO_constant `:`); (1, PO_subcall((`metavar_list`, -), [])); (0, PO_constant `>`)])); ((``, (Const_name(`LOOP_LINK`, [Var_children `metavar_list`])), -), [], PF(H_box[(0, PO_constant `<`); (0, PO_subcall((`metavar_list`, -), [])); (0, PO_constant `>`)])); ((``, (Const_name(`LABEL`, [Patt_child(Var_child `child_meta`)])), -), [], PF(H_box[(0, PO_constant `|`); (0, PO_subcall((`child_meta`, -), [])); (0, PO_constant `|`)])); ((``, (Const_name(`NODE_NAME`, [Patt_child(Var_child `node_name`)])), -), [], PF(H_box[(0, PO_subcall((`node_name`, -), []))])); ((``, (Const_name(`CHILD`, [Patt_child(Var_child `child`)])), -), [], PF(H_box[(0, PO_subcall((`child`, -), []))])); ((``, (Print_loop((Const_name(`CHILD_LIST`, [Patt_child(Var_child `children`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`CHILD_LIST`, [Patt_child(Var_child `child`)]))), -), [], PF(HV_box[((0, (Abs 3), 0), PO_expand(H_box[(0, PO_subcall((`children`, -), [])); (0, PO_constant `,`)])); ((0, (Abs 3), 0), PO_subcall((`child`, -), []))])); ((``, (Const_name(`PATT_TREE`, [Patt_child(Const_name(`NODE_NAME`, [Patt_child(Var_child `node_name`)])); Patt_child(Var_child `child_list`)])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_subcall((`node_name`, -), [])); ((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `(`); (0, PO_subcall((`child_list`, -), [])); (0, PO_constant `)`)])))])); ((``, (Const_name(`PATT_TREE`, [Patt_child(Const_name(`NODE_NAME`, [Patt_child(Var_child `node_name`)]))])), -), [], PF(H_box[(0, PO_subcall((`node_name`, -), [])); (0, PO_constant `()`)])); ((``, (Const_name(`PATT_TREE`, [Var_children `x`])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_subcall((`x`, -), []))])); ((``, (Const_name(`LOOP`, [Patt_child(Var_child `patt_tree`)])), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_subcall((`patt_tree`, -), [])); (0, PO_constant `]`)])); ((``, (Const_name(`TEST`, [Patt_child(Var_child `test`)])), -), [], PF(H_box[(0, PO_subcall((`test`, -), []))])); ((``, (Const_name(`PATTERN`, [Patt_child(Var_child `string`); Patt_child(Var_child `patt_tree`); Var_children `test`])), -), [], PF(H_box[(0, PO_subcall((`string`, -), [])); (0, PO_constant `::`); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_subcall((`patt_tree`, -), [])); ((1, (Abs 3), 0), PO_expand(HV_box[((1, (Abs 3), 0), PO_constant `where`); ((1, (Abs 3), 0), PO_subcall((`test`, -), []))]))])))])); ((``, (Const_name(`TRANSFORM`, [Patt_child(Var_child `transform`)])), -), [], PF(H_box[(0, PO_subcall((`transform`, -), []))])); ((``, (Const_name(`P_SPECIAL`, [Patt_child(Var_child `metavar`); Patt_child(Var_child `transform`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`metavar`, -), [])); (1, PO_constant `=`)]))); ((1, (Abs 3), 0), PO_subcall((`transform`, -), []))])); ((``, (Print_loop((Const_name(`P_SPECIAL_LIST`, [Patt_child(Var_child `p_specials`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`P_SPECIAL_LIST`, [Patt_child(Var_child `p_special`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`p_specials`, -), [])); (0, PO_constant `;`)])); ((1, (Abs 0), 0), PO_subcall((`p_special`, -), []))]))] : print_rule list pp_lang1_rules_fun = - : print_rule_function Calling Lisp compiler File PP_parser/pp_lang1_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'compilet `PP_parser/pp_lang2_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void pp_lang2_rules = [((``, (Const_name(`INT_EXP`, [Patt_child(Var_child `int_exp`)])), -), [], PF(H_box[(0, PO_subcall((`int_exp`, -), []))])); ((``, (Const_name(`ASSIGN`, [Patt_child(Var_child `id`); Patt_child(Var_child `exp`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`id`, -), [])); (1, PO_constant `:=`)]))); ((1, (Abs 3), 0), PO_subcall((`exp`, -), []))])); ((``, (Print_loop((Const_name(`ASSIGNMENTS`, [Patt_child(Var_child `assigns`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`ASSIGNMENTS`, [Patt_child(Var_child `assign`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`assigns`, -), [])); (0, PO_constant `;`)])); ((1, (Abs 0), 0), PO_subcall((`assign`, -), []))])); ((``, (Const_name(`F_SUBCALL`, [Patt_child(Var_child `child`)])), -), [], PF(H_box[(0, PO_subcall((`child`, -), []))])); ((``, (Const_name(`F_SUBCALL`, [Patt_child(Var_child `transform`); Patt_child(Var_child `metavar`)])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_subcall((`transform`, -), [])); ((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `(`); (0, PO_subcall((`metavar`, -), [])); (0, PO_constant `)`)])))])); ((``, (Const_name(`C_SUBCALL`, [Patt_child(Var_child `f_subcall`)])), -), [], PF(H_box[(0, PO_subcall((`f_subcall`, -), []))])); ((``, (Const_name(`C_SUBCALL`, [Patt_child(Var_child `string`); Patt_child(Var_child `f_subcall`)])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_subcall((`string`, -), [])); (0, PO_constant `::`)]))); ((0, (Abs 3), 0), PO_subcall((`f_subcall`, -), []))])); ((``, (Const_name(`LEAF_OR_SUBCALL`, [Patt_child(Var_child `c_subcall`); Var_children `assigns`])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_subcall((`c_subcall`, -), [])); ((1, (Abs 3), 0), PO_expand(V_box[(((Abs 0), 0), PO_constant `with`); (((Abs 3), 0), PO_subcall((`assigns`, -), [])); (((Abs 0), 0), PO_constant `end with`)]))])); ((``, (Const_name(`INC`, [Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_constant `+`); (0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`H_PARAMS`, [Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`V_PARAMS`, [Patt_child(Var_child `indent`); Patt_child(Var_child `num`)])), -), [], PF(H_box[(0, PO_subcall((`indent`, -), [])); (0, PO_constant `,`); (0, PO_subcall((`num`, -), []))])); ((``, (Const_name(`HV_PARAMS`, [Patt_child(Var_child `num1`); Patt_child(Var_child `indent`); Patt_child(Var_child `num2`)])), -), [], PF(H_box[(0, PO_subcall((`num1`, -), [])); (0, PO_constant `,`); (0, PO_subcall((`indent`, -), [])); (0, PO_constant `,`); (0, PO_subcall((`num2`, -), []))])); ((``, (Const_name(`HOV_PARAMS`, [Patt_child(Var_child `num1`); Patt_child(Var_child `indent`); Patt_child(Var_child `num2`)])), -), [], PF(H_box[(0, PO_subcall((`num1`, -), [])); (0, PO_constant `,`); (0, PO_subcall((`indent`, -), [])); (0, PO_constant `,`); (0, PO_subcall((`num2`, -), []))])); ((``, (Const_name(`H_BOX`, [Patt_child(Var_child `h_params`)])), -), [], PF(H_box[(1, PO_constant `h`); (1, PO_subcall((`h_params`, -), []))])); ((``, (Const_name(`V_BOX`, [Patt_child(Var_child `v_params`)])), -), [], PF(H_box[(1, PO_constant `v`); (1, PO_subcall((`v_params`, -), []))])); ((``, (Const_name(`HV_BOX`, [Patt_child(Var_child `hv_params`)])), -), [], PF(H_box[(1, PO_constant `hv`); (1, PO_subcall((`hv_params`, -), []))])); ((``, (Const_name(`HOV_BOX`, [Patt_child(Var_child `hov_params`)])), -), [], PF(H_box[(1, PO_constant `hov`); (1, PO_subcall((`hov_params`, -), []))])); ((``, (Const_name(`OBJECT`, [Patt_child(Var_child `object`)])), -), [], PF(H_box[(0, PO_subcall((`object`, -), []))])); ((``, (Const_name(`H_OBJECT`, [Var_children `h_params`; Patt_child(Var_child `object`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_expand(H_box[(0, PO_constant `<`); (0, PO_subcall((`h_params`, -), [])); (0, PO_constant `>`)])); ((1, (Abs 3), 0), PO_subcall((`object`, -), []))])); ((``, (Const_name(`V_OBJECT`, [Var_children `v_params`; Patt_child(Var_child `object`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_expand(H_box[(0, PO_constant `<`); (0, PO_subcall((`v_params`, -), [])); (0, PO_constant `>`)])); ((1, (Abs 3), 0), PO_subcall((`object`, -), []))])); ((``, (Const_name(`HV_OBJECT`, [Var_children `hv_params`; Patt_child(Var_child `object`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_expand(H_box[(0, PO_constant `<`); (0, PO_subcall((`hv_params`, -), [])); (0, PO_constant `>`)])); ((1, (Abs 3), 0), PO_subcall((`object`, -), []))])); ((``, (Const_name(`HOV_OBJECT`, [Var_children `hov_params`; Patt_child(Var_child `object`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_expand(H_box[(0, PO_constant `<`); (0, PO_subcall((`hov_params`, -), [])); (0, PO_constant `>`)])); ((1, (Abs 3), 0), PO_subcall((`object`, -), []))])); ((``, (Print_loop((Const_name(`H_OBJECT_LIST`, [Patt_child(Var_child `h_objects`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`H_OBJECT_LIST`, [Patt_child(Var_child `h_object`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_subcall((`h_objects`, -), [])); ((1, (Abs 0), 0), PO_subcall((`h_object`, -), []))])); ((``, (Print_loop((Const_name(`V_OBJECT_LIST`, [Patt_child(Var_child `v_objects`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`V_OBJECT_LIST`, [Patt_child(Var_child `v_object`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_subcall((`v_objects`, -), [])); ((1, (Abs 0), 0), PO_subcall((`v_object`, -), []))])); ((``, (Print_loop((Const_name(`HV_OBJECT_LIST`, [Patt_child(Var_child `hv_objects`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`HV_OBJECT_LIST`, [Patt_child(Var_child `hv_object`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_subcall((`hv_objects`, -), [])); ((1, (Abs 0), 0), PO_subcall((`hv_object`, -), []))])); ((``, (Print_loop((Const_name(`HOV_OBJECT_LIST`, [Patt_child(Var_child `hov_objects`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`HOV_OBJECT_LIST`, [Patt_child(Var_child `hov_object`)]))), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_subcall((`hov_objects`, -), [])); ((1, (Abs 0), 0), PO_subcall((`hov_object`, -), []))])); ((``, (Const_name(`BOX_SPEC`, [Patt_child(Var_child `box`); Patt_child(Var_child `object_list`)])), -), [], PF(H_box[(0, PO_constant `<`); (0, PO_subcall((`box`, -), [])); (0, PO_constant `>`); (1, PO_subcall((`object_list`, -), []))])); ((``, (Const_name(`EXPAND`, [Patt_child(Var_child `box_spec`)])), -), [], PF(H_box[(0, PO_constant `**[`); (0, PO_subcall((`box_spec`, -), [])); (0, PO_constant `]`)])); ((``, (Const_name(`FORMAT`, [])), -), [], PF(H_box[(0, PO_constant `[]`)])); ((``, (Const_name(`FORMAT`, [Patt_child(Var_child `box_spec`)])), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_subcall((`box_spec`, -), [])); (0, PO_constant `]`)])); ((``, (Const_name(`FORMAT`, [Patt_child(Var_child `test`); Patt_child(Var_child `format1`); Patt_child(Var_child `format2`)])), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `if`); (1, PO_subcall((`test`, -), []))]))); ((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `then`); (1, PO_subcall((`format1`, -), []))]))); ((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `else`); (1, PO_subcall((`format2`, -), []))])))])); ((``, (Const_name(`RULE`, [Patt_child(Const_name(`PATTERN`, [Patt_child(Var_child `string`); Patt_child(Var_child `patt_tree`); Var_children `test`])); Var_children `p_specials`; Patt_child(Var_child `format`)])), -), [], PF(H_box[(0, PO_subcall((`string`, -), [])); (0, PO_constant `::`); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_subcall((`patt_tree`, -), [])); ((1, (Abs 3), 0), PO_expand(HV_box[((1, (Abs 3), 0), PO_constant `where`); ((1, (Abs 3), 0), PO_subcall((`test`, -), []))]))]))); (1, PO_constant `->`)]))); ((1, (Abs 0), 0), PO_expand(H_box[(1, PO_constant `<<`); (1, PO_subcall((`p_specials`, -), [])); (1, PO_constant `>>`)])); ((1, (Abs 0), 0), PO_subcall((`format`, -), []))])))])); ((``, (Print_loop((Const_name(`RULE_LIST`, [Patt_child(Var_child `rules`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`RULE_LIST`, [Patt_child(Var_child `rule`)]))), -), [], PF(V_box[(((Abs 0), 1), PO_expand(H_box[(0, PO_subcall((`rules`, -), [])); (0, PO_constant `;`)])); (((Abs 0), 1), PO_format(PF(H_box[(0, PO_subcall((`rule`, -), [])); (0, PO_constant `;`)])))])); ((``, (Const_name(`RULES`, [Patt_child(Var_child `rule_list`)])), -), [], PF(V_box[(((Abs 3), 0), PO_constant `rules`); (((Abs 3), 0), PO_subcall((`rule_list`, -), [])); (((Abs 0), 1), PO_constant `end rules`)])); ((``, (Const_name(`BINDING`, [Patt_child(Var_child `id`); Patt_child(Var_child `ml_fun`)])), -), [], PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`id`, -), [])); (1, PO_constant `=`)]))); ((1, (Abs 3), 0), PO_subcall((`ml_fun`, -), []))])); ((``, (Print_loop((Const_name(`BINDING_LIST`, [Patt_child(Var_child `bindings`); Patt_child(Link_child(((Default), Default), []))])), Const_name(`BINDING_LIST`, [Patt_child(Var_child `binding`)]))), -), [], PF(V_box[(((Abs 0), 1), PO_expand(H_box[(0, PO_subcall((`bindings`, -), [])); (0, PO_constant `;`)])); (((Abs 0), 1), PO_format(PF(H_box[(0, PO_subcall((`binding`, -), [])); (0, PO_constant `;`)])))])); ((``, (Const_name(`DECLARS`, [Patt_child(Var_child `binding_list`)])), -), [], PF(V_box[(((Abs 3), 0), PO_constant `declarations`); (((Abs 3), 0), PO_subcall((`binding_list`, -), [])); (((Abs 0), 1), PO_constant `end declarations`)])); ((``, (Const_name(`ABBREVS`, [Patt_child(Var_child `binding_list`)])), -), [], PF(V_box[(((Abs 3), 0), PO_constant `abbreviations`); (((Abs 3), 0), PO_subcall((`binding_list`, -), [])); (((Abs 0), 1), PO_constant `end abbreviations`)])); ((``, (Const_name(`BODY`, [Var_children `x`])), -), [], PF(V_box[(((Abs 0), 2), PO_subcall((`x`, -), []))])); ((``, (Const_name(`PP`, [Patt_child(Var_child `id`); Patt_child(Var_child `body`)])), -), [], PF(V_box[(((Abs 0), 1), PO_format(PF(H_box[(1, PO_constant `prettyprinter`); (1, PO_subcall((`id`, -), [])); (1, PO_constant `=`)]))); (((Abs 0), 1), PO_subcall((`body`, -), [])); (((Abs 0), 2), PO_constant `end prettyprinter`)]))] : print_rule list pp_lang2_rules_fun = - : print_rule_function Calling Lisp compiler File PP_parser/pp_lang2_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'compilet `PP_parser/lex`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void copy_chars = - : (int -> (string -> string) -> string -> (string -> void) -> void) New constructors declared: Lex_spec : (string -> lex_symb) Lex_num : (string -> lex_symb) Lex_id : (string -> lex_symb) Lex_block : (((string # string) # string list) -> lex_symb) is_lex_char = - : ((string # string # string) -> bool) is_lex_ucase = - : (string -> bool) is_lex_lcase = - : (string -> bool) is_lex_letter = - : (string -> bool) is_lex_digit = - : (string -> bool) is_lex_underscore = - : (string -> bool) is_lex_eof = - : (string -> bool) is_lex_eol = - : (string -> bool) is_lex_space = - : (string -> bool) lex_error = - : ((string -> string) -> string -> string -> string -> *) read_char = - : ((* -> string) -> * -> string) read_number = - : ((* -> string) -> * -> string -> (lex_symb # string)) read_identifier = - : ((string -> string) -> string -> string -> (lex_symb # string)) read_block = - : ((string -> string) -> string -> (string # string) -> string -> (lex_symb # string)) read_special = - : ((string -> string) -> string -> string list -> string -> (lex_symb # string)) read_symb = - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) read_symb = - : ((string -> string) -> string -> (string # string) list -> string list -> string list -> string -> (lex_symb # string)) Calling Lisp compiler File PP_parser/lex compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'compilet `PP_parser/syntax`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void PP_quotes = [(`'`, `'`); (`"`, `"`); (`{`, `}`); (`#`, `#`); (`%`, `%`)] : (string # string) list PP_keywords = [`prettyprinter`; `rules`; `declarations`; `abbreviations`; `with`; `end`; `where`; `if`; `then`; `else`; `h`; `v`; `hv`; `hov`] : string list PP_specials = [`+`; `-`; `*`; `**`; `***`; `,`; `;`; `:`; `::`; `=`; `:=`; `->`; `..`; `(`; `)`; `**[`; `[`; `]`; `<`; `>`; `<<`; `>>`; `|`] : string list syntax_error = - : ((string -> string) -> string -> string -> string -> lex_symb -> *) general_error = - : ((string -> string) -> string -> string -> string -> string -> *) read_PP_symb = - : ((string -> string) -> string -> string -> (lex_symb # string)) read_PP_number = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_integer = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_string = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_terminal = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_ML_function = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_identifier = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_name_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_children_metavar = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_metavar_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_min = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_max = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop_range = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop_link = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_label = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_node_name = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_child_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_pattern_tree = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_loop = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_test = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_pattern = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_transformation = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_p_special = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_p_special_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_int_expression = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_assignment = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_assignments = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_fun_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_context_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_leaf_or_subcall = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_indent = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_params = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_box = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_object = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_h_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_v_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hv_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_hov_object_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_box_spec = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_expand = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_format = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rule = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rule_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_rules = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_binding = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_binding_list = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_declarations = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_abbreviations = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP_body = - : ((string -> string) -> string -> (lex_symb # string) -> (print_tree # lex_symb # string)) read_PP = - : ((string -> string) -> string -> print_tree) - : ((string -> string) -> string -> print_tree) read_PP = - : ((string -> string) -> string -> print_tree) Calling Lisp compiler File PP_parser/syntax compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'compilet `PP_parser/convert`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void construction_error = - : (print_tree -> string -> *) indirect_string = - : (string -> string) convert_NUM = - : ((print_tree # *) -> (print_tree # ** list)) convert_NEG = - : ((print_tree # *) -> (print_tree # ** list)) convert_ML_FUN = - : ((print_tree # *) -> (print_tree # ** list)) convert_ID_to_VAR = - : ((print_tree # *) -> (print_tree # ** list)) convert_ID_to_TOKCONST = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR_to_TOKCONST = - : ((print_tree # *) -> (print_tree # ** list)) convert_METAVAR_LIST = - : ((print_tree # *) -> (print_tree # ** list)) convert_MIN = - : ((print_tree # *) -> (print_tree # ** list)) convert_MAX = - : ((print_tree # *) -> (print_tree # ** list)) convert_LOOP_RANGE = - : ((print_tree # *) -> (print_tree # ** list)) convert_LOOP_LINK = - : ((print_tree # *) -> (print_tree # ** list)) convert_LABEL = - : ((print_tree # *) -> (print_tree # ** list)) convert_NODE_NAME = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_CHILD = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_CHILD_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_PATT_TREE = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_LOOP = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_STRING = - : ((print_tree # *) -> (print_tree # ** list)) convert_TEST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_PATTERN = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_TRANSFORM = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_P_SPECIAL = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_P_SPECIAL_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_INT_EXP = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_ASSIGN = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_ASSIGNMENTS = - : ((print_tree # (string # print_tree) list) -> (print_tree # * list)) convert_F_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_C_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_LEAF_OR_SUBCALL = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_TERMINAL = - : ((print_tree # *) -> (print_tree # ** list)) convert_INC = - : ((print_tree # *) -> (print_tree # ** list)) convert_H_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_V_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_HV_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_HOV_PARAMS = - : ((print_tree # *) -> (print_tree # ** list)) convert_BOX = - : ((print_tree # *) -> (print_tree # ** list)) convert_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_H_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_V_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HV_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HOV_OBJECT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_H_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_V_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HV_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_HOV_OBJECT_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_BOX_SPEC = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_EXPAND = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_FORMAT = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULE = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULE_LIST = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_RULES = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_BINDING = - : ((print_tree # *) -> (print_tree # ** list)) convert_BINDING_LIST_to_LIST = - : ((print_tree # *) -> (print_tree # ** list)) convert_BINDING_LIST_to_LETREC = - : ((print_tree # *) -> (print_tree # ** list)) convert_DECLARS = - : ((print_tree # *) -> (print_tree # ** list)) convert_ABBREVS = - : ((print_tree # *) -> (print_tree # (string # print_tree) list)) convert_BODY = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_PP = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) convert_PP = - : ((print_tree # (string # print_tree) list) -> (print_tree # (string # print_tree) list)) Calling Lisp compiler File PP_parser/convert compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'loadf `PP_parser/convert`;;'\ 'compilet `PP_parser/generate`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void .................................................() : void PP_to_ML_rules = [((`name`, (Var_name(`n`, [])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`INTCONST`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`TOKCONST`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_constant ```); (0, PO_leaf(`n`, -)); (0, PO_constant ```)])); ((``, (Const_name(`VAR`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`CON`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`CON0`, [Patt_child(Var_name(`n`, []))])), -), [], PF(H_box[(0, PO_leaf(`n`, -))])); ((``, (Const_name(`UNOP`, [Patt_child(Var_name(`n`, [])); Patt_child(Var_child `c`)])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`n`, -)); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`APPN`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((1, (Abs 1), 0), PO_subcall((`c1`, -), [])); ((1, (Abs 1), 0), PO_subcall((`c2`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`ABSTR`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(H_box[(0, PO_constant `(\`); (0, PO_format(PF(HV_box[((1, (Abs 1), 0), PO_format(PF(H_box[(0, PO_subcall((`c1`, -), [])); (0, PO_constant `.`)]))); ((1, (Abs 1), 0), PO_subcall((`c2`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`LIST`, [Var_children `cl`; Patt_child(Var_child `c`)])), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_format(PF(HoV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`cl`, -), [])); (0, PO_constant `;`)])); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `]`)])); ((``, (Const_name(`LIST`, [])), -), [], PF(H_box[(0, PO_constant `[]`)])); ((``, (Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `cl`); Patt_child(Link_child(((Val 1), Default), []))])), Var_child `c`)), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`cl`, -), [])); (0, PO_constant `,`)])); ((0, (Abs 0), 0), PO_subcall((`c`, -), []))]))); (0, PO_constant `)`)])); ((``, (Const_name(`LETREC`, [Patt_child(Const_name(`DUPL`, [Patt_child(Var_child `var1`); Patt_child(Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `varl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `varl`))])); Patt_child(Const_name(`DUPL`, [Patt_child(Var_child `body1`); Patt_child(Print_loop((Const_name(`DUPL`, [Patt_child(Var_child `bodyl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `bodyl`))]))])), -), [], PF(V_box[(((Abs 0), 0), PO_format(PF(HV_box[((1, (Inc 1), 0), PO_constant `letrec`); ((1, (Inc 1), 0), PO_format(PF(H_box[(1, PO_subcall((`var1`, -), [])); (1, PO_constant `=`)]))); ((1, (Inc 1), 0), PO_subcall((`body1`, -), []))]))); (((Abs 0), 0), PO_expand(HV_box[((1, (Inc 1), 0), PO_constant `and`); ((1, (Inc 1), 0), PO_expand(H_box[(1, PO_subcall((`varl`, -), [])); (1, PO_constant `=`)])); ((1, (Inc 1), 0), PO_subcall((`bodyl`, -), []))]))])); ((``, (Const_name(`LETREC`, [Patt_child(Var_child `c1`); Patt_child(Var_child `c2`)])), -), [], PF(HV_box[((1, (Inc 1), 0), PO_constant `letrec`); ((1, (Inc 1), 0), PO_format(PF(H_box[(1, PO_subcall((`c1`, -), [])); (1, PO_constant `=`)]))); ((1, (Inc 1), 0), PO_subcall((`c2`, -), []))])); ((``, (Const_name(`ML_FUN`, [Var_children `cl`])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(V_box[(((Abs 0), 0), PO_context_subcall(`name`, (`cl`, -), []))]))); (0, PO_constant `)`)]))] : print_rule list PP_to_ML_rules_fun = - : print_rule_function write_strings = - : (((* # string) -> **) -> * -> string list -> void) generate_rule = - : (print_tree -> string list) write_rule = - : (((* # string) -> **) -> * -> print_tree -> void) write_rules = - : (((* # string) -> **) -> * -> print_tree list -> void) generate_declarations = - : (print_tree -> string list) write_declarations = - : (((* # string) -> **) -> * -> print_tree -> void) generate_head = - : (string -> string list) write_head = - : (((* # string) -> **) -> * -> string -> void) generate_tail = - : (string -> string list) write_tail = - : (((* # string) -> **) -> * -> string -> void) generate_ML = - : (((string # string) -> void) -> string -> print_tree -> void) - : (((string # string) -> void) -> string -> print_tree -> void) generate_ML = - : (((string # string) -> void) -> string -> print_tree -> void) Calling Lisp compiler File PP_parser/generate compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/pp_lang1_pp`;;'\ 'loadf `PP_parser/pp_lang2_pp`;;'\ 'loadf `PP_parser/lex`;;'\ 'loadf `PP_parser/syntax`;;'\ 'loadf `PP_parser/convert`;;'\ 'loadf `PP_parser/generate`;;'\ 'compilet `PP_parser/PP_to_ML`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #..() : void ..() : void ....................() : void .......................................................() : void .................................................() : void ...............() : void PP_to_ML = - : (bool -> string -> string -> void) Calling Lisp compiler File PP_parser/PP_to_ML compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'compilet `PP_hol/hol_trees`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void # New constructors declared: No_types : type_selection Hidden_types : type_selection Useful_types : type_selection All_types : type_selection type_to_print_tree = - : (type -> print_tree) term_to_print_tree = - : (bool -> type_selection -> term -> print_tree) thm_to_print_tree = - : (bool -> bool -> type_selection -> thm -> print_tree) Calling Lisp compiler File PP_hol/hol_trees compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'compilet `PP_hol/precedence`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void type_prec = - : (string -> int) min_type_prec = 0 : int max_type_prec = 400 : int term_prec = - : (string -> int) min_term_prec = 0 : int max_term_prec = 1700 : int Calling Lisp compiler File PP_hol/precedence compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'PP_to_ML false `PP_hol/hol_type` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'loadf `PP_hol/precedence`;;'\ 'compilet `PP_hol/hol_type_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void ......() : void hol_type_rules = [((`type`, (Const_name(`VAR`, [Patt_child(Var_name(`op`, []))])), -), [], PF(H_box[(0, PO_leaf(`op`, -))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, []))])), -), [], PF(H_box[(0, PO_leaf(`op`, -))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, [])); Patt_child(Var_child `type1`); Patt_child(Var_child `type2`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`type1`, -), [(`prec`, -)])); (1, PO_leaf(`op`, -))]))); ((1, (Abs 3), 0), PO_subcall((`type2`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, [])); Var_children `types`; Patt_child(Var_child `type`)])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Inc 3), 0), PO_expand(H_box[(0, PO_subcall((`types`, -), [(`prec`, -)])); (0, PO_constant `,`)])); ((0, (Inc 3), 0), PO_subcall((`type`, -), [(`prec`, -)]))]))); (0, PO_constant `)`)]))); ((0, (Abs 3), 0), PO_leaf(`op`, -))])); ((`type`, (Const_name(`type`, [Patt_child(Var_child `type`)])), -), [], PF(H_box[(0, PO_constant `":`); (0, PO_subcall((`type`, -), [(`prec`, -)])); (0, PO_constant `"`)])); ((`term`, (Var_child `type`), -), [], PF(H_box[(0, PO_context_subcall(`type`, (`type`, -), [(`prec`, -)]))]))] : print_rule list hol_type_rules_fun = - : print_rule_function Calling Lisp compiler File PP_hol/hol_type_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'PP_to_ML false `PP_hol/hol_term` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'loadf `PP_hol/precedence`;;'\ 'loadf `PP_hol/hol_type_pp`;;'\ 'compilet `PP_hol/hol_term_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void ......() : void ..() : void hol_term_rules = [((`term`, (Const_name(`CONST`, [Patt_child(Const_name(`NIL`, [])); Wild_children])), -), [], PF(H_box[(0, PO_constant `[]`)])); ((`term`, (Const_name(`VAR`, [Patt_child(Var_name(`var`, []))])), -), [], PF(H_box[(0, PO_leaf(`var`, -))])); ((`term`, (Const_name(`VAR`, [Patt_child(Var_name(`var`, [])); Patt_child(Const_name(`type`, [Patt_child(Var_child `type`)]))])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`var`, -)); ((0, (Abs 0), 0), PO_format(PF(H_box[(0, PO_constant `:`); (0, PO_subcall((`type`, -), []))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`CONST`, [Patt_child(Var_name(`const`, []))])), -), [], PF(H_box[(0, PO_leaf(`const`, -))])); ((`term`, (Const_name(`CONST`, [Patt_child(Var_name(`const`, [])); Patt_child(Const_name(`type`, [Patt_child(Var_child `type`)]))])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`const`, -)); ((0, (Abs 0), 0), PO_format(PF(H_box[(0, PO_constant `:`); (0, PO_subcall((`type`, -), []))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `comps`)])); Patt_child(Link_child(((Val 1), Default), [`op`]))])), Var_child `comp`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`comps`, -), [(`prec`, -)])); (0, PO_leaf(`op`, -))])); ((0, (Abs 0), 0), PO_subcall((`comp`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `args`)])); Patt_child(Link_child(((Val 1), Default), [`op`]))])), Var_child `arg`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_expand(HV_box[((1, (Abs 0), 0), PO_subcall((`args`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_leaf(`op`, -))])); ((1, (Abs 0), 0), PO_subcall((`arg`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `arg1`)])); Patt_child(Var_child `arg2`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`arg1`, -), [(`prec`, -)])); (1, PO_leaf(`op`, -))]))); ((1, (Abs 3), 0), PO_subcall((`arg2`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `arg`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_leaf(`op`, -)); (0, PO_subcall((`arg`, -), [(`prec`, -)])); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `bvs`); Patt_child(Link_child(((Val 1), Default), [`op`]))]))])), Var_child `body`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(0, PO_leaf(`op`, -)); (0, PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`bvs`, -), [(`prec`, -)]))]))); (0, PO_constant `.`)]))); ((1, (Abs 3), 0), PO_subcall((`body`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`ABS`, [Patt_child(Var_child `bvs`); Patt_child(Link_child(((Val 1), Default), []))])), Var_child `body`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `\`); (0, PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`bvs`, -), [(`prec`, -)]))]))); (0, PO_constant `.`)]))); ((1, (Abs 3), 0), PO_subcall((`body`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`COND`, [])); Wild_children])); Patt_child(Var_child `cond`)])); Patt_child(Var_child `x`)])); Patt_child(Var_child `y`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`cond`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `=>`)]))); ((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`x`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `|`)]))); ((1, (Abs 0), 0), PO_subcall((`y`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term_let`, (Print_loop((Const_name(`ABS`, [Patt_child(Var_child `args`); Patt_child(Link_child(((Default), Default), []))])), Wild_child)), -), [], PF(H_box[(1, PO_context_subcall(`term`, (`args`, -), []))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child(Print_link((((Default), Default), []), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child (Wild_child)])); Patt_child (Wild_child)])))])); Patt_child(Print_label(`argsl`, Print_loop((Const_name(`ABS`, [Patt_child (Wild_child); Patt_child(Link_child(((Default), Default), []))])), Var_child `letbodyl`)))])), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `bv`); Patt_child(Print_loop((Const_name(`ABS`, [Patt_child(Var_child `bvl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `body`))]))])); Patt_child(Print_label(`args`, Print_loop((Const_name(`ABS`, [Patt_child (Wild_child); Patt_child(Link_child(((Default), Default), []))])), Var_child `letbody`)))]))), -), [(`argsl`, -); (`letbodyl`, -)], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_constant `let`); (1, PO_subcall((`bv`, -), [(`prec`, -)])); (1, PO_context_subcall(`term_let`, (`args`, -), [(`prec`, -)])); (1, PO_constant `=`)]))); ((1, (Abs 3), 0), PO_subcall((`letbody`, -), [(`prec`, -)]))]))); ((1, (Abs 0), 0), PO_expand(HV_box[((1, (Abs 3), 0), PO_expand(H_box[(1, PO_constant `and`); (1, PO_subcall((`bvl`, -), [(`prec`, -)])); (1, PO_context_subcall(`term_let`, (`argsl`, -), [(`prec`, -)])); (1, PO_constant `=`)])); ((1, (Abs 3), 0), PO_subcall((`letbodyl`, -), [(`prec`, -)]))])); ((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `in`); (1, PO_subcall((`body`, -), [(`prec`, -)]))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`CONS`, [])); Wild_children])); Patt_child(Var_child `elems`)])); Patt_child(Print_link((((Default), Default), []), Const_name(`COMB`, [Wild_children])))])), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`CONS`, [])); Wild_children])); Patt_child(Var_child `elem`)])); Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`NIL`, [])); Wild_children]))]))), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_format(PF(HoV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`elems`, -), [(`prec`, -)])); (0, PO_constant `;`)])); ((0, (Abs 0), 0), PO_subcall((`elem`, -), [(`prec`, -)]))]))); (0, PO_constant `]`)])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Link_child(((Val 1), Default), [])); Patt_child(Var_child `rands`)])), Var_child `rator`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_subcall((`rator`, -), [(`prec`, -)])); ((1, (Abs 3), 0), PO_subcall((`rands`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`term`, [Patt_child(Var_child `term`)])), -), [], PF(H_box[(0, PO_constant `"`); (0, PO_subcall((`term`, -), [(`prec`, -)])); (0, PO_constant `"`)])); ((`thm`, (Var_child `term`), -), [], PF(H_box[(0, PO_context_subcall(`term`, (`term`, -), [(`prec`, -)]))]))] : print_rule list hol_term_rules_fun = - : print_rule_function Calling Lisp compiler File PP_hol/hol_term_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'PP_to_ML false `PP_hol/hol_thm` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'loadf `PP_hol/precedence`;;'\ 'loadf `PP_hol/hol_type_pp`;;'\ 'loadf `PP_hol/hol_term_pp`;;'\ 'compilet `PP_hol/hol_thm_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void ......() : void ..() : void ..() : void hol_thm_rules = [((`thm`, (Const_name(`dot`, [])), -), [], PF(H_box[(0, PO_constant `.`)])); ((`thm`, (Const_name(`term`, [Patt_child(Var_child `term`)])), -), [], PF(H_box[(0, PO_subcall((`term`, -), []))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`dots`, [Var_children `dots`]))])), -), [], PF(H_box[(1, PO_format(PF(H_box[(0, PO_subcall((`dots`, -), []))]))); (1, PO_constant `|-`); (1, PO_subcall((`concl`, -), []))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`hyp`, [Var_children `hyps`; Patt_child(Var_child `hyp`)]))])), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`hyps`, -), [])); (0, PO_constant `,`)])); ((1, (Abs 0), 0), PO_subcall((`hyp`, -), [])); ((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `|-`); (1, PO_subcall((`concl`, -), []))])))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`hyp`, []))])), -), [], PF(H_box[(1, PO_constant `|-`); (1, PO_subcall((`concl`, -), []))]))] : print_rule list hol_thm_rules_fun = - : print_rule_function Calling Lisp compiler File PP_hol/hol_thm_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'loadf `PP_hol/precedence`;;'\ 'loadf `PP_hol/hol_type_pp`;;'\ 'loadf `PP_hol/hol_term_pp`;;'\ 'loadf `PP_hol/hol_thm_pp`;;'\ 'compilet `PP_hol/new_printers`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void ......() : void ..() : void ..() : void ..() : void hol_rules_fun = - : print_rule_function pp_convert_type = - : (type -> print_tree) pp_convert_term = - : (term -> print_tree) pp_convert_thm = - : (thm -> print_tree) pp_convert_all_thm = - : (thm -> print_tree) pp_print_type = - : (type -> void) pp_print_term = - : (term -> void) pp_print_thm = - : (thm -> void) pp_print_all_thm = - : (thm -> void) pp_print_theory = - : (string -> void) Calling Lisp compiler File PP_hol/new_printers compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `PP_printer/PP_printer`;;'\ 'loadf `PP_parser/PP_parser`;;'\ 'loadf `PP_hol/hol_trees`;;'\ 'loadf `PP_hol/precedence`;;'\ 'loadf `PP_hol/hol_type_pp`;;'\ 'loadf `PP_hol/hol_term_pp`;;'\ 'loadf `PP_hol/hol_thm_pp`;;'\ 'loadf `PP_hol/new_printers`;;'\ 'compilet `PP_hol/link_to_hol`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool ..................................................................................................................() : void #.................................................................................................................................................() : void #....() : void ......() : void ..() : void ..() : void ..() : void ..........() : void - : (type -> void) - : (term -> void) - : (thm -> void) - : (term -> void) Calling Lisp compiler File PP_hol/link_to_hol compiled () : void #===> library prettyp rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/prettyp' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `extents`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Calling Lisp compiler File extents compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'compilet `sets`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void no_rep = - : (* list -> bool) remove_rep = - : (* list -> * list) is_subset = - : (* list -> * list -> bool) Calling Lisp compiler File sets compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'compilet `extract`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void get_ids = - : (term -> (term list # term list # term list)) get_consts = - : (term -> term list) get_freevars = - : (term -> term list) get_boundvars = - : (term -> term list) get_types = - : (term -> type list) is_primtype = - : (type -> bool) subtypes = - : (type -> type list) prim_subtypes = - : (type -> type list) get_primtypes = - : (term -> type list) get_primvartypes = - : (term -> type list) Calling Lisp compiler File extract compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'compilet `struct`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void merge = - : ((* # **) list -> (* # **) list -> (* # **) list) join = - : (((term # term) list # (type # type) list) -> ((term # term) list # (type # type) list) -> ((term # term) list # (type # type) list)) remove_bv = - : (term -> ((term # term) list # (type # type) list) -> ((term # term) list # (type # type) list)) match_type = - : (type -> type -> (type # type) list) match_term = - : (term -> term -> ((term # term) list # (type # type) list)) match_internal_term = - : (term -> term -> ((term # term) list # (type # type) list)) show_wildvar = - : (wildvar -> term) make_wildvar = - : (term -> wildvar) wildvarlist = - : (term list -> wildvar list) show_wildtype = - : (wildtype -> type) make_wildtype = - : (type -> wildtype) wildtypelist = - : (type list -> wildtype list) show_termpattern = - : (termpattern -> (term # wildvar list # wildtype list)) make_termpattern = - : ((term # wildvar list # wildtype list) -> termpattern) show_full_termpattern = - : (termpattern -> (term # term list # type list)) make_full_termpattern = - : ((term # term list # type list) -> termpattern) autotermpattern = - : (term -> termpattern) show_matching = - : (matching -> ((wildvar # term) list # (wildtype # type) list)) null_matching = - : matching make_matching = - : (termpattern -> term -> matching) join_matchings = - : (matching -> matching -> matching) show_full_matching = - : (matching -> ((term # term) list # (type # type) list)) match_of_var = - : (matching -> wildvar -> term) match_of_type = - : (matching -> wildtype -> type) New constructors declared: Nomatch : result_of_match Match : ((matching # (void -> result_of_match)) -> result_of_match) Match_null = Match((-), -) : result_of_match approms = - : ((void -> result_of_match) -> (void -> result_of_match) -> void -> result_of_match) bool_to_rom = - : (bool -> result_of_match) rom_to_bool = - : (result_of_match -> bool) type side_condition defined Calling Lisp compiler File struct compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'compilet `name`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void show_wildchar = - : (wildchar -> string) make_wildchar = - : (string -> wildchar) show_namepattern = - : (namepattern -> (string # wildchar # wildchar)) make_namepattern = - : ((string # wildchar # wildchar) -> namepattern) show_full_namepattern = - : (namepattern -> (string # string # string)) make_full_namepattern = - : ((string # string # string) -> namepattern) wildchar1 = `?` : string wildcharn = `*` : string autonamepattern = - : (string -> namepattern) namematch = - : (namepattern -> string -> bool) Calling Lisp compiler File name compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'loadf `name`;;'\ 'compilet `thmkind`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void .......() : void New constructors declared: Axiom : thmkind Definition : thmkind Theorem : thmkind Calling Lisp compiler File thmkind compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'loadf `name`;;'\ 'loadf `thmkind`;;'\ 'compilet `matching`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void .......() : void .() : void type foundthm defined New constructors declared: Kind' : (thmkind -> thmpattern_rep) Thryname' : (namepattern -> thmpattern_rep) Thmname' : (namepattern -> thmpattern_rep) Conc' : (termpattern -> thmpattern_rep) HypP' : (termpattern list -> thmpattern_rep) HypF' : (termpattern list -> thmpattern_rep) Side' : (side_condition -> thmpattern_rep) Andalso' : ((thmpattern_rep # thmpattern_rep) -> thmpattern_rep) Orelse' : ((thmpattern_rep # thmpattern_rep) -> thmpattern_rep) Not' : (thmpattern_rep -> thmpattern_rep) Where' : ((thmpattern_rep # thmpattern_rep) -> thmpattern_rep) show_thmpattern = - : (thmpattern -> thmpattern_rep) Kind = - : (thmkind -> thmpattern) Thryname = - : (namepattern -> thmpattern) Thmname = - : (namepattern -> thmpattern) Conc = - : (termpattern -> thmpattern) HypP = - : (termpattern list -> thmpattern) HypF = - : (termpattern list -> thmpattern) Side = - : (side_condition -> thmpattern) Andalso = - : ((thmpattern # thmpattern) -> thmpattern) Orelse = - : ((thmpattern # thmpattern) -> thmpattern) Not = - : (thmpattern -> thmpattern) Where = - : ((thmpattern # thmpattern) -> thmpattern) thmmatch = - : (thmpattern -> foundthm -> bool) () : void () : void () : void thmfilter = - : (thmpattern -> foundthm list -> foundthm list) Calling Lisp compiler File matching compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'loadf `name`;;'\ 'loadf `thmkind`;;'\ 'loadf `matching`;;'\ 'compilet `sidecond`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void .......() : void .() : void .......() : void containsfn = - : (termpattern -> term -> void -> result_of_match) () : void Contains = - : (wildvar -> termpattern -> thmpattern) () : void contains = - : (term -> term -> thmpattern) () : void Matches = - : (wildvar -> termpattern -> thmpattern) () : void matches = - : (term -> term -> thmpattern) dest_binder = - : (term -> (term # term)) strip_binders = - : (term -> term) () : void Has_body = - : (wildvar -> termpattern -> thmpattern) () : void has_body = - : (term -> term -> thmpattern) Test1term = - : ((term -> bool) -> wildvar -> thmpattern) test1term = - : ((term -> bool) -> term -> thmpattern) Test1type = - : ((type -> bool) -> wildtype -> thmpattern) test1type = - : ((type -> bool) -> type -> thmpattern) Test2terms = - : ((term -> term -> bool) -> wildvar -> wildvar -> thmpattern) test2terms = - : ((term -> term -> bool) -> term -> term -> thmpattern) Test2types = - : ((type -> type -> bool) -> wildtype -> wildtype -> thmpattern) test2types = - : ((type -> type -> bool) -> type -> type -> thmpattern) Calling Lisp compiler File sidecond compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'loadf `name`;;'\ 'loadf `thmkind`;;'\ 'loadf `matching`;;'\ 'loadf `sidecond`;;'\ 'compilet `search`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void .......() : void .() : void .......() : void .......................() : void get_theorems = - : (string -> foundthm list) New constructors declared: Theory : (string -> searchpath) Ancestors : ((string list # string list) -> searchpath) New constructors declared: List : (foundthm list -> source) Paths : (searchpath list -> source) do_once_only = - : (* list -> * list) searchseq = - : (string list -> string list -> string list) flatten_paths = - : (searchpath list -> string list) New constructors declared: Endofsearch : (foundthm list -> searchstep) Step : ((foundthm list # (void -> searchstep)) -> searchstep) find_theorems = - : (thmpattern -> source -> searchstep) show_step = - : (searchstep -> foundthm list) continue_search = - : (searchstep -> searchstep) Calling Lisp compiler File search compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf `extents`;;'\ 'loadf `sets`;;'\ 'loadf `extract`;;'\ 'loadf `struct`;;'\ 'loadf `name`;;'\ 'loadf `thmkind`;;'\ 'loadf `matching`;;'\ 'loadf `sidecond`;;'\ 'loadf `search`;;'\ 'compilet `user`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void ...() : void ..........() : void ........................() : void .......() : void .() : void .......() : void .......................() : void ..........() : void FT = - : (thmpattern -> source -> searchstep) CS = - : (searchstep -> searchstep) run_search = - : (searchstep -> foundthm list) full_search = - : (thmpattern -> source -> foundthm list) search_until_find = - : (searchstep -> searchstep) search_n_theories = - : (int -> searchstep -> searchstep) search_n_until_find = - : (int -> searchstep -> searchstep) ancestors_excluding = - : (string list -> string list -> searchpath) Ancestry = - : (string list -> searchpath) List_from = - : (searchstep -> source) kind = - : (thmkind -> thmpattern) thryname = - : (string -> thmpattern) thmname = - : (string -> thmpattern) conc = - : (term -> thmpattern) hypP = - : (term list -> thmpattern) hypF = - : (term list -> thmpattern) side = - : (side_condition -> thmpattern) BigAnd = - : (thmpattern list -> thmpattern) BigOr = - : (thmpattern list -> thmpattern) Calling Lisp compiler File user compiled () : void #===> library trs rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/trs' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `filters`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool spec_list = [(`_`, `\US `); (`#`, `\SH `); (`&`, `\AM `); (`%`, `\PC `); (`$`, `\DO `); (`\`, `\BS `); (`'`, `\PR `); (`~`, `\TI `); (`*`, `\AS `); (`<`, `\LES `); (`|`, `\BA `); (`>`, `\GRE `); (`[`, `\LB `); (`]`, `\RB `); (`^`, `\CI `); (`{`, `\LC `); (`}`, `\RC `)] : (string # string) list do_char = - : (string -> string) filter_id = - : (string -> string) dovar = - : (string -> string) symb_of = - : (string -> string) doinfix = - : (string -> string) Calling Lisp compiler File filters compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'compilet `hol_trees`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void # New constructors declared: No_types : type_selection Hidden_types : type_selection Useful_types : type_selection All_types : type_selection type_to_print_tree = - : (type -> print_tree) term_to_print_tree = - : (bool -> type_selection -> term -> print_tree) thm_to_print_tree = - : (bool -> bool -> type_selection -> thm -> print_tree) Calling Lisp compiler File hol_trees compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `hol_trees`;;'\ 'compilet `precedence`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #....() : void is_res_quan = - : (string -> bool) type_prec = - : (string -> int) min_type_prec = 0 : int max_type_prec = 400 : int term_prec = - : (string -> int) min_term_prec = 0 : int max_term_prec = 1800 : int Calling Lisp compiler File precedence compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'PP_to_ML false `latex_type` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `filters`;;'\ 'loadf `hol_trees`;;'\ 'loadf `precedence`;;'\ 'compilet `latex_type_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #......() : void ....() : void .......() : void latex_type_rules = [((`type`, (Const_name(`VAR`, [Patt_child(Var_name(`op`, []))])), -), [], PF(H_box[(0, PO_leaf(`op`, -))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, []))])), -), [], PF(H_box[(0, PO_leaf(`op`, -))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, [])); Patt_child(Var_child `type1`); Patt_child(Var_child `type2`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`type1`, -), [(`prec`, -)])); (1, PO_leaf(`op`, -))]))); ((1, (Abs 3), 0), PO_subcall((`type2`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`type`, (Const_name(`OP`, [Patt_child(Var_name(`op`, [])); Var_children `types`; Patt_child(Var_child `type`)])), -), [], PF(HV_box[((0, (Abs 3), 0), PO_format(PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HV_box[((0, (Inc 3), 0), PO_expand(H_box[(0, PO_subcall((`types`, -), [(`prec`, -)])); (0, PO_constant `,`)])); ((0, (Inc 3), 0), PO_subcall((`type`, -), [(`prec`, -)]))]))); (0, PO_constant `)`)]))); ((0, (Abs 3), 0), PO_leaf(`op`, -))])); ((`type`, (Const_name(`type`, [Patt_child(Var_child `type`)])), -), [], PF(H_box[(0, PO_constant `":`); (0, PO_subcall((`type`, -), [(`prec`, -)])); (0, PO_constant `"`)])); ((`term`, (Var_child `type`), -), [], PF(H_box[(0, PO_context_subcall(`type`, (`type`, -), [(`prec`, -)]))]))] : print_rule list latex_type_rules_fun = - : print_rule_function Calling Lisp compiler File latex_type_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'PP_to_ML false `latex_thm` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'PP_to_ML false `latex_term` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `filters`;;'\ 'loadf `hol_trees`;;'\ 'loadf `precedence`;;'\ 'loadf `latex_type_pp`;;'\ 'compilet `latex_term_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #......() : void ....() : void .......() : void ..() : void latex_term_rules = [((`term`, (Const_name(`CONST`, [Patt_child(Const_name(`NIL`, [])); Wild_children])), -), [], PF(H_box[(0, PO_constant `\NIL `)])); ((`term`, (Const_name(`VAR`, [Patt_child(Var_name(`var`, []))])), -), [], PF(H_box[(0, PO_leaf(`var`, -))])); ((`term`, (Const_name(`VAR`, [Patt_child(Var_name(`var`, [])); Patt_child(Const_name(`type`, [Patt_child(Var_child `type`)]))])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`var`, -)); ((0, (Abs 0), 0), PO_format(PF(H_box[(0, PO_constant `:`); (0, PO_subcall((`type`, -), []))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`CONST`, [Patt_child(Var_name(`const`, []))])), -), [], PF(H_box[(0, PO_leaf(`const`, -))])); ((`term`, (Const_name(`CONST`, [Patt_child(Var_name(`const`, [])); Patt_child(Const_name(`type`, [Patt_child(Var_child `type`)]))])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_leaf(`const`, -)); ((0, (Abs 0), 0), PO_format(PF(H_box[(0, PO_constant `:`); (0, PO_subcall((`type`, -), []))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `comps`)])); Patt_child(Link_child(((Val 1), Default), [`op`]))])), Var_child `comp`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`comps`, -), [(`prec`, -)])); (0, PO_leaf(`op`, -))])); ((0, (Abs 0), 0), PO_subcall((`comp`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `args`)])); Patt_child(Link_child(((Val 1), Default), [`op`]))])), Var_child `arg`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_constant `(`); ((1, (Abs 0), 0), PO_expand(HV_box[((1, (Abs 0), 0), PO_subcall((`args`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `)\:\CONST{EXP}\:(`)])); ((1, (Abs 0), 0), PO_subcall((`arg`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `)`)]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `args`)])); Patt_child(Link_child(((Val 1), Default), [`op`]))])), Var_child `arg`)), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_expand(HV_box[((1, (Abs 0), 0), PO_subcall((`args`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_leaf(`op`, -))])); ((1, (Abs 0), 0), PO_subcall((`arg`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `arg1`)])); Patt_child(Var_child `arg2`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_subcall((`arg1`, -), [(`prec`, -)])); (1, PO_leaf(`op`, -))]))); ((1, (Abs 3), 0), PO_subcall((`arg2`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `arg`)])), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_leaf(`op`, -)); (0, PO_subcall((`arg`, -), [(`prec`, -)])); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Var_child `pred`)])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `bvs`); Patt_child(Link_child(((Val 1), Default), [`op`; `pred`]))]))])), Var_child `body`)), -), [(`bv`, -); (`bvs`, -)], PF(H_box[(0, PO_format(PF_branch((-), (PF(H_box[(0, PO_constant `(`)])), PF_empty))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(0, PO_leaf(`op`, -)); (0, PO_format(PF(H_box[(1, PO_subcall((`bv`, -), [])); (1, PO_format(PF_branch((-), (PF_empty), PF(H_box[(1, PO_expand(H_box[(0, PO_constant `\,`); (0, PO_subcall((`bvs`, -), [(`prec`, -)]))]))]))))]))); (0, PO_constant `\RESDOT `); (0, PO_format(PF(H_box[(1, PO_subcall((`pred`, -), [(`prec`, -)]))]))); (0, PO_constant `\DOT`)]))); ((1, (Abs 3), 0), PO_subcall((`body`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF(H_box[(0, PO_constant `)`)])), PF_empty)))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Var_name(`op`, [])); Wild_children])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `bvs`); Patt_child(Link_child(((Val 1), Default), [`op`]))]))])), Var_child `body`)), -), [(`bv`, -); (`bvs`, -)], PF(H_box[(0, PO_format(PF_branch((-), (PF(H_box[(0, PO_constant `(`)])), PF_empty))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(0, PO_leaf(`op`, -)); (0, PO_format(PF(H_box[(1, PO_subcall((`bv`, -), [])); (1, PO_format(PF_branch((-), (PF_empty), PF(H_box[(1, PO_expand(H_box[(0, PO_constant `\,`); (0, PO_subcall((`bvs`, -), [(`prec`, -)]))]))]))))]))); (0, PO_constant `\DOT`)]))); ((1, (Abs 3), 0), PO_subcall((`body`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF(H_box[(0, PO_constant `)`)])), PF_empty)))])); ((`term`, (Print_loop((Const_name(`ABS`, [Patt_child(Var_child `bvs`); Patt_child(Print_link((((Default), Default), []), Const_name(`ABS`, [Wild_children])))])), Const_name(`ABS`, [Patt_child(Var_child `bv`); Patt_child(Var_child `body`)]))), -), [], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_format(PF(H_box[(1, PO_constant `\LAMBDA`); (1, PO_format(PF(H_box[(1, PO_expand(H_box[(1, PO_subcall((`bvs`, -), [(`prec`, -)])); (1, PO_constant `\,`)]))]))); (1, PO_subcall((`bv`, -), [])); (1, PO_constant `\DOT`)]))); ((1, (Abs 3), 0), PO_subcall((`body`, -), [(`prec`, -)]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`COND`, [])); Wild_children])); Patt_child(Var_child `cond`)])); Patt_child(Var_child `x`)])); Patt_child(Var_child `y`)])), -), [], PF(H_box[(0, PO_constant `(`); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`cond`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `\Rightarrow `)]))); ((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`x`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `\mid `)]))); ((1, (Abs 0), 0), PO_subcall((`y`, -), [(`prec`, -)]))]))); (0, PO_constant `)`)])); ((`term_let`, (Print_loop((Const_name(`ABS`, [Patt_child(Var_child `args`); Patt_child(Link_child(((Default), Default), []))])), Wild_child)), -), [], PF(H_box[(1, PO_context_subcall(`term`, (`args`, -), []))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child(Print_link((((Default), Default), []), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child (Wild_child)])); Patt_child (Wild_child)])))])); Patt_child(Print_label(`argsl`, Print_loop((Const_name(`ABS`, [Patt_child (Wild_child); Patt_child(Link_child(((Default), Default), []))])), Var_child `letbodyl`)))])), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`LET`, [])); Wild_children])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `bv`); Patt_child(Print_loop((Const_name(`ABS`, [Patt_child(Var_child `bvl`); Patt_child(Link_child(((Default), Default), []))])), Var_child `body`))]))])); Patt_child(Print_label(`args`, Print_loop((Const_name(`ABS`, [Patt_child (Wild_child); Patt_child(Link_child(((Default), Default), []))])), Var_child `letbody`)))]))), -), [(`argsl`, -); (`letbodyl`, -)], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HoV_box[((1, (Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 1), 0), PO_format(PF(H_box[(1, PO_constant `\KEYWD{let}\;`); (1, PO_subcall((`bv`, -), [(`prec`, -)])); (1, PO_context_subcall(`term_let`, (`args`, -), [(`prec`, -)])); (1, PO_constant `=`)]))); ((1, (Abs 1), 0), PO_subcall((`letbody`, -), [(`prec`, -)]))]))); ((1, (Abs 0), 0), PO_expand(HV_box[((1, (Abs 1), 0), PO_expand(HV_box[((1, (Abs 0), 0), PO_constant `\;\KEYWD{and}`); ((1, (Abs 0), 0), PO_subcall((`bvl`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_context_subcall(`term_let`, (`argsl`, -), [(`prec`, -)])); ((1, (Abs 0), 0), PO_constant `=`)])); ((1, (Abs 1), 0), PO_subcall((`letbodyl`, -), [(`prec`, -)]))])); ((1, (Abs 0), 0), PO_format(PF(V_box[(((Abs 0), 0), PO_constant `\;\KEYWD{in}`); (((Abs 0), 0), PO_format(PF(HV_box[((1, (Abs 0), 0), PO_subcall((`body`, -), [(`prec`, -)]))])))])))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`CONS`, [])); Wild_children])); Patt_child(Var_child `elems`)])); Patt_child(Print_link((((Default), Default), []), Const_name(`COMB`, [Wild_children])))])), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`CONS`, [])); Wild_children])); Patt_child(Var_child `elem`)])); Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`NIL`, [])); Wild_children]))]))), -), [], PF(H_box[(0, PO_constant `[`); (0, PO_format(PF(HoV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`elems`, -), [(`prec`, -)])); (0, PO_constant `;`)])); ((0, (Abs 0), 0), PO_subcall((`elem`, -), [(`prec`, -)]))]))); (0, PO_constant `]`)])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Link_child(((Val 1), Default), [])); Patt_child(Var_child `rands`)])), Var_child `rator`)), -), [(`rands`, -)], PF(H_box[(0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `(`)])))); (0, PO_format(PF(HV_box[((1, (Abs 3), 0), PO_subcall((`rator`, -), [(`prec`, -)])); ((1, (Abs 3), 0), PO_expand(H_box[(0, PO_constant `\,`); (0, PO_subcall((`rands`, -), [(`prec`, -)]))]))]))); (0, PO_format(PF_branch((-), (PF_empty), PF(H_box[(0, PO_constant `)`)]))))])); ((`term`, (Const_name(`term`, [Patt_child(Var_child `term`)])), -), [], PF(H_box[(0, PO_constant `"`); (0, PO_subcall((`term`, -), [(`prec`, -)])); (0, PO_constant `"`)])); ((`thm`, (Var_child `term`), -), [], PF(H_box[(0, PO_context_subcall(`term`, (`term`, -), [(`prec`, -)]))]))] : print_rule list latex_term_rules_fun = - : print_rule_function Calling Lisp compiler File latex_term_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `filters`;;'\ 'loadf `hol_trees`;;'\ 'loadf `precedence`;;'\ 'loadf `latex_type_pp`;;'\ 'loadf `latex_term_pp`;;'\ 'compilet `latex_thm_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #......() : void ....() : void .......() : void ..() : void ..() : void latex_thm_rules = [((`thm`, (Const_name(`dot`, [])), -), [], PF(H_box[(0, PO_constant `.`)])); ((`thm`, (Const_name(`term`, [Patt_child(Var_child `term`)])), -), [], PF(H_box[(0, PO_subcall((`term`, -), []))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`dots`, [Var_children `dots`]))])), -), [], PF(H_box[(1, PO_format(PF(H_box[(0, PO_subcall((`dots`, -), []))]))); (1, PO_constant `\THM`); (1, PO_subcall((`concl`, -), []))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`hyp`, [Var_children `hyps`; Patt_child(Var_child `hyp`)]))])), -), [], PF(HoV_box[((1, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`hyps`, -), [])); (0, PO_constant `,`)])); ((1, (Abs 0), 0), PO_subcall((`hyp`, -), [])); ((1, (Abs 0), 0), PO_format(PF(H_box[(1, PO_constant `\THM`); (1, PO_subcall((`concl`, -), []))])))])); ((`thm`, (Const_name(`thm`, [Patt_child(Var_child `concl`); Patt_child(Const_name(`hyp`, []))])), -), [], PF(H_box[(1, PO_constant `\THM`); (1, PO_subcall((`concl`, -), []))]))] : print_rule list latex_thm_rules_fun = - : print_rule_function Calling Lisp compiler File latex_thm_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'PP_to_ML false `latex_sets` ``;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #() : void echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `filters`;;'\ 'loadf `hol_trees`;;'\ 'loadf `precedence`;;'\ 'loadf `latex_type_pp`;;'\ 'loadf `latex_term_pp`;;'\ 'loadf `latex_thm_pp`;;'\ 'compilet `latex_sets_pp`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #......() : void ....() : void .......() : void ..() : void ..() : void ..() : void latex_sets_rules = [((`term`, (Const_name(`CONST`, [Patt_child(Const_name(`EMPTY`, [])); Wild_children])), -), [], PF(H_box[(0, PO_constant `\EMPTYSET `)])); ((`term`, (Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`GSPEC`, [])); Wild_children])); Patt_child(Const_name(`ABS`, [Patt_child(Var_child `var`); Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child (Wild_child)])); Patt_child(Var_child `elem`)])); Patt_child(Var_child `spec`)]))]))])), -), [], PF(H_box[(0, PO_constant `\BEGINSET `); (0, PO_format(PF(HV_box[((1, (Abs 1), 0), PO_subcall((`elem`, -), [(`prec`, -)])); ((1, (Abs 1), 0), PO_constant `\SUCHTHAT `); ((1, (Abs 1), 0), PO_subcall((`spec`, -), [(`prec`, -)]))]))); (0, PO_constant `\ENDSET `)])); ((`term`, (Print_loop((Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`INSERT`, [])); Wild_children])); Patt_child(Var_child `elems`)])); Patt_child(Print_link((((Default), Default), []), Const_name(`COMB`, [Wild_children])))])), Const_name(`COMB`, [Patt_child(Const_name(`COMB`, [Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`INSERT`, [])); Wild_children])); Patt_child(Var_child `elem`)])); Patt_child(Const_name(`CONST`, [Patt_child(Const_name(`EMPTY`, [])); Wild_children]))]))), -), [], PF(H_box[(0, PO_constant `\BEGINSET `); (0, PO_format(PF(HV_box[((0, (Abs 0), 0), PO_expand(H_box[(0, PO_subcall((`elems`, -), [(`prec`, -)])); (0, PO_constant `,`)])); ((0, (Abs 0), 0), PO_subcall((`elem`, -), [(`prec`, -)]))]))); (0, PO_constant `\ENDSET `)]))] : print_rule list latex_sets_rules_fun = - : print_rule_function Calling Lisp compiler File latex_sets_pp compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_printer`);;'\ 'loadf(library_pathname() ^ `/prettyp/PP_parser`);;'\ 'loadf `filters`;;'\ 'loadf `hol_trees`;;'\ 'loadf `precedence`;;'\ 'loadf `latex_sets_pp`;;'\ 'loadf `latex_thm_pp`;;'\ 'loadf `latex_term_pp`;;'\ 'loadf `latex_type_pp`;;'\ 'compilet `formaters`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Updating help search path ....................................................................................................................() : void #Updating help search path ...................................................................................................................................................() : void #......() : void ....() : void .......() : void ..() : void ..() : void ..() : void ..() : void output_strings = - : (string -> string list -> void) latex_hol_rules_fun = - : print_rule_function pp_convert_type = - : (type -> print_tree) pp_convert_term = - : (term -> print_tree) pp_convert_thm = - : (thm -> print_tree) pp_convert_all_thm = - : (thm -> print_tree) latex_type = - : (type -> void) latex_term = - : (term -> void) latex_thm = - : (thm -> void) latex_all_thm = - : (thm -> void) latex_type_to = - : (string -> type -> void) latex_type_add_to = - : (string -> type -> void) latex_term_to = - : (string -> term -> void) latex_term_add_to = - : (string -> term -> void) latex_thm_to = - : (string -> thm -> void) latex_thm_add_to = - : (string -> thm -> void) latex_all_thm_to = - : (string -> thm -> void) latex_all_thm_add_to = - : (string -> thm -> void) latex_theory_to = - : (string -> bool -> string -> void) latex_thm_tag = `@t ` : string latex_thm_end = `` : string latex_theorems_to = - : (string -> (string -> thm) -> string list -> void) latex_all_theorems_to = - : (string -> (string -> thm) -> string list -> void) latex_theorems_add_to = - : (string -> (string -> thm) -> string list -> void) Calling Lisp compiler File formaters compiled () : void #===>Library latex-hol rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/latex-hol' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' rm -f ineq.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `ineq`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Loading library taut ... Updating help search path ........................................ Library taut loaded. () : void NOT_EQ = |- !t1 t2. (t1 = t2) = (~t1 = ~t2) Theorem EQ_LESS_EQ autoloading from theory `arithmetic` ... EQ_LESS_EQ = |- !m n. (m = n) = m <= n /\ n <= m Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m NOT_EQ_LESS_EQ = |- !a b. ~(a = b) = a < b \/ b < a Theorem LESS_CASES_IMP autoloading from theory `arithmetic` ... LESS_CASES_IMP = |- !m n. ~m < n /\ ~(m = n) ==> n < m Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) Theorem LESS_ANTISYM autoloading from theory `arithmetic` ... LESS_ANTISYM = |- !m n. ~(m < n /\ n < m) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) LESS_IS_NOT_LESS_OR_EQ = |- !x y. x < y = ~y <= x Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 GEN_INDUCTION = |- !P. P 0 /\ (!n. (!m. m < n ==> P m) ==> P n) ==> (!n. P n) Theorem LESS_EQ_ANTISYM autoloading from theory `arithmetic` ... LESS_EQ_ANTISYM = |- !m n. ~(m < n /\ n <= m) Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n GREATER_EQ_ANTISYM = |- !n m. ~(n >= m /\ n < m) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) LESS_EQ_LESS_EQ_EQ = |- !m n. m <= n /\ n <= m = (m = n) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) NOT_LESS_AND_GREATER = |- !n m. n < m ==> ~m < n () : void File ineq loaded () : void #rm -f pre.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `pre`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theorem PRE_SUC_EQ autoloading from theory `arithmetic` ... PRE_SUC_EQ = |- !m n. 0 < n ==> ((m = PRE n) = (SUC m = n)) SUC_PRE = |- !n. 0 < n ==> (SUC(PRE n) = n) Theorem LESS_MONO autoloading from theory `prim_rec` ... LESS_MONO = |- !m n. m < n ==> (SUC m) < (SUC n) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) PRE_MONO = |- !m n. (PRE m) < (PRE n) ==> m < n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n PRE_MONO_LESS_EQ = |- !m n. m < n ==> (PRE m) <= (PRE n) Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) PRE_LESS_EQ = |- !n. (PRE n) <= n Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) PRE_ADD = |- !n m. 0 < n ==> (PRE(n + m) = (PRE n) + m) SUC_LESS_PRE = |- !m n. (SUC m) < n ==> m < (PRE n) SUC_LESS_EQ_PRE = |- !m n. 0 < n ==> (SUC m) <= n ==> m <= (PRE n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n Theorem INDUCTION autoloading from theory `num` ... INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) PRE_K_K = |- !k. 0 < k ==> (PRE k) < k Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n Theorem NOT_LESS_EQUAL autoloading from theory `arithmetic` ... NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m Theorem SUB_EQ_0 autoloading from theory `arithmetic` ... SUB_EQ_0 = |- !m n. (m - n = 0) = m <= n NOT_LESS_SUB = |- !m n. ~m < (m - n) Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 Theorem LESS_EQ_LESS_TRANS autoloading from theory `arithmetic` ... LESS_EQ_LESS_TRANS = |- !m n p. m <= n /\ n < p ==> m < p PRE_LESS = |- !b. 0 < b /\ b < a ==> (PRE b) < a Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n LESS_IMP_LESS_EQ_PRE = |- !m n. 0 < n ==> (m < n = m <= (PRE n)) () : void File pre loaded () : void #rm -f suc.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `suc`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theorem NOT_SUC_LESS_EQ_0 autoloading from theory `arithmetic` ... NOT_SUC_LESS_EQ_0 = |- !n. ~(SUC n) <= 0 NOT_FORALL_SUC_LESS_EQ = |- ~(!n m. (SUC m) <= n) Theorem LESS_EQ_ANTISYM autoloading from theory `arithmetic` ... LESS_EQ_ANTISYM = |- !m n. ~(m < n /\ n <= m) Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) NOT_0_GREATER_EQ_SUC = |- !n. ~0 >= (SUC n) Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m SUC_GREATER_EQ_SUC = |- !n m. (SUC m) >= (SUC n) = m >= n LESS_EQ_MONO_EQ = |- !n m. (SUC n) <= (SUC m) = n <= m Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) LESS_EQ_LESS_SUC = |- !m n. m <= n = m < (SUC n) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n SUC_LESS_EQ = |- !m n. m <= n /\ ~(m = n) ==> (SUC m) <= n Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem SUC_ID autoloading from theory `prim_rec` ... SUC_ID = |- !n. ~(SUC n = n) NOT_SUC_LESS_EQ_SELF = |- !n. ~(SUC n) <= n Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 SUC_0 = |- 1 = SUC 0 Theorem SUC_NOT autoloading from theory `arithmetic` ... SUC_NOT = |- !n. ~(0 = SUC n) SUC_NOT_0 = |- !n. ~(SUC n = 0) () : void File suc loaded () : void #rm -f add.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `add`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theory suc loaded () : void [(); (); (); (); (); (); (); ()] : void list ....() : void Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 LESS_LESS_EQ = |- !a b. a < b = (a + 1) <= b Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m ADD_SUC_0 = |- !m. SUC m = (SUC 0) + m LESS_EQ_MONO_ADD_EQ0 = |- !m n p. m <= n = (p + m) <= (p + n) Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) LESS_EQ_MONO_ADD_EQ1 = |- !m p. (m + p) <= p = m <= 0 Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n LESS_EQ_ADD1 = |- !p n. p <= (n + p) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p ADD_SYM_ASSOC = |- !a b c. a + (b + c) = b + (a + c) Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p LESS_EQ_SPLIT = |- !m n p. (m + n) <= p ==> n <= p /\ m <= p Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) ADDL_GREATER = |- !m n p. m < n ==> m < (p + n) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Theorem LESS_EQ_LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_LESS_EQ_MONO = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q) ADDL_GREATER_EQ = |- !m n p. m <= n ==> m <= (p + n) ADDR_GREATER = |- !m n p. m < n ==> m < (n + p) ADDR_GREATER_EQ = |- !m n p. m <= n ==> m <= (n + p) Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p LESS_LESS_MONO = |- !m n p q. m < p /\ n < q ==> (m + n) < (p + q) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) LESS_LESS_EQ_MONO = |- (!m n p q. m < p /\ n <= q ==> (m + n) < (p + q)) /\ (!m n p q. m <= p /\ n < q ==> (m + n) < (p + q)) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n ADD_EQ_LESS_IMP_LESS = |- !n m k l. (k + m = l + n) /\ k < l ==> n < m LESS_ADD_ASSOC = |- !a b c d. a < (b + c) ==> a < (b + (c + d)) Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n GREATER_EQ_SPLIT = |- !m n p. p >= (m + n) ==> p >= n /\ p >= m Theorem LESS_MONO_ADD autoloading from theory `arithmetic` ... LESS_MONO_ADD = |- !m n p. m < n ==> (m + p) < (n + p) LESS_TRANS_ADD = |- !m n p q. m < (n + p) /\ p < q ==> m < (n + q) Definition GREATER autoloading from theory `arithmetic` ... GREATER = |- !m n. m > n = n < m Definition GREATER_OR_EQ autoloading from theory `arithmetic` ... GREATER_OR_EQ = |- !m n. m >= n = m > n \/ (m = n) ADD_GREATER_EQ = |- !m n. (m + n) >= m ADD_MONO_LESS = |- !m n p. (m + p) < (m + n) = p < n Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem SUC_ID autoloading from theory `prim_rec` ... SUC_ID = |- !n. ~(SUC n = n) Theorem SUC_0 autoloading from theory `suc` ... SUC_0 = |- 1 = SUC 0 NOT_1_TWICE = |- !n. ~(1 = n + n) Theorem LESS_EQ_LESS_TRANS autoloading from theory `arithmetic` ... LESS_EQ_LESS_TRANS = |- !m n p. m <= n /\ n < p ==> m < p SUM_LESS = |- !m n p. (m + n) < p ==> m < p /\ n < p Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) NOT_LESS_IMP_LESS_EQ_ADD1 = |- !a b. ~a < b ==> b <= (a + 1) NOT_ADD_LESS = |- !m n. ~(m + n) < n ADD_EQ_LESS_EQ = |- !m n p. (m + n = p) ==> m <= p SUC_LESS_N_LESS = |- !m n. (m + 1) < n ==> m < n Theorem LESS_ADD_SUC autoloading from theory `arithmetic` ... LESS_ADD_SUC = |- !m n. m < (m + (SUC n)) LESS_ADD1 = |- !a. a < (a + 1) () : void File add loaded () : void #rm -f zero_ineq.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `zero`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void [(); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); ()] : void list Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n Theorem LESS_EQ_LESS_TRANS autoloading from theory `arithmetic` ... LESS_EQ_LESS_TRANS = |- !m n p. m <= n /\ n < p ==> m < p M_LESS_0_LESS = |- !m n. m < n ==> 0 < n Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem LESS_LEMMA1 autoloading from theory `prim_rec` ... LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < n Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 LESS1EQ0 = |- !m. m < 1 = (m = 0) Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m NOT_EQ_0 = |- !m. ~(m = 0) ==> m >= 1 Theorem LESS_0_CASES autoloading from theory `arithmetic` ... LESS_0_CASES = |- !m. (0 = m) \/ 0 < m Theorem NOT_LESS_EQUAL autoloading from theory `arithmetic` ... NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) LESS_EQ_0_EQ = |- !m. m <= 0 ==> (m = 0) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n GREATER_NOT_ZERO = |- !x. 0 < x ==> ~(x = 0) NOT_0_AND_MORE = |- !x. ~((x = 0) /\ 0 < x) () : void File zero loaded () : void #rm -f sub.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `sub`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theory add loaded () : void Theory zero_ineq loaded () : void Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n NUM_LESS_EQ_PLUS_CONV = - : (term -> conv) NUM_EQ_PLUS_CONV = - : (term -> conv) NUM_LESS_PLUS_CONV = - : (term -> conv) File num_convs loaded () : void [(); (); (); (); (); ()] : void list Theorem PRE autoloading from theory `prim_rec` ... PRE = |- (PRE 0 = 0) /\ (!m. PRE(SUC m) = m) Theorem SUB_MONO_EQ autoloading from theory `arithmetic` ... SUB_MONO_EQ = |- !n m. (SUC n) - (SUC m) = n - m Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 SUB_SUC_PRE_SUB = |- !n m. 0 < n ==> (n - (SUC m) = (PRE n) - m) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem ADD_SUC autoloading from theory `arithmetic` ... ADD_SUC = |- !m n. SUC(m + n) = m + (SUC n) ADD_SUC = |- SUC(m + n) = m + (SUC n) Definition SUB autoloading from theory `arithmetic` ... SUB = |- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n))) Theorem LESS_SUC_NOT autoloading from theory `arithmetic` ... LESS_SUC_NOT = |- !m n. m < n ==> ~n < (SUC m) SUB_SUC = |- !k m. m < k ==> (k - m = SUC(k - (SUC m))) Theorem SUB_ADD autoloading from theory `arithmetic` ... SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m) SUB_LESS_TO_LESS_ADDR = |- !m n p. p <= m ==> ((m - p) < n = m < (n + p)) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m SUB_LESS_TO_LESS_ADDL = |- !m n p. n <= m ==> ((m - n) < p = m < (n + p)) LESS_SUB_TO_ADDR_LESS = |- !m n p. p <= m ==> (n < (m - p) = (n + p) < m) LESS_SUB_TO_ADDL_LESS = |- !m n p. n <= m ==> (p < (m - n) = (n + p) < m) SUC_SUB = |- !m n. (m < n ==> ((SUC m) - n = 0)) /\ (~m < n ==> ((SUC m) - n = SUC(m - n))) Theorem SUB_LESS_EQ autoloading from theory `arithmetic` ... SUB_LESS_EQ = |- !n m. (n - m) <= n LESS_SUB_BOUND = |- !k l. k < l ==> (l - k) <= l Theorem LESS_IMP_LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_IMP_LESS_OR_EQ = |- !m n. m < n ==> m <= n SUB_SUB_ID = |- !k l. l < k ==> (k - (k - l) = l) Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) Theorem SUB_EQ_0 autoloading from theory `arithmetic` ... SUB_EQ_0 = |- !m n. (m - n = 0) = m <= n Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m LESS_SUB_IMP_INV = |- !k l. 0 < (k - l) ==> l < k Theorem ADDL_GREATER_EQ autoloading from theory `add` ... ADDL_GREATER_EQ = |- !m n p. m <= n ==> m <= (p + n) Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) LESS_EQ_ADD_SUB1 = |- !m n p. p <= n ==> (m + (n - p) = (m + n) - p) LESS_EQ_SUB_ADD = |- !m n p. p <= m ==> ((m - p) + n = (m + n) - p) Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n GREATER_EQ_SUB_LESS_TO_ADD = |- !n m p. p >= n ==> ((p - n) < m = p < (n + m)) SUB_GREATER_EQ_ADD = |- !n m p. p >= n ==> ((p - n) >= m = p >= (n + m)) SUB_LE_ADD = |- !n m p. n <= p ==> (m <= (p - n) = (n + m) <= p) Theorem LESS_EQ_ANTISYM autoloading from theory `arithmetic` ... LESS_EQ_ANTISYM = |- !m n. ~(m < n /\ n <= m) NOT_SUB_0 = |- !m n. m < n ==> ~(n - m = 0) NOT_0_SUB = |- !m n. ~(m - n = 0) ==> ~(m = 0) Theorem NOT_EQ_0 autoloading from theory `zero_ineq` ... NOT_EQ_0 = |- !m. ~(m = 0) ==> m >= 1 Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 SUB_1_LESS = |- !m n. ~(m = 0) /\ m < (SUC n) ==> (m - 1) < n Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m SUB_1_LESS_EQ = |- !m n. m < n ==> (n - 1) >= m ADD_LESS_EQ_SUB = |- !n m p. n <= p ==> ((n + m) <= p = m <= (p - n)) PRE_SUB_SUC = |- !m n. m < n ==> (PRE(n - m) = n - (SUC m)) Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 LESS_PRE = |- !i m. i < (m - 1) ==> i < m Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n PRE_LESS_LESS_SUC = |- !i m. i < (m - 1) /\ 0 < m ==> (i + 1) < m Theorem SUC_0 autoloading from theory `suc` ... SUC_0 = |- 1 = SUC 0 Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem SUB_PLUS autoloading from theory `arithmetic` ... SUB_PLUS = |- !a b c. a - (b + c) = (a - b) - c SUB_PRE_SUB_1 = |- !a b. 0 < b ==> ((a - (PRE b)) - 1 = a - b) LESS_SUB_IMP_SUM_LESS = |- !i m. i < (m - 1) /\ 1 < m ==> (i + 1) < m Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 SUB_SELF = |- !c. c - c = 0 Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a + c) - c = a ADD_SUB_SYM = |- !a c. (c + a) - c = a SUB_ADD_SELF = |- !m n. ~m < n ==> ((m - n) + n = m) Theorem LESS_ANTISYM autoloading from theory `arithmetic` ... LESS_ANTISYM = |- !m n. ~(m < n /\ n < m) Theorem ADD_MONO_LESS autoloading from theory `add` ... ADD_MONO_LESS = |- !m n p. (m + p) < (m + n) = p < n Theorem LESS_MONO_ADD autoloading from theory `arithmetic` ... LESS_MONO_ADD = |- !m n p. m < n ==> (m + p) < (n + p) Theorem NOT_LESS_EQUAL autoloading from theory `arithmetic` ... NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m Definition GREATER autoloading from theory `arithmetic` ... GREATER = |- !m n. m > n = n < m SMALLER_SUM = |- !m n p. m < p /\ n < p ==> ~((m + n) - p) > m Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) NOT_LESS_SUB = |- !m n. ~m < (m - n) SUB_BOTH_SIDES = |- !m n p. (m = n) ==> (m - p = n - p) Theorem LESS_EQ_LESS_TRANS autoloading from theory `arithmetic` ... LESS_EQ_LESS_TRANS = |- !m n p. m <= n /\ n < p ==> m < p SUB_LESS_BOTH_SIDES = |- !m n p. p <= m /\ m < n ==> (m - p) < (n - p) Theorem LESS_LESS_MONO autoloading from theory `add` ... LESS_LESS_MONO = |- !m n p q. m < p /\ n < q ==> (m + n) < (p + q) LESS_TWICE_IMP_LESS_SUB = |- !a b m. a < m /\ b < m /\ m <= (a + b) ==> ((a + b) - m) < m Theorem SUB_LESS_OR autoloading from theory `arithmetic` ... SUB_LESS_OR = |- !m n. n < m ==> n <= (m - 1) Theorem OR_LESS autoloading from theory `arithmetic` ... OR_LESS = |- !m n. (SUC m) <= n ==> m < n Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m SUB_LESS_EQ_SUB_SUC = |- !a b c n. 0 < c /\ a <= (b - n) ==> (a - c) <= (b - (SUC n)) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p SUB_EQ_SUB_ADD_SUB = |- !a b c. a <= b /\ b <= c ==> (c - a = (c - b) + (b - a)) Theorem ADD_EQ_SUB autoloading from theory `arithmetic` ... ADD_EQ_SUB = |- !m n p. n <= p ==> ((m + n = p) = (m = p - n)) ADD_EQ_IMP_SUB_EQ = |- !a b c. (a = b + c) ==> (a - b = c) Theorem LESS_0_CASES autoloading from theory `arithmetic` ... LESS_0_CASES = |- !m. (0 = m) \/ 0 < m SUB_GREATER_0 = |- !a b. a < b ==> (b - a) > 0 Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m LESS_EQ_SUB_1 = |- !a b. a <= b ==> (a - 1) <= (b - 1) SUB_LESS_EQ_SUB1 = |- !x. x > 0 ==> (!a. (a - x) <= (a - 1)) () : void File sub loaded () : void #rm -f mult.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mult`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theorem LESS_MONO_MULT autoloading from theory `arithmetic` ... LESS_MONO_MULT = |- !m n p. m <= n ==> (m * p) <= (n * p) Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m LESS_MONO_MULT1 = |- !m n p. m <= n ==> (p * m) <= (p * n) Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem LESS_EQ_LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_LESS_EQ_MONO = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Theorem INDUCTION autoloading from theory `num` ... INDUCTION = |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n) LESS_MULT_PLUS_DIFF = |- !n k l. k < l ==> ((k * n) + n) <= (l * n) Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem TIMES2 autoloading from theory `arithmetic` ... TIMES2 = |- !n. 2 * n = n + n Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) ONE_LESS_TWO_EXP_SUC = |- !n. 1 < (2 EXP (SUC n)) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 NOT_MULT_LESS_0 = |- !m n. 0 < m /\ 0 < n ==> 0 < (m * n) EXP1 = |- !n. n EXP 1 = n Theorem ZERO_LESS_EXP autoloading from theory `arithmetic` ... ZERO_LESS_EXP = |- !m n. 0 < ((SUC n) EXP m) ZERO_LESS_TWO_EXP = |- !n. 0 < (2 EXP n) Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) ONE_LESS_EQ_TWO_EXP = |- !n. 1 <= (2 EXP n) () : void File mult loaded () : void #rm -f odd_even.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `odd_even`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Definition EVEN autoloading from theory `arithmetic` ... EVEN = |- (EVEN 0 = T) /\ (!n. EVEN(SUC n) = ~EVEN n) Definition ODD autoloading from theory `arithmetic` ... ODD = |- (ODD 0 = F) /\ (!n. ODD(SUC n) = ~ODD n) EVEN_ODD_0 = |- EVEN 0 /\ ~ODD 0 NOT_EVEN_ODD_SUC_EVEN_ODD = |- !n. (~EVEN(SUC n) = EVEN n) /\ (~ODD(SUC n) = ODD n) Theorem EVEN_ODD autoloading from theory `arithmetic` ... EVEN_ODD = |- !n. EVEN n = ~ODD n Theorem ODD_EVEN autoloading from theory `arithmetic` ... ODD_EVEN = |- !n. ODD n = ~EVEN n EVEN_ODD_SUC = |- !n. (EVEN(SUC n) = ODD n) /\ (ODD(SUC n) = EVEN n) Theorem ODD_ADD autoloading from theory `arithmetic` ... ODD_ADD = |- !m n. ODD(m + n) = ~(ODD m = ODD n) Theorem EVEN_ADD autoloading from theory `arithmetic` ... EVEN_ADD = |- !m n. EVEN(m + n) = (EVEN m = EVEN n) EVEN_ODD_PLUS_CASES = |- !n m. (ODD n /\ ODD m ==> EVEN(n + m)) /\ (ODD n /\ EVEN m ==> ODD(n + m)) /\ (EVEN n /\ EVEN m ==> EVEN(n + m)) Theorem EVEN_MULT autoloading from theory `arithmetic` ... EVEN_MULT = |- !m n. EVEN(m * n) = EVEN m \/ EVEN n EVEN_IMPL_MULT = |- !n m. EVEN n \/ EVEN m ==> EVEN(n * m) Theorem ODD_MULT autoloading from theory `arithmetic` ... ODD_MULT = |- !m n. ODD(m * n) = ODD m /\ ODD n ODD_IMPL_MULT = |- !n m. ODD n /\ ODD m ==> ODD(n * m) MULT_ODD = |- !n m. ODD(n * m) ==> ODD n /\ ODD m MULT_EVEN = |- !n m. EVEN(n * m) ==> EVEN n \/ EVEN m () : void File odd_even loaded () : void #rm -f min_max.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `minmax`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void MAX_DEF = |- !n p. MAX n p = (n <= p => p | n) Theorem ZERO_LESS_EQ autoloading from theory `arithmetic` ... ZERO_LESS_EQ = |- !n. 0 <= n MAX_0 = |- !n. MAX 0 n = n Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) MAX_SYM = |- !n p. MAX n p = MAX p n MAX_REFL = |- !n. MAX n n = n Theorem LESS_EQ_SUC_REFL autoloading from theory `arithmetic` ... LESS_EQ_SUC_REFL = |- !m. m <= (SUC m) MAX_SUC = |- !n. MAX n(SUC n) = SUC n Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m SUC_MAX = |- !n p. MAX(SUC n)(SUC p) = SUC(MAX n p) MIN_DEF = |- !n p. MIN n p = (n <= p => n | p) MIN_0 = |- !n. MIN 0 n = 0 MIN_SYM = |- !n p. MIN n p = MIN p n MIN_REFL = |- !n. MIN n n = n MIN_SUC = |- !n. MIN n(SUC n) = n SUC_MIN = |- !n p. MIN(SUC n)(SUC p) = SUC(MIN n p) () : void File minmax loaded () : void #rm -f div_mod.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `div_mod`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool 0 : int () : void Theorem LESS_MOD autoloading from theory `arithmetic` ... LESS_MOD = |- !n k. k < n ==> (k MOD n = k) Theorem SUC_LESS autoloading from theory `prim_rec` ... SUC_LESS = |- !m n. (SUC m) < n ==> m < n SUC_MOD = |- !n m. (SUC n) < m ==> ((SUC n) MOD m = SUC(n MOD m)) Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 NOT_MULT_LESS_0 = |- !m n. 0 < m /\ 0 < n ==> 0 < (m * n) Theorem MOD_TIMES autoloading from theory `arithmetic` ... MOD_TIMES = |- !n. 0 < n ==> (!q r. ((q * n) + r) MOD n = r MOD n) Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Theorem MOD_MULT autoloading from theory `arithmetic` ... MOD_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) MOD n = r) Theorem DA autoloading from theory `arithmetic` ... DA = |- !k n. 0 < n ==> (?r q. (k = (q * n) + r) /\ r < n) MOD_MULT_MOD = |- !m n. 0 < n /\ 0 < m ==> (!x. (x MOD (n * m)) MOD n = x MOD n) MULT_LEFT_1 = |- !m. 1 * m = m MULT_RIGHT_1 = |- !m. m * 1 = m Theorem DIV_MULT autoloading from theory `arithmetic` ... DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) Theorem ADD_0 autoloading from theory `arithmetic` ... ADD_0 = |- !m. m + 0 = m MULT_DIV = |- !n q. 0 < n ==> ((q * n) DIV n = q) DIV_ONE = |- !q. q DIV (SUC 0) = q Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) Definition MULT autoloading from theory `arithmetic` ... MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) LESS_DIV_EQ_ZERO = |- !r n. r < n ==> (r DIV n = 0) Theorem MOD_EQ_0 autoloading from theory `arithmetic` ... MOD_EQ_0 = |- !n. 0 < n ==> (!k. (k * n) MOD n = 0) SUC_MOD_SELF = |- !n. (SUC n) MOD (SUC n) = 0 Definition DIVISION autoloading from theory `arithmetic` ... DIVISION = |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n) Theorem MULT_SUC_EQ autoloading from theory `arithmetic` ... MULT_SUC_EQ = |- !p m n. (n * (SUC p) = m * (SUC p)) = (n = m) SUC_DIV_SELF = |- !n. (SUC n) DIV (SUC n) = 1 Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m ADD_DIV_SUC_DIV = |- !n. 0 < n ==> (!r. (n + r) DIV n = SUC(r DIV n)) Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) ADD_DIV_ADD_DIV = |- !n. 0 < n ==> (!x r. ((x * n) + r) DIV n = x + (r DIV n)) Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) SUC_DIV_CASES = |- !n. 0 < n ==> (!x. ((SUC x) DIV n = x DIV n) \/ ((SUC x) DIV n = SUC(x DIV n))) Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n Less_lemma = |- !m n. m < n ==> (?p. (n = m + p) /\ 0 < p) Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) LESS_MONO_DIV = |- !n. 0 < n ==> (!p q. p < q ==> (p DIV n) <= (q DIV n)) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m LESS_EQ_MONO_DIV = |- !n. 0 < n ==> (!p q. p <= q ==> (p DIV n) <= (q DIV n)) Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p Less_MULT_lemma = |- !r m p. 0 < p ==> r < m ==> r < (p * m) Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Less_MULT_ADD_lemma = |- !m n r r'. 0 < m /\ 0 < n /\ r < m /\ r' < n ==> ((r' * m) + r) < (n * m) Theorem ADD_INV_0_EQ autoloading from theory `arithmetic` ... ADD_INV_0_EQ = |- !m n. (m + n = m) = (n = 0) DIV_DIV_DIV_MULT = |- !m n. 0 < m /\ 0 < n ==> (!x. (x DIV m) DIV n = x DIV (m * n)) () : void File div_mod loaded () : void #rm -f more_arithmetic.th echo 'set_flag(`abort_when_fail`,true);;'\ 'loadt `mk_more_arithmetic`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void Theory ineq loaded () : void Theory pre loaded () : void Theory sub loaded () : void Theory mult loaded () : void Theory min_max loaded () : void Theory odd_even loaded () : void Theory div_mod loaded () : void () : void File mk_more_arithmetic loaded () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `num_convs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n NUM_LESS_EQ_PLUS_CONV = - : (term -> conv) NUM_EQ_PLUS_CONV = - : (term -> conv) NUM_LESS_PLUS_CONV = - : (term -> conv) Calling Lisp compiler File num_convs compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `num_tac`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void GEN_INDUCT_RULE = - : (thm -> thm -> thm) GEN_INDUCT_TAC = - : tactic Calling Lisp compiler File num_tac compiled () : void #===> library more_arithmetic rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/more_arithmetic' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' echo 'set_flag(`abort_when_fail`,true);;' \ 'loadt `numeral_theory`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool false : bool () : void def_buffer = "T" : term new_defn = - : (string list -> thm) define = - : (term -> void) File define loaded () : void Theorem LESS_0 autoloading from theory `prim_rec` ... LESS_0 = |- !n. 0 < (SUC n) Theorem NOT_SUC autoloading from theory `num` ... NOT_SUC = |- !n. ~(SUC n = 0) Theorem NOT_LESS_0 autoloading from theory `prim_rec` ... NOT_LESS_0 = |- !n. ~n < 0 NOT_0_IMP_0_LESS = |- !n. ~(n = 0) = 0 < n Theorem LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) LESS_OR_EQ_IMP_LESS_OR_EQ_ADD = |- !m n p. m <= n ==> m <= (n + p) Theorem LESS_EQ_MONO autoloading from theory `arithmetic` ... LESS_EQ_MONO = |- !n m. (SUC n) <= (SUC m) = n <= m Definition ADD autoloading from theory `arithmetic` ... ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) Definition MULT autoloading from theory `arithmetic` ... MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m MULT_NONNEG_MONO_LESS_OR_EQ = |- !m n. 0 < m ==> n <= (m * n) Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p ADDR_GREATER = |- !m n p. m < n ==> m < (n + p) ADDL_GREATER = |- !m n p. m < n ==> m < (p + n) Theorem LENGTH_APPEND autoloading from theory `list` ... LENGTH_APPEND = |- !l1 l2. LENGTH(APPEND l1 l2) = (LENGTH l1) + (LENGTH l2) Theorem LENGTH_SNOC autoloading from theory `list` ... LENGTH_SNOC = |- !x l. LENGTH(SNOC x l) = SUC(LENGTH l) Theorem LENGTH_REVERSE autoloading from theory `list` ... LENGTH_REVERSE = |- !l. LENGTH(REVERSE l) = LENGTH l Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) LENGTH_CLAUSES = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) /\ (!x l. LENGTH(SNOC x l) = SUC(LENGTH l)) /\ (!l1 l2. LENGTH(APPEND l1 l2) = (LENGTH l1) + (LENGTH l2)) /\ (!l. LENGTH(REVERSE l) = LENGTH l) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Theorem LESS_EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_EQ_MONO_ADD_EQ = |- !m n p. (m + p) <= (n + p) = m <= n Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) Theorem LESS_ADD_1 autoloading from theory `arithmetic` ... LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1)) LESS_MULT_PLUS_DIFF = |- !n k l. k < l ==> ((k * n) + n) <= (l * n) Theorem LAST autoloading from theory `list` ... LAST = |- !x l. LAST(SNOC x l) = x Theorem BUTLAST autoloading from theory `list` ... BUTLAST = |- !x l. BUTLAST(SNOC x l) = l Theorem NULL autoloading from theory `list` ... NULL = |- NULL[] /\ (!h t. ~NULL(CONS h t)) Theorem SNOC_INDUCT autoloading from theory `list` ... SNOC_INDUCT = |- !P. P[] /\ (!l. P l ==> (!x. P(SNOC x l))) ==> (!l. P l) SNOC_BUTLAST = |- !l. ~NULL l ==> (SNOC(LAST l)(BUTLAST l) = l) Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p LESS_LESS_MONO = |- !m n p q. m < p /\ n < q ==> (m + n) < (p + q) Theorem LESS_EQ_REFL autoloading from theory `arithmetic` ... LESS_EQ_REFL = |- !m. m <= m Theorem LESS_EQUAL_ANTISYM autoloading from theory `arithmetic` ... LESS_EQUAL_ANTISYM = |- !n m. n <= m /\ m <= n ==> (n = m) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m NOT_EQ_LESS_EQ = |- !a b. ~(a = b) = a < b \/ b < a Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n GREATER_NOT_ZERO = |- !x. 0 < x ==> ~(x = 0) Theorem NOT_LESS_EQUAL autoloading from theory `arithmetic` ... NOT_LESS_EQUAL = |- !m n. ~m <= n = n < m LESS_IS_NOT_LESS_OR_EQ = |- !x y. x < y = ~y <= x Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Definition REPLICATE autoloading from theory `list` ... REPLICATE = |- (!x. REPLICATE 0 x = []) /\ (!n x. REPLICATE(SUC n)x = CONS x(REPLICATE n x)) Theorem LENGTH_REPLICATE autoloading from theory `list` ... LENGTH_REPLICATE = |- !n x. LENGTH(REPLICATE n x) = n LENGTH_REPLICATE = |- !n e. LENGTH(REPLICATE n e) = n Definition ALL_EL autoloading from theory `list` ... ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) EVERY_REPLICATE = |- !n e. ALL_EL($= e)(REPLICATE n e) () : void IS_NORMALIZED = |- !digits. IS_NORMALIZED digits = (digits = []) \/ 0 < (HD digits) IS_NORMALIZED_NIL = |- IS_NORMALIZED[] Theorem NOT_CONS_NIL autoloading from theory `list` ... NOT_CONS_NIL = |- !h t. ~(CONS h t = []) Definition HD autoloading from theory `list` ... HD = |- !h t. HD(CONS h t) = h IS_NORMALIZED_CONS = |- !e l. IS_NORMALIZED(CONS e l) = 0 < e () : void IS_BASEN = |- !radix digits. IS_BASEN radix digits = ALL_EL($> radix)digits IS_BASEN_NIL = |- !r. IS_BASEN r[] Definition GREATER autoloading from theory `arithmetic` ... GREATER = |- !m n. m > n = n < m IS_BASEN_CONS = |- !r l e. IS_BASEN r(CONS e l) = e < r /\ IS_BASEN r l IS_BASEN_CONS_IMP_LESS = |- !r l e. 1 < r ==> IS_BASEN r(CONS e l) ==> e < r IS_BASEN_CONS_IMP_IS_BASEN = |- !r l e. 1 < r ==> IS_BASEN r(CONS e l) ==> IS_BASEN r l Theorem list_Axiom autoloading from theory `list` ... list_Axiom = |- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t) BASEN = |- (!radix. BASEN radix[] = 0) /\ (!radix digit digits. BASEN radix(CONS digit digits) = (digit * (radix EXP (LENGTH digits))) + (BASEN radix digits)) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) BASEN_ZEROS = |- !r n. BASEN r(REPLICATE n 0) = 0 Theorem SUC_LESS autoloading from theory `prim_rec` ... SUC_LESS = |- !m n. (SUC m) < n ==> m < n Theorem ZERO_LESS_EXP autoloading from theory `arithmetic` ... ZERO_LESS_EXP = |- !m n. 0 < ((SUC n) EXP m) one_less_exp_lemma = . |- !m. 0 < (r EXP m) BASEN_EMPTY_EQ_0 = |- !r l. 1 < r ==> IS_NORMALIZED l ==> ((BASEN r l = 0) = (l = [])) BASEN_CONS_0 = |- !r l. BASEN r(CONS 0 l) = BASEN r l Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) BASEN_SNOC = |- !r e l. BASEN r(SNOC e l) = ((BASEN r l) * r) + e BASEN_DIGIT_EQ_DIGIT = |- !r e. BASEN r[e] = e BASEN_EXP_N = |- !r n. BASEN r(CONS 1(REPLICATE n 0)) = r EXP n BASEN_LESS_EXP_LENGTH = |- !r l. 1 < r ==> IS_BASEN r l ==> (BASEN r l) < (r EXP (LENGTH l)) Theorem SUB_LESS_OR autoloading from theory `arithmetic` ... SUB_LESS_OR = |- !m n. n < m ==> n <= (m - 1) BASEN_LESS_OR_EQ_EXP_LENGTH = |- !r l. 1 < r ==> IS_BASEN r l ==> (BASEN r l) <= ((r EXP (LENGTH l)) - 1) Theorem DIV_MULT autoloading from theory `arithmetic` ... DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) Theorem MOD_MULT autoloading from theory `arithmetic` ... MOD_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) MOD n = r) numeral_lemma = |- !r' n r q q'. r' < n ==> r < n ==> ((q * n) + r = (q' * n) + r') ==> (r = r') /\ (q = q') basen_and_eq_lemma = ..... |- (BASEN r l1 = BASEN r l2) /\ (h = h') Theorem CONS_11 autoloading from theory `list` ... CONS_11 = |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t') Theorem SUC_NOT autoloading from theory `arithmetic` ... SUC_NOT = |- !n. ~(0 = SUC n) Theorem list_INDUCT autoloading from theory `list` ... list_INDUCT = |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l) BASEN_11 = |- !r l1 l2. 1 < r ==> IS_BASEN r l1 ==> IS_BASEN r l2 ==> (LENGTH l1 = LENGTH l2) ==> (BASEN r l1 = BASEN r l2) ==> (l1 = l2) Theorem SUB_0 autoloading from theory `arithmetic` ... SUB_0 = |- !m. (0 - m = 0) /\ (m - 0 = m) Theorem SUB_MONO_EQ autoloading from theory `arithmetic` ... SUB_MONO_EQ = |- !n m. (SUC n) - (SUC m) = n - m BASEN_EXP_LESS_OR_EQ = |- !r l. 1 < r ==> ~NULL l ==> IS_NORMALIZED l ==> IS_BASEN r l ==> (r EXP ((LENGTH l) - 1)) <= (BASEN r l) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n BASEN_EXP_LESS = |- !r l. IS_BASEN r l ==> IS_NORMALIZED l ==> ~NULL l ==> 1 < r ==> ((r EXP ((LENGTH l) - 1)) - 1) < (BASEN r l) BASEN_ONTO = |- !r l. ?n. BASEN r l = n Theorem LEFT_ADD_DISTRIB autoloading from theory `arithmetic` ... LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) Theorem EXP_ADD autoloading from theory `arithmetic` ... EXP_ADD = |- !p q n. n EXP (p + q) = (n EXP p) * (n EXP q) Definition APPEND autoloading from theory `list` ... APPEND = |- (!l. APPEND[]l = l) /\ (!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2)) BASEN_APPEND = |- !r l m. BASEN r(APPEND l m) = ((r EXP (LENGTH m)) * (BASEN r l)) + (BASEN r m) IS_BASEN_APPEND = |- !r l m. IS_BASEN r(APPEND l m) = IS_BASEN r l /\ IS_BASEN r m Theorem LESS_MOD autoloading from theory `arithmetic` ... LESS_MOD = |- !n k. k < n ==> (k MOD n = k) Theorem MOD_TIMES autoloading from theory `arithmetic` ... MOD_TIMES = |- !n. 0 < n ==> (!q r. ((q * n) + r) MOD n = r MOD n) Theorem LESS_MONO_EQ autoloading from theory `arithmetic` ... LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n Theorem num_CASES autoloading from theory `arithmetic` ... num_CASES = |- !m. (m = 0) \/ (?n. m = SUC n) Theorem SUC_SUB1 autoloading from theory `arithmetic` ... SUC_SUB1 = |- !m. (SUC m) - 1 = m Definition TL autoloading from theory `list` ... TL = |- !h t. TL(CONS h t) = t Theorem list_CASES autoloading from theory `list` ... list_CASES = |- !l. (l = []) \/ (?t h. l = CONS h t) BASEN_TRAILING = |- !r l. 1 < r ==> IS_BASEN r l ==> ~NULL l ==> (BASEN r(TL l) = (BASEN r l) MOD (r EXP ((LENGTH l) - 1))) Theorem SNOC_APPEND autoloading from theory `list` ... SNOC_APPEND = |- !x l. SNOC x l = APPEND l[x] BASEN_LEADING = |- !r l. 1 < r ==> IS_BASEN r l ==> ~NULL l ==> (BASEN r(BUTLAST l) = (BASEN r l) DIV r) Theorem LESS_EQ_EXISTS autoloading from theory `arithmetic` ... LESS_EQ_EXISTS = |- !m n. m <= n = (?p. n = m + p) Theorem LESS_THM autoloading from theory `prim_rec` ... LESS_THM = |- !m n. m < (SUC n) = (m = n) \/ m < n NORMALIZED_LENGTHS_LEMMA = |- !l1 l2 r. ~(1 < r /\ IS_BASEN r l1 /\ IS_BASEN r l2 /\ IS_NORMALIZED l1 /\ IS_NORMALIZED l2 /\ (BASEN r l1 = BASEN r l2) /\ (LENGTH l1) < (LENGTH l2)) NORMALIZED_LENGTHS = |- !l1 l2 r. 1 < r ==> IS_BASEN r l1 ==> IS_BASEN r l2 ==> IS_NORMALIZED l1 ==> IS_NORMALIZED l2 ==> (BASEN r l1 = BASEN r l2) ==> (LENGTH l1 = LENGTH l2) NORMALIZED_BASEN_11 = |- !l1 l2 r. 1 < r ==> IS_BASEN r l1 ==> IS_BASEN r l2 ==> IS_NORMALIZED l1 ==> IS_NORMALIZED l2 ==> (BASEN r l1 = BASEN r l2) ==> (l1 = l2) Definition DIVISION autoloading from theory `arithmetic` ... DIVISION = |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n) div_mod_lemma = . |- (n = ((n DIV (r EXP m)) * (r EXP m)) + (n MOD (r EXP m))) /\ (n MOD (r EXP m)) < (r EXP m) BASEN_ONTO_MOD_LEMMA = |- !m n r. ?l. 1 < r ==> n < (r EXP m) ==> (LENGTH l = m) /\ (n = BASEN r l) BASEN_MOD_ONTO_LEMMA = |- !n m r. ?l. 1 < r ==> (LENGTH l = n) /\ (BASEN r l = m MOD (r EXP n)) BASEN_DIGITS_EXISTS = |- ?f. !n m r. 1 < r ==> (LENGTH(f r n m) = n) /\ (BASEN r(f r n m) = m MOD (r EXP n)) BASEN_DIGITS = |- !n m r. 1 < r ==> (LENGTH(BASEN_DIGITS r n m) = n) /\ (BASEN r(BASEN_DIGITS r n m) = m MOD (r EXP n)) SELECT_TAC = - : tactic EXP_1 = |- !r. r EXP 1 = r MULT_POS_MONO = |- !m n. 0 < n ==> m <= (m * n) POS_EXP_POS = |- !r x. 0 < r ==> 0 < x ==> r <= (r EXP x) LESS_LEMMA1 = |- !m n. m < (SUC n) ==> (m = n) \/ m < n LESS_MONO_REV = |- !m n. (SUC m) < (SUC n) ==> m < n Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) MULT_LESS_MULT = |- !m n p q. m < n ==> p < q ==> (m * p) < (n * q) MULT_POS_STRICT_MONO = |- !m n p. n < p ==> n < ((SUC m) * p) Theorem LESS_EXP_SUC_MONO autoloading from theory `arithmetic` ... LESS_EXP_SUC_MONO = |- !n m. ((SUC(SUC m)) EXP n) < ((SUC(SUC m)) EXP (SUC n)) EXP_LESS_EXP = |- !m n n'. 1 < m ==> n < n' ==> (m EXP n) < (m EXP n') EXP_2_STRICT_MONO = |- !m n. 1 < m ==> 1 < n ==> m < (m EXP n) NUM_CASES_DISJ = |- !n m. m < n \/ (m = n) \/ n < m Theorem LESS_MULT_MONO autoloading from theory `arithmetic` ... LESS_MULT_MONO = |- !m i n. ((SUC n) * m) < ((SUC n) * i) = m < i MULT_POS_STRICT_MONO2 = |- !m n1 n2. 0 < m ==> ((m * n1) < (m * n2) = n1 < n2) () : void LOG = |- !r n. LOG r n = (@x. (r EXP x) <= n /\ n < (r EXP (x + 1))) Theorem LESS_OR autoloading from theory `arithmetic` ... LESS_OR = |- !m n. m < n ==> (SUC m) <= n Theorem LESS_0_CASES autoloading from theory `arithmetic` ... LESS_0_CASES = |- !m. (0 = m) \/ 0 < m LOG_1 = |- !r. 1 < r ==> (LOG r 1 = 0) () : void File numeral_theory loaded () : void #rm -f dummy.th echo 'set_flag(`abort_when_fail`,true);;' \ 'new_theory `dummy`;;' \ 'load_library `reduce`;;' \ 'new_parent `numeral`;;' \ 'let t = `numeral` in do' \ 'map (\s. autoload_theory(`definition`,t,fst s)) (definitions t);' \ 'map (\s. autoload_theory(`theorem`,t,fst s)) (theorems t);;' \ 'compilet `numeral_rules`;;' \ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void Loading library reduce ... Extending help search path. Loading boolean conversions........ Loading arithmetic conversions.................. Loading general conversions, rule and tactic..... Library reduce loaded. () : void Theory numeral loaded () : void [(); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); (); ()] : void list Theorem LESS_EQ_ADD autoloading from theory `arithmetic` ... LESS_EQ_ADD = |- !m n. m <= (m + n) Theorem ADD_ASSOC autoloading from theory `arithmetic` ... ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p Theorem LESS_EQ_EXISTS autoloading from theory `arithmetic` ... LESS_EQ_EXISTS = |- !m n. m <= n = (?p. n = m + p) ADDR_GREATER_EQ = |- !m n p. m <= n ==> m <= (n + p) Theorem LESS_ANTISYM autoloading from theory `arithmetic` ... LESS_ANTISYM = |- !m n. ~(m < n /\ n < m) NOT_LESS_AND_GREATER = |- !n m. n < m ==> ~m < n Theorem LESS_MONO_ADD_EQ autoloading from theory `arithmetic` ... LESS_MONO_ADD_EQ = |- !m n p. (m + p) < (n + p) = m < n Theorem ADD_SYM autoloading from theory `arithmetic` ... ADD_SYM = |- !m n. m + n = n + m ADD_MONO_LESS = |- !m n p. (m + p) < (m + n) = p < n Theorem ADD_SUB autoloading from theory `arithmetic` ... ADD_SUB = |- !a c. (a + c) - c = a ADD_EQ_IMP_SUB_EQ = |- !a b c. (a = b + c) ==> (a - b = c) radices = [10; 16] : int list max = - : (int -> int -> int) max_radix = 16 : int () : void upto = - : (int -> int list) zero_upto = - : (int -> int list) lengthen = - : (* -> int -> * list -> * list) listify = - : (* -> * list) firstn = - : (int -> * list -> * list) butfirstn = - : (int -> * list -> * list) absolute_value = - : (int -> int) mk_binary_comb = - : (term -> term -> term -> term) dest_unary_comb = - : (term -> term -> term) dest_binary_comb = - : (term -> term -> (term # term)) mk_term_list = - : ((string # type) -> int -> term list) Definition SNOC autoloading from theory `list` ... SNOC = |- (!x. SNOC x[] = [x]) /\ (!x x' l. SNOC x(CONS x' l) = CONS x'(SNOC x l)) CONS_OF_SNOC_CONV = - : conv SNOC_OF_CONS_CONV = - : conv Definition GREATER autoloading from theory `arithmetic` ... GREATER = |- !m n. m > n = n < m Theorem LESS_SUC autoloading from theory `prim_rec` ... LESS_SUC = |- !m n. m < n ==> m < (SUC n) Theorem LESS_SUC_REFL autoloading from theory `prim_rec` ... LESS_SUC_REFL = |- !n. n < (SUC n) Definition LENGTH autoloading from theory `list` ... LENGTH = |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t)) LENGTH_COMPARE_CONV = - : conv Theorem LESS_NOT_EQ autoloading from theory `prim_rec` ... LESS_NOT_EQ = |- !m n. m < n ==> ~(m = n) COMPARE_EQ_RULE = - : (thm -> thm) COMPARE_LT_RULE = - : (thm -> thm) Theorem NOT_LESS autoloading from theory `arithmetic` ... NOT_LESS = |- !m n. ~m < n = n <= m Definition LESS_OR_EQ autoloading from theory `arithmetic` ... LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n) COMPARE_LE_RULE = - : (thm -> thm) Theorem LESS_REFL autoloading from theory `prim_rec` ... LESS_REFL = |- !n. ~n < n COMPARE_GT_RULE = - : (thm -> thm) Theorem GREATER_EQ autoloading from theory `arithmetic` ... GREATER_EQ = |- !n m. n >= m = m <= n Definition GREATER_OR_EQ autoloading from theory `arithmetic` ... GREATER_OR_EQ = |- !m n. m >= n = m > n \/ (m = n) COMPARE_GE_RULE = - : (thm -> thm) LENGTH_EQ_CONV = - : conv is_lt = - : (term -> bool) LENGTH_LT_CONV = - : conv is_le = - : (term -> bool) LENGTH_LE_CONV = - : conv is_gt = - : (term -> bool) LENGTH_GT_CONV = - : conv is_ge = - : (term -> bool) LENGTH_GE_CONV = - : conv fast_num_CONV = - : conv Theorem LESS_TRANS autoloading from theory `arithmetic` ... LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p Theorem EQ_LESS autoloading from theory `prim_rec` ... EQ_LESS = |- !n. (SUC m = n) ==> m < n fast_GT_CONV = - : conv fast_LT_CONV = - : conv mk_basen = - : (term -> term list -> term) dest_basen = - : (term -> (term # term)) is_basen = - : (term -> bool) dest_unary_basen_comb = - : (term -> (term # term # term # term # term list)) dest_binary_basen_comb = - : (term -> (term # term # term # term # term list # term # term # term list)) numeral_of_int = - : ((int # int) -> int list) basen_of_numeral = - : ((int # int list) -> term) basen_of_int = - : ((int # int) -> term) numeral_of_basen = - : (term -> (int # int list)) int_of_numeral = - : ((int # int list) -> int) int_of_basen = - : (term -> int) Definition ALL_EL autoloading from theory `list` ... ALL_EL = |- (!P. ALL_EL P[] = T) /\ (!P x l. ALL_EL P(CONS x l) = P x /\ ALL_EL P l) Definition IS_BASEN autoloading from theory `numeral` ... IS_BASEN = |- !radix digits. IS_BASEN radix digits = ALL_EL($> radix)digits Theorem IS_BASEN_NIL autoloading from theory `numeral` ... IS_BASEN_NIL = |- !r. IS_BASEN r[] IS_BASEN_CONV = - : conv Theorem IS_NORMALIZED_CONS autoloading from theory `numeral` ... IS_NORMALIZED_CONS = |- !e l. IS_NORMALIZED(CONS e l) = 0 < e Theorem IS_NORMALIZED_NIL autoloading from theory `numeral` ... IS_NORMALIZED_NIL = |- IS_NORMALIZED[] IS_NORMALIZED_CONV = - : conv Theorem BASEN_CONS_0 autoloading from theory `numeral` ... BASEN_CONS_0 = |- !r l. BASEN r(CONS 0 l) = BASEN r l ONCE_BASEN_NORMALIZE_CONV = - : conv BASEN_NORMALIZE_CONV = - : conv ONCE_BASEN_DENORMALIZE_CONV = - : conv BASEN_DENORMALIZE_CONV = - : (int -> conv) Theorem ADD_CLAUSES autoloading from theory `arithmetic` ... ADD_CLAUSES = |- (0 + m = m) /\ (m + 0 = m) /\ ((SUC m) + n = SUC(m + n)) /\ (m + (SUC n) = SUC(m + n)) Theorem MULT_CLAUSES autoloading from theory `arithmetic` ... MULT_CLAUSES = |- !m n. (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n)) Theorem LESS_MONO_MULT autoloading from theory `arithmetic` ... LESS_MONO_MULT = |- !m n p. m <= n ==> (m * p) <= (n * p) Theorem LESS_EQ autoloading from theory `arithmetic` ... LESS_EQ = |- !m n. m < n = (SUC m) <= n Definition MULT autoloading from theory `arithmetic` ... MULT = |- (!n. 0 * n = 0) /\ (!m n. (SUC m) * n = (m * n) + n) Theorem BASEN_LESS_EXP_LENGTH autoloading from theory `numeral` ... BASEN_LESS_EXP_LENGTH = |- !r l. 1 < r ==> IS_BASEN r l ==> (BASEN r l) < (r EXP (LENGTH l)) Theorem LESS_LESS_EQ_TRANS autoloading from theory `arithmetic` ... LESS_LESS_EQ_TRANS = |- !m n p. m < n /\ n <= p ==> m < p Definition BASEN autoloading from theory `numeral` ... BASEN = |- (!radix. BASEN radix[] = 0) /\ (!radix digit digits. BASEN radix(CONS digit digits) = (digit * (radix EXP (LENGTH digits))) + (BASEN radix digits)) BASEN_COMPARE_CONV = - : conv BASEN_EQ_CONV = - : conv BASEN_LT_CONV = - : conv BASEN_LE_CONV = - : conv BASEN_GT_CONV = - : conv BASEN_GE_CONV = - : conv Theorem ADD_SUC autoloading from theory `arithmetic` ... ADD_SUC = |- !m n. SUC(m + n) = m + (SUC n) fast_add = - : (int -> int -> thm) fast_add_with_carry = - : (int -> int -> int -> thm) fast_mul_with_carry = - : (int -> int -> int -> thm) Theorem MOD_TIMES autoloading from theory `arithmetic` ... MOD_TIMES = |- !n. 0 < n ==> (!q r. ((q * n) + r) MOD n = r MOD n) Definition DIVISION autoloading from theory `arithmetic` ... DIVISION = |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\ (k MOD n) < n) Theorem EQ_MONO_ADD_EQ autoloading from theory `arithmetic` ... EQ_MONO_ADD_EQ = |- !m n p. (m + p = n + p) = (m = n) Theorem RIGHT_ADD_DISTRIB autoloading from theory `arithmetic` ... RIGHT_ADD_DISTRIB = |- !m n p. (m + n) * p = (m * p) + (n * p) Theorem DIV_UNIQUE autoloading from theory `arithmetic` ... DIV_UNIQUE = |- !n k q. (?r. (k = (q * n) + r) /\ r < n) ==> (k DIV n = q) Theorem MOD_MULT autoloading from theory `arithmetic` ... MOD_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) MOD n = r) Theorem DIV_MULT autoloading from theory `arithmetic` ... DIV_MULT = |- !n r. r < n ==> (!q. ((q * n) + r) DIV n = q) fast_div_mod = - : (int -> int -> (thm # thm)) basen_add_basecase = |- !r. ((BASEN r[]) + (BASEN r[]) = BASEN r[0]) /\ (LENGTH[] = LENGTH[]) /\ (LENGTH[] = LENGTH[]) Theorem MULT_ASSOC autoloading from theory `arithmetic` ... MULT_ASSOC = |- !m n p. m * (n * p) = (m * n) * p Definition EXP autoloading from theory `arithmetic` ... EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP (SUC n) = m * (m EXP n)) basen_add_step_lemma = |- !r. 0 < r ==> (!x y xs ys z zs. ((BASEN r xs) + (BASEN r ys) = BASEN r(CONS z zs)) /\ (LENGTH xs = LENGTH ys) /\ (LENGTH xs = LENGTH zs) ==> ((BASEN r(CONS x xs)) + (BASEN r(CONS y ys)) = BASEN r(CONS(((x + y) + z) DIV r)(CONS(((x + y) + z) MOD r)zs))) /\ (LENGTH(CONS x xs) = LENGTH(CONS y ys)) /\ (LENGTH(CONS x xs) = LENGTH(CONS(((x + y) + z) MOD r)zs))) PURE_BASEN_ADD_CONV = - : conv BASEN_ADD_CONV = - : conv Theorem ADD_0 autoloading from theory `arithmetic` ... ADD_0 = |- !m. m + 0 = m Theorem ADD1 autoloading from theory `arithmetic` ... ADD1 = |- !m. SUC m = m + 1 PURE_BASEN_SUC_CONV = - : conv BASEN_SUC_CONV = - : conv Theorem SUB_EQ_0 autoloading from theory `arithmetic` ... SUB_EQ_0 = |- !m n. (m - n = 0) = m <= n Theorem SUB_EQUAL_0 autoloading from theory `arithmetic` ... SUB_EQUAL_0 = |- !c. c - c = 0 BASEN_SUB_CONV = - : conv Theorem PRE_SUB1 autoloading from theory `arithmetic` ... PRE_SUB1 = |- !m. PRE m = m - 1 PURE_BASEN_PRE_CONV = - : conv BASEN_PRE_CONV = - : conv basen_mul_basecase = |- !r n. ((BASEN r[]) * (BASEN r[n]) = BASEN r[0]) /\ (LENGTH[] = LENGTH[]) Theorem MULT_SYM autoloading from theory `arithmetic` ... MULT_SYM = |- !m n. m * n = n * m Theorem BASEN_DIGIT_EQ_DIGIT autoloading from theory `numeral` ... BASEN_DIGIT_EQ_DIGIT = |- !r e. BASEN r[e] = e basen_mul_step_lemma = |- !r. (0 < r = T) ==> (!n x xs y ys. ((BASEN r xs) * (BASEN r[n]) = BASEN r(CONS y ys)) /\ (LENGTH xs = LENGTH ys) ==> ((BASEN r(CONS x xs)) * (BASEN r[n]) = BASEN r(CONS(((n * x) + y) DIV r)(CONS(((n * x) + y) MOD r)ys))) /\ (LENGTH(CONS x xs) = LENGTH(CONS(((n * x) + y) MOD r)ys))) PURE_BASEN_MUL_BY_DIGIT_CONV = - : conv basen_mul_sum_basecase = |- !r x. BASEN r[BASEN r x] = BASEN r x basen_mul_sum_step_lemma = |- !r x1 x2 xs. BASEN r(CONS(BASEN r x1)(CONS(BASEN r x2)xs)) = BASEN r(CONS(((BASEN r x1) * r) + (BASEN r x2))xs) Theorem LEFT_ADD_DISTRIB autoloading from theory `arithmetic` ... LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n) Theorem BASEN_SNOC autoloading from theory `numeral` ... BASEN_SNOC = |- !r e l. BASEN r(SNOC e l) = ((BASEN r l) * r) + e basen_extend_mul_lemma = |- !x r y more_zs. (x * (BASEN r[y]) = BASEN r more_zs) ==> (!ys zs. (x * (BASEN r ys) = BASEN r zs) ==> (x * (BASEN r(SNOC y ys)) = BASEN r[BASEN r zs;BASEN r more_zs])) PURE_BASEN_MUL_EXTEND_RULE = - : (term -> thm -> thm) basen_mul_combine_pps_basecase = |- !r y. (BASEN r[BASEN r[];BASEN r[y]] = BASEN r[0;y]) /\ (LENGTH[y] = SUC(LENGTH[])) /\ (LENGTH[y] = SUC(LENGTH[])) basen_mul_combine_pps_step_lemma = |- !r. 0 < r ==> (!x y xs ys z zs. (BASEN r[BASEN r xs;BASEN r ys] = BASEN r(CONS z zs)) /\ (LENGTH ys = SUC(LENGTH xs)) /\ (LENGTH zs = SUC(LENGTH xs)) ==> (BASEN r[BASEN r(CONS x xs);BASEN r(CONS y ys)] = BASEN r(CONS(((x + y) + z) DIV r)(CONS(((x + y) + z) MOD r)zs))) /\ (LENGTH(CONS y ys) = SUC(LENGTH(CONS x xs))) /\ (LENGTH(CONS(((x + y) + z) MOD r)zs) = SUC(LENGTH(CONS x xs)))) PURE_BASEN_MUL_COMBINE_PPS_CONV = - : conv BASEN_MUL_COMBINE_PPS_CONV = - : conv BASEN_MUL_EXTEND_RULE = - : (term -> thm -> thm) basen_mul_basecase = |- !r x. x * (BASEN r[]) = BASEN r[] BASEN_MUL_SNOC_CONV = - : conv STEP_BASEN_MUL_CONV = - : conv Theorem INV_SUC_EQ autoloading from theory `prim_rec` ... INV_SUC_EQ = |- !m n. (SUC m = SUC n) = (m = n) Theorem LENGTH_MAP autoloading from theory `list` ... LENGTH_MAP = |- !l f. LENGTH(MAP f l) = LENGTH l Theorem BASEN_APPEND autoloading from theory `numeral` ... BASEN_APPEND = |- !r l m. BASEN r(APPEND l m) = ((r EXP (LENGTH m)) * (BASEN r l)) + (BASEN r m) Definition MAP autoloading from theory `list` ... MAP = |- (!f. MAP f[] = []) /\ (!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t)) BASEN_MUL_CONV = - : conv LESS_DIV = |- !n k. k < n ==> (k DIV n = 0) Theorem LESS_MOD autoloading from theory `arithmetic` ... LESS_MOD = |- !n k. k < n ==> (k MOD n = k) LESS_DIV_MOD = |- !n k. k < n ==> (k DIV n = 0) /\ (k MOD n = k) less_divmod_thm = |- !dividend divisor r. ((BASEN r[]) * divisor) + dividend = dividend basen_divmod_conv = - : (term -> conv) BASEN_DIV_CONV = - : conv Theorem MOD_UNIQUE autoloading from theory `arithmetic` ... MOD_UNIQUE = |- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r) BASEN_MOD_CONV = - : conv Theorem EXP_ADD autoloading from theory `arithmetic` ... EXP_ADD = |- !p q n. n EXP (p + q) = (n EXP p) * (n EXP q) BASEN_EXP_CONV = - : conv BASEN_CONV = - : conv BASEN_OF_NUM_CONV = - : (term -> conv) NUM_ARITH_CONV = - : conv NUM_ARITH_RULE = - : (thm -> thm) NUM_ARITH_TAC = - : tactic Calling Lisp compiler File numeral_rules compiled () : void #rm -f dummy.th make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/numeral' make[4]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `ind-defs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool mk_predv = - : (term list -> term) checkfilter = - : (* list -> * list -> * list -> * list) checkside = - : (term -> term -> term) mk_mk_pred = - : ((term # term list # term list) -> (term # term # (term -> term))) make_rule = - : ((term # term # term list # (term -> term)) -> goal -> term) make_definition = - : ((term # term list) -> goal list -> term) derive_induction = - : conv usedef = - : ((term list # thm) -> ((thm -> thm) # conv)) eximp = - : (term list -> thm -> (term # thm)) derive_rule = - : (term -> ((thm -> thm) # conv) -> thm -> thm) derive_rules = - : conv prove_inductive_relation_exists = - : ((term # term list) -> goal list -> thm) - : ((term # term list) -> goal list -> thm) prove_inductive_relation_exists = - : ((term # term list) -> goal list -> thm) new_inductive_definition = - : (bool -> string -> (term # term list) -> goal list -> (thm list # thm)) simp_axiom = - : ((thm # term) -> thm) reduce_asm = - : (term -> conv) prove_asm = - : (term -> conv) simp_concl = - : (thm -> conv) simp_rule = - : ((thm # term) -> thm) simp = - : ((thm # term) -> thm) derive_strong_induction = - : ((thm list # thm) -> thm) - : ((thm list # thm) -> thm) derive_strong_induction = - : ((thm list # thm) -> thm) MK_CONJ_THEN = - : (term -> term -> thm_tactic -> thm_tactical) MK_CHOOSE_THEN = - : (term -> * list -> term -> thm_tactic -> thm_tactical) MK_THEN = - : (term -> term -> thm_tactic -> thm_tactical) TACF = - : (term -> term -> thm_tactic -> thm_tactic -> tactic) TACS = - : (term -> term -> thm_tactic -> thm_tactic -> tactic list) mkred = - : (term -> term list -> conv) RED_CASE = - : (term -> term -> conv) APPLY_CASE = - : (conv list -> conv) RED_WHERE = - : (term -> term -> conv) is_param = - : (* list -> (* # *) list -> * -> bool) RULE_INDUCT_THEN = - : (thm -> thm_tactic -> thm_tactic -> tactic) - : (thm -> thm_tactic -> thm_tactic -> tactic) RULE_INDUCT_THEN = - : (thm -> thm_tactic -> thm_tactic -> tactic) axiom_tac = - : thm_tactic prove_conj = - : (thm list -> conv) RULE_TAC = - : thm_tactic - : thm_tactic RULE_TAC = - : thm_tactic reduce = - : (term list -> thm list -> thm list -> (term # term) list -> (thm list # (term # term) list)) REDUCE = - : conv - : conv REDUCE = - : conv MATCH_MP = - : (thm -> thm -> thm) LIST_NOT_FORALL = - : ((thm -> (thm # *)) -> thm -> (thm # *)) simp_axiom = - : ((thm -> thm -> thm) -> term list -> thm -> thm -> (thm # thm)) crul = - : (term -> thm -> thm) CONJ_RUL = - : (term -> thm -> thm) LIST_EXISTS_THEN = - : ((thm -> thm) -> thm -> thm) RULE = - : (thm -> thm -> thm) EXISTS_IMP2 = - : (term -> thm -> thm) efn = - : (term -> thm -> thm) RULE2 = - : (* -> thm -> thm -> thm) NOT_NOT = - : (thm -> thm) simp_rule = - : ((thm -> thm -> thm) -> term -> term list -> thm -> thm -> (thm # thm)) simp = - : (term -> (thm -> thm -> thm) -> thm -> thm -> (thm # thm)) LIST_DE_MORGAN = - : ((* -> thm -> (thm # thm)) -> * list -> thm -> (thm # thm)) derive_cases_thm = - : ((thm list # thm) -> thm) - : ((thm list # thm) -> thm) derive_cases_thm = - : ((thm list # thm) -> thm) Calling Lisp compiler File ind-defs compiled () : void #echo 'set_flag(`abort_when_fail`,true);;'\ 'compilet `ind_defs`;;'\ 'quit();;' | /build/reproducible-path/hol88-2.02.19940316dfsg/hol =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #false : bool () : void Calling Lisp compiler File ind_defs compiled () : void #===> library ind_defs rebuilt make[4]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library/ind_defs' =======> library rebuilt make[3]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg/Library' date Thu Jul 24 21:27:15 UTC 2025 make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' date Thu Jul 24 21:27:15 UTC 2025 make permissions make[2]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' find $(ls -1 | grep -v debian) \ \( -type d -exec chmod 775 {} \; \) -o\ \( -type f -exec chmod 664 {} \; \) for f in hol hol-lcf basic-hol Manual/LaTeX/makeindex Manual/LaTeX/makeindex.bin/*/makeindex Manual/Reference/bin/mktex Manual/Reference/bin/typecheck ; do\ ( if [ -f $f ] ; then\ find $f -exec chmod 775 {} \; ;fi) ; \ done make[2]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' =======> hol Version 2.02 (GCL) and libraries made make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' find -name "raw_*_map" -exec rm {} \; for i in $(find -maxdepth 1 -name "*hol*"); do \ printf 'install `'/usr/share/hol88-2.02.19940316dfsg'`;;\nlisp `(ml-save "foo")`;;\n' | ./$i &&\ mv foo $i; done =============================================================================== HOL88 Version 2.02 (GCL), built on 24/7/25 =============================================================================== #HOL installed (`/usr/share/hol88-2.02.19940316dfsg`) () : void # HOL-LCF version 2.02 (GCL) created 24/7/25 #HOL installed (`/usr/share/hol88-2.02.19940316dfsg`) () : void # BASIC-HOL version 2.02 (GCL) created 24/7/25 #HOL installed (`/usr/share/hol88-2.02.19940316dfsg`) () : void #touch build-arch-stamp find -maxdepth 1 -name "*hol*" | awk '{a=$1;sub("/[^/]*$","",a);printf("%s usr/lib/hol88-2.02.19940316dfsg/%s\n",$1,a);}' >>debian/hol88.install echo debian/hol88.sh usr/bin >>debian/hol88.install find Library -name "*.o" | awk '{a=$1;sub("/[^/]*$","",a);printf("%s usr/lib/hol88-2.02.19940316dfsg/%s\n",$1,a);}' >>debian/hol88-library.install find * -maxdepth 0 -name "*hol*" | awk '{printf("/usr/lib/hol88-2.02.19940316dfsg/%s usr/share/hol88-2.02.19940316dfsg/%s\n",$1,$1);}' >>debian/hol88.links find Library -name "*.o" | awk '{printf("/usr/lib/hol88-2.02.19940316dfsg/%s usr/share/hol88-2.02.19940316dfsg/%s\n",$1,$1);}' >>debian/hol88-library.links echo "#!/bin/bash" >debian/hol88.sh echo >>debian/hol88.sh echo "exec /usr/lib/hol88-2.02.19940316dfsg/hol" >>debian/hol88.sh chmod 755 debian/hol88.sh dh_testdir dh_testroot dh_prep -a -X./ml/site.ml.orig -X./contrib/tooltool/Makefile.orig \ -X./contrib/tooltool/events.c.orig -X./contrib/tooltool/func_fix.c.orig \ -X./contrib/tooltool/lex.c.orig -X./contrib/tooltool/parse.y.orig \ -X./contrib/tooltool/patchlevel.h.orig -X./contrib/tooltool/windows.c.orig \ -X./contrib/Xhelp/hol_apro.orig -X./contrib/Xhelp/hol_ref.orig \ -X./contrib/Xhelp/xholhelp.h.orig -X./contrib/Xhelp/hol_thm.orig dh_installdirs -a dh_install -a mv debian/hol88/usr/bin/hol88.sh debian/hol88/usr/bin/hol88 /usr/bin/make -f debian/rules DH_OPTIONS=-a binary-common make[1]: Entering directory '/build/reproducible-path/hol88-2.02.19940316dfsg' dh_testdir dh_testroot dh_installchangelogs dh_installdocs dh_installexamples dh_installman dh_lintian dh_link dh_strip dh_compress dh_fixperms dh_makeshlibs dh_installdeb dh_shlibdeps dpkg-shlibdeps: warning: diversions involved - output may be incorrect diversion by libtirpc3t64 from: /lib/aarch64-linux-gnu/libtirpc.so.3 dpkg-shlibdeps: warning: diversions involved - output may be incorrect diversion by libtirpc3t64 to: /lib/aarch64-linux-gnu/libtirpc.so.3.usr-is-merged dh_gencontrol dh_md5sums dh_builddeb dpkg-deb: building package 'hol88' in '../hol88_2.02.19940316dfsg-6_arm64.deb'. dpkg-deb: building package 'hol88-library' in '../hol88-library_2.02.19940316dfsg-6_arm64.deb'. make[1]: Leaving directory '/build/reproducible-path/hol88-2.02.19940316dfsg' dpkg-genbuildinfo --build=any -O../hol88_2.02.19940316dfsg-6_arm64.buildinfo dpkg-genchanges --build=any -O../hol88_2.02.19940316dfsg-6_arm64.changes dpkg-genchanges: info: binary-only arch-specific upload (source code and arch-indep packages not included) dpkg-source --after-build . dpkg-buildpackage: info: binary-only upload (no source included) -------------------------------------------------------------------------------- Build finished at 2025-07-24T21:27:50Z Finished -------- I: Built successfully +------------------------------------------------------------------------------+ | Changes Thu, 24 Jul 2025 21:27:51 +0000 | +------------------------------------------------------------------------------+ hol88_2.02.19940316dfsg-6_arm64.changes: ---------------------------------------- Format: 1.8 Date: Fri, 25 Apr 2025 13:46:25 -0400 Source: hol88 Binary: hol88 hol88-library Architecture: arm64 Version: 2.02.19940316dfsg-6 Distribution: unstable Urgency: high Maintainer: Camm Maguire Changed-By: Camm Maguire Description: hol88 - Higher Order Logic, system image hol88-library - Higher Order Logic, binary library modules Changes: hol88 (2.02.19940316dfsg-6) unstable; urgency=high . * build-dep gcl27 Checksums-Sha1: e747e839a75a4c6614d92eddb79f414c5825465b 5159076 hol88-library_2.02.19940316dfsg-6_arm64.deb 5587535c71bc7f6502c14427a9e48fc86d32ff27 6849 hol88_2.02.19940316dfsg-6_arm64.buildinfo 64ac6599df181afa4ee3d33720cea4705ca5f16f 11145384 hol88_2.02.19940316dfsg-6_arm64.deb Checksums-Sha256: dbf405bf091a5379dab062376d962cb961357bf2261919b9243117c2d8248eb2 5159076 hol88-library_2.02.19940316dfsg-6_arm64.deb eed4a545a977c268a47dbce3554331863a01e0982e38f7edd7a2f531587a37ff 6849 hol88_2.02.19940316dfsg-6_arm64.buildinfo a43ba4d0171d8a7d91bd8d095982e1804fc324dffea90d671a8d03e83ae72b38 11145384 hol88_2.02.19940316dfsg-6_arm64.deb Files: 00ee628d3e38476d75b891c823c76bc9 5159076 math optional hol88-library_2.02.19940316dfsg-6_arm64.deb 9e4d83896487feed6291a5811fb2c9b4 6849 math optional hol88_2.02.19940316dfsg-6_arm64.buildinfo 242ec6fc20d90475399b7b0ef1576d53 11145384 math optional hol88_2.02.19940316dfsg-6_arm64.deb +------------------------------------------------------------------------------+ | Buildinfo Thu, 24 Jul 2025 21:27:52 +0000 | +------------------------------------------------------------------------------+ Format: 1.0 Source: hol88 Binary: hol88 hol88-library Architecture: arm64 Version: 2.02.19940316dfsg-6 Checksums-Md5: 00ee628d3e38476d75b891c823c76bc9 5159076 hol88-library_2.02.19940316dfsg-6_arm64.deb 242ec6fc20d90475399b7b0ef1576d53 11145384 hol88_2.02.19940316dfsg-6_arm64.deb Checksums-Sha1: e747e839a75a4c6614d92eddb79f414c5825465b 5159076 hol88-library_2.02.19940316dfsg-6_arm64.deb 64ac6599df181afa4ee3d33720cea4705ca5f16f 11145384 hol88_2.02.19940316dfsg-6_arm64.deb Checksums-Sha256: dbf405bf091a5379dab062376d962cb961357bf2261919b9243117c2d8248eb2 5159076 hol88-library_2.02.19940316dfsg-6_arm64.deb a43ba4d0171d8a7d91bd8d095982e1804fc324dffea90d671a8d03e83ae72b38 11145384 hol88_2.02.19940316dfsg-6_arm64.deb Build-Origin: Debian Build-Architecture: arm64 Build-Date: Thu, 24 Jul 2025 21:27:49 +0000 Build-Path: /build/reproducible-path/hol88-2.02.19940316dfsg Installed-Build-Depends: autoconf (= 2.72-3.1), automake (= 1:1.17-4), autopoint (= 0.23.1-1), autotools-dev (= 20240727.1), base-files (= 13.7), base-passwd (= 3.6.7), bash (= 5.2.37-2), binutils (= 2.44-3), binutils-aarch64-linux-gnu (= 2.44-3), binutils-common (= 2.44-3), bsdextrautils (= 2.41-4), bsdutils (= 1:2.41-4), build-essential (= 12.12), bzip2 (= 1.0.8-6), coreutils (= 9.7-2), cpp (= 4:14.2.0-1), cpp-14 (= 14.2.0-19), cpp-14-aarch64-linux-gnu (= 14.2.0-19), cpp-aarch64-linux-gnu (= 4:14.2.0-1), dash (= 0.5.12-12), debconf (= 1.5.91), debhelper (= 13.24.2), debianutils (= 5.22), dh-autoreconf (= 20), dh-strip-nondeterminism (= 1.14.1-2), diffutils (= 1:3.10-4), dpkg (= 1.22.18), dpkg-dev (= 1.22.18), dwz (= 0.15-1+b1), file (= 1:5.46-5), findutils (= 4.10.0-3), fontconfig-config (= 2.15.0-2.3), fonts-dejavu-core (= 2.37-8), fonts-dejavu-mono (= 2.37-8), fonts-lmodern (= 2.005-1), g++ (= 4:14.2.0-1), g++-14 (= 14.2.0-19), g++-14-aarch64-linux-gnu (= 14.2.0-19), g++-aarch64-linux-gnu (= 4:14.2.0-1), gcc (= 4:14.2.0-1), gcc-14 (= 14.2.0-19), gcc-14-aarch64-linux-gnu (= 14.2.0-19), gcc-14-base (= 14.2.0-19), gcc-aarch64-linux-gnu (= 4:14.2.0-1), gcl27 (= 2.7.1-3), gettext (= 0.23.1-1), gettext-base (= 0.23.1-1), grep (= 3.11-4+b1), groff-base (= 1.23.0-7), gzip (= 1.13-1), hostname (= 3.25), init-system-helpers (= 1.68), intltool-debian (= 0.35.0+20060710.6), libacl1 (= 2.3.2-2+b1), libarchive-zip-perl (= 1.68-1), libasan8 (= 14.2.0-19), libatomic1 (= 14.2.0-19), libattr1 (= 1:2.5.2-3), libaudit-common (= 1:4.0.2-2), libaudit1 (= 1:4.0.2-2+b2), libbinutils (= 2.44-3), libblkid1 (= 2.41-4), libbrotli1 (= 1.1.0-2+b7), libbsd0 (= 0.12.2-2), libbz2-1.0 (= 1.0.8-6), libc-bin (= 2.41-7), libc-dev-bin (= 2.41-7), libc6 (= 2.41-7), libc6-dev (= 2.41-7), libcairo2 (= 1.18.4-1+b1), libcap-ng0 (= 0.8.5-4+b1), libcap2 (= 1:2.75-6), libcc1-0 (= 14.2.0-19), libcom-err2 (= 1.47.2-1+b1), libcrypt-dev (= 1:4.4.38-1), libcrypt1 (= 1:4.4.38-1), libctf-nobfd0 (= 2.44-3), libctf0 (= 2.44-3), libdb5.3t64 (= 5.3.28+dfsg2-9), libdebconfclient0 (= 0.278), libdebhelper-perl (= 13.24.2), libdpkg-perl (= 1.22.18), libedit2 (= 3.1-20250104-1), libelf1t64 (= 0.192-4), libexpat1 (= 2.7.1-1), libffi8 (= 3.4.8-2), libfile-stripnondeterminism-perl (= 1.14.1-2), libfontconfig1 (= 2.15.0-2.3), libfreetype6 (= 2.13.3+dfsg-1), libgcc-14-dev (= 14.2.0-19), libgcc-s1 (= 14.2.0-19), libgdbm-compat4t64 (= 1.24-2), libgdbm6t64 (= 1.24-2), libglib2.0-0t64 (= 2.84.1-2), libgmp10 (= 2:6.3.0+dfsg-3), libgomp1 (= 14.2.0-19), libgprofng0 (= 2.44-3), libgraphite2-3 (= 1.3.14-2+b1), libgssapi-krb5-2 (= 1.21.3-5), libharfbuzz0b (= 10.2.0-1+b1), libhwasan0 (= 14.2.0-19), libice6 (= 2:1.1.1-1), libicu76 (= 76.1-3), libisl23 (= 0.27-1), libitm1 (= 14.2.0-19), libjansson4 (= 2.14-2+b3), libk5crypto3 (= 1.21.3-5), libkeyutils1 (= 1.6.3-6), libkpathsea6 (= 2024.20240313.70630+ds-6), libkrb5-3 (= 1.21.3-5), libkrb5support0 (= 1.21.3-5), liblastlog2-2 (= 2.41-4), liblsan0 (= 14.2.0-19), liblzma5 (= 5.8.1-1), libmagic-mgc (= 1:5.46-5), libmagic1t64 (= 1:5.46-5), libmd0 (= 1.1.0-2+b1), libmount1 (= 2.41-4), libmpc3 (= 1.3.1-1+b3), libmpfi0 (= 1.5.4+ds-4), libmpfr6 (= 4.2.2-1), libncursesw6 (= 6.5+20250216-2), libpam-modules (= 1.7.0-3), libpam-modules-bin (= 1.7.0-3), libpam-runtime (= 1.7.0-3), libpam0g (= 1.7.0-3), libpaper-utils (= 2.2.5-0.3+b2), libpaper2 (= 2.2.5-0.3+b2), libpcre2-8-0 (= 10.45-1), libperl5.40 (= 5.40.1-3), libpipeline1 (= 1.5.8-1), libpixman-1-0 (= 0.44.0-3), libpng16-16t64 (= 1.6.47-1.1), libpotrace0 (= 1.16-2+b2), libproc2-0 (= 2:4.0.4-8), libptexenc1 (= 2024.20240313.70630+ds-6), libseccomp2 (= 2.6.0-2), libselinux1 (= 3.8.1-1), libsframe1 (= 2.44-3), libsm6 (= 2:1.2.6-1), libsmartcols1 (= 2.41-4), libsqlite3-0 (= 3.46.1-3), libssl3t64 (= 3.5.0-1), libstdc++-14-dev (= 14.2.0-19), libstdc++6 (= 14.2.0-19), libsynctex2 (= 2024.20240313.70630+ds-6), libsystemd0 (= 257.5-2), libteckit0 (= 2.5.12+ds1-1+b1), libtexlua53-5 (= 2024.20240313.70630+ds-6), libtext-charwidth-perl (= 0.04-11+b4), libtext-wrapi18n-perl (= 0.06-10), libtinfo6 (= 6.5+20250216-2), libtirpc-common (= 1.3.6+ds-1), libtirpc-dev (= 1.3.6+ds-1), libtirpc3t64 (= 1.3.6+ds-1), libtool (= 2.5.4-4), libtsan2 (= 14.2.0-19), libubsan1 (= 14.2.0-19), libuchardet0 (= 0.0.8-1+b2), libudev1 (= 257.5-2), libunistring5 (= 1.3-2), libuuid1 (= 2.41-4), libx11-6 (= 2:1.8.12-1), libx11-data (= 2:1.8.12-1), libxau6 (= 1:1.0.11-1), libxaw7 (= 2:1.0.16-1), libxcb-render0 (= 1.17.0-2+b1), libxcb-shm0 (= 1.17.0-2+b1), libxcb1 (= 1.17.0-2+b1), libxdmcp6 (= 1:1.1.5-1), libxext6 (= 2:1.3.4-1+b3), libxi6 (= 2:1.8.2-1), libxml2 (= 2.12.7+dfsg+really2.9.14-0.4), libxmu6 (= 2:1.1.3-3+b4), libxpm4 (= 1:3.5.17-1+b3), libxrender1 (= 1:0.9.12-1), libxt6t64 (= 1:1.2.1-1.2+b2), libzstd1 (= 1.5.7+dfsg-1), libzzip-0-13t64 (= 0.13.78+dfsg.1-0.1), linux-libc-dev (= 6.12.22-1), m4 (= 1.4.19-8), make (= 4.4.1-2), man-db (= 2.13.0-1), mawk (= 1.3.4.20250131-1), ncurses-base (= 6.5+20250216-2), ncurses-bin (= 6.5+20250216-2), openssl-provider-legacy (= 3.5.0-1), patch (= 2.8-1), perl (= 5.40.1-3), perl-base (= 5.40.1-3), perl-modules-5.40 (= 5.40.1-3), po-debconf (= 1.0.21+nmu1), procps (= 2:4.0.4-8), rpcsvc-proto (= 1.4.3-1+b1), sed (= 4.9-2+b1), sensible-utils (= 0.0.25), sysvinit-utils (= 3.14-4), t1utils (= 1.41-4+b1), tar (= 1.35+dfsg-3.1), tex-common (= 6.19), texlive-base (= 2024.20250309-1), texlive-binaries (= 2024.20240313.70630+ds-6), texlive-latex-base (= 2024.20250309-1), ucf (= 3.0051), util-linux (= 2.41-4), x11-common (= 1:7.7+24), xdg-utils (= 1.2.1-2), xz-utils (= 5.8.1-1), zlib1g (= 1:1.3.dfsg+really1.3.1-1+b1) Environment: DEB_BUILD_OPTIONS="parallel=8" LANG="C.UTF-8" LC_COLLATE="C.UTF-8" LC_CTYPE="C.UTF-8" SOURCE_DATE_EPOCH="1745603185" +------------------------------------------------------------------------------+ | Package contents Thu, 24 Jul 2025 21:27:52 +0000 | +------------------------------------------------------------------------------+ hol88-library_2.02.19940316dfsg-6_arm64.deb ------------------------------------------- new Debian package, version 2.0. size 5159076 bytes: control archive=3740 bytes. 601 bytes, 15 lines control 11128 bytes, 115 lines md5sums Package: hol88-library Source: hol88 Version: 2.02.19940316dfsg-6 Architecture: arm64 Maintainer: Camm Maguire Installed-Size: 45602 Section: math Priority: optional Description: Higher Order Logic, binary library modules The HOL System is an environment for interactive theorem proving in a higher-order logic. Its most outstanding feature is its high degree of programmability through the meta-language ML. The system has a wide variety of uses from formalizing pure mathematics to verification of industrial hardware. Academic and industrial sites world-wide are using HOL. drwxr-xr-x root/root 0 2025-04-25 17:46 ./ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/abs_theory/ -rw-r--r-- root/root 765599 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/abs_theory/abs_theory_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/ -rw-r--r-- root/root 267266 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/arith_cons_ml.o -rw-r--r-- root/root 280488 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/decls_ml.o -rw-r--r-- root/root 174396 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/exists_arith_ml.o -rw-r--r-- root/root 202596 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/gen_arith_ml.o -rw-r--r-- root/root 63770 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/instance_ml.o -rw-r--r-- root/root 88292 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/int_extra_ml.o -rw-r--r-- root/root 472835 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/norm_arith_ml.o -rw-r--r-- root/root 147677 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/norm_bool_ml.o -rw-r--r-- root/root 152344 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/norm_ineqs_ml.o -rw-r--r-- root/root 123144 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/prenex_ml.o -rw-r--r-- root/root 231139 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/qconv_ml.o -rw-r--r-- root/root 201845 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/rationals_ml.o -rw-r--r-- root/root 262914 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/sol_ranges_ml.o -rw-r--r-- root/root 444228 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/solve_ineqs_ml.o -rw-r--r-- root/root 239902 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/solve_ml.o -rw-r--r-- root/root 129575 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/streams_ml.o -rw-r--r-- root/root 47742 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/string_extra_ml.o -rw-r--r-- root/root 135511 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/sub_and_cond_ml.o -rw-r--r-- root/root 531234 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/sup-inf_ml.o -rw-r--r-- root/root 264779 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/arith/term_coeffs_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/finite_sets/ -rw-r--r-- root/root 448977 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/finite_sets/fset_conv_ml.o -rw-r--r-- root/root 145634 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/finite_sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/ind_defs/ -rw-r--r-- root/root 1672300 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/ind_defs/ind-defs_ml.o -rw-r--r-- root/root 36242 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/ind_defs/ind_defs_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/ -rw-r--r-- root/root 149023 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/filters_ml.o -rw-r--r-- root/root 354614 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/formaters_ml.o -rw-r--r-- root/root 146859 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/hol_trees_ml.o -rw-r--r-- root/root 92383 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_sets_pp_ml.o -rw-r--r-- root/root 669318 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_term_pp_ml.o -rw-r--r-- root/root 90677 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_thm_pp_ml.o -rw-r--r-- root/root 156200 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_type_pp_ml.o -rw-r--r-- root/root 67572 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/latex-hol/precedence_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/more_arithmetic/ -rw-r--r-- root/root 146661 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_convs_ml.o -rw-r--r-- root/root 169566 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_tac_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/numeral/ -rw-r--r-- root/root 4971938 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/numeral/numeral_rules_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/ -rw-r--r-- root/root 396642 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/all_ml.o -rw-r--r-- root/root 725713 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/basic_ml.o -rw-r--r-- root/root 295133 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/both1_ml.o -rw-r--r-- root/root 593106 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/both2_ml.o -rw-r--r-- root/root 1610171 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/conv_ml.o -rw-r--r-- root/root 551239 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/exi_ml.o -rw-r--r-- root/root 73525 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/pair_ml.o -rw-r--r-- root/root 441797 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pair/syn_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/parser/ -rw-r--r-- root/root 378792 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/parser/general_ml.o -rw-r--r-- root/root 1302052 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/parser/parser_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pred_sets/ -rw-r--r-- root/root 516480 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pred_sets/fset_conv_ml.o -rw-r--r-- root/root 365143 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pred_sets/gspec_ml.o -rw-r--r-- root/root 156000 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/pred_sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/ -rw-r--r-- root/root 524931 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_term_pp_ml.o -rw-r--r-- root/root 90753 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_thm_pp_ml.o -rw-r--r-- root/root 147240 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_trees_ml.o -rw-r--r-- root/root 156382 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_type_pp_ml.o -rw-r--r-- root/root 52986 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/link_to_hol_ml.o -rw-r--r-- root/root 176880 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/new_printers_ml.o -rw-r--r-- root/root 59270 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/precedence_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/ -rw-r--r-- root/root 75767 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/PP_to_ML_ml.o -rw-r--r-- root/root 1408510 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/convert_ml.o -rw-r--r-- root/root 430172 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/generate_ml.o -rw-r--r-- root/root 294417 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/lex_ml.o -rw-r--r-- root/root 474125 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang1_pp_ml.o -rw-r--r-- root/root 685502 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang2_pp_ml.o -rw-r--r-- root/root 1284693 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/syntax_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/ -rw-r--r-- root/root 421238 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxes_ml.o -rw-r--r-- root/root 162867 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxtostring_ml.o -rw-r--r-- root/root 104199 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/extents_ml.o -rw-r--r-- root/root 145920 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/print_ml.o -rw-r--r-- root/root 47321 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/ptree_ml.o -rw-r--r-- root/root 179245 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/strings_ml.o -rw-r--r-- root/root 670781 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treematch_ml.o -rw-r--r-- root/root 467873 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treetobox_ml.o -rw-r--r-- root/root 287480 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/utils_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/record_proof/ -rw-r--r-- root/root 52945 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/record_proof/dummy_funs_ml.o -rw-r--r-- root/root 835701 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/record_proof/proof_rec_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/reduce/ -rw-r--r-- root/root 1177602 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/reduce/arithconv_ml.o -rw-r--r-- root/root 408801 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/reduce/boolconv_ml.o -rw-r--r-- root/root 96389 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/reduce/reduce_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/res_quan/ -rw-r--r-- root/root 402754 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/res_quan/cond_rewr_ml.o -rw-r--r-- root/root 1012744 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/res_quan/res_rules_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/sets/ -rw-r--r-- root/root 514506 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/sets/fset_conv_ml.o -rw-r--r-- root/root 363542 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/sets/gspec_ml.o -rw-r--r-- root/root 155828 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/string/ -rw-r--r-- root/root 130957 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/string/ascii_ml.o -rw-r--r-- root/root 93623 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/string/string_ml.o -rw-r--r-- root/root 188377 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/string/string_rules_ml.o -rw-r--r-- root/root 104377 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/string/stringconv_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/taut/ -rw-r--r-- root/root 853488 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/taut/taut_check_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/ -rw-r--r-- root/root 22988 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/extents_ml.o -rw-r--r-- root/root 184374 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/extract_ml.o -rw-r--r-- root/root 351712 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/matching_ml.o -rw-r--r-- root/root 148759 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/name_ml.o -rw-r--r-- root/root 214105 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/search_ml.o -rw-r--r-- root/root 53666 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/sets_ml.o -rw-r--r-- root/root 291700 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/sidecond_ml.o -rw-r--r-- root/root 429040 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/struct_ml.o -rw-r--r-- root/root 29635 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/thmkind_ml.o -rw-r--r-- root/root 165599 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/trs/user_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/unwind/ -rw-r--r-- root/root 1033491 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/unwind/unwinding_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/ -rw-r--r-- root/root 516005 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/basic_close_ml.o -rw-r--r-- root/root 567080 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/eq_close_ml.o -rw-r--r-- root/root 545920 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/hol_ext_ml.o -rw-r--r-- root/root 1305693 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/imp_close_ml.o -rw-r--r-- root/root 841303 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/inter_ml.o -rw-r--r-- root/root 46493 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/load_code_ml.o -rw-r--r-- root/root 45061 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/load_window_ml.o -rw-r--r-- root/root 243141 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/ml_ext_ml.o -rw-r--r-- root/root 627466 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/tables_ml.o -rw-r--r-- root/root 132065 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/tactic_ml.o -rw-r--r-- root/root 130112 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/thms_ml.o -rw-r--r-- root/root 1046042 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/win_ml.o -rw-r--r-- root/root 95615 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/window_ml.o -rw-r--r-- root/root 123916 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/window/xlabel_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/word/ -rw-r--r-- root/root 573458 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/Library/word/word_convs_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/doc/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/doc/hol88-library/ -rw-r--r-- root/root 541 2025-04-25 17:46 ./usr/share/doc/hol88-library/changelog.Debian.gz -rw-r--r-- root/root 1124 2010-11-05 16:09 ./usr/share/doc/hol88-library/copyright drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/abs_theory/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/abs_theory/abs_theory_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/abs_theory/abs_theory_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/arith_cons_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/arith_cons_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/decls_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/decls_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/exists_arith_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/exists_arith_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/gen_arith_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/gen_arith_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/instance_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/instance_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/int_extra_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/int_extra_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/norm_arith_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/norm_arith_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/norm_bool_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/norm_bool_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/norm_ineqs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/norm_ineqs_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/prenex_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/prenex_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/qconv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/qconv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/rationals_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/rationals_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/sol_ranges_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/sol_ranges_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/solve_ineqs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/solve_ineqs_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/solve_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/solve_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/streams_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/streams_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/string_extra_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/string_extra_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/sub_and_cond_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/sub_and_cond_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/sup-inf_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/sup-inf_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/arith/term_coeffs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/arith/term_coeffs_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/finite_sets/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/finite_sets/fset_conv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/finite_sets/fset_conv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/finite_sets/set_ind_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/finite_sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/ind_defs/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/ind_defs/ind-defs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/ind_defs/ind-defs_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/ind_defs/ind_defs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/ind_defs/ind_defs_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/filters_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/filters_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/formaters_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/formaters_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/hol_trees_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/hol_trees_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/latex_sets_pp_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_sets_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/latex_term_pp_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_term_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/latex_thm_pp_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_thm_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/latex_type_pp_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/latex_type_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/latex-hol/precedence_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/latex-hol/precedence_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/more_arithmetic/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_convs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_convs_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_tac_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/more_arithmetic/num_tac_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/numeral/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/numeral/numeral_rules_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/numeral/numeral_rules_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/all_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/all_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/basic_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/basic_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/both1_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/both1_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/both2_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/both2_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/conv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/conv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/exi_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/exi_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/pair_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/pair_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pair/syn_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pair/syn_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/parser/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/parser/general_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/parser/general_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/parser/parser_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/parser/parser_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pred_sets/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pred_sets/fset_conv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pred_sets/fset_conv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pred_sets/gspec_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pred_sets/gspec_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/pred_sets/set_ind_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/pred_sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_term_pp_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_term_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_thm_pp_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_thm_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_trees_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_trees_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_type_pp_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/hol_type_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/link_to_hol_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/link_to_hol_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/new_printers_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/new_printers_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/precedence_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_hol/precedence_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/PP_to_ML_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/PP_to_ML_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/convert_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/convert_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/generate_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/generate_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/lex_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/lex_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang1_pp_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang1_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang2_pp_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/pp_lang2_pp_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/syntax_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_parser/syntax_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxes_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxes_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxtostring_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/boxtostring_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/extents_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/extents_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/print_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/print_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/ptree_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/ptree_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/strings_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/strings_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treematch_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treematch_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treetobox_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/treetobox_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/utils_ml.o -> ../../../../../lib/hol88-2.02.19940316dfsg/Library/prettyp/PP_printer/utils_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/record_proof/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/record_proof/dummy_funs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/record_proof/dummy_funs_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/record_proof/proof_rec_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/record_proof/proof_rec_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/reduce/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/reduce/arithconv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/reduce/arithconv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/reduce/boolconv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/reduce/boolconv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/reduce/reduce_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/reduce/reduce_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/res_quan/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/res_quan/cond_rewr_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/res_quan/cond_rewr_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/res_quan/res_rules_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/res_quan/res_rules_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/sets/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/sets/fset_conv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/sets/fset_conv_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/sets/gspec_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/sets/gspec_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/sets/set_ind_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/sets/set_ind_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/string/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/string/ascii_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/string/ascii_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/string/string_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/string/string_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/string/string_rules_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/string/string_rules_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/string/stringconv_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/string/stringconv_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/taut/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/taut/taut_check_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/taut/taut_check_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/extents_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/extents_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/extract_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/extract_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/matching_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/matching_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/name_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/name_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/search_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/search_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/sets_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/sets_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/sidecond_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/sidecond_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/struct_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/struct_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/thmkind_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/thmkind_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/trs/user_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/trs/user_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/unwind/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/unwind/unwinding_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/unwind/unwinding_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/basic_close_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/basic_close_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/eq_close_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/eq_close_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/hol_ext_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/hol_ext_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/imp_close_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/imp_close_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/inter_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/inter_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/load_code_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/load_code_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/load_window_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/load_window_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/ml_ext_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/ml_ext_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/tables_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/tables_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/tactic_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/tactic_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/thms_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/thms_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/win_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/win_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/window_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/window_ml.o lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/window/xlabel_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/window/xlabel_ml.o drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/word/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/Library/word/word_convs_ml.o -> ../../../../lib/hol88-2.02.19940316dfsg/Library/word/word_convs_ml.o hol88_2.02.19940316dfsg-6_arm64.deb ----------------------------------- new Debian package, version 2.0. size 11145384 bytes: control archive=1020 bytes. 699 bytes, 15 lines control 606 bytes, 9 lines md5sums Package: hol88 Version: 2.02.19940316dfsg-6 Architecture: arm64 Maintainer: Camm Maguire Installed-Size: 245409 Depends: libc6 (>= 2.38), libedit2 (>= 2.11-20080614-0), libgcc-s1 (>= 4.0), libgmp10 (>= 2:6.3.0+dfsg), libtirpc3t64 (>= 1.0.2) Section: math Priority: optional Description: Higher Order Logic, system image The HOL System is an environment for interactive theorem proving in a higher-order logic. Its most outstanding feature is its high degree of programmability through the meta-language ML. The system has a wide variety of uses from formalizing pure mathematics to verification of industrial hardware. Academic and industrial sites world-wide are using HOL. drwxr-xr-x root/root 0 2025-04-25 17:46 ./ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/bin/ -rwxr-xr-x root/root 55 2025-04-25 17:46 ./usr/bin/hol88 drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/ -rwxr-xr-x root/root 85854592 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/basic-hol -rwxr-xr-x root/root 87951808 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/hol -rwxr-xr-x root/root 77465920 2025-04-25 17:46 ./usr/lib/hol88-2.02.19940316dfsg/hol-lcf drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/doc/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/doc/hol88/ -rw-r--r-- root/root 449 2010-11-05 16:09 ./usr/share/doc/hol88/README.Debian -rw-r--r-- root/root 535 2025-04-25 17:46 ./usr/share/doc/hol88/changelog.Debian.gz -rw-r--r-- root/root 1124 2010-11-05 16:09 ./usr/share/doc/hol88/copyright drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/ lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/basic-hol -> ../../lib/hol88-2.02.19940316dfsg/basic-hol lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/hol -> ../../lib/hol88-2.02.19940316dfsg/hol lrwxrwxrwx root/root 0 2025-04-25 17:46 ./usr/share/hol88-2.02.19940316dfsg/hol-lcf -> ../../lib/hol88-2.02.19940316dfsg/hol-lcf drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/lintian/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/lintian/overrides/ -rw-r--r-- root/root 660 2025-04-25 17:46 ./usr/share/lintian/overrides/hol88 drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/man/ drwxr-xr-x root/root 0 2025-04-25 17:46 ./usr/share/man/man1/ -rw-r--r-- root/root 734 2025-04-25 17:46 ./usr/share/man/man1/hol88.1.gz +------------------------------------------------------------------------------+ | Post Build Thu, 24 Jul 2025 21:27:55 +0000 | +------------------------------------------------------------------------------+ +------------------------------------------------------------------------------+ | Cleanup Thu, 24 Jul 2025 21:27:55 +0000 | +------------------------------------------------------------------------------+ Purging /build/reproducible-path Not cleaning session: cloned chroot in use +------------------------------------------------------------------------------+ | Summary Thu, 24 Jul 2025 21:27:57 +0000 | +------------------------------------------------------------------------------+ Build Architecture: arm64 Build Type: any Build-Space: 755196 Build-Time: 380 Distribution: unstable Host Architecture: arm64 Install-Time: 7 Job: /srv/rebuilderd/tmp/rebuilderdMZ1i5G/inputs/hol88_2.02.19940316dfsg-6.dsc Machine Architecture: arm64 Package: hol88 Package-Time: 403 Source-Version: 2.02.19940316dfsg-6 Space: 755196 Status: successful Version: 2.02.19940316dfsg-6 -------------------------------------------------------------------------------- Finished at 2025-07-24T21:27:50Z Build needed 00:06:43, 755196k disk space build artifacts stored in /srv/rebuilderd/tmp/rebuilderdMZ1i5G/out checking hol88-library_2.02.19940316dfsg-6_arm64.deb: size differs for hol88-library_2.02.19940316dfsg-6_arm64.deb